Sample records for applied research network

  1. The Pediatric Emergency Care Applied Research Network: a history of multicenter collaboration in the United States.

    PubMed

    Tzimenatos, Leah; Kim, Emily; Kuppermann, Nathan

    2014-12-01

    In this article, we review the history and progress of a large multicenter research network pertaining to emergency medical services for children. We describe the history, organization, infrastructure, and research agenda of the Pediatric Emergency Care Applied Research Network (PECARN), and highlight some of the important accomplishments since its inception. We also describe the network's strategy to grow its research portfolio, train new investigators, and study how to translate new evidence into practice. This strategy ensures not only the sustainability of the network in the future, but the growth of research in emergency medical services for children in general.

  2. The Pediatric Emergency Care Applied Research Network: a history of multicenter collaboration in the United States.

    PubMed

    Tzimenatos, Leah; Kim, Emily; Kuppermann, Nathan

    2015-01-01

    In this article, we review the history and progress of a large multicenter research network pertaining to emergency medical services for children. We describe the history, organization, infrastructure, and research agenda of the Pediatric Emergency Care Applied Research Network and highlight some of the important accomplishments since its inception. We also describe the network's strategy to grow its research portfolio, train new investigators, and study how to translate new evidence into practice. This strategy ensures not only the sustainability of the network in the future but the growth of research in emergency medical services for children in general.

  3. Research on scheme of applying ASON to current networks

    NASA Astrophysics Data System (ADS)

    Mao, Y. F.; Li, J. R.; Deng, L. J.

    2008-10-01

    Automatically Switched Optical Network (ASON) is currently a new and hot research subject in the world. It can provide high bandwidth, high assembly flexibility, high network security and reliability, but with a low management cost. It is presented to meet the requirements for high-throughput optical access with stringent Quality of Service (QoS). But as a brand new technology, ASON can not be supported by the traditional protocol software and network equipments. And the approach to build a new ASON network on the basis of completely abandoning the traditional optical network facilities is not desirable, because it costs too much and wastes a lot of network resources can also be used. So how to apply ASON to the current networks and realize the smooth transition between the existing network and ASON has been a serious problem to many network operators. In this research, the status in quo of ASON is introduced first and then the key problems should be considered when applying ASON to current networks are discussed. Based on this, the strategies should be complied with to overcome these key problems are listed. At last, the approach to apply ASON to the current optical networks is proposed and analyzed.

  4. The UK-SEA-ME Psychosocial-Cultural Cancer Research Network: setting the stage for applied qualitative research on cancer health behaviour in southeast Asia and the Middle East.

    PubMed

    Lim, Jennifer N W

    2011-01-01

    Psychosocial and cultural factors influencing cancer health behaviour have not been systematically investigated outside the western culture, and qualitative research is the best approach for this type of social research. The research methods employed to study health problems in Asia predominantly are quantitative techniques. The set up of the first psychosocial cancer research network in Asia marks the beginning of a collaboration to promote and spearhead applied qualitative healthcare research in cancer in the UK, Southeast Asia and the Middle East. This paper sets out the rationale, objectives and mission for the UK-SEA-ME Psychosocial-Cultural Cancer Research Network. The UK-SEA-ME network is made up of collaborators from the University of Leeds (UK), the University of Malaya (Malaysia), the National University of Singapore (Singapore) and the University of United Arab Emirates (UAE). The network promotes applied qualitative research to investigate the psychosocial and cultural factors influencing delayed and late presentation and diagnosis for cancer (breast cancer) in partner countries, as well as advocating the use of the mixed-methods research approach. The network also offers knowledge transfer for capacity building within network universities. The mission of the network is to improve public awareness about the importance of early management and prevention of cancer through research in Asia.

  5. Quantitative Analysis of the Interdisciplinarity of Applied Mathematics.

    PubMed

    Xie, Zheng; Duan, Xiaojun; Ouyang, Zhenzheng; Zhang, Pengyuan

    2015-01-01

    The increasing use of mathematical techniques in scientific research leads to the interdisciplinarity of applied mathematics. This viewpoint is validated quantitatively here by statistical and network analysis on the corpus PNAS 1999-2013. A network describing the interdisciplinary relationships between disciplines in a panoramic view is built based on the corpus. Specific network indicators show the hub role of applied mathematics in interdisciplinary research. The statistical analysis on the corpus content finds that algorithms, a primary topic of applied mathematics, positively correlates, increasingly co-occurs, and has an equilibrium relationship in the long-run with certain typical research paradigms and methodologies. The finding can be understood as an intrinsic cause of the interdisciplinarity of applied mathematics.

  6. Lessons Learnt from Applying Action Research to Support Strategy Formation Processes in Long-Term Care Networks

    ERIC Educational Resources Information Center

    Cramer, Hendrik; Dewulf, Geert; Voordijk, Hans

    2015-01-01

    This study demonstrates how action research (AR) that is aimed at scaling-up experiments can be applied to support a strategy formation process (SFP) in a subsidized long-term care network. Previous research has developed numerous AR frameworks to support experiments in various domains, but has failed to explain how to apply AR and action learning…

  7. Instrumentation for Scientific Computing in Neural Networks, Information Science, Artificial Intelligence, and Applied Mathematics.

    DTIC Science & Technology

    1987-10-01

    include Security Classification) Instrumentation for scientific computing in neural networks, information science, artificial intelligence, and...instrumentation grant to purchase equipment for support of research in neural networks, information science, artificail intellignece , and applied mathematics...in Neural Networks, Information Science, Artificial Intelligence, and Applied Mathematics Contract AFOSR 86-0282 Principal Investigator: Stephen

  8. Applied Research Centres at South African Universities. The Relationship between 'Base' Internal Structures and Network 'Superstructures'

    ERIC Educational Resources Information Center

    Cooper, David

    2005-01-01

    This article considers the way in which applied research centres and units at South African higher education institutions enhance their networks with industry, government and community organizations. The findings from 12 case studies of research groupings at higher education institutions in Cape Town support the author's argument for a more…

  9. Human Behavior Modeling in Network Science

    DTIC Science & Technology

    2010-03-01

    in Network Science bringing three distinct research areas together, communication networks, information networks, and social /cognitive networks. The...researchers. A critical part of the social /cognitive network effort is the modeling of human behavior. The modeling efforts range from organizational...behavior to social cognitive trust to explore and refine the theoretical and applied network relationships between and among the human

  10. Building research infrastructure in community health centers: a Community Health Applied Research Network (CHARN) report.

    PubMed

    Likumahuwa, Sonja; Song, Hui; Singal, Robbie; Weir, Rosy Chang; Crane, Heidi; Muench, John; Sim, Shao-Chee; DeVoe, Jennifer E

    2013-01-01

    This article introduces the Community Health Applied Research Network (CHARN), a practice-based research network of community health centers (CHCs). Established by the Health Resources and Services Administration in 2010, CHARN is a network of 4 community research nodes, each with multiple affiliated CHCs and an academic center. The four nodes (18 individual CHCs and 4 academic partners in 9 states) are supported by a data coordinating center. Here we provide case studies detailing how CHARN is building research infrastructure and capacity in CHCs, with a particular focus on how community practice-academic partnerships were facilitated by the CHARN structure. The examples provided by the CHARN nodes include many of the building blocks of research capacity: communication capacity and "matchmaking" between providers and researchers; technology transfer; research methods tailored to community practice settings; and community institutional review board infrastructure to enable community oversight. We draw lessons learned from these case studies that we hope will serve as examples for other networks, with special relevance for community-based networks seeking to build research infrastructure in primary care settings.

  11. Building Research Infrastructure in Community Health Centers: A Community Health Applied Research Network (CHARN) Report

    PubMed Central

    Likumahuwa, Sonja; Song, Hui; Singal, Robbie; Weir, Rosy Chang; Crane, Heidi; Muench, John; Sim, Shao-Chee; DeVoe, Jennifer E.

    2015-01-01

    This article introduces the Community Health Applied Research Network (CHARN), a practice-based research network of community health centers (CHCs). Established by the Health Resources and Services Administration in 2010, CHARN is a network of 4 community research nodes, each with multiple affiliated CHCs and an academic center. The four nodes (18 individual CHCs and 4 academic partners in 9 states) are supported by a data coordinating center. Here we provide case studies detailing how CHARN is building research infrastructure and capacity in CHCs, with a particular focus on how community practice-academic partnerships were facilitated by the CHARN structure. The examples provided by the CHARN nodes include many of the building blocks of research capacity: communication capacity and “matchmaking” between providers and researchers; technology transfer; research methods tailored to community practice settings; and community institutional review board infrastructure to enable community oversight. We draw lessons learned from these case studies that we hope will serve as examples for other networks, with special relevance for community-based networks seeking to build research infrastructure in primary care settings. PMID:24004710

  12. Advancing the State of the Art in Applying Network Science to C2

    DTIC Science & Technology

    2014-06-01

    technological networks to include information , cognitive and social networks, they have yet to apply the full range of theoretical instruments now...robustness, and processes. While NEC researchers extended their coverage from technological networks to include information , cognitive and social networks...can be found in a wide variety of domains. For example, Newman (2003) surveys work on biological, technological , information , and social networks

  13. Data-Driven Design of Intelligent Wireless Networks: An Overview and Tutorial.

    PubMed

    Kulin, Merima; Fortuna, Carolina; De Poorter, Eli; Deschrijver, Dirk; Moerman, Ingrid

    2016-06-01

    Data science or "data-driven research" is a research approach that uses real-life data to gain insight about the behavior of systems. It enables the analysis of small, simple as well as large and more complex systems in order to assess whether they function according to the intended design and as seen in simulation. Data science approaches have been successfully applied to analyze networked interactions in several research areas such as large-scale social networks, advanced business and healthcare processes. Wireless networks can exhibit unpredictable interactions between algorithms from multiple protocol layers, interactions between multiple devices, and hardware specific influences. These interactions can lead to a difference between real-world functioning and design time functioning. Data science methods can help to detect the actual behavior and possibly help to correct it. Data science is increasingly used in wireless research. To support data-driven research in wireless networks, this paper illustrates the step-by-step methodology that has to be applied to extract knowledge from raw data traces. To this end, the paper (i) clarifies when, why and how to use data science in wireless network research; (ii) provides a generic framework for applying data science in wireless networks; (iii) gives an overview of existing research papers that utilized data science approaches in wireless networks; (iv) illustrates the overall knowledge discovery process through an extensive example in which device types are identified based on their traffic patterns; (v) provides the reader the necessary datasets and scripts to go through the tutorial steps themselves.

  14. How Might Better Network Theories Support School Leadership Research?

    ERIC Educational Resources Information Center

    Hadfield, Mark; Jopling, Michael

    2012-01-01

    This article explores how recent research in education has applied different aspects of "network" theory to the study of school leadership. Constructs from different network theories are often used because of their perceived potential to clarify two perennial issues in leadership research. The first is the relative importance of formal and…

  15. Using Action Research and Action Learning for Entrepreneurial Network Capability Development

    ERIC Educational Resources Information Center

    McGrath, Helen; O'Toole, Thomas

    2016-01-01

    This paper applies an action research (AR) design and action learning (AL) approach to network capability development in an entrepreneurial context. Recent research suggests that networks are a viable strategy for the entrepreneurial firm to overcome the liabilities associated with newness and smallness. However, a gap emerges as few, if any,…

  16. Data-Driven Design of Intelligent Wireless Networks: An Overview and Tutorial

    PubMed Central

    Kulin, Merima; Fortuna, Carolina; De Poorter, Eli; Deschrijver, Dirk; Moerman, Ingrid

    2016-01-01

    Data science or “data-driven research” is a research approach that uses real-life data to gain insight about the behavior of systems. It enables the analysis of small, simple as well as large and more complex systems in order to assess whether they function according to the intended design and as seen in simulation. Data science approaches have been successfully applied to analyze networked interactions in several research areas such as large-scale social networks, advanced business and healthcare processes. Wireless networks can exhibit unpredictable interactions between algorithms from multiple protocol layers, interactions between multiple devices, and hardware specific influences. These interactions can lead to a difference between real-world functioning and design time functioning. Data science methods can help to detect the actual behavior and possibly help to correct it. Data science is increasingly used in wireless research. To support data-driven research in wireless networks, this paper illustrates the step-by-step methodology that has to be applied to extract knowledge from raw data traces. To this end, the paper (i) clarifies when, why and how to use data science in wireless network research; (ii) provides a generic framework for applying data science in wireless networks; (iii) gives an overview of existing research papers that utilized data science approaches in wireless networks; (iv) illustrates the overall knowledge discovery process through an extensive example in which device types are identified based on their traffic patterns; (v) provides the reader the necessary datasets and scripts to go through the tutorial steps themselves. PMID:27258286

  17. Supporting Research and Development of Security Technologies through Network and Security Data Collection

    DTIC Science & Technology

    Research and development targeted at identifying and mitigating Internet security threats require current network data. To fulfill this need... researchers working for the Center for Applied Internet Data Analysis (CAIDA), a program at the San Diego Supercomputer Center (SDSC) which is based at the...vetted network and security researchers using the PREDICT/IMPACT portal and legal framework. We have also contributed to community building efforts that

  18. Detecting and analyzing research communities in longitudinal scientific networks.

    PubMed

    Leone Sciabolazza, Valerio; Vacca, Raffaele; Kennelly Okraku, Therese; McCarty, Christopher

    2017-01-01

    A growing body of evidence shows that collaborative teams and communities tend to produce the highest-impact scientific work. This paper proposes a new method to (1) Identify collaborative communities in longitudinal scientific networks, and (2) Evaluate the impact of specific research institutes, services or policies on the interdisciplinary collaboration between these communities. First, we apply community-detection algorithms to cross-sectional scientific collaboration networks and analyze different types of co-membership in the resulting subgroups over time. This analysis summarizes large amounts of longitudinal network data to extract sets of research communities whose members have consistently collaborated or shared collaborators over time. Second, we construct networks of cross-community interactions and estimate Exponential Random Graph Models to predict the formation of interdisciplinary collaborations between different communities. The method is applied to longitudinal data on publication and grant collaborations at the University of Florida. Results show that similar institutional affiliation, spatial proximity, transitivity effects, and use of the same research services predict higher degree of interdisciplinary collaboration between research communities. Our application also illustrates how the identification of research communities in longitudinal data and the analysis of cross-community network formation can be used to measure the growth of interdisciplinary team science at a research university, and to evaluate its association with research policies, services or institutes.

  19. Detecting and analyzing research communities in longitudinal scientific networks

    PubMed Central

    Vacca, Raffaele; Kennelly Okraku, Therese; McCarty, Christopher

    2017-01-01

    A growing body of evidence shows that collaborative teams and communities tend to produce the highest-impact scientific work. This paper proposes a new method to (1) Identify collaborative communities in longitudinal scientific networks, and (2) Evaluate the impact of specific research institutes, services or policies on the interdisciplinary collaboration between these communities. First, we apply community-detection algorithms to cross-sectional scientific collaboration networks and analyze different types of co-membership in the resulting subgroups over time. This analysis summarizes large amounts of longitudinal network data to extract sets of research communities whose members have consistently collaborated or shared collaborators over time. Second, we construct networks of cross-community interactions and estimate Exponential Random Graph Models to predict the formation of interdisciplinary collaborations between different communities. The method is applied to longitudinal data on publication and grant collaborations at the University of Florida. Results show that similar institutional affiliation, spatial proximity, transitivity effects, and use of the same research services predict higher degree of interdisciplinary collaboration between research communities. Our application also illustrates how the identification of research communities in longitudinal data and the analysis of cross-community network formation can be used to measure the growth of interdisciplinary team science at a research university, and to evaluate its association with research policies, services or institutes. PMID:28797047

  20. Application of artificial neural networks with backpropagation technique in the financial data

    NASA Astrophysics Data System (ADS)

    Jaiswal, Jitendra Kumar; Das, Raja

    2017-11-01

    The propensity of applying neural networks has been proliferated in multiple disciplines for research activities since the past recent decades because of its powerful control with regulatory parameters for pattern recognition and classification. It is also being widely applied for forecasting in the numerous divisions. Since financial data have been readily available due to the involvement of computers and computing systems in the stock market premises throughout the world, researchers have also developed numerous techniques and algorithms to analyze the data from this sector. In this paper we have applied neural network with backpropagation technique to find the data pattern from finance section and prediction for stock values as well.

  1. The APA and the Rise of Pediatric Generalist Network Research

    PubMed Central

    Wasserman, Richard; Serwint, Janet R.; Kuppermann, Nathan; Srivastava, Rajendu; Dreyer, Benard

    2010-01-01

    The Academic Pediatric Association (APA – formerly the Ambulatory Pediatric Association) first encouraged multi-institutional collaborative research among its members over thirty years ago. Individual APA members went on subsequently to figure prominently in establishing formal research networks. These enduring collaborations have been established to conduct investigations in a variety of generalist contexts. At present, four generalist networks – Pediatric Research in Office Settings (PROS), the Pediatric Emergency Care Applied Network (PECARN), the COntinuity Research NETwork (CORNET), and Pediatric Research in Inpatient Settings (PRIS) – have a track record of extensive achievement in generating new knowledge aimed at improving the health and health care of children. This review details the history, accomplishments, and future directions of these networks and summarizes the common themes, strengths, challenges and opportunities inherent in pediatric generalist network research. PMID:21282083

  2. Aggregation in Network Models for Transportation Planning

    DOT National Transportation Integrated Search

    1978-02-01

    This report documents research performed on techniques of aggregation applied to network models used in transportation planning. The central objective of this research has been to identify, extend, and evaluate methods of aggregation so as to improve...

  3. Investigating Patterns of Interaction in Networked Learning and Computer-Supported Collaborative Learning: A Role for Social Network Analysis

    ERIC Educational Resources Information Center

    de Laat, Maarten; Lally, Vic; Lipponen, Lasse; Simons, Robert-Jan

    2007-01-01

    The focus of this study is to explore the advances that Social Network Analysis (SNA) can bring, in combination with other methods, when studying Networked Learning/Computer-Supported Collaborative Learning (NL/CSCL). We present a general overview of how SNA is applied in NL/CSCL research; we then go on to illustrate how this research method can…

  4. A Postscript on Institutional Motivations, Research Concerns and Professional Implications

    ERIC Educational Resources Information Center

    Dalton-Puffer, Christiane

    2012-01-01

    From the point of view of AILA's research network "CLIL and Immersion Education: Applied Linguistic Perspectives" this volume finally does justice to a strand of interest that has been part of the network from its inception. As the editors rightly point out in the introduction, ReN events and publications during the network's first…

  5. Advances in Artificial Neural Networks - Methodological Development and Application

    USDA-ARS?s Scientific Manuscript database

    Artificial neural networks as a major soft-computing technology have been extensively studied and applied during the last three decades. Research on backpropagation training algorithms for multilayer perceptron networks has spurred development of other neural network training algorithms for other ne...

  6. Advanced Distributed Simulation Technology II (ADST-II) Dismounted Warrior Network Front End Analysis Experiments

    DTIC Science & Technology

    1997-12-19

    Resource Consultants Inc. (RCI) Science Applications InternatT Corp (SAIC) Veda Inc. Virtual Space Devices (VSD) 1.1 Background The Land Warrior...network. The VICs included: • VIC Alpha - a fully immersive Dismounted Soldier System developed by Veda under a STRICOM applied research effort...consists of the Dismounted Soldier System (DSS), which is characterized as follows: • Developed by Veda under a STRICOM applied research effort

  7. Applying a social network analysis (SNA) approach to understanding radiologists' performance in reading mammograms

    NASA Astrophysics Data System (ADS)

    Tavakoli Taba, Seyedamir; Hossain, Liaquat; Heard, Robert; Brennan, Patrick; Lee, Warwick; Lewis, Sarah

    2017-03-01

    Rationale and objectives: Observer performance has been widely studied through examining the characteristics of individuals. Applying a systems perspective, while understanding of the system's output, requires a study of the interactions between observers. This research explains a mixed methods approach to applying a social network analysis (SNA), together with a more traditional approach of examining personal/ individual characteristics in understanding observer performance in mammography. Materials and Methods: Using social networks theories and measures in order to understand observer performance, we designed a social networks survey instrument for collecting personal and network data about observers involved in mammography performance studies. We present the results of a study by our group where 31 Australian breast radiologists originally reviewed 60 mammographic cases (comprising of 20 abnormal and 40 normal cases) and then completed an online questionnaire about their social networks and personal characteristics. A jackknife free response operating characteristic (JAFROC) method was used to measure performance of radiologists. JAFROC was tested against various personal and network measures to verify the theoretical model. Results: The results from this study suggest a strong association between social networks and observer performance for Australian radiologists. Network factors accounted for 48% of variance in observer performance, in comparison to 15.5% for the personal characteristics for this study group. Conclusion: This study suggest a strong new direction for research into improving observer performance. Future studies in observer performance should consider social networks' influence as part of their research paradigm, with equal or greater vigour than traditional constructs of personal characteristics.

  8. Artificial Neural Networks: A New Approach to Predicting Application Behavior.

    ERIC Educational Resources Information Center

    Gonzalez, Julie M. Byers; DesJardins, Stephen L.

    2002-01-01

    Applied the technique of artificial neural networks to predict which students were likely to apply to one research university. Compared the results to the traditional analysis tool, logistic regression modeling. Found that the addition of artificial intelligence models was a useful new tool for predicting student application behavior. (EV)

  9. Application of Game Theory Approaches in Routing Protocols for Wireless Networks

    NASA Astrophysics Data System (ADS)

    Javidi, Mohammad M.; Aliahmadipour, Laya

    2011-09-01

    An important and essential issue for wireless networks is routing protocol design that is a major technical challenge due to the function of the network. Game theory is a powerful mathematical tool that analyzes the strategic interactions among multiple decision makers and the results of researches show that applied game theory in routing protocol lead to improvement the network performance through reduce overhead and motivates selfish nodes to collaborate in the network. This paper presents a review and comparison for typical representatives of routing protocols designed that applied game theory approaches for various wireless networks such as ad hoc networks, mobile ad hoc networks and sensor networks that all of them lead to improve the network performance.

