Sample records for applied research facility

  1. 36 CFR 1254.20 - What general policies apply in all NARA facilities where archival materials are available for...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... What general policies apply in all NARA facilities where archival materials are available for research... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false What general policies apply in all NARA facilities where archival materials are available for research? 1254.20 Section 1254.20...

  2. Development of a superconductor magnetic suspension and balance prototype facility for studying the feasibility of applying this technique to large scale aerodynamic testing

    NASA Technical Reports Server (NTRS)

    Zapata, R. N.; Humphris, R. R.; Henderson, K. C.

    1975-01-01

    The basic research and development work towards proving the feasibility of operating an all-superconductor magnetic suspension and balance device for aerodynamic testing is presented. The feasibility of applying a quasi-six-degree-of freedom free support technique to dynamic stability research was studied along with the design concepts and parameters for applying magnetic suspension techniques to large-scale aerodynamic facilities. A prototype aerodynamic test facility was implemented. Relevant aspects of the development of the prototype facility are described in three sections: (1) design characteristics; (2) operational characteristics; and (3) scaling to larger facilities.

  3. ABR - Home

    Science.gov Websites

    Argonne National Laboratory Applied Battery Research for Transportation Program DOE Logo Home ; ABR > About ABR Projects News cell fabrication faciity posttest facility MERF Cell Fabrication Facility Post-Test Facility Materials Engineering Research Facility Battery News Recent Reports Funding

  4. Overview of the NASA Dryden Flight Research Facility aeronautical flight projects

    NASA Technical Reports Server (NTRS)

    Meyer, Robert R., Jr.

    1992-01-01

    Several principal aerodynamics flight projects of the NASA Dryden Flight Research Facility are discussed. Key vehicle technology areas from a wide range of flight vehicles are highlighted. These areas include flight research data obtained for ground facility and computation correlation, applied research in areas not well suited to ground facilities (wind tunnels), and concept demonstration.

  5. WASH and gender in health care facilities: The uncharted territory.

    PubMed

    Kohler, Petra; Renggli, Samuel; Lüthi, Christoph

    2017-11-08

    Health care facilities in low- and middle-income countries are high-risk settings, and face special challenges to achieving sustainable water, sanitation, and hygiene (WASH) services. Our applied interdisciplinary research conducted in India and Uganda analyzed six dimensions of WASH services in selected health care facilities, including menstrual hygiene management. To be effective, WASH monitoring strategies in health care facilities must include gender sensitive measures. We present a novel strategy, showing that applied gender sensitive multitool assessments are highly productive in assessments of WASH services and facilities from user and provider perspectives. We discuss its potential for applications at scale and as an area of future research.

  6. Advanced Simulation in Undergraduate Pilot Training (ASUPT) Facility Utilization Plan.

    ERIC Educational Resources Information Center

    Hagin, William V.; Smith, James F.

    The capabilities of a flight simulation research facility located at Williams AFB, Arizona are described. Research philosophy to be applied is discussed. Long range and short range objectives are identified. A time phased plan for long range research accomplishment is described. In addition, some examples of near term research efforts which will…

  7. Recent Upgrades at the Safety and Tritium Applied Research Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cadwallader, Lee Charles; Merrill, Brad Johnson; Stewart, Dean Andrew

    This paper gives a brief overview of the Safety and Tritium Applied Research (STAR) facility operated by the Fusion Safety Program (FSP) at the Idaho National Laboratory (INL). FSP researchers use the STAR facility to carry out experiments in tritium permeation and retention in various fusion materials, including wall armor tile materials. FSP researchers also perform other experimentation as well to support safety assessment in fusion development. This lab, in its present two-building configuration, has been in operation for over ten years. The main experiments at STAR are briefly described. This paper discusses recent work to enhance personnel safety atmore » the facility. The STAR facility is a Department of Energy less than hazard category 3 facility; the personnel safety approach calls for ventilation and tritium monitoring for radiation protection. The tritium areas of STAR have about 4 to 12 air changes per hour, with air flow being once through and then routed to the facility vent stack. Additional radiation monitoring has been installed to read the laboratory room air where experiments with tritium are conducted. These ion chambers and bubblers are used to verify that no significant tritium concentrations are present in the experiment rooms. Standby electrical power has been added to the facility exhaust blower so that proper ventilation will now operate during commercial power outages as well as the real-time tritium air monitors.« less

  8. National space test centers - Lewis Research Center Facilities

    NASA Technical Reports Server (NTRS)

    Roskilly, Ronald R.

    1990-01-01

    The Lewis Research Center, NASA, presently has a number of test facilities that constitute a significant national space test resource. It is expected this capability will continue to find wide application in work involving this country's future in space. Testing from basic research to applied technology, to systems development, to ground support will be performed, supporting such activities as Space Station Freedom, the Space Exploration Initiative, Mission to Planet Earth, and many others. The major space test facilities at both Cleveland and Lewis' Plum Brook Station are described. Primary emphasis is on space propulsion facilities; other facilities of importance in space power and microgravity are also included.

  9. Subsonic Transonic Applied Refinements By Using Key Strategies - STARBUKS In the NASA Langley Research Center National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Paryz, Roman W.

    2014-01-01

    Several upgrade projects have been completed at the NASA Langley Research Center National Transonic Facility over the last 1.5 years in an effort defined as STARBUKS - Subsonic Transonic Applied Refinements By Using Key Strategies. This multi-year effort was undertaken to improve NTF's overall capabilities by addressing Accuracy and Validation, Productivity, and Reliability areas at the NTF. This presentation will give a brief synopsis of each of these efforts.

  10. Predicting Nursing Facility Transition Candidates Using AID: A Case Study

    ERIC Educational Resources Information Center

    James, Mary L.; Wiley, Elizabeth; Fries, Brant E.

    2007-01-01

    Purpose: Although the nursing facility transition literature is growing, little research has analyzed the characteristics of individuals so assisted or compared participants to those who remain institutionalized. This article describes an analytic method that researchers can apply to address these knowledge gaps, using the Arkansas Passages…

  11. Practical considerations for disaster preparedness and continuity management in research facilities.

    PubMed

    Mortell, Norman; Nicholls, Sam

    2013-10-01

    Many research facility managers, veterinarians and directors are familiar with the principles of Good Laboratory Practice, requirements of the Association for Assessment and Accreditation of Laboratory Animal Care International, tenets of biosecurity and standards of animal welfare and housing but may be less familiar with the ideas of business continuity. But business continuity considerations are as applicable to research facilities as they are to other institutions. The authors discuss how business continuity principles can be applied in the research context and propose that such application, or 'research continuity management,' enables a focused but wide-reaching approach to disaster preparedness.

  12. 43 CFR 10005.15 - Planning and management techniques applicable to the plan.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... facilities, instream spawning facilities, water control structures, and fencing that aid in the conservation... biological resources. (g) Applied research that targets specific biological information or management needs...

  13. 43 CFR 10005.15 - Planning and management techniques applicable to the plan.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... facilities, instream spawning facilities, water control structures, and fencing that aid in the conservation... biological resources. (g) Applied research that targets specific biological information or management needs...

  14. Aerial Views of KSC

    NASA Image and Video Library

    2003-07-23

    The Space Experiment Research and Processing Laboratory (SERPL) is a major new research facility under construction at the International Space Research Park located on KSC. Being developed as a partnership between KSC and the State of Florida, it will serve as the primary gateway to the International Space Station for science experiments and as a world-class home to ground-based investigations in fundamental and applied biological science. NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

  15. An overview of research activities on materials for nuclear applications at the INL Safety, Tritium and Applied Research facility

    NASA Astrophysics Data System (ADS)

    Calderoni, P.; Sharpe, J.; Shimada, M.; Denny, B.; Pawelko, B.; Schuetz, S.; Longhurst, G.; Hatano, Y.; Hara, M.; Oya, Y.; Otsuka, T.; Katayama, K.; Konishi, S.; Noborio, K.; Yamamoto, Y.

    2011-10-01

    The Safety, Tritium and Applied Research facility at the Idaho National Laboratory is a US Department of Energy National User Facility engaged in various aspects of materials research for nuclear applications related to fusion and advanced fission systems. Research activities are mainly focused on the interaction of tritium with materials, in particular plasma facing components, liquid breeders, high temperature coolants, fuel cladding, cooling and blanket structures and heat exchangers. Other activities include validation and verification experiments in support of the Fusion Safety Program, such as beryllium dust reactivity and dust transport in vacuum vessels, and support of Advanced Test Reactor irradiation experiments. This paper presents an overview of the programs engaged in the activities, which include the US-Japan TITAN collaboration, the US ITER program, the Next Generation Power Plant program and the tritium production program, and a presentation of ongoing experiments as well as a summary of recent results with emphasis on fusion relevant materials.

  16. Optimal Facility-Location

    PubMed Central

    Goldman, A. J.

    2006-01-01

    Dr. Christoph Witzgall, the honoree of this Symposium, can count among his many contributions to applied mathematics and mathematical operations research a body of widely-recognized work on the optimal location of facilities. The present paper offers to non-specialists a sketch of that field and its evolution, with emphasis on areas most closely related to Witzgall’s research at NBS/NIST. PMID:27274920

  17. Technology | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory develops and applies advanced, next-generation technologies to solve basic and applied problems in the biomedical sciences, and serves as a national resource of shared high-tech facilities.

  18. Aerial Views of KSC

    NASA Image and Video Library

    2003-07-23

    The Space Experiment Research and Processing Laboratory (SERPL) is a major new research facility under construction at the International Space Research Park located on KSC. At right is S.R. 3, which leads into the Center from Merritt Island. Being developed as a partnership between KSC and the State of Florida, SERPL will serve as the primary gateway to the International Space Station for science experiments and as a world-class home to ground-based investigations in fundamental and applied biological science. NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

  19. Condition Monitoring of Large-Scale Facilities

    NASA Technical Reports Server (NTRS)

    Hall, David L.

    1999-01-01

    This document provides a summary of the research conducted for the NASA Ames Research Center under grant NAG2-1182 (Condition-Based Monitoring of Large-Scale Facilities). The information includes copies of view graphs presented at NASA Ames in the final Workshop (held during December of 1998), as well as a copy of a technical report provided to the COTR (Dr. Anne Patterson-Hine) subsequent to the workshop. The material describes the experimental design, collection of data, and analysis results associated with monitoring the health of large-scale facilities. In addition to this material, a copy of the Pennsylvania State University Applied Research Laboratory data fusion visual programming tool kit was also provided to NASA Ames researchers.

  20. Development of Background-Oriented Schlieren for NASA Langley Research Center Ground Test Facilities

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Borg, Stephen; Jones, Stephen; Overmeyer, Austin; Walker, Eric; Goad, William; Clem, Michelle; Schairer, Edward T.; Mizukaki, Toshiharu

    2015-01-01

    This paper provides an overview of recent wind tunnel tests performed at the NASA Langley Research Center where the Background-Oriented Schlieren (BOS) technique was used to provide information pertaining to flow-field density disturbances. The facilities in which the BOS technique was applied included the National Transonic Facility (NTF), Transonic Dynamics Tunnel (TDT), 31-Inch Mach 10 Air Tunnel, 15-Inch Mach 6 High-Temperature Air Tunnel, Rotor Test Cell at the 14 by 22 Subsonic Tunnel, and a 13-Inch Low-Speed Tunnel.

  1. Crowder College MARET Center Facility Final Scientific/Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rand, Amy

    This project was a research facility construction project and did not include actual research. The new facility will benefit the public by providing training opportunities for students, as well as incubator and laboratory space for entrepreneurs in the areas of alternative and renewable energies. The 9,216 -square-foot Missouri Alternative and Renewable Energy Technology (MARET) Center was completed in late 2011. Classes in the MARET Center began in the spring 2012 semester. Crowder College takes pride in the MARET Center, a focal point of the campus, as the cutting edge in education, applied research and commercial development in the growing fieldmore » of green technology.« less

  2. The Soreq Applied Research Accelerator Facility (SARAF): Overview, research programs and future plans

    NASA Astrophysics Data System (ADS)

    Mardor, Israel; Aviv, Ofer; Avrigeanu, Marilena; Berkovits, Dan; Dahan, Adi; Dickel, Timo; Eliyahu, Ilan; Gai, Moshe; Gavish-Segev, Inbal; Halfon, Shlomi; Hass, Michael; Hirsh, Tsviki; Kaiser, Boaz; Kijel, Daniel; Kreisel, Arik; Mishnayot, Yonatan; Mukul, Ish; Ohayon, Ben; Paul, Michael; Perry, Amichay; Rahangdale, Hitesh; Rodnizki, Jacob; Ron, Guy; Sasson-Zukran, Revital; Shor, Asher; Silverman, Ido; Tessler, Moshe; Vaintraub, Sergey; Weissman, Leo

    2018-05-01

    The Soreq Applied Research Accelerator Facility (SARAF) is under construction in the Soreq Nuclear Research Center at Yavne, Israel. When completed at the beginning of the next decade, SARAF will be a user facility for basic and applied nuclear physics, based on a 40 MeV, 5 mA CW proton/deuteron superconducting linear accelerator. Phase I of SARAF (SARAF-I, 4 MeV, 2 mA CW protons, 5 MeV 1 mA CW deuterons) is already in operation, generating scientific results in several fields of interest. The main ongoing program at SARAF-I is the production of 30 keV neutrons and measurement of Maxwellian Averaged Cross Sections (MACS), important for the astrophysical s-process. The world leading Maxwellian epithermal neutron yield at SARAF-I (5 × 10^{10} epithermal neutrons/s), generated by a novel Liquid-Lithium Target (LiLiT), enables improved precision of known MACSs, and new measurements of low-abundance and radioactive isotopes. Research plans for SARAF-II span several disciplines: precision studies of beyond-Standard-Model effects by trapping light exotic radioisotopes, such as 6He, 8Li and 18, 19, 23Ne, in unprecedented amounts (including meaningful studies already at SARAF-I); extended nuclear astrophysics research with higher energy neutrons, including generation and studies of exotic neutron-rich isotopes relevant to the rapid (r-) process; nuclear structure of exotic isotopes; high energy neutron cross sections for basic nuclear physics and material science research, including neutron induced radiation damage; neutron based imaging and therapy; and novel radiopharmaceuticals development and production. In this paper we present a technical overview of SARAF-I and II, including a description of the accelerator and its irradiation targets; a survey of existing research programs at SARAF-I; and the research potential at the completed facility (SARAF-II).

  3. Research in progress in applied mathematics, numerical analysis, fluid mechanics, and computer science

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1993 through March 31, 1994. The major categories of the current ICASE research program are: (1) applied and numerical mathematics, including numerical analysis and algorithm development; (2) theoretical and computational research in fluid mechanics in selected areas of interest to LaRC, including acoustics and combustion; (3) experimental research in transition and turbulence and aerodynamics involving LaRC facilities and scientists; and (4) computer science.

  4. ANNUAL REPORT, JULY 1, 1960

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1961-10-31

    Research facilities, general construction progress, research activities, and administration are discussed and a financial statement is given. Fairly detailed accounts are given of research programs in the fields of physics, accelerator development, instrumentation, applied mathematics, chemistry, nuclear engineering, biology, and medicine. (M.C.G.)

  5. [The Contribution of GMP-grade Hospital Preparation to Translational Research].

    PubMed

    Yonezawa, Atsushi; Kajiwara, Moto; Minami, Ikuko; Omura, Tomohiro; Nakagawa, Shunsaku; Matsubara, Kazuo

    2015-01-01

    Translational research is important for applying the outcomes of basic research studies to practical medical treatments. In exploratory early-phase clinical trials for an innovative therapy, researchers should generally manufacture investigational agents by themselves. To provide investigational agents with safety and high quality in clinical studies, appropriate production management and quality control are essential. In the Department of Pharmacy of Kyoto University Hospital, a manufacturing facility for sterile drugs was established, independent of existing manufacturing facilities. Manuals on production management and quality control were developed according to Good Manufacturing Practices (GMP) for Investigational New Drugs (INDs). Advanced clinical research has been carried out using investigational agents manufactured in our facility. These achievements contribute to both the safety of patients and the reliability of clinical studies. In addition, we are able to do licensing-out of our technique for the manufacture of investigational drugs. In this symposium, we will introduce our GMP grade manufacturing facility for sterile drugs and discuss the role of GMP grade hospital preparation in translational research.

  6. Design and construction of coal/biomass to liquids (CBTL) process development unit (PDU) at the University of Kentucky Center for Applied Energy Research (CAER)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Placido, Andrew; Liu, Kunlei; Challman, Don

    This report describes a first phase of a project to design, construct and commission an integrated coal/biomass-to-liquids facility at a capacity of 1 bbl. /day at the University of Kentucky Center for Applied Energy Research (UK-CAER) – specifically for construction of the building and upstream process units for feed handling, gasification, and gas cleaning, conditioning and compression. The deliverables from the operation of this pilot plant [when fully equipped with the downstream process units] will be firstly the liquid FT products and finished fuels which are of interest to UK-CAER’s academic, government and industrial research partners. The facility will producemore » research quantities of FT liquids and finished fuels for subsequent Fuel Quality Testing, Performance and Acceptability. Moreover, the facility is expected to be employed for a range of research and investigations related to: Feed Preparation, Characteristics and Quality; Coal and Biomass Gasification; Gas Clean-up/ Conditioning; Gas Conversion by FT Synthesis; Product Work-up and Refining; Systems Analysis and Integration; and Scale-up and Demonstration. Environmental Considerations - particularly how to manage and reduce carbon dioxide emissions from CBTL facilities and from use of the fuels - will be a primary research objectives. Such a facility has required significant lead time for environmental review, architectural/building construction, and EPC services. UK, with DOE support, has advanced the facility in several important ways. These include: a formal EA/FONSI, and permits and approvals; construction of a building; selection of a range of technologies and vendors; and completion of the upstream process units. The results of this project are the FEED and detailed engineering studies, the alternate configurations and the as-built plant - its equipment and capabilities for future research and demonstration and its adaptability for re-purposing to meet other needs. These are described in some detail in this report, along with lessons learned.« less

  7. Combustion Research aboard the ISS Utilizing the Combustion Integrated Rack and Microgravity Science Glovebox

    NASA Astrophysics Data System (ADS)

    Sutliff, T. J.; Otero, A. M.; Urban, D. L.

    2002-01-01

    The Physical Sciences Research Program of NASA has chartered a broad suite of peer-reviewed research investigating both fundamental combustion phenomena and applied combustion research topics. Fundamental research provides insights to develop accurate simulations of complex combustion processes and allows developers to improve the efficiency of combustion devices, to reduce the production of harmful emissions, and to reduce the incidence of accidental uncontrolled combustion (fires, explosions). The applied research benefit humans living and working in space through its fire safety program. The Combustion Science Discipline is implementing a structured flight research program utilizing the International Space Station (ISS) and two of its premier facilities, the Combustion Integrated Rack of the Fluids and Combustion Facility and the Microgravity Science Glovebox to conduct this space-based research. This paper reviews the current vision of Combustion Science research planned for International Space Station implementation from 2003 through 2012. A variety of research efforts in droplets and sprays, solid-fuels combustion, and gaseous combustion have been independently selected and critiqued through a series of peer-review processes. During this period, while both the ISS carrier and its research facilities are under development, the Combustion Science Discipline has synergistically combined research efforts into sub-topical areas. To conduct this research aboard ISS in the most cost effective and resource efficient manner, the sub-topic research areas are implemented via a multi-user hardware approach. This paper also summarizes the multi-user hardware approach and recaps the progress made in developing these research hardware systems. A balanced program content has been developed to maximize the production of fundamental and applied combustion research results within the current budgetary and ISS operational resource constraints. Decisions on utilizing the Combustion Integrated Rack and the Microgravity Science Glovebox are made based on facility capabilities and research requirements. To maximize research potential, additional research objectives are specified as desires a priori during the research design phase. These expanded research goals, which are designed to be achievable even with late addition of operational resources, allow additional research of a known, peer-endorsed scope to be conducted at marginal cost. Additional operational resources such as upmass, crewtime, data downlink bandwidth, and stowage volume may be presented by the ISS planners late in the research mission planning process. The Combustion Discipline has put in place plans to be prepared to take full advantage of such opportunities.

  8. NASA Microgravity Combustion Science Research Plans for the ISS

    NASA Technical Reports Server (NTRS)

    Sutliff, Thomas J.

    2003-01-01

    A peer-reviewed research program in Microgravity Combustion Science has been chartered by the Physical Sciences Research Division of the NASA Office of Biological and Physical Research. The scope of these investigations address both fundamental combustion phenomena and applied combustion research topics of interest to NASA. From this pool of research, flight investigations are selected which benefit from access to a microgravity environment. Fundamental research provides insights to develop accurate simulations of complex combustion processes and allows developers to improve the efficiency of combustion devices, to reduce the production of harmful emissions, and to reduce the incidence of accidental uncontrolled combustion (fires, explosions). Through its spacecraft fire safety program, applied research is conducted to decrease risks to humans living and working in space. The Microgravity Combustion Science program implements a structured flight research process utilizing the International Space Station (ISS) and two of its premier facilities- the Combustion Integrated Rack of the Fluids and Combustion Facility and the Microgravity Science Glovebox - to conduct space-based research investigations. This paper reviews the current plans for Microgravity Combustion Science research on the International Space Station from 2003 through 2012.

  9. Overview of the Applied Aerodynamics Division

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A major reorganization of the Aeronautics Directorate of the Langley Research Center occurred in early 1989. As a result of this reorganization, the scope of research in the Applied Aeronautics Division is now quite different than that in the past. An overview of the current organization, mission, and facilities of this division is presented. A summary of current research programs and sample highlights of recent research are also presented. This is intended to provide a general view of the scope and capabilities of the division.

  10. Experimental Supersonic Combustion Research at NASA Langley

    NASA Technical Reports Server (NTRS)

    Rogers, R. Clayton; Capriotti, Diego P.; Guy, R. Wayne

    1998-01-01

    Experimental supersonic combustion research related to hypersonic airbreathing propulsion has been actively underway at NASA Langley Research Center (LaRC) since the mid-1960's. This research involved experimental investigations of fuel injection, mixing, and combustion in supersonic flows and numerous tests of scramjet engine flowpaths in LaRC test facilities simulating flight from Mach 4 to 8. Out of this research effort has come scramjet combustor design methodologies, ground test techniques, and data analysis procedures. These technologies have progressed steadily in support of the National Aero-Space Plane (NASP) program and the current Hyper-X flight demonstration program. During NASP nearly 2500 tests of 15 scramjet engine models were conducted in LaRC facilities. In addition, research supporting the engine flowpath design investigated ways to enhance mixing, improve and apply nonintrusive diagnostics, and address facility operation. Tests of scramjet combustor operation at conditions simulating hypersonic flight at Mach numbers up to 17 also have been performed in an expansion tube pulse facility. This paper presents a review of the LaRC experimental supersonic combustion research efforts since the late 1980's, during the NASP program, and into the Hyper-X Program.

  11. Improving the Physical and Social Environment of School: A Question of Equity

    ERIC Educational Resources Information Center

    Uline, Cynthia L.; Wolsey, Thomas DeVere; Tschannen-Moran, Megan; Lin, Chii-Dean

    2010-01-01

    This study explored the interplay between quality facilities and school climate, charting the effects of facility conditions on student and teacher attitudes, behaviors, and performance within schools slated for renovations in a large metropolitan school district. The research applied a school leadership-building design model to explore how six…

  12. Career Resources

    Science.gov Websites

    Collaboration Careers Community Environment Science & Innovation Facilities Science Pillars Research Library Science Briefs Science News Science Highlights Lab Organizations Science Programs Applied Energy Programs

  13. New Hire

    Science.gov Websites

    Collaboration Careers Community Environment Science & Innovation Facilities Science Pillars Research Library Science Briefs Science News Science Highlights Lab Organizations Science Programs Applied Energy Programs

  14. ANNUAL REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1959-07-01

    The national laboratory concept, laboratory objectives, the staff, research facilities. research activities, and administration are discussed in general terms and a financial statement is given. Fairly detailed accounts are given for the research programs in the fields of physics, accelerator development, instrumentation, applied mathematics, chemistry, nuclear engineering, biology, and medicine. (W.D.M.)

  15. A hydrologic retention system and water quality monitoring program for a human decomposition research facility: concept and design.

    PubMed

    Wozniak, Jeffrey R; Thies, Monte L; Bytheway, Joan A; Lutterschmidt, William I

    2015-01-01

    Forensic taphonomy is an essential research field; however, the decomposition of human cadavers at forensic science facilities may lead to nutrient loading and the introduction of unique biological compounds to adjacent areas. The infrastructure of a water retention system may provide a mechanism for the biogeochemical processing and retention of nutrients and compounds, ensuring the control of runoff from forensic facilities. This work provides a proof of concept for a hydrologic retention system and an autonomous water quality monitoring program designed to mitigate runoff from The Southeast Texas Applied Forensic Science (STAFS) Facility. Water samples collected along a sample transect were analyzed for total phosphorous, total nitrogen, NO3-, NO2-, NH4, F(-), and Cl(-). Preliminary water quality analyses confirm the overall effectiveness of the water retention system. These results are discussed with relation to how this infrastructure can be expanded upon to monitor additional, more novel, byproducts of forensic science research facilities. © 2014 American Academy of Forensic Sciences.

  16. Electron Microscopy Lab

    Science.gov Websites

    Facilities Science Pillars Research Library Science Briefs Science News Science Highlights Lab Organizations Science Programs Applied Energy Programs Civilian Nuclear Energy Programs Laboratory Directed Research Science Seaborg Institute Fellows Conferences Research Opportunities Center for Integrated

  17. Ant colony optimization for solving university facility layout problem

    NASA Astrophysics Data System (ADS)

    Mohd Jani, Nurul Hafiza; Mohd Radzi, Nor Haizan; Ngadiman, Mohd Salihin

    2013-04-01

    Quadratic Assignment Problems (QAP) is classified as the NP hard problem. It has been used to model a lot of problem in several areas such as operational research, combinatorial data analysis and also parallel and distributed computing, optimization problem such as graph portioning and Travel Salesman Problem (TSP). In the literature, researcher use exact algorithm, heuristics algorithm and metaheuristic approaches to solve QAP problem. QAP is largely applied in facility layout problem (FLP). In this paper we used QAP to model university facility layout problem. There are 8 facilities that need to be assigned to 8 locations. Hence we have modeled a QAP problem with n ≤ 10 and developed an Ant Colony Optimization (ACO) algorithm to solve the university facility layout problem. The objective is to assign n facilities to n locations such that the minimum product of flows and distances is obtained. Flow is the movement from one to another facility, whereas distance is the distance between one locations of a facility to other facilities locations. The objective of the QAP is to obtain minimum total walking (flow) of lecturers from one destination to another (distance).

  18. Investigation of seismicity and related effects at NASA Ames-Dryden Flight Research Facility, Computer Center, Edwards, California

    NASA Technical Reports Server (NTRS)

    Cousineau, R. D.; Crook, R., Jr.; Leeds, D. J.

    1985-01-01

    This report discusses a geological and seismological investigation of the NASA Ames-Dryden Flight Research Facility site at Edwards, California. Results are presented as seismic design criteria, with design values of the pertinent ground motion parameters, probability of recurrence, and recommended analogous time-history accelerograms with their corresponding spectra. The recommendations apply specifically to the Dryden site and should not be extrapolated to other sites with varying foundation and geologic conditions or different seismic environments.

  19. A Novel Approach for Assisting Teachers in Analyzing Student Web-Searching Behaviors

    ERIC Educational Resources Information Center

    Hwang, G. J.; Tsai, P. S.; Tsai, C. C.; Tseng, J. C. R.

    2008-01-01

    Although previous research has demonstrated the benefits of applying the Internet facilities to the learning process, problems with this strategy have also been identified. One of the major difficulties is owing to the lack of an online learning environment that can record the learning portfolio of using the Internet facilities in education, such…

  20. Operational Philosophy for the Advanced Test Reactor National Scientific User Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Benson; J. Cole; J. Jackson

    2013-02-01

    In 2007, the Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF). At its core, the ATR NSUF Program combines access to a portion of the available ATR radiation capability, the associated required examination and analysis facilities at the Idaho National Laboratory (INL), and INL staff expertise with novel ideas provided by external contributors (universities, laboratories, and industry). These collaborations define the cutting edge of nuclear technology research in high-temperature and radiation environments, contribute to improved industry performance of current and future light-water reactors (LWRs), and stimulate cooperative research between user groupsmore » conducting basic and applied research. To make possible the broadest access to key national capability, the ATR NSUF formed a partnership program that also makes available access to critical facilities outside of the INL. Finally, the ATR NSUF has established a sample library that allows access to pre-irradiated samples as needed by national research teams.« less

  1. 14 CFR 1260.102 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... vest title in the recipient without further obligation to the Federal Government. An example of exempt... include research grants, training grants, facilities grants, educational grants, and cooperative... property acquired under an award to conduct basic or applied research by a non-profit institution of higher...

  2. 14 CFR 1260.102 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... vest title in the recipient without further obligation to the Federal Government. An example of exempt... include research grants, training grants, facilities grants, educational grants, and cooperative... property acquired under an award to conduct basic or applied research by a non-profit institution of higher...

  3. 14 CFR 1260.102 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... vest title in the recipient without further obligation to the Federal Government. An example of exempt... include research grants, training grants, facilities grants, educational grants, and cooperative... property acquired under an award to conduct basic or applied research by a non-profit institution of higher...

  4. 14 CFR 1260.102 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... vest title in the recipient without further obligation to the Federal Government. An example of exempt... include research grants, training grants, facilities grants, educational grants, and cooperative... property acquired under an award to conduct basic or applied research by a non-profit institution of higher...

  5. 42 CFR 93.508 - Filing, forms, and service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... HEALTH EFFECTS STUDIES OF HAZARDOUS SUBSTANCES RELEASES AND FACILITIES PUBLIC HEALTH SERVICE POLICIES ON RESEARCH MISCONDUCT Opportunity To Contest ORI Findings of Research Misconduct and HHS Administrative... nondocumentary materials such as videotapes, computer disks, or physical evidence. This provision does not apply...

  6. 42 CFR 93.508 - Filing, forms, and service.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... HEALTH EFFECTS STUDIES OF HAZARDOUS SUBSTANCES RELEASES AND FACILITIES PUBLIC HEALTH SERVICE POLICIES ON RESEARCH MISCONDUCT Opportunity To Contest ORI Findings of Research Misconduct and HHS Administrative... nondocumentary materials such as videotapes, computer disks, or physical evidence. This provision does not apply...

  7. 42 CFR 93.508 - Filing, forms, and service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... HEALTH EFFECTS STUDIES OF HAZARDOUS SUBSTANCES RELEASES AND FACILITIES PUBLIC HEALTH SERVICE POLICIES ON RESEARCH MISCONDUCT Opportunity To Contest ORI Findings of Research Misconduct and HHS Administrative... nondocumentary materials such as videotapes, computer disks, or physical evidence. This provision does not apply...

  8. 42 CFR 93.508 - Filing, forms, and service.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... HEALTH EFFECTS STUDIES OF HAZARDOUS SUBSTANCES RELEASES AND FACILITIES PUBLIC HEALTH SERVICE POLICIES ON RESEARCH MISCONDUCT Opportunity To Contest ORI Findings of Research Misconduct and HHS Administrative... nondocumentary materials such as videotapes, computer disks, or physical evidence. This provision does not apply...

  9. 42 CFR 93.508 - Filing, forms, and service.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... HEALTH EFFECTS STUDIES OF HAZARDOUS SUBSTANCES RELEASES AND FACILITIES PUBLIC HEALTH SERVICE POLICIES ON RESEARCH MISCONDUCT Opportunity To Contest ORI Findings of Research Misconduct and HHS Administrative... nondocumentary materials such as videotapes, computer disks, or physical evidence. This provision does not apply...

  10. Results From a Pressure Sensitive Paint Test Conducted at the National Transonic Facility on Test 197: The Common Research Model

    NASA Technical Reports Server (NTRS)

    Watkins, A. Neal; Lipford, William E.; Leighty, Bradley D.; Goodman, Kyle Z.; Goad, William K.; Goad, Linda R.

    2011-01-01

    This report will serve to present results of a test of the pressure sensitive paint (PSP) technique on the Common Research Model (CRM). This test was conducted at the National Transonic Facility (NTF) at NASA Langley Research Center. PSP data was collected on several surfaces with the tunnel operating in both cryogenic mode and standard air mode. This report will also outline lessons learned from the test as well as possible approaches to challenges faced in the test that can be applied to later entries.

  11. 75 FR 4407 - Science Board to the Food and Drug Administration; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-27

    ... subcommittee reviewing research at the Center for Food Safety and Applied Nutrition. The Science Board will... appropriate research agenda, and on upgrading its scientific and research facilities to keep pace with these... scientific research programs. Date and Time: The meeting will be held on Monday, February 22, 2010, from 8 a...

  12. An Overview of the Antenna Measurement Facilities at the NASA Glenn Research Center

    NASA Astrophysics Data System (ADS)

    Lambert, Kevin M.; Anzic, Godfrey; Zakrajsek, Robert J.; Zaman, Afroz J.

    2002-10-01

    For the past twenty years, the NASA Glenn Research Center (formerly Lewis Research Center) in Cleveland, Ohio, has developed and maintained facilities for the evaluation of antennas. This effort has been in support of the work being done at the center in the research and development of space communication systems. The wide variety of antennas that have been considered for these systems resulted in a need for several types of antenna ranges at the Glenn Research Center. Four ranges, which are part of the Microwave Systems Laboratory, are the responsibility of the staff of the Applied RF Technology Branch. A general description of these ranges is provided in this paper.

  13. An Overview of the Antenna Measurement Facilities at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Lambert, Kevin M.; Anzic, Godfrey; Zakrajsek, Robert J.; Zaman, Afroz J.

    2002-01-01

    For the past twenty years, the NASA Glenn Research Center (formerly Lewis Research Center) in Cleveland, Ohio, has developed and maintained facilities for the evaluation of antennas. This effort has been in support of the work being done at the center in the research and development of space communication systems. The wide variety of antennas that have been considered for these systems resulted in a need for several types of antenna ranges at the Glenn Research Center. Four ranges, which are part of the Microwave Systems Laboratory, are the responsibility of the staff of the Applied RF Technology Branch. A general description of these ranges is provided in this paper.

  14. Research in progress and other activities of the Institute for Computer Applications in Science and Engineering

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics and computer science during the period April 1, 1993 through September 30, 1993. The major categories of the current ICASE research program are: (1) applied and numerical mathematics, including numerical analysis and algorithm development; (2) theoretical and computational research in fluid mechanics in selected areas of interest to LaRC, including acoustic and combustion; (3) experimental research in transition and turbulence and aerodynamics involving LaRC facilities and scientists; and (4) computer science.

  15. 48 CFR 970.2701-1 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... This subpart applies to negotiation of patent rights, rights in technical data provisions and other... sites or facilities, including the conduct of research and development and nuclear weapons production...

  16. 75 FR 43184 - Transport of Laboratory Personnel Potentially Exposed to Infectious Agents From Fort Detrick...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-23

    ... diseases who will be conducting applied research. This unit could easily be made available to laboratory... Institutes of Health Clinical Research Center, Bethesda, MD; (NIH Transportation EIS); Record of Decision... component of NIH, is the occupant of an Integrated Research Facility (IRF) at Fort Detrick, Maryland, as...

  17. Conceptual design of Dipole Research Experiment (DREX)

    NASA Astrophysics Data System (ADS)

    Xiao, Qingmei; Wang, Zhibin; Wang, Xiaogang; Xiao, Chijie; Yang, Xiaoyi; Zheng, Jinxing

    2017-03-01

    A new terrella-like device for laboratory simulation of inner magnetosphere plasmas, Dipole Research Experiment, is scheduled to be built at the Harbin Institute of Technology (HIT), China, as a major state scientific research facility for space physics studies. It is designed to provide a ground experimental platform to reproduce the inner magnetosphere to simulate the processes of trapping, acceleration, and transport of energetic charged particles restrained in a dipole magnetic field configuration. The scaling relation of hydromagnetism between the laboratory plasma of the device and the geomagnetosphere plasma is applied to resemble geospace processes in the Dipole Research Experiment plasma. Multiple plasma sources, different kinds of coils with specific functions, and advanced diagnostics are designed to be equipped in the facility for multi-functions. The motivation, design criteria for the Dipole Research Experiment experiments and the means applied to generate the plasma of desired parameters in the laboratory are also described. Supported by National Natural Science Foundation of China (Nos. 11505040, 11261140326 and 11405038), China Postdoctoral Science Foundation (Nos. 2016M591518, 2015M570283) and Project Supported by Natural Scientific Research Innovation Foundation in Harbin Institute of Technology (No. 2017008).

  18. 14 CFR § 1260.102 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... authority to vest title in the recipient without further obligation to the Federal Government. An example of... purpose. Awards include research grants, training grants, facilities grants, educational grants, and...) for property acquired under an award to conduct basic or applied research by a non-profit institution...

  19. 40 CFR 372.23 - SIC and NAICS codes to which this Part applies.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... engaged in manufacturing orthopedic devices to prescription in a retail environment (previously classified... for facilities primarily engaged in web search portals; 541712—Research and Development in the... engaged in Guided missile and space vehicle engine research and development (previously classified under...

  20. Towards elimination of mother-to-child transmission of HIV: performance of different models of care for initiating lifelong antiretroviral therapy for pregnant women in Malawi (Option B+).

    PubMed

    van Lettow, Monique; Bedell, Richard; Mayuni, Isabell; Mateyu, Gabriel; Landes, Megan; Chan, Adrienne K; van Schoor, Vanessa; Beyene, Teferi; Harries, Anthony D; Chu, Stephen; Mganga, Andrew; van Oosterhout, Joep J

    2014-01-01

    Malawi introduced a new strategy to improve the effectiveness of prevention of mother-to-child HIV transmission (PMTCT), the Option B+ strategy. We aimed to (i) describe how Option B+ is provided in health facilities in the South East Zone in Malawi, identifying the diverse approaches to service organization (the "model of care") and (ii) explore associations between the "model of care" and health facility-level uptake and retention rates for pregnant women identified as HIV-positive at antenatal (ANC) clinics. A health facility survey was conducted in all facilities providing PMTCT/antiretroviral therapy (ART) services in six of Malawi's 28 districts to describe and compare Option B+ service delivery models. Associations of identified models with program performance were explored using facility cohort reports. Among 141 health facilities, four "models of care" were identified: A) facilities where newly identified HIV-positive women are initiated and followed on ART at the ANC clinic until delivery; B) facilities where newly identified HIV-positive women receive only the first dose of ART at the ANC clinic, and are referred to the ART clinic for follow-up; C) facilities where newly identified HIV-positive women are referred from ANC to the ART clinic for initiation and follow-up of ART; and D) facilities serving as ART referral sites (not providing ANC). The proportion of women tested for HIV during ANC was highest in facilities applying Model A and lowest in facilities applying Model B. The highest retention rates were reported in Model C and D facilities and lowest in Model B facilities. In multivariable analyses, health facility factors independently associated with uptake of HIV testing and counselling (HTC) in ANC were number of women per HTC counsellor, HIV test kit availability, and the "model of care" applied; factors independently associated with ART retention were district location, patient volume and the "model of care" applied. A large variety exists in the way health facilities have integrated PMTCT Option B+ care into routine service delivery. This study showed that the "model of care" chosen is associated with uptake of HIV testing in ANC and retention in care on ART. Further patient-level research is needed to guide policy recommendations.

  1. Early Career. Harnessing nanotechnology for fusion plasma-material interface research in an in-situ particle-surface interaction facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allain, Jean Paul

    2014-08-08

    This project consisted of fundamental and applied research of advanced in-situ particle-beam interactions with surfaces/interfaces to discover novel materials able to tolerate intense conditions at the plasma-material interface (PMI) in future fusion burning plasma devices. The project established a novel facility that is capable of not only characterizing new fusion nanomaterials but, more importantly probing and manipulating materials at the nanoscale while performing subsequent single-effect in-situ testing of their performance under simulated environments in fusion PMI.

  2. Energy Systems Integration Facility (ESIF) Facility Stewardship Plan: Revision 2.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torres, Juan; Anderson, Art

    The U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), has established the Energy Systems Integration Facility (ESIF) on the campus of the National Renewable Energy Laboratory (NREL) and has designated it as a DOE user facility. This 182,500-ft2 research facility provides state-of-the-art laboratory and support infrastructure to optimize the design and performance of electrical, thermal, fuel, and information technologies and systems at scale. This Facility Stewardship Plan provides DOE and other decision makers with information about the existing and expected capabilities of the ESIF and the expected performance metrics to be applied to ESIF operations.more » This plan is a living document that will be updated and refined throughout the lifetime of the facility.« less

  3. ICASE

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in the areas of (1) applied and numerical mathematics, including numerical analysis and algorithm development; (2) theoretical and computational research in fluid mechanics in selected areas of interest, including acoustics and combustion; (3) experimental research in transition and turbulence and aerodynamics involving Langley facilities and scientists; and (4) computer science.

  4. Developing the Biomolecular Screening Facility at the EPFL into the Chemical Biology Screening Platform for Switzerland.

    PubMed

    Turcatti, Gerardo

    2014-05-01

    The Biomolecular Screening Facility (BSF) is a multidisciplinary laboratory created in 2006 at the Ecole Polytechnique Federale de Lausanne (EPFL) to perform medium and high throughput screening in life sciences-related projects. The BSF was conceived and developed to meet the needs of a wide range of researchers, without privileging a particular biological discipline or therapeutic area. The facility has the necessary infrastructure, multidisciplinary expertise and flexibility to perform large screening programs using small interfering RNAs (siRNAs) and chemical collections in the areas of chemical biology, systems biology and drug discovery. In the framework of the National Centres of Competence in Research (NCCR) Chemical Biology, the BSF is hosting 'ACCESS', the Academic Chemical Screening Platform of Switzerland that provides the scientific community with chemical diversity, screening facilities and know-how in chemical genetics. In addition, the BSF started its own applied research axes that are driven by innovation in thematic areas related to preclinical drug discovery and discovery of bioactive probes.

  5. Ion Beam Facilities at the National Centre for Accelerator based Research using a 3 MV Pelletron Accelerator

    NASA Astrophysics Data System (ADS)

    Trivedi, T.; Patel, Shiv P.; Chandra, P.; Bajpai, P. K.

    A 3.0 MV (Pelletron 9 SDH 4, NEC, USA) low energy ion accelerator has been recently installed as the National Centre for Accelerator based Research (NCAR) at the Department of Pure & Applied Physics, Guru Ghasidas Vishwavidyalaya, Bilaspur, India. The facility is aimed to carried out interdisciplinary researches using ion beams with high current TORVIS (for H, He ions) and SNICS (for heavy ions) ion sources. The facility includes two dedicated beam lines, one for ion beam analysis (IBA) and other for ion implantation/ irradiation corresponding to switching magnet at +20 and -10 degree, respectively. Ions with 60 kV energy are injected into the accelerator tank where after stripping positively charged ions are accelerated up to 29 MeV for Au. The installed ion beam analysis techniques include RBS, PIXE, ERDA and channelling.

  6. Towards elimination of mother-to-child transmission of HIV: performance of different models of care for initiating lifelong antiretroviral therapy for pregnant women in Malawi (Option B+)

    PubMed Central

    van Lettow, Monique; Bedell, Richard; Mayuni, Isabell; Mateyu, Gabriel; Landes, Megan; Chan, Adrienne K; van Schoor, Vanessa; Beyene, Teferi; Harries, Anthony D; Chu, Stephen; Mganga, Andrew; van Oosterhout, Joep J

    2014-01-01

    Introduction Malawi introduced a new strategy to improve the effectiveness of prevention of mother-to-child HIV transmission (PMTCT), the Option B+ strategy. We aimed to (i) describe how Option B+ is provided in health facilities in the South East Zone in Malawi, identifying the diverse approaches to service organization (the “model of care”) and (ii) explore associations between the “model of care” and health facility–level uptake and retention rates for pregnant women identified as HIV-positive at antenatal (ANC) clinics. Methods A health facility survey was conducted in all facilities providing PMTCT/antiretroviral therapy (ART) services in six of Malawi's 28 districts to describe and compare Option B+ service delivery models. Associations of identified models with program performance were explored using facility cohort reports. Results Among 141 health facilities, four “models of care” were identified: A) facilities where newly identified HIV-positive women are initiated and followed on ART at the ANC clinic until delivery; B) facilities where newly identified HIV-positive women receive only the first dose of ART at the ANC clinic, and are referred to the ART clinic for follow-up; C) facilities where newly identified HIV-positive women are referred from ANC to the ART clinic for initiation and follow-up of ART; and D) facilities serving as ART referral sites (not providing ANC). The proportion of women tested for HIV during ANC was highest in facilities applying Model A and lowest in facilities applying Model B. The highest retention rates were reported in Model C and D facilities and lowest in Model B facilities. In multivariable analyses, health facility factors independently associated with uptake of HIV testing and counselling (HTC) in ANC were number of women per HTC counsellor, HIV test kit availability, and the “model of care” applied; factors independently associated with ART retention were district location, patient volume and the “model of care” applied. Conclusions A large variety exists in the way health facilities have integrated PMTCT Option B+ care into routine service delivery. This study showed that the “model of care” chosen is associated with uptake of HIV testing in ANC and retention in care on ART. Further patient-level research is needed to guide policy recommendations. PMID:25079437

  7. Enterprise SRS: leveraging ongoing operations to advance nuclear fuel cycles research and development programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, A.M.; Marra, J.E.; Wilmarth, W.R.

    2013-07-01

    The Savannah River Site (SRS) is re-purposing its vast array of assets (including H Canyon - a nuclear chemical separation plant) to solve issues regarding advanced nuclear fuel cycle technologies, nuclear materials processing, packaging, storage and disposition. The vehicle for this transformation is Enterprise SRS which presents a new, radical view of SRS as a united endeavor for 'all things nuclear' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into SRS facilities but also in other facilities in conjunction with on-goingmore » missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate their technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, a center for applied nuclear materials processing and engineering research has been established in SRS.« less

  8. Life Sciences Space Station planning document: A reference payload for the Life Sciences Research Facility

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Space Station, projected for construction in the early 1990s, will be an orbiting, low-gravity, permanently manned facility providing unprecedented opportunities for scientific research. Facilities for Life Sciences research will include a pressurized research laboratory, attached payloads, and platforms which will allow investigators to perform experiments in the crucial areas of Space Medicine, Space Biology, Exobiology, Biospherics and Controlled Ecological Life Support System (CELSS). These studies are designed to determine the consequences of long-term exposure to space conditions, with particular emphasis on assuring the permanent presence of humans in space. The applied and basic research to be performed, using humans, animals, and plants, will increase our understanding of the effects of the space environment on basic life processes. Facilities being planned for remote observations from platforms and attached payloads of biologically important elements and compounds in space and on other planets (Exobiology) will permit exploration of the relationship between the evolution of life and the universe. Space-based, global scale observations of terrestrial biology (Biospherics) will provide data critical for understanding and ultimately managing changes in the Earth's ecosystem. The life sciences community is encouraged to participate in the research potential the Space Station facilities will make possible. This document provides the range and scope of typical life sciences experiments which could be performed within a pressurized laboratory module on Space Station.