  10. A Computer-Assisted Approach for Conducting Information Technology Applied Instructions

    ERIC Educational Resources Information Center

    Chu, Hui-Chun; Hwang, Gwo-Jen; Tsai, Pei Jin; Yang, Tzu-Chi

    2009-01-01

    The growing popularity of computer and network technologies has attracted researchers to investigate the strategies and the effects of information technology applied instructions. Previous research has not only demonstrated the benefits of applying information technologies to the learning process, but has also revealed the difficulty of applying…

  11. The Earth Science Research Network as Seen Through Network Analysis of the AGU

    NASA Astrophysics Data System (ADS)

    Narock, T.; Hasnain, S.; Stephan, R.

    2017-12-01

    Scientometrics is the science of science. Scientometric research includes measurements of impact, mapping of scientific fields, and the production of indicators for use in policy and management. We have leveraged network analysis in a scientometric study of the American Geophysical Union (AGU). Data from the AGU's Linked Data Abstract Browser was used to create a visualization and analytics tools to explore the Earth science's research network. Our application applies network theory to look at network structure within the various AGU sections, identify key individuals and communities related to Earth science topics, and examine multi-disciplinary collaboration across sections. Opportunities to optimize Earth science output, as well as policy and outreach applications, are discussed.

  12. Medical image analysis with artificial neural networks.

    PubMed

    Jiang, J; Trundle, P; Ren, J

    2010-12-01

    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. The Mind Research Network - Mental Illness Neuroscience Discovery Grant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, J.; Calhoun, V.

    The scientific and technological programs of the Mind Research Network (MRN), reflect DOE missions in basic science and associated instrumentation, computational modeling, and experimental techniques. MRN's technical goals over the course of this project have been to develop and apply integrated, multi-modality functional imaging techniques derived from a decade of DOE-support research and technology development.

  14. Evolution of collaboration within the US long term ecological research network

    Treesearch

    Jeffrey C. Johnson; Robert R. Christian; James W. Brunt; Caleb R. Hickman; Robert B. Waide

    2010-01-01

    The US Long Term Ecological Research (LTER) program began in 1980 with the mission of addressing long-term ecological phenomena through research at individual sites, as well as comparative and synthetic activities among sites. We applied network science measures to assess how the LTER program has achieved its mission using intersite publications as the measure of...

  15. Advanced development and calibration of the network robustness index to identify critical road network links.

    DOT National Transportation Integrated Search

    2010-05-31

    In this research project, transportation flexibility and reliability concepts are extended and applied : to a new method for identifying the most critical links in a road network. Current transportation : management practices typically utilize locali...

  16. Changes in Social Capital and Networks: A Study of Community-Based Environmental Management through a School-Centered Research Program

    ERIC Educational Resources Information Center

    Thornton, Teresa; Leahy, Jessica

    2012-01-01

    Social network analysis (SNA) is a social science research tool that has not been applied to educational programs. This analysis is critical to documenting the changes in social capital and networks that result from community based K-12 educational collaborations. We review SNA and show an application of this technique in a school-centered,…

  17. Real Time Physiological Status Monitoring (RT-PSM): Accomplishments, Requirements, and Research Roadmap

    DTIC Science & Technology

    2016-03-01

    Maneuver Center of Excellence (US Army - Ft. Benning) MINIMEN Minimalist Wearable Mesh Network Mloco Metabolic Costs of Locomotion MOUT Military...detect blast and ballistic wounding events Quantum Applied Science & Research, Inc. Army A05-163 SBIR 2005 Minimalist Short- Range Wearable for...STTR 2005 (Phase 1) 2005 Minimalist Wearable Mesh Network (MINIMEN) System Develop PSM system linking wearable sensors, mesh networking

  18. CollaborationViz: Interactive Visual Exploration of Biomedical Research Collaboration Networks

    PubMed Central

    Bian, Jiang; Xie, Mengjun; Hudson, Teresa J.; Eswaran, Hari; Brochhausen, Mathias; Hanna, Josh; Hogan, William R.

    2014-01-01

    Social network analysis (SNA) helps us understand patterns of interaction between social entities. A number of SNA studies have shed light on the characteristics of research collaboration networks (RCNs). Especially, in the Clinical Translational Science Award (CTSA) community, SNA provides us a set of effective tools to quantitatively assess research collaborations and the impact of CTSA. However, descriptive network statistics are difficult for non-experts to understand. In this article, we present our experiences of building meaningful network visualizations to facilitate a series of visual analysis tasks. The basis of our design is multidimensional, visual aggregation of network dynamics. The resulting visualizations can help uncover hidden structures in the networks, elicit new observations of the network dynamics, compare different investigators and investigator groups, determine critical factors to the network evolution, and help direct further analyses. We applied our visualization techniques to explore the biomedical RCNs at the University of Arkansas for Medical Sciences – a CTSA institution. And, we created CollaborationViz, an open-source visual analytical tool to help network researchers and administration apprehend the network dynamics of research collaborations through interactive visualization. PMID:25405477

  19. Critical path method applied to research project planning: Fire Economics Evaluation System (FEES)

    Treesearch

    Earl B. Anderson; R. Stanton Hales

    1986-01-01

    The critical path method (CPM) of network analysis (a) depicts precedence among the many activities in a project by a network diagram; (b) identifies critical activities by calculating their starting, finishing, and float times; and (c) displays possible schedules by constructing time charts. CPM was applied to the development of the Forest Service's Fire...

  20. The research of network database security technology based on web service

    NASA Astrophysics Data System (ADS)

    Meng, Fanxing; Wen, Xiumei; Gao, Liting; Pang, Hui; Wang, Qinglin

    2013-03-01

    Database technology is one of the most widely applied computer technologies, its security is becoming more and more important. This paper introduced the database security, network database security level, studies the security technology of the network database, analyzes emphatically sub-key encryption algorithm, applies this algorithm into the campus-one-card system successfully. The realization process of the encryption algorithm is discussed, this method is widely used as reference in many fields, particularly in management information system security and e-commerce.

  1. Lifespan Differences in the Social Networks of Prison Inmates

    ERIC Educational Resources Information Center

    Bond, Gary D.; Thompson, Laura A.; Malloy, Daniel M.

    2005-01-01

    Socioemotional Selectivity Theory (SST) (Carstensen, 1992, 1993) accounts for lifespan changes in human social networks and for the motivations which underlie those changes. SST is applied in this research with 256 prison inmates and non-inmates, ages 18-84, from Mississippi, Kansas, and New Mexico. Two research questions sought to identify (a)…

  2. Seeking Social Capital and Expertise in a Newly-Formed Research Community: A Co-Author Analysis

    ERIC Educational Resources Information Center

    Forte, Christine E.

    2017-01-01

    This exploratory study applies social network analysis techniques to existing, publicly available data to understand collaboration patterns within the co-author network of a federally-funded, interdisciplinary research program. The central questions asked: What underlying social capital structures can be determined about a group of researchers…

  3. Higher Education Change and Social Networks: A Review of Research

    ERIC Educational Resources Information Center

    Kezar, Adrianna

    2014-01-01

    This article reviews literature on the potential for understanding higher education change processes through social network analysis (SNA). In this article, the main tenets of SNA are reviewed and, in conjunction with organizational theory, are applied to higher education change to develop a set of hypotheses that can be tested in future research.

  4. Analysis of blocking probability for OFDM-based variable bandwidth optical network

    NASA Astrophysics Data System (ADS)

    Gong, Lei; Zhang, Jie; Zhao, Yongli; Lin, Xuefeng; Wu, Yuyao; Gu, Wanyi

    2011-12-01

    Orthogonal Frequency Division Multiplexing (OFDM) has recently been proposed as a modulation technique. For optical networks, because of its good spectral efficiency, flexibility, and tolerance to impairments, optical OFDM is much more flexible compared to traditional WDM systems, enabling elastic bandwidth transmissions, and optical networking is the future trend of development. In OFDM-based optical network the research of blocking rate has very important significance for network assessment. Current research for WDM network is basically based on a fixed bandwidth, in order to accommodate the future business and the fast-changing development of optical network, our study is based on variable bandwidth OFDM-based optical networks. We apply the mathematical analysis and theoretical derivation, based on the existing theory and algorithms, research blocking probability of the variable bandwidth of optical network, and then we will build a model for blocking probability.

  5. Center for Neural Engineering at Tennessee State University, ASSERT Annual Progress Report.

    DTIC Science & Technology

    1995-07-01

    neural networks . Their research topics are: (1) developing frequency dependent oscillatory neural networks ; (2) long term pontentiation learning rules...as applied to spatial navigation; (3) design and build a servo joint robotic arm and (4) neural network based prothesis control. One graduate student

  6. Network Coding in Relay-based Device-to-Device Communications

    PubMed Central

    Huang, Jun; Gharavi, Hamid; Yan, Huifang; Xing, Cong-cong

    2018-01-01

    Device-to-Device (D2D) communications has been realized as an effective means to improve network throughput, reduce transmission latency, and extend cellular coverage in 5G systems. Network coding is a well-established technique known for its capability to reduce the number of retransmissions. In this article, we review state-of-the-art network coding in relay-based D2D communications, in terms of application scenarios and network coding techniques. We then apply two representative network coding techniques to dual-hop D2D communications and present an efficient relay node selecting mechanism as a case study. We also outline potential future research directions, according to the current research challenges. Our intention is to provide researchers and practitioners with a comprehensive overview of the current research status in this area and hope that this article may motivate more researchers to participate in developing network coding techniques for different relay-based D2D communications scenarios. PMID:29503504

  7. Results of the Community Health Applied Research Network (CHARN) National Research Capacity Survey of Community Health Centers.

    PubMed

    Song, Hui; Li, Vivian; Gillespie, Suzanne; Laws, Reesa; Massimino, Stefan; Nelson, Christine; Singal, Robbie; Wagaw, Fikirte; Jester, Michelle; Weir, Rosy Chang

    2015-01-01

    The mission of the Community Health Applied Research Network (CHARN) is to build capacity to carry out Patient-Centered Outcomes Research at community health centers (CHCs), with the ultimate goal to improve health care for vulnerable populations. The CHARN Needs Assessment Staff Survey investigates CHCs' involvement in research, as well as their need for research training and resources. Results will be used to guide future training. The survey was developed and implemented in partnership with CHARN CHCs. Data were collected across CHARN CHCs. Data analysis and reports were conducted by the CHARN data coordinating center (DCC). Survey results highlighted gaps in staff research training, and these gaps varied by staff role. There is considerable variation in research involvement, partnerships, and focus both within and across CHCs. Development of training programs to increase research capacity should be tailored to address the specific needs and roles of staff involved in research.

  8. 78 FR 55084 - Proposed Collection; 60-day Comment Request; Data Collection To Understand How NIH Programs Apply...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-09

    ..., network leadership, program administrators, and research site staff. Survey 2500 1 30/60 1250 Interview... Research Programs (MIRP) SUMMARY: In compliance with the requirement of Section 3506(c)(2)(A) of the... to Understand How NIH Programs Apply Methodologies to Improve Their Research Programs (MIRP), 0925New...

  9. Privacy and Generation Y: Applying Library Values to Social Networking Sites

    ERIC Educational Resources Information Center

    Fernandez, Peter

    2010-01-01

    Librarians face many challenges when dealing with issues of privacy within the mediated space of social networking sites. Conceptually, social networking sites differ from libraries on privacy as a value. Research about Generation Y students, the primary clientele of undergraduate libraries, can inform librarians' relationship to this important…

  10. Generating Researcher Networks with Identified Persons on a Semantic Service Platform

    NASA Astrophysics Data System (ADS)

    Jung, Hanmin; Lee, Mikyoung; Kim, Pyung; Lee, Seungwoo

    This paper describes a Semantic Web-based method to acquire researcher networks by means of identification scheme, ontology, and reasoning. Three steps are required to realize it; resolving co-references, finding experts, and generating researcher networks. We adopt OntoFrame as an underlying semantic service platform and apply reasoning to make direct relations between far-off classes in ontology schema. 453,124 Elsevier journal articles with metadata and full-text documents in information technology and biomedical domains have been loaded and served on the platform as a test set.

  11. Network meta-analysis, electrical networks and graph theory.

    PubMed

    Rücker, Gerta

    2012-12-01

    Network meta-analysis is an active field of research in clinical biostatistics. It aims to combine information from all randomized comparisons among a set of treatments for a given medical condition. We show how graph-theoretical methods can be applied to network meta-analysis. A meta-analytic graph consists of vertices (treatments) and edges (randomized comparisons). We illustrate the correspondence between meta-analytic networks and electrical networks, where variance corresponds to resistance, treatment effects to voltage, and weighted treatment effects to current flows. Based thereon, we then show that graph-theoretical methods that have been routinely applied to electrical networks also work well in network meta-analysis. In more detail, the resulting consistent treatment effects induced in the edges can be estimated via the Moore-Penrose pseudoinverse of the Laplacian matrix. Moreover, the variances of the treatment effects are estimated in analogy to electrical effective resistances. It is shown that this method, being computationally simple, leads to the usual fixed effect model estimate when applied to pairwise meta-analysis and is consistent with published results when applied to network meta-analysis examples from the literature. Moreover, problems of heterogeneity and inconsistency, random effects modeling and including multi-armed trials are addressed. Copyright © 2012 John Wiley & Sons, Ltd. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Investigating the effects of streamline-based fiber tractography on matrix scaling in brain connective network.

    PubMed

    Jan, Hengtai; Chao, Yi-Ping; Cho, Kuan-Hung; Kuo, Li-Wei

    2013-01-01

    Investigating the brain connective network using the modern graph theory has been widely applied in cognitive and clinical neuroscience research. In this study, we aimed to investigate the effects of streamline-based fiber tractography on the change of network properties and established a systematic framework to understand how an adequate network matrix scaling can be determined. The network properties, including degree, efficiency and betweenness centrality, show similar tendency in both left and right hemispheres. By employing the curve-fitting process with exponential law and measuring the residuals, the association between changes of network properties and threshold of track numbers is found and an adequate range of investigating the lateralization of brain network is suggested. The proposed approach can be further applied in clinical applications to improve the diagnostic sensitivity using network analysis with graph theory.

  13. Harnessing and blending the power of two research networks to improve prevention science and public health practice

    PubMed Central

    Vanderpool, Robin C.; Brownson, Ross C.; Mays, Glen P.; Crosby, Richard A.; Wyatt, Stephen W.

    2015-01-01

    Strategic collaborations are essential in moving public health research and practice forward1, particularly in light of escalating fiscal and environmental challenges facing the public health community. This commentary provides background and context for an emerging partnership between two national networks, Prevention Research Centers (PRCs) and Public Health Practice-Based Research Networks (PBRNs), to impact public health practice. Supported by CDC, PRCs are celebrating over 25 years of transdisciplinary applied prevention research grounded in community and stakeholder engagement. Public Health PBRNs, funded by the Robert Wood Johnson Foundation, conduct innovative public health services and systems research with public health agencies and community partners to improve public health decision-making. By utilizing each of the networks’ respective strengths and resources, collaborative ventures between PRCs and Public Health PBRNs can enhance the translation of applied prevention research to evidence-based practice and empirically investigate novel public health practices developed in the field. Three current PRC-Public Health PBRNs projects are highlighted and future research directions are discussed. Improving the interconnectedness of prevention research and public health practice is essential to improve the health of the Nation. PMID:24237918

  14. Causes and consequences of habitat fragmentation in river networks.

    PubMed

    Fuller, Matthew R; Doyle, Martin W; Strayer, David L

    2015-10-01

    Increases in river fragmentation globally threaten freshwater biodiversity. Rivers are fragmented by many agents, both natural and anthropogenic. We review the distribution and frequency of these major agents, along with their effects on connectivity and habitat quality. Most fragmentation research has focused on terrestrial habitats, but theories and generalizations developed in terrestrial habitats do not always apply well to river networks. For example, terrestrial habitats are usually conceptualized as two-dimensional, whereas rivers often are conceptualized as one-dimensional or dendritic. In addition, river flow often leads to highly asymmetric effects of barriers on habitat and permeability. New approaches tailored to river networks can be applied to describe the network-wide effects of multiple barriers on both connectivity and habitat quality. The net effects of anthropogenic fragmentation on freshwater biodiversity are likely underestimated, because of time lags in effects and the difficulty of generating a single, simple signal of fragmentation that applies to all aquatic species. We conclude by presenting a decision tree for managing freshwater fragmentation, as well as some research horizons for evaluating fragmented riverscapes. © 2015 New York Academy of Sciences.

  15. Combined neural network/Phillips-Tikhonov approach to aerosol retrievals over land from the NASA Research Scanning Polarimeter

    NASA Astrophysics Data System (ADS)

    Di Noia, Antonio; Hasekamp, Otto P.; Wu, Lianghai; van Diedenhoven, Bastiaan; Cairns, Brian; Yorks, John E.

    2017-11-01

    In this paper, an algorithm for the retrieval of aerosol and land surface properties from airborne spectropolarimetric measurements - combining neural networks and an iterative scheme based on Phillips-Tikhonov regularization - is described. The algorithm - which is an extension of a scheme previously designed for ground-based retrievals - is applied to measurements from the Research Scanning Polarimeter (RSP) on board the NASA ER-2 aircraft. A neural network, trained on a large data set of synthetic measurements, is applied to perform aerosol retrievals from real RSP data, and the neural network retrievals are subsequently used as a first guess for the Phillips-Tikhonov retrieval. The resulting algorithm appears capable of accurately retrieving aerosol optical thickness, fine-mode effective radius and aerosol layer height from RSP data. Among the advantages of using a neural network as initial guess for an iterative algorithm are a decrease in processing time and an increase in the number of converging retrievals.

  16. Smart-Grid Backbone Network Real-Time Delay Reduction via Integer Programming.

    PubMed

    Pagadrai, Sasikanth; Yilmaz, Muhittin; Valluri, Pratyush

    2016-08-01

    This research investigates an optimal delay-based virtual topology design using integer linear programming (ILP), which is applied to the current backbone networks such as smart-grid real-time communication systems. A network traffic matrix is applied and the corresponding virtual topology problem is solved using the ILP formulations that include a network delay-dependent objective function and lightpath routing, wavelength assignment, wavelength continuity, flow routing, and traffic loss constraints. The proposed optimization approach provides an efficient deterministic integration of intelligent sensing and decision making, and network learning features for superior smart grid operations by adaptively responding the time-varying network traffic data as well as operational constraints to maintain optimal virtual topologies. A representative optical backbone network has been utilized to demonstrate the proposed optimization framework whose simulation results indicate that superior smart-grid network performance can be achieved using commercial networks and integer programming.

  17. Co-Production of Quality in the Applied Education Research Scheme

    ERIC Educational Resources Information Center

    Ozga, Jenny

    2007-01-01

    This contribution looks at the ways in which research quality is defined and addressed in the Applied Education Research Scheme (AERS), particularly within the network on Schools and Social Capital, which is one of the four areas of work within the overall AERS scheme. AERS is a five-year programme, funded jointly by the Scottish Executive and the…

  18. Covert Network Analysis for Key Player Detection and Event Prediction Using a Hybrid Classifier

    PubMed Central

    Akram, M. Usman; Khan, Shoab A.; Javed, Muhammad Younus

    2014-01-01

    National security has gained vital importance due to increasing number of suspicious and terrorist events across the globe. Use of different subfields of information technology has also gained much attraction of researchers and practitioners to design systems which can detect main members which are actually responsible for such kind of events. In this paper, we present a novel method to predict key players from a covert network by applying a hybrid framework. The proposed system calculates certain centrality measures for each node in the network and then applies novel hybrid classifier for detection of key players. Our system also applies anomaly detection to predict any terrorist activity in order to help law enforcement agencies to destabilize the involved network. As a proof of concept, the proposed framework has been implemented and tested using different case studies including two publicly available datasets and one local network. PMID:25136674

  19. Arctic Risk Management (ARMNet) Network: Linking Risk Management Practitioners and Researchers Across the Arctic Regions of Canada and Alaska To Improve Risk, Emergency and Disaster Preparedness and Mitigation Through Comparative Analysis and Applied Research

    NASA Astrophysics Data System (ADS)

    Garland, A.

    2015-12-01

    The Arctic Risk Management Network (ARMNet) was conceived as a trans-disciplinary hub to encourage and facilitate greater cooperation, communication and exchange among American and Canadian academics and practitioners actively engaged in the research, management and mitigation of risks, emergencies and disasters in the Arctic regions. Its aim is to assist regional decision-makers through the sharing of applied research and best practices and to support greater inter-operability and bilateral collaboration through improved networking, joint exercises, workshops, teleconferences, radio programs, and virtual communications (eg. webinars). Most importantly, ARMNet is a clearinghouse for all information related to the management of the frequent hazards of Arctic climate and geography in North America, including new and emerging challenges arising from climate change, increased maritime polar traffic and expanding economic development in the region. ARMNet is an outcome of the Arctic Observing Network (AON) for Long Term Observations, Governance, and Management Discussions, www.arcus.org/search-program. The AON goals continue with CRIOS (www.ariesnonprofit.com/ARIESprojects.php) and coastal erosion research (www.ariesnonprofit.com/webinarCoastalErosion.php) led by the North Slope Borough Risk Management Office with assistance from ARIES (Applied Research in Environmental Sciences Nonprofit, Inc.). The constituency for ARMNet will include all northern academics and researchers, Arctic-based corporations, First Responders (FRs), Emergency Management Offices (EMOs) and Risk Management Offices (RMOs), military, Coast Guard, northern police forces, Search and Rescue (SAR) associations, boroughs, territories and communities throughout the Arctic. This presentation will be of interest to all those engaged in Arctic affairs, describe the genesis of ARMNet and present the results of stakeholder meetings and webinars designed to guide the next stages of the Project.

  20. A Study of Teacher-Mediated Enhancement of Students' Organization of Earth Science Knowledge Using Web Diagrams as a Teaching Device

    ERIC Educational Resources Information Center

    Anderson, O. Roger; Contino, Julie

    2010-01-01

    Current research indicates that students with enhanced knowledge networks are more effective in learning science content and applying higher order thinking skills in open-ended inquiry learning. This research examined teacher implementation of a novel teaching strategy called "web diagramming," a form of network mapping, in a secondary school…

  1. Research and collaboration overview of Institut Pasteur International Network: a bibliometric approach toward research funding decisions.

    PubMed

    Mostafavi, Ehsan; Bazrafshan, Azam

    2014-01-01

    Institut Pasteur International Network (IPIN), which includes 32 research institutes around the world, is a network of research and expertise to fight against infectious diseases. A scientometric approach was applied to describe research and collaboration activities of IPIN. Publications were identified using a manual search of IPIN member addresses in Science Citation Index Expanded (SCIE) between 2006 and 2011. Total publications were then subcategorized by geographic regions. Several scientometric indicators and the H-index were employed to estimate the scientific production of each IPIN member. Subject and geographical overlay maps were also applied to visualize the network activities of the IPIN members. A total number of 12667 publications originated from IPIN members. Each author produced an average number of 2.18 papers and each publication received an average of 13.40 citations. European Pasteur Institutes had the largest amount of publications, authored papers, and H-index values. Biochemistry and molecular biology, microbiology, immunology and infectious diseases were the most important research topics, respectively. Geographic mapping of IPIN publications showed wide international collaboration among IPIN members around the world. IPIN has strong ties with national and international authorities and organizations to investigate the current and future health issues. It is recommended to use scientometric and collaboration indicators as measures of research performance in IPIN future policies and investment decisions.

  2. Research Note: The consequences of different methods for handling missing network data in Stochastic Actor Based Models

    PubMed Central

    Hipp, John R.; Wang, Cheng; Butts, Carter T.; Jose, Rupa; Lakon, Cynthia M.

    2015-01-01

    Although stochastic actor based models (e.g., as implemented in the SIENA software program) are growing in popularity as a technique for estimating longitudinal network data, a relatively understudied issue is the consequence of missing network data for longitudinal analysis. We explore this issue in our research note by utilizing data from four schools in an existing dataset (the AddHealth dataset) over three time points, assessing the substantive consequences of using four different strategies for addressing missing network data. The results indicate that whereas some measures in such models are estimated relatively robustly regardless of the strategy chosen for addressing missing network data, some of the substantive conclusions will differ based on the missing data strategy chosen. These results have important implications for this burgeoning applied research area, implying that researchers should more carefully consider how they address missing data when estimating such models. PMID:25745276

  3. Research Note: The consequences of different methods for handling missing network data in Stochastic Actor Based Models.

    PubMed

    Hipp, John R; Wang, Cheng; Butts, Carter T; Jose, Rupa; Lakon, Cynthia M

    2015-05-01

    Although stochastic actor based models (e.g., as implemented in the SIENA software program) are growing in popularity as a technique for estimating longitudinal network data, a relatively understudied issue is the consequence of missing network data for longitudinal analysis. We explore this issue in our research note by utilizing data from four schools in an existing dataset (the AddHealth dataset) over three time points, assessing the substantive consequences of using four different strategies for addressing missing network data. The results indicate that whereas some measures in such models are estimated relatively robustly regardless of the strategy chosen for addressing missing network data, some of the substantive conclusions will differ based on the missing data strategy chosen. These results have important implications for this burgeoning applied research area, implying that researchers should more carefully consider how they address missing data when estimating such models.

  4. The Telecommunications and Data Acquisition Report. [Deep Space Network

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1986-01-01

    This publication, one of a series formerly titled The Deep Space Network Progress Report, documents DSN progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations. In addition, developments in Earth-based radio technology as applied to geodynamics, astrophysics and the radio search for extraterrestrial intelligence are reported.

  5. Who "owns" the network: a case study of new media artists' use of high-bandwidth networks

    NASA Astrophysics Data System (ADS)

    Lesage, F.

    The objective of this paper is to briefly give an overview of a research project dealing with the social construction of use of information communication technologies among new media artists interested in online collaboration. It will outline the theoretical and methodological tools applied to the case study of the MARCEL Network.

  6. Test-Retest Reliability of Graph Metrics in Functional Brain Networks: A Resting-State fNIRS Study

    PubMed Central

    Niu, Haijing; Li, Zhen; Liao, Xuhong; Wang, Jinhui; Zhao, Tengda; Shu, Ni; Zhao, Xiaohu; He, Yong

    2013-01-01

    Recent research has demonstrated the feasibility of combining functional near-infrared spectroscopy (fNIRS) and graph theory approaches to explore the topological attributes of human brain networks. However, the test-retest (TRT) reliability of the application of graph metrics to these networks remains to be elucidated. Here, we used resting-state fNIRS and a graph-theoretical approach to systematically address TRT reliability as it applies to various features of human brain networks, including functional connectivity, global network metrics and regional nodal centrality metrics. Eighteen subjects participated in two resting-state fNIRS scan sessions held ∼20 min apart. Functional brain networks were constructed for each subject by computing temporal correlations on three types of hemoglobin concentration information (HbO, HbR, and HbT). This was followed by a graph-theoretical analysis, and then an intraclass correlation coefficient (ICC) was further applied to quantify the TRT reliability of each network metric. We observed that a large proportion of resting-state functional connections (∼90%) exhibited good reliability (0.6< ICC <0.74). For global and nodal measures, reliability was generally threshold-sensitive and varied among both network metrics and hemoglobin concentration signals. Specifically, the majority of global metrics exhibited fair to excellent reliability, with notably higher ICC values for the clustering coefficient (HbO: 0.76; HbR: 0.78; HbT: 0.53) and global efficiency (HbO: 0.76; HbR: 0.70; HbT: 0.78). Similarly, both nodal degree and efficiency measures also showed fair to excellent reliability across nodes (degree: 0.52∼0.84; efficiency: 0.50∼0.84); reliability was concordant across HbO, HbR and HbT and was significantly higher than that of nodal betweenness (0.28∼0.68). Together, our results suggest that most graph-theoretical network metrics derived from fNIRS are TRT reliable and can be used effectively for brain network research. This study also provides important guidance on the choice of network metrics of interest for future applied research in developmental and clinical neuroscience. PMID:24039763

  7. A Generic Data Harmonization Process for Cross-linked Research and Network Interaction. Construction and Application for the Lung Cancer Phenotype Database of the German Center for Lung Research.

    PubMed

    Firnkorn, D; Ganzinger, M; Muley, T; Thomas, M; Knaup, P

    2015-01-01

    Joint data analysis is a key requirement in medical research networks. Data are available in heterogeneous formats at each network partner and their harmonization is often rather complex. The objective of our paper is to provide a generic approach for the harmonization process in research networks. We applied the process when harmonizing data from three sites for the Lung Cancer Phenotype Database within the German Center for Lung Research. We developed a spreadsheet-based solution as tool to support the harmonization process for lung cancer data and a data integration procedure based on Talend Open Studio. The harmonization process consists of eight steps describing a systematic approach for defining and reviewing source data elements and standardizing common data elements. The steps for defining common data elements and harmonizing them with local data definitions are repeated until consensus is reached. Application of this process for building the phenotype database led to a common basic data set on lung cancer with 285 structured parameters. The Lung Cancer Phenotype Database was realized as an i2b2 research data warehouse. Data harmonization is a challenging task requiring informatics skills as well as domain knowledge. Our approach facilitates data harmonization by providing guidance through a uniform process that can be applied in a wide range of projects.

  8. Ciência & Saúde Coletiva: scientific production analysis and collaborative research networks.

    PubMed

    Conner, Norma; Provedel, Attilio; Maciel, Ethel Leonor Noia

    2017-03-01

    The purpose of this metric and descriptive study was to identify the most productive authors and their collaborative research networks from articles published in Ciência & Saúde Coletiva between, 2005, and 2014. Authors meeting the cutoff criteria of at least 10 articles were considered the most productive authors. VOSviewer and Network Workbench technologies were applied for visual representations of collaborative research networks involving the most productive authors in the period. Initial analysis recovered 2511 distinct articles, with 8920 total authors with an average of 3.55 authors per article. Author analysis revealed 6288 distinct authors, 24 of these authors were identified as the most productive. These 24 authors generated 287 articles with an average of 4.31 authors per article, and represented 8 separate collaborative partnerships, the largest of which had 14 authors, indicating a significant degree of collaboration among these authors. This analysis provides a visual representation of networks of knowledge development in public health and demonstrates the usefulness of VOSviewer and Network Workbench technologies in future research.

  9. Telecommunications and data acquisition

    NASA Technical Reports Server (NTRS)

    Renzetti, N. A. (Editor)

    1981-01-01

    Deep Space Network progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations is reported. In addition, developments in Earth based radio technology as applied to geodynamics, astrophysics, and the radio search for extraterrestrial intelligence are reported.

  10. [Application of chemometrics in composition-activity relationship research of traditional Chinese medicine].

    PubMed

    Han, Sheng-Nan

    2014-07-01

    Chemometrics is a new branch of chemistry which is widely applied to various fields of analytical chemistry. Chemometrics can use theories and methods of mathematics, statistics, computer science and other related disciplines to optimize the chemical measurement process and maximize access to acquire chemical information and other information on material systems by analyzing chemical measurement data. In recent years, traditional Chinese medicine has attracted widespread attention. In the research of traditional Chinese medicine, it has been a key problem that how to interpret the relationship between various chemical components and its efficacy, which seriously restricts the modernization of Chinese medicine. As chemometrics brings the multivariate analysis methods into the chemical research, it has been applied as an effective research tool in the composition-activity relationship research of Chinese medicine. This article reviews the applications of chemometrics methods in the composition-activity relationship research in recent years. The applications of multivariate statistical analysis methods (such as regression analysis, correlation analysis, principal component analysis, etc. ) and artificial neural network (such as back propagation artificial neural network, radical basis function neural network, support vector machine, etc. ) are summarized, including the brief fundamental principles, the research contents and the advantages and disadvantages. Finally, the existing main problems and prospects of its future researches are proposed.

  11. Comparing and contrasting 'innovation platforms' with other forms of professional networks for strengthening primary healthcare systems for Indigenous Australians.

    PubMed

    Bailie, Jodie; Cunningham, Frances Clare; Bainbridge, Roxanne Gwendalyn; Passey, Megan E; Laycock, Alison Frances; Bailie, Ross Stewart; Larkins, Sarah L; Brands, Jenny S M; Ramanathan, Shanthi; Abimbola, Seye; Peiris, David

    2018-01-01

    Efforts to strengthen health systems require the engagement of diverse, multidisciplinary stakeholder networks. Networks provide a forum for experimentation and knowledge creation, information exchange and the spread of good ideas and practice. They might be useful in addressing complex issues or 'wicked' problems, the solutions to which go beyond the control and scope of any one agency. Innovation platforms are proposed as a novel type of network because of their diverse stakeholder composition and focus on problem solving within complex systems. Thus, they have potential applicability to health systems strengthening initiatives, even though they have been predominantly applied in the international agricultural development sector. In this paper, we compare and contrast the concept of innovation platforms with other types of networks that can be used in efforts to strengthen primary healthcare systems, such as communities of practice, practice-based research networks and quality improvement collaboratives. We reflect on our ongoing research programme that applies innovation platform concepts to drive large-scale quality improvement in primary healthcare for Aboriginal and Torres Strait Islander Australians and outline our plans for evaluation. Lessons from our experience will find resonance with others working on similar initiatives in global health.

  12. The telecommunications and data acquisition report

    NASA Technical Reports Server (NTRS)

    Renzetti, N. A.

    1980-01-01

    Deep Space Network progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implemention, and operations is documented. In addition, developments in Earth based radio technology as applied to geodynamics, astrophysics, and the radio search for extraterrestrial intelligence are reported.

  13. Posterior Predictive Model Checking in Bayesian Networks

    ERIC Educational Resources Information Center

    Crawford, Aaron

    2014-01-01

    This simulation study compared the utility of various discrepancy measures within a posterior predictive model checking (PPMC) framework for detecting different types of data-model misfit in multidimensional Bayesian network (BN) models. The investigated conditions were motivated by an applied research program utilizing an operational complex…

  14. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1986-01-01

    Deep Space Network progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations is documented. In addition, developments in Earth-based radio technology as applied to geodynamics, astrophysics and the radio search for extraterrestrial intelligence are reported.

  15. Functional approximation using artificial neural networks in structural mechanics

    NASA Technical Reports Server (NTRS)

    Alam, Javed; Berke, Laszlo

    1993-01-01

    The artificial neural networks (ANN) methodology is an outgrowth of research in artificial intelligence. In this study, the feed-forward network model that was proposed by Rumelhart, Hinton, and Williams was applied to the mapping of functions that are encountered in structural mechanics problems. Several different network configurations were chosen to train the available data for problems in materials characterization and structural analysis of plates and shells. By using the recall process, the accuracy of these trained networks was assessed.

  16. Applications of neural networks in training science.

    PubMed

    Pfeiffer, Mark; Hohmann, Andreas

    2012-04-01

    Training science views itself as an integrated and applied science, developing practical measures founded on scientific method. Therefore, it demands consideration of a wide spectrum of approaches and methods. Especially in the field of competitive sports, research questions are usually located in complex environments, so that mainly field studies are drawn upon to obtain broad external validity. Here, the interrelations between different variables or variable sets are mostly of a nonlinear character. In these cases, methods like neural networks, e.g., the pattern recognizing methods of Self-Organizing Kohonen Feature Maps or similar instruments to identify interactions might be successfully applied to analyze data. Following on from a classification of data analysis methods in training-science research, the aim of the contribution is to give examples of varied sports in which network approaches can be effectually used in training science. First, two examples are given in which neural networks are employed for pattern recognition. While one investigation deals with the detection of sporting talent in swimming, the other is located in game sports research, identifying tactical patterns in team handball. The third and last example shows how an artificial neural network can be used to predict competitive performance in swimming. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Long-Term Environmental Research Programs - Evolving Capacity for Discovery

    NASA Astrophysics Data System (ADS)

    Swanson, F. J.

    2008-12-01

    Long-term forestry, watershed, and ecological research sites have become critical, productive nodes for environmental science research and in some cases for work in the social sciences and humanities. The Forest Service's century-old Experimental Forests and Ranges and the National Science Foundation's 28- year-old Long-Term Ecological Research program have been remarkably productive in both basic and applied sciences, including characterization of acid rain and old-growth ecosystems and development of forest, watershed, and range management systems for commercial and other land use objectives. A review of recent developments suggests steps to enhance the function of collections of long-term research sites as interactive science networks. The programs at these sites have evolved greatly, especially over the past few decades, as the questions addressed, disciplines engaged, and degree of science integration have grown. This is well displayed by small, experimental watershed studies, which first were used for applied hydrology studies then more fundamental biogeochemical studies and now examination of complex ecosystem processes; all capitalizing on the legacy of intensive studies and environmental monitoring spanning decades. In very modest ways these collections of initially independent sites have functioned increasingly as integrated research networks addressing inter-site questions by using common experimental designs, being part of a single experiment, and examining long-term data in a common analytical framework. The network aspects include data sharing via publicly-accessible data-harvester systems for climate and streamflow data. The layering of one research or environmental monitoring network upon another facilitates synergies. Changing climate and atmospheric chemistry highlight a need to use these networks as continental-scale observatory systems for assessing the impacts of environmental change on ecological services. To better capitalize on long-term research sites and networks, agencies and universities 1) need to encourage collaboration among sites and between science and land manager communities while 2) maintaining long- term studies and monitoring efforts, and staffing the collaboration in each partner organization, including positions specifically designated as liaisons among the participating communities.

  18. Network inference and network response identification: moving genome-scale data to the next level of biological discovery

    PubMed Central

    Veiga, Diogo F. T.; Dutta, Bhaskar; Balaźsi, Gábor

    2011-01-01

    The escalating amount of genome-scale data demands a pragmatic stance from the research community. How can we utilize this deluge of information to better understand biology, cure diseases, or engage cells in bioremediation or biomaterial production for various purposes? A research pipeline moving new sequence, expression and binding data towards practical end goals seems to be necessary. While most individual researchers are not motivated by such well-articulated pragmatic end goals, the scientific community has already self-organized itself to successfully convert genomic data into fundamentally new biological knowledge and practical applications. Here we review two important steps in this workflow: network inference and network response identification, applied to transcriptional regulatory networks. Among network inference methods, we concentrate on relevance networks due to their conceptual simplicity. We classify and discuss network response identification approaches as either data-centric or network-centric. Finally, we conclude with an outlook on what is still missing from these approaches and what may be ahead on the road to biological discovery. PMID:20174676

  19. Researching Classroom Communications and Relations in the Light of Social Justice

    ERIC Educational Resources Information Center

    Montesano Montessori, Nicolina; Ponte, Petra

    2012-01-01

    This article discusses participative action research performed by a network consisting of researchers and student-teachers of a University of Applied Sciences and teachers and pupils of four primary schools in the Netherlands. The research took place in the context of the research group "Behaviour and Research in the Educational Praxis".…

  20. Network analysis for the visualization and analysis of qualitative data.

    PubMed

    Pokorny, Jennifer J; Norman, Alex; Zanesco, Anthony P; Bauer-Wu, Susan; Sahdra, Baljinder K; Saron, Clifford D

    2018-03-01

    We present a novel manner in which to visualize the coding of qualitative data that enables representation and analysis of connections between codes using graph theory and network analysis. Network graphs are created from codes applied to a transcript or audio file using the code names and their chronological location. The resulting network is a representation of the coding data that characterizes the interrelations of codes. This approach enables quantification of qualitative codes using network analysis and facilitates examination of associations of network indices with other quantitative variables using common statistical procedures. Here, as a proof of concept, we applied this method to a set of interview transcripts that had been coded in 2 different ways and the resultant network graphs were examined. The creation of network graphs allows researchers an opportunity to view and share their qualitative data in an innovative way that may provide new insights and enhance transparency of the analytical process by which they reach their conclusions. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  1. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1985-01-01

    Deep Space Network (DSN) progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operation is discussed. In addition, developments in Earth-based radio technology as applied to geodynamics, astrophysics and the radio search for extraterrestrial intelligence are reported.

  2. A community of practice: librarians in a biomedical research network.

    PubMed

    De Jager-Loftus, Danielle P; Midyette, J David; Harvey, Barbara

    2014-01-01

    Providing library and reference services within a biomedical research community presents special challenges for librarians, especially those in historically lower-funded states. These challenges can include understanding needs, defining and communicating the library's role, building relationships, and developing and maintaining general and subject specific knowledge. This article describes a biomedical research network and the work of health sciences librarians at the lead intensive research institution with librarians from primarily undergraduate institutions and tribal colleges. Applying the concept of a community of practice to a collaborative effort suggests how librarians can work together to provide effective reference services to researchers in biomedicine.

  3. NASA/NREN: Next Generation Internet (NGI) Activities

    NASA Technical Reports Server (NTRS)

    desJardins, Richard; Freeman, Ken

    1998-01-01

    Various issues associated with next generation internet (NGI) and the NREN (NASA Research and Education Network) activities are presented in viewgraph form. Specific topics include: 1) NREN architecture; 2) NREN applications; and 3) NREN applied research.

  4. An Appraisal of Social Network Theory and Analysis as Applied to Public Health: Challenges and Opportunities.

    PubMed

    Valente, Thomas W; Pitts, Stephanie R

    2017-03-20

    The use of social network theory and analysis methods as applied to public health has expanded greatly in the past decade, yielding a significant academic literature that spans almost every conceivable health issue. This review identifies several important theoretical challenges that confront the field but also provides opportunities for new research. These challenges include (a) measuring network influences, (b) identifying appropriate influence mechanisms, (c) the impact of social media and computerized communications, (d) the role of networks in evaluating public health interventions, and (e) ethics. Next steps for the field are outlined and the need for funding is emphasized. Recently developed network analysis techniques, technological innovations in communication, and changes in theoretical perspectives to include a focus on social and environmental behavioral influences have created opportunities for new theory and ever broader application of social networks to public health topics.

  5. Dengue research networks: building evidence for policy and planning in Brazil.

    PubMed

    de Paula Fonseca E Fonseca, Bruna; Zicker, Fabio

    2016-11-08

    The analysis of scientific networks has been applied in health research to map and measure relationships between researchers and institutions, describing collaboration structures, individual roles, and research outputs, and helping the identification of knowledge gaps and cooperation opportunities. Driven by dengue continued expansion in Brazil, we explore the contribution, dynamics and consolidation of dengue scientific networks that could ultimately inform the prioritisation of research, financial investments and health policy. Social network analysis (SNA) was used to produce a 20-year (1995-2014) retrospective longitudinal evaluation of dengue research networks within Brazil and with its partners abroad, with special interest in describing institutional collaboration and their research outputs. The analysis of institutional co-authorship showed a significant expansion of collaboration over the years, increased international involvement, and ensured a shift from public health research toward vector control and basic biomedical research, probably as a reflection of the expansion of transmission, high burden and increasing research funds from the Brazilian government. The analysis identified leading national organisations that maintained the research network connectivity, facilitated knowledge exchange and reduced network vulnerability. SNA proved to be a valuable tool that, along with other indicators, can strengthen a knowledge platform to inform future policy, planning and funding decisions. The paper provides relevant information to policy and planning for dengue research as it reveals: (1) the effectiveness of the research network in knowledge generation, sharing and diffusion; (2) the near-absence of collaboration with the private sector; and (3) the key central organisations that can support strategic decisions on investments, development and implementation of innovations. In addition, the increase in research activities and collaboration has not yet significantly affected dengue transmission, suggesting a limited translation of research efforts into public health solutions.