  9. Evaluating the Emergency Notification Systems of the NASA White Sands Test

    NASA Technical Reports Server (NTRS)

    Chavez, Alfred Paul

    2004-01-01

    The problem was that the NASA Fire and Emergency Services did not know if the current emergency notification systems on the NASA White Sands Test Facility were appropriate for alerting the employees of an emergency. The purpose of this Applied Research Project was to determine if the current emergency notification systems of the White Sands Test Facility are appropriate for alerting the employees of an emergency. This was a descriptive research project. The research questions were: 1) What are similar facilities using to alert the employees of an emergency?; 2) Are the current emergency notification systems suitable for the community hazards on the NASA White Sands Test Facility?; 3) What is the NASA Fire and Emergency Services currently using to measure the effectiveness of the emergency notification systems?; and 4) What are the current training methods used to train personnel to the emergency notification systems at the NASA White Sands Test Facility? The procedures involved were to research other established facilities, research published material from credible sources, survey the facility to determine the facility perception of the emergency notification systems, and evaluate the operating elements of the established emergency notification systems for the facility. The results were that the current systems are suitable for the type of hazards the facility may endure. The emergency notification systems are tested frequently to ensure effectiveness in the event of an emergency. Personnel are trained and participate in a yearly drill to make certain personnel are educated on the established systems. The recommendations based on the results were to operationally improve the existing systems by developing and implementing one system that can overall notify the facility of a hazard. Existing procedures and training should also be improved to ensure that all personnel are educated on what to do when the emergency notification systems are activated.

  10. Future experimental needs to support applied aerodynamics - A transonic perspective

    NASA Technical Reports Server (NTRS)

    Gloss, Blair B.

    1992-01-01

    Advancements in facilities, test techniques, and instrumentation are needed to provide data required for the development of advanced aircraft and to verify computational methods. An industry survey of major users of wind tunnel facilities at Langley Research Center (LaRC) was recently carried out to determine future facility requirements, test techniques, and instrumentation requirements; results from this survey are reflected in this paper. In addition, areas related to transonic testing at LaRC which are either currently being developed or are recognized as needing improvements are discussed.

  11. The Biotechnology Facility for International Space Station.

    PubMed

    Goodwin, Thomas; Lundquist, Charles; Tuxhorn, Jennifer; Hurlbert, Katy

    2004-03-01

    The primary mission of the Cellular Biotechnology Program is to advance microgravity as a tool in basic and applied cell biology. The microgravity environment can be used to study fundamental principles of cell biology and to achieve specific applications such as tissue engineering. The Biotechnology Facility (BTF) will provide a state-of-the-art facility to perform cellular biotechnology research onboard the International Space Station (ISS). The BTF will support continuous operation, which will allow performance of long-duration experiments and will significantly increase the on-orbit science throughput.

  12. The Biotechnology Facility for International Space Station

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas; Lundquist, Charles; Tuxhorn, Jennifer; Hurlbert, Katy

    2004-01-01

    The primary mission of the Cellular Biotechnology Program is to advance microgravity as a tool in basic and applied cell biology. The microgravity environment can be used to study fundamental principles of cell biology and to achieve specific applications such as tissue engineering. The Biotechnology Facility (BTF) will provide a state-of-the-art facility to perform cellular biotechnology research onboard the International Space Station (ISS). The BTF will support continuous operation, which will allow performance of long-duration experiments and will significantly increase the on-orbit science throughput.

  13. Targeted proteomics coming of age - SRM, PRM and DIA performance evaluated from a core facility perspective.

    PubMed

    Kockmann, Tobias; Trachsel, Christian; Panse, Christian; Wahlander, Asa; Selevsek, Nathalie; Grossmann, Jonas; Wolski, Witold E; Schlapbach, Ralph

    2016-08-01

    Quantitative mass spectrometry is a rapidly evolving methodology applied in a large number of omics-type research projects. During the past years, new designs of mass spectrometers have been developed and launched as commercial systems while in parallel new data acquisition schemes and data analysis paradigms have been introduced. Core facilities provide access to such technologies, but also actively support the researchers in finding and applying the best-suited analytical approach. In order to implement a solid fundament for this decision making process, core facilities need to constantly compare and benchmark the various approaches. In this article we compare the quantitative accuracy and precision of current state of the art targeted proteomics approaches single reaction monitoring (SRM), parallel reaction monitoring (PRM) and data independent acquisition (DIA) across multiple liquid chromatography mass spectrometry (LC-MS) platforms, using a readily available commercial standard sample. All workflows are able to reproducibly generate accurate quantitative data. However, SRM and PRM workflows show higher accuracy and precision compared to DIA approaches, especially when analyzing low concentrated analytes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. National Synchrotron Light Source

    ScienceCinema

    BNL

    2017-12-09

    A tour of Brookhaven's National Synchrotron Light Source (NSLS), hosted by Associate Laboratory Director for Light Sources, Stephen Dierker. The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviolet, and x-ray light for basic and applied research in physics, chemistry, medicine, geophysics, environmental, and materials sciences.

  15. Research and Applications of Chemical Sciences in Forestry: Proceedings of the 4th Southern Station Chemical Sciences Meeting

    Treesearch

    J.A. Vozzo; [Compiler

    1994-01-01

    This proceedings is the result of 65 scientists representing 34 facilities reported in 28 presentations. As titled, Research and Applications of Chemical Sciences in Forestry, the contributors represent academic, basic, and applied researchers from universities and U.S. Department of Agriculture. Their presence and experience represent a significant showing toward...

  16. Best Practices for Core Facilities: Handling External Customers

    PubMed Central

    Hockberger, Philip; Meyn, Susan; Nicklin, Connie; Tabarini, Diane; Turpen, Paula; Auger, Julie

    2013-01-01

    This article addresses the growing interest among U.S. scientific organizations and federal funding agencies in strengthening research partnerships between American universities and the private sector. It outlines how core facilities at universities can contribute to this partnership by offering services and access to high-end instrumentation to both nonprofit organizations and commercial organizations. We describe institutional policies (best practices) and procedures (terms and conditions) that are essential for facilitating and enabling such partnerships. In addition, we provide an overview of the relevant federal regulations that apply to external use of academic core facilities and offer a set of guidelines for handling them. We conclude by encouraging directors and managers of core facilities to work with the relevant organizational offices to promote and nurture such partnerships. If handled appropriately, we believe such partnerships can be a win-win situation for both organizations that will support research and bolster the American economy. PMID:23814500

  17. Physical sciences research plans for the International Space Station.

    PubMed

    Trinh, E H

    2003-01-01

    The restructuring of the research capabilities of the International Space Station has forced a reassessment of the Physical Sciences research plans and a re-targeting of the major scientific thrusts. The combination of already selected peer-reviewed flight investigations with the initiation of new research and technology programs will allow the maximization of the ISS scientific and technological potential. Fundamental and applied research will use a combination of ISS-based facilities, ground-based activities, and other experimental platforms to address issues impacting fundamental knowledge, industrial and medical applications on Earth, and the technology required for human space exploration. The current flight investigation research plan shows a large number of principal investigators selected to use the remaining planned research facilities. c2003 American Institute of Aeronautics and Astronautics. Published by Elsevier Science Ltd. All rights reserved.

  18. Physical sciences research plans for the International Space Station

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.

    2003-01-01

    The restructuring of the research capabilities of the International Space Station has forced a reassessment of the Physical Sciences research plans and a re-targeting of the major scientific thrusts. The combination of already selected peer-reviewed flight investigations with the initiation of new research and technology programs will allow the maximization of the ISS scientific and technological potential. Fundamental and applied research will use a combination of ISS-based facilities, ground-based activities, and other experimental platforms to address issues impacting fundamental knowledge, industrial and medical applications on Earth, and the technology required for human space exploration. The current flight investigation research plan shows a large number of principal investigators selected to use the remaining planned research facilities. c2003 American Institute of Aeronautics and Astronautics. Published by Elsevier Science Ltd. All rights reserved.

  19. Medical Image Analysis Facility

    NASA Technical Reports Server (NTRS)

    1978-01-01

    To improve the quality of photos sent to Earth by unmanned spacecraft. NASA's Jet Propulsion Laboratory (JPL) developed a computerized image enhancement process that brings out detail not visible in the basic photo. JPL is now applying this technology to biomedical research in its Medical lrnage Analysis Facility, which employs computer enhancement techniques to analyze x-ray films of internal organs, such as the heart and lung. A major objective is study of the effects of I stress on persons with heart disease. In animal tests, computerized image processing is being used to study coronary artery lesions and the degree to which they reduce arterial blood flow when stress is applied. The photos illustrate the enhancement process. The upper picture is an x-ray photo in which the artery (dotted line) is barely discernible; in the post-enhancement photo at right, the whole artery and the lesions along its wall are clearly visible. The Medical lrnage Analysis Facility offers a faster means of studying the effects of complex coronary lesions in humans, and the research now being conducted on animals is expected to have important application to diagnosis and treatment of human coronary disease. Other uses of the facility's image processing capability include analysis of muscle biopsy and pap smear specimens, and study of the microscopic structure of fibroprotein in the human lung. Working with JPL on experiments are NASA's Ames Research Center, the University of Southern California School of Medicine, and Rancho Los Amigos Hospital, Downey, California.

  20. Development of superconductor magnetic suspension and balance prototype facility for studying the feasibility of applying this technique to large scale aerodynamic testing

    NASA Technical Reports Server (NTRS)

    Zapata, R. N.; Humphris, R. R.; Henderson, K. C.

    1975-01-01

    The unique design and operational characteristics of a prototype magnetic suspension and balance facility which utilizes superconductor technology are described and discussed from the point of view of scalability to large sizes. The successful experimental demonstration of the feasibility of this new magnetic suspension concept of the University of Virginia, together with the success of the cryogenic wind-tunnel concept developed at Langley Research Center, appear to have finally opened the way to clean-tunnel, high-Re aerodynamic testing. Results of calculations corresponding to a two-step design extrapolation from the observed performance of the prototype magnetic suspension system to a system compatible with the projected cryogenic transonic research tunnel are presented to give an order-of-magnitude estimate of expected performance characteristics. Research areas where progress should lead to improved design and performance of large facilities are discussed.

  1. The need for econometric research in laboratory animal operations.

    PubMed

    Baker, David G; Kearney, Michael T

    2015-06-01

    The scarcity of research funding can affect animal facilities in various ways. These effects can be evaluated by examining the allocation of financial resources in animal facilities, which can be facilitated by the use of mathematical and statistical methods to analyze economic problems, a discipline known as econometrics. The authors applied econometrics to study whether increasing per diem charges had a negative effect on the number of days of animal care purchased by animal users. They surveyed animal numbers and per diem charges at 20 research institutions and found that demand for large animals decreased as per diem charges increased. The authors discuss some of the challenges involved in their study and encourage research institutions to carry out more robust econometric studies of this and other economic questions facing laboratory animal research.

  2. TA-55 change control manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blum, T.W.; Selvage, R.D.; Courtney, K.H.

    This manual is the guide for initiating change at the Plutonium Facility, which handles the processing of plutonium as well as research on plutonium metallurgy. It describes the change and work control processes employed at TA-55 to ensure that all proposed changes are properly identified, reviewed, approved, implemented, tested, and documented so that operations are maintained within the approved safety envelope. All Laboratory groups, their contractors, and subcontractors doing work at TA-55 follow requirements set forth herein. This manual applies to all new and modified processes and experiments inside the TA-55 Plutonium Facility; general plant project (GPP) and line itemmore » funded construction projects at TA-55; temporary and permanent changes that directly or indirectly affect structures, systems, or components (SSCs) as described in the safety analysis, including Facility Control System (FCS) software; and major modifications to procedures. This manual does not apply to maintenance performed on process equipment or facility SSCs or the replacement of SSCs or equipment with documented approved equivalents.« less

  3. Proposed Facility Modifications to Support Propulsion Systems Testing Under Simulated Space Conditions at Plum Brook Station's Spacecraft Propulsion Research Facility (B-2)

    NASA Technical Reports Server (NTRS)

    Edwards, Daryl A.

    2008-01-01

    Preparing NASA's Plum Brook Station's Spacecraft Propulsion Research Facility (B-2) to support NASA's new generation of launch vehicles has raised many challenges for B-2's support staff. The facility provides a unique capability to test chemical propulsion systems/vehicles while simulating space thermal and vacuum environments. Designed and constructed in the early 1960s to support upper stage cryogenic engine/vehicle system development, the Plum Brook Station B-2 facility will require modifications to support the larger, more powerful, and more advanced engine systems for the next generation of vehicles leaving earth's orbit. Engine design improvements over the years have included large area expansion ratio nozzles, greater combustion chamber pressures, and advanced materials. Consequently, it has become necessary to determine what facility changes are required and how the facility can be adapted to support varying customers and their specific test needs. Exhaust system performance, including understanding the present facility capabilities, is the primary focus of this work. A variety of approaches and analytical tools are being employed to gain this understanding. This presentation discusses some of the challenges in applying these tools to this project and expected facility configuration to support the varying customer needs.

  4. Proposed Facility Modifications to Support Propulsion Systems Testing Under Simulated Space Conditions at Plum Brook Station's Spacecraft Propulsion Research Facility (B-2)

    NASA Technical Reports Server (NTRS)

    Edwards, Daryl A.

    2007-01-01

    Preparing NASA's Plum Brook Station's Spacecraft Propulsion Research Facility (B-2) to support NASA's new generation of launch vehicles has raised many challenges for B-2 s support staff. The facility provides a unique capability to test chemical propulsion systems/vehicles while simulating space thermal and vacuum environments. Designed and constructed 4 decades ago to support upper stage cryogenic engine/vehicle system development, the Plum Brook Station B-2 facility will require modifications to support the larger, more powerful, and more advanced engine systems for the next generation of vehicles leaving earth's orbit. Engine design improvements over the years have included large area expansion ratio nozzles, greater combustion chamber pressures, and advanced materials. Consequently, it has become necessary to determine what facility changes are required and how the facility can be adapted to support varying customers and their specific test needs. Instrumental in this task is understanding the present facility capabilities and identifying what reasonable changes can be implemented. A variety of approaches and analytical tools are being employed to gain this understanding. This paper discusses some of the challenges in applying these tools to this project and expected facility configuration to support the varying customer needs.

  5. Conceptual Design of Tail-Research EXperiment (T-REX) on Space Plasma Environment Research Facility

    NASA Astrophysics Data System (ADS)

    Xiao, Qingmei; Wang, Xiaogang; E, Peng; Shen, Chao; Wang, Zhibin; Mao, Aohua; Xiao, Chijie; Ding, Weixing; Ji, Hantao; Ren, Yang

    2016-10-01

    Space Environment Simulation Research Infrastructure (SESRI), a scientific project for a major national facility of fundamental researches, has recently been launched at Harbin Institute of Technology (HIT). The Space Plasma Environment Research Facility (SPERF) for simulation of space plasma environment is one of the components of SESRI. It is designed to investigate fundamental issues in space plasma environment, such as energetic particles transportation and the interaction with waves in magnetosphere, magnetic reconnection at magnetopause and magnetotail, etc. Tail-Research Experiment (T-REX) is part of the SPERF for laboratory studies of space physics relevant to tail reconnection and dipolarization process. T-REX is designed to carry out two kinds of experiments: the tail plasmamoid for magnetic reconnection and magnetohydrodynamic waves excited by high speed plasma jet. In this presentation, the scientific goals and experimental plans for T-REX together with the means applied to generate the plasma with desired parameters are reviewed. Two typical scenarios of T-REX with operations of plasma sources and various magnetic configurations to study specific physical processes in space plasmas will also be presented.

  6. Human factor design of habitable space facilities

    NASA Technical Reports Server (NTRS)

    Clearwater, Yvonne A.

    1987-01-01

    Current fundamental and applied habitability research conducted as part of the U.S. space program is reviewed with emphasis on methods, findings, and applications of the results to the planning and design of the International Space Station. The discussion covers the following six concurrent directions of habitability research: operational simulation, functional interior decor research, space crew privacy requirements, interior layout and configuration analysis, human spatial habitability model, and analogous environments research.

  7. Biotechnology Facility: An ISS Microgravity Research Facility

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Tsao, Yow-Min

    2000-01-01

    The International Space Station (ISS) will support several facilities dedicated to scientific research. One such facility, the Biotechnology Facility (BTF), is sponsored by the Microgravity Sciences and Applications Division (MSAD) and developed at NASA's Johnson Space Center. The BTF is scheduled for delivery to the ISS via Space Shuttle in April 2005. The purpose of the BTF is to provide: (1) the support structure and integration capabilities for the individual modules in which biotechnology experiments will be performed, (2) the capability for human-tended, repetitive, long-duration biotechnology experiments, and (3) opportunities to perform repetitive experiments in a short period by allowing continuous access to microgravity. The MSAD has identified cell culture and tissue engineering, protein crystal growth, and fundamentals of biotechnology as areas that contain promising opportunities for significant advancements through low-gravity experiments. The focus of this coordinated ground- and space-based research program is the use of the low-gravity environment of space to conduct fundamental investigations leading to major advances in the understanding of basic and applied biotechnology. Results from planned investigations can be used in applications ranging from rational drug design and testing, cancer diagnosis and treatments and tissue engineering leading to replacement tissues.

  8. Savannah River Laboratory quality assurance manual. Revision 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-02-01

    The SRL quality assurance program is a management activity that verifies that the results of our research and development are adequate for their intended use and that our facilities function properly. The program is based on Savannah River Quality Assurance Plan (DPW-82-111-2, Rev 0) as applied through Quality Assurance Procedures and Divisional Plans (following section). The AED policy states that ''all activities shall be conducted to achieve a high quality of product and performance...'' The policy contains 18 considerations to be applied ''proportional to needs, based on the technical and professional judgment of responsible Du Pont employees.'' Quality is themore » responsibility of each individual and his line organization, as is safety. To ensure that quality is being considered for all SRL activities, all research programs are reviewed, and all facilities are assessed. These assessments and reviews are the nucleus of the Quality Assurance program.« less

  9. Use of a wire scanner for monitoring residual gas ionization in Soreq Applied Research Accelerator Facility 20 keV/u proton/deuteron low energy beam transport beam line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vainas, B.; Eliyahu, I.; Weissman, L.

    2012-02-15

    The ion source end of the Soreq Applied Research Accelerator Facility accelerator consists of a proton/deuteron ECR ion source and a low energy beam transport (LEBT) beam line. An observed reduction of the radio frequency quadrupole transmission with increase of the LEBT current prompted additional study of the LEBT beam properties. Numerous measurements have been made with the LEBT bream profiler wire biased by a variable voltage. Current-voltage characteristics in presence of the proton beam were measured even when the wire was far out of the beam. The current-voltage characteristic in this case strongly resembles an asymmetric diodelike characteristic, whichmore » is typical of Langmuir probes monitoring plasma. The measurement of biased wire currents, outside the beam, enables us to estimate the effective charge density in vacuum.« less

  10. Potential pressurized payloads: Fluid and thermal experiments

    NASA Technical Reports Server (NTRS)

    Swanson, Theodore D.

    1992-01-01

    Space Station Freedom (SSF) presents the opportunity to perform long term fluid and thermal experiments in a microgravity environment. This presentation provides perspective on the need for fluids/thermal experimentation in a microgravity environment, addresses previous efforts, identifies possible experiments, and discusses the capabilities of a proposed fluid physics/dynamics test facility. Numerous spacecraft systems use fluids for their operation. Thermal control, propulsion, waste management, and various operational processes are examples of such systems. However, effective ground testing is very difficult. This is because the effect of gravity induced phenomena, such as hydrostatic pressure, buoyant convection, and stratification, overcome such forces as surface tension, diffusion, electric potential, etc., which normally dominate in a microgravity environment. Hence, space experimentation is necessary to develop and validate a new fluid based technology. Two broad types of experiments may be performed on SSF: basic research and applied research. Basic research might include experiments focusing on capillary phenomena (with or without thermal and/or solutal gradients), thermal/solutal convection, phase transitions, and multiphase flow. Representative examples of applied research might include two-phase pressure drop, two-phase flow instabilities, heat transfer coefficients, fluid tank fill/drain, tank slosh dynamics, condensate removal enhancement, and void formation within thermal energy storage materials. In order to better support such fluid/thermal experiments on board SSF, OSSA has developed a conceptual design for a proposed Fluid Physics/Dynamics Facility (FP/DF). The proposed facility consists of one facility rack permanently located on SSF and one experimenter rack which is changed out as needed to support specific experiments. This approach will minimize the on-board integration/deintegration required for specific experiments. The FP/DF will have acceleration/vibration compensation, power and thermal interfaces, computer command/data collection, a video imaging system, and a portable glove box for operations. This facility will allow real-time astronaut interaction with the testing.

  11. The International Space Station as a Research Laboratory: A View to 2010 and Beyond

    NASA Technical Reports Server (NTRS)

    Uri, John J.; Sotomayor, Jorge L.

    2007-01-01

    Assembly of International Space Station (ISS) is expected to be complete in 2010, with operations planned to continue through at least 2016. As we move nearer to assembly complete, replanning activities by NASA and ISS International Partners have been completed and the final complement of research facilities on ISS is becoming more certain. This paper will review pans for facilities in the US On-orbit Segment of ISS, including contributions from International Partners, to provide a vision of the research capabilities that will be available starting in 2010. At present, in addition to research capabilities in the Russian segment, the United States Destiny research module houses nine research facilities or racks. These facilities include five multi-purpose EXPRESS racks, two Human Research Facility (HRF) racks, the Microgravity Science Glovebox (MSG), and the Minus Eighty-degree Laboratory Freezer for ISS (MELFI), enabling a wide range of exploration-related applied as well as basic research. In the coming years, additional racks will be launched to augment this robust capability: Combustion Integrated Rack (CIR), Fluids Integrated Rack (FIR), Window Observation Rack Facility (WORF), Microgravity Science Research Rack (MSRR), Muscle Atrophy Research Exercise System (MARES), additional EXPRESS racks and possibly a second MELFI. In addition, EXPRESS Logistics Carriers (ELC) will provide attach points for external payloads. The European Space Agency s Columbus module will contain five research racks and provide four external attach sites. The research racks are Biolab, European Physiology Module (EPM), Fluid Science Lab (FSL), European Drawer System (EDS) and European Transport Carrier (ETC). The Japanese Kibo elements will initially support three research racks, Ryutai for fluid science, Saibo for cell science, and Kobairo for materials research, as well as 10 attachment sites for external payloads. As we look ahead to assembly complete, these new facilities represent a threefold increase from the current research laboratory infrastructure on ISS. In addition, the increase in resident crew size will increase from three to six in 2009, will provide the long-term capacity for completing research on board ISS. Transportation to and from ISS for crew and cargo will be provided by a fleet of vehicles from the United States, Russia, ESA and Japan, including accommodations for thermally-conditioned cargo. The completed ISS will have robust research accommodations to support the multidisciplinary research objective of scientists worldwide.

  12. Preparing Students for Work in the 21st Century. Guidebook 7. Schools That Work: The Research Advantage.

    ERIC Educational Resources Information Center

    Columbia Univ., New York, NY. Inst. on Education and the Economy.

    A series of eight videoconferences was designed to help educational professionals improve schools by applying knowledge gained from research. During the videoconference programs, which are transmitted by satellite to facilities with receiving capacity, viewers can interact by telephone with the program presenters. Each program covers a specific…

  13. Converging Science, Medicine, and Agriculture: An Update on Executing the NADC’s ‘One Health Mission’

    USDA-ARS?s Scientific Manuscript database

    The NADC was established in 1961 to conduct basic and applied research on the livestock and poultry diseases of major economic importance to US agriculture. Now 50 years later, the NADC is the largest US federal animal health research facility focused on high-impact endemic diseases of livestock an...

  14. International Space Station Research: Accomplishments and Pathways for Exploration and Fundamental Research

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.

    2007-01-01

    Beginning with the launch of the European Columbus module planned for December 2007, we approach a transition in the assembly of the International Space Station (ISS) that is of great importance for the sciences. During the following 18 months, we will operate the first experiments in Columbus physical science resource facilities and also launch and commission the Japanese Kibo module. In addition, two Multi-purpose Logistics Module (MPLM) flights will deliver the U.S. Combustion Integrated Rack (CIR) and Fluids Integrated Rack (FIR) along with their first science experiments. These facilities provide significant new capabilities for basic and applied physical science research in microgravity. New life support technologies will come online throughout 2008, and we will reach the milestone of a 6-person crew planned for April 2009. A larger crew enables significant more scientific use of all the facilities for the life of ISS. Planning for the use of the International Space Station as a national laboratory is also maturing as we near the completion of assembly, enabling access to ISS as a research platform for other government agencies and the private sector. The latest updates on National Laboratory implementation will also be provided in this presentation. At the same time as these significant increases in scientific capability, there have been significant ongoing accomplishments in NASA's early ISS research both exploration related and fundamental research. These accomplishments will be reviewed in context as harbingers of the capabilities of the International Space Station when assembly is complete. The Vision for Space Exploration serves to focus NASA's applied investigations in the physical sciences. However, the broader capability of the space station as a National Laboratory and as a nexus for international collaboration will also influence the study of gravity-dependent processes by researchers around the world.

  15. A new digital pulse power supply in heavy ion research facility in Lanzhou

    NASA Astrophysics Data System (ADS)

    Wang, Rongkun; Chen, Youxin; Huang, Yuzhen; Gao, Daqing; Zhou, Zhongzu; Yan, Huaihai; Zhao, Jiang; Shi, Chunfeng; Wu, Fengjun; Yan, Hongbin; Xia, Jiawen; Yuan, Youjin

    2013-11-01

    To meet the increasing requirements of the Heavy Ion Research Facility in Lanzhou-Cooler Storage Ring (HIRFL-CSR), a new digital pulse power supply, which employs multi-level converter, was designed. This power supply was applied with a multi H-bridge converters series-parallel connection topology. A new control model named digital power supply regulator system (DPSRS) was proposed, and a pulse power supply prototype based on DPSRS has been built and tested. The experimental results indicate that tracking error and ripple current meet the requirements of this design. The achievement of prototype provides a perfect model for HIRFL-CSR power supply system.

  16. Status of NASA/Army rotorcraft research and development piloted flight simulation

    NASA Technical Reports Server (NTRS)

    Condon, Gregory W.; Gossett, Terrence D.

    1988-01-01

    The status of the major NASA/Army capabilities in piloted rotorcraft flight simulation is reviewed. The requirements for research and development piloted simulation are addressed as well as the capabilities and technologies that are currently available or are being developed by NASA and the Army at Ames. The application of revolutionary advances (in visual scene, electronic cockpits, motion, and modelling of interactive mission environments and/or vehicle systems) to the NASA/Army facilities are also addressed. Particular attention is devoted to the major advances made in integrating these individual capabilities into fully integrated simulation environment that were or are being applied to new rotorcraft mission requirements. The specific simulators discussed are the Vertical Motion Simulator and the Crew Station Research and Development Facility.

  17. Space Station life sciences guidelines for nonhuman experiment accommodation

    NASA Technical Reports Server (NTRS)

    Arno, R.; Hilchey, J.

    1985-01-01

    Life scientists will utilize one of four habitable modules which constitute the initial Space Station configuration. This module will be initially employed for studies related to nonhuman and human life sciences. At a later date, a new module, devoted entirely to nonhuman life sciences will be launched. This report presents a description of the characteristics of a Space Station laboratory facility from the standpoint of nonhuman research requirements. Attention is given to the science rationale for experiments which support applied medical research and basic gravitational biology, mission profiles and typical equipment and subsystem descriptions, issues associated with the accommodation of nonhuman life sciences on the Space Station, and conceptual designs for the initial operational capability configuration and later Space Station life-sciences research facilities.

  18. Center for Applied Radiation Research (CARR)

    NASA Technical Reports Server (NTRS)

    Fogarty, Thomas N.

    1997-01-01

    Prairie View A&M University (PVAMU) Center for Applied Radiation Research (CARR) was established in 1995 to address the tasks, missions and technological needs of NASA. CARR is built on a tradition of radiation research at Prairie View A&M started in 1984 with NASA funding. This continuing program has lead to: (1) A more fundamental and practical understanding of radiation effects on electronics and materials; (2) A dialog between space, military and commercial electronics manufacturers; (3) Innovative electronic circuit designs; (4) Development of state-of-the-art research facilities at PVAMU; (5) Expanded faculty and staff to mentor student research; and (6) Most importantly, increased flow in the pipeline leading to expanded participation of African-Americans and other minorities in science and technological fields of interest to NASA.

  19. Microgravity: A New Tool for Basic and Applied Research in Space

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This brochure highlights selected aspects of the NASA Microgravity Science and Applications program. So that we can expand our understanding and control of physical processes, this program supports basic and applied research in electronic materials, metals, glasses and ceramics, biological materials, combustion and fluids and chemicals. NASA facilities that provide weightless environments on the ground, in the air, and in space are available to U.S. and foreign investigators representing the academic and industrial communities. After a brief history of microgravity research, the text explains the advantages and methods of performing microgravity research. Illustrations follow of equipment used and experiments preformed aboard the Shuttle and of prospects for future research. The brochure concludes be describing the program goals and the opportunities for participation.

  20. 32 CFR 22.310 - Statutes concerning certain research, development, and facilities construction grants.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...)(i) of this section does not apply to any grant that calls upon the National Academy of Sciences to: (A) Investigate, examine, or experiment upon any subject of science or art of significance to the...

  1. Creating peer groups for assessing and comparing nursing home performance.

    PubMed

    Byrne, Margaret M; Daw, Christina; Pietz, Ken; Reis, Brian; Petersen, Laura A

    2013-11-01

    Publicly reported performance data for hospitals and nursing homes are becoming ubiquitous. For such comparisons to be fair, facilities must be compared with their peers. To adapt a previously published methodology for developing hospital peer groupings so that it is applicable to nursing homes and to explore the characteristics of "nearest-neighbor" peer groupings. Analysis of Department of Veterans Affairs administrative databases and nursing home facility characteristics. The nearest-neighbor methodology for developing peer groupings involves calculating the Euclidean distance between facilities based on facility characteristics. We describe our steps in selection of facility characteristics, describe the characteristics of nearest-neighbor peer groups, and compare them with peer groups derived through classical cluster analysis. The facility characteristics most pertinent to nursing home groupings were found to be different from those that were most relevant for hospitals. Unlike classical cluster groups, nearest neighbor groups are not mutually exclusive, and the nearest-neighbor methodology resulted in nursing home peer groupings that were substantially less diffuse than nursing home peer groups created using traditional cluster analysis. It is essential that healthcare policy makers and administrators have a means of fairly grouping facilities for the purposes of quality, cost, or efficiency comparisons. In this research, we show that a previously published methodology can be successfully applied to a nursing home setting. The same approach could be applied in other clinical settings such as primary care.

  2. A Step Towards Electric Propulsion Testing Standards: Pressure Measurements and Effective Pumping Speeds

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.; Swiatek, Michael W.; Yim, John T.

    2012-01-01

    The electric propulsion community has been implored to establish and implement a set of universally applicable test standards during the research, development, and qualification of electric propulsion systems. Existing practices are fallible and result in testing variations which leads to suspicious results, large margins in application, or aversion to mission infusion. Performance measurements and life testing under appropriate conditions can be costly and lengthy. Measurement practices must be consistent, accurate, and repeatable. Additionally, the measurements must be universally transportable across facilities throughout the development, qualification, spacecraft integration and on-orbit performance. A preliminary step to progress towards universally applicable testing standards is outlined for facility pressure measurements and effective pumping speed calculations. The standard has been applied to multiple facilities at the NASA Glenn Research Center. Test results and analyses of universality of measurements are presented herein.

  3. International Space Station Research and Facilities for Life Sciences

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Ruttley, Tara M.

    2009-01-01

    Assembly of the International Space Station is nearing completion in fall of 2010. Although assembly has been the primary objective of its first 11 years of operation, early science returns from the ISS have been growing at a steady pace. Laboratory facilities outfitting has increased dramatically 2008-2009 with the European Space Agency s Columbus and Japanese Aerospace Exploration Agency s Kibo scientific laboratories joining NASA s Destiny laboratory in orbit. In May 2009, the ISS Program met a major milestone with an increase in crew size from 3 to 6 crewmembers, thus greatly increasing the time available to perform on-orbit research. NASA will launch its remaining research facilities to occupy all 3 laboratories in fall 2009 and winter 2010. To date, early utilization of the US Operating Segment of the ISS has fielded nearly 200 experiments for hundreds of ground-based investigators supporting international and US partner research. With a specific focus on life sciences research, this paper will summarize the science accomplishments from early research aboard the ISS- both applied human research for exploration, and research on the effects of microgravity on life. We will also look ahead to the full capabilities for life sciences research when assembly of ISS is complete in 2010.

  4. NASA Johnson Space Center's Planetary Sample Analysis and Mission Science (PSAMS) Laboratory: A National Facility for Planetary Research

    NASA Technical Reports Server (NTRS)

    Draper, D. S.

    2016-01-01

    NASA Johnson Space Center's (JSC's) Astromaterials Research and Exploration Science (ARES) Division, part of the Exploration Integration and Science Directorate, houses a unique combination of laboratories and other assets for conducting cutting edge planetary research. These facilities have been accessed for decades by outside scientists, most at no cost and on an informal basis. ARES has thus provided substantial leverage to many past and ongoing science projects at the national and international level. Here we propose to formalize that support via an ARES/JSC Plane-tary Sample Analysis and Mission Science Laboratory (PSAMS Lab). We maintain three major research capa-bilities: astromaterial sample analysis, planetary process simulation, and robotic-mission analog research. ARES scientists also support planning for eventual human ex-ploration missions, including astronaut geological training. We outline our facility's capabilities and its potential service to the community at large which, taken together with longstanding ARES experience and expertise in curation and in applied mission science, enable multi-disciplinary planetary research possible at no other institution. Comprehensive campaigns incorporating sample data, experimental constraints, and mission science data can be conducted under one roof.

  5. International Interdisciplinary Research Institute Project in Senegal

    NASA Astrophysics Data System (ADS)

    Gueye, Paul

    2010-02-01

    The project of an interdisciplinary research institute in Senegal was initiated in 1993 in Senegal (West Africa) and became a template for a similar project in the US in 1999. Since then, numerous meetings and presentations have been held at various national and international institutions, workshops and conferences. The current development of this partnership includes drafts for a full design of all systems at each facility, as well as the physics, applied health and educational programs to be implemented. The Senegal facility was conceived for scientific capacity building and equally to act as a focal point aimed at using the local scientific expertise. An anticipated outcome would be a contribution to the reduction of an ever-growing brain drain process suffered by the country, and the African continent in general. The development of the project led also to a strong African orientation of the facility: built for international collaboration, it is to be a pan-African endeavor and to serve primarily African countries. The facility received a presidential approval in a 2003 meeting and will develop an interdisciplinary program centered on a strong materials science research which will also allow for the establishment of an advanced analytical (physical chemistry) laboratory. A central part of the facility will be linked to state-of-the art accelerator mass spectrometry, cyclotron and low energy electromagnetic accelerator systems. )

  6. 36 CFR 1254.8 - What information do I need to provide when applying for a researcher identification card?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... other identification is not current. Students who consider the home of their parents as their permanent address, but who do not live there during the academic session, must provide their current student address. If you travel long distance to conduct research in original archival materials at a NARA facility, we...

  7. Pervious concrete research facility : winter performance and enhancement of pollutants removal.

    DOT National Transportation Integrated Search

    2013-12-01

    The purpose of the current study was to design and test a porous medium that can potentially be applied in : pervious pavement systems. The principle goals were to identify a material capable of enhancing the PAH : sorption capacity, thereby mitigati...

  8. Metering Best Practices Applied in the National Renewable Energy Laboratory's Research Support Facility: A Primer to the 2011 Measured and Modeled Energy Consumption Datasets

    DOE Data Explorer

    Sheppy, Michael; Beach, A.; Pless, Shanti

    2016-08-09

    Modern buildings are complex energy systems that must be controlled for energy efficiency. The Research Support Facility (RSF) at the National Renewable Energy Laboratory (NREL) has hundreds of controllers -- computers that communicate with the building's various control systems -- to control the building based on tens of thousands of variables and sensor points. These control strategies were designed for the RSF's systems to efficiently support research activities. Many events that affect energy use cannot be reliably predicted, but certain decisions (such as control strategies) must be made ahead of time. NREL researchers modeled the RSF systems to predict how they might perform. They then monitor these systems to understand how they are actually performing and reacting to the dynamic conditions of weather, occupancy, and maintenance.

  9. Dynamics of System of Systems and Applications to Net Zero Energy Facilities

    DTIC Science & Technology

    2017-10-05

    collections and applied it in a variety of ways to energy - related problems. 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY...UU UU 05-10-2017 1-Oct-2011 30-Sep-2016 Dynamics of System of Systems and Applications to Net Zero Energy Facilities The views, opinions and/or...Research Triangle Park, NC 27709-2211 Koopman operator analysis, Energy systems REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10

  10. Application and Removal of Strippable Coatings via Remote Platform - 13133

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shoffner, P.; Lagos, L.; Maggio, S.

    2013-07-01

    Florida International University's (FIU's) Applied Research Center is currently supporting the Department of Energy (DOE) Environmental Management Office of D and D and Facility Engineering program. FIU is supporting DOE's initiative to improve safety, reduce technical risks, and limit uncertainty within D and D operations by identifying technologies suitable to meet specific facility D and D requirements, assessing the readiness of those technologies for field deployment, and conducting feasibility studies and technology demonstrations of selected technologies and working with technology vendors to optimize the design of their current technologies to accomplish dangerous and demanding tasks during D and D operations.more » To meet one identified technology gap challenge for a technology to remotely apply strippable coatings, fixatives and decontamination gels, FIU identified and performed an initial demonstration of an innovative remote fixative sprayer platform from International Climbing Machines (ICM). The selected technology was demonstrated spraying fixative products at the hot cell mockup facility at the Applied Research Center at FIU in November 2008 under cold (non-radioactive) conditions. The remotely controlled platform was remotely operated and entered the facility and sprayed a fixative onto horizontal and vertical surfaces. Based on the initial FIU demonstration and the specific technical requirements identified at the DOE facilities, a follow-up demonstration was expanded to include strippable coatings and a decontamination gel, which was demonstrated in June 2010 at the ICM facility in Ithaca, NY. This second technology evaluation documented the ability of the remote system to spray the selected products on vertical stainless steel and concrete surfaces to a height of 3 meters (10 feet) and to achieve sufficient coverage and product thickness to promote the ability to peel/remove the strippable coatings and decontamination gel. The next challenge was to determine if a remote platform could be used to remove the strippable coatings and decontamination gels. In 2012, FIU worked with the technology provider, ICM, to conduct feasibility and trade studies to identify the requirements for the remote removal of strippable coatings or decontamination gels using the existing remote controlled platform. (authors)« less

  11. Research and development of optical measurement techniques for aerospace propulsion research: A NASA Lewis Research Center perspective

    NASA Technical Reports Server (NTRS)

    Lesco, Daniel J.

    1991-01-01

    The applied research effort required to develop new nonintrusive measurement techniques capable of obtaining the data required by aerospace propulsion researchers and of operating in the harsh environments encountered in research and test facilities is discussed and illustrated through several ongoing projects at NASA's Lewis Research Center. Factors including length of development time, funding levels, and collaborative support from fluid-thermal researchers are cited. Progress in developing new instrumentation via a multi-path approach, including NASA research, grant, and government-sponsored research through mechanisms like the Small Business Innovative Research program, is also described.

  12. Effects of physician-owned specialized facilities in health care: a systematic review.

    PubMed

    Trybou, Jeroen; De Regge, Melissa; Gemmel, Paul; Duyck, Philippe; Annemans, Lieven

    2014-12-01

    Multiple studies have investigated physician-owned specialized facilities (specialized hospitals and ambulatory surgery centres). However, the evidence is fragmented and the literature lacks cohesion. To provide a comprehensive overview of the effects of physician-owned specialized facilities by synthesizing the findings of published empirical studies. Two reviewers independently researched relevant studies using a standardized search strategy. The Institute of Medicine's quality framework (safe, effective, equitable, efficient, patient-centred, and accessible care) was applied in order to evaluate the performance of such facilities. In addition, the impact on the performance of full-service general hospitals was assessed. Forty-six studies were included in the systematic review. Overall, the quality of the included studies was satisfactory. Our results show that little evidence exists to confirm the advantages attributed to physician-owned specialized facilities, and their impact on full-service general hospitals remains limited. Although data is available on a wide variety of effects, the evidence base is surprisingly thin. There is no compelling evidence available demonstrating the added value of physician-owned specialized facilities in terms of quality or cost of the delivered care. More research is necessary on the relative merits of physician-owned specialized facilities. In addition, their corresponding impact on full-service general hospitals remains unclear. The development of physician-owned specialized facilities should thus be monitored carefully. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. 34 CFR 225.3 - What regulations apply to the Credit Enhancement for Charter School Facilities Program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Charter School Facilities Program? 225.3 Section 225.3 Education Regulations of the Offices of the... ENHANCEMENT FOR CHARTER SCHOOL FACILITIES PROGRAM General § 225.3 What regulations apply to the Credit Enhancement for Charter School Facilities Program? The following regulations apply to the Credit Enhancement...

  14. 34 CFR 225.3 - What regulations apply to the Credit Enhancement for Charter School Facilities Program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Charter School Facilities Program? 225.3 Section 225.3 Education Regulations of the Offices of the... ENHANCEMENT FOR CHARTER SCHOOL FACILITIES PROGRAM General § 225.3 What regulations apply to the Credit Enhancement for Charter School Facilities Program? The following regulations apply to the Credit Enhancement...

  15. 34 CFR 225.3 - What regulations apply to the Credit Enhancement for Charter School Facilities Program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Charter School Facilities Program? 225.3 Section 225.3 Education Regulations of the Offices of the... ENHANCEMENT FOR CHARTER SCHOOL FACILITIES PROGRAM General § 225.3 What regulations apply to the Credit Enhancement for Charter School Facilities Program? The following regulations apply to the Credit Enhancement...

  16. 34 CFR 225.3 - What regulations apply to the Credit Enhancement for Charter School Facilities Program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Charter School Facilities Program? 225.3 Section 225.3 Education Regulations of the Offices of the... ENHANCEMENT FOR CHARTER SCHOOL FACILITIES PROGRAM General § 225.3 What regulations apply to the Credit Enhancement for Charter School Facilities Program? The following regulations apply to the Credit Enhancement...

  17. 34 CFR 225.3 - What regulations apply to the Credit Enhancement for Charter School Facilities Program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Charter School Facilities Program? 225.3 Section 225.3 Education Regulations of the Offices of the... ENHANCEMENT FOR CHARTER SCHOOL FACILITIES PROGRAM General § 225.3 What regulations apply to the Credit Enhancement for Charter School Facilities Program? The following regulations apply to the Credit Enhancement...

  18. Flight control system design factors for applying automated testing techniques

    NASA Technical Reports Server (NTRS)

    Sitz, Joel R.; Vernon, Todd H.

    1990-01-01

    Automated validation of flight-critical embedded systems is being done at ARC Dryden Flight Research Facility. The automated testing techniques are being used to perform closed-loop validation of man-rated flight control systems. The principal design features and operational experiences of the X-29 forward-swept-wing aircraft and F-18 High Alpha Research Vehicle (HARV) automated test systems are discussed. Operationally applying automated testing techniques has accentuated flight control system features that either help or hinder the application of these techniques. The paper also discusses flight control system features which foster the use of automated testing techniques.

  19. Naval Medical Research Institute Summaries of Research for 1985

    DTIC Science & Technology

    1985-01-01

    FUNCTION. IN: PROSTACYCLIN-- CLINICAL TRIALS . EDITED BY RICHARD J. ;RYGLEWSKI, ET AL. NOW YORK, RAVEN PRESS, 1985. PP.33-93. HYPERSARIC !EDICINE M0099.0C.0001...BUBBLE DETECTION AND D9C3MPRESSrON SICKNESS: A PROSPECTIVE CLINICAL TRIAL * UND3RSEA BIOMEDICAL RESEARCH 1985 SEP;12(3):327-32 HYPERBARIC MEDICINE...P1STITUTE IS THE . AVV S LARGEST IONDIC SREISERCH FACILITY ,-COISS ONED IN -19 42,-HE .&STITUTE’S MISSION IS TO CONDUCT BASIC AND APPLIED RESEARCH AIMED

  20. University Research Consortium annual review meeting program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-07-01

    This brochure presents the program for the first annual review meeting of the University Research Consortium (URC) of the Idaho National Engineering Laboratory (INEL). INEL is a multiprogram laboratory with a distinctive role in applied engineering. It also conducts basic science research and development, and complex facility operations. The URC program consists of a portfolio of research projects funded by INEL and conducted at universities in the United States. In this program, summaries and participant lists for each project are presented as received from the principal investigators.

  1. 40 CFR 63.9075 - What definitions apply to this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... using either mercury cells, diaphragm cells, or membrane cells. Continuous monitoring system, for... is discarded from an HCl production facility. Plant site means all contiguous or adjoining property... and pilot plant operations whose primary purpose is to conduct research and development into new...

  2. Making Cloud Computing Available For Researchers and Innovators (Invited)

    NASA Astrophysics Data System (ADS)

    Winsor, R.

    2010-12-01

    High Performance Computing (HPC) facilities exist in most academic institutions but are almost invariably over-subscribed. Access is allocated based on academic merit, the only practical method of assigning valuable finite compute resources. Cloud computing on the other hand, and particularly commercial clouds, draw flexibly on an almost limitless resource as long as the user has sufficient funds to pay the bill. How can the commercial cloud model be applied to scientific computing? Is there a case to be made for a publicly available research cloud and how would it be structured? This talk will explore these themes and describe how Cybera, a not-for-profit non-governmental organization in Alberta Canada, aims to leverage its high speed research and education network to provide cloud computing facilities for a much wider user base.

  3. Development of an integrated transuranic waste management system for a large research facility: NUCEF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mineo, Hideaki; Matsumura, Tatsuro; Takeshita, Isao

    1997-03-01

    The Nuclear Fuel Cycle Safety Engineering Research Facility (NUCEF) is a large complex of research facilities where transuranic (TRU) elements are used. Liquid and solid waste containing TRU elements is generated mainly in the treatment of fuel for critical experiments and in the research of reprocessing and TRU waste management in hot cells and glove boxes. The rational management of TRU wastes is a very important issue not only for NUCEF but also for Japan. An integrated TRU waste management system is being developed with NUCEF as the test bed. The basic policy for establishing the system is to classifymore » wastes by TRU concentration, to reduce waste volume, and to maximize reuse of TRU elements. The principal approach of the development program is to apply the outcomes of the research carried out in NUCEF. Key technologies are TRU measurement for classification of solid wastes and TRU separation and volume reduction for organic and aqueous wastes. Some technologies required for treating the wastes specific to the research activities in NUCEF need further development. Specifically, the separation and stabilization technologies for americium recovery from concentrated aqueous waste, which is generated in dissolution of mixed oxide when preparing fuel for critical experiments, needs further research.« less

  4. Operational evaluation of a proppeller test stand in the quiet flow facility at Langley Research Center

    NASA Technical Reports Server (NTRS)

    Block, P. J. W.

    1982-01-01

    Operational proof tests of a propeller test stand (PTS) in a quiet flow facility (QFF) are presented. The PTS is an experimental test bed for acoustic propeller research in the quiet flow environment of the QFF. These proof tests validate thrust and torque predictions, examine the repeatability of measurements on the PTS, and determine the effect of applying artificial roughness to the propeller blades. Since a thrusting propeller causes an open jet to contract, the potential flow core was surveyed to examine the magnitude of the contraction. These measurements are compared with predicted values. The predictions are used to determine operational limitations for testing a given propeller design in the QFF.

  5. Inhalation Toxicology Research Institute. Annual report, October 1, 1995--September 30, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bice, D.E.; Hahn, F.F.; Henderson, R.F.