  6. Applying Web-Based Tools for Research, Engineering, and Operations

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.

    2011-01-01

    Personnel in the NASA Glenn Research Center Network and Architectures branch have performed a variety of research related to space-based sensor webs, network centric operations, security and delay tolerant networking (DTN). Quality documentation and communications, real-time monitoring and information dissemination are critical in order to perform quality research while maintaining low cost and utilizing multiple remote systems. This has been accomplished using a variety of Internet technologies often operating simultaneously. This paper describes important features of various technologies and provides a number of real-world examples of how combining Internet technologies can enable a virtual team to act efficiently as one unit to perform advanced research in operational systems. Finally, real and potential abuses of power and manipulation of information and information access is addressed.

  7. Correlation Research of Medical Security Management System Network Platform in Medical Practice

    NASA Astrophysics Data System (ADS)

    Jie, Wang; Fan, Zhang; Jian, Hao; Li-nong, Yu; Jun, Fei; Ping, Hao; Ya-wei, Shen; Yue-jin, Chang

    Objective-The related research of medical security management system network in medical practice. Methods-Establishing network platform of medical safety management system, medical security network host station, medical security management system(C/S), medical security management system of departments and sections, comprehensive query, medical security disposal and examination system. Results-In medical safety management, medical security management system can reflect the hospital medical security problem, and can achieve real-time detection and improve the medical security incident detection rate. Conclusion-The application of the research in the hospital management implementation, can find hospital medical security hidden danger and the problems of medical disputes, and can help in resolving medical disputes in time and achieve good work efficiency, which is worth applying in the hospital practice.

  8. Scientific Visualization in High Speed Network Environments

    NASA Technical Reports Server (NTRS)

    Vaziri, Arsi; Kutler, Paul (Technical Monitor)

    1997-01-01

    In several cases, new visualization techniques have vastly increased the researcher's ability to analyze and comprehend data. Similarly, the role of networks in providing an efficient supercomputing environment have become more critical and continue to grow at a faster rate than the increase in the processing capabilities of supercomputers. A close relationship between scientific visualization and high-speed networks in providing an important link to support efficient supercomputing is identified. The two technologies are driven by the increasing complexities and volume of supercomputer data. The interaction of scientific visualization and high-speed networks in a Computational Fluid Dynamics simulation/visualization environment are given. Current capabilities supported by high speed networks, supercomputers, and high-performance graphics workstations at the Numerical Aerodynamic Simulation Facility (NAS) at NASA Ames Research Center are described. Applied research in providing a supercomputer visualization environment to support future computational requirements are summarized.

  9. The challenge of social networking in the field of environment and health.

    PubMed

    van den Hazel, Peter; Keune, Hans; Randall, Scott; Yang, Aileen; Ludlow, David; Bartonova, Alena

    2012-06-28

    The fields of environment and health are both interdisciplinary and trans-disciplinary, and until recently had little engagement in social networking designed to cross disciplinary boundaries. The EU FP6 project HENVINET aimed to establish integrated social network and networking facilities for multiple stakeholders in environment and health. The underlying assumption is that increased social networking across disciplines and sectors will enhance the quality of both problem knowledge and problem solving, by facilitating interactions. Inter- and trans-disciplinary networks are considered useful for this purpose. This does not mean that such networks are easily organized, as openness to such cooperation and exchange is often difficult to ascertain. Different methods may enhance network building. Using a mixed method approach, a diversity of actions were used in order to investigate the main research question: which kind of social networking activities and structures can best support the objective of enhanced inter- and trans-disciplinary cooperation and exchange in the fields of environment and health. HENVINET applied interviews, a role playing session, a personal response system, a stakeholder workshop and a social networking portal as part of the process of building an interdisciplinary and trans-disciplinary network. The interviews provided support for the specification of requirements for an interdisciplinary and trans-disciplinary network. The role playing session, the personal response system and the stakeholder workshop were assessed as useful tools in forming such network, by increasing the awareness by different disciplines of other's positions. The social networking portal was particularly useful in delivering knowledge, but the role of the scientist in social networking is not yet clear. The main challenge in the field of environment and health is not so much a lack of scientific problem knowledge, but rather the ability to effectively communicate, share and use available knowledge for policy making. Structured social network facilities can be useful by policy makers to engage with the research community. It is beneficial for scientists to be able to integrate the perspective of policy makers in the research agenda, and to assist in co-production of policy-relevant information. A diversity of methods need to be applied for network building: according to the fit-for-purpose-principle. It is useful to know which combination of methods and in which time frame produces the best results.Networking projects such as HENVINET are created not only for the benefit of the network itself, but also because the applying of the different methods is a learning tool for future network building. Finally, it is clear that the importance of specialized professionals in enabling effective communication between different groups should not be underestimated.

  10. The challenge of social networking in the field of environment and health

    PubMed Central

    2012-01-01

    Background The fields of environment and health are both interdisciplinary and trans-disciplinary, and until recently had little engagement in social networking designed to cross disciplinary boundaries. The EU FP6 project HENVINET aimed to establish integrated social network and networking facilities for multiple stakeholders in environment and health. The underlying assumption is that increased social networking across disciplines and sectors will enhance the quality of both problem knowledge and problem solving, by facilitating interactions. Inter- and trans-disciplinary networks are considered useful for this purpose. This does not mean that such networks are easily organized, as openness to such cooperation and exchange is often difficult to ascertain. Methods Different methods may enhance network building. Using a mixed method approach, a diversity of actions were used in order to investigate the main research question: which kind of social networking activities and structures can best support the objective of enhanced inter- and trans-disciplinary cooperation and exchange in the fields of environment and health. HENVINET applied interviews, a role playing session, a personal response system, a stakeholder workshop and a social networking portal as part of the process of building an interdisciplinary and trans-disciplinary network. Results The interviews provided support for the specification of requirements for an interdisciplinary and trans-disciplinary network. The role playing session, the personal response system and the stakeholder workshop were assessed as useful tools in forming such network, by increasing the awareness by different disciplines of other’s positions. The social networking portal was particularly useful in delivering knowledge, but the role of the scientist in social networking is not yet clear. Conclusions The main challenge in the field of environment and health is not so much a lack of scientific problem knowledge, but rather the ability to effectively communicate, share and use available knowledge for policy making. Structured social network facilities can be useful by policy makers to engage with the research community. It is beneficial for scientists to be able to integrate the perspective of policy makers in the research agenda, and to assist in co-production of policy-relevant information. A diversity of methods need to be applied for network building: according to the fit-for-purpose-principle. It is useful to know which combination of methods and in which time frame produces the best results. Networking projects such as HENVINET are created not only for the benefit of the network itself, but also because the applying of the different methods is a learning tool for future network building. Finally, it is clear that the importance of specialized professionals in enabling effective communication between different groups should not be underestimated. PMID:22759497

  11. Hybrid machine learning technique for forecasting Dhaka stock market timing decisions.

    PubMed

    Banik, Shipra; Khodadad Khan, A F M; Anwer, Mohammad

    2014-01-01

    Forecasting stock market has been a difficult job for applied researchers owing to nature of facts which is very noisy and time varying. However, this hypothesis has been featured by several empirical experiential studies and a number of researchers have efficiently applied machine learning techniques to forecast stock market. This paper studied stock prediction for the use of investors. It is always true that investors typically obtain loss because of uncertain investment purposes and unsighted assets. This paper proposes a rough set model, a neural network model, and a hybrid neural network and rough set model to find optimal buy and sell of a share on Dhaka stock exchange. Investigational findings demonstrate that our proposed hybrid model has higher precision than the single rough set model and the neural network model. We believe this paper findings will help stock investors to decide about optimal buy and/or sell time on Dhaka stock exchange.

  12. Hybrid Machine Learning Technique for Forecasting Dhaka Stock Market Timing Decisions

    PubMed Central

    Banik, Shipra; Khodadad Khan, A. F. M.; Anwer, Mohammad

    2014-01-01

    Forecasting stock market has been a difficult job for applied researchers owing to nature of facts which is very noisy and time varying. However, this hypothesis has been featured by several empirical experiential studies and a number of researchers have efficiently applied machine learning techniques to forecast stock market. This paper studied stock prediction for the use of investors. It is always true that investors typically obtain loss because of uncertain investment purposes and unsighted assets. This paper proposes a rough set model, a neural network model, and a hybrid neural network and rough set model to find optimal buy and sell of a share on Dhaka stock exchange. Investigational findings demonstrate that our proposed hybrid model has higher precision than the single rough set model and the neural network model. We believe this paper findings will help stock investors to decide about optimal buy and/or sell time on Dhaka stock exchange. PMID:24701205

  13. Investigation on Law and Economics Based on Complex Network and Time Series Analysis.

    PubMed

    Yang, Jian; Qu, Zhao; Chang, Hui

    2015-01-01

    The research focuses on the cooperative relationship and the strategy tendency among three mutually interactive parties in financing: small enterprises, commercial banks and micro-credit companies. Complex network theory and time series analysis were applied to figure out the quantitative evidence. Moreover, this paper built up a fundamental model describing the particular interaction among them through evolutionary game. Combining the results of data analysis and current situation, it is justifiable to put forward reasonable legislative recommendations for regulations on lending activities among small enterprises, commercial banks and micro-credit companies. The approach in this research provides a framework for constructing mathematical models and applying econometrics and evolutionary game in the issue of corporation financing.

  14. FuzzyFusion: an application architecture for multisource information fusion

    NASA Astrophysics Data System (ADS)

    Fox, Kevin L.; Henning, Ronda R.

    2009-04-01

    The correlation of information from disparate sources has long been an issue in data fusion research. Traditional data fusion addresses the correlation of information from sources as diverse as single-purpose sensors to all-source multi-media information. Information system vulnerability information is similar in its diversity of sources and content, and in the desire to draw a meaningful conclusion, namely, the security posture of the system under inspection. FuzzyFusionTM, A data fusion model that is being applied to the computer network operations domain is presented. This model has been successfully prototyped in an applied research environment and represents a next generation assurance tool for system and network security.

  15. 78 FR 58385 - Medicare Program; Prospective Payment System for Federally Qualified Health Centers; Changes to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-23

    ... ResDAC Research Data Assistance Center RIA Regulatory Impact Analysis RHC Rural Health Clinic SNF... Community Health Applied Research Network. We believe that the proposals in this proposed rule benefited...

  16. Construction of monitoring model and algorithm design on passenger security during shipping based on improved Bayesian network.

    PubMed

    Wang, Jiali; Zhang, Qingnian; Ji, Wenfeng

    2014-01-01

    A large number of data is needed by the computation of the objective Bayesian network, but the data is hard to get in actual computation. The calculation method of Bayesian network was improved in this paper, and the fuzzy-precise Bayesian network was obtained. Then, the fuzzy-precise Bayesian network was used to reason Bayesian network model when the data is limited. The security of passengers during shipping is affected by various factors, and it is hard to predict and control. The index system that has the impact on the passenger safety during shipping was established on basis of the multifield coupling theory in this paper. Meanwhile, the fuzzy-precise Bayesian network was applied to monitor the security of passengers in the shipping process. The model was applied to monitor the passenger safety during shipping of a shipping company in Hainan, and the effectiveness of this model was examined. This research work provides guidance for guaranteeing security of passengers during shipping.

  17. Construction of Monitoring Model and Algorithm Design on Passenger Security during Shipping Based on Improved Bayesian Network

    PubMed Central

    Wang, Jiali; Zhang, Qingnian; Ji, Wenfeng

    2014-01-01

    A large number of data is needed by the computation of the objective Bayesian network, but the data is hard to get in actual computation. The calculation method of Bayesian network was improved in this paper, and the fuzzy-precise Bayesian network was obtained. Then, the fuzzy-precise Bayesian network was used to reason Bayesian network model when the data is limited. The security of passengers during shipping is affected by various factors, and it is hard to predict and control. The index system that has the impact on the passenger safety during shipping was established on basis of the multifield coupling theory in this paper. Meanwhile, the fuzzy-precise Bayesian network was applied to monitor the security of passengers in the shipping process. The model was applied to monitor the passenger safety during shipping of a shipping company in Hainan, and the effectiveness of this model was examined. This research work provides guidance for guaranteeing security of passengers during shipping. PMID:25254227

  18. Canada's neglected tropical disease research network: who's in the core-who's on the periphery?

    PubMed

    Phillips, Kaye; Kohler, Jillian Clare; Pennefather, Peter; Thorsteinsdottir, Halla; Wong, Joseph

    2013-01-01

    This study designed and applied accessible yet systematic methods to generate baseline information about the patterns and structure of Canada's neglected tropical disease (NTD) research network; a network that, until recently, was formed and functioned on the periphery of strategic Canadian research funding. MULTIPLE METHODS WERE USED TO CONDUCT THIS STUDY, INCLUDING: (1) a systematic bibliometric procedure to capture archival NTD publications and co-authorship data; (2) a country-level "core-periphery" network analysis to measure and map the structure of Canada's NTD co-authorship network including its size, density, cliques, and centralization; and (3) a statistical analysis to test the correlation between the position of countries in Canada's NTD network ("k-core measure") and the quantity and quality of research produced. Over the past sixty years (1950-2010), Canadian researchers have contributed to 1,079 NTD publications, specializing in Leishmania, African sleeping sickness, and leprosy. Of this work, 70% of all first authors and co-authors (n = 4,145) have been Canadian. Since the 1990s, however, a network of international co-authorship activity has been emerging, with representation of researchers from 62 different countries; largely researchers from OECD countries (e.g. United States and United Kingdom) and some non-OECD countries (e.g. Brazil and Iran). Canada has a core-periphery NTD international research structure, with a densely connected group of OECD countries and some African nations, such as Uganda and Kenya. Sitting predominantly on the periphery of this research network is a cluster of 16 non-OECD nations that fall within the lowest GDP percentile of the network. The publication specialties, composition, and position of NTD researchers within Canada's NTD country network provide evidence that while Canadian researchers currently remain the overall gatekeepers of the NTD research they generate; there is opportunity to leverage existing research collaborations and help advance regions and NTD areas that are currently under-developed.

  19. Canada's Neglected Tropical Disease Research Network: Who's in the Core—Who's on the Periphery?

    PubMed Central

    Phillips, Kaye; Kohler, Jillian Clare; Pennefather, Peter; Thorsteinsdottir, Halla; Wong, Joseph

    2013-01-01

    Background This study designed and applied accessible yet systematic methods to generate baseline information about the patterns and structure of Canada's neglected tropical disease (NTD) research network; a network that, until recently, was formed and functioned on the periphery of strategic Canadian research funding. Methodology Multiple methods were used to conduct this study, including: (1) a systematic bibliometric procedure to capture archival NTD publications and co-authorship data; (2) a country-level “core-periphery” network analysis to measure and map the structure of Canada's NTD co-authorship network including its size, density, cliques, and centralization; and (3) a statistical analysis to test the correlation between the position of countries in Canada's NTD network (“k-core measure”) and the quantity and quality of research produced. Principal Findings Over the past sixty years (1950–2010), Canadian researchers have contributed to 1,079 NTD publications, specializing in Leishmania, African sleeping sickness, and leprosy. Of this work, 70% of all first authors and co-authors (n = 4,145) have been Canadian. Since the 1990s, however, a network of international co-authorship activity has been emerging, with representation of researchers from 62 different countries; largely researchers from OECD countries (e.g. United States and United Kingdom) and some non-OECD countries (e.g. Brazil and Iran). Canada has a core-periphery NTD international research structure, with a densely connected group of OECD countries and some African nations, such as Uganda and Kenya. Sitting predominantly on the periphery of this research network is a cluster of 16 non-OECD nations that fall within the lowest GDP percentile of the network. Conclusion/Significance The publication specialties, composition, and position of NTD researchers within Canada's NTD country network provide evidence that while Canadian researchers currently remain the overall gatekeepers of the NTD research they generate; there is opportunity to leverage existing research collaborations and help advance regions and NTD areas that are currently under-developed. PMID:24340113

  20. 76 FR 32993 - Toward Innovative Spectrum-Sharing Technologies: A Technical Workshop on Coordinating Federal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-07

    ... Government's role in sponsoring important basic and applied research and development. The workshop will also... Office (NCO) for Networking and Information Technology Research and Development (NITRD). ACTION: Notice..., 2011. SUMMARY: Representatives from Federal research agencies, private industry, and academia will...

  1. GNSS Active Network of West of Sao Paulo State Applied to Ionosphere Monitoring

    NASA Astrophysics Data System (ADS)

    Aguiar, C. R.; Camargo, P. D.

    2008-12-01

    In Brazil, a research project of atmospheric studies from reference stations equipped with dual frequency GNSS receivers is in initial phase. These stations have composed the GNSS Active Network of West Sao Paulo State (Network-GNSS-SP) and have been broadcasting GNSS data in real time. Network-GNSS-SP is in tests phase and it's the first Brazilian network to provide GNSS measurements in real time. In Spatial Geodesy Study Brazilian Group (GEGE) has been researched the ionosphere effects on L band signal, as well as the GPS potential on ionosphere dynamic monitoring and, consequently, the application of this one to spatial geophysics study, besides dynamic ionosphere modeling. An algorithm based on Kalman filter has been developed for ionosphere modeling at low latitude regions and estimation of ionospheric parameters as absolute vertical TEC (VTEC) for the monitoring of ionosphere behavior. The approach used in this study is to apply a model for the ionospheric vertical delay. In the algorithm, the ionospheric vertical delay is modeled and expanded by Fourier series. In this paper has been realized on-line processing of the Network-GNSS-SP data and the initial results reached with the algorithm can already be analyzed. The results show the ionospheric maps created from real time TEC estimates.

  2. Efficient Mobility Management Signalling in Network Mobility Supported PMIPV6

    PubMed Central

    Jebaseeli Samuelraj, Ananthi; Jayapal, Sundararajan

    2015-01-01

    Proxy Mobile IPV6 (PMIPV6) is a network based mobility management protocol which supports node's mobility without the contribution from the respective mobile node. PMIPV6 is initially designed to support individual node mobility and it should be enhanced to support mobile network movement. NEMO-BSP is an existing protocol to support network mobility (NEMO) in PMIPV6 network. Due to the underlying differences in basic protocols, NEMO-BSP cannot be directly applied to PMIPV6 network. Mobility management signaling and data structures used for individual node's mobility should be modified to support group nodes' mobility management efficiently. Though a lot of research work is in progress to implement mobile network movement in PMIPV6, it is not yet standardized and each suffers with different shortcomings. This research work proposes modifications in NEMO-BSP and PMIPV6 to achieve NEMO support in PMIPV6. It mainly concentrates on optimizing the number and size of mobility signaling exchanged while mobile network or mobile network node changes its access point. PMID:26366431

  3. A permutation testing framework to compare groups of brain networks.

    PubMed

    Simpson, Sean L; Lyday, Robert G; Hayasaka, Satoru; Marsh, Anthony P; Laurienti, Paul J

    2013-01-01

    Brain network analyses have moved to the forefront of neuroimaging research over the last decade. However, methods for statistically comparing groups of networks have lagged behind. These comparisons have great appeal for researchers interested in gaining further insight into complex brain function and how it changes across different mental states and disease conditions. Current comparison approaches generally either rely on a summary metric or on mass-univariate nodal or edge-based comparisons that ignore the inherent topological properties of the network, yielding little power and failing to make network level comparisons. Gleaning deeper insights into normal and abnormal changes in complex brain function demands methods that take advantage of the wealth of data present in an entire brain network. Here we propose a permutation testing framework that allows comparing groups of networks while incorporating topological features inherent in each individual network. We validate our approach using simulated data with known group differences. We then apply the method to functional brain networks derived from fMRI data.

  4. Efficient Mobility Management Signalling in Network Mobility Supported PMIPV6.

    PubMed

    Samuelraj, Ananthi Jebaseeli; Jayapal, Sundararajan

    2015-01-01

    Proxy Mobile IPV6 (PMIPV6) is a network based mobility management protocol which supports node's mobility without the contribution from the respective mobile node. PMIPV6 is initially designed to support individual node mobility and it should be enhanced to support mobile network movement. NEMO-BSP is an existing protocol to support network mobility (NEMO) in PMIPV6 network. Due to the underlying differences in basic protocols, NEMO-BSP cannot be directly applied to PMIPV6 network. Mobility management signaling and data structures used for individual node's mobility should be modified to support group nodes' mobility management efficiently. Though a lot of research work is in progress to implement mobile network movement in PMIPV6, it is not yet standardized and each suffers with different shortcomings. This research work proposes modifications in NEMO-BSP and PMIPV6 to achieve NEMO support in PMIPV6. It mainly concentrates on optimizing the number and size of mobility signaling exchanged while mobile network or mobile network node changes its access point.

  5. Development of on-line monitoring system for Nuclear Power Plant (NPP) using neuro-expert, noise analysis, and modified neural networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subekti, M.; Center for Development of Reactor Safety Technology, National Nuclear Energy Agency of Indonesia, Puspiptek Complex BO.80, Serpong-Tangerang, 15340; Ohno, T.