    1996-12-01

    The Inhalation Toxicology Research Institute (ITRI) is a Government-owned facility leased and operated by the Lovelace Biomedical and Environmental Research Institute (LBERI) as a private, nonprofit research and testing laboratory. LBERI is an operating subsidiary of the Lovelace Respiratory Research Institute. Through September 30, 1996, ITRI was a Federally Funded Research and Development Center operated by Lovelace for the US Department of Energy (DOE) as a {open_quotes}Single Program Laboratory{close_quotes} within the DOE Office of Health and Environmental Research, Office of Energy Research. Work for DOE continues in the privatized ITRI facility under a Cooperative Agreement. At the time of publication,more » approximately 70% of the Institute`s research is funded by DOE, and the remainder is funded by a variety of Federal agency, trade association, individual industry, and university customers. The principal mission of ITRI is to conduct basic and applied research to improve our understanding of the nature and magnitude of the human health impacts of inhaling airborne materials in the home, workplace, and general environment. Institute research programs have a strong basic science orientation with emphasis on the nature and behavior of airborne materials, the fundamental biology of the respiratory tract, the fate of inhaled materials and the mechanisms by which they cause disease, and the means by which data produced in the laboratory can be used to estimate risks to human health. Disorders of the respiratory tract continue to be a major health concern, and inhaled toxicants are thought to contribute substantially to respiratory morbidity. As the country`s largest facility dedicated to the study of basic inhalation toxicology, ITRI provides a national resource of specialized facilities, personnel, and educational activities serving the needs of government, academia, and industry.« less

  6. Preliminary analysis of an integrated logistics system for OSSA payloads. Volume 4: Supportability analysis of the 1.8m centrifuge

    NASA Technical Reports Server (NTRS)

    Palguta, T.; Bradley, W.; Stockton, T.

    1988-01-01

    Supportability issues for the 1.8 meter centrifuge in the Life Science Research Facility are addressed. The analysis focuses on reliability and maintainability and the potential impact on supportability and affordability. Standard logistics engineering methodologies that will be applied to all Office of Space Science and Applications' (OSSA) payload programs are outlined. These methodologies are applied to the 1.8 meter centrifuge.

  7. Gravity-Dependent Combustion and Fluids Research - From Drop Towers to Aircraft to the ISS

    NASA Technical Reports Server (NTRS)

    Urban, David L.; Singh, Bhim S.; Kohl, Fred J.

    2007-01-01

    Driven by the need for knowledge related to the low-gravity environment behavior of fluids in liquid fuels management, thermal control systems and fire safety for spacecraft, NASA embarked on a decades long research program to understand, accommodate and utilize the relevant phenomena. Beginning in the 1950s, and continuing through to today, drop towers and aircraft were used to conduct an ever broadening and increasingly sophisticated suite of experiments designed to elucidate the underlying gravity-dependent physics that drive these processes. But the drop towers and aircraft afford only short time periods of continuous low gravity. Some of the earliest rocket test flights and manned space missions hosted longer duration experiments. The relatively longer duration low-g times available on the space shuttle during the 1980s and 1990s enabled many specialized experiments that provided unique data for a wide range of science and engineering disciplines. Indeed, a number of STS-based Spacelab missions were dedicated solely to basic and applied microgravity research in the biological, life and physical sciences. Between 1980 and 2000, NASA implemented a vigorous Microgravity Science Program wherein combustion science and fluid physics were major components. The current era of space stations from the MIR to the International Space Station have opened up a broad range of opportunities and facilities that are now available to support both applied research for technologies that will help to enable the future exploration missions and for a continuation of the non-exploration basic research that began over fifty years ago. The ISS-based facilities of particular value to the fluid physics and combustion/fire safety communities are the Fluids and Combustion Facility Combustion Integrated Rack and the Fluids Integrated Rack.

  8. Metrology in health: a pilot study

    NASA Astrophysics Data System (ADS)

    Ferreira, M.; Matos, A.

    2015-02-01

    The purpose of this paper is to identify and analyze some relevant issues which arise when the concept of metrological traceability is applied to health care facilities. Discussion is structured around the results that were obtained through a characterization and comparative description of the practices applied in 45 different Portuguese health entities. Following a qualitative exploratory approach, the information collected was the support for the initial research hypotheses and the development of the questionnaire survey. It was also applied a quantitative methodology that included a descriptive and inferential statistical analysis of the experimental data set.

  9. Future Development of Nursing Home Quality Indicators

    ERIC Educational Resources Information Center

    Arling, Greg; Kane, Robert L.; Lewis, Teresa; Mueller, Christine

    2005-01-01

    Nursing home quality indicators have been developed over the past 10 years to quantify nursing home quality and to draw systematic comparisons between facilities. Although these indicators have been applied widely for nursing home regulation, quality improvement, and public reporting, researchers and stakeholders have raised concerns about their…

  10. Current significant challenges in the decommissioning and environmental remediation of radioactive facilities: A perspective from outside the nuclear industry.

    PubMed

    Gil-Cerezo, V; Domínguez-Vilches, E; González-Barrios, A J

    2017-05-01

    This paper presents the results of implementing an extrajudicial environmental mediation procedure in the socioenvironmental conflict associated with routine operation of the El Cabril Disposal Facility for low- and medium- activity radioactive waste (Spain). We analyse the socio-ethical perspective of this facility's operation with regard to its nearby residents, detailing the structure and development of the environmental mediation procedure through the participation of society and interested parties who are or may become involved in such a conflict. The research, action, and participation method was used to apply the environmental mediation procedure. This experience provides lessons that could help improve decision-making processes in nuclear or radioactive facility decommissioning projects or in environmental remediation projects dealing with ageing facilities or with those in which nuclear or radioactive accidents/incidents may have occurred. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Study of the impact of automation on productivity in bus-maintenance facilities. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sumanth, D.J.; Weiss, H.J.; Adya, B.

    1988-12-01

    Whether or not the various types of automation and new technologies introduced in a bus-transit system really have an impact on productivity is the question addressed in the study. The report describes a new procedure of productivity measurement and evaluation for a county-transit system and provides an objective perspective on the impact of automation on productivity in bus maintenance facilities. The research objectives were: to study the impact of automation on total productivity in transit maintenance facilities; to develop and apply a methodology for measuring the total productivity of a Floridian transit maintenance facility (Bradenton-Manatee County bus maintenance facility whichmore » has been introducing automation since 1983); and to develop a practical step-by-step implementation scheme for the total productivity-based productivity measurement system that any bus manager can use. All 3 objectives were successfully accomplished.« less

  12. Commercial-scale biotherapeutics manufacturing facility for plant-made pharmaceuticals.

    PubMed

    Holtz, Barry R; Berquist, Brian R; Bennett, Lindsay D; Kommineni, Vally J M; Munigunti, Ranjith K; White, Earl L; Wilkerson, Don C; Wong, Kah-Yat I; Ly, Lan H; Marcel, Sylvain

    2015-10-01

    Rapid, large-scale manufacture of medical countermeasures can be uniquely met by the plant-made-pharmaceutical platform technology. As a participant in the Defense Advanced Research Projects Agency (DARPA) Blue Angel project, the Caliber Biotherapeutics facility was designed, constructed, commissioned and released a therapeutic target (H1N1 influenza subunit vaccine) in <18 months from groundbreaking. As of 2015, this facility was one of the world's largest plant-based manufacturing facilities, with the capacity to process over 3500 kg of plant biomass per week in an automated multilevel growing environment using proprietary LED lighting. The facility can commission additional plant grow rooms that are already built to double this capacity. In addition to the commercial-scale manufacturing facility, a pilot production facility was designed based on the large-scale manufacturing specifications as a way to integrate product development and technology transfer. The primary research, development and manufacturing system employs vacuum-infiltrated Nicotiana benthamiana plants grown in a fully contained, hydroponic system for transient expression of recombinant proteins. This expression platform has been linked to a downstream process system, analytical characterization, and assessment of biological activity. This integrated approach has demonstrated rapid, high-quality production of therapeutic monoclonal antibody targets, including a panel of rituximab biosimilar/biobetter molecules and antiviral antibodies against influenza and dengue fever. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  13. A laboratory facility for electric vehicle propulsion system testing

    NASA Technical Reports Server (NTRS)

    Sargent, N. B.

    1980-01-01

    The road load simulator facility located at the NASA Lewis Research Center enables a propulsion system or any of its components to be evaluated under a realistic vehicle inertia and road loads. The load is applied to the system under test according to the road load equation: F(net)=K1F1+K2F2V+K3 sq V+K4(dv/dt)+K5 sin theta. The coefficient of each term in the equation can be varied over a wide range with vehicle inertial representative of vehicles up to 7500 pounds simulated by means of flywheels. The required torque is applied by the flywheels, a hydroviscous absorber and clutch, and a drive motor integrated by a closed loop control system to produce a smooth, continuous load up to 150 horsepower.

  14. 40 CFR 63.8698 - What definitions apply to this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... means an enclosed combustion device that primarily transfers heat liberated by burning fuel directly to process streams or to heat transfer liquids other than water. Research and development equipment means any... facility used to transfer oxidized asphalt from a storage tank into a tank truck, rail car, or barge...

  15. Energy efficiency in California laboratory-type facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, E.; Bell, G.; Sartor, D.

    The central aim of this project is to provide knowledge and tools for increasing the energy efficiency and performance of new and existing laboratory-type facilities in California. We approach the task along three avenues: (1) identification of current energy use and savings potential, (2) development of a {ital Design guide for energy- Efficient Research Laboratories}, and (3) development of a research agenda for focused technology development and improving out understanding of the market. Laboratory-type facilities use a considerable amount of energy resources. They are also important to the local and state economy, and energy costs are a factor in themore » overall competitiveness of industries utilizing laboratory-type facilities. Although the potential for energy savings is considerable, improving energy efficiency in laboratory-type facilities is no easy task, and there are many formidable barriers to improving energy efficiency in these specialized facilities. Insufficient motivation for individual stake holders to invest in improving energy efficiency using existing technologies as well as conducting related R&D is indicative of the ``public goods`` nature of the opportunity to achieve energy savings in this sector. Due to demanding environmental control requirements and specialized processes, laboratory-type facilities epitomize the important intersection between energy demands in the buildings sector and the industrial sector. Moreover, given the high importance and value of the activities conducted in laboratory-type facilities, they represent one of the most powerful contexts in which energy efficiency improvements stand to yield abundant non-energy benefits if properly applied.« less

  16. Design and Development of a Real-Time Model Attitude Measurement System for Hypersonic Facilities

    NASA Technical Reports Server (NTRS)

    Jones, Thomas W.; Lunsford, Charles B.

    2005-01-01

    A series of wind tunnel tests have been conducted to evaluate a multi-camera videogrammetric system designed to measure model attitude in hypersonic facilities. The technique utilizes processed video data and applies photogrammetric principles for point tracking to compute model position including pitch, roll and yaw variables. A discussion of the constraints encountered during the design, development, and testing process, including lighting, vibration, operational range and optical access is included. Initial measurement results from the NASA Langley Research Center (LaRC) 31-Inch Mach 10 tunnel are presented.

  17. Design and Development of a Real-Time Model Attitude Measurement System for Hypersonic Facilities

    NASA Technical Reports Server (NTRS)

    Jones, Thomas W.; Lunsford, Charles B.

    2004-01-01

    A series of wind tunnel tests have been conducted to evaluate a multi-camera videogrammetric system designed to measure model attitude in hypersonic facilities. The technique utilizes processed video data and applies photogrammetric principles for point tracking to compute model position including pitch, roll and yaw variables. A discussion of the constraints encountered during the design, development, and testing process, including lighting, vibration, operational range and optical access is included. Initial measurement results from the NASA Langley Research Center (LaRC) 31-Inch Mach 10 tunnel are presented.

  18. Location Modification Factors for Potential Dose Estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, Sandra F.; Barnett, J. Matthew

    2017-01-01

    A Department of Energy facility must comply with the National Emission Standard for Hazardous Air Pollutants for radioactive air emissions. The standard is an effective dose of less than 0.1 mSv yr-1 to the maximum public receptor. Additionally, a lower dose level may be assigned to a specific emission point in a State issued permit. A method to efficiently estimate the expected dose for future emissions is described. This method is most appropriately applied to a research facility with several emission points with generally low emission levels of numerous isotopes.

  19. Remote sensing program

    NASA Technical Reports Server (NTRS)

    Philipson, W. R. (Principal Investigator)

    1983-01-01

    Built on Cornell's thirty years of experience in aerial photographic studies, the NASA-sponsored remote sensing program strengthened instruction and research in remote sensing, established communication links within and beyond the university community, and conducted research projects for or with town, county, state, federal, and private organizations in New York State. The 43 completed applied research projects are listed as well as 13 spinoff grants/contracts. The curriculum offered, consultations provided, and data processing facilities available are described. Publications engendered are listed including the thesis of graduates in the remote sensing program.

  20. Novel Wiring Technologies for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Gibson, Tracy L.; Parrish, Lewis M.

    2014-01-01

    Because wire failure in aerospace vehicles could be catastrophic, smart wiring capabilities have been critical for NASA. Through the years, researchers at Kennedy Space Center (KSC) have developed technologies, expertise, and research facilities to meet this need. In addition to aerospace applications, NASA has applied its knowledge of smart wiring, including self-healing materials, to serve the aviation industry. This webinar will discuss the development efforts of several wiring technologies at KSC and provide insight into both current and future research objectives.

  1. Electric Propulsion: Experimental Research

    NASA Technical Reports Server (NTRS)

    Ruyten, W. M.; Friedly, V. J.; Keefer, D.

    1995-01-01

    This paper describes experimental electric propulsion research which was carried out at the University of Tennessee Space Institute with support from the Center for Space Transportation and Applied Research. Specifically, a multiplexed LIF technique for obtaining vector velocities, Doppler temperatures, and relative number densities in the exhaust plumes form electric propulsion devices is described, and results are presented that were obtained on a low power argon arcjet. Also, preliminary Langmuir probe measurements on an ion source are described, and an update on the vacuum facility is presented.

  2. Electric propulsion: Experimental research

    NASA Technical Reports Server (NTRS)

    Ruyten, W. M.; Friedly, V. J.; Keefer, D.

    1992-01-01

    This paper describes experimental electric propulsion research which was carried out at the University of Tennessee Space Institute with support from the Center for Space Transportation and Applied Research. Specifically, a multiplexed laser induced fluorescence (LIF) technique for obtaining vector velocities, Doppler temperatures, and relative number densities in the exhaust plumes from electric propulsion devices is described, and results are presented that were obtained on a low power argon arcjet. Also, preliminary Langmuir probe measurements on an ion source are described, and an update on the vacuum facility is presented.

  3. Langley aeronautics and space test highlights, 1984

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests which were performed during calendar year 1984 in Langley test facilities are highlighted. The broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research are illustrated.

  4. Atomic research

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.; Connatser, Robert; Cothren, Bobby; Johnson, R. B.

    1993-01-01

    Work performed by the University of Alabama in Huntsville's (UAH) Center for Applied Optics (CAO) entitled Atomic Research is documented. Atomic oxygen (AO) effects on materials have long been a critical concern in designing spacecraft to withstand exposure to the Low Earth Orbit (LEO) environment. The objective of this research effort was to provide technical expertise in the design of instrumentation and experimental techniques for analyzing materials exposed to atomic oxygen in accelerated testing at NASA/MSFC. Such testing was required to answer fundamental questions concerning Space Station Freedom (SSF) candidate materials and materials exposed to atomic oxygen aboard the Long-Duration Exposure Facility (LDEF). The primary UAH task was to provide technical design, review, and analysis to MSFC in the development of a state-of-the-art 5eV atomic oxygen beam facility required to simulate the RAM-induced low earth orbit (LEO) AO environment. This development was to be accomplished primarily at NASA/MSFC. In support of this task, contamination effects and ultraviolet (UV) simulation testing was also to be carried out using NASA/MSFC facilities. Any materials analysis of LDEF samples was to be accomplished at UAH.

  5. Lewis Research Center R and D Facilities

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The NASA Lewis Research Center (LeRC) defines and develops advanced technology for high priority national needs. The work of the Center is directed toward new propulsion, power, and communications technologies for application to aeronautics and space, so that U.S. leadership in these areas is ensured. The end product is knowledge, usually in a report, that is made fully available to potential users--the aircraft engine industry, the energy industry, the automotive industry, the space industry, and other NASA centers. In addition to offices and laboratories for almost every kind of physical research in such fields as fluid mechanics, physics, materials, fuels, combustion, thermodynamics, lubrication, heat transfer, and electronics, LeRC has a variety of engineering test cells for experiments with components such as compressors, pumps, conductors, turbines, nozzles, and controls. A number of large facilities can simulate the operating environment for a complete system: altitude chambers for aircraft engines; large supersonic wind tunnels for advanced airframes and propulsion systems; space simulation chambers for electric rockets or spacecraft; and a 420-foot-deep zero-gravity facility for microgravity experiments. Some problems are amenable to detection and solution only in the complete system and at essentially full scale. By combining basic research in pertinent disciplines and generic technologies with applied research on components and complete systems, LeRC has become one of the most productive centers in its field in the world. This brochure describes a number of the facilities that provide LeRC with its exceptional capabilities.

  6. Short Duration Reduced Gravity Drop Tower Design and Development

    NASA Astrophysics Data System (ADS)

    Osborne, B.; Welch, C.

    The industrial and commercial development of space-related activities is intimately linked to the ability to conduct reduced gravity research. Reduced gravity experimentation is important to many diverse fields of research in the understanding of fundamental and applied aspects of physical phenomena. Both terrestrial and extra-terrestrial experimental facilities are currently available to allow researchers access to reduced gravity environments. This paper discusses two drop tower designs, a 2.0 second facility built in Australia and a proposed 2.2 second facility in the United Kingdom. Both drop towers utilise a drag shield for isolating the falling experiment from the drag forces of the air during the test. The design and development of The University of Queensland's (Australia) 2.0 second drop tower, including its specifications and operational procedures is discussed first. Sensitive aspects of the design process are examined. Future plans are then presented for a new short duration (2.2 sec) ground-based reduced gravity drop tower. The new drop tower has been designed for Kingston University (United Kingdom) to support teaching and research in the field of reduced gravity physics. The design has been informed by the previous UQ drop tower design process and utilises a catapult mechanism to increase test time and also incorporates features to allow participants for a variety of backgrounds (from high school students through to university researchers) to learn and experiment in reduced gravity. Operational performance expectations for this new facility are also discussed.

  7. High-Purity Aluminum Magnet Technology for Advanced Space Transportation Systems

    NASA Technical Reports Server (NTRS)

    Goodrich, R. G.; Pullam, B.; Rickle, D.; Litchford, R. J.; Robertson, G. A.; Schmidt, D. D.; Cole, John (Technical Monitor)

    2001-01-01

    Basic research on advanced plasma-based propulsion systems is routinely focused on plasmadynamics, performance, and efficiency aspects while relegating the development of critical enabling technologies, such as flight-weight magnets, to follow-on development work. Unfortunately, the low technology readiness levels (TRLs) associated with critical enabling technologies tend to be perceived as an indicator of high technical risk, and this, in turn, hampers the acceptance of advanced system architectures for flight development. Consequently, there is growing recognition that applied research on the critical enabling technologies needs to be conducted hand in hand with basic research activities. The development of flight-weight magnet technology, for example, is one area of applied research having broad crosscutting applications to a number of advanced propulsion system architectures. Therefore, NASA Marshall Space Flight Center, Louisiana State University (LSU), and the National High Magnetic Field Laboratory (NHMFL) have initiated an applied research project aimed at advancing the TRL of flight-weight magnets. This Technical Publication reports on the group's initial effort to demonstrate the feasibility of cryogenic high-purity aluminum magnet technology and describes the design, construction, and testing of a 6-in-diameter by 12-in-long aluminum solenoid magnet. The coil was constructed in the machine shop of the Department of Physics and Astronomy at LSU and testing was conducted in NHMFL facilities at Florida State University and at Los Alamos National Laboratory. The solenoid magnet was first wound, reinforced, potted in high thermal conductivity epoxy, and bench tested in the LSU laboratories. A cryogenic container for operation at 77 K was also constructed and mated to the solenoid. The coil was then taken to NHMFL facilities in Tallahassee, FL. where its magnetoresistance was measured in a 77 K environment under steady magnetic fields as high as 10 T. In addition, the temperature dependence of the coil's resistance was measured from 77 to 300 K. Following this series of tests, the coil was transported to NHMFL facilities in Los Alamos, NM, and pulsed to 2 T using an existing capacitor bank pulse generator. The coil was completely successful in producing the desired field without damage to the windings.

  8. 34 CFR 222.19 - What other statutes and regulations apply to this part?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for federally connected children with disabilities), 8007 (construction), and 8008 (school facilities...) or section 8008 (school facilities). (ii) Section 75.605 does not apply to payments under section... renovations or to construct new school facilities. (2) 34 CFR part 77 (Definitions that Apply to Department...

  9. 34 CFR 222.19 - What other statutes and regulations apply to this part?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for federally connected children with disabilities), 8007 (construction), and 8008 (school facilities...) or section 8008 (school facilities). (ii) Section 75.605 does not apply to payments under section... renovations or to construct new school facilities. (2) 34 CFR part 77 (Definitions that Apply to Department...

  10. 34 CFR 222.19 - What other statutes and regulations apply to this part?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for federally connected children with disabilities), 8007 (construction), and 8008 (school facilities...) or section 8008 (school facilities). (ii) Section 75.605 does not apply to payments under section... renovations or to construct new school facilities. (2) 34 CFR part 77 (Definitions that Apply to Department...

  11. 34 CFR 222.19 - What other statutes and regulations apply to this part?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for federally connected children with disabilities), 8007 (construction), and 8008 (school facilities...) or section 8008 (school facilities). (ii) Section 75.605 does not apply to payments under section... renovations or to construct new school facilities. (2) 34 CFR part 77 (Definitions that Apply to Department...

  12. Program of Research in Aeronautics

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A prospectus of the educational and research opportunities available at the Joint Institute for Advancement of Flight Sciences, operated at NASA Langley Research Center in conjunction with George Washington University's School of Engineering and Applied Sciences is presented. Requirements of admission to various degree programs are given as well as the course offerings in the areas of acoustics, aeronautics, environmental modelling, materials science, and structures and dynamics. Research facilities for each field of study are described. Presentations and publications (including dissertations and theses) generated by each program are listed as well as faculty members visting scientists and engineers.

  13. Biotechnology System Facility: Risk Mitigation on Mir

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R., III; Galloway, Steve R.

    2003-01-01

    NASA is working with its international partners to develop space vehicles and facilities that will give researchers the opportunity to conduct scientific investigations in space. As part of this activity, NASA's Biotechnology Cell Science Program (BCSP) at the Johnson Space Center (JSC) is developing a world-class biotechnology laboratory facility for the International Space Station (ISS). This report describes the BCSP, including the role of the BTS. We identify the purpose and objectives of the BTS and a detailed description of BTS facility design and operational concept, BTS facility and experiment-specific hardware, and scientific investigations conducted in the facility. We identify the objectives, methods, and results of risk mitigation investigations of the effects of microgravity and cosmic radiation on the BTS data acquisition and control system. These results may apply to many other space experiments that use commercial, terrestrial-based data acquisition technology. Another focal point is a description of the end-to-end process of integrating and operating biotechnology experiments on a variety of space vehicles. The identification of lessons learned that can be applied to future biotechnology experiments is an overall theme of the report. We include a brief summary of the science results, but this is not the focus of the report. The report provides some discussion on the successful 130-day tissue engineering experiment performed in BTS on Mir and describes a seminal gene array investigation that identified a set of unique genes that are activated in space.

  14. 40 CFR 63.11166 - What General Provisions apply to primary beryllium production facilities?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Primary Nonferrous Metals Area Sources-Zinc, Cadmium, and Beryllium Primary Beryllium Production Facilities § 63.11166 What General Provisions apply to primary beryllium production facilities? (a) You must... primary beryllium production facilities? 63.11166 Section 63.11166 Protection of Environment ENVIRONMENTAL...

  15. 41 CFR 102-76.55 - What sustainable development principles must Federal agencies apply to the siting, design, and...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... construction of new facilities, which include— (a) Optimizing site potential; (b) Minimizing non-renewable... development principles must Federal agencies apply to the siting, design, and construction of new facilities... Federal agencies apply to the siting, design, and construction of new facilities? In keeping with the...

  16. 41 CFR 102-76.55 - What sustainable development principles must Federal agencies apply to the siting, design, and...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... construction of new facilities, which include— (a) Optimizing site potential; (b) Minimizing non-renewable... development principles must Federal agencies apply to the siting, design, and construction of new facilities... Federal agencies apply to the siting, design, and construction of new facilities? In keeping with the...

  17. 41 CFR 102-76.55 - What sustainable development principles must Federal agencies apply to the siting, design, and...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... construction of new facilities, which include— (a) Optimizing site potential; (b) Minimizing non-renewable... development principles must Federal agencies apply to the siting, design, and construction of new facilities... Federal agencies apply to the siting, design, and construction of new facilities? In keeping with the...

  18. 41 CFR 102-76.55 - What sustainable development principles must Federal agencies apply to the siting, design, and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... construction of new facilities, which include— (a) Optimizing site potential; (b) Minimizing non-renewable... development principles must Federal agencies apply to the siting, design, and construction of new facilities... Federal agencies apply to the siting, design, and construction of new facilities? In keeping with the...

  19. 34 CFR 226.3 - What regulations apply to the State Charter School Facilities Incentive program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 1 2012-07-01 2012-07-01 false What regulations apply to the State Charter School... Education OFFICE OF ELEMENTARY AND SECONDARY EDUCATION, DEPARTMENT OF EDUCATION STATE CHARTER SCHOOL FACILITIES INCENTIVE PROGRAM General § 226.3 What regulations apply to the State Charter School Facilities...

  20. 34 CFR 226.3 - What regulations apply to the State Charter School Facilities Incentive program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false What regulations apply to the State Charter School... Education OFFICE OF ELEMENTARY AND SECONDARY EDUCATION, DEPARTMENT OF EDUCATION STATE CHARTER SCHOOL FACILITIES INCENTIVE PROGRAM General § 226.3 What regulations apply to the State Charter School Facilities...

  1. 34 CFR 226.3 - What regulations apply to the State Charter School Facilities Incentive program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 1 2011-07-01 2011-07-01 false What regulations apply to the State Charter School... Education OFFICE OF ELEMENTARY AND SECONDARY EDUCATION, DEPARTMENT OF EDUCATION STATE CHARTER SCHOOL FACILITIES INCENTIVE PROGRAM General § 226.3 What regulations apply to the State Charter School Facilities...

  2. 34 CFR 226.3 - What regulations apply to the State Charter School Facilities Incentive program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 1 2014-07-01 2014-07-01 false What regulations apply to the State Charter School... Education OFFICE OF ELEMENTARY AND SECONDARY EDUCATION, DEPARTMENT OF EDUCATION STATE CHARTER SCHOOL FACILITIES INCENTIVE PROGRAM General § 226.3 What regulations apply to the State Charter School Facilities...

  3. 34 CFR 226.3 - What regulations apply to the State Charter School Facilities Incentive program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 1 2013-07-01 2013-07-01 false What regulations apply to the State Charter School... Education OFFICE OF ELEMENTARY AND SECONDARY EDUCATION, DEPARTMENT OF EDUCATION STATE CHARTER SCHOOL FACILITIES INCENTIVE PROGRAM General § 226.3 What regulations apply to the State Charter School Facilities...

  4. 40 CFR 63.11164 - What General Provisions apply to primary zinc production facilities?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... primary zinc production facilities? 63.11164 Section 63.11164 Protection of Environment ENVIRONMENTAL... Primary Nonferrous Metals Area Sources-Zinc, Cadmium, and Beryllium Primary Zinc Production Facilities § 63.11164 What General Provisions apply to primary zinc production facilities? (a) If you own or...

  5. 40 CFR 63.11164 - What General Provisions apply to primary zinc production facilities?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... primary zinc production facilities? 63.11164 Section 63.11164 Protection of Environment ENVIRONMENTAL... Primary Nonferrous Metals Area Sources-Zinc, Cadmium, and Beryllium Primary Zinc Production Facilities § 63.11164 What General Provisions apply to primary zinc production facilities? (a) If you own or...

  6. 78 FR 73787 - Chlorsulfuron; Community Right-to-Know Toxic Chemical Release Reporting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-09

    ... 190/891138: AMR-1197-88. Unpublished study prepared by Huntingdon Research Centre Ltd. 76p. As cited... this notice apply to me? You may be potentially affected by this action if you manufacture, process, or... to: Category Examples of potentially affected entities Industry Facilities included in the following...

  7. A novel method for designing and optimizing the layout of facilities in bathroom for the elderly in home-based rehabilitation.

    PubMed

    Wang, Duojin; Wu, Jing; Lin, Qinglian

    2018-05-01

    The home-based rehabilitation of elderly patients improves their autonomy, independence and reintegration into society. Hence, a suitable environment plays an important role in rehabilitation, as do different assistance technologies. The majority of accidents at home involving elderly people occur in the bathroom. Therefore, the planning of the layout of facilities is important in this potentially dangerous area. This paper proposes an approach towards designing and optimizing the layout of facilities in the bathroom, based on logistical and nonlogistical relationships. A fuzzy-based analytical hierarchical process (fuzzy-AHP) is then proposed for a comprehensive evaluation of the alternatives for this layout plan. This approach was applied to the home of a 71 years old female patient, who was experiencing home-based rehabilitation. After the initial designing and optimizing of the layout of the facilities in her bathroom, a plan could then be created for her particular needs. The results of this research could then enable the home-based rehabilitation of elderly patients to be more effective. Value: This paper develops a new approach to design and optimize the layout of facilities in bathroom for the elderly. Implications for Rehabilitation Develop a new approach to design and optimize the layout of facilities in bathroom. Provide a mathematical and more scientific approach to home layout design for home-based rehabilitation. Provide new opportunities for research, for both the therapist and the patient to analyse the home facility layout.

  8. Development and application of computational aerothermodynamics flowfield computer codes

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj

    1994-01-01

    Research was performed in the area of computational modeling and application of hypersonic, high-enthalpy, thermo-chemical nonequilibrium flow (Aerothermodynamics) problems. A number of computational fluid dynamic (CFD) codes were developed and applied to simulate high altitude rocket-plume, the Aeroassist Flight Experiment (AFE), hypersonic base flow for planetary probes, the single expansion ramp model (SERN) connected with the National Aerospace Plane, hypersonic drag devices, hypersonic ramp flows, ballistic range models, shock tunnel facility nozzles, transient and steady flows in the shock tunnel facility, arc-jet flows, thermochemical nonequilibrium flows around simple and complex bodies, axisymmetric ionized flows of interest to re-entry, unsteady shock induced combustion phenomena, high enthalpy pulsed facility simulations, and unsteady shock boundary layer interactions in shock tunnels. Computational modeling involved developing appropriate numerical schemes for the flows on interest and developing, applying, and validating appropriate thermochemical processes. As part of improving the accuracy of the numerical predictions, adaptive grid algorithms were explored, and a user-friendly, self-adaptive code (SAGE) was developed. Aerothermodynamic flows of interest included energy transfer due to strong radiation, and a significant level of effort was spent in developing computational codes for calculating radiation and radiation modeling. In addition, computational tools were developed and applied to predict the radiative heat flux and spectra that reach the model surface.

  9. Large, horizontal-axis wind turbines

    NASA Technical Reports Server (NTRS)

    Linscott, B. S.; Perkins, P.; Dennett, J. T.

    1984-01-01

    Development of the technology for safe, reliable, environmentally acceptable large wind turbines that have the potential to generate a significant amount of electricity at costs competitive with conventional electric generating systems are presented. In addition, these large wind turbines must be fully compatible with electric utility operations and interface requirements. There are several ongoing large wind system development projects and applied research efforts directed toward meeting the technology requirements for utility applications. Detailed information on these projects is provided. The Mod-O research facility and current applied research effort in aerodynamics, structural dynamics and aeroelasticity, composite and hybrid composite materials, and multiple system interaction are described. A chronology of component research and technology development for large, horizontal axis wind turbines is presented. Wind characteristics, wind turbine economics, and the impact of wind turbines on the environment are reported. The need for continued wind turbine research and technology development is explored. Over 40 references are sited and a bibliography is included.

  10. A High-Lift Building Block Flow: Turbulent Boundary Layer Relaminarization

    NASA Technical Reports Server (NTRS)

    Bourassa, Corey; Thomas, Flint O.; Nelson, Robert C.

    2001-01-01

    A working wind tunnel test facility has been constructed at the University of Notre Dame's Hessert Center. The relaminarization test facility has been constructed in the 1.5m x 1.5m (5ft x 5 ft) atmospheric wind tunnel and generates a Re(theta)=4694 turbulent boundary layer in nominally zero-pressure gradient before it is exposed to the Case #1 pressure gradient (K approximately equal to 4.2 x 10(exp -6), which is believed to be sufficient to achieve relaminarization. Future work to be conducted will include measuring the response of the turbulent boundary layer to the favorable pressure gradients created in the test facility and documenting this response in order to understand the underlying flow physics responsible for relaminarization. It is the goal of this research to have a better understanding of accelerated turbulent boundary layers which will aid in the development of future flow diagnostic utilities to be implemented in applied aerodynamic research.

  11. Development of test methods for scale model simulation of aerial applications in the NASA Langley Vortex Research Facility. [agricultural aircraft

    NASA Technical Reports Server (NTRS)

    Jordan, F. L., Jr.

    1980-01-01

    As part of basic research to improve aerial applications technology, methods were developed at the Langley Vortex Research Facility to simulate and measure deposition patterns of aerially-applied sprays and granular materials by means of tests with small-scale models of agricultural aircraft and dynamically-scaled test particles. Interactions between the aircraft wake and the dispersed particles are being studied with the objective of modifying wake characteristics and dispersal techniques to increase swath width, improve deposition pattern uniformity, and minimize drift. The particle scaling analysis, test methods for particle dispersal from the model aircraft, visualization of particle trajectories, and measurement and computer analysis of test deposition patterns are described. An experimental validation of the scaling analysis and test results that indicate improved control of chemical drift by use of winglets are presented to demonstrate test methods.

  12. Source apportionment of stack emissions from research and development facilities using positive matrix factorization

    NASA Astrophysics Data System (ADS)

    Ballinger, Marcel Y.; Larson, Timothy V.

    2014-12-01

    Research and development (R&D) facility emissions are difficult to characterize due to their variable processes, changing nature of research, and large number of chemicals. Positive matrix factorization (PMF) was applied to volatile organic compound (VOC) concentrations measured in the main exhaust stacks of four different R&D buildings to identify the number and composition of major contributing sources. PMF identified between 9 and 11 source-related factors contributing to stack emissions, depending on the building. Similar factors between buildings were major contributors to trichloroethylene (TCE), acetone, and ethanol emissions; other factors had similar profiles for two or more buildings but not all four. At least one factor for each building was identified that contained a broad mix of many species and constraints were used in PMF to modify the factors to resemble more closely the off-shift concentration profiles. PMF accepted the constraints with little decrease in model fit.

  13. The Imaging and Medical Beam Line at the Australian Synchrotron

    NASA Astrophysics Data System (ADS)

    Hausermann, Daniel; Hall, Chris; Maksimenko, Anton; Campbell, Colin

    2010-07-01

    As a result of the enthusiastic support from the Australian biomedical, medical and clinical communities, the Australian Synchrotron is constructing a world-class facility for medical research, the `Imaging and Medical Beamline'. The IMBL began phased commissioning in late 2008 and is scheduled to commence the first clinical research programs with patients in 2011. It will provide unrivalled x-ray facilities for imaging and radiotherapy for a wide range of research applications in diseases, treatments and understanding of physiological processes. The main clinical research drivers are currently high resolution and sensitivity cardiac and breast imaging, cell tracking applied to regenerative and stem cell medicine and cancer therapies. The beam line has a maximum source to sample distance of 136 m and will deliver a 60 cm by 4 cm x-ray beam1—monochromatic and white—to a three storey satellite building fully equipped for pre-clinical and clinical research. Currently operating with a 1.4 Tesla multi-pole wiggler, it will upgrade to a 4.2 Tesla device which requires the ability to handle up to 21 kW of x-ray power at any point along the beam line. The applications envisaged for this facility include imaging thick objects encompassing materials, humans and animals. Imaging can be performed in the range 15-150 keV. Radiotherapy research typically requires energies between 30 and 120 keV, for both monochromatic and broad beam.

  14. Langley aerospace test highlights, 1988

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests which were performed during calendar year 1988 in Langley test facilities, a number of which are unique in the world are highlighted. Both the broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research are illustrated.

  15. Mach 0.3 Burner Rig Facility at the NASA Glenn Materials Research Laboratory

    NASA Technical Reports Server (NTRS)

    Fox, Dennis S.; Miller, Robert A.; Zhu, Dongming; Perez, Michael; Cuy, Michael D.; Robinson, R. Craig

    2011-01-01

    This Technical Memorandum presents the current capabilities of the state-of-the-art Mach 0.3 Burner Rig Facility. It is used for materials research including oxidation, corrosion, erosion and impact. Consisting of seven computer controlled jet-fueled combustors in individual test cells, these relatively small rigs burn just 2 to 3 gal of jet fuel per hour. The rigs are used as an efficient means of subjecting potential aircraft engine/airframe advanced materials to the high temperatures, high velocities and thermal cycling closely approximating actual operating environments. Materials of various geometries and compositions can be evaluated at temperatures from 700 to 2400 F. Tests are conducted not only on bare superalloys and ceramics, but also to study the behavior and durability of protective coatings applied to those materials.

  16. Habitability and Human Factors Contributions to Human Space Flight

    NASA Technical Reports Server (NTRS)

    Sumaya, Jennifer Boyer

    2011-01-01

    This slide presentation reviews the work of the Habitability and Human Factors Branch in support of human space flight in two main areas: Applied support to major space programs, and Space research. The field of Human Factors applies knowledge of human characteristics for the design of safer, more effective, and more efficient systems. This work is in several areas of the human space program: (1) Human-System Integration (HSI), (2) Orion Crew Exploration Vehicle, (3) Extravehicular Activity (EVA), (4) Lunar Surface Systems, (5) International Space Station (ISS), and (6) Human Research Program (HRP). After detailing the work done in these areas, the facilities that are available for human factors work are shown.

  17. A research program in magnetogasdynamics utilizing hypervelocity coaxial plasma generators

    NASA Technical Reports Server (NTRS)

    Spight, C.

    1976-01-01

    A broadly-gauged research program in magnetogasdynamics utilizing hypervelocity coaxial plasma generators is presented. A complete hypervelocity coaxial plasma generator facility was assembled and tested. Significant progress was made in the direction of understanding the important processes in the interaction of hypervelocity MGD flow with transverse applied fields. It is now proposed to utilize the accumulated experimental capability and theoretical analysis in application to the analysis and design parameterization of pulsed magnetogasdynamic direct energy convertor configurations.

  18. Cumulative reports and publications

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A complete list of Institute for Computer Applications in Science and Engineering (ICASE) reports are listed. Since ICASE reports are intended to be preprints of articles that will appear in journals or conference proceedings, the published reference is included when it is available. The major categories of the current ICASE research program are: applied and numerical mathematics, including numerical analysis and algorithm development; theoretical and computational research in fluid mechanics in selected areas of interest to LaRC, including acoustics and combustion; experimental research in transition and turbulence and aerodynamics involving LaRC facilities and scientists; and computer science.

  19. Interlaboratory studies and initiatives developing standards for proteomics

    PubMed Central

    Ivanov, Alexander R.; Colangelo, Christopher M.; Dufresne, Craig P.; Friedman, David B.; Lilley, Kathryn S.; Mechtler, Karl; Phinney, Brett S.; Rose, Kristie L.; Rudnick, Paul A.; Searle, Brian C.; Shaffer, Scott A.; Weintraub, Susan T.

    2013-01-01

    Proteomics is a rapidly transforming interdisciplinary field of research that embraces a diverse set of analytical approaches to tackle problems in fundamental and applied biology. This view-point article highlights the benefits of interlaboratory studies and standardization initiatives to enable investigators to address many of the challenges found in proteomics research. Among these initiatives, we discuss our efforts on a comprehensive performance standard for characterizing PTMs by MS that was recently developed by the Association of Biomolecular Resource Facilities (ABRF) Proteomics Standards Research Group (sPRG). PMID:23319436

  20. Estimation of Stormwater Interception Rate for various LID Facilities

    NASA Astrophysics Data System (ADS)

    Kim, S.; Lee, O.; Choi, J.

    2017-12-01

    In this study, the stormwater interception rate is proposed to apply in the design of LID facilities. For this purpose, EPA-SWMM is built with some areas of Noksan National Industrial Complex where long-term observed stormwater data were monitored and stormwater interception rates for various design capacities of various LID facilities are estimated. While the sensitivity of stormwater interception rate according to design specifications of bio-retention and infiltration trench facilities is not large, the sensitivity of stormwater interception rate according to local rainfall characteristics is relatively big. As a result of comparing the present rainfall interception rate estimation method which is officially operated in Korea with the one proposed in this study, it will be presented that the present method is highly likely to overestimate the performance of the bio-retention and infiltration trench facilities. Finally, a new stormwater interception rate formulas for the bio-retention and infiltration trench LID facilities will be proposed. Acknowledgement This research was supported by a grant (2016000200002) from Public Welfare Technology Development Program funded by Ministry of Environment of Korean government.

  1. FEANICS: A Multi-User Facility For Conducting Solid Fuel Combustion Experiments On ISS

    NASA Technical Reports Server (NTRS)

    Frate, David T.; Tofil, Todd A.

    2001-01-01

    The Destiny Module on the International Space Station (ISS) will soon be home for the Fluids and Combustion Facility's (FCF) Combustion Integrated Rack (CIR), which is being developed at the NASA Glenn Research Center in Cleveland, Ohio. The CIR will be the platform for future microgravity combustion experiments. A multi-user mini-facility called FEANICS (Flow Enclosure Accommodating Novel Investigations in Combustion of Solids) will also be built at NASA Glenn. This mini-facility will be the primary means for conducting solid fuel combustion experiments in the CIR on ISS. The main focus of many of these solid combustion experiments will be to conduct basic and applied scientific investigations in fire-safety to support NASA's Bioastronautics Initiative. The FEANICS project team will work in conjunction with the CIR project team to develop upgradeable and reusable hardware to meet the science requirements of current and future investigators. Currently, there are six experiments that are candidates to use the FEANICS mini-facility. This paper will describe the capabilities of this mini-facility and the type of solid combustion testing and diagnostics that can be performed.

  2. Aviation human factors research in U.S. universities: Potential contributions to national needs

    NASA Technical Reports Server (NTRS)

    Key Dismukes, R.

    1994-01-01

    Univesity research can make vital contributions to national needs in aviation human factors (AHF). This article examines the types of expertise and facilities available in universities and explores how university capabilities complement the work of government laboratories. The AHF infrastructure is discussed and compared to other fields of applied research. Policy and funding issues are also examined. This study is based on a survey conducted by the author, which included site visits to several universities, telephone interviews with faculty members at other universities, and a search of the AHF research literature.

  3. Background research in support of the new grant proposal: Research consortium for X-ray topography on line X-19 at NSLS

    NASA Astrophysics Data System (ADS)

    Bilello, J. C.

    1983-11-01

    The status of the construction and installation of components of the synchrotron topography station is reported as well as progress in the development of hardware for interfacing and software for interactively controlling the 13 motors which automate the facility. Research focuses on the problem of X-ray optics and on techniques for applying topography to materials science. There is colaboration with other researchers in studying the nature of brittle fracture of refractory metals and in interpreting contact in the vicinity of crack tips.

  4. A Unique Software System For Simulation-to-Flight Research

    NASA Technical Reports Server (NTRS)

    Chung, Victoria I.; Hutchinson, Brian K.

    2001-01-01

    "Simulation-to-Flight" is a research development concept to reduce costs and increase testing efficiency of future major aeronautical research efforts at NASA. The simulation-to-flight concept is achieved by using common software and hardware, procedures, and processes for both piloted-simulation and flight testing. This concept was applied to the design and development of two full-size transport simulators, a research system installed on a NASA B-757 airplane, and two supporting laboratories. This paper describes the software system that supports the simulation-to-flight facilities. Examples of various simulation-to-flight experimental applications were also provided.

  5. 40 CFR 124.206 - In what situations may I require a facility owner or operator to apply for an individual permit?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... history of significant non-compliance with regulations or permit conditions. (3) The facility has a demonstrated history of submitting incomplete or deficient permit application information. (4) The facility has... standardized RCRA permit. (2) Circumstances have changed since the time the facility owner or operator applied...

  6. Contribution to "AIAA Aerospace Year in Review" article

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.; Downey, J. Patton

    2012-01-01

    The NASA Marshall Space Flight Center Microgravity Science Program is dedicated to promoting our understanding of materials processing by conducting relevant experiments in the microgravity environment and supporting related modeling efforts with the intent of improving ground-based practices. Currently funded investigations include research on dopant distribution and defect formation in semiconductors, microstructural development and transitions in dendritic casting alloys, coarsening phenomena, competition between thermal and kinetic phase formation, and the formation of glassy vs. crystalline material. NASA Microgravity Materials Science Principle Investigators are selected for funding either through a proposal in response to a NASA Research Announcement or by collaborating on a team that has successfully proposed to a foreign space agency research announcement. In the latter case, a US investigator can then apply to NASA for funding through an unsolicited proposal. The International Space Station (ISS) facilities used for the experimental investigations are provided primarily by partnering with foreign agencies and often US investigators are working as a part of a larger team studying a specific area of materials science. Facilities for conducting experiments aboard the ISS include the European Space Agency (ESA) Low Gradient Facility (LGF) and the Solidification and Quench (SQF) modular inserts to the Materials Research Rack/Materials Science Laboratory and are primarily used for controlled solidification studies. The French Space Agency (CNES) provided DECLIC facility allows direct observation of morphological development in transparent materials that solidify analogously to metals. The ESA provided Electro ]Magnetic Levitator (EML) is designed to levitate, melt and then cool samples in order to determine material properties, study nucleation behavior, and document phase transitions. Finally, the Microgravity Science Glovebox (MSG) serves as a onboard facility for supporting the hardware required to conduct a number of smaller, short-term investigations.

  7. An Overview of the Materials Science Research at the Marshall Space Flight Center Electrostatic Levitator Facility and Recent CDDF Efforts

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Containerless processing is an important tool for materials research. The freedom from a crucible allows processing of liquid materials in a metastable undercooled state, as well as allowing processing of high temperature and highly reactive melts. Electrostatic levitation (ESL) is a containerless method which provides a number of unique advantages, including the ability to process non-conducting materials, the ability to operate in ultra-high vacuum or at moderate gas pressure (approx. = 5 atm), and the decoupling of positioning force from sample heating. ESL also has the potential to reduce internal flow velocities below those possible with electromagnetic, acoustic, or aero-acoustic techniques. In electrostatic levitation, the acceleration of gravity (or residual acceleration in reduced gravity) is opposed by the action of an applied electric field on a charged sample. Microgravity allows electrostatic levitation to work even more effectively. The ESL facility at NASA s Marshall Space Flight Center is in use for materials research and thermophysical property measurement by a number of different internal and external investigators. Results from the recent CDDF studies on the high energy X-ray beamline at the Advanced Photon Source of Argonne National Laboratory will be presented. The Microgravity Research Program supports the facility.

  8. Biodiversity informatics: challenges and opportunities for applying biodiversity information to management and conservation

    Treesearch

    James S. Kagan

    2006-01-01

    Researchers, land managers, and the public currently often are unable to obtain useful biodiversity information because the subject represents such a large component of biology and ecology, and systems to compile and organize this information do not exist. Information on vascular plant taxonomy, as addressed by the Global Biodiversity Information Facility and key...

  9. 3D WindScanner lidar measurements of wind and turbulence around wind turbines, buildings and bridges

    NASA Astrophysics Data System (ADS)

    Mikkelsen, T.; Sjöholm, M.; Angelou, N.; Mann, J.

    2017-12-01

    WindScanner is a distributed research infrastructure developed at DTU with the participation of a number of European countries. The research infrastructure consists of a mobile technically advanced facility for remote measurement of wind and turbulence in 3D. The WindScanners provide coordinated measurements of the entire wind and turbulence fields, of all three wind components scanned in 3D space. Although primarily developed for research related to on- and offshore wind turbines and wind farms, the facility is also well suited for scanning turbulent wind fields around buildings, bridges, aviation structures and of flow in urban environments. The mobile WindScanner facility enables 3D scanning of wind and turbulence fields in full scale within the atmospheric boundary layer at ranges from 10 meters to 5 (10) kilometers. Measurements of turbulent coherent structures are applied for investigation of flow pattern and dynamical loads from turbines, building structures and bridges and in relation to optimization of the location of, for example, wind farms and suspension bridges. This paper presents our achievements to date and reviews briefly the state-of-the-art of the WindScanner measurement technology with examples of uses for wind engineering applications.

  10. The Behavioral Health Role in Nursing Facility Social Work.

    PubMed

    Myers, Dennis R; Rogers, Robin K; LeCrone, Harold H; Kelley, Katherine

    2017-09-01

    Types of compromised resident behaviors licensed nursing facility social workers encounter, the behavioral health role they enact, and effective practices they apply have not been the subject of systematic investigation. Analyses of 20 in-depth interviews with Bachelor of Social Work (BSW)/Master of Social Work (MSW) social workers averaging 8.8 years of experience identified frequently occurring resident behaviors: physical and verbal aggression/disruption, passive disruption, socially and sexually inappropriateness. Six functions of the behavioral health role were care management, educating, investigating, preventing, mediating, and advocating. Skills most frequently applied were attention/affirmation/active listening, assessment, behavior management, building relationship, teamwork, and redirection. Narratives revealed role rewards as well as knowledge deficits, organizational barriers, personal maltreatment, and frustrations. Respondents offered perspectives and prescriptions for behavioral health practice in this setting. The findings expand understanding of the behavioral health role and provide an empirical basis for more research in this area. Recommendations, including educational competencies, are offered.

  11. Savannah River Ecology Laboratory annual technical progress report of ecological research for the year ending July 31, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, M.H.

    1995-07-01

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA). The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under a contract with the US Department of Energy (DOE) at the Savannah River Site near Aiken, South Carolina. Significant accomplishments were made during the past year in the areas of research, education and service. Major additions to SREL Facilities were completed that will enhance the Laboratory`s work in the future. Following severalmore » years of planning, opening ceremonies were held for the 5000 ft{sup 2} multi-purpose conference center that was funded by the University of Georgia Research Foundation (UGARF). The center is located on 68 acres of land that was provided by the US Department of Energy. This joint effort between DOE and UGARF supports DOE`s new initiative to develop partnerships with the private sector and universities. The facility is being used for scientific meetings and environmental education programs for students, teachers and the general public. A 6000 ft{sup 2} office and library addition to S@s main building officially opened this year, and construction plans are underway on a new animal care facility, laboratory addition, and receiving building.« less

  12. Tax-exempt bonds and sponsored research.

    PubMed

    Ballard, Frederic L

    2003-01-01

    "Sponsored research," wherein a business corporation or the government pays a portion of the cost of research activities carried out by a university or hospital, is increasingly important both for state institutions and for Section 510(c)(3) organizations. Sponsored research arrangements that are not properly structured can jeopardize the status of tax-exempt bonds issued to finance the facility at which the sponsored research occurs. While these rules have been difficult to apply in practice, properly structured agreements can provide funding for research without undue risk. This Article discusses the multiple pieces of guidance put forth by the Internal Revenue Service to clarify the many issues and tiers of analysis necessary to ensure a properly-structured sponsored research agreement.

  13. Scientific Infrastructure To Support Manned And Unmanned Aircraft, Tethered Balloons, And Related Aerial Activities At Doe Arm Facilities On The North Slope Of Alaska

    NASA Astrophysics Data System (ADS)

    Ivey, M.; Dexheimer, D.; Hardesty, J.; Lucero, D. A.; Helsel, F.

    2015-12-01

    The U.S. Department of Energy (DOE), through its scientific user facility, the Atmospheric Radiation Measurement (ARM) facilities, provides scientific infrastructure and data to the international Arctic research community via its research sites located on the North Slope of Alaska. DOE has recently invested in improvements to facilities and infrastructure to support operations of unmanned aerial systems for science missions in the Arctic and North Slope of Alaska. A new ground facility, the Third ARM Mobile Facility, was installed at Oliktok Point Alaska in 2013. Tethered instrumented balloons were used to make measurements of clouds in the boundary layer including mixed-phase clouds. A new Special Use Airspace was granted to DOE in 2015 to support science missions in international airspace in the Arctic. Warning Area W-220 is managed by Sandia National Laboratories for DOE Office of Science/BER. W-220 was successfully used for the first time in July 2015 in conjunction with Restricted Area R-2204 and a connecting Altitude Reservation Corridor (ALTRV) to permit unmanned aircraft to operate north of Oliktok Point. Small unmanned aircraft (DataHawks) and tethered balloons were flown at Oliktok during the summer and fall of 2015. This poster will discuss how principal investigators may apply for use of these Special Use Airspaces, acquire data from the Third ARM Mobile Facility, or bring their own instrumentation for deployment at Oliktok Point, Alaska. The printed poster will include the standard DOE funding statement.

  14. Evaluation and Selection of Renewable Energy Technologies for Highway Maintenance Facilities

    NASA Astrophysics Data System (ADS)

    Andrews, Taylor

    The interest in renewable energy has been increasing in recent years as attempts to reduce energy costs as well the consumption of fossil fuels are becoming more common. Companies and organizations are recognizing the increasing reliance on limited fossil fuels' resources, and as competition and costs for these resources grow, alternative solutions are becoming more appealing. Many federally run buildings and associations also have the added pressure of meeting the mandates of federal energy policies that dictate specific savings or reductions. Federal highway maintenance facilities run by the Department of Transportation fall into this category. To help meet energy saving goals, an investigation into potential renewable energy technologies was completed for the Ohio Department of Transportation. This research examined several types of renewable energy technologies and the major factors that affect their performance and evaluated their potential for implementation at highway maintenance facilities. Facilities energy usage data were provided, and a facility survey and site visits were completed to enhance the evaluation of technologies and the suitability for specific projects. Findings and technology recommendations were presented in the form of selection matrices, which were designed to help make selections in future projects. The benefits of utilization of other tools such as analysis software and life cycle assessments were also highlighted. These selection tools were designed to be helpful guides when beginning the pursuit of a renewable energy technology for highway maintenance facilities, and can be applied to other similar building types and projects. This document further discusses the research strategies and findings as well as the recommendations that were made to the personnel overseeing Ohio's highway maintenance facilities.

  15. Wind-Tunnel Balance Characterization for Hypersonic Research Applications

    NASA Technical Reports Server (NTRS)

    Lynn, Keith C.; Commo, Sean A.; Parker, Peter A.

    2012-01-01

    Wind-tunnel research was recently conducted at the NASA Langley Research Center s 31-Inch Mach 10 Hypersonic Facility in support of the Mars Science Laboratory s aerodynamic program. Researchers were interested in understanding the interaction between the freestream flow and the reaction control system onboard the entry vehicle. A five-component balance, designed for hypersonic testing with pressurized flow-through capability, was used. In addition to the aerodynamic forces, the balance was exposed to both thermal gradients and varying internal cavity pressures. Historically, the effect of these environmental conditions on the response of the balance have not been fully characterized due to the limitations in the calibration facilities. Through statistical design of experiments, thermal and pressure effects were strategically and efficiently integrated into the calibration of the balance. As a result of this new approach, researchers were able to use the balance continuously throughout the wide range of temperatures and pressures and obtain real-time results. Although this work focused on a specific application, the methodology shown can be applied more generally to any force measurement system calibration.

  16. Langley aerospace test highlights, 1989

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The role of the NASA Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and spaceflight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests that were performed during calendar year 1989 in the NASA Langley Research Center test facilities are highlighted. Both the broad range of the research and technology activities at the NASA Langley Research Center are illustrated along with the contributions of this work toward maintaining United States leadership in aeronautics and space research. Other highlights of Langley research and technology for 1989 are described in Research and Technology 1989 - Langley Research Center.

  17. Biological research on a Space Station

    NASA Technical Reports Server (NTRS)

    Krikorian, A. D.; Johnson, Catherine C.

    1990-01-01

    A Space Station can provide reliable, long duration access to ug environments for basic and applied biological research. The uniqueness of access to near-weightless environments to probe fundamental questions of significance to gravitational and Space biologists can be exploited from many vantage points. Access to centrifuge facilities that can provide 1 g and hypo-g controls will permit identification of gravity-dependent or primary effects. Understanding secondary effects of the ug environment as well will allow a fuller exploitation of the Space environment.

  18. Clinical Physiologic Research Instrumentation: An Approach Using Modular Elements and Distributed Processing

    PubMed Central

    Hagen, R. W.; Ambos, H. D.; Browder, M. W.; Roloff, W. R.; Thomas, L. J.

    1979-01-01

    The Clinical Physiologic Research System (CPRS) developed from our experience in applying computers to medical instrumentation problems. This experience revealed a set of applications with a commonality in data acquisition, analysis, input/output, and control needs that could be met by a portable system. The CPRS demonstrates a practical methodology for integrating commercial instruments with distributed modular elements of local design in order to make facile responses to changing instrumentation needs in clinical environments. ImagesFigure 3

  19. Nuclear facility decommissioning and site remedial actions. Volume 6. A selected bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, P.T.; Michelson, D.C.; Knox, N.P.

    1985-09-01

    This bibliography of 683 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the sixth in a series of annual reports prepared for the US Department of Energy's Remedial Action Programs. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's remedial action program. Majormore » chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Facilities Contaminated with Natural Radioactivity; (5) Uranium Mill Tailings Remedial Action Program; (6) Grand Junction Remedial Action Program; (7) Uranium Mill Tailings Management; (8) Technical Measurements Center; and (9) General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 7 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate affiliation or by publication description.« less

  20. Langley aerospace test highlights, 1985

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Significant tests which were performed during calendar year 1985 in Langley test facilities, are highlighted. Both the broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research, are illustrated. Other highlights of Langley research and technology for 1985 are described in Research and Technology-1985 Annual Report of the Langley Research Center.

  1. Bringing in the Reinforcements

    NASA Technical Reports Server (NTRS)

    2004-01-01

    What do NASA and ballistics have in common? More than the average person may know. Everyday, millions of Americans drive in vehicles, cross over bridges, and fly in airplanes without knowing just how important NASA s role in studying ballistics is in making these actions viable and safe for them. At Glenn Research Center s Ballistic Impact Facility, NASA scientists and engineers study the dynamics of high-speed projectiles and their impact on targets to create materials and structures that are smarter, lighter, and stronger. By applying the science of ballistics to new developments, these researchers are taking major steps in preventing catastrophic events. The Ballistic Impact Facility s main features are a 40-foot-long gas gun that can launch projectiles at speeds over 1,000 miles per hour and highspeed cameras that can capture up to 250 million images per second.

  2. The Imaging and Medical Beam Line at the Australian Synchrotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hausermann, Daniel; Hall, Chris; Maksimenko, Anton

    2010-07-23

    As a result of the enthusiastic support from the Australian biomedical, medical and clinical communities, the Australian Synchrotron is constructing a world-class facility for medical research, the 'Imaging and Medical Beamline'. The IMBL began phased commissioning in late 2008 and is scheduled to commence the first clinical research programs with patients in 2011. It will provide unrivalled x-ray facilities for imaging and radiotherapy for a wide range of research applications in diseases, treatments and understanding of physiological processes. The main clinical research drivers are currently high resolution and sensitivity cardiac and breast imaging, cell tracking applied to regenerative and stemmore » cell medicine and cancer therapies. The beam line has a maximum source to sample distance of 136 m and will deliver a 60 cm by 4 cm x-ray beam1 - monochromatic and white - to a three storey satellite building fully equipped for pre-clinical and clinical research. Currently operating with a 1.4 Tesla multi-pole wiggler, it will upgrade to a 4.2 Tesla device which requires the ability to handle up to 21 kW of x-ray power at any point along the beam line. The applications envisaged for this facility include imaging thick objects encompassing materials, humans and animals. Imaging can be performed in the range 15-150 keV. Radiotherapy research typically requires energies between 30 and 120 keV, for both monochromatic and broad beam.« less

  3. The relationship of sport participation to provision of sports facilities and socioeconomic status: a geographical analysis.

    PubMed

    Eime, Rochelle M; Harvey, Jack; Charity, Melanie J; Casey, Meghan; Westerbeek, Hans; Payne, Warren R

    2017-06-01

    Ecological models have been applied to investigate multiple domains influencing physical activity behaviour, including individual, social, organisational, community, environmental and policy factors. With regard to the built environment, research to date has been limited to small geographical areas and/or small samples of participants. This study examined the geographical association between provision of sport facilities and participation in sport across an entire Australian state, using objective total enumerations of both, for a group of sports, with adjustment for the effect of socioeconomic status (SES). De-identified membership registration data were obtained from state sport governing bodies of four popular team sports. Associations between participation rate, facility provision rate and SES were investigated using correlation and regression methods. Participation rate was positively associated with provision of facilities, although this was complicated by SES and region effects. The non-metropolitan region generally had higher participation rates and better provision of facilities than the metropolitan region. Better provision of sports facilities is generally associated with increased sport participation, but SES and region are also contributing factors. Implications for public health: Community-level analysis of the population, sport participation and provision of facilities should be used to inform decisions of investments in sports facilities. © 2017 The Authors.

  4. Langley aeronautics and space test highlights, 1983

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests which were performed during calendar year 1983 in Langley test facilities, a number of which are unique in the world are highlighted. Both the broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research are illustrated.

  5. Langley aerospace test highlights - 1986

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. This report highlights some of the significant tests which were performed during calendar year 1986 in Langley test facilities, a number of which are unique in the world. The report illustrates both the broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research.

  6. Lewis Research Center: Commercialization Success Stories

    NASA Technical Reports Server (NTRS)

    Heyward, Ann O.

    1996-01-01

    The NASA Lewis Research Center, located in Cleveland, Ohio, has a portfolio of research and technology capabilities and facilities that afford opportunities for productive partnerships with industry in a broad range of industry sectors. In response to the President's agenda in the area of technology for economic growth (Clinton/Gore 1993), the National Performance Review (1993), NASA's Agenda for Change (1994), and the needs of its customers, NASA Lewis Research Center has sought and achieved significant successes in technology transfer and commercialization. This paper discusses a sampling of Lewis Research Center's successes in this area, and lessons learned that Lewis Research Center is applying in pursuit of continuous improvement and excellence in technology transfer and commercialization.

  7. Virtual Special Issue on Catalysis at the U.S. Department of Energy’s National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pruski, Marek; Sadow, Aaron; Slowing, Igor

    Catalysis research at the U.S. Department of Energy's (DOE's) National Laboratories covers a wide range of research topics in heterogeneous catalysis, homogeneous/ molecular catalysis, electrocatalysis, and surface science. Since much of the work at National Laboratories is funded by DOE, the research is largely focused on addressing DOE’s mission to ensure America’s security and prosperity by addressing its energy, environmental, and nuclear challenges through trans-formative science and technology solutions. The catalysis research carried out at the DOE National Laboratories ranges from very fundamental catalysis science, funded by DOE’s Office of Basic Energy Sciences (BES), to applied research and development (R&D)more » in areas such as biomass conversion to fuels and chemicals, fuel cells, and vehicle emission control with primary funding from DOE’s Office of Energy Efficiency and Renewable Energy. National Laboratories are home to many DOE Office of Science national scientific user facilities that provide researchers with the most advanced tools of modern science, including accelerators, colliders, supercomputers, light sources, and neutron sources, as well as facilities for studying the nanoworld and the terrestrial environment. National Laboratory research programs typically feature teams of researchers working closely together, often joining scientists from different disciplines to attack scientific and technical problems using a variety of tools and techniques available at the DOE national scientific user facilities. Along with collaboration between National Laboratory scientists, interactions with university colleagues are common in National Laboratory catalysis R&D. In some cases, scientists have joint appoint-ments at a university and a National Laboratory.« less

  8. Virtual Special Issue on Catalysis at the U.S. Department of Energy’s National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pruski, Marek; Sadow, Aaron D.; Slowing, Igor I.

    Catalysis research at the U.S. Department of Energy’s (DOE’s) National Laboratories covers a wide range of research topics in heterogeneous catalysis, homogeneous/molecular catalysis, biocatalysis, electrocatalysis, and surface science. Since much of the work at National Laboratories is funded by DOE, the research is largely focused on addressing DOE’s mission to ensure America’s security and prosperity by addressing its energy, environmental, and nuclear challenges through transformative science and technology solutions. The catalysis research carried out at the DOE National Laboratories ranges from very fundamental catalysis science, funded by DOE’s Office of Basic Energy Sciences (BES), to applied research and development (R&D)more » in areas such as biomass conversion to fuels and chemicals, fuel cells, and vehicle emission control with primary funding from DOE’s Office of Energy Efficiency and Renewable Energy. National Laboratories are home to many DOE Office of Science national scientific user facilities that provide researchers with the most advanced tools of modern science, including accelerators, colliders, supercomputers, light sources, and neutron sources, as well as facilities for studying the nanoworld and the terrestrial environment. National Laboratory research programs typically feature teams of researchers working closely together, often joining scientists from different disciplines to tackle scientific and technical problems using a variety of tools and techniques available at the DOE national scientific user facilities. Along with collaboration between National Laboratory scientists, interactions with university colleagues are common in National Laboratory catalysis R&D. In some cases, scientists have joint appointments at a university and a National Laboratory.« less

  9. Facilities | Argonne National Laboratory

    Science.gov Websites

    Skip to main content Argonne National Laboratory Toggle Navigation Toggle Search Research Facilities Advanced Powertrain Research Facility Center for Transportation Research Distributed Energy Research Center Engine Research Facility Heat Transfer Laboratory Materials Engineering Research Facility

  10. Simulation of nap-of-the-Earth flight in helicopters

    NASA Technical Reports Server (NTRS)

    Condon, Gregory W.

    1991-01-01

    NASA-Ames along with the U.S. Army has conducted extensive simulation studies of rotorcraft in the nap-of-the-Earth (NOE) environment and has developed facility capabilities specifically designed for this flight regime. The experience gained to date in applying these facilities to the NOE flight regime are reported along with the results of specific experimental studies conducted to understand the influence of both motion and visual scene on the fidelity of NOE simulation. Included are comparisons of results from concurrent piloted simulation and flight research studies. The results of a recent simulation experiment to study simulator sickness in this flight regime is also discussed.

  11. Improving the Quality of School Facilities through Building Performance Assessment: Educational Reform and School Building Quality in Sao Paulo, Brazil

    ERIC Educational Resources Information Center

    Ornstein, Sheila Walbe; Moreira, Nanci Saraiva; Ono, Rosaria; Limongi Franca, Ana J. G.; Nogueira, Roselene A. M. F.

    2009-01-01

    Purpose: The paper describes the purpose of and strategies for conducting post-occupancy evaluations (POEs) as a method for assessing school building performance. Set within the larger context of global efforts to develop and apply common indicators of school building quality, the authors describe research conducted within the newest generation of…

  12. 36 CFR 1280.48 - How do I apply to film, photograph, or videotape on NARA property for news purposes?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... wish to film, photograph, or videotape for news purposes at a Presidential library or at a regional records services facility, you must contact the director of the library (see 36 CFR 1253.3 for contact... 1254 for permission to film archival records and donated materials for research purposes or for...

  13. 36 CFR 1280.48 - How do I apply to film, photograph, or videotape on NARA property for news purposes?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... wish to film, photograph, or videotape for news purposes at a Presidential library or at a regional records services facility, you must contact the director of the library (see 36 CFR 1253.3 for contact... 1254 for permission to film archival records and donated materials for research purposes or for...

  14. 36 CFR 1280.48 - How do I apply to film, photograph, or videotape on NARA property for news purposes?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... wish to film, photograph, or videotape for news purposes at a Presidential library or at a regional records services facility, you must contact the director of the library (see 36 CFR 1253.3 for contact... 1254 for permission to film archival records and donated materials for research purposes or for...

  15. 36 CFR § 1280.48 - How do I apply to film, photograph, or videotape on NARA property for news purposes?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... you wish to film, photograph, or videotape for news purposes at a Presidential library or at a regional records services facility, you must contact the director of the library (see 36 CFR 1253.3 for... in 36 CFR part 1254 for permission to film archival records and donated materials for research...

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thornhill, Tom Finley, III; Reinhart, William Dodd; Lawrence, Raymond Jeffery Jr.

    Kill assessment continues to be a major problem for the nation's missile defense program. A potential approach for addressing this issue involves spectral and temporal analysis of the short-time impact flash that occurs when a kill vehicle intercepts and engages a target missile. This can provide identification of the materials involved in the impact event, which will, in turn, yield the data necessary for target identification, engagement analysis, and kill assessment. This report describes the first phases of a project under which we are providing laboratory demonstrations of the feasibility and effectiveness of this approach. We are using two majormore » Sandia facilities, the Z-Pinch accelerator, and the two- and three-stage gas guns at the Shock Thermodynamics and Applied Research (STAR) facility. We have looked at the spectral content of impact flash at velocities up to 25 km/s on the Z-Pinch machine to establish the capability for spectroscopy for these types of events, and are looking at similar experiments at velocities from 6 to 11 km/s on the gas guns to demonstrate a similar capability for a variety of research-oriented and applied materials. The present report describes only the work performed on the Z machine.« less

  17. A real-time interferometer technique for compressible flow research

    NASA Technical Reports Server (NTRS)

    Bachalo, W. D.; Houser, M. J.

    1984-01-01

    Strengths and shortcomings in the application of interferometric techniques to transonic flow fields are examined and an improved method is elaborated. Such applications have demonstrated the value of interferometry in obtaining data for compressible flow research. With holographic techniques, interferometry may be applied in large scale facilities without the use of expensive optics or elaborate vibration isolation equipment. Results obtained using holographic interferometry and other methods demonstrate that reliable qualitative and quantitative data can be acquired. Nevertheless, the conventional method can be difficult to set up and apply, and it cannot produce real-time data. A new interferometry technique is investigated that promises to be easier to apply and can provide real-time information. This single-beam technique has the necessary insensitivity to vibration for large scale wind tunnel operations. Capabilities of the method and preliminary tests on some laboratory scale flow fluids are described.

  18. Research and test facilities

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A description is given of each of the following Langley research and test facilities: 0.3-Meter Transonic Cryogenic Tunnel, 7-by 10-Foot High Speed Tunnel, 8-Foot Transonic Pressure Tunnel, 13-Inch Magnetic Suspension & Balance System, 14-by 22-Foot Subsonic Tunnel, 16-Foot Transonic Tunnel, 16-by 24-Inch Water Tunnel, 20-Foot Vertical Spin Tunnel, 30-by 60-Foot Wind Tunnel, Advanced Civil Transport Simulator (ACTS), Advanced Technology Research Laboratory, Aerospace Controls Research Laboratory (ACRL), Aerothermal Loads Complex, Aircraft Landing Dynamics Facility (ALDF), Avionics Integration Research Laboratory, Basic Aerodynamics Research Tunnel (BART), Compact Range Test Facility, Differential Maneuvering Simulator (DMS), Enhanced/Synthetic Vision & Spatial Displays Laboratory, Experimental Test Range (ETR) Flight Research Facility, General Aviation Simulator (GAS), High Intensity Radiated Fields Facility, Human Engineering Methods Laboratory, Hypersonic Facilities Complex, Impact Dynamics Research Facility, Jet Noise Laboratory & Anechoic Jet Facility, Light Alloy Laboratory, Low Frequency Antenna Test Facility, Low Turbulence Pressure Tunnel, Mechanics of Metals Laboratory, National Transonic Facility (NTF), NDE Research Laboratory, Polymers & Composites Laboratory, Pyrotechnic Test Facility, Quiet Flow Facility, Robotics Facilities, Scientific Visualization System, Scramjet Test Complex, Space Materials Research Laboratory, Space Simulation & Environmental Test Complex, Structural Dynamics Research Laboratory, Structural Dynamics Test Beds, Structures & Materials Research Laboratory, Supersonic Low Disturbance Pilot Tunnel, Thermal Acoustic Fatigue Apparatus (TAFA), Transonic Dynamics Tunnel (TDT), Transport Systems Research Vehicle, Unitary Plan Wind Tunnel, and the Visual Motion Simulator (VMS).

  19. Overview of Fundamental High-Lift Research for Transport Aircraft at NASA

    NASA Technical Reports Server (NTRS)

    Leavitt, L. D.; Washburn, A. E.; Wahls, R. A.

    2007-01-01

    NASA has had a long history in fundamental and applied high lift research. Current programs provide a focus on the validation of technologies and tools that will enable extremely short take off and landing coupled with efficient cruise performance, simple flaps with flow control for improved effectiveness, circulation control wing concepts, some exploration into new aircraft concepts, and partnership with Air Force Research Lab in mobility. Transport high-lift development testing will shift more toward mid and high Rn facilities at least until the question: "How much Rn is required" is answered. This viewgraph presentation provides an overview of High-Lift research at NASA.

  20. Medical Application of the SARAF-Proton/Deuteron 40 MeV Superconducting Linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halfon, Shlomi

    2007-11-26

    The Soreq Applied Research Accelerator Facility (SARAF) is based on a superconducting linear accelerator currently being built at the Soreq research center (Israel). The SARAF is planned to generate a 2 mA 4 MeV proton beam during its first year of operation and up to 40 MeV proton or deuteron beam in 2012. The high intensity beam, together with the linac ability to adjust the ion energy provides opportunities for medical research, such as Boron Neutron Capture Therapy (BNCT) and the production of medical radioisotopes, for instance {sup 103}Pd for prostate brachytherapy.

  1. Flat panel display test and evaluation: procedures, standards, and facilities

    NASA Astrophysics Data System (ADS)

    Jackson, Timothy W.; Daniels, Reginald; Hopper, Darrel G.

    1997-07-01

    This paper addresses flat panel display test and evaluation via a discussion of procedures, standards and facilities. Procedures need to be carefully developed and documented to ensure that test accomplished in separate laboratories produce comparable results. The tests themselves must not be a source of inconsistency in test results when such comparisons are made in the course of procurements or new technology prototype evaluations. Standards are necessary to expedite the transition of the new display technologies into applications and to lower the costs of custom parts applied across disparate applications. The flat panel display industry is in the course of ascertaining and formulating such standards as they are of value to designers, manufacturers, marketers and users of civil and military products and equipment. Additionally, in order to inform the DoD and industry, the test and evaluation facilities of the Air Force Research Laboratory Displays Branch are described. These facilities are available to support procurements involving flat panel displays and to examine new technology prototypes. Finally, other government display testing facilities within the Navy and the Army are described.

  2. The Impact of Biofuels on Climate Change from Marginal Land over East Asia using the RegCM4

    NASA Astrophysics Data System (ADS)

    Kim, S.; Lee, O.; Choi, J.

    2016-12-01

    In this study, the stormwater interception rate is proposed to apply in the design of LID facilities. For this purpose, EPA-SWMM is built with some areas of Noksan National Industrial Complex where long-term observed stormwater data were monitored and stormwater interception rates for various design capacities of various LID facilities are estimated. While the sensitivity of stormwater interception rate according to design specifications of bio-retention and infiltration trench facilities is not large, the sensitivity of stormwater interception rate according to local rainfall characteristics is relatively big. As a result of comparing the present rainfall interception rate estimation method which is officially operated in Korea with the one proposed in this study, it will be presented that the present method is highly likely to overestimate the performance of the bio-retention and infiltration trench facilities. Finally, a new stormwater interception rate formulas for the bio-retention and infiltration trench LID facilities will be proposed. Acknowledgement This research was supported by a grant (2016000200002) from Public Welfare Technology Development Program funded by Ministry of Environment of Korean government.

  3. 36 CFR 1280.72 - What additional rules apply for a NARA approved event?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false What additional rules apply... ARCHIVES AND RECORDS ADMINISTRATION NARA FACILITIES USE OF NARA FACILITIES What Rules Apply to Use NARA Public Areas in the Washington, DC, Area? General § 1280.72 What additional rules apply for a NARA...

  4. 40 CFR 60.530 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Performance for New Residential Wood Heaters § 60.530 Applicability and designation of affected facility. (a) The affected facility to which the provisions of this subpart apply is each wood heater manufactured... do not apply to wood heaters constructed prior to July 1, 1988, that are or have been owned by a...

  5. 40 CFR 60.530 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Performance for New Residential Wood Heaters § 60.530 Applicability and designation of affected facility. (a) The affected facility to which the provisions of this subpart apply is each wood heater manufactured... do not apply to wood heaters constructed prior to July 1, 1988, that are or have been owned by a...

  6. 40 CFR 60.530 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Performance for New Residential Wood Heaters § 60.530 Applicability and designation of affected facility. (a) The affected facility to which the provisions of this subpart apply is each wood heater manufactured... do not apply to wood heaters constructed prior to July 1, 1988, that are or have been owned by a...

  7. 43 CFR 3212.24 - How will the production incentive apply to a new facility?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL... Royalty Rate Conversions § 3212.24 How will the production incentive apply to a new facility? (a) If BLM... electricity from the new facility. (b) The amount of the production incentive is established in MMS...

  8. 43 CFR 3212.24 - How will the production incentive apply to a new facility?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL... Royalty Rate Conversions § 3212.24 How will the production incentive apply to a new facility? (a) If BLM... electricity from the new facility. (b) The amount of the production incentive is established in MMS...

  9. 43 CFR 3212.24 - How will the production incentive apply to a new facility?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL... Royalty Rate Conversions § 3212.24 How will the production incentive apply to a new facility? (a) If BLM... electricity from the new facility. (b) The amount of the production incentive is established in MMS...

  10. 40 CFR 60.530 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Performance for New Residential Wood Heaters § 60.530 Applicability and designation of affected facility. (a) The affected facility to which the provisions of this subpart apply is each wood heater manufactured... do not apply to wood heaters constructed prior to July 1, 1988, that are or have been owned by a...

  11. 40 CFR 60.530 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Performance for New Residential Wood Heaters § 60.530 Applicability and designation of affected facility. (a) The affected facility to which the provisions of this subpart apply is each wood heater manufactured... do not apply to wood heaters constructed prior to July 1, 1988, that are or have been owned by a...

  12. Nuclear facility decommissioning and site remedial actions: a selected bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, P.T.; Knox, N.P.; Fielden, J.M.

    This bibliography contains 693 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. Foreign, as well as domestic, literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Uraniummore » Mill Tailings Remedial Action Program, Grand Junction Remedial Action Program, and Uranium Mill Tailings Management. Chapter sections for chapters 1 and 2 include: Design, Planning, and Regulations; Site Surveys; Decontamination Studies; Dismantlement and Demolition; Land Decontamination and Reclamation; Waste Disposal; and General Studies. The references within each chapter are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for (1) author; (2) corporate affiliation; (3) title; (4) publication description; (5) geographic location; and (6) keywords. An appendix of 202 bibliographic references without abstracts or indexes has been included in this bibliography. This appendix represents literature identified but not abstracted due to time constraints.« less

  13. Langley aerospace test highlights, 1990

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The role of NASA-Langley is to perform basic and applied research necessary for the advancement of aeronautics and spaceflight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests are highlighted which were performed during 1990 in the NASA-Langley test facilities, a number of which are unique in the world. Both the broad range of the research and technology activities at NASA-Langley and the contributions of this work toward maintaining U.S. leadership in aeronautics and space research are illustrated. Other highlights of Langley research and technology for 1990 are described in Research and Technology 1990 Langley Research Center.

  14. Program director`s overview report for the Office of Health & Environmental Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, D.

    1994-02-01

    LBL performs basic and applied research and develops technologies in support of the Office of Health and Environmental Research`s mission to explore and mitigate the long-term health and environmental consequences of energy use and to advance solutions to major medical challenges. The ability of the Laboratory to engage in this mission depends upon the strength of its core competencies. In addition, there are several key capabilities that are cross-cutting, or underlie, many of the core competencies. Attention is focused on the following: Facilities and resources; research management practices; research in progress; program accomplishments and research highlights; program orientation; work formore » non-OHER organizations DOE; critical issues; and resource orientation.« less

  15. Medicare program; prospective payment system and consolidated billing for skilled nursing facilities for FY 2015. Final rule.

    PubMed

    2014-08-05

    This final rule updates the payment rates used under the prospective payment system (PPS) for skilled nursing facilities (SNFs) for fiscal year (FY) 2015. In addition, it adopts the most recent Office of Management and Budget (OMB) statistical area delineations to identify a facility's urban or rural status for the purpose of determining which set of rate tables will apply to the facility, and to determine the SNF PPS wage index including a 1-year transition with a blended wage index for all providers for FY 2015. This final rule also contains a revision to policies related to the Change of Therapy (COT) Other Medicare Required Assessment (OMRA). This final rule includes a discussion of a provision related to the Affordable Care Act involving Civil Money Penalties. Finally, this final rule discusses the SNF therapy payment research currently underway within CMS, observed trends related to therapy utilization among SNF providers, and the agency's commitment to accelerating health information exchange in SNFs.

  16. 9 CFR 2.37 - Federal research facilities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Federal research facilities. 2.37... AGRICULTURE ANIMAL WELFARE REGULATIONS Research Facilities § 2.37 Federal research facilities. Each Federal research facility shall establish an Institutional Animal Care and Use Committee which shall have the same...

  17. 9 CFR 2.37 - Federal research facilities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Federal research facilities. 2.37... AGRICULTURE ANIMAL WELFARE REGULATIONS Research Facilities § 2.37 Federal research facilities. Each Federal research facility shall establish an Institutional Animal Care and Use Committee which shall have the same...

  18. 9 CFR 2.37 - Federal research facilities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Federal research facilities. 2.37... AGRICULTURE ANIMAL WELFARE REGULATIONS Research Facilities § 2.37 Federal research facilities. Each Federal research facility shall establish an Institutional Animal Care and Use Committee which shall have the same...

  19. 9 CFR 2.37 - Federal research facilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Federal research facilities. 2.37... AGRICULTURE ANIMAL WELFARE REGULATIONS Research Facilities § 2.37 Federal research facilities. Each Federal research facility shall establish an Institutional Animal Care and Use Committee which shall have the same...

  20. Basic energy sciences: Summary of accomplishments

    NASA Astrophysics Data System (ADS)

    1990-05-01

    For more than four decades, the Department of Energy, including its predecessor agencies, has supported a program of basic research in nuclear- and energy related sciences, known as Basic Energy Sciences. The purpose of the program is to explore fundamental phenomena, create scientific knowledge, and provide unique user facilities necessary for conducting basic research. Its technical interests span the range of scientific disciplines: physical and biological sciences, geological sciences, engineering, mathematics, and computer sciences. Its products and facilities are essential to technology development in many of the more applied areas of the Department's energy, science, and national defense missions. The accomplishments of Basic Energy Sciences research are numerous and significant. Not only have they contributed to Departmental missions, but have aided significantly the development of technologies which now serve modern society daily in business, industry, science, and medicine. In a series of stories, this report highlights 22 accomplishments, selected because of their particularly noteworthy contributions to modern society. A full accounting of all the accomplishments would be voluminous. Detailed documentation of the research results can be found in many thousands of articles published in peer-reviewed technical literature.

  1. Basic Energy Sciences: Summary of Accomplishments

    DOE R&D Accomplishments Database

    1990-05-01

    For more than four decades, the Department of Energy, including its predecessor agencies, has supported a program of basic research in nuclear- and energy-related sciences, known as Basic Energy Sciences. The purpose of the program is to explore fundamental phenomena, create scientific knowledge, and provide unique user'' facilities necessary for conducting basic research. Its technical interests span the range of scientific disciplines: physical and biological sciences, geological sciences, engineering, mathematics, and computer sciences. Its products and facilities are essential to technology development in many of the more applied areas of the Department's energy, science, and national defense missions. The accomplishments of Basic Energy Sciences research are numerous and significant. Not only have they contributed to Departmental missions, but have aided significantly the development of technologies which now serve modern society daily in business, industry, science, and medicine. In a series of stories, this report highlights 22 accomplishments, selected because of their particularly noteworthy contributions to modern society. A full accounting of all the accomplishments would be voluminous. Detailed documentation of the research results can be found in many thousands of articles published in peer-reviewed technical literature.

  2. Research on scheme of applying ASON to current networks

    NASA Astrophysics Data System (ADS)

    Mao, Y. F.; Li, J. R.; Deng, L. J.

    2008-10-01

    Automatically Switched Optical Network (ASON) is currently a new and hot research subject in the world. It can provide high bandwidth, high assembly flexibility, high network security and reliability, but with a low management cost. It is presented to meet the requirements for high-throughput optical access with stringent Quality of Service (QoS). But as a brand new technology, ASON can not be supported by the traditional protocol software and network equipments. And the approach to build a new ASON network on the basis of completely abandoning the traditional optical network facilities is not desirable, because it costs too much and wastes a lot of network resources can also be used. So how to apply ASON to the current networks and realize the smooth transition between the existing network and ASON has been a serious problem to many network operators. In this research, the status in quo of ASON is introduced first and then the key problems should be considered when applying ASON to current networks are discussed. Based on this, the strategies should be complied with to overcome these key problems are listed. At last, the approach to apply ASON to the current optical networks is proposed and analyzed.

  3. Efficiency of inpatient orthopedic surgery in Japan: a medical claims database analysis.

    PubMed

    Nakata, Yoshinori; Yoshimura, Tatsuya; Watanabe, Yuichi; Otake, Hiroshi; Oiso, Giichiro; Sawa, Tomohiro

    2017-07-10

    Purpose The purpose of this paper is to determine the characteristics of healthcare facilities that produce the most efficient inpatient orthopedic surgery using a large-scale medical claims database in Japan. Design/methodology/approach Reimbursement claims data were obtained from April 1 through September 30, 2014. Input-oriented Banker-Charnes-Cooper model of data envelopment analysis (DEA) was employed. The decision-making unit was defined as a healthcare facility where orthopedic surgery was performed. Inputs were defined as the length of stay, the number of beds, and the total costs of expensive surgical devices. Output was defined as total surgical fees for each surgery. Efficiency scores of healthcare facilities were compared among different categories of healthcare facilities. Findings The efficiency scores of healthcare facilities with a diagnosis-procedure combination (DPC) reimbursement were significantly lower than those without DPC ( p=0.0000). All the efficiency scores of clinics with beds were 1. Their efficiency scores were significantly higher than those of university hospitals, public hospitals, and other hospitals ( p=0.0000). Originality/value This is the first research that applied DEA for orthopedic surgery in Japan. The healthcare facilities with DPC reimbursement were less efficient than those without DPC. The clinics with beds were the most efficient among all types of management bodies of healthcare facilities.

  4. Computational fluid dynamics for propulsion technology: Geometric grid visualization in CFD-based propulsion technology research

    NASA Technical Reports Server (NTRS)

    Ziebarth, John P.; Meyer, Doug

    1992-01-01

    The coordination is examined of necessary resources, facilities, and special personnel to provide technical integration activities in the area of computational fluid dynamics applied to propulsion technology. Involved is the coordination of CFD activities between government, industry, and universities. Current geometry modeling, grid generation, and graphical methods are established to use in the analysis of CFD design methodologies.

  5. [Notes on hospital architecture in Brazil: between the traditional and the modern].

    PubMed

    Costa, Renato Gama-Rosa

    2011-12-01

    The relationship between the history of health assistance and architecture is not always obvious. The article points to some challenges in investigating this relation, which is most readily visible in the construction of medical facilities, especially hospitals and sanitariums. In Brazil, this fledgling field has begun drawing the attention of researchers from the applied human and social sciences, especially in more recent decades.

  6. Meteorological support for space operations: Review and recommendations

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The current meteorological support provided to NASA by NOAA, Air Weather Service, and other contractors is reviewed and suggestions are offered for its improvement. These recommendations include improvement in NASA's internal management organizational structure that would accommodate continued improvement in operational weather support, installation of new observing systems, improvement in analysis and forecasting procedures, and the establishment of an Applied Research and Forecasting Facility.

  7. Going Paperless

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Sentel Corporation has commercialized NASA's Electronic Portable Information Collection (EPIC) System, which stemmed from a NASA Kennedy Space Center SBIR contract. NASA and Sentel designed, built, and tested work authorization procedures used as a paperless procedures system for Space Shuttle and International Space Station payload processing operations. EPIC is now being applied to various markets including; airplane maintenance, aerospace system data management, shipbuilding industries, shipping industries, law enforcement agencies, and public utilities. KSC is planning a pilot program to use EPIC at the Hypergol Maintenance Facility. In addition, Ames Research Center and KSC are working together to apply EPIC to the area of wireless communication.

  8. Applied Nuclear Accountability Systems: A Case Study in the System Architecture and Development of NuMAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Andrea Beth

    2004-07-01

    This is a case study of the NuMAC nuclear accountability system developed at a private fuel fabrication facility. This paper investigates nuclear material accountability and safeguards by researching expert knowledge applied in the system design and development. Presented is a system developed to detect and deter the theft of weapons grade nuclear material. Examined is the system architecture that includes: issues for the design and development of the system; stakeholder issues; how the system was built and evolved; software design, database design, and development tool considerations; security and computing ethics. (author)

  9. Rapid prototyping facility for flight research in artificial-intelligence-based flight systems concepts

    NASA Technical Reports Server (NTRS)

    Duke, E. L.; Regenie, V. A.; Deets, D. A.

    1986-01-01

    The Dryden Flight Research Facility of the NASA Ames Research Facility of the NASA Ames Research Center is developing a rapid prototyping facility for flight research in flight systems concepts that are based on artificial intelligence (AI). The facility will include real-time high-fidelity aircraft simulators, conventional and symbolic processors, and a high-performance research aircraft specially modified to accept commands from the ground-based AI computers. This facility is being developed as part of the NASA-DARPA automated wingman program. This document discusses the need for flight research and for a national flight research facility for the rapid prototyping of AI-based avionics systems and the NASA response to those needs.

  10. A rapid prototyping facility for flight research in advanced systems concepts

    NASA Technical Reports Server (NTRS)

    Duke, Eugene L.; Brumbaugh, Randal W.; Disbrow, James D.

    1989-01-01

    The Dryden Flight Research Facility of the NASA Ames Research Facility of the NASA Ames Research Center is developing a rapid prototyping facility for flight research in flight systems concepts that are based on artificial intelligence (AI). The facility will include real-time high-fidelity aircraft simulators, conventional and symbolic processors, and a high-performance research aircraft specially modified to accept commands from the ground-based AI computers. This facility is being developed as part of the NASA-DARPA automated wingman program. This document discusses the need for flight research and for a national flight research facility for the rapid prototyping of AI-based avionics systems and the NASA response to those needs.

  11. A Summary of the NASA Fusion Propulsion Workshop 2000

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Turchi, Peter J.; Santarius, John F.; Schafer, Charles (Technical Monitor)

    2001-01-01

    A NASA Fusion Propulsion Workshop was held on Nov. 8 and 9, 2000 at Marshall Space Flight Center (MSFC) in Huntsville, Alabama. A total of 43 papers were presented at the Workshop orally or by posters, covering a broad spectrum of issues related to applying fusion to propulsion. The status of fusion research was reported at the Workshop showing the outstanding scientific research that has been accomplished worldwide in the fusion energy research program. The international fusion research community has demonstrated the scientific principles of fusion creating plasmas with conditions for fusion burn with a gain of order unity: 0.25 in Princeton TFTR, 0.65 in the Joint European Torus, and a Q-equivalent of 1.25 in Japan's JT-60. This research has developed an impressive range of physics and technological capabilities that may be applied effectively to the research of possibly new propulsion-oriented fusion schemes. The pertinent physics capabilities include the plasma computational tools, the experimental plasma facilities, the diagnostics techniques, and the theoretical understanding. The enabling technologies include the various plasma heating, acceleration, and the pulsed power technologies.

  12. INVENTORY ANALYSIS AND COST ACCOUNTING OF FACILITY MAINTANANCE IN WASTE INCINERATION

    NASA Astrophysics Data System (ADS)

    Morioka, Tohru; Ozaki, Taira; Kitazume, Keiichi; Yamamoto, Tsukasa

    A solid waste incineration plant consists of so many facilities and mechanical parts that it requires periodic careful maintenance of them for stable solid waste management. The current research investigates maintenance costs of the stoker type incinerator and continuous firing plants in detail and develops an accounting model for maintenance of them. This model is able to distinguish among the costs of inspection, repair and renewal by plant with seven process flaw s and three common factors. Parameters based on real data collected by questionnaire surveys give appropriate results in comparison with other plants and enable to apply the model to plants which incinerates 500 - 600 ton solid waste per day.

  13. Engineering monitoring expert system's developer

    NASA Technical Reports Server (NTRS)

    Lo, Ching F.

    1991-01-01

    This research project is designed to apply artificial intelligence technology including expert systems, dynamic interface of neural networks, and hypertext to construct an expert system developer. The developer environment is specifically suited to building expert systems which monitor the performance of ground support equipment for propulsion systems and testing facilities. The expert system developer, through the use of a graphics interface and a rule network, will be transparent to the user during rule constructing and data scanning of the knowledge base. The project will result in a software system that allows its user to build specific monitoring type expert systems which monitor various equipments used for propulsion systems or ground testing facilities and accrues system performance information in a dynamic knowledge base.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winger, Jeff Allen

    Beta-decay spectroscopy provides important information on nuclear structure and properties needed to understand topics as widely varied as fundamental nuclear astrophysics to applied nuclear reactor design. However, there are significant limitations of our knowledge due to an inability to experimentally measure everything. Therefore, it is often necessary to rely on theoretical calculations which need to be vetted with experimental results. The focus of this report will be results from experimental research performed by the Principal Investigator (PI) and his research group at Mississippi State University in which the group played the lead role in proposing, implementing, performing and analyzing themore » experiment. This research was carried out at both the National Superconduction Cyclotron Laboratory (NSCL) at Michigan State University and the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory. The primary emphasis of the research was the use of \\bdec spectroscopy as a tool to understand the evolution of nuclear structure in neutron-rich nuclei which could then be applied to improve theory and to increase the overall knowledge of nuclear structure.« less

  15. Rhizo-lysimetry: facilities for the simultaneous study of root behaviour and resource use by agricultural crop and pasture systems

    PubMed Central

    2013-01-01

    Background Rhizo-lysimeters offer unique advantages for the study of plants and their interactions with soils. In this paper, an existing facility at Charles Sturt University in Wagga Wagga Australia is described in detail and its potential to conduct both ecophysiological and ecohydrological research in the study of root interactions of agricultural crops and pastures is quantitatively assessed. This is of significance to future crop research efforts in southern Australia, in light of recent significant long-term drought events, as well as potential impacts of climate change as predicted for the region. The rhizo-lysimeter root research facility has recently been expanded to accommodate larger research projects over multiple years and cropping rotations. Results Lucerne, a widely-grown perennial pasture in southern Australia, developed an expansive root system to a depth of 0.9 m over a twelve month period. Its deeper roots particularly at 2.05 m continued to expand for the duration of the experiment. In succeeding experiments, canola, a commonly grown annual crop, developed a more extensive (approximately 300%) root system than wheat, but exhibited a slower rate of root elongation at rates of 7.47 x 10–3 m day–1 for canola and 1.04 x10–2 m day–1 for wheat. A time domain reflectometry (TDR) network was designed to accurately assess changes in soil water content, and could assess water content change to within 5% of the amount of water applied. Conclusions The rhizo-lysimetry system provided robust estimates of root growth and soil water change under conditions representative of a field setting. This is currently one of a very limited number of global research facilities able to perform experimentation under field conditions and is the largest root research experimental laboratory in the southern hemisphere. PMID:23363534

  16. 36 CFR 1234.20 - What rules apply if there is a conflict between NARA standards and other regulatory standards...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... a conflict between NARA standards and other regulatory standards that a facility must follow? 1234... Facility Standards § 1234.20 What rules apply if there is a conflict between NARA standards and other regulatory standards that a facility must follow? (a) If any provisions of this part conflict with local or...