    2006-07-01

    The neuro-expert has been utilized in previous monitoring-system research of Pressure Water Reactor (PWR). The research improved the monitoring system by utilizing neuro-expert, conventional noise analysis and modified neural networks for capability extension. The parallel method applications required distributed architecture of computer-network for performing real-time tasks. The research aimed to improve the previous monitoring system, which could detect sensor degradation, and to perform the monitoring demonstration in High Temperature Engineering Tested Reactor (HTTR). The developing monitoring system based on some methods that have been tested using the data from online PWR simulator, as well as RSG-GAS (30 MW research reactormore » in Indonesia), will be applied in HTTR for more complex monitoring. (authors)« less

  6. Cloud Classification in Polar and Desert Regions and Smoke Classification from Biomass Burning Using a Hierarchical Neural Network

    NASA Technical Reports Server (NTRS)

    Alexander, June; Corwin, Edward; Lloyd, David; Logar, Antonette; Welch, Ronald

    1996-01-01

    This research focuses on a new neural network scene classification technique. The task is to identify scene elements in Advanced Very High Resolution Radiometry (AVHRR) data from three scene types: polar, desert and smoke from biomass burning in South America (smoke). The ultimate goal of this research is to design and implement a computer system which will identify the clouds present on a whole-Earth satellite view as a means of tracking global climate changes. Previous research has reported results for rule-based systems (Tovinkere et at 1992, 1993) for standard back propagation (Watters et at. 1993) and for a hierarchical approach (Corwin et al 1994) for polar data. This research uses a hierarchical neural network with don't care conditions and applies this technique to complex scenes. A hierarchical neural network consists of a switching network and a collection of leaf networks. The idea of the hierarchical neural network is that it is a simpler task to classify a certain pattern from a subset of patterns than it is to classify a pattern from the entire set. Therefore, the first task is to cluster the classes into groups. The switching, or decision network, performs an initial classification by selecting a leaf network. The leaf networks contain a reduced set of similar classes, and it is in the various leaf networks that the actual classification takes place. The grouping of classes in the various leaf networks is determined by applying an iterative clustering algorithm. Several clustering algorithms were investigated, but due to the size of the data sets, the exhaustive search algorithms were eliminated. A heuristic approach using a confusion matrix from a lightly trained neural network provided the basis for the clustering algorithm. Once the clusters have been identified, the hierarchical network can be trained. The approach of using don't care nodes results from the difficulty in generating extremely complex surfaces in order to separate one class from all of the others. This approach finds pairwise separating surfaces and forms the more complex separating surface from combinations of simpler surfaces. This technique both reduces training time and improves accuracy over the previously reported results. Accuracies of 97.47%, 95.70%, and 99.05% were achieved for the polar, desert and smoke data sets.

  7. Network Analysis with the Enron Email Corpus

    ERIC Educational Resources Information Center

    Hardin, J. S.; Sarkis, G.; URC, P. .

    2015-01-01

    We use the Enron email corpus to study relationships in a network by applying six different measures of centrality. Our results came out of an in-semester undergraduate research seminar. The Enron corpus is well suited to statistical analyses at all levels of undergraduate education. Through this article's focus on centrality, students can explore…

  8. An Approach Based on Social Network Analysis Applied to a Collaborative Learning Experience

    ERIC Educational Resources Information Center

    Claros, Iván; Cobos, Ruth; Collazos, César A.

    2016-01-01

    The Social Network Analysis (SNA) techniques allow modelling and analysing the interaction among individuals based on their attributes and relationships. This approach has been used by several researchers in order to measure the social processes in collaborative learning experiences. But oftentimes such measures were calculated at the final state…

  9. APOLLO Network | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The Applied Proteogenomics OrganizationaL Learning and Outcomes (APOLLO) network is a collaboration between NCI, the Department of Defense (DoD), and the Department of Veterans Affairs (VA) to incorporate proteogenomics into patient care as a way of looking beyond the genome, to the activity and expression of the proteins that the genome encodes.

  10. Proposal for a telehealth concept in the translational research model.

    PubMed

    Silva, Angélica Baptista; Morel, Carlos Médicis; Moraes, Ilara Hämmerli Sozzi de

    2014-04-01

    To review the conceptual relationship between telehealth and translational research. Bibliographical search on telehealth was conducted in the Scopus, Cochrane BVS, LILACS and MEDLINE databases to find experiences of telehealth in conjunction with discussion of translational research in health. The search retrieved eight studies based on analysis of models of the five stages of translational research and the multiple strands of public health policy in the context of telehealth in Brazil. The models were applied to telehealth activities concerning the Network of Human Milk Banks, in the Telemedicine University Network. The translational research cycle of human milk collected, stored and distributed presents several integrated telehealth initiatives, such as video conferencing, and software and portals for synthesizing knowledge, composing elements of an information ecosystem, mediated by information and communication technologies in the health system. Telehealth should be composed of a set of activities in a computer mediated network promoting the translation of knowledge between research and health services.

  11. MDD diagnosis based on partial-brain functional connection network

    NASA Astrophysics Data System (ADS)

    Yan, Gaoliang; Hu, Hailong; Zhao, Xiang; Zhang, Lin; Qu, Zehui; Li, Yantao

    2018-04-01

    Artificial intelligence (AI) is a hotspot in computer science research nowadays. To apply AI technology in all industries has been the developing direction for researchers. Major depressive disorder (MDD) is a common disease of serious mental disorders. The World Health Organization (WHO) reports that MDD is projected to become the second most common cause of death and disability by 2020. At present, the way of MDD diagnosis is single. Applying AI technology to MDD diagnosis and pathophysiological research will speed up the MDD research and improve the efficiency of MDD diagnosis. In this study, we select the higher degree of brain network functional connectivity by statistical methods. And our experiments show that the average accuracy of Logistic Regression (LR) classifier using feature filtering reaches 88.48%. Compared with other classification methods, both the efficiency and accuracy of this method are improved, which will greatly improve the process of MDD diagnose. In these experiments, we also define the brain regions associated with MDD, which plays a vital role in MDD pathophysiological research.

  12. Social Network Analysis of Biomedical Research Collaboration Networks in a CTSA Institution

    PubMed Central

    Bian, Jiang; Xie, Mengjun; Topaloglu, Umit; Hudson, Teresa; Eswaran, Hari; Hogan, William

    2014-01-01

    BACKGROUND The popularity of social networks has triggered a number of research efforts on network analyses of research collaborations in the Clinical and Translational Science Award (CTSA) community. Those studies mainly focus on the general understanding of collaboration networks by measuring common network metrics. More fundamental questions about collaborations still remain unanswered such as recognizing “influential” nodes and identifying potential new collaborations that are most rewarding. METHODS We analyzed biomedical research collaboration networks (RCNs) constructed from a dataset of research grants collected at a CTSA institution (i.e. University of Arkansas for Medical Sciences (UAMS)) in a comprehensive and systematic manner. First, our analysis covers the full spectrum of a RCN study: from network modeling to network characteristics measurement, from key nodes recognition to potential links (collaborations) suggestion. Second, our analysis employs non-conventional model and techniques including a weighted network model for representing collaboration strength, rank aggregation for detecting important nodes, and Random Walk with Restart (RWR) for suggesting new research collaborations. RESULTS By applying our models and techniques to RCNs at UAMS prior to and after the CTSA, we have gained valuable insights that not only reveal the temporal evolution of the network dynamics but also assess the effectiveness of the CTSA and its impact on a research institution. We find that collaboration networks at UAMS are not scale-free but small-world. Quantitative measures have been obtained to evident that the RCNs at UAMS are moving towards favoring multidisciplinary research. Moreover, our link prediction model creates the basis of collaboration recommendations with an impressive accuracy (AUC: 0.990, MAP@3: 1.48 and MAP@5: 1.522). Last but not least, an open-source visual analytical tool for RCNs is being developed and released through Github. CONCLUSIONS Through this study, we have developed a set of techniques and tools for analyzing research collaboration networks and conducted a comprehensive case study focusing on a CTSA institution. Our findings demonstrate the promising future of these techniques and tools in understanding the generative mechanisms of research collaborations and helping identify beneficial collaborations to members in the research community. PMID:24560679

  13. The Private Lives of Minerals: Social Network Analysis Applied to Mineralogy and Petrology

    NASA Astrophysics Data System (ADS)

    Hazen, R. M.; Morrison, S. M.; Fox, P. A.; Golden, J. J.; Downs, R. T.; Eleish, A.; Prabhu, A.; Li, C.; Liu, C.

    2016-12-01

    Comprehensive databases of mineral species (rruff.info/ima) and their geographic localities and co-existing mineral assemblages (mindat.org) reveal patterns of mineral association and distribution that mimic social networks, as commonly applied to such varied topics as social media interactions, the spread of disease, terrorism networks, and research collaborations. Applying social network analysis (SNA) to common assemblages of rock-forming igneous and regional metamorphic mineral species, we find patterns of cohesion, segregation, density, and cliques that are similar to those of human social networks. These patterns highlight classic trends in lithologic evolution and are illustrated with sociograms, in which mineral species are the "nodes" and co-existing species form "links." Filters based on chemistry, age, structural group, and other parameters highlight visually both familiar and new aspects of mineralogy and petrology. We quantify sociograms with SNA metrics, including connectivity (based on the frequency of co-occurrence of mineral pairs), homophily (the extent to which co-existing mineral species share compositional and other characteristics), network closure (based on the degree of network interconnectivity), and segmentation (as revealed by isolated "cliques" of mineral species). Exploitation of large and growing mineral data resources with SNA offers promising avenues for discovering previously hidden trends in mineral diversity-distribution systematics, as well as providing new pedagogical approaches to teaching mineralogy and petrology.

  14. Real-time fault diagnosis for propulsion systems

    NASA Technical Reports Server (NTRS)

    Merrill, Walter C.; Guo, Ten-Huei; Delaat, John C.; Duyar, Ahmet

    1991-01-01

    Current research toward real time fault diagnosis for propulsion systems at NASA-Lewis is described. The research is being applied to both air breathing and rocket propulsion systems. Topics include fault detection methods including neural networks, system modeling, and real time implementations.

  15. Investigation on Law and Economics Based on Complex Network and Time Series Analysis

    PubMed Central

    Yang, Jian; Qu, Zhao; Chang, Hui

    2015-01-01

    The research focuses on the cooperative relationship and the strategy tendency among three mutually interactive parties in financing: small enterprises, commercial banks and micro-credit companies. Complex network theory and time series analysis were applied to figure out the quantitative evidence. Moreover, this paper built up a fundamental model describing the particular interaction among them through evolutionary game. Combining the results of data analysis and current situation, it is justifiable to put forward reasonable legislative recommendations for regulations on lending activities among small enterprises, commercial banks and micro-credit companies. The approach in this research provides a framework for constructing mathematical models and applying econometrics and evolutionary game in the issue of corporation financing. PMID:26076460

  16. An overview on development of neural network technology

    NASA Technical Reports Server (NTRS)

    Lin, Chun-Shin

    1993-01-01

    The study has been to obtain a bird's-eye view of the current neural network technology and the neural network research activities in NASA. The purpose was two fold. One was to provide a reference document for NASA researchers who want to apply neural network techniques to solve their problems. Another one was to report out survey results regarding NASA research activities and provide a view on what NASA is doing, what potential difficulty exists and what NASA can/should do. In a ten week study period, we interviewed ten neural network researchers in the Langley Research Center and sent out 36 survey forms to researchers at the Johnson Space Center, Lewis Research Center, Ames Research Center and Jet Propulsion Laboratory. We also sent out 60 similar forms to educators and corporation researchers to collect general opinions regarding this field. Twenty-eight survey forms, 11 from NASA researchers and 17 from outside, were returned. Survey results were reported in our final report. In the final report, we first provided an overview on the neural network technology. We reviewed ten neural network structures, discussed the applications in five major areas, and compared the analog, digital and hybrid electronic implementation of neural networks. In the second part, we summarized known NASA neural network research studies and reported the results of the questionnaire survey. Survey results show that most studies are still in the development and feasibility study stage. We compared the techniques, application areas, researchers' opinions on this technology, and many aspects between NASA and non-NASA groups. We also summarized their opinions on difficulties encountered. Applications are considered the top research priority by most researchers. Hardware development and learning algorithm improvement are the next. The lack of financial and management support is among the difficulties in research study. All researchers agree that the use of neural networks could result in cost saving. Fault tolerance has been claimed as one important feature of neural computing. However, the survey indicates that very few studies address this issue. Fault tolerance is important in space mission and aircraft control. We believe that it is worthy for NASA to devote more efforts into the utilization of this feature.

  17. Understanding how social networking influences perceived satisfaction with conference experiences

    USGS Publications Warehouse

    van Riper, Carena J.; van Riper, Charles; Kyle, Gerard T.; Lee, Martha E.

    2013-01-01

    Social networking is a key benefit derived from participation in conferences that bind the ties of a professional community. Building social networks can lead to satisfactory experiences while furthering participants' long- and short-term career goals. Although investigations of social networking can lend insight into how to effectively engage individuals and groups within a professional cohort, this area has been largely overlooked in past research. The present study investigates the relationship between social networking and satisfaction with the 10th Biennial Conference of Research on the Colorado Plateau using structural equation modelling. Results partially support the hypothesis that three dimensions of social networking – interpersonal connections, social cohesion, and secondary associations – positively contribute to the performance of various conference attributes identified in two focus group sessions. The theoretical and applied contributions of this paper shed light on the social systems formed within professional communities and resource allocation among service providers.

  18. Practice-based Research Networks (PBRNs) Bridging the Gaps between Communities, Funders, and Policymakers.

    PubMed

    Gaglioti, Anne H; Werner, James J; Rust, George; Fagnan, Lyle J; Neale, Anne Victoria

    2016-01-01

    In this commentary, we propose that practice-based research networks (PBRNs) engage with funders and policymakers by applying the same engagement strategies they have successfully used to build relationships with community stakeholders. A community engagement approach to achieve new funding streams for PBRNs should include a strategy to engage key stakeholders from the communities of funders, thought leaders, and policymakers using collaborative principles and methods. PBRNs that implement this strategy would build a robust network of engaged partners at the community level, across networks, and would reach state and federal policymakers, academic family medicine departments, funding bodies, and national thought leaders in the redesign of health care delivery. © Copyright 2016 by the American Board of Family Medicine.

  19. A Complex Systems Approach to Causal Discovery in Psychiatry.

    PubMed

    Saxe, Glenn N; Statnikov, Alexander; Fenyo, David; Ren, Jiwen; Li, Zhiguo; Prasad, Meera; Wall, Dennis; Bergman, Nora; Briggs, Ernestine C; Aliferis, Constantin

    2016-01-01

    Conventional research methodologies and data analytic approaches in psychiatric research are unable to reliably infer causal relations without experimental designs, or to make inferences about the functional properties of the complex systems in which psychiatric disorders are embedded. This article describes a series of studies to validate a novel hybrid computational approach--the Complex Systems-Causal Network (CS-CN) method-designed to integrate causal discovery within a complex systems framework for psychiatric research. The CS-CN method was first applied to an existing dataset on psychopathology in 163 children hospitalized with injuries (validation study). Next, it was applied to a much larger dataset of traumatized children (replication study). Finally, the CS-CN method was applied in a controlled experiment using a 'gold standard' dataset for causal discovery and compared with other methods for accurately detecting causal variables (resimulation controlled experiment). The CS-CN method successfully detected a causal network of 111 variables and 167 bivariate relations in the initial validation study. This causal network had well-defined adaptive properties and a set of variables was found that disproportionally contributed to these properties. Modeling the removal of these variables resulted in significant loss of adaptive properties. The CS-CN method was successfully applied in the replication study and performed better than traditional statistical methods, and similarly to state-of-the-art causal discovery algorithms in the causal detection experiment. The CS-CN method was validated, replicated, and yielded both novel and previously validated findings related to risk factors and potential treatments of psychiatric disorders. The novel approach yields both fine-grain (micro) and high-level (macro) insights and thus represents a promising approach for complex systems-oriented research in psychiatry.

  20. 76 FR 4726 - Avaya Global Services, AOS Service Delivery, Worldwide Services Group, Including Workers Whose...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-26

    ..., Texas and Wisconsin Reporting to the Network Operations Center (NOC), Research Triangle Park, NC; Amended Certification Regarding Eligibility To Apply for Worker Adjustment Assistance In accordance with... a Certification of Eligibility to Apply for Worker Adjustment Assistance on October 20, 2010...

  1. Measuring Interactions among Research Grant Recipients through Social Network Analysis: Insights into Evaluating and Improving Research Collaborations

    ERIC Educational Resources Information Center

    Barron, Gary; Scarlett-Ferguson, Heather; Aspen, Cathy

    2015-01-01

    Alberta Health Services (AHS) was awarded a grant from the Alberta Ministry of Human Services to promote applied mental health research within areas of interest to the Ministry. The grant funded the "Collaborative Research Grant Initiative: Mental Wellness in Seniors and Persons with Disabilities" (CRGI), designed to collaboratively…

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engel, David W.; Jarman, Kenneth D.; Xu, Zhijie

    This report describes our initial research to quantify uncertainties in the identification and characterization of possible attack states in a network. As a result, we should be able to estimate the current state in which the network is operating, based on a wide variety of network data, and attach a defensible measure of confidence to these state estimates. The output of this research will be new uncertainty quantification (UQ) methods to help develop a process for model development and apply UQ to characterize attacks/adversaries, create an understanding of the degree to which methods scale to "big" data, and offer methodsmore » for addressing model approaches with regard to validation and accuracy.« less

  3. Computer network defense through radial wave functions

    NASA Astrophysics Data System (ADS)

    Malloy, Ian J.

    The purpose of this research is to synthesize basic and fundamental findings in quantum computing, as applied to the attack and defense of conventional computer networks. The concept focuses on uses of radio waves as a shield for, and attack against traditional computers. A logic bomb is analogous to a landmine in a computer network, and if one was to implement it as non-trivial mitigation, it will aid computer network defense. As has been seen in kinetic warfare, the use of landmines has been devastating to geopolitical regions in that they are severely difficult for a civilian to avoid triggering given the unknown position of a landmine. Thus, the importance of understanding a logic bomb is relevant and has corollaries to quantum mechanics as well. The research synthesizes quantum logic phase shifts in certain respects using the Dynamic Data Exchange protocol in software written for this work, as well as a C-NOT gate applied to a virtual quantum circuit environment by implementing a Quantum Fourier Transform. The research focus applies the principles of coherence and entanglement from quantum physics, the concept of expert systems in artificial intelligence, principles of prime number based cryptography with trapdoor functions, and modeling radio wave propagation against an event from unknown parameters. This comes as a program relying on the artificial intelligence concept of an expert system in conjunction with trigger events for a trapdoor function relying on infinite recursion, as well as system mechanics for elliptic curve cryptography along orbital angular momenta. Here trapdoor both denotes the form of cipher, as well as the implied relationship to logic bombs.

  4. Network Medicine for Alzheimer's Disease and Traditional Chinese Medicine.

    PubMed

    Jarrell, Juliet T; Gao, Li; Cohen, David S; Huang, Xudong

    2018-05-11

    Alzheimer’s Disease (AD) is a neurodegenerative condition that currently has no known cure. The principles of the expanding field of network medicine (NM) have recently been applied to AD research. The main principle of NM proposes that diseases are much more complicated than one mutation in one gene, and incorporate different genes, connections between genes, and pathways that may include multiple diseases to create full scale disease networks. AD research findings as a result of the application of NM principles have suggested that functional network connectivity, myelination, myeloid cells, and genes and pathways may play an integral role in AD progression, and may be integral to the search for a cure. Different aspects of the AD pathology could be potential targets for drug therapy to slow down or stop the disease from advancing, but more research is needed to reach definitive conclusions. Additionally, the holistic approaches of network pharmacology in traditional Chinese medicine (TCM) research may be viable options for the AD treatment, and may lead to an effective cure for AD in the future.

  5. The New York City Early Childhood Research Network: A Model for Integrating Research, Policy, and Practice

    ERIC Educational Resources Information Center

    Foundation for Child Development, 2018

    2018-01-01

    Much attention has been paid to examining the effectiveness of early care and education (ECE) programs. Yet, little research examines how to implement such programs and help policymakers utilize research to inform on-the-ground operations in real time. This has left researchers conducting studies in silos, schools and programs applying for funding…

  6. Research on dynamic routing mechanisms in wireless sensor networks.

    PubMed

    Zhao, A Q; Weng, Y N; Lu, Y; Liu, C Y

    2014-01-01

    WirelessHART is the most widely applied standard in wireless sensor networks nowadays. However, it does not provide any dynamic routing mechanism, which is important for the reliability and robustness of the wireless network applications. In this paper, a collection tree protocol based, dynamic routing mechanism was proposed for WirelessHART network. The dynamic routing mechanism was evaluated through several simulation experiments in three aspects: time for generating the topology, link quality, and stability of network. Besides, the data transmission efficiency of this routing mechanism was analyzed. The simulation and evaluation results show that this mechanism can act as a dynamic routing mechanism for the TDMA-based wireless sensor network.

  7. A Study of Teacher-Mediated Enhancement of Students' Organization of Earth Science Knowledge Using Web Diagrams as a Teaching Device

    NASA Astrophysics Data System (ADS)

    Anderson, O. Roger; Contino, Julie

    2010-10-01

    Current research indicates that students with enhanced knowledge networks are more effective in learning science content and applying higher order thinking skills in open-ended inquiry learning. This research examined teacher implementation of a novel teaching strategy called “web diagramming,” a form of network mapping, in a secondary school earth science class. We report evidence for student improvement in knowledge networking, questionnaire-based reports by the students on the merits of web diagramming in terms of interest and usefulness, and information on the collaborating teacher’s perceptions of the process of implementation, including implications for teacher education. This is among the first reports that teachers can be provided with strategies to enhance student knowledge networking capacity, especially for those students whose initial networking scores are among the lowest.