  17. 76 FR 4534 - Approval and Promulgation of Air Quality Implementation Plans; Maryland; Adoption of Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-26

    ... interior panels, exterior siding, and tileboard. A typical flat wood coating facility applies stains and..., Volatile Organic Compounds from Specific Processes. This action affects facilities that apply stains and... these emission limits: lb VOC per gallon material (grams Surface coatings, inks, or adhesives applied to...

  18. Development and Testing of an Experimental Mobile Instructional Facility for Applied Courses in Engineering Technology.

    ERIC Educational Resources Information Center

    Kleine, Louis W.

    The experimental pilot project was conducted to determine whether students who take the laboratory phase of an engineering technology applied electricity course in a mobile laboratory at branch schools demonstrate proficiency comparable to students who take the applied electricity course in permanent facilities at the parent institution. The…

  19. 40 CFR 60.313 - Performance tests and compliance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... applied (G). (1) An owner or operator shall use the following procedures for any affected facility which... applied (G) during each calendar month for each affected facility, except as provided under § 60.313(c)(2... volume of coating solids applied (G) each calendar month will be determined by the following procedures...

  20. Cuckoo search via Levy flights applied to uncapacitated facility location problem

    NASA Astrophysics Data System (ADS)

    Mesa, Armacheska; Castromayor, Kris; Garillos-Manliguez, Cinmayii; Calag, Vicente

    2017-11-01

    Facility location problem (FLP) is a mathematical way to optimally locate facilities within a set of candidates to satisfy the requirements of a given set of clients. This study addressed the uncapacitated FLP as it assures that the capacity of every selected facility is finite. Thus, even if the demand is not known, which often is the case, in reality, organizations may still be able to take strategic decisions such as locating the facilities. There are different approaches relevant to the uncapacitated FLP. Here, the cuckoo search via Lévy flight (CS-LF) was used to solve the problem. Though hybrid methods produce better results, this study employed CS-LF to determine first its potential in finding solutions for the problem, particularly when applied to a real-world problem. The method was applied to the data set obtained from a department store in Davao City, Philippines. Results showed that applying CS-LF yielded better facility locations compared to particle swarm optimization and other existing algorithms. Although these results showed that CS-LF is a promising method to solve this particular problem, further studies on other FLP are recommended to establish a strong foundation of the capability of CS-LF in solving FLP.

  1. Space Station power system autonomy demonstration

    NASA Technical Reports Server (NTRS)

    Kish, James A.; Dolce, James L.; Weeks, David J.

    1988-01-01

    The Systems Autonomy Demonstration Program (SADP) represents NASA's major effort to demonstrate, through a series of complex ground experiments, the application and benefits of applying advanced automation technologies to the Space Station project. Lewis Research Center (LeRC) and Marshall Space Flight Center (MSFC) will first jointly develop an autonomous power system using existing Space Station testbed facilities at each center. The subsequent 1990 power-thermal demonstration will then involve the cooperative operation of the LeRC/MSFC power system with the Johnson Space Center (JSC's) thermal control and DMS/OMS testbed facilities. The testbeds and expert systems at each of the NASA centers will be interconnected via communication links. The appropriate knowledge-based technology will be developed for each testbed and applied to problems requiring intersystem cooperation. Primary emphasis will be focused on failure detection and classification, system reconfiguration, planning and scheduling of electrical power resources, and integration of knowledge-based and conventional control system software into the design and operation of Space Station testbeds.

  2. Required Assets for a Nuclear Energy Applied R&D Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harold F. McFarlane; Craig L. Jacobson

    2009-03-01

    This report is one of a set of three documents that have collectively identified and recommended research and development capabilities that will be required to advance nuclear energy in the next 20 to 50 years. The first report, Nuclear Energy for the Future: Required Research and Development Capabilities—An Industry Perspective, was produced by Battelle Memorial Institute at the request of the Assistant Secretary of Nuclear Energy. That report, drawn from input by industry, academia, and Department of Energy laboratories, can be found in Appendix 5.1. This Idaho National Laboratory report maps the nuclear-specific capabilities from the Battelle report onto facilitymore » requirements, identifying options from the set of national laboratory, university, industry, and international facilities. It also identifies significant gaps in the required facility capabilities. The third document, Executive Recommendations for Nuclear R&D Capabilities, is a letter report containing a set of recommendations made by a team of senior executives representing nuclear vendors, utilities, academia, and the national laboratories (at Battelle’s request). That third report can be found in Appendix 5.2. The three reports should be considered as set in order to have a more complete picture. The basis of this report was drawn from three sources: previous Department of Energy reports, workshops and committee meetings, and expert opinion. The facilities discussed were winnowed from several hundred facilities that had previously been catalogued and several additional facilities that had been overlooked in past exercises. The scope of this report is limited to commercial nuclear energy and those things the federal government, or more specifically the Office of Nuclear Energy, should do to support its expanded deployment in order to increase energy security and reduce carbon emissions. In the context of this report, capabilities mean innovative, well-structured research and development programs, a viable work force, and well-equipped specialized facilities.« less

  3. Commercial Decommissioning at DOE's Rocky Flats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freiboth, C.; Sandlin, N.; Schubert, A.

    2002-02-25

    Due in large part to the number of nuclear facilities that make up the DOE complex, DOE-EM work has historically been paperwork intensive and driven by extensive regulations. Requirements for non-nuclear facilities are often grouped with those of nuclear facilities, driving up costs. Kaiser-Hill was interested in applying a commercial model to demolition of these facilities and wanted to apply necessary and sufficient standards to the work activities, but avoid applying unnecessary requirements. Faced with demolishing hundreds of uncontaminated or non-radiologically contaminated facilities, Kaiser-Hill has developed a subcontracting strategy to drastically reduce the cost of demolishing these facilities at Rockymore » Flats. Aiming to tailor the demolition approach of such facilities to more closely follow commercial practices, Kaiser-Hill recently released a Request for Proposals (RFP) for the demolition of the site's former central administration facility. The RFP significantly reduced requirements for compliance with specific DOE directives. Instead, the RFP required subcontractors to comply with health and safety requirements commonly found in the demolition of similar facilities in a commercial setting. This resulted in a number of bids from companies who have normally not bid on DOE work previously and at a reduced cost over previous approaches. This paper will discuss the details of this subcontracting strategy.« less

  4. The value and potential of animal research in enabling astronaut health - Transition from Spacelab to Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Garshnek, V.; Ballard, R. W.

    1993-01-01

    Maintaining astronaut health is a critical aspect of human space exploration. Three decades of space research have demonstrated that microgravity produces significant physiological changes in astronauts. For long-duration missions, the possibility exists that these changes may prevent the achievement of full health and safety and may therefore require countermeasures. Meeting this goal depends on a strong biomedical foundation. Although much research is conducted with humans, some of the most critical work involves a necessary in-depth look into complex problem areas requiring invasive procedures using animals. Much of this research cannot be performed in humans within the bounds of accepted medical practice. A large portion of knowledge and experience in flying animals and applying the data to astronaut health has been obtained through the Spacelab experience and can be applied to a space station situation (expanded to accommodate necessary standardization and flexibility). The objectives of this paper are to (a) discuss the value and potential of animal research in answering critical questions to enable astronaut health for advanced missions, (b) discuss how previous Spacelab operational experience in animal studies can be applied to facilitate transition into a space station era, and (c) review capabilities of biological facilities projected for Space Station Freedom.

  5. Modeling of High-Velocity Flows in ITAM Impulse Facilities

    DTIC Science & Technology

    2010-04-01

    up to 150 ms; Adiabatic compression wind tunnels up to 100 ms; Shock tubes... shock tubes. Basic and applied aerodynamic research has been performed in these wind tunnels in the range of Mach numbers М = 6 20 for many years...passage of a shock wave propagating over a cold rarefied gas filling the wind tunnel . When the gas heated in the shock wave (plug) passes around the

  6. Compact Full-Field Ion Detector System for SmallSats Beyond LEO

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.; Clark, Pamela E.; McNeil, Roger R.

    2014-01-01

    NASA Glenn Research Center (GRC) is applying its expertise and facilities in harsh environment instrumentation to develop a Compact Full-Field Ion Detector System (CFIDS). The CFIDS is designed to be an extremely compact, low cost instrument, capable of being flown on a wide variety of deep space platforms, to provide multi-directional, comprehensive (composition, velocity, and direction) in-situ measurements of heavy ions in space plasma environments.

  7. Fusion Energy Sciences Exascale Requirements Review. An Office of Science review sponsored jointly by Advanced Scientific Computing Research and Fusion Energy Sciences, January 27-29, 2016, Gaithersburg, Maryland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Choong-Seock; Greenwald, Martin; Riley, Katherine

    The additional computing power offered by the planned exascale facilities could be transformational across the spectrum of plasma and fusion research — provided that the new architectures can be efficiently applied to our problem space. The collaboration that will be required to succeed should be viewed as an opportunity to identify and exploit cross-disciplinary synergies. To assess the opportunities and requirements as part of the development of an overall strategy for computing in the exascale era, the Exascale Requirements Review meeting of the Fusion Energy Sciences (FES) community was convened January 27–29, 2016, with participation from a broad range ofmore » fusion and plasma scientists, specialists in applied mathematics and computer science, and representatives from the U.S. Department of Energy (DOE) and its major computing facilities. This report is a summary of that meeting and the preparatory activities for it and includes a wealth of detail to support the findings. Technical opportunities, requirements, and challenges are detailed in this report (and in the recent report on the Workshop on Integrated Simulation). Science applications are described, along with mathematical and computational enabling technologies. Also see http://exascaleage.org/fes/ for more information.« less

  8. Space technology test facilities at the NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R.; Rodrigues, Annette T.

    1990-01-01

    The major space research and technology test facilities at the NASA Ames Research Center are divided into five categories: General Purpose, Life Support, Computer-Based Simulation, High Energy, and the Space Exploraton Test Facilities. The paper discusses selected facilities within each of the five categories and discusses some of the major programs in which these facilities have been involved. Special attention is given to the 20-G Man-Rated Centrifuge, the Human Research Facility, the Plant Crop Growth Facility, the Numerical Aerodynamic Simulation Facility, the Arc-Jet Complex and Hypersonic Test Facility, the Infrared Detector and Cryogenic Test Facility, and the Mars Wind Tunnel. Each facility is described along with its objectives, test parameter ranges, and major current programs and applications.

  9. Relevance of an academic GMP Pan-European vector infra-structure (PEVI).

    PubMed

    Cohen-Haguenauer, O; Creff, N; Cruz, P; Tunc, C; Aïuti, A; Baum, C; Bosch, F; Blomberg, P; Cichutek, K; Collins, M; Danos, O; Dehaut, F; Federspiel, M; Galun, E; Garritsen, H; Hauser, H; Hildebrandt, M; Klatzmann, D; Merten, O W; Montini, E; O'Brien, T; Panet, A; Rasooly, L; Scherman, D; Schmidt, M; Schweitzer, M; Tiberghien, P; Vandendriessche, T; Ziehr, H; Ylä-Herttuala, S; von Kalle, C; Gahrton, G; Carrondo, M

    2010-12-01

    In the past 5 years, European investigators have played a major role in the development of clinical gene therapy. The provision of substantial funds by some individual member states to construct GMP facilities makes it an opportune time to network available gene therapy GMP facilities at an EU level. The integrated coordination of GMP production facilities and human skills for advanced gene and genetically-modified (GM) cell therapy, can dramatically enhance academic-led "First-in-man" gene therapy trials. Once proof of efficacy is gathered, technology can be transferred to the private sector which will take over further development taking advantage of knowledge and know-how. Complex technical challenges require existing production facilities to adapt to emerging technologies in a coordinated manner. These include a mandatory requirement for the highest quality of production translating gene-transfer technologies with pharmaceutical-grade GMP processes to the clinic. A consensus has emerged on the directions and priorities to adopt, applying to advanced technologies with improved efficacy and safety profiles, in particular AAV, lentivirus-based and oncolytic vectors. Translating cutting-edge research into "First-in-man" trials require that pre-normative research is conducted which aims to develop standard assays, processes and candidate reference materials. This research will help harmonise practices and quality in the production of GMP vector lots and GM-cells. In gathering critical expertise in Europe and establish conditions for interoperability, the PEVI infrastructure will contribute to the demands of the advanced therapy medicinal products* regulation and to both health and quality of life of EU-citizens.

  10. Partial gravity habitat study

    NASA Technical Reports Server (NTRS)

    Capps, Stephen; Lorandos, Jason; Akhidime, Eval; Bunch, Michael; Lund, Denise; Moore, Nathan; Murakawa, Kiosuke

    1989-01-01

    The purpose of this study is to investigate comprehensive design requirements associated with designing habitats for humans in a partial gravity environment, then to apply them to a lunar base design. Other potential sites for application include planetary surfaces such as Mars, variable-gravity research facilities, and a rotating spacecraft. Design requirements for partial gravity environments include locomotion changes in less than normal earth gravity; facility design issues, such as interior configuration, module diameter, and geometry; and volumetric requirements based on the previous as well as psychological issues involved in prolonged isolation. For application to a lunar base, it is necessary to study the exterior architecture and configuration to insure optimum circulation patterns while providing dual egress; radiation protection issues are addressed to provide a safe and healthy environment for the crew; and finally, the overall site is studied to locate all associated facilities in context with the habitat. Mission planning is not the purpose of this study; therefore, a Lockheed scenario is used as an outline for the lunar base application, which is then modified to meet the project needs. The goal of this report is to formulate facts on human reactions to partial gravity environments, derive design requirements based on these facts, and apply the requirements to a partial gravity situation which, for this study, was a lunar base.

  11. 23 CFR 620.202 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS ENGINEERING Relinquishment of Highway Facilities § 620.202 Applicability. The provisions of this subpart apply to highway... a project. The provisions of this subpart apply only to relinquishment of facilities for continued...

  12. 23 CFR 620.202 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS ENGINEERING Relinquishment of Highway Facilities § 620.202 Applicability. The provisions of this subpart apply to highway... a project. The provisions of this subpart apply only to relinquishment of facilities for continued...

  13. 23 CFR 620.202 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS ENGINEERING Relinquishment of Highway Facilities § 620.202 Applicability. The provisions of this subpart apply to highway... a project. The provisions of this subpart apply only to relinquishment of facilities for continued...

  14. 48 CFR 235.015-70 - Special use allowances for research facilities acquired by educational institutions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... research facilities acquired by educational institutions. 235.015-70 Section 235.015-70 Federal Acquisition... CONTRACTING RESEARCH AND DEVELOPMENT CONTRACTING 235.015-70 Special use allowances for research facilities acquired by educational institutions. (a) Definitions. As used in this subsection— (1) Research facility...

  15. Strategies to Mitigate a Mycobacterium marinum Outbreak in a Zebrafish Research Facility

    PubMed Central

    Snell, Kathy; Mittge, Erika; Melancon, Ellie; Montgomery, Rebecca; McFadden, Marcie; Camoriano, Javier; Kent, Michael L.; Whipps, Christopher M.; Peirce, Judy

    2016-01-01

    Abstract In 2011, the zebrafish research facility at the University of Oregon experienced an outbreak of Mycobacterium marinum that affected both research fish and facility staff. A thorough review of risks to personnel, the zebrafish veterinary care program, and zebrafish husbandry procedures at the research facility followed. In the years since 2011, changes have been implemented throughout the research facility to protect the personnel, the fish colony, and ultimately the continued success of the zebrafish model research program. In this study, we present the history of the outbreak, the changes we implemented, and recommendations to mitigate pathogen outbreaks in zebrafish research facilities. PMID:27351618

  16. Overview of NASA's Microgravity Materials Research Program

    NASA Technical Reports Server (NTRS)

    Downey, James Patton; Grugel, Richard

    2012-01-01

    The NASA microgravity materials program is dedicated to conducting microgravity experiments and related modeling efforts that will help us understand the processes associated with the formation of materials. This knowledge will help improve ground based industrial production of such materials. The currently funded investigations include research on the distribution of dopants and formation of defects in semiconductors, transitions between columnar and dendritic grain morphology, coarsening of phase boundaries, competition between thermally and kinetically favored phases, and the formation of glassy vs. crystalline material. NASA microgravity materials science investigators are selected for funding either through a proposal in response to a NASA Research Announcement or by participation in a team proposing to a foreign agency research announcement. In the latter case, a US investigator participating in a successful proposal to a foreign agency can then apply to NASA for funding of an unsolicited proposal. The program relies on cooperation with other aerospace partners from around the world. The ISS facilities used for these investigations are provided primarily by partnering with foreign agencies and in most cases the US investigators are working as a part of a larger team studying a specific area of materials science. The following facilities are to be utilized for the initial investigations. The ESA provided Low Gradient Facility and the Solidification and Quench Inserts to the Materials Research Rack/Materials Science Laboratory are to be used primarily for creating bulk samples that are directionally solidified or quenched from a high temperature melt. The CNES provided DECLIC facility is used to observe morphological development in transparent materials. The ESA provided Electro-Magnetic Levitator (EML) is designed to levitate, melt and then cool samples in order to study nucleation behavior. The facility provides conditions in which nucleation of the solid is not triggered from the wall and in which fluid flows in the sample can be controlled and manipulated. These conditions allow scientists ideal conditions for understanding the relative amounts and distribution of different phases that form in the solid. Finally, the Coarsening of Solid Liquid Melts hardware allows quenching of low temperature samples in the Microgravity Science Glovebox.

  17. Carrying BioMath education in a Leaky Bucket.

    PubMed

    Powell, James A; Kohler, Brynja R; Haefner, James W; Bodily, Janice

    2012-09-01

    In this paper, we describe a project-based mathematical lab implemented in our Applied Mathematics in Biology course. The Leaky Bucket Lab allows students to parameterize and test Torricelli's law and develop and compare their own alternative models to describe the dynamics of water draining from perforated containers. In the context of this lab students build facility in a variety of applied biomathematical tools and gain confidence in applying these tools in data-driven environments. We survey analytic approaches developed by students to illustrate the creativity this encourages as well as prepare other instructors to scaffold the student learning experience. Pedagogical results based on classroom videography support the notion that the Biology-Applied Math Instructional Model, the teaching framework encompassing the lab, is effective in encouraging and maintaining high-level cognition among students. Research-based pedagogical approaches that support the lab are discussed.

  18. Arctic Atmospheric Measurements Using Manned and Unmanned Aircraft, Tethered Balloons, and Ground-Based Systems at U.S. DOE ARM Facilities on the North Slope Of Alaska

    NASA Astrophysics Data System (ADS)

    Ivey, M.; Dexheimer, D.; Roesler, E. L.; Hillman, B. R.; Hardesty, J. O.

    2016-12-01

    The U.S. Department of Energy (DOE) provides scientific infrastructure and data to the international Arctic research community via research sites located on the North Slope of Alaska and an open data archive maintained by the ARM program. In 2016, DOE continued investments in improvements to facilities and infrastructure at Oliktok Point Alaska to support operations of ground-based facilities and unmanned aerial systems for science missions in the Arctic. The Third ARM Mobile Facility, AMF3, now deployed at Oliktok Point, was further expanded in 2016. Tethered instrumented balloons were used at Oliktok to make measurements of clouds in the boundary layer including mixed-phase clouds and to compare measurements with those from the ground and from unmanned aircraft operating in the airspace above AMF3. The ARM facility at Oliktok Point includes Special Use Airspace. A Restricted Area, R-2204, is located at Oliktok Point. Roughly 4 miles in diameter, it facilitates operations of tethered balloons and unmanned aircraft. R-2204 and a new Warning Area north of Oliktok, W-220, are managed by Sandia National Laboratories for DOE Office of Science/BER. These Special Use Airspaces have been successfully used to launch and operate unmanned aircraft over the Arctic Ocean and in international airspace north of Oliktok Point.A steady progression towards routine operations of unmanned aircraft and tethered balloon systems continues at Oliktok. Small unmanned aircraft (DataHawks) and tethered balloons were successfully flown at Oliktok starting in June of 2016. This poster will discuss how principal investigators may apply for use of these Special Use Airspaces, acquire data from the Third ARM Mobile Facility, or bring their own instrumentation for deployment at Oliktok Point, Alaska.

  19. 40 CFR 60.90 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for Hot Mix Asphalt Facilities § 60.90 Applicability and designation of affected facility. (a) The affected facility to which the provisions of this subpart apply is each hot mix asphalt facility. For the purpose of this subpart, a hot mix asphalt facility is comprised only of any combination of the following...

  20. 40 CFR 60.90 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for Hot Mix Asphalt Facilities § 60.90 Applicability and designation of affected facility. (a) The affected facility to which the provisions of this subpart apply is each hot mix asphalt facility. For the purpose of this subpart, a hot mix asphalt facility is comprised only of any combination of the following...

  1. 40 CFR 60.90 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for Hot Mix Asphalt Facilities § 60.90 Applicability and designation of affected facility. (a) The affected facility to which the provisions of this subpart apply is each hot mix asphalt facility. For the purpose of this subpart, a hot mix asphalt facility is comprised only of any combination of the following...

  2. 40 CFR 60.90 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for Hot Mix Asphalt Facilities § 60.90 Applicability and designation of affected facility. (a) The affected facility to which the provisions of this subpart apply is each hot mix asphalt facility. For the purpose of this subpart, a hot mix asphalt facility is comprised only of any combination of the following...

  3. 40 CFR 60.90 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for Hot Mix Asphalt Facilities § 60.90 Applicability and designation of affected facility. (a) The affected facility to which the provisions of this subpart apply is each hot mix asphalt facility. For the purpose of this subpart, a hot mix asphalt facility is comprised only of any combination of the following...

  4. A framework for managing core facilities within the research enterprise.

    PubMed

    Haley, Rand

    2009-09-01

    Core facilities represent increasingly important operational and strategic components of institutions' research enterprises, especially in biomolecular science and engineering disciplines. With this realization, many research institutions are placing more attention on effectively managing core facilities within the research enterprise. A framework is presented for organizing the questions, challenges, and opportunities facing core facilities and the academic units and institutions in which they operate. This framework is intended to assist in guiding core facility management discussions in the context of a portfolio of facilities and within the overall institutional research enterprise.

  5. Open release of the DCA++ project

    NASA Astrophysics Data System (ADS)

    Haehner, Urs; Solca, Raffaele; Staar, Peter; Alvarez, Gonzalo; Maier, Thomas; Summers, Michael; Schulthess, Thomas

    We present the first open release of the DCA++ project, a highly scalable and efficient research code to solve quantum many-body problems with cutting edge quantum cluster algorithms. The implemented dynamical cluster approximation (DCA) and its DCA+ extension with a continuous self-energy capture nonlocal correlations in strongly correlated electron systems thereby allowing insight into high-Tc superconductivity. With the increasing heterogeneity of modern machines, DCA++ provides portable performance on conventional and emerging new architectures, such as hybrid CPU-GPU and Xeon Phi, sustaining multiple petaflops on ORNL's Titan and CSCS' Piz Daint. Moreover, we will describe how best practices in software engineering can be applied to make software development sustainable and scalable in a research group. Software testing and documentation not only prevent productivity collapse, but more importantly, they are necessary for correctness, credibility and reproducibility of scientific results. This research used resources of the Oak Ridge Leadership Computing Facility (OLCF) awarded by the INCITE program, and of the Swiss National Supercomputing Center. OLCF is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725.

  6. Waste isolation and contaminant migration - Tools and techniques for monitoring the saturated zone-unsaturated zone-plant-atmosphere continuum

    USGS Publications Warehouse

    Andraski, Brian J.; Stonestrom, David A.; Nicholson, T.J.; Arlt, H.D.

    2011-01-01

    In 1976 the U.S. Geological Survey (USGS) began studies of unsaturated zone hydrology next to the Nation’s first commercial disposal facility for low-level radioactive waste (LLRW) near Beatty, NV. Recognizing the need for long-term data collection, the USGS in 1983 established research management areas in the vicinity of the waste-burial facility through agreements with the Bureau of Land Management and the State of Nevada. Within this framework, the Amargosa Desert Research Site (ADRS; http://nevada.usgs.gov/adrs/) is serving as a field laboratory for the sustained study of water-, gas-, and contaminant-transport processes, and the development of models and methods to characterize flow and transport. The research is built on multiple lines of data that include: micrometeorology; evapotranspiration; plant metrics; soil and sediment properties; unsaturated-zone moisture, temperature, and gas composition; geology and geophysics; and groundwater. Contaminant data include tritium, radiocarbon, volatile-organic compounds (VOCs), and elemental mercury. Presented here is a summary of monitoring tools and techniques that are being applied in studies of waste isolation and contaminant migration.

  7. 41 CFR 102-74.345 - Does the smoking policy in this part apply to the judicial branch?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Does the smoking policy... REGULATION REAL PROPERTY 74-FACILITY MANAGEMENT Facility Management Smoking § 102-74.345 Does the smoking policy in this part apply to the judicial branch? This smoking policy applies to the judicial branch when...

  8. 41 CFR 102-74.345 - Does the smoking policy in this part apply to the judicial branch?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Does the smoking policy... REGULATION REAL PROPERTY 74-FACILITY MANAGEMENT Facility Management Smoking § 102-74.345 Does the smoking policy in this part apply to the judicial branch? This smoking policy applies to the judicial branch when...

  9. 41 CFR 102-74.345 - Does the smoking policy in this part apply to the judicial branch?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Does the smoking policy... REGULATION REAL PROPERTY 74-FACILITY MANAGEMENT Facility Management Smoking § 102-74.345 Does the smoking policy in this part apply to the judicial branch? This smoking policy applies to the judicial branch when...

  10. 41 CFR 102-74.345 - Does the smoking policy in this part apply to the judicial branch?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Does the smoking policy... REGULATION REAL PROPERTY 74-FACILITY MANAGEMENT Facility Management Smoking § 102-74.345 Does the smoking policy in this part apply to the judicial branch? This smoking policy applies to the judicial branch when...

  11. 41 CFR 102-74.345 - Does the smoking policy in this part apply to the judicial branch?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Does the smoking policy... REGULATION REAL PROPERTY 74-FACILITY MANAGEMENT Facility Management Smoking § 102-74.345 Does the smoking policy in this part apply to the judicial branch? This smoking policy applies to the judicial branch when...

  12. Trust-Based Relational Intervention (TBRI): A Systemic Approach to Complex Developmental Trauma

    PubMed Central

    Purvis, Karyn B.; Cross, David R.; Dansereau, Donald F.; Parris, Sheri R.

    2013-01-01

    Children and youth who have experienced foster care or orphanage-rearing have often experienced complex developmental trauma, demonstrating an interactive set of psychological and behavioral issues. Trust-Based Relational Intervention (TBRI) is a therapeutic model that trains caregivers to provide effective support and treatment for at-risk children. TBRI has been applied in orphanages, courts, residential treatment facilities, group homes, foster and adoptive homes, churches, and schools. It has been used effectively with children and youth of all ages and all risk levels. This article provides the research base for TBRI and examples of how it is applied. PMID:24453385

  13. X-ray techniques for innovation in industry

    PubMed Central

    Lawniczak-Jablonska, Krystyna; Cutler, Jeffrey

    2014-01-01

    The smart specialization declared in the European program Horizon 2020, and the increasing cooperation between research and development found in companies and researchers at universities and research institutions have created a new paradigm where many calls for proposals require participation and funding from public and private entities. This has created a unique opportunity for large-scale facilities, such as synchrotron research laboratories, to participate in and support applied research programs. Scientific staff at synchrotron facilities have developed many advanced tools that make optimal use of the characteristics of the light generated by the storage ring. These tools have been exceptionally valuable for materials characterization including X-ray absorption spectroscopy, diffraction, tomography and scattering, and have been key in solving many research and development issues. Progress in optics and detectors, as well as a large effort put into the improvement of data analysis codes, have resulted in the development of reliable and reproducible procedures for materials characterization. Research with photons has contributed to the development of a wide variety of products such as plastics, cosmetics, chemicals, building materials, packaging materials and pharma. In this review, a few examples are highlighted of successful cooperation leading to solutions of a variety of industrial technological problems which have been exploited by industry including lessons learned from the Science Link project, supported by the European Commission, as a new approach to increase the number of commercial users at large-scale research infrastructures. PMID:25485139

  14. In Situ Resource Utilization Technology Research and Facilities Supporting the NASA's Human Systems Research and Technology Life Support Program

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.; Sibille, Laurent; Sacksteder, Kurt; Owens, Chuck

    2005-01-01

    The NASA Microgravity Science program has transitioned research required in support of NASA s Vision for Space Exploration. Research disciplines including the Materials Science, Fluid Physics and Combustion Science are now being applied toward projects with application in the planetary utilization and transformation of space resources. The scientific and engineering competencies and infrastructure in these traditional fields developed at multiple NASA Centers and by external research partners provide essential capabilities to support the agency s new exploration thrusts including In-Situ Resource Utilization (ISRU). Among the technologies essential to human space exploration, the production of life support consumables, especially oxygen and; radiation shielding; and the harvesting of potentially available water are realistically achieved for long-duration crewed missions only through the use of ISRU. Ongoing research in the physical sciences have produced a body of knowledge relevant to the extraction of oxygen from lunar and planetary regolith and associated reduction of metals and silicon for use meeting manufacturing and repair requirements. Activities being conducted and facilities used in support of various ISRU projects at the Glenn Research Center and Marshall Space Flight Center will be described. The presentation will inform the community of these new research capabilities, opportunities, and challenges to utilize their materials, fluids and combustion science expertise and capabilities to support the vision for space exploration.

  15. Preparation for Testing a Multi-Bay Box Subjected to Combined Loads

    NASA Technical Reports Server (NTRS)

    Rouse, Marshall; Jegley, Dawn

    2015-01-01

    The COmbined Loads Test System (COLTS) facility at NASA Langley Research Center provides a test capability to help develop validated structures technologies. The test machine was design to accommodate a range of fuselage structures and wing sections and subject them to both quasistatic and cyclic loading conditions. The COLTS facility is capable of testing fuselage barrels up to 4.6 m in diameter and 13.7 m long with combined mechanical, internal pressure, and thermal loads. The COLTS facility is currently being prepared to conduct a combined mechanical and pressure loading for a multi-bay pressure box to experimentally verify the structural performance of a composite structure which is 9.1 meters long and representative of a section of a hybrid wing body fuselage section in support of the Environmentally Responsible Aviation Project at NASA. This paper describes development of the multi-bay pressure box test using the COLTS facility. The multi-bay test article will be subjected to mechanical loads and internal pressure loads up to design ultimate load. Mechanical and pressure loads will be applied independently in some tests and simultaneously in others.

  16. An Evaluation of the Additional Acoustic Power Needed to Overcome the Effects of a Test-Article's Absorption During Reverberant Chamber Acoustic Testing of Spaceflight Hardware

    NASA Technical Reports Server (NTRS)

    Hozman, Aron D.; Hughes, William O.

    2014-01-01

    The exposure of a customer's aerospace test-article to a simulated acoustic launch environment is typically performed in a reverberant acoustic test chamber. The acoustic pre-test runs that will ensure that the sound pressure levels of this environment can indeed be met by a test facility are normally performed without a test-article dynamic simulator of representative acoustic absorption and size. If an acoustic test facility's available acoustic power capability becomes maximized with the test-article installed during the actual test then the customer's environment requirement may become compromised. In order to understand the risk of not achieving the customer's in-tolerance spectrum requirement with the test-article installed, an acoustic power margin evaluation as a function of frequency may be performed by the test facility. The method for this evaluation of acoustic power will be discussed in this paper. This method was recently applied at the NASA Glenn Research Center Plum Brook Station's Reverberant Acoustic Test Facility for the SpaceX Falcon 9 Payload Fairing acoustic test program.

  17. An Evaluation of the Additional Acoustic Power Needed to Overcome the Effects of a Test-Article's Absorption during Reverberant Chamber Acoustic Testing of Spaceflight Hardware

    NASA Technical Reports Server (NTRS)

    Hozman, Aron D.; Hughes, William O.

    2014-01-01

    The exposure of a customers aerospace test-article to a simulated acoustic launch environment is typically performed in a reverberant acoustic test chamber. The acoustic pre-test runs that will ensure that the sound pressure levels of this environment can indeed be met by a test facility are normally performed without a test-article dynamic simulator of representative acoustic absorption and size. If an acoustic test facilitys available acoustic power capability becomes maximized with the test-article installed during the actual test then the customers environment requirement may become compromised. In order to understand the risk of not achieving the customers in-tolerance spectrum requirement with the test-article installed, an acoustic power margin evaluation as a function of frequency may be performed by the test facility. The method for this evaluation of acoustic power will be discussed in this paper. This method was recently applied at the NASA Glenn Research Center Plum Brook Stations Reverberant Acoustic Test Facility for the SpaceX Falcon 9 Payload Fairing acoustic test program.

  18. Developing mobile- and BIM-based integrated visual facility maintenance management system.

    PubMed

    Lin, Yu-Cheng; Su, Yu-Chih

    2013-01-01

    Facility maintenance management (FMM) has become an important topic for research on the operation phase of the construction life cycle. Managing FMM effectively is extremely difficult owing to various factors and environments. One of the difficulties is the performance of 2D graphics when depicting maintenance service. Building information modeling (BIM) uses precise geometry and relevant data to support the maintenance service of facilities depicted in 3D object-oriented CAD. This paper proposes a new and practical methodology with application to FMM using BIM technology. Using BIM technology, this study proposes a BIM-based facility maintenance management (BIMFMM) system for maintenance staff in the operation and maintenance phase. The BIMFMM system is then applied in selected case study of a commercial building project in Taiwan to verify the proposed methodology and demonstrate its effectiveness in FMM practice. Using the BIMFMM system, maintenance staff can access and review 3D BIM models for updating related maintenance records in a digital format. Moreover, this study presents a generic system architecture and its implementation. The combined results demonstrate that a BIMFMM-like system can be an effective visual FMM tool.

  19. Facilities | Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    integration research. Photo of the Hydrogen Infrastructure Testing and Research Facility building, with hydrogen fueling station and fuel cell vehicles. Hydrogen Infrastructure Testing and Research Facility The Hydrogen Infrastructure Testing and Research Facility (HITRF) at the ESIF combines electrolyzers, a

  20. Lewis Information Network (LINK): Background and overview

    NASA Technical Reports Server (NTRS)

    Schulte, Roger R.

    1987-01-01

    The NASA Lewis Research Center supports many research facilities with many isolated buildings, including wind tunnels, test cells, and research laboratories. These facilities are all located on a 350 acre campus adjacent to the Cleveland Hopkins Airport. The function of NASA-Lewis is to do basic and applied research in all areas of aeronautics, fluid mechanics, materials and structures, space propulsion, and energy systems. These functions require a great variety of remote high speed, high volume data communications for computing and interactive graphic capabilities. In addition, new requirements for local distribution of intercenter video teleconferencing and data communications via satellite have developed. To address these and future communications requirements for the next 15 yrs, a project team was organized to design and implement a new high speed communication system that would handle both data and video information in a common lab-wide Local Area Network. The project team selected cable television broadband coaxial cable technology as the communications medium and first installation of in-ground cable began in the summer of 1980. The Lewis Information Network (LINK) became operational in August 1982 and has become the backbone of all data communications and video.

  1. Using Temperature Sensitive Paint Technology

    NASA Technical Reports Server (NTRS)

    Hamner, M. P.; Popernack, T. G., Jr.; Owens, L. R.; Wahls, R. A.

    2002-01-01

    New facilities and test techniques afford research aerodynamicists many opportunities to investigate complex aerodynamic phenomena. For example, NASA Langley Research Center's National Transonic Facility (NTF) can hold Mach number, Reynolds number, dynamic pressure, stagnation temperature and stagnation pressure constant during testing. This is important because the wing twist associated with model construction may mask important Reynolds number effects associated with the flight vehicle. Beyond this, the NTF's ability to vary Reynolds number allows for important research into the study of boundary layer transition. The capabilities of facilities such as the NTF coupled with test techniques such as temperature sensitive paint yield data that can be applied not only to vehicle design but also to validation of computational methods. Development of Luminescent Paint Technology for acquiring pressure and temperature measurements began in the mid-1980s. While pressure sensitive luminescent paints (PSP) were being developed to acquire data for aerodynamic performance and loads, temperature sensitive luminescent paints (TSP) have been used for a much broader range of applications. For example, TSP has been used to acquire surface temperature data to determine the heating due to rotating parts in various types of mechanical systems. It has been used to determine the heating pattern(s) on circuit boards. And, it has been used in boundary layer analysis and applied to the validation of full-scale flight performance predictions. That is, data acquired on the same model can be used to develop trends from off design to full scale flight Reynolds number, e.g. to show the progression of boundary layer transition. A discussion of issues related to successfully setting-up TSP tests and using TSP systems for boundary layer studies is included in this paper, as well as results from a variety of TSP tests. TSP images included in this paper are all grey-scale so that similar to pictures from sublimating chemical tests areas of laminar flow appear "lighter," or white, and areas of turbulent flow appear "darker."

  2. Improving Tanzanian childbirth service quality.

    PubMed

    Jaribu, Jennie; Penfold, Suzanne; Green, Cathy; Manzi, Fatuma; Schellenberg, Joanna

    2018-04-16

    Purpose The purpose of this paper is to describe a quality improvement (QI) intervention in primary health facilities providing childbirth care in rural Southern Tanzania. Design/methodology/approach A QI collaborative model involving district managers and health facility staff was piloted for 6 months in 4 health facilities in Mtwara Rural district and implemented for 18 months in 23 primary health facilities in Ruangwa district. The model brings together healthcare providers from different health facilities in interactive workshops by: applying QI methods to generate and test change ideas in their own facilities; using local data to monitor improvement and decision making; and health facility supervision visits by project and district mentors. The topics for improving childbirth were deliveries and partographs. Findings Median monthly deliveries increased in 4 months from 38 (IQR 37-40) to 65 (IQR 53-71) in Mtwara Rural district, and in 17 months in Ruangwa district from 110 (IQR 103-125) to 161 (IQR 148-174). In Ruangwa health facilities, the women for whom partographs were used to monitor labour progress increased from 10 to 57 per cent in 17 months. Research limitations/implications The time for QI innovation, testing and implementation phases was limited, and the study only looked at trends. The outcomes were limited to process rather than health outcome measures. Originality/value Healthcare providers became confident in the QI method through engagement, generating and testing their own change ideas, and observing improvements. The findings suggest that implementing a QI initiative is feasible in rural, low-income settings.

  3. Developing integrated methods to address complex resource and environmental issues

    USGS Publications Warehouse

    Smith, Kathleen S.; Phillips, Jeffrey D.; McCafferty, Anne E.; Clark, Roger N.

    2016-02-08

    IntroductionThis circular provides an overview of selected activities that were conducted within the U.S. Geological Survey (USGS) Integrated Methods Development Project, an interdisciplinary project designed to develop new tools and conduct innovative research requiring integration of geologic, geophysical, geochemical, and remote-sensing expertise. The project was supported by the USGS Mineral Resources Program, and its products and acquired capabilities have broad applications to missions throughout the USGS and beyond.In addressing challenges associated with understanding the location, quantity, and quality of mineral resources, and in investigating the potential environmental consequences of resource development, a number of field and laboratory capabilities and interpretative methodologies evolved from the project that have applications to traditional resource studies as well as to studies related to ecosystem health, human health, disaster and hazard assessment, and planetary science. New or improved tools and research findings developed within the project have been applied to other projects and activities. Specifically, geophysical equipment and techniques have been applied to a variety of traditional and nontraditional mineral- and energy-resource studies, military applications, environmental investigations, and applied research activities that involve climate change, mapping techniques, and monitoring capabilities. Diverse applied geochemistry activities provide a process-level understanding of the mobility, chemical speciation, and bioavailability of elements, particularly metals and metalloids, in a variety of environmental settings. Imaging spectroscopy capabilities maintained and developed within the project have been applied to traditional resource studies as well as to studies related to ecosystem health, human health, disaster assessment, and planetary science. Brief descriptions of capabilities and laboratory facilities and summaries of some applications of project products and research findings are included in this circular. The work helped support the USGS mission to “provide reliable scientific information to describe and understand the Earth; minimize loss of life and property from natural disasters; manage water, biological, energy, and mineral resources; and enhance and protect our quality of life.” Activities within the project include the following:Spanned scales from microscopic to planetary;Demonstrated broad applications across disciplines;Included life-cycle studies of mineral resources;Incorporated specialized areas of expertise in applied geochemistry including mineralogy, hydrogeology, analytical chemistry, aqueous geochemistry, biogeochemistry, microbiology, aquatic toxicology, and public health; andIncorporated specialized areas of expertise in geophysics including magnetics, gravity, radiometrics, electromagnetics, seismic, ground-penetrating radar, borehole radar, and imaging spectroscopy.This circular consists of eight sections that contain summaries of various activities under the project. The eight sections are listed below:Laboratory Facilities and Capabilities, which includes brief descriptions of the various types of laboratories and capabilities used for the project;Method and Software Development, which includes summaries of remote-sensing, geophysical, and mineralogical methods developed or enhanced by the project;Instrument Development, which includes descriptions of geophysical instruments developed under the project;Minerals, Energy, and Climate, which includes summaries of research that applies to mineral or energy resources, environmental processes and monitoring, and carbon sequestration by earth materials;Element Cycling, Toxicity, and Health, which includes summaries of several process-oriented geochemical and biogeochemical studies and health-related research activities;Hydrogeology and Water Quality, which includes descriptions of innovative geophysical, remote-sensing, and geochemical research pertaining to hydrogeology and water-quality applications;Hazards and Disaster Assessment, which includes summaries of research and method development that were applied to natural hazards, human-caused hazards, and disaster assessments; andDatabases and Framework Studies, which includes descriptions of fundamental applications of geophysical studies and of the importance of archived data.

  4. 9 CFR 3.1 - Housing facilities, general.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Transportation of Dogs and Cats 1 Facilities and Operating Standards § 3.1 Housing facilities, general. (a) Structure; construction. Housing facilities for dogs and cats must be designed and constructed so that they... apply only to live dogs and cats, unless stated otherwise. (b) Condition and site. Housing facilities...

  5. 9 CFR 3.1 - Housing facilities, general.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Transportation of Dogs and Cats 1 Facilities and Operating Standards § 3.1 Housing facilities, general. (a) Structure; construction. Housing facilities for dogs and cats must be designed and constructed so that they... apply only to live dogs and cats, unless stated otherwise. (b) Condition and site. Housing facilities...

  6. NASA Wallops Flight Facility Air-Sea Interaction Research Facility

    NASA Technical Reports Server (NTRS)

    Long, Steven R.

    1992-01-01

    This publication serves as an introduction to the Air-Sea Interaction Research Facility at NASA/GSFC/Wallops Flight Facility. The purpose of this publication is to provide background information on the research facility itself, including capabilities, available instrumentation, the types of experiments already done, ongoing experiments, and future plans.

  7. 9 CFR 2.37 - Federal research facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Federal research facilities. 2.37 Section 2.37 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE REGULATIONS Research Facilities § 2.37 Federal research facilities. Each Federal...

  8. Automated smear counting and data processing using a notebook computer in a biomedical research facility.

    PubMed

    Ogata, Y; Nishizawa, K

    1995-10-01

    An automated smear counting and data processing system for a life science laboratory was developed to facilitate routine surveys and eliminate human errors by using a notebook computer. This system was composed of a personal computer, a liquid scintillation counter and a well-type NaI(Tl) scintillation counter. The radioactivity of smear samples was automatically measured by these counters. The personal computer received raw signals from the counters through an interface of RS-232C. The software for the computer evaluated the surface density of each radioisotope and printed out that value along with other items as a report. The software was programmed in Pascal language. This system was successfully applied to routine surveys for contamination in our facility.

  9. The Use of Multi-Criteria Evaluation and Network Analysis in the Area Development Planning Process

    DTIC Science & Technology

    2013-03-01

    layouts. The alternative layout scoring process, base in multi-criteria evaluation, returns a quantitative score for each alternative layout and a...The purpose of this research was to develop improvements to the area development planning process. These plans are used to improve operations within...an installation sub-section by altering the physical layout of facilities. One methodology was developed based on apply network analysis concepts to

  10. Zero-gravity venting of three refrigerants

    NASA Technical Reports Server (NTRS)

    Labus, T. L.; Aydelott, J. C.; Amling, G. E.

    1974-01-01

    An experimental investigation of venting cylindrical containers partially filled with initially saturated liquids under zero-gravity conditions was conducted in the NASA Lewis Research Center 5-second zero-gravity facility. The effect of interfacial mass transfer on the ullage pressure response during venting was analytically determined, based on a conduction analysis applied to an infinitely planer (flat) liquid-vapor interface. This pressure response was compared with both the experimental results and an adiabatic decompression computation.

  11. Sakai et al. is not an adequate demonstration of TFT effectiveness.

    PubMed

    Lohr, J M

    2001-10-01

    Sakai et al. (2001) report an uncontrolled case series of TFT treatments applied to a wide range of psychological complaints in a large health maintenance facility. They analyze verbal report measures of symptom severity and conclude that the specific treatment is effective for a wide range of psychological problems. A review of the theory and research on TFT efficacy indicates that the theoretical basis for the specific treatment is unfounded and that adequately controlled efficacy research has yet to be conducted. The authors' conclusions about effectiveness and applicability are not supported by either theory, prior research, or the findings of their clinical application. Copyright 2001 John Wiley & Sons, Inc.

  12. 36 CFR 1254.22 - Do I need to register when I visit a NARA facility for research?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... visit a NARA facility for research? 1254.22 Section 1254.22 Parks, Forests, and Public Property NATIONAL... MATERIALS Research Room Rules General Procedures § 1254.22 Do I need to register when I visit a NARA facility for research? (a) Yes, you must register each day you enter a NARA research facility by furnishing...

  13. 36 CFR 1254.22 - Do I need to register when I visit a NARA facility for research?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... visit a NARA facility for research? 1254.22 Section 1254.22 Parks, Forests, and Public Property NATIONAL... MATERIALS Research Room Rules General Procedures § 1254.22 Do I need to register when I visit a NARA facility for research? (a) Yes, you must register each day you enter a NARA research facility by furnishing...

  14. 36 CFR 1254.22 - Do I need to register when I visit a NARA facility for research?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... visit a NARA facility for research? 1254.22 Section 1254.22 Parks, Forests, and Public Property NATIONAL... MATERIALS Research Room Rules General Procedures § 1254.22 Do I need to register when I visit a NARA facility for research? (a) Yes, you must register each day you enter a NARA research facility by furnishing...

  15. 36 CFR 1254.22 - Do I need to register when I visit a NARA facility for research?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... visit a NARA facility for research? 1254.22 Section 1254.22 Parks, Forests, and Public Property NATIONAL... MATERIALS Research Room Rules General Procedures § 1254.22 Do I need to register when I visit a NARA facility for research? (a) Yes, you must register each day you enter a NARA research facility by furnishing...

  16. Establishment of a Laboratory for Biofuels Research at the University of Kentucky

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crocker, Mark; Crofcheck, Czarena; Andrews, Rodney

    2013-03-29

    This project was aimed at the development of the biofuels industry in Kentucky by establishing a laboratory to develop improved processes for biomass utilization. The facility is based at the University of Kentucky Center for Applied Energy Research and the Department of Biosystems and Agricultural Engineering, and constitutes an “open” laboratory, i.e., its equipment is available to other Kentucky researchers working in the area. The development of this biofuels facility represents a significant expansion of research infrastructure, and will provide a lasting resource for biobased research endeavors at the University of Kentucky. In order to enhance the laboratory's capabilities andmore » contribute to on-going biofuels research at the University of Kentucky, initial research at the laboratory has focused on the following technical areas: (i) the identification of algae strains suitable for oil production, utilizing flue gas from coal-fired power plants as a source of CO 2; (ii) the conversion of algae to biofuels; and (iii) the development of methods for the analysis of lignin and its deconstruction products. Highlights from these activities include the development of catalysts for the upgrading of lipids to hydrocarbons by means of decarboxylation/decarbonylation (deCOx), a study of bio-oil production from the fast pyrolysis of algae (Scenedesmus), and the application of pyrolytic gas chromatography coupled with mass spectrometry (Py-GC-MS) to the characterization of high lignin biomass feedstocks.« less

  17. 49 CFR 27.71 - Airport facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Airport facilities. 27.71 Section 27.71... Administration Programs: Airports, Railroads, and Highways § 27.71 Airport facilities. (a) This section applies... financial assistance at a commercial service airport, including parking and ground transportation facilities...

  18. 49 CFR 27.71 - Airport facilities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 1 2012-10-01 2012-10-01 false Airport facilities. 27.71 Section 27.71... Administration Programs: Airports, Railroads, and Highways § 27.71 Airport facilities. (a) This section applies... financial assistance at a commercial service airport, including parking and ground transportation facilities...

  19. 49 CFR 27.71 - Airport facilities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 1 2013-10-01 2013-10-01 false Airport facilities. 27.71 Section 27.71... Administration Programs: Airports, Railroads, and Highways § 27.71 Airport facilities. (a) This section applies... financial assistance at a commercial service airport, including parking and ground transportation facilities...

  20. CosmoQuest - Scientist Engagement with the Public and Schools via a Virtual Research Facility

    NASA Astrophysics Data System (ADS)

    Noel-Storr, Jacob; Buxner, Sanlyn; Gay, Pamela L.; Grier, Jennifer A.; Lehan, Cory; CosmoQuest Team

    2016-06-01

    CosmoQuest is a virtual research facility where science data can be analyzed by teams of interested citizen scientists from across the world. Scientists can apply to have their data analyzed through crowdsourcing in our online observatory, which generates validated and publishable results (Robbins et al 2014). Scientists have the opportunity to provide connections to teachers in classrooms so that students can analyze original data and understand the process that astronomers go through from image to result. Scientists can also teach online classes for different audiences including formal classroom teachers, informal educators, and lifelong learners to further the broader impacts of their work and increase engagement in their scientific endeavors. We provide training, through online and in-person workshops, on how to incorporate your datasets into the observatory and how to deliver online classes through our CosmoAcademy. This work is funded in part by NASA Cooperative Agreement Notice number NNX16AC68A. For more information, visit http://cosmoquest.org/.

  1. Research on common methods for evaluating the operation effect of integrated wastewater treatment facilities of iron and steel enterprises

    NASA Astrophysics Data System (ADS)

    Bingsheng, Xu

    2017-04-01

    Considering the large quantities of wastewater generated from iron and steel enterprises in China, this paper is aimed to research the common methods applied for evaluating the integrated wastewater treatment effect of iron and steel enterprises. Based on survey results on environmental protection performance, technological economy, resource & energy consumption, services and management, an indicator system for evaluating the operation effect of integrated wastewater treatment facilities is set up. By discussing the standards and industrial policies in and out of China, 27 key secondary indicators are further defined on the basis of investigation on main equipment and key processes for wastewater treatment, so as to determine the method for setting key quantitative and qualitative indicators for evaluation indicator system. It is also expected to satisfy the basic requirements of reasonable resource allocation, environmental protection and sustainable economic development, further improve the integrated wastewater treatment effect of iron and steel enterprises, and reduce the emission of hazardous substances and environmental impact.

  2. A Tale of Two Chambers: Iterative Approaches and Lessons Learned from Life Support Systems Testing in Altitude Chambers

    NASA Technical Reports Server (NTRS)

    Callini, Gianluca

    2016-01-01

    With a brand new fire set ablaze by a serendipitous convergence of events ranging from a science fiction novel and movie ("The Martian"), to ground-breaking recent discoveries of flowing water on its surface, the drive for the journey to Mars seems to be in a higher gear than ever before. We are developing new spacecraft and support systems to take humans to the Red Planet, while scientists on Earth continue using the International Space Station as a laboratory to evaluate the effects of long duration space flight on the human body. Written from the perspective of a facility test director rather than a researcher, and using past and current life support systems tests as examples, this paper seeks to provide an overview on how facility teams approach testing, the kind of information they need to ensure efficient collaborations and successful tests, and how, together with researchers and principal investigators, we can collectively apply what we learn to execute future tests.

  3. Status of the SPES project, a new tool for fundamental and apply science studies with exotic ion beams at LNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Napoli, D. R., E-mail: napoli@lnl.infn.it; Andrighetto, A.; Antonini, P.

    SPES, a new accelerator facility for both the production of exotic ion beams and radio-pharmaceuticals, is presently being installed at the Laboratori Nazionali di Legnaro in Italy (LNL). The new cyclotron, which will provide high intensity proton beams for the production of the rare isotopes, has been installed and is now in the commissioning phase. We present here the status of the part of the project devoted to the production and acceleration of fission fragments created in the interaction of an intense proton beam on a production target of UCx. The expected SPES radioactive beams intensities, their quality and theirmore » maximum energies (up to 11 MeV/A for A=130) will permit to perform forefront research in nuclear structure and nuclear dynamics far from the stability valley. Another low energy section of the facility is foreseen for new and challenging research, both in the nuclear physics and in the material science frameworks.« less

  4. Wayfinding: a quality factor in human design approach to healthcare facilities.

    PubMed

    Del Nord, R

    1999-01-01

    The specific aim of this paper is the systematic analysis of interactions and reciprocal conditions existing between the physical space of hospital buildings and the different categories of individuals that come in contact with them. The physical and environmental facilities of hospital architecture often influence the therapeutic character of space and the employees. If the values of the individual are to be safeguarded in this context, priority needs to be given to such factors as communication, privacy, etc. This would mean the involvement of other professional groups such as psychologists, sociologists, ergonomists, etc. at the hospital building planning stage. This paper will outline the result of some research conducted at the University Research Center "TESIS" of Florence to provide better understanding of design strategies applied to reduce the pathology of spaces within the healthcare environment. The case studies will highlight the parameters and the possible architectural solutions to wayfinding and the humanization of spaces, with particular emphasis on lay-outs, technologies, furniture and finishing design.

  5. Advancing Behavior Analysis in Zoos and Aquariums.

    PubMed

    Maple, Terry L; Segura, Valerie D

    2015-05-01

    Zoos, aquariums, and other captive animal facilities offer promising opportunities to advance the science and practice of behavior analysis. Zoos and aquariums are necessarily concerned with the health and well-being of their charges and are held to a high standard by their supporters (visitors, members, and donors), organized critics, and the media. Zoos and aquariums offer unique venues for teaching and research and a locus for expanding the footprint of behavior analysis. In North America, Europe, and the UK, formal agreements between zoos, aquariums, and university graduate departments have been operating successfully for decades. To expand on this model, it will be necessary to help zoo and aquarium managers throughout the world to recognize the value of behavior analysis in the delivery of essential animal health and welfare services. Academic institutions, administrators, and invested faculty should consider the utility of training students to meet the growing needs of applied behavior analysis in zoos and aquariums and other animal facilities such as primate research centers, sanctuaries, and rescue centers.

  6. Hypergravity Facilities: Extending Knowledge Over the Continuum of Gravity

    NASA Technical Reports Server (NTRS)

    Souza, Kenneth A.

    1999-01-01

    Historical perspectives, reasons for gravitational research, key questions regarding centrifuges, particular centrifuge discussions, vestibular research facilities, the hypergravity facility for cell culture, the human research facility, as well as the center for bioinformatics are all topics discussed in viewgraph form.

  7. EPM - The European Facility for human physiology research on ISS.

    PubMed

    Rieschel, Mats; Nasca, Rosario; Junk, Peter; Gerhard, Ingo

    2002-07-01

    The European Physiology Modules (EPM) Facility is one of the four major Space Station facilities being developed within the framework of ESA's Microgravity Facilities for Columbus (MFC) programme. In order to allow a wide spectrum of physiological studies in weightlessness conditions, the facility provides the infrastructure to accommodate a variable set of scientific equipment. The initial EPM configuration supports experiments in the fields of neuroscience, bone & muscle research, cardiovascular research and metabolism. The International Space Life Science Working Group (ISLSWG) has recommended co-locating EPM with the 2 NASA Human Research Facility racks.

  8. Open Architecture Data System for NASA Langley Combined Loads Test System

    NASA Technical Reports Server (NTRS)

    Lightfoot, Michael C.; Ambur, Damodar R.

    1998-01-01

    The Combined Loads Test System (COLTS) is a new structures test complex that is being developed at NASA Langley Research Center (LaRC) to test large curved panels and cylindrical shell structures. These structural components are representative of aircraft fuselage sections of subsonic and supersonic transport aircraft and cryogenic tank structures of reusable launch vehicles. Test structures are subjected to combined loading conditions that simulate realistic flight load conditions. The facility consists of two pressure-box test machines and one combined loads test machine. Each test machine possesses a unique set of requirements or research data acquisition and real-time data display. Given the complex nature of the mechanical and thermal loads to be applied to the various research test articles, each data system has been designed with connectivity attributes that support both data acquisition and data management functions. This paper addresses the research driven data acquisition requirements for each test machine and demonstrates how an open architecture data system design not only meets those needs but provides robust data sharing between data systems including the various control systems which apply spectra of mechanical and thermal loading profiles.

  9. Environmental practices for biomedical research facilities.

    PubMed Central

    Medlin, E L; Grupenhoff, J T

    2000-01-01

    As a result of the Leadership Conference on Biomedical Research and the Environment, the Facilities Committee focused its work on the development of best environmental practices at biomedical research facilities at the university and independent research facility level as well as consideration of potential involvement of for-profit companies and government agencies. The designation "facilities" includes all related buildings and grounds, "green auditing" of buildings and programs, purchasing of furnishings and sources, energy efficiency, and engineering services (lighting, heating, air conditioning), among other activities. The committee made a number of recommendations, including development of a national council for environmental stewardship in biomedical research, development of a system of green auditing of such research facilities, and creation of programs for sustainable building and use. In addition, the committee recommended extension of education and training programs for environmental stewardship, in cooperation with facilities managers, for all research administrators and researchers. These programs would focus especially on graduate fellows and other students, as well as on science labs at levels K--12. PMID:11121360

  10. CESAR robotics and intelligent systems research for nuclear environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, R.C.

    1992-07-01

    The Center for Engineering Systems Advanced Research (CESAR) at the Oak Ridge National Laboratory (ORNL) encompasses expertise and facilities to perform basic and applied research in robotics and intelligent systems in order to address a broad spectrum of problems related to nuclear and other environments. For nuclear environments, research focus is derived from applications in advanced nuclear power stations, and in environmental restoration and waste management. Several programs at CESAR emphasize the cross-cutting technology issues, and are executed in appropriate cooperation with projects that address specific problem areas. Although the main thrust of the CESAR long-term research is on developingmore » highly automated systems that can cooperate and function reliably in complex environments, the development of advanced human-machine interfaces represents a significant part of our research. 11 refs.« less

  11. CESAR robotics and intelligent systems research for nuclear environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, R.C.

    1992-01-01

    The Center for Engineering Systems Advanced Research (CESAR) at the Oak Ridge National Laboratory (ORNL) encompasses expertise and facilities to perform basic and applied research in robotics and intelligent systems in order to address a broad spectrum of problems related to nuclear and other environments. For nuclear environments, research focus is derived from applications in advanced nuclear power stations, and in environmental restoration and waste management. Several programs at CESAR emphasize the cross-cutting technology issues, and are executed in appropriate cooperation with projects that address specific problem areas. Although the main thrust of the CESAR long-term research is on developingmore » highly automated systems that can cooperate and function reliably in complex environments, the development of advanced human-machine interfaces represents a significant part of our research. 11 refs.« less

  12. 9 CFR 3.75 - Housing facilities, general.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... requirements differ, as do their social and environmental requirements. As a result, the conditions appropriate... for proper husbandry practices and research needs. Housing facilities other than those maintained by research facilities and Federal research facilities must be physically separated from any other businesses...

  13. Is the closest facility the one actually used? An assessment of travel time estimation based on mammography facilities.

    PubMed

    Alford-Teaster, Jennifer; Lange, Jane M; Hubbard, Rebecca A; Lee, Christoph I; Haas, Jennifer S; Shi, Xun; Carlos, Heather A; Henderson, Louise; Hill, Deirdre; Tosteson, Anna N A; Onega, Tracy

    2016-02-18

    Characterizing geographic access depends on a broad range of methods available to researchers and the healthcare context to which the method is applied. Globally, travel time is one frequently used measure of geographic access with known limitations associated with data availability. Specifically, due to lack of available utilization data, many travel time studies assume that patients use the closest facility. To examine this assumption, an example using mammography screening data, which is considered a geographically abundant health care service in the United States, is explored. This work makes an important methodological contribution to measuring access--which is a critical component of health care planning and equity almost everywhere. We analyzed one mammogram from each of 646,553 women participating in the US based Breast Cancer Surveillance Consortium for years 2005-2012. We geocoded each record to street level address data in order to calculate travel time to the closest and to the actually used mammography facility. Travel time between the closest and the actual facility used was explored by woman-level and facility characteristics. Only 35% of women in the study population used their closest facility, but nearly three-quarters of women not using their closest facility used a facility within 5 min of the closest facility. Individuals that by-passed the closest facility tended to live in an urban core, within higher income neighborhoods, or in areas where the average travel times to work was longer. Those living in small towns or isolated rural areas had longer closer and actual median drive times. Since the majority of US women accessed a facility within a few minutes of their closest facility this suggests that distance to the closest facility may serve as an adequate proxy for utilization studies of geographically abundant services like mammography in areas where the transportation networks are well established.

  14. Assessment and documentation of non-healing, chronic wounds in inpatient health care facilities in the Czech Republic: an evaluation study.

    PubMed

    Pokorná, Andrea; Leaper, David

    2015-04-01

    The foundation of health care management of patients with non-healing, chronic wounds needs accurate evaluation followed by the selection of an appropriate therapeutic strategy. Assessment of non-healing, chronic wounds in clinical practice in the Czech Republic is not standardised. The aim of this study was to analyse the methods being used to assess non-healing, chronic wounds in inpatient facilities in the Czech Republic. The research was carried out at 77 inpatient medical facilities (8 university/faculty hospitals, 63 hospitals and 6 long- term hospitals) across all regions of the Czech Republic. A mixed model was used for the research (participatory observation including creation of field notes and content analysis of documents for documentation and analysis of qualitative and quantitative data). The results of this research have corroborated the suspicion of inconsistencies in procedures used by general nurses for assessment of non-healing, chronic wounds. However, the situation was found to be more positive with regard to evaluation of basic/fundamental parameters of a wound (e.g. size, depth and location of a wound) compared with the evaluation of more specific parameters (e.g. exudate or signs of infection). This included not only the number of observed variables, but also the action taken. Both were significantly improved when a consultant for wound healing was present (P = 0·047). The same applied to facilities possessing a certificate of quality issued by the Czech Wound Management Association (P = 0·010). In conclusion, an effective strategy for wound management depends on the method and scope of the assessment of non-healing, chronic wounds in place in clinical practice in observed facilities; improvement may be expected following the general introduction of a 'non-healing, chronic wound assessment' algorithm. © 2014 The Authors. International Wound Journal © 2014 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  15. Next Generation Safeguards Initiative research to determine the Pu mass in spent fuel assemblies: Purpose, approach, constraints, implementation, and calibration

    NASA Astrophysics Data System (ADS)

    Tobin, S. J.; Menlove, H. O.; Swinhoe, M. T.; Schear, M. A.

    2011-10-01

    The Next Generation Safeguards Initiative (NGSI) of the U.S. Department of Energy has funded a multi-lab/multi-university collaboration to quantify the plutonium mass in spent nuclear fuel assemblies and to detect the diversion of pins from them. The goal of this research effort is to quantify the capability of various non-destructive assay (NDA) technologies as well as to train a future generation of safeguards practitioners. This research is "technology driven" in the sense that we will quantify the capabilities of a wide range of safeguards technologies of interest to regulators and policy makers; a key benefit to this approach is that the techniques are being tested in a unified manner. When the results of the Monte Carlo modeling are evaluated and integrated, practical constraints are part of defining the potential context in which a given technology might be applied. This paper organizes the commercial spent fuel safeguard needs into four facility types in order to identify any constraints on the NDA system design. These four facility types are the following: future reprocessing plants, current reprocessing plants, once-through spent fuel repositories, and any other sites that store individual spent fuel assemblies (reactor sites are the most common facility type in this category). Dry storage is not of interest since individual assemblies are not accessible. This paper will overview the purpose and approach of the NGSI spent fuel effort and describe the constraints inherent in commercial fuel facilities. It will conclude by discussing implementation and calibration of measurement systems. This report will also provide some motivation for considering a couple of other safeguards concepts (base measurement and fingerprinting) that might meet the safeguards need but not require the determination of plutonium mass.

  16. Reconciling Basin-Scale Top-Down and Bottom-Up Methane Emission Measurements for Onshore Oil and Gas Development: Cooperative Research and Development Final Report, CRADA Number CRD-14-572

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heath, Garvin A.

    The overall objective of the Research Partnership to Secure Energy for America (RPSEA)-funded research project is to develop independent estimates of methane emissions using top-down and bottom-up measurement approaches and then to compare the estimates, including consideration of uncertainty. Such approaches will be applied at two scales: basin and facility. At facility scale, multiple methods will be used to measure methane emissions of the whole facility (controlled dual tracer and single tracer releases, aircraft-based mass balance and Gaussian back-trajectory), which are considered top-down approaches. The bottom-up approach will sum emissions from identified point sources measured using appropriate source-level measurement techniquesmore » (e.g., high-flow meters). At basin scale, the top-down estimate will come from boundary layer airborne measurements upwind and downwind of the basin, using a regional mass balance model plus approaches to separate atmospheric methane emissions attributed to the oil and gas sector. The bottom-up estimate will result from statistical modeling (also known as scaling up) of measurements made at selected facilities, with gaps filled through measurements and other estimates based on other studies. The relative comparison of the bottom-up and top-down estimates made at both scales will help improve understanding of the accuracy of the tested measurement and modeling approaches. The subject of this CRADA is NREL's contribution to the overall project. This project resulted from winning a competitive solicitation no. RPSEA RFP2012UN001, proposal no. 12122-95, which is the basis for the overall project. This Joint Work Statement (JWS) details the contributions of NREL and Colorado School of Mines (CSM) in performance of the CRADA effort.« less

  17. 36 CFR 1281.3 - What definitions apply to this part?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ADMINISTRATION NARA FACILITIES PRESIDENTIAL LIBRARY FACILITIES § 1281.3 What definitions apply to this part? The... materials in the care and custody of the Presidential libraries, and includes the salaries and expenses of NARA personnel performing those functions. Endowment library. This term means a Presidential library...

  18. 36 CFR § 1281.3 - What definitions apply to this part?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ADMINISTRATION NARA FACILITIES PRESIDENTIAL LIBRARY FACILITIES § 1281.3 What definitions apply to this part? The... materials in the care and custody of the Presidential libraries, and includes the salaries and expenses of NARA personnel performing those functions. Endowment library. This term means a Presidential library...

  19. 45 CFR 9.2 - Policy.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... laboratories and other study and research facilities of the Department will be made available to the national... study and research facilities of the Department. When such facilities are used by academic scientists, engineers, and students, the costs incurred for the operation of the unique or unusual research facilities...

  20. 45 CFR 9.2 - Policy.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... laboratories and other study and research facilities of the Department will be made available to the national... study and research facilities of the Department. When such facilities are used by academic scientists, engineers, and students, the costs incurred for the operation of the unique or unusual research facilities...

  1. 45 CFR 9.2 - Policy.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... laboratories and other study and research facilities of the Department will be made available to the national... study and research facilities of the Department. When such facilities are used by academic scientists, engineers, and students, the costs incurred for the operation of the unique or unusual research facilities...

  2. 45 CFR 9.2 - Policy.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... laboratories and other study and research facilities of the Department will be made available to the national... study and research facilities of the Department. When such facilities are used by academic scientists, engineers, and students, the costs incurred for the operation of the unique or unusual research facilities...

  3. 45 CFR 9.2 - Policy.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... laboratories and other study and research facilities of the Department will be made available to the national... study and research facilities of the Department. When such facilities are used by academic scientists, engineers, and students, the costs incurred for the operation of the unique or unusual research facilities...

  4. 36 CFR § 1254.22 - Do I need to register when I visit a NARA facility for research?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... visit a NARA facility for research? § 1254.22 Section § 1254.22 Parks, Forests, and Public Property... HISTORICAL MATERIALS Research Room Rules General Procedures § 1254.22 Do I need to register when I visit a NARA facility for research? (a) Yes, you must register each day you enter a NARA research facility by...

  5. Strategies and Considerations for Distributing and Recovering Mouse Lines

    PubMed Central

    Du, Yubin; Xie, Wen; Liu, Chengyu

    2012-01-01

    As more and more genetically modified mouse lines are being generated, it becomes increasingly common to share animal models among different research institutions. Live mice are routinely transferred between animal facilities. Due to various issues concerning animal welfare, intellectual property rights, colony health status and biohazard, significant paperwork and coordination are required before any animal travel can take place. Shipping fresh or frozen preimplantation embryos, gametes, or reproductive organs can bypass some of the issues associated with live animal transfer, but it requires the receiving facilities to be able to perform delicate and sometimes intricate procedures such as embryo transfer, in vitro fertilization (IVF), or ovary transplantation. Here, we summarize the general requirements for live animal transport and review some of the assisted reproductive technologies (ART) that can be applied to shipping and reviving mouse lines. Intended users of these methods should consult their institution’s responsible official to find out whether each specific method is legal or appropriate in their own animal facilities. PMID:20691859

  6. Compact Full-Field Ion Detector System for CubeSat Science Beyond LEO

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.; Clark, Pamela E.

    2013-01-01

    NASA Glenn Research Center (GRC) is applying its expertise and facilities in harsh environment instrumentation to develop a Compact Full-Field Ion Detector System (CFIDS). The CFIDS is designed to be an extremely compact, low cost instrument, capable of being flown on a wide variety of deep space platforms, to provide comprehensive (composition, velocity, and direction) in situ measurements of heavy ions in space plasma environments with higher fidelity, than previously available.

  7. Nuclear facility decommissioning and site remedial actions: a selected bibliography. Volume 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, P.T.; Knox, N.P.; Chilton, B.D.

    1984-09-01

    This bibliography of 756 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the fifth in a series of annual reports prepared for the US Department of Energy, Division of Remedial Action Projects. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department ofmore » Energy's Remedial Action Program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Uranium Mill Tailings Remedial Action Program; (5) Grand Junction Remedial Action Program; (6) Uranium Mill Tailings Management; and (7) Technical Measurements Center. Chapter sections for chapters 1, 2, 4, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for the categories of author, corporate affiliation, title, publication description, geographic location, and keywords. The Appendix contains a list of frequently used acronyms.« less

  8. 14 CFR 171.117 - Reports.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Reports. 171.117 Section 171.117... FACILITIES NON-FEDERAL NAVIGATION FACILITIES Simplified Directional Facility (SDF) § 171.117 Reports. The owner of each facility to which this subpart applies shall make the following reports, at the time...

  9. 14 CFR 171.117 - Reports.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Reports. 171.117 Section 171.117... FACILITIES NON-FEDERAL NAVIGATION FACILITIES Simplified Directional Facility (SDF) § 171.117 Reports. The owner of each facility to which this subpart applies shall make the following reports, at the time...

  10. 14 CFR 171.33 - Reports.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Reports. 171.33 Section 171.33 Aeronautics... FACILITIES NON-FEDERAL NAVIGATION FACILITIES Nondirectional Radio Beacon Facilities § 171.33 Reports. The owner of each facility to which this subpart applies shall make the following reports, at the times...

  11. 14 CFR 171.33 - Reports.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Reports. 171.33 Section 171.33 Aeronautics... FACILITIES NON-FEDERAL NAVIGATION FACILITIES Nondirectional Radio Beacon Facilities § 171.33 Reports. The owner of each facility to which this subpart applies shall make the following reports, at the times...

  12. 14 CFR 171.117 - Reports.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Reports. 171.117 Section 171.117... FACILITIES NON-FEDERAL NAVIGATION FACILITIES Simplified Directional Facility (SDF) § 171.117 Reports. The owner of each facility to which this subpart applies shall make the following reports, at the time...

  13. 14 CFR 171.33 - Reports.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Reports. 171.33 Section 171.33 Aeronautics... FACILITIES NON-FEDERAL NAVIGATION FACILITIES Nondirectional Radio Beacon Facilities § 171.33 Reports. The owner of each facility to which this subpart applies shall make the following reports, at the times...

  14. Developing Mobile BIM/2D Barcode-Based Automated Facility Management System

    PubMed Central

    Chen, Yen-Pei

    2014-01-01

    Facility management (FM) has become an important topic in research on the operation and maintenance phase. Managing the work of FM effectively is extremely difficult owing to the variety of environments. One of the difficulties is the performance of two-dimensional (2D) graphics when depicting facilities. Building information modeling (BIM) uses precise geometry and relevant data to support the facilities depicted in three-dimensional (3D) object-oriented computer-aided design (CAD). This paper proposes a new and practical methodology with application to FM that uses an integrated 2D barcode and the BIM approach. Using 2D barcode and BIM technologies, this study proposes a mobile automated BIM-based facility management (BIMFM) system for FM staff in the operation and maintenance phase. The mobile automated BIMFM system is then applied in a selected case study of a commercial building project in Taiwan to verify the proposed methodology and demonstrate its effectiveness in FM practice. The combined results demonstrate that a BIMFM-like system can be an effective mobile automated FM tool. The advantage of the mobile automated BIMFM system lies not only in improving FM work efficiency for the FM staff but also in facilitating FM updates and transfers in the BIM environment. PMID:25250373

  15. Developing mobile BIM/2D barcode-based automated facility management system.

    PubMed

    Lin, Yu-Cheng; Su, Yu-Chih; Chen, Yen-Pei

    2014-01-01

    Facility management (FM) has become an important topic in research on the operation and maintenance phase. Managing the work of FM effectively is extremely difficult owing to the variety of environments. One of the difficulties is the performance of two-dimensional (2D) graphics when depicting facilities. Building information modeling (BIM) uses precise geometry and relevant data to support the facilities depicted in three-dimensional (3D) object-oriented computer-aided design (CAD). This paper proposes a new and practical methodology with application to FM that uses an integrated 2D barcode and the BIM approach. Using 2D barcode and BIM technologies, this study proposes a mobile automated BIM-based facility management (BIMFM) system for FM staff in the operation and maintenance phase. The mobile automated BIMFM system is then applied in a selected case study of a commercial building project in Taiwan to verify the proposed methodology and demonstrate its effectiveness in FM practice. The combined results demonstrate that a BIMFM-like system can be an effective mobile automated FM tool. The advantage of the mobile automated BIMFM system lies not only in improving FM work efficiency for the FM staff but also in facilitating FM updates and transfers in the BIM environment.

  16. Health and Safety Management for Small-scale Methane Fermentation Facilities

    NASA Astrophysics Data System (ADS)

    Yamaoka, Masaru; Yuyama, Yoshito; Nakamura, Masato; Oritate, Fumiko

    In this study, we considered health and safety management for small-scale methane fermentation facilities that treat 2-5 ton of biomass daily based on several years operation experience with an approximate capacity of 5 t·d-1. We also took account of existing knowledge, related laws and regulations. There are no qualifications or licenses required for management and operation of small-scale methane fermentation facilities, even though rural sewerage facilities with a relative similar function are required to obtain a legitimate license. Therefore, there are wide variations in health and safety consciousness of the operators of small-scale methane fermentation facilities. The industrial safety and health laws are not applied to the operation of small-scale methane fermentation facilities. However, in order to safely operate a small-scale methane fermentation facility, the occupational safety and health management system that the law recommends should be applied. The aims of this paper are to clarify the risk factors in small-scale methane fermentation facilities and encourage planning, design and operation of facilities based on health and safety management.

  17. 9 CFR 2.31 - Institutional Animal Care and Use Committee (IACUC).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., DEPARTMENT OF AGRICULTURE ANIMAL WELFARE REGULATIONS Research Facilities § 2.31 Institutional Animal Care and Use Committee (IACUC). (a) The Chief Executive Officer of the research facility shall appoint an... members to assess the research facility's animal program, facilities, and procedures. Except as...

  18. The present situations and perspectives on utilization of research reactors in Thailand

    NASA Astrophysics Data System (ADS)

    Chongkum, Somporn

    2002-01-01

    The Thai Research Reactor 1/Modification 1, a TRIGA Mark III reactor, went critical on November 7, 1977. It has been playing a central role in the development of both Office of Atomic Energy for Peace (OAEP) and nuclear application in Thailand. It has a maximum power of 2 MW (thermal) at steady state and a pulsing capacity of 2000 MW. The highest thermal neutron flux at a central thimber is 1×10 13 n/cm 2/s, which is extensively utilized for radioisotope production, neutron activation analysis and neutron beam experiments, i.e. neutron scattering, prompt gamma analysis and neutron radiography. Following the nuclear technological development, the OAEP is in the process of establishing the Ongkharak Nuclear Research Center (ONRC). The center is being built in Nakhon Nayok province, 60 km northeast of Bangkok. The centerpiece of the ONRC is a multipurpose 10 MW TRIGA research reactor. Facilities are included for the production of radioisotopes for medicine, industry and agriculture, neutron transmutation doping of silicon, and neutron capture therapy. The neutron beam facilities will also be utilized for applied research and technology development as well as training in reactor operations, performance of experiments and reactor physics. This paper describes a recent program of utilization as well as a new research reactor for enlarging the perspectives of its utilization in the future.

  19. Validation of Infrared Azimuthal Model as Applied to GOES Data Over the ARM SGP

    NASA Technical Reports Server (NTRS)

    Gambheer, Arvind V.; Doelling, David R.; Spangenberg, Douglas A.; Minnis, Patrick

    2004-01-01

    The goal of this research is to identify and reduce the GOES-8 IR temperature biases, induced by a fixed geostationary position, during the course of a day. In this study, the same CERES LW window channel model is applied to GOES-8 IR temperatures during clear days over the Atmospheric Radiation Measurement-Southern Great Plains Central Facility (SCF). The model-adjusted and observed IR temperatures are compared with topof- the-atmosphere (TOA) estimated temperatures derived from a radiative transfer algorithm based on the atmospheric profile and surface radiometer measurements. This algorithm can then be incorporated to derive more accurate Ts from real-time satellite operational products.

  20. The problem of bias when nursing facility staff administer customer satisfaction surveys.

    PubMed

    Hodlewsky, R Tamara; Decker, Frederic H

    2002-10-01

    Customer satisfaction instruments are being used with increasing frequency to assess and monitor residents' assessments of quality of care in nursing facilities. There is no standard protocol, however, for how or by whom the instruments should be administered when anonymous, written responses are not feasible. Researchers often use outside interviewers to assess satisfaction, but cost considerations may limit the extent to which facilities are able to hire outside interviewers on a regular basis. This study was designed to investigate the existence and extent of any bias caused by staff administering customer satisfaction surveys. Customer satisfaction data were collected in 1998 from 265 residents in 21 nursing facilities in North Dakota. Half the residents in each facility were interviewed by staff members and the other half by outside consultants; scores were compared by interviewer type. In addition to a tabulation of raw scores, ordinary least-squares analysis with facility fixed effects was used to control for resident characteristics and unmeasured facility-level factors that could influence scores. Significant positive bias was found when staff members interviewed residents. The bias was not limited to questions directly affecting staff responsibilities but applied across all types of issues. The bias was robust under varying constructions of satisfaction and dissatisfaction. A uniform method of survey administration appears to be important if satisfaction data are to be used to compare facilities. Bias is an important factor that should be considered and weighed against the costs of obtaining outside interviewers when assessing customer satisfaction among long term care residents.

  1. Facilitymetrics for Big Ocean Science: Towards Improved Measurement of Scientific Impact

    NASA Astrophysics Data System (ADS)

    Juniper, K.; Owens, D.; Moran, K.; Pirenne, B.; Hallonsten, O.; Matthews, K.

    2016-12-01

    Cabled ocean observatories are examples of "Big Science" facilities requiring significant public investments for installation and ongoing maintenance. Large observatory networks in Canada and the United States, for example, have been established after extensive up-front planning and hundreds of millions of dollars in start-up costs. As such, they are analogous to particle accelerators and astronomical observatories, which may often be required to compete for public funding in an environment of ever-tightening national science budget allocations. Additionally, the globalization of Big Science compels these facilities to respond to increasing demands for demonstrable productivity, excellence and competitiveness. How should public expenditures on "Big Science" facilities be evaluated and justified in terms of benefits to the countries that invest in them? Published literature counts are one quantitative measure often highlighted in the annual reports of large science facilities. But, as recent research has demonstrated, publication counts can lead to distorted characterizations of scientific impact, inviting evaluators to calculate scientific outputs in terms of costs per publication—a ratio that can be simplistically misconstrued to conclude Big Science is wildly expensive. Other commonly promoted measurements of Big Science facilities include technical reliability (a.k.a. uptime), provision of training opportunities for Highly Qualified Personnel, generation of commercialization opportunities, and so forth. "Facilitymetrics" is a new empirical focus for scientometrical studies, which has been applied to the evaluation and comparison of synchrotron facilities. This paper extends that quantitative and qualitative examination to a broader inter-disciplinary comparison of Big Science facilities in the ocean science realm to established facilities in the fields of astronomy and particle physics.

  2. Facilitymetrics for Big Ocean Science: Towards Improved Measurement of Scientific Impact

    NASA Astrophysics Data System (ADS)

    Juniper, K.; Owens, D.; Moran, K.; Pirenne, B.; Hallonsten, O.; Matthews, K.

    2016-02-01

    Cabled ocean observatories are examples of "Big Science" facilities requiring significant public investments for installation and ongoing maintenance. Large observatory networks in Canada and the United States, for example, have been established after extensive up-front planning and hundreds of millions of dollars in start-up costs. As such, they are analogous to particle accelerators and astronomical observatories, which may often be required to compete for public funding in an environment of ever-tightening national science budget allocations. Additionally, the globalization of Big Science compels these facilities to respond to increasing demands for demonstrable productivity, excellence and competitiveness. How should public expenditures on "Big Science" facilities be evaluated and justified in terms of benefits to the countries that invest in them? Published literature counts are one quantitative measure often highlighted in the annual reports of large science facilities. But, as recent research has demonstrated, publication counts can lead to distorted characterizations of scientific impact, inviting evaluators to calculate scientific outputs in terms of costs per publication—a ratio that can be simplistically misconstrued to conclude Big Science is wildly expensive. Other commonly promoted measurements of Big Science facilities include technical reliability (a.k.a. uptime), provision of training opportunities for Highly Qualified Personnel, generation of commercialization opportunities, and so forth. "Facilitymetrics" is a new empirical focus for scientometrical studies, which has been applied to the evaluation and comparison of synchrotron facilities. This paper extends that quantitative and qualitative examination to a broader inter-disciplinary comparison of Big Science facilities in the ocean science realm to established facilities in the fields of astronomy and particle physics.

  3. Estimating air chemical emissions from research activities using stack measurement data.

    PubMed

    Ballinger, Marcel Y; Duchsherer, Cheryl J; Woodruff, Rodger K; Larson, Timothy V

    2013-03-01

    Current methods of estimating air emissions from research and development (R&D) activities use a wide range of release fractions or emission factors with bases ranging from empirical to semi-empirical. Although considered conservative, the uncertainties and confidence levels of the existing methods have not been reported. Chemical emissions were estimated from sampling data taken from four research facilities over 10 years. The approach was to use a Monte Carlo technique to create distributions of annual emission estimates for target compounds detected in source test samples. Distributions were created for each year and building sampled for compounds with sufficient detection frequency to qualify for the analysis. The results using the Monte Carlo technique without applying a filter to remove negative emission values showed almost all distributions spanning zero, and 40% of the distributions having a negative mean. This indicates that emissions are so low as to be indistinguishable from building background. Application of a filter to allow only positive values in the distribution provided a more realistic value for emissions and increased the distribution mean by an average of 16%. Release fractions were calculated by dividing the emission estimates by a building chemical inventory quantity. Two variations were used for this quantity: chemical usage, and chemical usage plus one-half standing inventory. Filters were applied so that only release fraction values from zero to one were included in the resulting distributions. Release fractions had a wide range among chemicals and among data sets for different buildings and/or years for a given chemical. Regressions of release fractions to molecular weight and vapor pressure showed weak correlations. Similarly, regressions of mean emissions to chemical usage, chemical inventory, molecular weight, and vapor pressure also gave weak correlations. These results highlight the difficulties in estimating emissions from R&D facilities using chemical inventory data. Air emissions from research operations are difficult to estimate because of the changing nature of research processes and the small quantity and wide variety of chemicals used. Analysis of stack measurements taken over multiple facilities and a 10-year period using a Monte Carlo technique provided a method to quantify the low emissions and to estimate release fractions based on chemical inventories. The variation in release fractions did not correlate well with factors investigated, confirming the complexities in estimating R&D emissions.

  4. Facilities | Bioenergy | NREL

    Science.gov Websites

    Facilities Facilities At NREL's state-of-the-art bioenergy research facilities, researchers design options. Photo of interior of industrial, two-story building with high-bay, piping, and large processing

  5. Facilities for animal research in space

    NASA Technical Reports Server (NTRS)

    Bonting, Sjoerd L.; Kishiyama, Jenny S.; Arno, Roger D.

    1991-01-01

    The animal facilities used aboard or designed for various spacecraft research missions are described. Consideration is given to the configurations used in Cosmos-1514 (1983) and Cosmos-1887 (1987) missions; the reusable Biosatellite capsule flown three times by NASA between 1966 and 1969; the NASA's Lifesat spacecraft that is being currently designed; the Animal Enclosure Module flown on Shuttle missions in 1983 and 1984; the Research Animal Holding Facility developed for Shuttle-Spacelab missions; the Rhesus Research Facility developed for a Spacelab mission; and the Japanese Animal Holding Facility for the Space Station Freedom. Special attention is given to the designs of NASA's animal facilities developed for Space Station Freedom and the details of various subsystems of these facilities. The main characteristics of the rodent and the primate habitats provided by these various facilities are discussed.

  6. 49 CFR 27.71 - Airport facilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 1 2011-10-01 2011-10-01 false Airport facilities. 27.71 Section 27.71... Administration Programs: Airports, Railroads, and Highways § 27.71 Airport facilities. (a) This section applies to all terminal facilities and services owned, leased, or operated on any basis by a recipient of DOT...

  7. 44 CFR 206.252 - Insurance requirements for facilities damaged by flood.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... facilities damaged by flood. 206.252 Section 206.252 Emergency Management and Assistance FEDERAL EMERGENCY... Assistance Insurance Requirements § 206.252 Insurance requirements for facilities damaged by flood. (a) Where... insurance policy. (b) The reduction stated above shall not apply to a PNP facility which could not be...

  8. 78 FR 10110 - Accessibility Guidelines for Pedestrian Facilities in the Public Right-of-Way; Shared Use Paths

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-13

    ... guidelines would apply to the design, construction, and alteration of pedestrian facilities in the public... guidelines for the design, construction, and alteration of facilities covered by the Americans with... required to adopt accessibility standards for the design, construction, and alteration of facilities...

  9. Americans with Disabilities Act: Accessibility Guidelines for Buildings and Facilities, Transportation Facilities, Transportation Vehicles.

    ERIC Educational Resources Information Center

    Architectural and Transportation Barriers Compliance Board, Washington, DC.

    Guidelines are presented regarding accessibility to buildings and facilities, transportation facilities, and transportation vehicles by individuals with disabilities, under the Americans with Disabilities Act of 1990. These guidelines are to be applied during building design, construction, and alteration. Part 1 offers detailed facility…

  10. A Military Hospice Model

    DTIC Science & Technology

    1983-05-06

    that apply) A. A hospice inpatient facility; B. An inpatient unit in a a. Hospital; b. Intermediate Care Facility ; c. Skilled Nursing facility; C. A...Care Hospital Intermediate Care Facility SNF Hospice Other No License Page 3 V. "WEIGHTED" STANDARDS Please feel free to indicate with a "W" in the

  11. 49 CFR 37.9 - Standards for accessible transportation facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... construction or alterations of buildings or facilities on which construction has begun, or all approvals for... requirements set forth in Appendices B and D to 36 CFR part 1191, which apply to buildings and facilities... Making Buildings and Facilities Accessible to and Usable by the Physically Handicapped). This paragraph...

  12. 49 CFR 37.9 - Standards for accessible transportation facilities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... construction or alterations of buildings or facilities on which construction has begun, or all approvals for... requirements set forth in Appendices B and D to 36 CFR part 1191, which apply to buildings and facilities... Making Buildings and Facilities Accessible to and Usable by the Physically Handicapped). This paragraph...

  13. 49 CFR 37.9 - Standards for accessible transportation facilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... construction or alterations of buildings or facilities on which construction has begun, or all approvals for... requirements set forth in appendices B and D to 36 CFR part 1191, which apply to buildings and facilities... Making Buildings and Facilities Accessible to and Usable by the Physically Handicapped). This paragraph...

  14. 49 CFR 37.9 - Standards for accessible transportation facilities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... construction or alterations of buildings or facilities on which construction has begun, or all approvals for... requirements set forth in Appendices B and D to 36 CFR part 1191, which apply to buildings and facilities... Making Buildings and Facilities Accessible to and Usable by the Physically Handicapped). This paragraph...

  15. 49 CFR 37.9 - Standards for accessible transportation facilities.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... construction or alterations of buildings or facilities on which construction has begun, or all approvals for... requirements set forth in Appendices B and D to 36 CFR part 1191, which apply to buildings and facilities... Making Buildings and Facilities Accessible to and Usable by the Physically Handicapped). This paragraph...

  16. 14 CFR 171.53 - Reports.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Reports. 171.53 Section 171.53 Aeronautics... FACILITIES NON-FEDERAL NAVIGATION FACILITIES Instrument Landing System (ILS) Facilities § 171.53 Reports. The owner of each facility to which this subpart applies shall make the following reports, at the times...

  17. 14 CFR 171.53 - Reports.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Reports. 171.53 Section 171.53 Aeronautics... FACILITIES NON-FEDERAL NAVIGATION FACILITIES Instrument Landing System (ILS) Facilities § 171.53 Reports. The owner of each facility to which this subpart applies shall make the following reports, at the times...

  18. 14 CFR 171.13 - Reports.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Reports. 171.13 Section 171.13 Aeronautics... FACILITIES NON-FEDERAL NAVIGATION FACILITIES VOR Facilities § 171.13 Reports. The owner of each facility to which this subpart applies shall make the following reports on forms furnished by the FAA, at the times...

  19. 14 CFR 171.53 - Reports.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Reports. 171.53 Section 171.53 Aeronautics... FACILITIES NON-FEDERAL NAVIGATION FACILITIES Instrument Landing System (ILS) Facilities § 171.53 Reports. The owner of each facility to which this subpart applies shall make the following reports, at the times...

  20. 14 CFR 171.13 - Reports.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Reports. 171.13 Section 171.13 Aeronautics... FACILITIES NON-FEDERAL NAVIGATION FACILITIES VOR Facilities § 171.13 Reports. The owner of each facility to which this subpart applies shall make the following reports on forms furnished by the FAA, at the times...

  1. 14 CFR 171.13 - Reports.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Reports. 171.13 Section 171.13 Aeronautics... FACILITIES NON-FEDERAL NAVIGATION FACILITIES VOR Facilities § 171.13 Reports. The owner of each facility to which this subpart applies shall make the following reports on forms furnished by the FAA, at the times...

  2. Conceptual design project: Accelerator complex for nuclear physics studies and boron neutron capture therapy application at the Yerevan Physics Institute (YerPhI) Yerevan, Armenia

    NASA Astrophysics Data System (ADS)

    Avagyan, R. H.; Kerobyan, I. A.

    2015-07-01

    The final goal of the proposed project is the creation of a Complex of Accelerator Facilities at the Yerevan Physics Institute (CAF YerPhI) for nuclear physics basic researches, as well as for applied programs including boron neutron capture therapy (BNCT). The CAF will include the following facilities: Cyclotron C70, heavy material (uranium) target/ion source, mass-separator, LINAC1 (0.15-1.5 MeV/u) and LINAC2 (1.5-10 MeV/u). The delivered by C70 proton beams with energy 70 MeV will be used for investigations in the field of basic nuclear physics and with energy 30 MeV for use in applications.

  3. Laboratory Animal Facilities. Laboratory Design Notes.

    ERIC Educational Resources Information Center

    Jonas, Albert M.

    1965-01-01

    Design of laboratory animal facilities must be functional. Accordingly, the designer should be aware of the complex nature of animal research and specifically the type of animal research which will be conducted in a new facility. The building of animal-care facilities in research institutions requires special knowledge in laboratory animal…

  4. Development of an integrated set of research facilities for the support of research flight test

    NASA Technical Reports Server (NTRS)

    Moore, Archie L.; Harney, Constance D.

    1988-01-01

    The Ames-Dryden Flight Research Facility (DFRF) serves as the site for high-risk flight research on many one-of-a-kind test vehicles like the X-29A advanced technology demonstrator, F-16 advanced fighter technology integration (AFTI), AFTI F-111 mission adaptive wing, and F-18 high-alpha research vehicle (HARV). Ames-Dryden is on a section of the historic Muroc Range. The facility is oriented toward the testing of high-performance aircraft, as shown by its part in the development of the X-series aircraft. Given the cost of research flight tests and the complexity of today's systems-driven aircraft, an integrated set of ground support experimental facilities is a necessity. In support of the research flight test of highly advanced test beds, the DFRF is developing a network of facilities to expedite the acquisition and distribution of flight research data to the researcher. The network consists of an array of experimental ground-based facilities and systems as nodes and the necessary telecommunications paths to pass research data and information between these facilities. This paper presents the status of the current network, an overview of current developments, and a prospectus on future major enhancements.

  5. Industrial uses of radiation processing in Belgium

    NASA Astrophysics Data System (ADS)

    Lacroix, J. P.

    Since 1979, the Irradiation Department of IRE, in conjunction with universities and the industrial sector, has set up an extensive programme of research, development and promotion of the radiation process applied to cross-linking and polymerization of plastics, to waste treatment and to food preservation. Starting from scratch, it is thanks to our research in this last-mentioned field that we have been able to develop and to increase the application of the irradiation process within the food industry. At present, two irradiation facilities of a total design capacity of 2.5 10 6 Ci irradiate 24 hours per day mostly for the agro-industry.

  6. Development and flight test of an experimental maneuver autopilot for a highly maneuverable aircraft

    NASA Technical Reports Server (NTRS)

    Duke, Eugene L.; Jones, Frank P.; Roncoli, Ralph B.