  8. Social Network Clustering and the Spread of HIV/AIDS Among Persons Who Inject Drugs in 2 Cities in the Philippines.

    PubMed

    Verdery, Ashton M; Siripong, Nalyn; Pence, Brian W

    2017-09-01

    The Philippines has seen rapid increases in HIV prevalence among people who inject drugs. We study 2 neighboring cities where a linked HIV epidemic differed in timing of onset and levels of prevalence. In Cebu, prevalence rose rapidly from below 1% to 54% between 2009 and 2011 and remained high through 2013. In nearby Mandaue, HIV remained below 4% through 2011 then rose rapidly to 38% by 2013. We hypothesize that infection prevalence differences in these cities may owe to aspects of social network structure, specifically levels of network clustering. Building on previous research, we hypothesize that higher levels of network clustering are associated with greater epidemic potential. Data were collected with respondent-driven sampling among men who inject drugs in Cebu and Mandaue in 2013. We first examine sample composition using estimators for population means. We then apply new estimators of network clustering in respondent-driven sampling data to examine associations with HIV prevalence. Samples in both cities were comparable in composition by age, education, and injection locations. Dyadic needle-sharing levels were also similar between the 2 cities, but network clustering in the needle-sharing network differed dramatically. We found higher clustering in Cebu than Mandaue, consistent with expectations that higher clustering is associated with faster epidemic spread. This article is the first to apply estimators of network clustering to empirical respondent-driven samples, and it offers suggestive evidence that researchers should pay greater attention to network structure's role in HIV transmission dynamics.

  9. Managing Distributed Innovation Processes in Virtual Organizations by Applying the Collaborative Network Relationship Analysis

    NASA Astrophysics Data System (ADS)

    Eschenbächer, Jens; Seifert, Marcus; Thoben, Klaus-Dieter

    Distributed innovation processes are considered as a new option to handle both the complexity and the speed in which new products and services need to be prepared. Indeed most research on innovation processes was focused on multinational companies with an intra-organisational perspective. The phenomena of innovation processes in networks - with an inter-organisational perspective - have been almost neglected. Collaborative networks present a perfect playground for such distributed innovation processes whereas the authors highlight in specific Virtual Organisation because of their dynamic behaviour. Research activities supporting distributed innovation processes in VO are rather new so that little knowledge about the management of such research is available. With the presentation of the collaborative network relationship analysis this gap will be addressed. It will be shown that a qualitative planning of collaboration intensities can support real business cases by proving knowledge and planning data.

  10. The data collection/data distribution center: building a sustainable African-American church-based research network.

    PubMed

    Goldmon, Moses; Roberson, James T; Carey, Tim; Godley, Paul; Howard, Daniel L; Boyd, Carlton; Ammerman, Alice

    2008-01-01

    This article describes the Carolina-Shaw Partnership for the Elimination of Health Disparities efforts to engage a diverse group of Black churches in a sustainable network. We sought to develop a diverse network of 25 churches to work with the Carolina-Shaw Partnership to develop sustainable health disparities research, education, and intervention initiatives. Churches were selected based on location, pastoral buy-in, and capacity to engage. A purposive sampling technique was applied. (1) Collecting information on the location and characteristics of churches helps to identify and recruit churches that possess the desired qualities and characteristics. (2) The process used to identify, recruit, and select churches is time intensive. (3) The time, energy, and effort required managing an inter-institutional partnership and engage churches in health disparities research and interventions lends itself to sustainability. The development of a sustainable network of churches could lead to successful health disparities initiatives.

  11. Visualization maps for the evolution of research hotspots in the field of regional health information networks.

    PubMed

    Wang, Yanjun; Zheng, Jianzhong; Zhang, Ailian; Zhou, Wei; Dong, Haiyuan

    2018-03-01

    The aim of this study was to reveal research hotspots in the field of regional health information networks (RHINs) and use visualization techniques to explore their evolution over time and differences between countries. We conducted a literature review for a 50-year period and compared the prevalence of certain index terms during the periods 1963-1993 and 1994-2014 and in six countries. We applied keyword frequency analysis, keyword co-occurrence analysis, multidimensional scaling analysis, and network visualization technology. The total number of keywords was found to increase with time. From 1994 to 2014, the research priorities shifted from hospital planning to community health planning. The number of keywords reflecting information-based research increased. The density of the knowledge network increased significantly, and partial keywords condensed into knowledge groups. All six countries focus on keywords including Information Systems; Telemedicine; Information Service; Medical Records Systems, Computerized; Internet; etc.; however, the level of development and some research priorities are different. RHIN research has generally increased in popularity over the past 50 years. The research hotspots are evolving and are at different levels of development in different countries. Knowledge network mapping and perceptual maps provide useful information for scholars, managers, and policy-makers.

  12. Interdependent networks - Topological percolation research and application in finance

    NASA Astrophysics Data System (ADS)

    Zhou, Di

    This dissertation covers the two major parts of my Ph.D. research: i) developing a theoretical framework of complex networks and applying simulation and numerical methods to study the robustness of the network system, and ii) applying statistical physics concepts and methods to quantitatively analyze complex systems and applying the theoretical framework to study real-world systems. In part I, we focus on developing theories of interdependent networks as well as building computer simulation models, which includes three parts: 1) We report on the effects of topology on failure propagation for a model system consisting of two interdependent networks. We find that the internal node correlations in each of the networks significantly changes the critical density of failures, which can trigger the total disruption of the two-network system. Specifically, we find that the assortativity within a single network decreases the robustness of the entire system. 2) We study the percolation behavior of two interdependent scale-free (SF) networks under random failure of 1-p fraction of nodes. We find that as the coupling strength q between the two networks reduces from 1 (fully coupled) to 0 (no coupling), there exist two critical coupling strengths q1 and q2 , which separate the behaviors of the giant component as a function of p into three different regions, and for q2 < q < q 1 , we observe a hybrid order phase transition phenomenon. 3) We study the robustness of n interdependent networks with partially support-dependent relationship both analytically and numerically. We study a starlike network of n Erdos-Renyi (ER), SF networks and a looplike network of n ER networks, and we find for starlike networks, their phase transition regions change with n, but for looplike networks the phase regions change with average degree k . In part II, we apply concepts and methods developed in statistical physics to study economic systems. We analyze stock market indices and foreign exchange daily returns for 60 countries over the period of 1999-2012. We build a multi-layer network model based on different correlation measures, and introduce a dynamic network model to simulate and analyze the initializing and spreading of financial crisis. Using different computational approaches and econometric tests, we find atypical behavior of the cross correlations and community formations in the financial networks that we study during the financial crisis of 2008. For example, the overall correlation of stock market increases during crisis while the correlation between stock market and foreign exchange market decreases. The dramatic increase in correlations between a specific nation and other nations may indicate that this nation could trigger a global financial crisis. Specifically, core countries that have higher correlations with other countries and larger Gross Domestic Product (GDP) values spread financial crisis quite effectively, yet some countries with small GDPs like Greece and Cyprus are also effective in propagating systemic risk and spreading global financial crisis.

  13. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1986-01-01

    This publication, one of a series formerly titled The Deep Space Network (DSN) Progress Report, documents DSN progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations. In addition, developments in Earth-based radio technology as applied to geodynamics, astrophysics, and the radio search for extraterrestrial intelligence are reported.

  14. Behavioral and Physiological Neural Network Analyses: A Common Pathway toward Pattern Recognition and Prediction

    ERIC Educational Resources Information Center

    Ninness, Chris; Lauter, Judy L.; Coffee, Michael; Clary, Logan; Kelly, Elizabeth; Rumph, Marilyn; Rumph, Robin; Kyle, Betty; Ninness, Sharon K.

    2012-01-01

    Using 3 diversified datasets, we explored the pattern-recognition ability of the Self-Organizing Map (SOM) artificial neural network as applied to diversified nonlinear data distributions in the areas of behavioral and physiological research. Experiment 1 employed a dataset obtained from the UCI Machine Learning Repository. Data for this study…

  15. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1988-01-01

    This publication, one of a series formerly titled The Deep Space Network Progress Report, documents DSN progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations. In addition, developments in earth-based radio technology as applied to geodynamics, astrophysics, and the radio search for extraterrestrial intelligence are reported.

  16. The Manifestation of Biblical Community Understanding in a Facebook Community: A Qualitative Study among Christian College Students

    ERIC Educational Resources Information Center

    Perkins, Paul W.

    2012-01-01

    Applying theoretical studies of social capital, social presence, cognitive presence, and community helps researchers understand more fully the phenomenon of online social networks. The debate has moved from the positive and negative effects of online social networks to understanding how they fit into daily life. However, do biblical community…

  17. Learners' Attitudes toward Foreign Language Practice on Social Network Sites

    ERIC Educational Resources Information Center

    Villafuerte, Jhonny; Romero, Asier

    2017-01-01

    This work aims to study learners' attitudes towards practicing English Language on Social Networks Sites (SNS). The sample involved 110 students from the University Laica Eloy Alfaro de Manabi in Ecuador, and the University of the Basque Country in Spain. The instrument applied was a Likert scale questionnaire designed Ad hoc by the researchers,…

  18. WaterNet:The NASA Water Cycle Solutions Network

    NASA Astrophysics Data System (ADS)

    Belvedere, D. R.; Houser, P. R.; Pozzi, W.; Imam, B.; Schiffer, R.; Schlosser, C. A.; Gupta, H.; Martinez, G.; Lopez, V.; Vorosmarty, C.; Fekete, B.; Matthews, D.; Lawford, R.; Welty, C.; Seck, A.

    2008-12-01

    Water is essential to life and directly impacts and constrains society's welfare, progress, and sustainable growth, and is continuously being transformed by climate change, erosion, pollution, and engineering. Projections of the effects of such factors will remain speculative until more effective global prediction systems and applications are implemented. NASA's unique role is to use its view from space to improve water and energy cycle monitoring and prediction, and has taken steps to collaborate and improve interoperability with existing networks and nodes of research organizations, operational agencies, science communities, and private industry. WaterNet is a Solutions Network, devoted to the identification and recommendation of candidate solutions that propose ways in which water-cycle related NASA research results can be skillfully applied by partner agencies, international organizations, state, and local governments. It is designed to improve and optimize the sustained ability of water cycle researchers, stakeholders, organizations and networks to interact, identify, harness, and extend NASA research results to augment Decision Support Tools that address national needs.

  19. A holistic framework for design of cost-effective minimum water utilization network.

    PubMed

    Wan Alwi, S R; Manan, Z A; Samingin, M H; Misran, N

    2008-07-01

    Water pinch analysis (WPA) is a well-established tool for the design of a maximum water recovery (MWR) network. MWR, which is primarily concerned with water recovery and regeneration, only partly addresses water minimization problem. Strictly speaking, WPA can only lead to maximum water recovery targets as opposed to the minimum water targets as widely claimed by researchers over the years. The minimum water targets can be achieved when all water minimization options including elimination, reduction, reuse/recycling, outsourcing and regeneration have been holistically applied. Even though WPA has been well established for synthesis of MWR network, research towards holistic water minimization has lagged behind. This paper describes a new holistic framework for designing a cost-effective minimum water network (CEMWN) for industry and urban systems. The framework consists of five key steps, i.e. (1) Specify the limiting water data, (2) Determine MWR targets, (3) Screen process changes using water management hierarchy (WMH), (4) Apply Systematic Hierarchical Approach for Resilient Process Screening (SHARPS) strategy, and (5) Design water network. Three key contributions have emerged from this work. First is a hierarchical approach for systematic screening of process changes guided by the WMH. Second is a set of four new heuristics for implementing process changes that considers the interactions among process changes options as well as among equipment and the implications of applying each process change on utility targets. Third is the SHARPS cost-screening technique to customize process changes and ultimately generate a minimum water utilization network that is cost-effective and affordable. The CEMWN holistic framework has been successfully implemented on semiconductor and mosque case studies and yielded results within the designer payback period criterion.

  20. High Performance Implementation of 3D Convolutional Neural Networks on a GPU.

    PubMed

    Lan, Qiang; Wang, Zelong; Wen, Mei; Zhang, Chunyuan; Wang, Yijie

    2017-01-01

    Convolutional neural networks have proven to be highly successful in applications such as image classification, object tracking, and many other tasks based on 2D inputs. Recently, researchers have started to apply convolutional neural networks to video classification, which constitutes a 3D input and requires far larger amounts of memory and much more computation. FFT based methods can reduce the amount of computation, but this generally comes at the cost of an increased memory requirement. On the other hand, the Winograd Minimal Filtering Algorithm (WMFA) can reduce the number of operations required and thus can speed up the computation, without increasing the required memory. This strategy was shown to be successful for 2D neural networks. We implement the algorithm for 3D convolutional neural networks and apply it to a popular 3D convolutional neural network which is used to classify videos and compare it to cuDNN. For our highly optimized implementation of the algorithm, we observe a twofold speedup for most of the 3D convolution layers of our test network compared to the cuDNN version.

  1. High Performance Implementation of 3D Convolutional Neural Networks on a GPU

    PubMed Central

    Wang, Zelong; Wen, Mei; Zhang, Chunyuan; Wang, Yijie

    2017-01-01

    Convolutional neural networks have proven to be highly successful in applications such as image classification, object tracking, and many other tasks based on 2D inputs. Recently, researchers have started to apply convolutional neural networks to video classification, which constitutes a 3D input and requires far larger amounts of memory and much more computation. FFT based methods can reduce the amount of computation, but this generally comes at the cost of an increased memory requirement. On the other hand, the Winograd Minimal Filtering Algorithm (WMFA) can reduce the number of operations required and thus can speed up the computation, without increasing the required memory. This strategy was shown to be successful for 2D neural networks. We implement the algorithm for 3D convolutional neural networks and apply it to a popular 3D convolutional neural network which is used to classify videos and compare it to cuDNN. For our highly optimized implementation of the algorithm, we observe a twofold speedup for most of the 3D convolution layers of our test network compared to the cuDNN version. PMID:29250109

  2. Research on intrusion detection based on Kohonen network and support vector machine

    NASA Astrophysics Data System (ADS)

    Shuai, Chunyan; Yang, Hengcheng; Gong, Zeweiyi

    2018-05-01

    In view of the problem of low detection accuracy and the long detection time of support vector machine, which directly applied to the network intrusion detection system. Optimization of SVM parameters can greatly improve the detection accuracy, but it can not be applied to high-speed network because of the long detection time. a method based on Kohonen neural network feature selection is proposed to reduce the optimization time of support vector machine parameters. Firstly, this paper is to calculate the weights of the KDD99 network intrusion data by Kohonen network and select feature by weight. Then, after the feature selection is completed, genetic algorithm (GA) and grid search method are used for parameter optimization to find the appropriate parameters and classify them by support vector machines. By comparing experiments, it is concluded that feature selection can reduce the time of parameter optimization, which has little influence on the accuracy of classification. The experiments suggest that the support vector machine can be used in the network intrusion detection system and reduce the missing rate.

  3. 40 CFR 63.6675 - What definitions apply to this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., and Process Heaters Using Portable Analyzers”, EMC Conditional Test Protocol 30 (CTM-30), Gas Research... emergency situation. Examples include stationary RICE used to produce power for critical networks or... institutional establishments such as medical centers, nursing homes, research centers, institutions of higher...

  4. 40 CFR 63.6675 - What definitions apply to this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., and Process Heaters Using Portable Analyzers”, EMC Conditional Test Protocol 30 (CTM-30), Gas Research... emergency situation. Examples include stationary RICE used to produce power for critical networks or... institutional establishments such as medical centers, nursing homes, research centers, institutions of higher...

  5. DISCRETE EVENT SIMULATION OF OPTICAL SWITCH MATRIX PERFORMANCE IN COMPUTER NETWORKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imam, Neena; Poole, Stephen W

    2013-01-01

    In this paper, we present application of a Discrete Event Simulator (DES) for performance modeling of optical switching devices in computer networks. Network simulators are valuable tools in situations where one cannot investigate the system directly. This situation may arise if the system under study does not exist yet or the cost of studying the system directly is prohibitive. Most available network simulators are based on the paradigm of discrete-event-based simulation. As computer networks become increasingly larger and more complex, sophisticated DES tool chains have become available for both commercial and academic research. Some well-known simulators are NS2, NS3, OPNET,more » and OMNEST. For this research, we have applied OMNEST for the purpose of simulating multi-wavelength performance of optical switch matrices in computer interconnection networks. Our results suggest that the application of DES to computer interconnection networks provides valuable insight in device performance and aids in topology and system optimization.« less

  6. Translational networks in healthcare? Evidence on the design and initiation of organizational networks for knowledge mobilization.

    PubMed

    Fitzgerald, Louise; Harvey, Gill

    2015-08-01

    International attention has focussed on the variations between research evidence and practice in healthcare. This prompted the creation of formalized translational networks consisting of academic-service partnerships. The English Collaborations for Leadership in Applied Health Research and Care (CLAHRCs) are one example of a translational network. Using longitudinal, archival case study data from one CLAHRC over a 3-year period (2008-11), this article explores the relationship between organizational form and the function(s) of a translational network. The article focuses on the research gaps on the effective structures and appropriate governance to support a translational network. Data analysis suggested that the policy of setting up translational networks is insufficient of itself to produce positive translational activity. The data indicate that to leverage the benefits of the whole network, attention must be paid to devising a structure which integrates research production and use and facilitates lateral cross-disciplinary and cross-organizational communication. Equally, appropriate governance arrangements are necessary, particularly in large, multi-stakeholder networks, where shared governance may be questionable. Inappropriate network structure and governance inhibits the potential of the translational network. Finally, the case provides insights into the movement of knowledge within and between network organizations. The data demonstrate that knowledge mobilization extends beyond knowledge translation; knowledge mobilization includes the negotiated utilization of knowledge - a balanced power form of collaboration. Whilst much translational effort is externally focused on the health system, our findings highlight the essential need for the internal negotiation and mobilization of knowledge within academia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. The improved degree of urban road traffic network: A case study of Xiamen, China

    NASA Astrophysics Data System (ADS)

    Wang, Shiguang; Zheng, Lili; Yu, Dexin

    2017-03-01

    The complex network theory is applied to the study of urban road traffic network topology, and we constructed a new measure to characterize an urban road network. It is inspiring to quantify the interaction more appropriately between nodes in complex networks, especially in the field of traffic. The measure takes into account properties of lanes (e.g. number of lanes, width, traffic direction). As much, it is a more comprehensive measure in comparison to previous network measures. It can be used to grasp the features of urban street network more clearly. We applied this measure to the road network in Xiamen, China. Based on a standard method from statistical physics, we examined in more detail the distribution of this new measure and found that (1) due to the limitation of space geographic attributes, traditional research conclusions acquired by using the original definition of degree to study the primal approach modeled urban street network are not very persuasive; (2) both of the direction of the network connection and the degree's odd or even classifications need to be analyzed specifically; (3) the improved degree distribution presents obvious hierarchy, and hierarchical values conform to the power-law distribution, and correlation of our new measure shows some significant segmentation of the urban road network.

  8. Bipolar disorder research 2.0: Web technologies for research capacity and knowledge translation.

    PubMed

    Michalak, Erin E; McBride, Sally; Barnes, Steven J; Wood, Chanel S; Khatri, Nasreen; Balram Elliott, Nusha; Parikh, Sagar V

    2017-12-01

    Current Web technologies offer bipolar disorder (BD) researchers many untapped opportunities for conducting research and for promoting knowledge exchange. In the present paper, we document our experiences with a variety of Web 2.0 technologies in the context of an international BD research network: The Collaborative RESearch Team to Study psychosocial issues in BD (CREST.BD). Three technologies were used as tools for enabling research within CREST.BD and for encouraging the dissemination of the results of our research: (1) the crestbd.ca website, (2) social networking tools (ie, Facebook, Twitter), and (3) several sorts of file sharing (ie YouTube, FileShare). For each Web technology, we collected quantitative assessments of their effectiveness (in reach, exposure, and engagement) over a 6-year timeframe (2010-2016). In general, many of our strategies were deemed successful for promoting knowledge exchange and other network goals. We discuss how we applied our Web analytics to inform adaptations and refinements of our Web 2.0 platforms to maximise knowledge exchange with people with BD, their supporters, and health care providers. We conclude with some general recommendations for other mental health researchers and research networks interested in pursuing Web 2.0 strategies. © 2017 John Wiley & Sons, Ltd.

  9. Computer graphics testbed to simulate and test vision systems for space applications

    NASA Technical Reports Server (NTRS)

    Cheatham, John B.

    1991-01-01

    Research activity has shifted from computer graphics and vision systems to the broader scope of applying concepts of artificial intelligence to robotics. Specifically, the research is directed toward developing Artificial Neural Networks, Expert Systems, and Laser Imaging Techniques for Autonomous Space Robots.

  10. Mapping and discrimination of networks in the complexity-entropy plane

    NASA Astrophysics Data System (ADS)

    Wiedermann, Marc; Donges, Jonathan F.; Kurths, Jürgen; Donner, Reik V.