    1986-01-01

    This report presents the development of an experimental flight test maneuver autopilot (FTMAP) for a highly maneuverable aircraft. The essence of this technique is the application of an autopilot to provide precise control during required flight test maneuvers. This newly developed flight test technique is being applied at the Dryden Flight Research Facility of NASA Ames Research Center. The FTMAP is designed to increase the quantity and quality of data obtained in test flight. The technique was developed and demonstrated on the highly maneuverable aircraft technology (HiMAT) vehicle. This report describes the HiMAT vehicle systems, maneuver requirements, FTMAP development process, and flight results.

  7. Filtered epithermal quasi-monoenergetic neutron beams at research reactor facilities.

    PubMed

    Mansy, M S; Bashter, I I; El-Mesiry, M S; Habib, N; Adib, M

    2015-03-01

    Filtered neutron techniques were applied to produce quasi-monoenergetic neutron beams in the energy range of 1.5-133keV at research reactors. A simulation study was performed to characterize the filter components and transmitted beam lines. The filtered beams were characterized in terms of the optimal thickness of the main and additive components. The filtered neutron beams had high purity and intensity, with low contamination from the accompanying thermal emission, fast neutrons and γ-rays. A computer code named "QMNB" was developed in the "MATLAB" programming language to perform the required calculations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. 40 CFR 60.5380 - What standards apply to centrifugal compressor affected facilities?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What standards apply to centrifugal compressor affected facilities? 60.5380 Section 60.5380 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Crude Oil and Natura...

  9. 40 CFR 60.5380 - What standards apply to centrifugal compressor affected facilities?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What standards apply to centrifugal compressor affected facilities? 60.5380 Section 60.5380 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Crude Oil and Natura...

  10. 40 CFR 445.1 - General applicability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... terms are defined in 40 CFR 257.2 and 260.10. (c) The provisions of this part do not apply to wastewater... contaminated ground water or wastewater from recovery pumping wells. (e) This part does not apply to discharges... Waste Treatment (CWT) facilities subject to 40 CFR part 437 so long as the CWT facility commingles the...

  11. 40 CFR 445.1 - General applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... terms are defined in 40 CFR 257.2 and 260.10. (c) The provisions of this part do not apply to wastewater... contaminated ground water or wastewater from recovery pumping wells. (e) This part does not apply to discharges... Waste Treatment (CWT) facilities subject to 40 CFR part 437 so long as the CWT facility commingles the...

  12. 40 CFR 445.1 - General applicability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... terms are defined in 40 CFR 257.2 and 260.10. (c) The provisions of this part do not apply to wastewater... contaminated ground water or wastewater from recovery pumping wells. (e) This part does not apply to discharges... Waste Treatment (CWT) facilities subject to 40 CFR part 437 so long as the CWT facility commingles the...

  13. 40 CFR 60.5375 - What standards apply to gas well affected facilities?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What standards apply to gas well affected facilities? 60.5375 Section 60.5375 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Crude Oil and Natural Gas...

  14. 40 CFR 60.5375 - What standards apply to gas well affected facilities?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What standards apply to gas well affected facilities? 60.5375 Section 60.5375 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Crude Oil and Natural Gas...

  15. 40 CFR 63.11164 - What General Provisions apply to primary zinc production facilities?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 15 2013-07-01 2013-07-01 false What General Provisions apply to primary zinc production facilities? 63.11164 Section 63.11164 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED)...

  16. 40 CFR 63.11164 - What General Provisions apply to primary zinc production facilities?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 15 2012-07-01 2012-07-01 false What General Provisions apply to primary zinc production facilities? 63.11164 Section 63.11164 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED)...

  17. 40 CFR 63.11164 - What General Provisions apply to primary zinc production facilities?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 15 2014-07-01 2014-07-01 false What General Provisions apply to primary zinc production facilities? 63.11164 Section 63.11164 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED)...

  18. 41 CFR 102-74.330 - What smoking restrictions apply to outside areas under Executive branch control?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false What smoking... MANAGEMENT REGULATION REAL PROPERTY 74-FACILITY MANAGEMENT Facility Management Smoking § 102-74.330 What smoking restrictions apply to outside areas under Executive branch control? Effective June 19, 2009...

  19. 41 CFR 102-74.330 - What smoking restrictions apply to outside areas under Executive branch control?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false What smoking... MANAGEMENT REGULATION REAL PROPERTY 74-FACILITY MANAGEMENT Facility Management Smoking § 102-74.330 What smoking restrictions apply to outside areas under Executive branch control? Effective June 19, 2009...

  20. 41 CFR 102-74.330 - What smoking restrictions apply to outside areas under Executive branch control?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false What smoking... MANAGEMENT REGULATION REAL PROPERTY 74-FACILITY MANAGEMENT Facility Management Smoking § 102-74.330 What smoking restrictions apply to outside areas under Executive branch control? Effective June 19, 2009...

  1. 41 CFR 102-74.330 - What smoking restrictions apply to outside areas under Executive branch control?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What smoking... MANAGEMENT REGULATION REAL PROPERTY 74-FACILITY MANAGEMENT Facility Management Smoking § 102-74.330 What smoking restrictions apply to outside areas under Executive branch control? Effective June 19, 2009...

  2. 41 CFR 102-74.330 - What smoking restrictions apply to outside areas under Executive branch control?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false What smoking... MANAGEMENT REGULATION REAL PROPERTY 74-FACILITY MANAGEMENT Facility Management Smoking § 102-74.330 What smoking restrictions apply to outside areas under Executive branch control? Effective June 19, 2009...

  3. 36 CFR 1280.42 - When do the rules in this subpart apply?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false When do the rules in this subpart apply? 1280.42 Section 1280.42 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION NARA FACILITIES USE OF NARA FACILITIES What Are the Rules for Filming, Photographing, or...

  4. 36 CFR 1280.42 - When do the rules in this subpart apply?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false When do the rules in this subpart apply? 1280.42 Section 1280.42 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION NARA FACILITIES USE OF NARA FACILITIES What Are the Rules for Filming, Photographing, or...

  5. 36 CFR 1280.42 - When do the rules in this subpart apply?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false When do the rules in this subpart apply? 1280.42 Section 1280.42 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION NARA FACILITIES USE OF NARA FACILITIES What Are the Rules for Filming, Photographing, or...

  6. 36 CFR 1280.42 - When do the rules in this subpart apply?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false When do the rules in this subpart apply? 1280.42 Section 1280.42 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION NARA FACILITIES USE OF NARA FACILITIES What Are the Rules for Filming, Photographing, or...

  7. 48 CFR 235.015-70 - Special use allowances for research facilities acquired by educational institutions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., acquired for the purpose of conducting scientific research under contracts with departments and agencies of... research facilities acquired by educational institutions. 235.015-70 Section 235.015-70 Federal Acquisition... CONTRACTING RESEARCH AND DEVELOPMENT CONTRACTING 235.015-70 Special use allowances for research facilities...

  8. 48 CFR 235.015-70 - Special use allowances for research facilities acquired by educational institutions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., acquired for the purpose of conducting scientific research under contracts with departments and agencies of... research facilities acquired by educational institutions. 235.015-70 Section 235.015-70 Federal Acquisition... CONTRACTING RESEARCH AND DEVELOPMENT CONTRACTING 235.015-70 Special use allowances for research facilities...

  9. 48 CFR 235.015-70 - Special use allowances for research facilities acquired by educational institutions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., acquired for the purpose of conducting scientific research under contracts with departments and agencies of... research facilities acquired by educational institutions. 235.015-70 Section 235.015-70 Federal Acquisition... CONTRACTING RESEARCH AND DEVELOPMENT CONTRACTING 235.015-70 Special use allowances for research facilities...

  10. Work with Us | Photovoltaic Research | NREL

    Science.gov Websites

    Research Facility (SERF) Science and Technology Facility (S&TF) Outdoor Test Facility (OTF) Energy the Hands On Photovoltaic Experience (HOPE). Photo of a researcher in a lab Photovoltaic research and related activities occur in various locations across the NREL campus, including the Solar Energy Research

  11. The 1993/1994 NASA Graduate Student Researchers Program

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The NASA Graduate Student Researchers Program (GSRP) attempts to reach a culturally diverse group of promising U.S. graduate students whose research interests are compatible with NASA's programs in space science and aerospace technology. Each year we select approximately 100 new awardees based on competitive evaluation of their academic qualifications, their proposed research plan and/or plan of study, and their planned utilization of NASA research facilities. Fellowships of up to $22,000 are awarded for one year and are renewable, based on satisfactory progress, for a total of three years. Approximately 300 graduate students are, thus, supported by this program at any one time. Students may apply any time during their graduate career or prior to receiving their baccalaureate degree. An applicant must be sponsored by his/her graduate department chair or faculty advisor; this book discusses the GSRP in great detail.

  12. Applicability of the 5S management method for quality improvement in health-care facilities: a review.

    PubMed

    Kanamori, Shogo; Shibanuma, Akira; Jimba, Masamine

    2016-01-01

    The 5S management method (where 5S stands for sort, set in order, shine, standardize, and sustain) was originally implemented by manufacturing enterprises in Japan. It was then introduced to the manufacturing sector in the West and eventually applied to the health sector for organizing and standardizing the workplace. 5S has recently received attention as a potential solution for improving government health-care services in low- and middle-income countries. We conducted a narrative literature review to explore its applicability to health-care facilities globally, with a focus on three aspects: (a) the context of its application, (b) its impacts, and (c) its adoption as part of government initiatives. To identify relevant research articles, we researched public health databases in English, including CINAHL, PubMed, ScienceDirect, and Web of Science. We found 15 of the 114 articles obtained from the search results to be relevant for full-text analysis of the context and impacts of the 5S application. To identify additional information particularly on its adoption as part of government initiatives, we also examined other types of resources including reference books, reports, didactic materials, government documents, and websites. The 15 empirical studies highlighted its application in primary health-care facilities and a wide range of hospital areas in Brazil, India, Jordan, Senegal, Sri Lanka, Tanzania, the UK, and the USA. The review also found that 5S was considered to be the starting point for health-care quality improvement. Ten studies presented its impacts on quality improvements; the changes resulting from the 5S application were classified into the three dimensions of safety, efficiency, and patient-centeredness. Furthermore, 5S was adopted as part of government quality improvement strategies in India, Senegal, Sri Lanka, and Tanzania. 5S could be applied to health-care facilities regardless of locations. It could be not only a tool for health workers and facility managers but also a strategic option for policymakers. They could consider 5S as the starting point of a government-led quality improvement initiative for improving safety, efficiency, or patient-centeredness aspects particularly in low- and middle-income countries. However, the evidence base, particularly in resource-poor settings, must be expanded.

  13. COOMET pilot comparison 473/RU-a/09: Comparison of hydrophone calibrations in the frequency range 250 Hz to 200 kHz

    NASA Astrophysics Data System (ADS)

    Yi, Chen; Isaev, A. E.; Yuebing, Wang; Enyakov, A. M.; Teng, Fei; Matveev, A. N.

    2011-01-01

    A description is given of the COOMET project 473/RU-a/09: a pilot comparison of hydrophone calibrations at frequencies from 250 Hz to 200 kHz between Hangzhou Applied Acoustics Research Institute (HAARI, China)—pilot laboratory—and Russian National Research Institute for Physicotechnical and Radio Engineering Measurements (VNIIFTRI, Designated Institute of Russia of the CIPM MRA). Two standard hydrophones, B&K 8104 and TC 4033, were calibrated and compared to assess the current state of hydrophone calibration of HAARI (China) and Russia. Three different calibration methods were applied: a vibrating column method, a free-field reciprocity method and a comparison method. The standard facilities of each laboratory were used, and three different sound fields were applied: pressure field, free-field and reverberant field. The maximum deviation of the sensitivities of two hydrophones between the participants' results was 0.36 dB. Main text. To reach the main text of this paper, click on Final Report. The final report has been peer-reviewed and approved for publication by the CCAUV-KCWG.

  14. Proliferation resistance assessments during the design phase of a recycling facility as a means of reducing proliferation risks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindell, M.A.; Grape, S.; Haekansson, A.

    The sustainability criterion for Gen IV nuclear energy systems inherently presumes the availability of efficient fuel recycling capabilities. One area for research on advanced fuel recycling concerns safeguards aspects of this type of facilities. Since a recycling facility may be considered as sensitive from a non-proliferation perspective, it is important to address these issues early in the design process, according to the principle of Safeguards By Design. Presented in this paper is a mode of procedure, where assessments of the proliferation resistance (PR) of a recycling facility for fast reactor fuel have been performed so as to identify the weakestmore » barriers to proliferation of nuclear material. Two supplementing established methodologies have been applied; TOPS (Technological Opportunities to increase Proliferation resistance of nuclear power Systems) and PR-PP (Proliferation Resistance and Physical Protection evaluation methodology). The chosen fuel recycling facility belongs to a small Gen IV lead-cooled fast reactor system that is under study in Sweden. A schematic design of the recycling facility, where actinides are separated using solvent extraction, has been examined. The PR assessment methodologies make it possible to pinpoint areas in which the facility can be improved in order to reduce the risk of diversion. The initial facility design may then be slightly modified and/or safeguards measures may be introduced to reduce the total identified proliferation risk. After each modification of design and/or safeguards implementation, a new PR assessment of the revised system can then be carried out. This way, each modification can be evaluated and new ways to further enhance the proliferation resistance can be identified. This type of iterative procedure may support Safeguards By Design in the planning of new recycling plants and other nuclear facilities. (authors)« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaFreniere, L.

    The Commodity Credit Corporation (CCC), an agency of the U.S. Department of Agriculture (USDA), formerly operated a grain storage facility approximately 1,100 ft north of Centralia from 1949 until 1971. Subsequently, a concrete mixing plant operated on the site (FSA 1997). None of the CCC/USDA structures remain, though belowgrade foundations related to structures associated with the concrete mixing operations are evident. Two additional grain storage facilities currently exist in and near Centralia: the Nemaha County Co-op, approximately 4,000 ft south of the former CCC/USDA facility, and a private grain storage facility near the Don Morris residence, 3,500 ft north ofmore » the former CCC/USDA facility (Figure 1.1). The property on which the former facility was located is currently owned by Jeanne Burdett Lacky of Seneca, Kansas. In August-September 1998 the Kansas Department of Health and Environment (KDHE) conducted preliminary investigations at the former CCC/USDA facility, on the basis of the detection of carbon tetrachloride in the domestic well at the Don Morris residence (north of the former CCC/USDA facility). Prior to 1986, commercial grain fumigants containing carbon tetrachloride were commonly used by the CCC/USDA and the grain storage industry to preserve grain. The details of previous investigations in the area and a summary of the findings were reported previously (Argonne 2002a). Because the KDHE detected carbon tetrachloride in groundwater and soil at the former CCC/USDA facility at Centralia that might be related to historical use of carbon tetrachloride-based grain fumigants at the facility, the CCC/USDA is conducting an environmental site investigation to determine the source(s) and extent of the carbon tetrachloride contamination at the former facility near Centralia and to assess whether the contamination requires remedial action. The town of Centralia and all residents near the former CCC/USDA facility currently obtain their water from Rural Water District No.3. Therefore, local residents are not drinking or using the contaminated groundwater detected at the former facility. The Environmental Research Division of Argonne National Laboratory is performing the investigation at Centralia on behalf of the CCC/USDA. Argonne is a nonprofit, multidisciplinary research center operated by the University of Chicago for the U.S. Department of Energy (DOE). The CCC/USDA has entered into an interagency agreement with DOE, under which Argonne provides technical assistance to the CCC/USDA with environmental site characterization and remediation at its former grain storage facilities. At these former facilities, Argonne is applying its QuickSite{reg_sign} environmental site characterization methodology. QuickSite is Argonne's proprietary implementation system for the expedited site characterization process. This methodology has been applied successfully at a number of former CCC/USDA facilities in Nebraska and Kansas and has been adopted by the American Society for Testing and Materials (ASTM 1998) as standard practice for environmental site characterization. Argonne's investigations are conducted with a phased approach. Phase I focuses primarily on the investigation and evaluation of geology, hydrogeology, and hydrogeochemistry to identify potential contaminant pathways at a site. Phase II focuses on delineating the contamination present in both soil and aquifers along the potential migration pathways. Phase I of Argonne's investigation was conducted in March-April 2002. The results and findings of the Phase I investigation at Centralia were reported previously (Argonne 2003). This report documents the findings of the Phase II activities at Centralia. Section 1 provides a brief history of the area, a review of the Phase I results and conclusions, technical objectives for the Phase II investigation, and a brief description of the sections contained in this report. Section 2 describes the investigative methods used during the Phase II investigation. Section 3 presents all of the data obtained during the investigation. Section 4 describes the interpretation of the pertinent data used to meet the technical objectives of the investigation. Section 5 presents the conclusions of the investigation relative to the technical objectives and outlines further recommendations.« less

  16. An Investment Level Decision Method to Secure Long-term Reliability

    NASA Astrophysics Data System (ADS)

    Bamba, Satoshi; Yabe, Kuniaki; Seki, Tomomichi; Shibaya, Tetsuji

    The slowdown in power demand increase and facility replacement causes the aging and lower reliability in power facility. And the aging is followed by the rapid increase of repair and replacement when many facilities reach their lifetime in future. This paper describes a method to estimate the repair and replacement costs in future by applying the life-cycle cost model and renewal theory to the historical data. This paper also describes a method to decide the optimum investment plan, which replaces facilities in the order of cost-effectiveness by setting replacement priority formula, and the minimum investment level to keep the reliability. Estimation examples applied to substation facilities show that the reasonable and leveled future cash-out can keep the reliability by lowering the percentage of replacements caused by fatal failures.

  17. Antiproton-proton annihilation into light neutral meson pairs within an effective meson theory

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Bystritskiy, Yury M.; Ahmadov, Azad I.; Tomasi-Gustafsson, Egle

    2017-08-01

    Antiproton-proton annihilation into light neutral mesons in the few GeV energy domain is investigated in view of a global description of the existing data and predictions for future work at the Antiproton Annihilation at Darmstadt (PANDA) experiment at the Facility for Antiproton and Ion Research (FAIR). An effective meson model earlier developed, with mesonic and baryonic degrees of freedom in s , t , and u channels, is applied here to π0π0 production. Form factors with logarithmic s and t (u ) dependencies are applied. A fair agreement with the existing angular distributions is obtained. Applying SU(3) symmetry, it is straightforward to recover the angular distributions for π0η and η η production in the same energy range. A good agreement is generally obtained with all existing data.

  18. Metrics for Success: Strategies for Enabling Core Facility Performance and Assessing Outcomes

    PubMed Central

    Hockberger, Philip E.; Meyn, Susan M.; Nicklin, Connie; Tabarini, Diane; Auger, Julie A.

    2016-01-01

    Core Facilities are key elements in the research portfolio of academic and private research institutions. Administrators overseeing core facilities (core administrators) require assessment tools for evaluating the need and effectiveness of these facilities at their institutions. This article discusses ways to promote best practices in core facilities as well as ways to evaluate their performance across 8 of the following categories: general management, research and technical staff, financial management, customer base and satisfaction, resource management, communications, institutional impact, and strategic planning. For each category, we provide lessons learned that we believe contribute to the effective and efficient overall management of core facilities. If done well, we believe that encouraging best practices and evaluating performance in core facilities will demonstrate and reinforce the importance of core facilities in the research and educational mission of institutions. It will also increase job satisfaction of those working in core facilities and improve the likelihood of sustainability of both facilities and personnel. PMID:26848284

  19. Metrics for Success: Strategies for Enabling Core Facility Performance and Assessing Outcomes.

    PubMed

    Turpen, Paula B; Hockberger, Philip E; Meyn, Susan M; Nicklin, Connie; Tabarini, Diane; Auger, Julie A

    2016-04-01

    Core Facilities are key elements in the research portfolio of academic and private research institutions. Administrators overseeing core facilities (core administrators) require assessment tools for evaluating the need and effectiveness of these facilities at their institutions. This article discusses ways to promote best practices in core facilities as well as ways to evaluate their performance across 8 of the following categories: general management, research and technical staff, financial management, customer base and satisfaction, resource management, communications, institutional impact, and strategic planning. For each category, we provide lessons learned that we believe contribute to the effective and efficient overall management of core facilities. If done well, we believe that encouraging best practices and evaluating performance in core facilities will demonstrate and reinforce the importance of core facilities in the research and educational mission of institutions. It will also increase job satisfaction of those working in core facilities and improve the likelihood of sustainability of both facilities and personnel.

  20. Project Nuclotron-based Ion Collider fAcility at JINR

    NASA Astrophysics Data System (ADS)

    Kekelidze, V. D.; Matveev, V. A.; Meshkov, I. N.; Sorin, A. S.; Trubnikov, G. V.

    2017-09-01

    The project of Nuclotron-based Ion Collider fAcility (NICA) that is under development at JINR (Dubna) is presented. The general goals of the project are experimental studies of both hot and dense baryonic matter and spin physics (in collisions of polarized protons and deuterons). The first program requires providing of heavy ion collisions in the energy range of √ {{s_{NN}}} = 4-11 Gev at average luminosity of L = 1 × 1027 cm-2 s-1 for 197Au79+ nuclei. The polarized beams mode is proposed to be used in energy range of √ {{s_{NN}}} = 12-27 Gev (protons at luminosity of L ≥ 1 × 1030 cm-2 s-1. The report contains description of the facility scheme and its characteristics in heavy ion operation mode. The Collider will be equipped with two detectors—MultiPurpose Detector (MPD), which is in an active stage of construction, and Spin Physics Detector (SPD) that is in the stage of conceptual design. Fixed target experiment "Baryonic matter at Nuclotron" (BM@N) will be performed in very beginning of the project. The wide program of applied researches at NICA facility is being developed as well.

  1. Implementation of a Water Flow Control System into the ISS'S Planned Fluids & Combustion Facility

    NASA Technical Reports Server (NTRS)

    Edwards, Daryl A.

    2003-01-01

    The Fluids and Combustion Facility (FCF) will become an ISS facility capable of performing basic combustion and fluids research. The facility consists of two independent payload racks specifically configured to support multiple experiments over the life of the ISS. Both racks will depend upon the ISS's Moderate Temperature Loop (MTL) for removing waste heat generated by the avionics and experiments operating within the racks. By using the MTL, constraints are imposed by the ISS vehicle on how the coolant resource is used. On the other hand, the FCF depends upon effective thermal control for maximizing life of the hardware and for supplying proper boundary conditions for the experiments. In the implementation of a design solution, significant factors in the selection of the hardware included ability to measure and control relatively low flow rates, ability to throttle flow within the time constraints of the ISS MTL, conserve energy usage, observe low mass and small volume requirements. An additional factor in the final design solution selection was considering how the system would respond to a loss of power event. This paper describes the method selected to satisfy the FCF design requirements while maintaining the constraints applied by the ISS vehicle.

  2. Developing Mobile- and BIM-Based Integrated Visual Facility Maintenance Management System

    PubMed Central

    Su, Yu-Chih

    2013-01-01

    Facility maintenance management (FMM) has become an important topic for research on the operation phase of the construction life cycle. Managing FMM effectively is extremely difficult owing to various factors and environments. One of the difficulties is the performance of 2D graphics when depicting maintenance service. Building information modeling (BIM) uses precise geometry and relevant data to support the maintenance service of facilities depicted in 3D object-oriented CAD. This paper proposes a new and practical methodology with application to FMM using BIM technology. Using BIM technology, this study proposes a BIM-based facility maintenance management (BIMFMM) system for maintenance staff in the operation and maintenance phase. The BIMFMM system is then applied in selected case study of a commercial building project in Taiwan to verify the proposed methodology and demonstrate its effectiveness in FMM practice. Using the BIMFMM system, maintenance staff can access and review 3D BIM models for updating related maintenance records in a digital format. Moreover, this study presents a generic system architecture and its implementation. The combined results demonstrate that a BIMFMM-like system can be an effective visual FMM tool. PMID:24227995

  3. Facility Design and Health Management Program at the Sinnhuber Aquatic Research Laboratory

    PubMed Central

    Barton, Carrie L.; Johnson, Eric W.

    2016-01-01

    Abstract The number of researchers and institutions moving to the utilization of zebrafish for biomedical research continues to increase because of the recognized advantages of this model. Numerous factors should be considered before building a new or retooling an existing facility. Design decisions will directly impact the management and maintenance costs. We and others have advocated for more rigorous approaches to zebrafish health management to support and protect an increasingly diverse portfolio of important research. The Sinnhuber Aquatic Research Laboratory (SARL) is located ∼3 miles from the main Oregon State University campus in Corvallis, Oregon. This facility supports several research programs that depend heavily on the use of adult, larval, and embryonic zebrafish. The new zebrafish facility of the SARL began operation in 2007 with a commitment to build and manage an efficient facility that diligently protects human and fish health. An important goal was to ensure that the facility was free of Pseudoloma neurophilia (Microsporidia), which is very common in zebrafish research facilities. We recognize that there are certain limitations in space, resources, and financial support that are institution dependent, but in this article, we describe the steps taken to build and manage an efficient specific pathogen-free facility. PMID:26981844

  4. Facility Design and Health Management Program at the Sinnhuber Aquatic Research Laboratory.

    PubMed

    Barton, Carrie L; Johnson, Eric W; Tanguay, Robert L

    2016-07-01

    The number of researchers and institutions moving to the utilization of zebrafish for biomedical research continues to increase because of the recognized advantages of this model. Numerous factors should be considered before building a new or retooling an existing facility. Design decisions will directly impact the management and maintenance costs. We and others have advocated for more rigorous approaches to zebrafish health management to support and protect an increasingly diverse portfolio of important research. The Sinnhuber Aquatic Research Laboratory (SARL) is located ∼3 miles from the main Oregon State University campus in Corvallis, Oregon. This facility supports several research programs that depend heavily on the use of adult, larval, and embryonic zebrafish. The new zebrafish facility of the SARL began operation in 2007 with a commitment to build and manage an efficient facility that diligently protects human and fish health. An important goal was to ensure that the facility was free of Pseudoloma neurophilia (Microsporidia), which is very common in zebrafish research facilities. We recognize that there are certain limitations in space, resources, and financial support that are institution dependent, but in this article, we describe the steps taken to build and manage an efficient specific pathogen-free facility.

  5. Integrating Antarctic Science Into Geospace System Science

    NASA Astrophysics Data System (ADS)

    Kelly, J. D.

    2010-12-01

    Addressing the scientific, technical, and sociological challenges of the future requires both detailed basic research and system based approaches to the entire geospace system from the Earth’s core, through solid Earth, ice, oceans, atmosphere, ionosphere, and magnetosphere to the Sun’s outer atmosphere and even beyond. Fully integrating Antarctic science, and fully exploiting the scientific research possibilities of the Antarctic continent through effective and efficient support infrastructure, will be a very important contribution to future success. Amongst many new facilities and programs which can and are being proposed, the Moveable Antarctic Incoherent Scatter Radar (MAISR) at McMurdo illustrates the potential for innovative future science. This poster uses some of the proposed science programs to show how the scientific community can use the data products of this facility, and how they can contribute to the development of the tools and mechanisms for proposing, executing, and utilizing such new research capabilities. In particular, incoherent scatter radars played a big role in data collection during the recent International Polar Year and plans for future extended operations, including those in Antarctica, will be discussed in the light of lessons learnt in applying observations to global modeling developments.

  6. Calculating Nozzle Side Loads using Acceleration Measurements of Test-Based Models

    NASA Technical Reports Server (NTRS)

    Brown, Andrew M.; Ruf, Joe

    2007-01-01

    As part of a NASA/MSFC research program to evaluate the effect of different nozzle contours on the well-known but poorly characterized "side load" phenomena, we attempt to back out the net force on a sub-scale nozzle during cold-flow testing using acceleration measurements. Because modeling the test facility dynamics is problematic, new techniques for creating a "pseudo-model" of the facility and nozzle directly from modal test results are applied. Extensive verification procedures were undertaken, resulting in a loading scale factor necessary for agreement between test and model based frequency response functions. Side loads are then obtained by applying a wide-band random load onto the system model, obtaining nozzle response PSD's, and iterating both the amplitude and frequency of the input until a good comparison of the response with the measured response PSD for a specific time point is obtained. The final calculated loading can be used to compare different nozzle profiles for assessment during rocket engine nozzle development and as a basis for accurate design of the nozzle and engine structure to withstand these loads. The techniques applied within this procedure have extensive applicability to timely and accurate characterization of all test fixtures used for modal test.A viewgraph presentation on a model-test based pseudo-model used to calculate side loads on rocket engine nozzles is included. The topics include: 1) Side Loads in Rocket Nozzles; 2) Present Side Loads Research at NASA/MSFC; 3) Structural Dynamic Model Generation; 4) Pseudo-Model Generation; 5) Implementation; 6) Calibration of Pseudo-Model Response; 7) Pseudo-Model Response Verification; 8) Inverse Force Determination; 9) Results; and 10) Recent Work.

  7. Security basics for long-term care facilities.

    PubMed

    Green, Martin

    2015-01-01

    The need for Long-Term Care (LTC) facilities is growing, the author reports, and along with it the need for programs to address the major security concerns of such facilities. In this article he explains how to apply the IAHSS Healthcare Security Industry Guidelines and the Design Guidelines to achieve a safer LTC facility.

  8. Biosecurity measures in 48 isolation facilities managing highly infectious diseases.

    PubMed

    Puro, Vincenzo; Fusco, Francesco M; Schilling, Stefan; Thomson, Gail; De Iaco, Giuseppina; Brouqui, Philippe; Maltezou, Helena C; Bannister, Barbara; Gottschalk, René; Brodt, Hans-Rheinhard; Ippolito, Giuseppe

    2012-06-01

    Biosecurity measures are traditionally applied to laboratories, but they may also be usefully applied in highly specialized clinical settings, such as the isolation facilities for the management of patients with highly infectious diseases (eg, viral hemorrhagic fevers, SARS, smallpox, potentially severe pandemic flu, and MDR- and XDR-tuberculosis). In 2009 the European Network for Highly Infectious Diseases conducted a survey in 48 isolation facilities in 16 European countries to determine biosecurity measures for access control to the facility. Security personnel are present in 39 facilities (81%). In 35 facilities (73%), entrance to the isolation area is restricted; control methods include electronic keys, a PIN system, closed-circuit TV, and guards at the doors. In 25 facilities (52%), identification and registration of all staff entering and exiting the isolation area are required. Access control is used in most surveyed centers, but specific lacks exist in some facilities. Further data are needed to assess other biosecurity aspects, such as the security measures during the transportation of potentially contaminated materials and measures to address the risk of an "insider attack."

  9. Biosecurity Measures in 48 Isolation Facilities Managing Highly Infectious Diseases

    PubMed Central

    Puro, Vincenzo; Schilling, Stefan; Thomson, Gail; De Iaco, Giuseppina; Brouqui, Philippe; Maltezou, Helena C.; Bannister, Barbara; Gottschalk, René; Brodt, Hans-Rheinhard; Ippolito, Giuseppe

    2012-01-01

    Biosecurity measures are traditionally applied to laboratories, but they may also be usefully applied in highly specialized clinical settings, such as the isolation facilities for the management of patients with highly infectious diseases (eg, viral hemorrhagic fevers, SARS, smallpox, potentially severe pandemic flu, and MDR- and XDR-tuberculosis). In 2009 the European Network for Highly Infectious Diseases conducted a survey in 48 isolation facilities in 16 European countries to determine biosecurity measures for access control to the facility. Security personnel are present in 39 facilities (81%). In 35 facilities (73%), entrance to the isolation area is restricted; control methods include electronic keys, a PIN system, closed-circuit TV, and guards at the doors. In 25 facilities (52%), identification and registration of all staff entering and exiting the isolation area are required. Access control is used in most surveyed centers, but specific lacks exist in some facilities. Further data are needed to assess other biosecurity aspects, such as the security measures during the transportation of potentially contaminated materials and measures to address the risk of an “insider attack.” PMID:22571373

  10. KENNEDY SPACE CENTER, FLA. - The Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL), is nearing completion. The new lab is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

    NASA Image and Video Library

    2003-09-10

    KENNEDY SPACE CENTER, FLA. - The Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL), is nearing completion. The new lab is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

  11. Opportunity for academic research in a low-gravity environment - Crystal growth

    NASA Technical Reports Server (NTRS)

    Matthiesen, D. H.; Wargo, M. J.; Witt, A. F.

    1986-01-01

    The history of basic and applied research on crystal growth (CG), especially of semiconductor materials, is reviewed, stressing the dominance (at least in the U.S.) of industrial R&D projects over academic programs and the need for more extensive fundamental investigations. The NASA microgravity research program and the recommendations of the University Space Research Association are examined as they affect the availability of space facilities for academic CG research. Also included is a report on ground experiments on the effectiveness of magnetic fields in controlling vertical Bridgman CG and melt stability, using the apparatus employed in the Apollo-Soyuz experiments (Witt et al., 1978); the results are presented in graphs and briefly characterized. The role of NASA's microgravity CG program in stimulating academic work on CG, the importance of convection effects, CG work on materials other than semiconductors, and NSF support of CG research are discussed in a comment by R. F. Sekerka.

  12. Ion Beam Analysis of Diffusion in Diamondlike Carbon Films

    NASA Astrophysics Data System (ADS)

    Chaffee, Kevin Paul

    The van de Graaf accelerator facility at Case Western Reserve University was developed into an analytical research center capable of performing Rutherford Backscattering Spectrometry, Elastic Recoil Detection Analysis for hydrogen profiling, Proton Enhanced Scattering, and ^4 He resonant scattering for ^{16 }O profiling. These techniques were applied to the study of Au, Na^+, Cs ^+, and H_2O water diffusion in a-C:H films. The results are consistent with the fully constrained network model of the microstructure as described by Angus and Jansen.

  13. Final Environmental Impact Statement (FEIS)/Final Environmental Impact Report (FEIR). Otis Air National Guard Base, Wastewater Treatment Facility

    DTIC Science & Technology

    1990-06-01

    and G.E. Ness, 1982, Survival of Vibrio cholerae and Escherichia coli in Estuarine Water and Sediments, Applied and Environmental Microbiology, 43...and publications in areas of water and wastewater treatment. David Tomasko, Ph.D., 1985. University of New Mexico . Staff Hydrogeologist. Research...Reserve in California. We are working on EIS’s for the U.S. Air Force Base Closings in realignment in California, New Mexico and Washington, and a very

  14. Improving efficiency of polystyrene concrete production with composite binders

    NASA Astrophysics Data System (ADS)

    Lesovik, R. V.; Ageeva, M. S.; Lesovik, G. A.; Sopin, D. M.; Kazlitina, O. V.; Mitrokhina, A. A.

    2018-03-01

    According to leading marketing researchers, the construction market in Russia and CIS will continue growing at a rapid rate; this applies not only to a large-scale major construction, but to a construction of single-family houses and small-scale industrial facilities as well. Due to this, there are increased requirements for heat insulation of the building enclosures and a significant demand for efficient walling materials with high thermal performance. All these developments led to higher requirements imposed on the equipment that produces such materials.

  15. KSC-2012-6221

    NASA Image and Video Library

    2012-11-08

    CAPE CANAVERAL, Fla. -- Inside the Applied Physics Laboratory in the Operations and Checkout Building at NASA’s Kennedy Space Center in Florida, lead researcher Dr. Bob Youngquist demonstrates a technology developed for the Space Shuttle Program to a group of Society of Physics students. About 800 graduate and undergraduate physics students toured Kennedy facilities. A group of about 40 students toured laboratories in the Operations and Checkout Building and the EDL during their visit. The physics students were in Orlando for the 2012 Quadrennial Physics Congress. Photo credit: NASA/Cory Huston

  16. KSC-2012-6220

    NASA Image and Video Library

    2012-11-08

    CAPE CANAVERAL, Fla. -- Inside the Applied Physics Laboratory in the Operations and Checkout Building at NASA’s Kennedy Space Center in Florida, lead researcher Dr. Bob Youngquist describes technologies developed for the Space Shuttle Program to a group of Society of Physics students. About 800 graduate and undergraduate physics students toured Kennedy facilities. A group of about 40 students toured laboratories in the Operations and Checkout Building and the EDL during their visit. The physics students were in Orlando for the 2012 Quadrennial Physics Congress. Photo credit: NASA/Cory Huston

  17. New hypersonic facility capability at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Haas, Jeffrey E.; Chamberlin, Roger; Dicus, John H.

    1989-01-01

    Four facility activities are underway at NASA Lewis Research Center to develop new hypersonic propulsion test capability. Two of these efforts consist of upgrades to existing operational facilities. The other two activities will reactivate facilities that have been in a standby condition for over 15 years. These four activities are discussed and the new test facilities NASA Lewis will have in place to support evolving high speed research programs are described.

  18. Recruitment of ethnic minorities for public health research: An interpretive synthesis of experiences from six interlinked Danish studies.

    PubMed

    Nielsen, Annemette Ljungdalh; Jervelund, Signe Smith; Villadsen, Sarah Fredsted; Vitus, Kathrine; Ditlevsen, Kia; TØrslev, Mette Kirstine; Kristiansen, Maria

    2017-03-01

    This paper examines the importance of recruitment site in relation to the recruitment of ethnic minorities into health research. It presents a synthesis of experiences drawn from six interlinked Danish studies which applied different methods and used healthcare facilities and educational settings as sites for recruitment. Inspired by interpretive reviewing, data on recruitment methods from the different studies were synthesized with a focus on the various levels of recruitment success achieved. This involved an iterative process of comparison, analysis and discussion of experiences among the researchers involved. Success in recruitment seemed to depend partly on recruitment site. Using healthcare facilities as the recruitment site and healthcare professionals as gatekeepers was less efficient than using schools and employees from educational institutions. Successful study designs also depended on the possibility of singling out specific locations with a high proportion of the relevant ethnic minority target population. The findings, though based on a small number of cases, indicate that health professionals and healthcare institutions, despite their interest in high-quality health research into all population groups, fail to facilitate research access to some of the most disadvantaged groups, who need to be included in order to understand the mechanisms behind health disparities. This happens despite the genuine wish of many healthcare professionals to help facilitate such research. In this way, the findings indirectly emphasize the specific challenge of accessing more vulnerable and sick groups in research studies.

  19. Centrifuge Facility Conceptual System Study. Volume 1: Facility overview and habitats

    NASA Technical Reports Server (NTRS)

    Synnestvedt, Robert (Editor)

    1990-01-01

    The results are presented for a NASA Phase 1 study conducted from mid 1987 through mid 1989 at Ames Research Center. The Centrifuge Facility is the major element of the biological research facility for the implementation of NASA's Life Science Research Program on Space Station Freedom using non-human specimens (such as small primates, rodents, plants, insects, cell tissues). Five systems are described which comprise the Facility: habitats, holding units, centrifuge, glovebox, and service unit. Volume 1 presents a facility overview and describes the habitats - modular units which house living specimens.

  20. Research on the Construction Management and Sustainable Development of Large-Scale Scientific Facilities in China

    NASA Astrophysics Data System (ADS)

    Guiquan, Xi; Lin, Cong; Xuehui, Jin

    2018-05-01

    As an important platform for scientific and technological development, large -scale scientific facilities are the cornerstone of technological innovation and a guarantee for economic and social development. Researching management of large-scale scientific facilities can play a key role in scientific research, sociology and key national strategy. This paper reviews the characteristics of large-scale scientific facilities, and summarizes development status of China's large-scale scientific facilities. At last, the construction, management, operation and evaluation of large-scale scientific facilities is analyzed from the perspective of sustainable development.

  1. SPES and the neutron facilities at Laboratori Nazionali di Legnaro

    NASA Astrophysics Data System (ADS)

    Silvestrin, L.; Bisello, D.; Esposito, J.; Mastinu, P.; Prete, G.; Wyss, J.

    2016-03-01

    The SPES Radioactive Ion Beam (RIB) facility, now in the construction phase at INFN-LNL, has the aim to provide high-intensity and high-quality beams of neutron-rich nuclei for nuclear physics research as well as to develop an interdisciplinary research center based on the cyclotron proton beam. The SPES system is based on a dual-exit high-current cyclotron, with tunable proton beam energy 35-70MeV and 0.20-0.75mA. The first exit is used as proton driver to supply an ISOL system with an UCx Direct Target able to sustain a power of 10kW. The expected fission rate in the target is of the order of 10^{13} fissions per second. The exotic isotopes will be re-accelerated by the ALPI superconducting LINAC at energies of 10 A MeV and higher, for masses around A=130 amu, with an expected beam intensity of 10^7 - 10^9 pps. The second exit will be used for applied physics: radioisotope production for medicine and neutrons for material studies. Fast neutron spectra will be produced by the proton beam interaction with a conversion target. A production rate in excess of 10^{14} n/s can be achieved: this opens up the prospect of a high-flux neutron irradiation facility (NEPIR) to produce both discrete and continuous energy neutrons. A direct proton beam line is also envisaged. NEPIR and the direct proton line would dramatically increase the wide range of irradiation facilities presently available at LNL. We also present LENOS, a proposed project dedicated to accurate neutron cross-sections measurements using intense, well-characterized, broad energy neutron beams. Other activities already in operation at LNL are briefly reviewed: the SIRAD facility for proton and heavy-ion irradiation at the TANDEM-ALPI accelerator and the BELINA test facility at CN van de Graaff accelerator.

  2. 36 CFR § 1280.42 - When do the rules in this subpart apply?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true When do the rules in this subpart apply? § 1280.42 Section § 1280.42 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION NARA FACILITIES USE OF NARA FACILITIES What Are the Rules for Filming...

  3. Evaluating the Impact of Sea Level Rise and Coastal Flooding on NASA Centers and Facilities by Implementing Terrestrial Laser Scanning Surveys to Improve Coastal Digital Elevation and Inundation Models

    NASA Astrophysics Data System (ADS)

    Bell, L. J.; Nerem, R. S.; Williams, K.; Meertens, C.; Lestak, L.; Masters, D.

    2014-12-01

    Sea level is rising in response to climate change. Currently the global mean rate is a little over 3 mm/year, but it is expected to accelerate significantly over this century. This will have a profound impact on coastal populations and infrastructure, including NASA centers and facilities. A detailed study proposed by the University of Colorado's Center for Astrodynamics Research on the impact of sea level rise on several of NASA's most vulnerable facilities was recently funded by NASA. Individual surveys at several high-risk NASA centers were conducted and used as case studies for a broader investigation that needs to be done for coastal infrastructure around the country. The first two years of this study included implementing and conducting a terrestrial laser scanning (TLS) and GPS survey at Kennedy Space Center, Cape Canaveral, Florida, Wallops Flight Facility, Wallops Island, Virginia, Langley Research Center, Hampton, Virginia, and Ames Research Center, Moffett Field, California. We are currently using airborne LiDAR (Light Detection and Ranging) data and TLS (Terrestrial Laser Scanning) data to construct detailed digital elevation models (DEMs) of the facilities that we have assessed. The TLS data acquired at each center provides a very dense point cloud that is being used to improve the detail and accuracy of the digital elevation models currently available. We are also using GPS data we acquired at each center to assess the rate of vertical land movement at the facilities and to tie the DEM to tide gauges and other reference points. With completed, detailed DEMs of the topography and facilities at each center, a series of simple inundation models will then be applied to each area. We will use satellite altimeter data from TOPEX, Jason-1, and Jason-2 to assess the sea level changes observed near these NASA facilities over the last 20 years along with sea level projections from global climate models (GCMs) and semi-empirical projections to make detailed maps of sea level inundation through and up to the years 2050 and 2100 for varying amounts of sea level rise. We will also work with other selected investigators to assess the effects of tidal variations and storm surge when coupled with changes in mean sea level, as storm surge is likely when initial damage due to sea level rise will occur.

  4. Combustion Research Aboard the ISS Utilizing the Combustion Integrated Rack and Microgravity Science Glovebox

    NASA Technical Reports Server (NTRS)

    Sutliff, Thomas J.; Otero, Angel M.; Urban, David L.

    2002-01-01

    The Physical Sciences Research Program of NASA sponsors a broad suite of peer-reviewed research investigating fundamental combustion phenomena and applied combustion research topics. This research is performed through both ground-based and on-orbit research capabilities. The International Space Station (ISS) and two facilities, the Combustion Integrated Rack and the Microgravity Science Glovebox, are key elements in the execution of microgravity combustion flight research planned for the foreseeable future. This paper reviews the Microgravity Combustion Science research planned for the International Space Station implemented from 2003 through 2012. Examples of selected research topics, expected outcomes, and potential benefits will be provided. This paper also summarizes a multi-user hardware development approach, recapping the progress made in preparing these research hardware systems. Within the description of this approach, an operational strategy is presented that illustrates how utilization of constrained ISS resources may be maximized dynamically to increase science through design decisions made during hardware development.

  5. 50 Years of the Radiological Research Accelerator Facility (RARAF)

    PubMed Central

    Marino, Stephen A.

    2017-01-01

    The Radiological Research Accelerator Facility (RARAF) is in its 50th year of operation. It was commissioned on April 1, 1967 as a collaboration between the Radiological Research Laboratory (RRL) of Columbia University, and members of the Medical Research Center of Brookhaven National Laboratory (BNL). It was initially funded as a user facility for radiobiology and radiological physics, concentrating on monoenergetic neutrons. Facilities for irradiation with MeV light charged particles were developed in the mid-1970s. In 1980 the facility was relocated to the Nevis Laboratories of Columbia University. RARAF now has seven beam lines, each having a dedicated irradiation facility: monoenergetic neutrons, charged particle track segments, two charged particle microbeams (one electrostatically focused to <1 μm, one magnetically focused), a 4.5 keV soft X-ray microbeam, a neutron microbeam, and a facility that produces a neutron spectrum similar to that of the atomic bomb dropped at Hiroshima. Biology facilities are available on site within close proximity to the irradiation facilities, making the RARAF very user friendly. PMID:28140790

  6. 40 CFR 60.30d - Designated facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Designated facilities. 60.30d Section... Acid Production Units § 60.30d Designated facilities. Sulfuric acid production units. The designated facility to which §§ 60.31d and 60.32d apply is each existing “sulfuric acid production unit” as defined in...

  7. Survey of EPA facilities for solar thermal energy applications

    NASA Technical Reports Server (NTRS)

    Nelson, E. V.; Overly, P. T.; Bell, D. M.

    1980-01-01

    A study was done to assess the feasibility of applying solar thermal energy systems to EPA facilities. A survey was conducted to determine those EPA facilities where solar energy could best be used. These systems were optimized for each specific application and the system/facility combinations were ranked on the basis of greatest cost effectiveness.

  8. The NASA integrated test facility and its impact on flight research

    NASA Technical Reports Server (NTRS)

    Mackall, D. A.; Pickett, M. D.; Schilling, L. J.; Wagner, C. A.

    1988-01-01

    The Integrated Test Facility (ITF), being built at NASA Ames-Dryden Flight Research Facility, will provide new test capabilities for emerging research aircraft. An overview of the ITF and the challenges being addressed by this unique facility are outlined. The current ITF capabilities, being developed with the X-29 Forward Swept Wing Program, are discussed along with future ITF activities.

  9. Zero-Gravity Research Facility Drop Test (2/4)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    An experiment vehicle plunges into the deceleration pit at the end of a 5.18-second drop in the Zero-Gravity Research Facility at NASA's Glenn Research Center. The Zero-Gravity Research Facility was developed to support microgravity research and development programs that investigate various physical sciences, materials, fluid physcis, and combustion and processing systems. Payloads up to 1 meter in diameter and 455 kg in weight can be accommodated. The facility has a 145-meter evacuated shaft to ensure a disturbance-free drop. This is No. 2 of a sequence of 4 images. (Credit: NASA/Glenn Research Center)

  10. Zero-Gravity Research Facility Drop Test (1/4)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    An experiment vehicle plunges into the deceleration pit at the end of a 5.18-second drop in the Zero-Gravity Research Facility at NASA's Glenn Research Center. The Zero-Gravity Research Facility was developed to support microgravity research and development programs that investigate various physical sciences, materials, fluid physics, and combustion and processing systems. Payloads up to 1 meter in diameter and 455 kg in weight can be accommodated. The facility has a 145-meter evacuated shaft to ensure a disturbance-free drop. This is No.1 of a sequence of 4 images. (Credit: NASA/Glenn Research Center)

  11. Zero-Gravity Research Facility Drop Test (3/4)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    An experiment vehicle plunges into the deceleration at the end of a 5.18-second drop in the Zero-Gravity Research Facility at NASA's Glenn Research Center. The Zero-Gravity Research Facility was developed to support microgravity research and development programs that investigate various physical sciences, materials, fluid physics, and combustion and processing systems. Payloads up to one-meter in diameter and 455 kg in weight can be accommodated. The facility has a 145-meter evacuated shaft to ensure a disturbance-free drop. This is No. 3 of a sequence of 4 images. (Credit: NASA/Glenn Research Center)

  12. Zero-Gravity Research Facility Drop Test (4/4)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    An experiment vehicle plunges into the deceleration pit at the end of a 5.18-second drop in the Zero-Gravity Research Facility at NASA's Glenn Research Center. The Zero-Gravity Research Facility was developed to support microgravity research and development programs that investigate various physical sciences, materials, fluid physics, and combustion and processing systems. Payloads up to one meter in diameter and 455 kg in weight can be accommodated. The facility has a 145-meter evacuated shaft to ensure a disturbance-free drop. This is No. 4 of a sequence of 4 images. (Credit: NASA/Glenn Research Center)

  13. Trends in Facility Management Technology: The Emergence of the Internet, GIS, and Facility Assessment Decision Support.

    ERIC Educational Resources Information Center

    Teicholz, Eric

    1997-01-01

    Reports research on trends in computer-aided facilities management using the Internet and geographic information system (GIS) technology for space utilization research. Proposes that facility assessment software holds promise for supporting facility management decision making, and outlines four areas for its use: inventory; evaluation; reporting;…

  14. Crosscut report: Exascale Requirements Reviews, March 9–10, 2017 – Tysons Corner, Virginia. An Office of Science review sponsored by: Advanced Scientific Computing Research, Basic Energy Sciences, Biological and Environmental Research, Fusion Energy Sciences, High Energy Physics, Nuclear Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerber, Richard; Hack, James; Riley, Katherine

    The mission of the U.S. Department of Energy Office of Science (DOE SC) is the delivery of scientific discoveries and major scientific tools to transform our understanding of nature and to advance the energy, economic, and national security missions of the United States. To achieve these goals in today’s world requires investments in not only the traditional scientific endeavors of theory and experiment, but also in computational science and the facilities that support large-scale simulation and data analysis. The Advanced Scientific Computing Research (ASCR) program addresses these challenges in the Office of Science. ASCR’s mission is to discover, develop, andmore » deploy computational and networking capabilities to analyze, model, simulate, and predict complex phenomena important to DOE. ASCR supports research in computational science, three high-performance computing (HPC) facilities — the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory and Leadership Computing Facilities at Argonne (ALCF) and Oak Ridge (OLCF) National Laboratories — and the Energy Sciences Network (ESnet) at Berkeley Lab. ASCR is guided by science needs as it develops research programs, computers, and networks at the leading edge of technologies. As we approach the era of exascale computing, technology changes are creating challenges for science programs in SC for those who need to use high performance computing and data systems effectively. Numerous significant modifications to today’s tools and techniques will be needed to realize the full potential of emerging computing systems and other novel computing architectures. To assess these needs and challenges, ASCR held a series of Exascale Requirements Reviews in 2015–2017, one with each of the six SC program offices,1 and a subsequent Crosscut Review that sought to integrate the findings from each. Participants at the reviews were drawn from the communities of leading domain scientists, experts in computer science and applied mathematics, ASCR facility staff, and DOE program managers in ASCR and the respective program offices. The purpose of these reviews was to identify mission-critical scientific problems within the DOE Office of Science (including experimental facilities) and determine the requirements for the exascale ecosystem that would be needed to address those challenges. The exascale ecosystem includes exascale computing systems, high-end data capabilities, efficient software at scale, libraries, tools, and other capabilities. This effort will contribute to the development of a strategic roadmap for ASCR compute and data facility investments and will help the ASCR Facility Division establish partnerships with Office of Science stakeholders. It will also inform the Office of Science research needs and agenda. The results of the six reviews have been published in reports available on the web at http://exascaleage.org/. This report presents a summary of the individual reports and of common and crosscutting findings, and it identifies opportunities for productive collaborations among the DOE SC program offices.« less

  15. Fuel Cell/Reformers Technology Development

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA Glenn Research Center is interested in developing Solid Oxide Fuel Cell for use in aerospace applications. Solid oxide fuel cell requires hydrogen rich feed stream by converting commercial aviation jet fuel in a fuel processing process. The grantee's primary research activities center on designing and constructing a test facility for evaluating injector concepts to provide optimum feeds to fuel processor; collecting and analyzing literature information on fuel processing and desulfurization technologies; establishing industry and academic contacts in related areas; providing technical support to in-house SOFC-based system studies. Fuel processing is a chemical reaction process that requires efficient delivery of reactants to reactor beds for optimum performance, i.e., high conversion efficiency and maximum hydrogen production, and reliable continuous operation. Feed delivery and vaporization quality can be improved by applying NASA's expertise in combustor injector design. A 10 KWe injector rig has been designed, procured, and constructed to provide a tool to employ laser diagnostic capability to evaluate various injector concepts for fuel processing reactor feed delivery application. This injector rig facility is now undergoing mechanical and system check-out with an anticipated actual operation in July 2004. Multiple injector concepts including impinging jet, venturi mixing, discrete jet, will be tested and evaluated with actual fuel mixture compatible with reforming catalyst requirement. Research activities from September 2002 to the closing of this collaborative agreement have been in the following areas: compiling literature information on jet fuel reforming; conducting autothermal reforming catalyst screening; establishing contacts with other government agencies for collaborative research in jet fuel reforming and desulfurization; providing process design basis for the build-up of injector rig facility and individual injector design.

  16. 47 CFR 63.22 - Facilities-based international common carriers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 3 2011-10-01 2011-10-01 false Facilities-based international common carriers. 63.22 Section 63.22 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER... Supplements § 63.22 Facilities-based international common carriers. The following conditions apply to...

  17. 47 CFR 63.22 - Facilities-based international common carriers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 3 2012-10-01 2012-10-01 false Facilities-based international common carriers. 63.22 Section 63.22 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER... Supplements § 63.22 Facilities-based international common carriers. The following conditions apply to...

  18. 47 CFR 63.22 - Facilities-based international common carriers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Facilities-based international common carriers. 63.22 Section 63.22 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER... Supplements § 63.22 Facilities-based international common carriers. The following conditions apply to...

  19. 43. CAPE COD AIR STATION PAVE PAWS FACILITY WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. CAPE COD AIR STATION PAVE PAWS FACILITY - WITH BUILDING METAL SIDING BEING APPLIED ON "C" FACE (RIGHT) AND "B" FACE BEING PREPARED FOR INSTALLATION. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  20. The national labs and their future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crease, R.P.

    National laboratories of the USA, born with the atomic age and raised to prominence by the need for scientific superiority during the long Cold War, are facing the most critical challenge: how best to support the nation's current need to improve its international competitiveness through superior technology The charge that the national laboratories are [open quotes]Cold War relics[close quotes] that have outlived their usefulness is based on a misunderstanding of their mission, says Robert P. Crease, historian for Brookhaven National laboratory. Three of the labs-Los Alamos, Sandia, and Lawrence Livermore- are weapons laboratories and their missions must change. Oak Ridge,more » Argonne, and Brookhaven laboratories are multipurpose: basic research facilities with a continuing role in the world of science The national laboratory system traces its origins to the Manhattan Project. Over the next half-century, America's national labs grew into part of the most effective scientific establishment in the world, a much-copied model for management of large-scale scientific programs. In the early years, each lab defined a niche in the complex world of reactors, accelerators, and high-energy proton and electron physics. In the 1970s, several labs worked on basic energy sciences to help solve a national energy crisis. Today, the labs are pressured to do more applied research-research to transfer to the private sector and will have to respond by devising more effective ways of coordinating basic and applied research. But, Crease warns, [open quotes]It also will be essential that any commitment to applied research not take place at the cost of reducing the wellspring of basic research from which so much applied research flows. [open quotes]Making a solid and persuasive case for the independent value of basic research, and for their own role in that enterprise, may be the most important task facing the laboratories in their next half-century,[close quotes].« less

  1. Mercury regulation, fate, transport, transformation, and abatement within cement manufacturing facilities: review.

    PubMed

    Sikkema, Joel K; Alleman, James E; Ong, Say Kee; Wheelock, Thomas D

    2011-09-15

    The USEPA's 2010 mercury rule, which would reduce emissions from non-hazardous waste burning cement manufacturing facilities by an estimated 94%, represents a substantial regulatory challenge for the industry. These regulations, based on the performance of facilities that benefit from low concentrations of mercury in their feedstock and fuel inputs (e.g., limestone concentration was less than 25 ppb at each facility), will require non-compliant facilities to develop innovative controls. Control development is difficult because each facility's emissions must be assessed and simple correlation to mercury concentrations in limestone or an assumption of 'typically observed' mercury concentrations in inputs are unsupported by available data. Furthermore, atmospheric emissions are highly variable due to an internal control mechanism that captures and loops mercury between the high-temperature kiln and low-temperature raw materials mill. Two models have been reported to predict emissions; however, they have not been benchmarked against data from the internal components that capture mercury and do not distinguish between mercury species, which have different sorption and desorption properties. Control strategies include technologies applied from other industries and technologies developed specifically for cement facilities. Reported technologies, listed from highest to lowest anticipated mercury removal, include purge of collected dust or raw meal, changes in feedstocks and fuels, wet scrubbing, cleaning of mercury enriched dust, dry sorbent injection, and dry and semi-dry scrubbing. The effectiveness of these technologies is limited by an inadequate understanding of sorption, desorption, and mercury species involved in internal loop mercury control. To comply with the mercury rule and to improve current mercury control technologies and practices, research is needed to advance fundamental knowledge regarding mercury species sorption and desorption dynamics on materials within cement facilities. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. NENIMF: Northeast National Ion Microprobe Facility - A Multi-User Facility for SIMS Microanalysis

    NASA Astrophysics Data System (ADS)

    Layne, G. D.; Shimizu, N.

    2002-12-01

    The MIT-Brown-Harvard Regional Ion Microprobe Facility was one of the earliest multi-user facilities enabled by Dan Weill's Instrumentation and Facilities Program - and began with the delivery of a Cameca IMS 3f ion microprobe to MIT in 1978. The Northeast National Ion Microprobe Facility (NENIMF) is the direct descendant of this original facility. Now housed at WHOI, the facility incorporates both the original IMS 3f, and a new generation, high transmission-high resolution instrument - the Cameca IMS 1270. Purchased with support from NSF, and from a consortium of academic institutions in the Northeast (The American Museum of Natural History, Brown University, The Lamont-Doherty Earth Observatory, MIT, Rensselaer Polytechnic Institute, WHOI) - this latest instrument was delivered and installed during 1996. NENIMF continues to be supported by NSF EAR I&F as a multi-user facility for geochemical research. Work at NENIMF has extended the original design strength of the IMS 1270 for microanalytical U-Pb zircon geochronology to a wide variety of novel and improved techniques for geochemical research. Isotope microanalysis for studies in volcanology and petrology is currently the largest single component of facility activity. This includes the direct measurement of Pb isotopes in melt inclusions, an application developed at NENIMF, which is making an increasingly significant contribution to our understanding of basalt petrogenesis. This same technique has also been extended to the determination of Pb isotopes in detrital feldspar grains, for the study of sedimentary provenance and tectonics of the Himalayas and other terrains. The determination of δ11B in volcanic melt inclusions has also proven to be a powerful tool in the modeling of subduction-related magmatism. The recent development of δ34S and δ37Cl determination in glasses is being applied to studies of the behavior of these volatile elements in both natural and experimental systems. Other recent undertakings have included development of high precision 232Th/230Th for U-series disequilibrium studies of young volcanic rocks, and the implementation and refinement of U-Th-Pb dating of individual monazite crystals. The facility is also developing an expanding number of applications in the general field of biogeochemistry. Examples include; δ18O in biogenic carbonates for climate and paleotemperature studies, determination of δ13C in graphite microfossils for early life studies, and determination of δ13C and trace metal concentrations in bacterial cultures in support of studies of natural microbial ecosystems. The IMS 3f instrument - now in its 25th year of operation - continues to be a productive resource for trace element and rare earth element determinations in natural and experimental materials. It has also become an important component of ongoing research in the derivation of paleotemperatures from marine biomineralization using trace element ratios of biogenic aragonite.

  3. Urban Watershed Research Facility at Edison Environmental Center

    EPA Science Inventory

    The Urban Watershed Research Facility (UWRF) is an isolated, 20-acre open space within EPA’s 200 acre Edison facility established to develop and evaluate the performance of stormwater management practices under controlled conditions. The facility includes greenhouses that allow ...

  4. Research at Appalachian State University's Dark Sky Observatory

    NASA Astrophysics Data System (ADS)

    Caton, D. B.

    2003-12-01

    Astronomical research at Appalachian State University centers around the interests of the three observational astronomers on the faculty, and primarily involves observational work at our Dark Sky Observatory (DSO). ASU is a member of the 16-campus University of North Carolina system, and is a comprehensive university with about 13,000 students. Besides the usual constraint found in such a setting (teaching loads of 9-12 hours/semester), we face the challenges of maintaining a significant observatory facility in an era of shrinking state budgets. The DSO facility is 20 miles from campus, adding additional problems. This scenario differs from those of the other panelists, who are at private institutions and/or use shared facilities. The character of students at ASU also adds constraints--many have to hold part-time jobs that limit their participation in the very research that could contribute significantly to their success. Particularly, their need to leave for the summer for gainful employment at the very time that faculty have the most time for research is a loss for all concerned. In spite of these challenges, we have a long record of maintaining research programs in eclipsing binary star photometry, stellar spectroscopy and QSO/AGN monitoring. Undergraduate students are involved in all aspects of the work, from becoming competent at solo observing to publication of the results and presentation of papers and posters at meetings. Graduate students in our Masters in Applied Physics program (emphasis on instrumentation), have constructed instruments and control systems for the observatory. Most of what we have achieved would have been impossible without the support of the National Science Foundation. We have been fortunate to acquire funds under the Division of Undergraduate Education's ILI program and the Research at Undergraduate Institutions program. Among other things, this support provided our main telescope, CCD cameras, and some student stipends.

  5. Calculating High Speed Centrifugal Compressor Performance from Averaged Measurements

    NASA Astrophysics Data System (ADS)

    Lou, Fangyuan; Fleming, Ryan; Key, Nicole L.

    2012-12-01

    To improve the understanding of high performance centrifugal compressors found in modern aircraft engines, the aerodynamics through these machines must be experimentally studied. To accurately capture the complex flow phenomena through these devices, research facilities that can accurately simulate these flows are necessary. One such facility has been recently developed, and it is used in this paper to explore the effects of averaging total pressure and total temperature measurements to calculate compressor performance. Different averaging techniques (including area averaging, mass averaging, and work averaging) have been applied to the data. Results show that there is a negligible difference in both the calculated total pressure ratio and efficiency for the different techniques employed. However, the uncertainty in the performance parameters calculated with the different averaging techniques is significantly different, with area averaging providing the least uncertainty.

  6. Control of dispersed-phase temperature in plasma flows by the spectral-brightness pyrometry method

    NASA Astrophysics Data System (ADS)

    Dolmatov, A. V.; Gulyaev, I. P.; Gulyaev, P. Yu; Iordan, V. I.

    2016-02-01

    In the present work, we propose a new method for measuring the distribution of temperature in the ensembles of condensed-phase particles in plasma spray flows. Interrelation between the spectral temperature of the particles and the distribution of camera brightness signal is revealed. The established inter-relation enables an in-situ calibration of measuring instruments using the objects under study. The spectral-brightness pyrometry method was approbated on a Plazer plasma-arc wire spraying facility at the Paton Institute of Electrical Welding (Ukrainian Academy of Sciences, Kiev) and on the Thermoplasma 50-1 powder spraying facility at the Institute of Theoretical and Applied Mechanics (Russian Academy of Sciences, Siberian Branch, Novosibirsk). The work was supported by the Russian Foundation for Basic Research (Grants Nos. 14-08-90428 and 15-48-00100).

  7. Test facilities of the structural dynamics branch of NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Montague, Gerald T.; Kielb, Robert E.

    1988-01-01

    The NASA Lewis Research Center Structural Dynamics Branch conducts experimental and analytical research related to the structural dynamics of aerospace propulsion and power systems. The experimental testing facilities of the branch are examined. Presently there are 10 research rigs and 4 laboratories within the branch. These facilities are described along with current and past research work.

  8. A summary of existing and planned experiment hardware for low-gravity fluids research

    NASA Technical Reports Server (NTRS)

    Hill, Myron E.; Omalley, Terence F.

    1991-01-01

    An overview is presented of (1) existing ground-based, low gravity research facilities, with examples of hardware capabilities, and (2) existing and planned space-based research facilities, with examples of current and past flight hardware. Low-gravity, ground-based facilities, such as drop towers and aircraft, provide the experimenter with quick turnaround time, easy access to equipment, gravity levels ranging from 10(exp -2) to 10(exp -6) G, and low-gravity durations ranging from 2 to 30 sec. Currently, the only operational space-based facility is the Space Shuttle. The Shuttle's payload bay and middeck facilities are described. Existing and planned low-gravity fluids research facilities are also described with examples of experiments and hardware capabilities.

  9. [Cooperative Cardiovascular Disease Research Network (RECAVA)].

    PubMed

    García-Dorado, David; Castro-Beiras, Alfonso; Díez, Javier; Gabriel, Rafael; Gimeno-Blanes, Juan R; Ortiz de Landázuri, Manuel; Sánchez, Pedro L; Fernández-Avilés, Francisco

    2008-01-01

    Today, cardiovascular disease is the principal cause of death and hospitalization in Spain, and accounts for an annual healthcare budget of more than 4000 million euros. Consequently, early diagnosis, effective prevention, and the optimum treatment of cardiovascular disease present a significant social and healthcare challenge for the country. In this context, combining all available resources to increase the efficacy and healthcare benefits of scientific research is a priority. This rationale prompted the establishment of the Spanish Cooperative Cardiovascular Disease Research Network, or RECAVA (Red Temática de Investigación Cooperativa en Enfermedades Cardiovasculares), 5 years ago. Since its foundation, RECAVA's activities have focused on achieving four objectives: a) to facilitate contacts between basic, clinical and epidemiological researchers; b) to promote the shared use of advanced technological facilities; c) to apply research results to clinical practice, and d) to train a new generation of translational cardiovascular researchers in Spain. At present, RECAVA consists of 41 research groups and seven shared technological facilities. RECAVA's research strategy is based on a scientific design matrix centered on the most important cardiovascular processes. The level of RECAVA's research activity is reflected in the fact that 28 co-authored articles were published in international journals during the first six months of 2007, with each involving contributions from at least two groups in the network. Finally, RECAVA also participates in the work of the Spanish National Center for Cardiovascular Research, or CNIC (Centro Nacional de Investigación Cardiovascular), and some established Biomedical Research Network Centers, or CIBER (Centros de Investigación Biomédica en RED), with the aim of consolidating the development of a dynamic multidisciplinary research framework that is capable of meeting the growing challenge that cardiovascular disease will present in the future.

  10. Pulsed-neutron imaging by a high-speed camera and center-of-gravity processing

    NASA Astrophysics Data System (ADS)

    Mochiki, K.; Uragaki, T.; Koide, J.; Kushima, Y.; Kawarabayashi, J.; Taketani, A.; Otake, Y.; Matsumoto, Y.; Su, Y.; Hiroi, K.; Shinohara, T.; Kai, T.

    2018-01-01

    Pulsed-neutron imaging is attractive technique in the research fields of energy-resolved neutron radiography and RANS (RIKEN) and RADEN (J-PARC/JAEA) are small and large accelerator-driven pulsed-neutron facilities for its imaging, respectively. To overcome the insuficient spatial resolution of the conunting type imaging detectors like μ NID, nGEM and pixelated detectors, camera detectors combined with a neutron color image intensifier were investigated. At RANS center-of-gravity technique was applied to spots image obtained by a CCD camera and the technique was confirmed to be effective for improving spatial resolution. At RADEN a high-frame-rate CMOS camera was used and super resolution technique was applied and it was recognized that the spatial resolution was futhermore improved.

  11. Thin-layer thermal insulation coatings based on high-filled spheroplastics with polyorganosiloxane binder

    NASA Astrophysics Data System (ADS)

    Chukhlanov, V. Yu; Selivanov, O. G.; Trifonova, T. A.; Ilina, M. E.; Chukhlanova, N. V.

    2017-10-01

    Thermal insulation coatings, based on polyorganosiloxane as a binder and hollow glass microspheres, have been studied in this research. The developed materials are widely applied in various branches of science and engineering basically in construction. Components interaction processes are comprehensively studied. Spraying production methods of thin layer thermal insulation coatings have been researched. Ideal technological parameters for polyorganosiloxane coatings hardening depending on components ratio, ambient temperature, solvent and curative concentration have been determined. Stress related characteristics of constructional energy saving materials containing polyorganosiloxane have been researched. Components structure and ratio concerning compound extension strength properties have been revealed. Substantiation of Danneberg model application for the strength characteristics enhancing, when hollow microspheres are introduced, has been suggested. Thermal properties of coating thermal insulation have been studied. To research these characteristics standard methods applying devices IT-S-400 and IT-λ-400 have been chosen. Filler concentration increase was stated to decrease the composition heat conductivity coefficient and to the reduction of temperature dependence of this index. The authors suggested to employ the developed thermal insulation materials for construction and power engineering facilities operating under high temperature and other unfavorable environment.

  12. Evaluation of candidate working fluid formulations for the electrothermal-chemical wind tunnel

    NASA Technical Reports Server (NTRS)

    Akyurtlu, Jale F.; Akyurtlu, Ates

    1993-01-01

    A new hypersonic test facility which can simulate conditions typical of atmospheric flight at Mach numbers up to 20 is currently under study at the NASA/LaRC Hypersonic Propulsion Branch. In the proposed research, it was suggested that a combustion augmented electrothermal wind tunnel concept may be applied to the planned hypersonic testing facility. The purpose of the current investigation is to evaluate some candidate working fluid formulations which may be used in the chemical-electrothermal wind. The efforts in the initial phase of this research were concentrated on acquiring the code used by GASL to model the electrothermal wind tunnel and testing it using the conditions of GASL simulation. The early version of the general chemical kinetics code (GCKP84) was obtained from NASA and the latest updated version of the code (LSENS) was obtained from the author Dr. Bittker. Both codes are installed on a personal computer with a 486 25 MHz processor and 16 Mbyte RAM. Since the available memory was not sufficient to debug LSENS, for the current work GCKP84 was used.

  13. Atomic Oxygen Lamp Cleaning Facility Fabricated and Tested

    NASA Technical Reports Server (NTRS)

    Sechkar, Edward A.; Stueber, Thomas J.

    1999-01-01

    NASA Lewis Research Center's Atomic Oxygen Lamp Cleaning Facility was designed to produce an atomic oxygen plasma within a metal halide lamp to remove carbon-based contamination. It is believed that these contaminants contribute to the high failure rate realized during the production of these lamps. The facility is designed to evacuate a metal halide lamp and produce a radio frequency generated atomic oxygen plasma within it. Oxygen gas, with a purity of 0.9999 percent and in the pressure range of 150 to 250 mtorr, is used in the lamp for plasma generation while the lamp is being cleaned. After cleaning is complete, the lamp can be backfilled with 0.9999-percent pure nitrogen and torch sealed. The facility comprises various vacuum components connected to a radiation-shielded box that encloses the bulb during operation. Radiofrequency power is applied to the two parallel plates of a capacitor, which are on either side of the lamp. The vacuum pump used, a Leybold Trivac Type D4B, has a pumping speed of 4-m3/hr, has an ultimate pressure of <8x10-4, and is specially adapted for pure oxygen service. The electronic power supply, matching network, and controller (500-W, 13.56-MHz) used to supply the radiofrequency power were purchased from RF Power Products Inc. Initial test results revealed that this facility could remove the carbon-based contamination from within bulbs.

  14. Charter for the ARM Climate Research Facility Science Board

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrell, W

    The objective of the ARM Science Board is to promote the Nation’s scientific enterprise by ensuring that the best quality science is conducted at the DOE’s User Facility known as the ARM Climate Research Facility. The goal of the User Facility is to serve scientific researchers by providing unique data and tools to facilitate scientific applications for improving understanding and prediction of climate science.

  15. 14 CFR 1204.1401 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... NASA Airfield Facilities by Aircraft Not Operated for the Benefit of the Federal Government § 1204.1401 Definitions. For the purpose of this subpart, the following definitions apply: (a) NASA Airfield Facility. Those aeronautical facilities owned and operated by NASA that consist of the following: (1) Shuttle...

  16. 14 CFR 1204.1401 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... NASA Airfield Facilities by Aircraft Not Operated for the Benefit of the Federal Government § 1204.1401 Definitions. For the purpose of this subpart, the following definitions apply: (a) NASA Airfield Facility. Those aeronautical facilities owned and operated by NASA that consist of the following: (1) Shuttle...

  17. 14 CFR 1204.1401 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... NASA Airfield Facilities by Aircraft Not Operated for the Benefit of the Federal Government § 1204.1401 Definitions. For the purpose of this subpart, the following definitions apply: (a) NASA Airfield Facility. Those aeronautical facilities owned and operated by NASA that consist of the following: (1) Shuttle...

  18. Uniform Federal Accessibility Standards.

    ERIC Educational Resources Information Center

    Department of Housing and Urban Development, Washington, DC.

    The document presents uniform standards for facility accessibility by physically handicapped persons for Federal and federally funded facilities. The standards are to be applied during the design, construction, and alteration of buildings and facilities to the extent required by the Architectural Barriers Act of 1968, as amended. Technical…

  19. 40 CFR 60.190 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Primary Aluminum Reduction Plants § 60.190 Applicability and designation of affected facility. (a) The affected facilities in primary aluminum reduction plants to which this subpart applies are...

  20. 21 CFR 1.328 - What definitions apply to this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... information and manufacturing instructions is not a recipe. Restaurant means a facility that prepares and sells food directly to consumers for immediate consumption. “Restaurant” does not include facilities..., are restaurants. (2) Pet shelters, kennels, and veterinary facilities in which food is directly...

  1. Understanding combat casualty care statistics.

    PubMed

    Holcomb, John B; Stansbury, Lynn G; Champion, Howard R; Wade, Charles; Bellamy, Ronald F

    2006-02-01

    Maintaining good hospital records during military conflicts can provide medical personnel and researchers with feedback to rapidly adjust treatment strategies and improve outcomes. But to convert the resulting raw data into meaningful conclusions requires clear terminology and well thought out equations, utilizing consistent numerators and denominators. Our objective was to arrive at terminology and equations that would produce the best insight into the effectiveness of care at different stages of treatment, either pre or post medical treatment facility care. We first clarified three essential terms: 1) the case fatality rate (CFR) as percentage of fatalities among all wounded; 2) killed in action (KIA) as percentage of immediate deaths among all seriously injured (not returning to duty); and 3) died of wounds (DOW) as percentage of deaths following admission to a medical treatment facility among all seriously injured (not returning to duty). These equations were then applied consistently across data from the WWII, Vietnam and the current Global War on Terrorism. Using this clear set of definitions we used the equations to ask two basic questions: What is the overall lethality of the battlefield? How effective is combat casualty care? To answer these questions with current data, the three services have collaboratively created a joint theater trauma registry (JTTR), cataloging all the serious injuries, procedures, and outcomes for the current war. These definitions and equations, consistently applied to the JTTR, will allow meaningful comparisons and help direct future research and appropriate application of personnel.

  2. KENNEDY SPACE CENTER, FLA. - Employees check out the new chamber facilities of the Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL). From left are Ray Wheeler, with NASA; Debbie Wells and Larry Burns, with Dynamac; A.O. Rule, president of Environmental Growth Chambers, Inc. (ECG); Neil Yorio, with Dynamac; and John Wiezchowski, with ECG. The SLSL is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

    NASA Image and Video Library

    2003-09-10

    KENNEDY SPACE CENTER, FLA. - Employees check out the new chamber facilities of the Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL). From left are Ray Wheeler, with NASA; Debbie Wells and Larry Burns, with Dynamac; A.O. Rule, president of Environmental Growth Chambers, Inc. (ECG); Neil Yorio, with Dynamac; and John Wiezchowski, with ECG. The SLSL is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

  3. NSF Lower Atmospheric Observing Facilities (LAOF) in support of science and education

    NASA Astrophysics Data System (ADS)

    Baeuerle, B.; Rockwell, A.

    2012-12-01

    Researchers, students and teachers who want to understand and describe the Earth System require high quality observations of the atmosphere, ocean, and biosphere. Making these observations requires state-of-the-art instruments and systems, often carried on highly capable research platforms. To support this need of the geosciences community, the National Science Foundation's (NSF) Division of Atmospheric and Geospace Sciences (AGS) provides multi-user national facilities through its Lower Atmospheric Observing Facilities (LAOF) Program at no cost to the investigator. These facilities, which include research aircraft, radars, lidars, and surface and sounding systems, receive NSF financial support and are eligible for deployment funding. The facilities are managed and operated by five LAOF partner organizations: the National Center for Atmospheric Research (NCAR); Colorado State University (CSU); the University of Wyoming (UWY); the Center for Severe Weather Research (CSWR); and the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS). These observational facilities are available on a competitive basis to all qualified researchers from US universities, requiring the platforms and associated services to carry out various research objectives. The deployment of all facilities is driven by scientific merit, capabilities of a specific facility to carry out the proposed observations, and scheduling for the requested time. The process for considering requests and setting priorities is determined on the basis of the complexity of a field campaign. The poster will describe available observing facilities and associated services, and explain the request process researchers have to follow to secure access to these platforms for scientific as well as educational deployments. NSF/NCAR GV Aircraft

  4. Lewis Research Center space station electric power system test facilities

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur G.; Martin, Donald F.

    1988-01-01

    NASA Lewis Research Center facilities were developed to support testing of the Space Station Electric Power System. The capabilities and plans for these facilities are described. The three facilities which are required in the Phase C/D testing, the Power Systems Facility, the Space Power Facility, and the EPS Simulation Lab, are described in detail. The responsibilities of NASA Lewis and outside groups in conducting tests are also discussed.

  5. The motivation for drug abuse treatment: testing cognitive and 12-step theories.

    PubMed

    Bell, D C; Montoya, I D; Richard, A J; Dayton, C A

    1998-11-01

    The purpose of this paper is to evaluate two models of behavior change: cognitive theory and 12-step theory. Research subjects were drawn from three separate, but parallel, samples of adults. The first sample consisted of out-of-treatment chronic drug users, the second consisted of drug users who had applied for treatment at a publicly funded multiple-provider drug treatment facility, and the third consisted of drug users who had applied for treatment at an intensive outpatient program for crack cocaine users. Cognitive theory was supported. Study participants applying for drug abuse treatment reported a higher level of perceived problem severity and a higher level of cognitive functioning than out-of-treatment drug users. Two hypotheses drawn from 12-step theory were not supported. Treatment applicants had more positive emotional functioning than out-of-treatment drug users, and one treatment-seeking sample had higher self-esteem.

  6. The National Transonic Facility: A Research Retrospective

    NASA Technical Reports Server (NTRS)

    Wahls, R. A.

    2001-01-01

    An overview of the National Transonic Facility (NTF) from a research utilization perspective is provided. The facility was born in the 1970s from an internationally recognized need for a high Reynolds number test capability based on previous experiences with preflight predictions of aerodynamic characteristics and an anticipated need in support of research and development for future aerospace vehicle systems. Selection of the cryogenic concept to meet the need, unique capabilities of the facility, and the eventual research utilization of the facility are discussed. The primary purpose of the paper is to expose the range of investigations that have used the NTF since being declared operational in late 1984; limited research results are included, though many more can be found in the references.

  7. Reference earth orbital research and applications investigations (blue book). Volume 8: Life sciences

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The functional program element for the life sciences facilities to operate aboard manned space stations is presented. The life sciences investigations will consist of the following subjects: (1) medical research, (2) vertebrate research, (3) plant research, (4) cells and tissue research, (5) invertebrate research, (6) life support and protection, and (7) man-system integration. The equipment required to provide the desired functional capability for the research facilities is defined. The goals and objectives of each research facility are described.

  8. The Biotechnology Facility for International Space Station

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas; Lundquist, Charles; Hurlbert, Katy; Tuxhorn, Jennifer

    2004-01-01

    The primary mission of the Cellular Biotechnology Program is to advance microgravity as a tool in basic and applied cell biology. The microgravity environment can be used to study fundamental principles of cell biology and to achieve specific applications such as tissue engineering. The Biotechnology Facility (BTF) will provide a state-of-the-art facility to perform cellular biotechnology research onboard the International Space Station (ISS). The BTF will support continuous operation, which will allow performance of long-duration experiments and will significantly increase the on-orbit science throughput. With the BTF, dedicated ground support, and a community of investigators, the goals of the Cellular Biotechnology Program at Johnson Space Center are to: Support approximately 400 typical investigator experiments during the nominal design life of BTF (10 years). Support a steady increase in investigations per year, starting with stationary bioreactor experiments and adding rotating bioreactor experiments at a later date. Support at least 80% of all new cellular biotechnology investigations selected through the NASA Research Announcement (NRA) process. Modular components - to allow sequential and continuous experiment operations without cross-contamination Increased cold storage capability (+4 C, -80 C, -180 C). Storage of frozen cell culture inoculum - to allow sequential investigations. Storage of post-experiment samples - for return of high quality samples. Increased number of cell cultures per investigation, with replicates - to provide sufficient number of samples for data analysis and publication of results in peer-reviewed scientific journals.

  9. The Sixth Omega Laser Facility Users Group Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrasso, R. D.

    A capacity gathering of over 100 researchers from 25 universities and laboratories met at the Laboratory for Laser Energetics (LLE) for the Sixth Omega Laser Facility Users Group (OLUG) workshop. The purpose of the 2.5-day workshop was to facilitate communications and exchanges among individual OMEGA users, and between users and the LLE management; to present ongoing and proposed research; to encourage research opportunities and collaborations that could be undertaken at the Omega Laser Facility and in a complementary fashion at other facilities [such as the National Ignition Facility (NIF) or the Laboratoire pour l’Utilisation des Lasers Intenses (LULI)]; to providemore » an opportunity for students, postdoctoral fellows, and young researchers to present their research in an informal setting; and to provide feedback from the users to LLE management about ways to improve and keep the facility and future experimental campaigns at the cutting edge.« less

  10. The Fifth Omega Laser Facility Users Group Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrasso, R. D.

    A capacity gathering of over 100 researchers from 25 universities and laboratories met at the Laboratory for Laser Energetics (LLE) for the Fifth Omega Laser Facility Users Group (OLUG) workshop. The purpose of the 2.5-day workshop was to facilitate communications and exchanges among individual Omega users and between users and the LLE management; to present ongoing and proposed research; to encourage research opportunities and collaborations that could be undertaken at the Omega Laser Facility and in a complementary fashion at other facilities [such as the National Ignition Facility (NIF) or the Laboratoire pour l’Utilisation des Lasers Intenses (LULI)]; to providemore » an opportunity for students, postdoctoral fellows, and young researchers to present their research in an informal setting; and to provide feedback to LLE management from the users about ways to improve the facility and future experimental campaigns.« less

  11. Effectiveness of Low Temperature Additives for Biodiesel Blends

    DTIC Science & Technology

    2012-06-30

    Westbrook U.S. Army TARDEC Fuels and Lubricants Research Facility Southwest Research Institute® (SwRI®) San Antonio, TX for U.S. Army TARDEC...INTERIM REPORT TFLRF No. 428 by Steven R. Westbrook U.S. Army TARDEC Fuels and Lubricants Research Facility Southwest Research Institute...Director U.S. Army TARDEC Fuels and Lubricants Research Facility (SwRI®) UNCLASSIFIED UNCLASSIFIED REPORT DOCUMENTATION PAGE Form Approved

  12. LANDSAT technology transfer to the private and public sectors through community colleges and other locally available institutions

    NASA Technical Reports Server (NTRS)

    Rogers, R. H. (Principal Investigator)

    1980-01-01

    Major first year accomplishments are summarized and plans are provided for the next 12-month period for a program established by NASA with the Environmental Research Institute of Michigan to investigate methods of making LANDSAT technology readily available to a broader set of private sector firms through local community colleges. The program applies a network where the major participants are NASA, university or research institutes, community colleges, and obtain hands-on training in LANDSAT data analysis techniques, using a desk-top, interactive remote analysis station which communicates with a central computing facility via telephone line, and provides for generation of land cover maps and data products via remote command.

  13. The anesthesia and brain monitor (ABM). Concept and performance.

    PubMed

    Kay, B

    1984-01-01

    Three integral components of the ABM, the frontalis electromyogram (EMG), the processed unipolar electroencephalogram (EEG) and the neuromuscular transmission monitor (NMT) were compared with standard research methods, and their clinical utility indicated. The EMG was compared with the method of Dundee et al (2) for measuring the induction dose of thiopentone; the EEG was compared with the SLE Galileo E8-b and the NMT was compared with the Medelec MS6. In each case correlation of results was extremely high, and the ABM offered some advantages over the standard research methods. We conclude that each of the integral units of the ABM is simple to apply and interpret, yet as accurate as standard apparatus used for research. In addition the ABM offers excellent display and recording facilities and alarm systems.

  14. White Mountain Research Station: 25 years of high-altitude research. [organization and functions of test facility for high altitude research

    NASA Technical Reports Server (NTRS)

    Pace, N.

    1973-01-01

    The organization and functions of a test facility for conducting research projects at high altitudes are discussed. The projects conducted at the facility include the following: (1) bird physiology, (2) cardiorespiratory physiology, (3) endocrinological studies, (4) neurological studies, (5) metabolic studies, and (6) geological studies.

  15. Financial Planning as a Tool for Efficient and Timely Decommissioning of Nuclear Research Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cato, Anna; Lindskog, Staffan; Sjoeblom, Rolf

    2008-01-15

    It is generally recognized in the technical and economical literature that reliable cost evaluations with adequate estimates also of the errors and uncertainties involved are necessary in order for rational and appropriate management decisions to be made on any major plant investment. Such estimates are required for the selection of technologies to be applied and for selection to be made between alternative technologies and designs as well as for the overall financing issues including the one of whether to go ahead with the project. Inadequacies in the cost calculations typically lead to suboptimal decisions and ultimately substantial overruns and/or needsmore » for retrofits. Actually, a very strict discipline has to be applied with adaptation of the approach used with regard to the stage of the planning. Deviations from the expected tend to raise the estimated cost much more frequently than they lower it. The same rationale applies to planning and cost calculations for decommissioning of nuclear research facilities. There are, however, many reasons why such estimations may be very treacherous to carry out. This will be dealt with in the following. The knowledge base underlying the present paper has been developed and accumulated as a result of the research that the Swedish Nuclear Power Inspectorate (SKI) has carried out in support of its regulatory oversight over the Swedish system of finance. The findings are, however, equally applicable and appropriate for implementers in their planning, decision, monitoring and evaluation activities. In the nineteen fifties and sixties, Sweden had a comprehensive program for utilization of nuclear power including uranium mining, fuel fabrication, reprocessing and domestically developed heavy water reactors. Examples of facilities are presented in Figures 1-5. Eventually, the development work lead to the present nuclear program with ten modern light water reactors in operation at present. According to Swedish law, those who benefit from the use of these plants must pay a fee which is accumulated in a fund so that all future costs for decommissioning and waste management can be covered. Each year, estimates on all future costs are submitted to the SKI for review. The Government then decides on the size of the fee, based on the results of the review. In conclusion: it has been concluded in the SKI work - in spite of the difficulties pointed out above - that cost calculations with the precision needed for a system of finance can be achieved even at early stages provided that the various features of the task are adequately dealt with.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaFreniere, L. M.

    The Commodity Credit Corporation (CCC), an agency of the U.S. Department of Agriculture (USDA), formerly operated a grain storage facility approximately 1,100 ft north of Centralia (Figure 1.2). The CCC/USDA operated this facility from 1949 until 1971. None of the CCC/USDA structures remain. Two additional grain storage facilities currently exist in and near Centralia: the Nemaha County Co-op, approximately 4,000 ft south of the former CCC/USDA facility, and a private grain storage facility near the Don Morris residence, 3,500 ft north of the former CCC/USDA facility. Prior to 1986, commercial grain fumigants containing carbon tetrachloride were commonly used by themore » CCC/USDA and the grain storage industry to preserve grain. In April 1998, the Kansas Department of Health and Environment (KDHE) sampled the domestic well at the Don Morris residence near Centralia (Figure 1.2) as part of the CCC/USDA Private Well Sampling Program, which was initiated to determine whether carbon tetrachloride was present in domestic wells located near former CCC/USDA grain storage facilities in Kansas. Carbon tetrachloride was detected in the Morris well at 19.3 mg/L and confirmed at 25.4 mg/L, both concentrations above the maximum contaminant level (MCL) of 5 mg/L for carbon tetrachloride in drinking water. On the basis of the detection of carbon tetrachloride in the Morris well, the KDHE in August-September 1998 conducted preliminary investigations at the former CCC/USDA facility. For the details of previous investigations in the area and a summary of their findings, see the QuickSite{reg_sign} Phase I Work Plan for Centralia (Argonne 2002a). Because the KDHE found carbon tetrachloride at the former CCC/USDA facility at Centralia that might, in part, be linked to historical use of carbon tetrachloride-based grain fumigants at the facility, the CCC/USDA is conducting an environmental site investigation at Centralia. However, the KDHE established in 1998 that the probable groundwater flow direction at the former CCC/USDA facility is not toward the Morris well, and thus the former facility is not responsible for the carbon tetrachloride measured in that well. The town of Centralia and all residents near the former CCC/USDA facility currently obtain their water from Rural Water District No.3 (RWD 3). Therefore, these local residents are not drinking and using contaminated groundwater. The investigation at Centralia is being performed by the Environmental Research Division of Argonne National Laboratory. Argonne is a nonprofit, multidisciplinary research center operated by the University of Chicago for the U.S. Department of Energy (DOE). The CCC/USDA has entered into an interagency agreement with DOE, under which Argonne provides technical assistance to the CCC/USDA with environmental site characterization and remediation at its former grain storage facilities. At these facilities, Argonne is applying its QuickSite environmental site characterization methodology. QuickSite is Argonne's proprietary implementation system for the expedited site characterization (ESC) process. Argonne's Environmental Research Division developed the ESC process to optimize preremedial site characterization work at hazardous waste sites by obtaining and then applying a thorough understanding of a site's geology, hydrogeology, and hydrogeochemistry (e.g., Burton 1994). This approach is fundamental to successful site characterization because the geology and hydrogeology of a site largely govern the mobility and fate of contaminants there. Argonne's ESC process has been used successfully at a number of former CCC/USDA facilities in Kansas and Nebraska and has been adopted by the American Society for Testing and Materials (ASTM 1998) as standard practice for environmental site characterization. This report documents the findings of the Phase I activities at Centralia. Section 1 provides a brief history of the area and the QuickSite process, a summary of the geologic/hydrogeologic model, objectives of the Phase I investigation, and a brief description of the sections contained in this report. Section 2 describes the investigative methods used during the Phase I investigation. Section 3 presents all of the data obtained during the investigation. Section 4 describes the interpretation of the pertinent data used to meet the technical objectives of the investigation, including the contaminant migration pathways in soil and groundwater. A summary of the findings is also provided in Section 4. Section 5 presents the conclusions of the investigation relative to the technical objectives and outlines recommendations for Phase II. To streamline the reporting process, materials from the Work Plan (Argonne 2002a) and relevant sections of the Master Work Plan (Argonne 2002b) are not repeated in detail in this report. Consequently, these documents must also be consulted to obtain the complete details of the Phase I investigative program.« less

  17. The Role of a National Biocontainment Laboratory in Emergencies.

    PubMed

    Le Duc, James W; Ksiazek, Thomas G

    2015-01-01

    Over a decade ago, the National Institutes of Health awarded partial support for the construction and operation of 2 National Biocontainment Laboratories, with the condition that they would be available to assist in the event of public health emergencies-although how a biocontainment facility located on an academic campus might contribute was not defined. Here we offer examples of how one of these laboratories has contributed to a coordinated response to 2 recent international public health emergencies. Essential assets for success include highly trained and experienced staff, access to reference pathogens and reagents, cutting-edge knowledge of the field, appropriate biocontainment facilities, robust biosafety and biosecurity programs, and availability of modern instrumentation. The ability to marry the strengths of academia in basic and applied research with access to appropriate biocontainment facilities while drawing on a highly skilled cadre of experienced experts has proven extremely valuable in the response to recent national emergencies and will continue to do so in the future. Areas where additional planning and preparation are needed have also been identified through these experiences.

  18. Partial gravity habitat study: With application to lunar base design

    NASA Technical Reports Server (NTRS)

    Capps, Stephen; Lorandos, Jason; Akhidime, Eval; Bunch, Michael; Lund, Denise; Moore, Nathan; Murakawa, Kio; Bell, Larry; Trotti, Guillermo; Neubek, Deb

    1989-01-01

    Comprehensive design requirements associated with designing habitats for humans in a partial gravity environment were investigated and then applied to a lunar base design. Other potential sites for application include planetary surfaces such as Mars, variable gravity research facilities, or a rotating spacecraft. Design requirements for partial gravity environments include: (1) locomotion changes in less than normal Earth gravity; (2) facility design issues, such as interior configuration, module diameter and geometry; and (3) volumetric requirements based on the previous as well as psychological issues involved in prolonged isolation. For application to a Lunar Base, it was necessary to study the exterior architecture and configuration to insure optimum circulation patterns while providing dual egress. Radiation protection issues were addressed to provide a safe and healthy environment for the crew, and finally, the overall site was studied to locate all associated facilities in context with the habitat. Mission planning was not the purpose of this study; therefore, a Lockheed scenario was used as an outline for the Lunar Base application, which was then modified to meet the project needs.

  19. Potential advantages associated with implementing a risk-based inspection program by a nuclear facility

    NASA Astrophysics Data System (ADS)

    McNeill, Alexander, III; Balkey, Kenneth R.

    1995-05-01

    The current inservice inspection activities at a U.S. nuclear facility are based upon the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, Section XI. The Code selects examination locations based upon a sampling criteria which includes component geometry, stress, and usage among other criteria. This can result in a significant number of required examinations. As a result of regulatory action each nuclear facility has conducted probabilistic risk assessments (PRA) or individual plant examinations (IPE), producing plant specific risk-based information. Several initiatives have been introduced to apply this new plant risk information. Among these initiatives is risk-based inservice inspection. A code case has been introduced for piping inspections based upon this new risk- based technology. This effort brought forward to the ASME Section XI Code committee, has been initiated and championed by the ASME Research Task Force on Risk-Based Inspection Guidelines -- LWR Nuclear Power Plant Application. Preliminary assessments associated with the code case have revealed that potential advantages exist in a risk-based inservice inspection program with regard to a number of exams, risk, personnel exposure, and cost.

  20. 14 CFR § 1204.1401 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... POLICY Use of NASA Airfield Facilities by Aircraft Not Operated for the Benefit of the Federal Government § 1204.1401 Definitions. For the purpose of this subpart, the following definitions apply: (a) NASA Airfield Facility. Those aeronautical facilities owned and operated by NASA that consist of the following...

Top