    2017-10-01

    Complex networks are usually characterized in terms of their topological, spatial, or information-theoretic properties and combinations of the associated metrics are used to discriminate networks into different classes or categories. However, even with the present variety of characteristics at hand it still remains a subject of current research to appropriately quantify a network's complexity and correspondingly discriminate between different types of complex networks, like infrastructure or social networks, on such a basis. Here we explore the possibility to classify complex networks by means of a statistical complexity measure that has formerly been successfully applied to distinguish different types of chaotic and stochastic time series. It is composed of a network's averaged per-node entropic measure characterizing the network's information content and the associated Jenson-Shannon divergence as a measure of disequilibrium. We study 29 real-world networks and show that networks of the same category tend to cluster in distinct areas of the resulting complexity-entropy plane. We demonstrate that within our framework, connectome networks exhibit among the highest complexity while, e.g., transportation and infrastructure networks display significantly lower values. Furthermore, we demonstrate the utility of our framework by applying it to families of random scale-free and Watts-Strogatz model networks. We then show in a second application that the proposed framework is useful to objectively construct threshold-based networks, such as functional climate networks or recurrence networks, by choosing the threshold such that the statistical network complexity is maximized.

  11. Research synergy and drug development: Bright stars in neighboring constellations.

    PubMed

    Keserci, Samet; Livingston, Eric; Wan, Lingtian; Pico, Alexander R; Chacko, George

    2017-11-01

    Drug discovery and subsequent availability of a new breakthrough therapeutic or 'cure' is a compelling example of societal benefit from research advances. These advances are invariably collaborative, involving the contributions of many scientists to a discovery network in which theory and experiment are built upon. To document and understand such scientific advances, data mining of public and commercial data sources coupled with network analysis can be used as a digital methodology to assemble and analyze component events in the history of a therapeutic. This methodology is extensible beyond the history of therapeutics and its use more generally supports (i) efficiency in exploring the scientific history of a research advance (ii) documenting and understanding collaboration (iii) portfolio analysis, planning and optimization (iv) communication of the societal value of research. Building upon prior art, we have conducted a case study of five anti-cancer therapeutics to identify the collaborations that resulted in the successful development of these therapeutics both within and across their respective networks. We have linked the work of over 235,000 authors in roughly 106,000 scientific publications that capture the research crucial for the development of these five therapeutics. Applying retrospective citation discovery, we have identified a core set of publications cited in the networks of all five therapeutics and additional intersections in combinations of networks. We have enriched the content of these networks by annotating them with information on research awards from the US National Institutes of Health (NIH). Lastly, we have mapped these awards to their cognate peer review panels, identifying another layer of collaborative scientific activity that influenced the research represented in these networks.

  12. Artificial Neural Networks: A New Approach for Predicting Application Behavior. AIR 2001 Annual Forum Paper.

    ERIC Educational Resources Information Center

    Gonzalez, Julie M. Byers; DesJardins, Stephen L.

    This paper examines how predictive modeling can be used to study application behavior. A relatively new technique, artificial neural networks (ANNs), was applied to help predict which students were likely to get into a large Research I university. Data were obtained from a university in Iowa. Two cohorts were used, each containing approximately…

  13. A Networked Learning Model for Construction of Personal Learning Environments in Seventh Grade Life Science

    ERIC Educational Resources Information Center

    Drexler, Wendy

    2010-01-01

    The purpose of this design-based research case study was to apply a networked learning approach to a seventh grade science class at a public school in the southeastern United States. Students adapted Web applications to construct personal learning environments for in-depth scientific inquiry of poisonous and venomous life forms. API widgets were…

  14. Impact of trucking network flow on preferred biorefinery locations in the southern United States

    Treesearch

    Timothy M. Young; Lee D. Han; James H. Perdue; Stephanie R. Hargrove; Frank M. Guess; Xia Huang; Chung-Hao Chen

    2017-01-01

    The impact of the trucking transportation network flow was modeled for the southern United States. The study addresses a gap in existing research by applying a Bayesian logistic regression and Geographic Information System (GIS) geospatial analysis to predict biorefinery site locations. A one-way trucking cost assuming a 128.8 km (80-mile) haul distance was estimated...

  15. [Weighted gene co-expression network analysis in biomedicine research].

    PubMed

    Liu, Wei; Li, Li; Ye, Hua; Tu, Wei

    2017-11-25

    High-throughput biological technologies are now widely applied in biology and medicine, allowing scientists to monitor thousands of parameters simultaneously in a specific sample. However, it is still an enormous challenge to mine useful information from high-throughput data. The emergence of network biology provides deeper insights into complex bio-system and reveals the modularity in tissue/cellular networks. Correlation networks are increasingly used in bioinformatics applications. Weighted gene co-expression network analysis (WGCNA) tool can detect clusters of highly correlated genes. Therefore, we systematically reviewed the application of WGCNA in the study of disease diagnosis, pathogenesis and other related fields. First, we introduced principle, workflow, advantages and disadvantages of WGCNA. Second, we presented the application of WGCNA in disease, physiology, drug, evolution and genome annotation. Then, we indicated the application of WGCNA in newly developed high-throughput methods. We hope this review will help to promote the application of WGCNA in biomedicine research.

  16. Applying policy network theory to policy-making in China: the case of urban health insurance reform.

    PubMed

    Zheng, Haitao; de Jong, Martin; Koppenjan, Joop

    2010-01-01

    In this article, we explore whether policy network theory can be applied in the People's Republic of China (PRC). We carried out a literature review of how this approach has already been dealt with in the Chinese policy sciences thus far. We then present the key concepts and research approach in policy networks theory in the Western literature and try these on a Chinese case to see the fit. We follow this with a description and analysis of the policy-making process regarding the health insurance reform in China from 1998 until the present. Based on this case study, we argue that this body of theory is useful to describe and explain policy-making processes in the Chinese context. However, limitations in the generic model appear in capturing the fundamentally different political and administrative systems, crucially different cultural values in the applicability of some research methods common in Western countries. Finally, we address which political and cultural aspects turn out to be different in the PRC and how they affect methodological and practical problems that PRC researchers will encounter when studying decision-making processes.

  17. Proposal for a telehealth concept in the translational research model

    PubMed Central

    Silva, Angélica Baptista; Morel, Carlos Médicis; de Moraes, Ilara Hämmerli Sozzi

    2014-01-01

    OBJECTIVE To review the conceptual relationship between telehealth and translational research. METHODS Bibliographical search on telehealth was conducted in the Scopus, Cochrane BVS, LILACS and MEDLINE databases to find experiences of telehealth in conjunction with discussion of translational research in health. The search retrieved eight studies based on analysis of models of the five stages of translational research and the multiple strands of public health policy in the context of telehealth in Brazil. The models were applied to telehealth activities concerning the Network of Human Milk Banks, in the Telemedicine University Network. RESULTS The translational research cycle of human milk collected, stored and distributed presents several integrated telehealth initiatives, such as video conferencing, and software and portals for synthesizing knowledge, composing elements of an information ecosystem, mediated by information and communication technologies in the health system. CONCLUSIONS Telehealth should be composed of a set of activities in a computer mediated network promoting the translation of knowledge between research and health services. PMID:24897057

  18. Use of randomized sampling for analysis of metabolic networks.

    PubMed

    Schellenberger, Jan; Palsson, Bernhard Ø

    2009-02-27

    Genome-scale metabolic network reconstructions in microorganisms have been formulated and studied for about 8 years. The constraint-based approach has shown great promise in analyzing the systemic properties of these network reconstructions. Notably, constraint-based models have been used successfully to predict the phenotypic effects of knock-outs and for metabolic engineering. The inherent uncertainty in both parameters and variables of large-scale models is significant and is well suited to study by Monte Carlo sampling of the solution space. These techniques have been applied extensively to the reaction rate (flux) space of networks, with more recent work focusing on dynamic/kinetic properties. Monte Carlo sampling as an analysis tool has many advantages, including the ability to work with missing data, the ability to apply post-processing techniques, and the ability to quantify uncertainty and to optimize experiments to reduce uncertainty. We present an overview of this emerging area of research in systems biology.

  19. Visibility in the topology of complex networks

    NASA Astrophysics Data System (ADS)

    Tsiotas, Dimitrios; Charakopoulos, Avraam

    2018-09-01

    Taking its inspiration from the visibility algorithm, which was proposed by Lacasa et al. (2008) to convert a time-series into a complex network, this paper develops and proposes a novel expansion of this algorithm that allows generating a visibility graph from a complex network instead of a time-series that is currently applicable. The purpose of this approach is to apply the idea of visibility from the field of time-series to complex networks in order to interpret the network topology as a landscape. Visibility in complex networks is a multivariate property producing an associated visibility graph that maps the ability of a node "to see" other nodes in the network that lie beyond the range of its neighborhood, in terms of a control-attribute. Within this context, this paper examines the visibility topology produced by connectivity (degree) in comparison with the original (source) network, in order to detect what patterns or forces describe the mechanism under which a network is converted to a visibility graph. The overall analysis shows that visibility is a property that increases the connectivity in networks, it may contribute to pattern recognition (among which the detection of the scale-free topology) and it is worth to be applied to complex networks in order to reveal the potential of signal processing beyond the range of its neighborhood. Generally, this paper promotes interdisciplinary research in complex networks providing new insights to network science.

  20. [Training of institutional research networks as a strategy of improvement].

    PubMed

    Galván-Plata, María Eugenia; Almeida-Gutiérrez, Eduardo; Salamanca-Gómez, Fabio Abdel

    2017-01-01

    The Instituto Mexicano del Seguro Social (IMSS) through the Coordinación de Investigación en Salud (Health Research Council) has promoted a strong link between the generation of scientific knowledge and the clinical care through the program Redes Institucionales de Investigación (Institutional Research Network Program), whose main aim is to promote and generate collaborative research between clinical, basic, epidemiologic, educational, economic and health services researchers, seeking direct benefits for patients, as well as to generate a positive impact on institutional processes. All of these research lines have focused on high-priority health issues in Mexico. The IMSS internal structure, as well as the sufficient health services coverage, allows the integration of researchers at the three levels of health care into these networks. A few years after their creation, these networks have already generated significant results, and these are currently applied in the institutional regulations in diseases that represent a high burden to health care. Two examples are the National Health Care Program for Patients with Acute Myocardial Infarction "Código Infarto", and the Early Detection Program on Chronic Kidney Disease; another result is the generation of multiple scientific publications, and the promotion of training of human resources in research from the same members of our Research Networks. There is no doubt that the Coordinación de Investigación en Salud advances steadily implementing the translational research, which will keep being fruitful to the benefit of our patients, and of our own institution.

  1. The Role of Gender in Adolescents' Social Networks and Alcohol, Tobacco, and Drug Use: A Systematic Review.

    PubMed

    Jacobs, Wura; Goodson, Patricia; Barry, Adam E; McLeroy, Kenneth R

    2016-05-01

    Despite previous research indicating an adolescents' alcohol, tobacco, and other drug (ATOD) use is dependent upon their sex and the sex composition of their social network, few social network studies consider sex differences and network sex composition as a determinant of adolescents' ATOD use behavior. This systematic literature review examining how social network analytic studies examine adolescent ATOD use behavior is guided by the following research questions: (1) How do studies conceptualize sex and network sex composition? (2) What types of network affiliations are employed to characterize adolescent networks? (3) What is the methodological quality of included studies? After searching several electronic databases (PsycINFO, EBSCO, and Communication Abstract) and applying our inclusion/exclusion criteria, 48 studies were included in the review. Overall, few studies considered sex composition of networks in which adolescents are embedded as a determinant that influences adolescent ATOD use. Although included studies all exhibited high methodological quality, the majority only used friendship networks to characterize adolescent social networks and subsequently failed to capture the influence of other network types, such as romantic networks. School-based prevention programs could be strengthened by (1) selecting and targeting peer leaders based on sex, and (2) leveraging other types of social networks beyond simply friendships. © 2016, American School Health Association.

  2. Constrained target controllability of complex networks

    NASA Astrophysics Data System (ADS)

    Guo, Wei-Feng; Zhang, Shao-Wu; Wei, Ze-Gang; Zeng, Tao; Liu, Fei; Zhang, Jingsong; Wu, Fang-Xiang; Chen, Luonan

    2017-06-01

    It is of great theoretical interest and practical significance to study how to control a system by applying perturbations to only a few driver nodes. Recently, a hot topic of modern network researches is how to determine driver nodes that allow the control of an entire network. However, in practice, to control a complex network, especially a biological network, one may know not only the set of nodes which need to be controlled (i.e. target nodes), but also the set of nodes to which only control signals can be applied (i.e. constrained control nodes). Compared to the general concept of controllability, we introduce the concept of constrained target controllability (CTC) of complex networks, which concerns the ability to drive any state of target nodes to their desirable state by applying control signals to the driver nodes from the set of constrained control nodes. To efficiently investigate the CTC of complex networks, we further design a novel graph-theoretic algorithm called CTCA to estimate the ability of a given network to control targets by choosing driver nodes from the set of constrained control nodes. We extensively evaluate the CTC of numerous real complex networks. The results indicate that biological networks with a higher average degree are easier to control than biological networks with a lower average degree, while electronic networks with a lower average degree are easier to control than web networks with a higher average degree. We also show that our CTCA can more efficiently produce driver nodes for target-controlling the networks than existing state-of-the-art methods. Moreover, we use our CTCA to analyze two expert-curated bio-molecular networks and compare to other state-of-the-art methods. The results illustrate that our CTCA can efficiently identify proven drug targets and new potentials, according to the constrained controllability of those biological networks.

  3. Complex Network Theory Applied to the Growth of Kuala Lumpur's Public Urban Rail Transit Network.

    PubMed

    Ding, Rui; Ujang, Norsidah; Hamid, Hussain Bin; Wu, Jianjun

    2015-01-01

    Recently, the number of studies involving complex network applications in transportation has increased steadily as scholars from various fields analyze traffic networks. Nonetheless, research on rail network growth is relatively rare. This research examines the evolution of the Public Urban Rail Transit Networks of Kuala Lumpur (PURTNoKL) based on complex network theory and covers both the topological structure of the rail system and future trends in network growth. In addition, network performance when facing different attack strategies is also assessed. Three topological network characteristics are considered: connections, clustering and centrality. In PURTNoKL, we found that the total number of nodes and edges exhibit a linear relationship and that the average degree stays within the interval [2.0488, 2.6774] with heavy-tailed distributions. The evolutionary process shows that the cumulative probability distribution (CPD) of degree and the average shortest path length show good fit with exponential distribution and normal distribution, respectively. Moreover, PURTNoKL exhibits clear cluster characteristics; most of the nodes have a 2-core value, and the CPDs of the centrality's closeness and betweenness follow a normal distribution function and an exponential distribution, respectively. Finally, we discuss four different types of network growth styles and the line extension process, which reveal that the rail network's growth is likely based on the nodes with the biggest lengths of the shortest path and that network protection should emphasize those nodes with the largest degrees and the highest betweenness values. This research may enhance the networkability of the rail system and better shape the future growth of public rail networks.

  4. UMDR: Multi-Path Routing Protocol for Underwater Ad Hoc Networks with Directional Antenna

    NASA Astrophysics Data System (ADS)

    Yang, Jianmin; Liu, Songzuo; Liu, Qipei; Qiao, Gang

    2018-01-01

    This paper presents a new routing scheme for underwater ad hoc networks based on directional antennas. Ad hoc networks with directional antennas have become a hot research topic because of space reuse may increase networks capacity. At present, researchers have applied traditional self-organizing routing protocols (such as DSR, AODV) [1] [2] on this type of networks, and the routing scheme is based on the shortest path metric. However, such routing schemes often suffer from long transmission delays and frequent link fragmentation along the intermediate nodes of the selected route. This is caused by a unique feature of directional transmission, often called as “deafness”. In this paper, we take a different approach to explore the advantages of space reuse through multipath routing. This paper introduces the validity of the conventional routing scheme in underwater ad hoc networks with directional antennas, and presents a special design of multipath routing algorithm for directional transmission. The experimental results show a significant performance improvement in throughput and latency.

  5. A Survey on Mobility Support in Wireless Body Area Networks

    PubMed Central

    Kim, Beom-Su; Kim, Kyong Hoon; Kim, Ki-Il

    2017-01-01

    Wireless Body Area Networks (WBANs) have attracted research interests from the community, as more promising healthcare applications have a tendency to employ them as underlying network technology. While taking design issues, such as small size hardware as well as low power computing, into account, a lot of research has been proposed to accomplish the given tasks in WBAN. However, since most of the existing works are basically developed by assuming all nodes in the static state, these schemes therefore cannot be applied in real scenarios where network topology between sensor nodes changes frequently and unexpectedly according to human moving behavior. However, as far as the authors know, there is no survey paper to focus on research challenges for mobility support in WBAN yet. To address this deficiency, in this paper, we present the state-of-the-art approaches and discuss the important features of related to mobility in WBAN. We give an overview of mobility model and categorize the models as individual and group. Furthermore, an overview of networking techniques in the recent literature and summary are compiled for comparison in several aspects. The article also suggests potential directions for future research in the field. PMID:28387745

  6. A Survey on Mobility Support in Wireless Body Area Networks.

    PubMed

    Kim, Beom-Su; Kim, Kyong Hoon; Kim, Ki-Il

    2017-04-07

    Wireless Body Area Networks (WBANs) have attracted research interests from the community, as more promising healthcare applications have a tendency to employ them as underlying network technology. While taking design issues, such as small size hardware as well as low power computing, into account, a lot of research has been proposed to accomplish the given tasks in WBAN. However, since most of the existing works are basically developed by assuming all nodes in the static state, these schemes therefore cannot be applied in real scenarios where network topology between sensor nodes changes frequently and unexpectedly according to human moving behavior. However, as far as the authors know, there is no survey paper to focus on research challenges for mobility support in WBAN yet. To address this deficiency, in this paper, we present the state-of-the-art approaches and discuss the important features of related to mobility in WBAN. We give an overview of mobility model and categorize the models as individual and group. Furthermore, an overview of networking techniques in the recent literature and summary are compiled for comparison in several aspects. The article also suggests potential directions for future research in the field.

  7. Networks and the Epidemiology of Infectious Disease

    PubMed Central

    Danon, Leon; Ford, Ashley P.; House, Thomas; Jewell, Chris P.; Keeling, Matt J.; Roberts, Gareth O.; Ross, Joshua V.; Vernon, Matthew C.

    2011-01-01

    The science of networks has revolutionised research into the dynamics of interacting elements. It could be argued that epidemiology in particular has embraced the potential of network theory more than any other discipline. Here we review the growing body of research concerning the spread of infectious diseases on networks, focusing on the interplay between network theory and epidemiology. The review is split into four main sections, which examine: the types of network relevant to epidemiology; the multitude of ways these networks can be characterised; the statistical methods that can be applied to infer the epidemiological parameters on a realised network; and finally simulation and analytical methods to determine epidemic dynamics on a given network. Given the breadth of areas covered and the ever-expanding number of publications, a comprehensive review of all work is impossible. Instead, we provide a personalised overview into the areas of network epidemiology that have seen the greatest progress in recent years or have the greatest potential to provide novel insights. As such, considerable importance is placed on analytical approaches and statistical methods which are both rapidly expanding fields. Throughout this review we restrict our attention to epidemiological issues. PMID:21437001

  8. SINET3: advanced optical and IP hybrid network

    NASA Astrophysics Data System (ADS)

    Urushidani, Shigeo

    2007-11-01

    This paper introduces the new Japanese academic backbone network called SINET3, which has been in full-scale operation since June 2007. SINET3 provides a wide variety of network services, such as multi-layer transfer, enriched VPN, enhanced QoS, and layer-1 bandwidth on demand (BoD) services to create an innovative and prolific science infrastructure for more than 700 universities and research institutions. The network applies an advanced hybrid network architecture composed of 75 layer-1 switches and 12 high-performance IP routers to accommodate such diversified services in a single network platform, and provides sufficient bandwidth using Japan's first STM256 (40 Gbps) lines. The network adopts lots of the latest networking technologies, such as next-generation SDH (VCAT/GFP/LCAS), GMPLS, advanced MPLS, and logical-router technologies, for high network convergence, flexible resource assignment, and high service availability. This paper covers the network services, network design, and networking technologies of SINET3.

  9. Apply network coding for H.264/SVC multicasting

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Kuo, C.-C. Jay

    2008-08-01

    In a packet erasure network environment, video streaming benefits from error control in two ways to achieve graceful degradation. The first approach is application-level (or the link-level) forward error-correction (FEC) to provide erasure protection. The second error control approach is error concealment at the decoder end to compensate lost packets. A large amount of research work has been done in the above two areas. More recently, network coding (NC) techniques have been proposed for efficient data multicast over networks. It was shown in our previous work that multicast video streaming benefits from NC for its throughput improvement. An algebraic model is given to analyze the performance in this work. By exploiting the linear combination of video packets along nodes in a network and the SVC video format, the system achieves path diversity automatically and enables efficient video delivery to heterogeneous receivers in packet erasure channels. The application of network coding can protect video packets against the erasure network environment. However, the rank defficiency problem of random linear network coding makes the error concealment inefficiently. It is shown by computer simulation that the proposed NC video multicast scheme enables heterogenous receiving according to their capacity constraints. But it needs special designing to improve the video transmission performance when applying network coding.

  10. The networked student: A design-based research case study of student constructed personal learning environments in a middle school science course

    NASA Astrophysics Data System (ADS)

    Drexler, Wendy

    This design-based research case study applied a networked learning approach to a seventh grade science class at a public school in the southeastern United States. Students adapted emerging Web applications to construct personal learning environments for in-depth scientific inquiry of poisonous and venomous life forms. The personal learning environments constructed used Application Programming Interface (API) widgets to access, organize, and synthesize content from a number of educational Internet resources and social network connections. This study examined the nature of personal learning environments; the processes students go through during construction, and patterns that emerged. The project was documented from both an instructional and student-design perspective. Findings revealed that students applied the processes of: practicing digital responsibility; practicing digital literacy; organizing content; collaborating and socializing; and synthesizing and creating. These processes informed a model of the networked student that will serve as a framework for future instructional designs. A networked learning approach that incorporates these processes into future designs has implications for student learning, teacher roles, professional development, administrative policies, and delivery. This work is significant in that it shifts the focus from technology innovations based on tools to student empowerment based on the processes required to support learning. It affirms the need for greater attention to digital literacy and responsibility in K12 schools as well as consideration for those skills students will need to achieve success in the 21st century. The design-based research case study provides a set of design principles for teachers to follow when facilitating student construction of personal learning environments.

  11. 34 CFR 263.3 - What definitions apply to the Professional Development program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... improve performance, (2) Access to research materials and information on teaching and learning, (3... collaboration, feedback, and peer networking and support. In-service training means professional activities and...

  12. Integrated Speech and Language Technology for Intelligence, Surveillance, and Reconnaissance (ISR)

    DTIC Science & Technology

    2017-07-01

    applying submodularity techniques to address computing challenges posed by large datasets in speech and language processing. MT and speech tools were...aforementioned research-oriented activities, the IT system administration team provided necessary support to laboratory computing and network operations...operations of SCREAM Lab computer systems and networks. Other miscellaneous activities in relation to Task Order 29 are presented in an additional fourth

  13. A European perspective--the European clinical research infrastructures network.

    PubMed

    Demotes-Mainard, J; Kubiak, C

    2011-11-01

    Evaluating research outcomes requires multinational cooperation in clinical research for optimization of treatment strategies and comparative effectiveness research, leading to evidence-based practice and healthcare cost containment. The European Clinical Research Infrastructures Network (ECRIN) is a distributed ESFRI (European Strategy Forum on Research Infrastructures) roadmap pan-European infrastructure designed to support multinational clinical research, making Europe a single area for clinical studies, taking advantage of its population size to access patients, and unlocking latent scientific potential. Servicing multinational trials started during its preparatory phase, and ECRIN will now apply for an ERIC (European Research Infrastructures Consortium) status by 2011. By creating a single area for clinical research in Europe, this achievement will contribute to the implementation of the Europe flagship initiative 2020 'Innovation Union', whose objectives include defragmentation of the research and education capacity, tackling the major societal challenges starting with the area of healthy ageing, and removing barriers to bring ideas to the market.

  14. An Analysis for the Use of Research and Education Networks and Commercial Network Vendors in Support of Space Based Mission Critical and Non-Critical Networking

    NASA Technical Reports Server (NTRS)

    Bradford, Robert N.

    2002-01-01

    Currently, and in the past, dedicated communication circuits and "network services" with very stringent performance requirements are being used to support manned and unmanned mission critical ground operations at GSFC, JSC, MSFC, KSC and other NASA facilities. Because of the evolution of network technology, it is time to investigate using other approaches to providing mission services for space ground operations. The current NASA approach is not in keeping with the evolution of network technologies. In the past decade various research and education networks dedicated to scientific and educational endeavors have emerged, as well as commercial networking providers, that employ advanced networking technologies. These technologies have significantly changed networking in recent years. Significant advances in network routing techniques, various topologies and equipment have made commercial networks very stable and virtually error free. Advances in Dense Wave Division Multiplexing will provide tremendous amounts of bandwidth for the future. The question is: Do these networks, which are controlled and managed centrally, provide a level of service that equals the stringent NASA performance requirements. If they do, what are the implication(s) of using them for critical space based ground operations as they are, without adding high cost contractual performance requirements? A second question is the feasibility of applying the emerging grid technology in space operations. Is it feasible to develop a Space Operations Grid and/or a Space Science Grid? Since these network's connectivity is substantial, both nationally and internationally, development of these sorts of grids may be feasible. The concept of research and education networks has evolved to the international community as well. Currently there are international RENs connecting the US in Chicago to and from Europe, South America, Asia and the Pacific rim, Russia and Canada. And most countries in these areas have their own research and education network as do many states in the USA.

  15. Using network analysis to study behavioural phenotypes: an example using domestic dogs.

    PubMed

    Goold, Conor; Vas, Judit; Olsen, Christine; Newberry, Ruth C

    2016-10-01

    Phenotypic integration describes the complex interrelationships between organismal traits, traditionally focusing on morphology. Recently, research has sought to represent behavioural phenotypes as composed of quasi-independent latent traits. Concurrently, psychologists have opposed latent variable interpretations of human behaviour, proposing instead a network perspective envisaging interrelationships between behaviours as emerging from causal dependencies. Network analysis could also be applied to understand integrated behavioural phenotypes in animals. Here, we assimilate this cross-disciplinary progression of ideas by demonstrating the use of network analysis on survey data collected on behavioural and motivational characteristics of police patrol and detection dogs ( Canis lupus familiaris ). Networks of conditional independence relationships illustrated a number of functional connections between descriptors, which varied between dog types. The most central descriptors denoted desirable characteristics in both patrol and detection dog networks, with 'Playful' being widely correlated and possessing mediating relationships between descriptors. Bootstrap analyses revealed the stability of network results. We discuss the results in relation to previous research on dog personality, and benefits of using network analysis to study behavioural phenotypes. We conclude that a network perspective offers widespread opportunities for advancing the understanding of phenotypic integration in animal behaviour.

  16. Real-time transmission of full-motion echocardiography over a high-speed data network: impact of data rate and network quality of service.

    PubMed

    Main, M L; Foltz, D; Firstenberg, M S; Bobinsky, E; Bailey, D; Frantz, B; Pleva, D; Baldizzi, M; Meyers, D P; Jones, K; Spence, M C; Freeman, K; Morehead, A; Thomas, J D

    2000-08-01

    With high-resolution network transmission required for telemedicine, education, and guided-image acquisition, the impact of errors and transmission rates on image quality needs evaluation. We transmitted clinical echocardiograms from 2 National Aeronautics and Space Administration (NASA) research centers with the use of Motion Picture Expert Group-2 (MPEG-2) encoding and asynchronous transmission mode (ATM) network protocol over the NASA Research and Education Network. Data rates and network quality (cell losses [CLR], errors [CER], and delay variability [CVD]) were altered and image quality was judged. At speeds of 3 to 5 megabits per second (Mbps), digital images were superior to those on videotape; at 2 Mbps, images were equivalent. Increasing CLR caused occasional, brief pauses. Extreme CER and CDV increases still yielded high-quality images. Real-time echocardiographic acquisition, guidance, and transmission is feasible with the use of MPEG-2 and ATM with broadcast quality seen above 3 Mbps, even with severe network quality degradation. These techniques can be applied to telemedicine and used for planned echocardiography aboard the International Space Station.

  17. Real-time transmission of full-motion echocardiography over a high-speed data network: impact of data rate and network quality of service

    NASA Technical Reports Server (NTRS)

    Main, M. L.; Foltz, D.; Firstenberg, M. S.; Bobinsky, E.; Bailey, D.; Frantz, B.; Pleva, D.; Baldizzi, M.; Meyers, D. P.; Jones, K.; hide

    2000-01-01

    With high-resolution network transmission required for telemedicine, education, and guided-image acquisition, the impact of errors and transmission rates on image quality needs evaluation. METHODS: We transmitted clinical echocardiograms from 2 National Aeronautics and Space Administration (NASA) research centers with the use of Motion Picture Expert Group-2 (MPEG-2) encoding and asynchronous transmission mode (ATM) network protocol over the NASA Research and Education Network. Data rates and network quality (cell losses [CLR], errors [CER], and delay variability [CVD]) were altered and image quality was judged. RESULTS: At speeds of 3 to 5 megabits per second (Mbps), digital images were superior to those on videotape; at 2 Mbps, images were equivalent. Increasing CLR caused occasional, brief pauses. Extreme CER and CDV increases still yielded high-quality images. CONCLUSIONS: Real-time echocardiographic acquisition, guidance, and transmission is feasible with the use of MPEG-2 and ATM with broadcast quality seen above 3 Mbps, even with severe network quality degradation. These techniques can be applied to telemedicine and used for planned echocardiography aboard the International Space Station.

  18. Research on energy stock market associated network structure based on financial indicators

    NASA Astrophysics Data System (ADS)

    Xi, Xian; An, Haizhong

    2018-01-01

    A financial market is a complex system consisting of many interacting units. In general, due to the various types of information exchange within the industry, there is a relationship between the stocks that can reveal their clear structural characteristics. Complex network methods are powerful tools for studying the internal structure and function of the stock market, which allows us to better understand the stock market. Applying complex network methodology, a stock associated network model based on financial indicators is created. Accordingly, we set threshold value and use modularity to detect the community network, and we analyze the network structure and community cluster characteristics of different threshold situations. The study finds that the threshold value of 0.7 is the abrupt change point of the network. At the same time, as the threshold value increases, the independence of the community strengthens. This study provides a method of researching stock market based on the financial indicators, exploring the structural similarity of financial indicators of stocks. Also, it provides guidance for investment and corporate financial management.

  19. Electronic Patient Reported Outcomes in Paediatric Oncology - Applying Mobile and Near Field Communication Technology.

    PubMed

    Duregger, Katharina; Hayn, Dieter; Nitzlnader, Michael; Kropf, Martin; Falgenhauer, Markus; Ladenstein, Ruth; Schreier, Günter

    2016-01-01

    Electronic Patient Reported Outcomes (ePRO) gathered using telemonitoring solutions might be a valuable source of information in rare cancer research. The objective of this paper was to develop a concept and implement a prototype for introducing ePRO into the existing neuroblastoma research network by applying Near Field Communication and mobile technology. For physicians, an application was developed for registering patients within the research network and providing patients with an ID card and a PIN for authentication when transmitting telemonitoring data to the Electronic Data Capture system OpenClinica. For patients, a previously developed telemonitoring system was extended by a Simple Object Access Protocol (SOAP) interface for transmitting nine different health parameters and toxicities. The concept was fully implemented on the front-end side. The developed application for physicians was prototypically implemented and the mobile application of the telemonitoring system was successfully connected to OpenClinica. Future work will focus on the implementation of the back-end features.

  20. Predicting the spatial distribution of soil profile in Adapazari/Turkey by artificial neural networks using CPT data

    NASA Astrophysics Data System (ADS)

    Arel, Ersin

    2012-06-01

    The infamous soils of Adapazari, Turkey, that failed extensively during the 46-s long magnitude 7.4 earthquake in 1999 have since been the subject of a research program. Boreholes, piezocone soundings and voluminous laboratory testing have enabled researchers to apply sophisticated methods to determine the soil profiles in the city using the existing database. This paper describes the use of the artificial neural network (ANN) model to predict the complex soil profiles of Adapazari, based on cone penetration test (CPT) results. More than 3236 field CPT readings have been collected from 117 soundings spread over an area of 26 km2. An attempt has been made to develop the ANN model using multilayer perceptrons trained with a feed-forward back-propagation algorithm. The results show that the ANN model is fairly accurate in predicting complex soil profiles. Soil identification using CPT test results has principally been based on the Robertson charts. Applying neural network systems using the chart offers a powerful and rapid route to reliable prediction of the soil profiles.

  1. The role of different sampling methods in improving biological activity prediction using deep belief network.

    PubMed

    Ghasemi, Fahimeh; Fassihi, Afshin; Pérez-Sánchez, Horacio; Mehri Dehnavi, Alireza

    2017-02-05

    Thousands of molecules and descriptors are available for a medicinal chemist thanks to the technological advancements in different branches of chemistry. This fact as well as the correlation between them has raised new problems in quantitative structure activity relationship studies. Proper parameter initialization in statistical modeling has merged as another challenge in recent years. Random selection of parameters leads to poor performance of deep neural network (DNN). In this research, deep belief network (DBN) was applied to initialize DNNs. DBN is composed of some stacks of restricted Boltzmann machine, an energy-based method that requires computing log likelihood gradient for all samples. Three different sampling approaches were suggested to solve this gradient. In this respect, the impact of DBN was applied based on the different sampling approaches mentioned above to initialize the DNN architecture in predicting biological activity of all fifteen Kaggle targets that contain more than 70k molecules. The same as other fields of processing research, the outputs of these models demonstrated significant superiority to that of DNN with random parameters. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Understanding complex interactions using social network analysis.

    PubMed

    Pow, Janette; Gayen, Kaberi; Elliott, Lawrie; Raeside, Robert

    2012-10-01

    The aim of this paper is to raise the awareness of social network analysis as a method to facilitate research in nursing research. The application of social network analysis in assessing network properties has allowed greater insight to be gained in many areas including sociology, politics, business organisation and health care. However, the use of social networks in nursing has not received sufficient attention. Review of literature and illustration of the application of the method of social network analysis using research examples. First, the value of social networks will be discussed. Then by using illustrative examples, the value of social network analysis to nursing will be demonstrated. The method of social network analysis is found to give greater insights into social situations involving interactions between individuals and has particular application to the study of interactions between nurses and between nurses and patients and other actors. Social networks are systems in which people interact. Two quantitative techniques help our understanding of these networks. The first is visualisation of the network. The second is centrality. Individuals with high centrality are key communicators in a network. Applying social network analysis to nursing provides a simple method that helps gain an understanding of human interaction and how this might influence various health outcomes. It allows influential individuals (actors) to be identified. Their influence on the formation of social norms and communication can determine the extent to which new interventions or ways of thinking are accepted by a group. Thus, working with key individuals in a network could be critical to the success and sustainability of an intervention. Social network analysis can also help to assess the effectiveness of such interventions for the recipient and the service provider. © 2012 Blackwell Publishing Ltd.

  3. Transforming the Undergraduate Research Experience through Sustained Mentoring: Creating a Strong Support Network and a Collaborative Learning Environment

    ERIC Educational Resources Information Center

    Camacho, Erika T.; Holmes, Raquell M.; Wirkus, Stephen A.

    2015-01-01

    This chapter describes how sustained mentoring together with rigorous collaborative learning and community building contributed to successful mathematical research and individual growth in the Applied Mathematical Sciences Summer Institute (AMSSI), a program that focused on women, underrepresented minorities, and individuals from small teaching…

  4. Sampling of temporal networks: Methods and biases

    NASA Astrophysics Data System (ADS)

    Rocha, Luis E. C.; Masuda, Naoki; Holme, Petter

    2017-11-01

    Temporal networks have been increasingly used to model a diversity of systems that evolve in time; for example, human contact structures over which dynamic processes such as epidemics take place. A fundamental aspect of real-life networks is that they are sampled within temporal and spatial frames. Furthermore, one might wish to subsample networks to reduce their size for better visualization or to perform computationally intensive simulations. The sampling method may affect the network structure and thus caution is necessary to generalize results based on samples. In this paper, we study four sampling strategies applied to a variety of real-life temporal networks. We quantify the biases generated by each sampling strategy on a number of relevant statistics such as link activity, temporal paths and epidemic spread. We find that some biases are common in a variety of networks and statistics, but one strategy, uniform sampling of nodes, shows improved performance in most scenarios. Given the particularities of temporal network data and the variety of network structures, we recommend that the choice of sampling methods be problem oriented to minimize the potential biases for the specific research questions on hand. Our results help researchers to better design network data collection protocols and to understand the limitations of sampled temporal network data.

  5. Toward an Understanding of Citywide Urban Environmental Governance: An Examination of Stewardship Networks in Baltimore and Seattle.

    PubMed

    Romolini, Michele; Morgan Grove, J; Ventriss, Curtis L; Koliba, Christopher J; Krymkowski, Daniel H

    2016-08-01

    Efforts to create more sustainable cities are evident in the proliferation of sustainability policies in cities worldwide. It has become widely proposed that the success of these urban sustainability initiatives will require city agencies to partner with, and even cede authority to, organizations from other sectors and levels of government. Yet the resulting collaborative networks are often poorly understood, and the study of large whole networks has been a challenge for researchers. We believe that a better understanding of citywide environmental governance networks can inform evaluations of their effectiveness, thus contributing to improved environmental management. Through two citywide surveys in Baltimore and Seattle, we collected data on the attributes of environmental stewardship organizations and their network relationships. We applied missing data treatment approaches and conducted social network and comparative analyses to examine (a) the organizational composition of the network, and (b) how information and knowledge are shared throughout the network. Findings revealed similarities in the number of actors and their distribution across sectors, but considerable variation in the types and locations of environmental stewardship activities, and in the number and distribution of network ties in the networks of each city. We discuss the results and potential implications of network research for urban sustainability governance.

  6. Social Network Analysis of the Irish Biotech Industry: Implications for Digital Ecosystems

    NASA Astrophysics Data System (ADS)

    van Egeraat, Chris; Curran, Declan

    This paper presents an analysis of the socio-spatial structures of innovation, collaboration and knowledge flow among SMEs in the Irish biotech sector. The study applies social network analysis to determine the structure of networks of company directors and inventors in the biotech sector. In addition, the article discusses the implications of the findings for the role and contours of a biotech digital ecosystem. To distil these lessons, the research team organised a seminar which was attended by representatives of biotech actors and experts.

  7. Calculating degree-based topological indices of dominating David derived networks

    NASA Astrophysics Data System (ADS)

    Ahmad, Muhammad Saeed; Nazeer, Waqas; Kang, Shin Min; Imran, Muhammad; Gao, Wei

    2017-12-01

    An important area of applied mathematics is the Chemical reaction network theory. The behavior of real world problems can be modeled by using this theory. Due to applications in theoretical chemistry and biochemistry, it has attracted researchers since its foundation. It also attracts pure mathematicians because it involves interesting mathematical structures. In this report, we compute newly defined topological indices, namely, Arithmetic-Geometric index (AG1 index), SK index, SK1 index, and SK2 index of the dominating David derived networks [1, 2, 3, 4, 5].

  8. Artificial Neural Networks Equivalent to Fuzzy Algebra T-Norm Conjunction Operators

    NASA Astrophysics Data System (ADS)

    Iliadis, L. S.; Spartalis, S. I.

    2007-12-01

    This paper describes the construction of three Artificial Neural Networks with fuzzy input and output, imitating the performance of fuzzy algebra conjunction operators. More specifically, it is applied over the results of a previous research effort that used T-Norms in order to produce a characteristic torrential risk index that unified the partial risk indices for the area of Xanthi. Each one of the three networks substitutes a T-Norm and consequently they can be used as equivalent operators. This means that ANN performing Fuzzy Algebra operations can be designed and developed.

  9. Network planning under uncertainties

    NASA Astrophysics Data System (ADS)

    Ho, Kwok Shing; Cheung, Kwok Wai

    2008-11-01

    One of the main focuses for network planning is on the optimization of network resources required to build a network under certain traffic demand projection. Traditionally, the inputs to this type of network planning problems are treated as deterministic. In reality, the varying traffic requirements and fluctuations in network resources can cause uncertainties in the decision models. The failure to include the uncertainties in the network design process can severely affect the feasibility and economics of the network. Therefore, it is essential to find a solution that can be insensitive to the uncertain conditions during the network planning process. As early as in the 1960's, a network planning problem with varying traffic requirements over time had been studied. Up to now, this kind of network planning problems is still being active researched, especially for the VPN network design. Another kind of network planning problems under uncertainties that has been studied actively in the past decade addresses the fluctuations in network resources. One such hotly pursued research topic is survivable network planning. It considers the design of a network under uncertainties brought by the fluctuations in topology to meet the requirement that the network remains intact up to a certain number of faults occurring anywhere in the network. Recently, the authors proposed a new planning methodology called Generalized Survivable Network that tackles the network design problem under both varying traffic requirements and fluctuations of topology. Although all the above network planning problems handle various kinds of uncertainties, it is hard to find a generic framework under more general uncertainty conditions that allows a more systematic way to solve the problems. With a unified framework, the seemingly diverse models and algorithms can be intimately related and possibly more insights and improvements can be brought out for solving the problem. This motivates us to seek a generic framework for solving the network planning problem under uncertainties. In addition to reviewing the various network planning problems involving uncertainties, we also propose that a unified framework based on robust optimization can be used to solve a rather large segment of network planning problem under uncertainties. Robust optimization is first introduced in the operations research literature and is a framework that incorporates information about the uncertainty sets for the parameters in the optimization model. Even though robust optimization is originated from tackling the uncertainty in the optimization process, it can serve as a comprehensive and suitable framework for tackling generic network planning problems under uncertainties. In this paper, we begin by explaining the main ideas behind the robust optimization approach. Then we demonstrate the capabilities of the proposed framework by giving out some examples of how the robust optimization framework can be applied to the current common network planning problems under uncertain environments. Next, we list some practical considerations for solving the network planning problem under uncertainties with the proposed framework. Finally, we conclude this article with some thoughts on the future directions for applying this framework to solve other network planning problems.

  10. Entropy and gravity concepts as new methodological indexes to investigate technological convergence: patent network-based approach.

    PubMed

    Cho, Yongrae; Kim, Minsung

    2014-01-01

    The volatility and uncertainty in the process of technological developments are growing faster than ever due to rapid technological innovations. Such phenomena result in integration among disparate technology fields. At this point, it is a critical research issue to understand the different roles and the propensity of each element technology for technological convergence. In particular, the network-based approach provides a holistic view in terms of technological linkage structures. Furthermore, the development of new indicators based on network visualization can reveal the dynamic patterns among disparate technologies in the process of technological convergence and provide insights for future technological developments. This research attempts to analyze and discover the patterns of the international patent classification codes of the United States Patent and Trademark Office's patent data in printed electronics, which is a representative technology in the technological convergence process. To this end, we apply the physical idea as a new methodological approach to interpret technological convergence. More specifically, the concepts of entropy and gravity are applied to measure the activities among patent citations and the binding forces among heterogeneous technologies during technological convergence. By applying the entropy and gravity indexes, we could distinguish the characteristic role of each technology in printed electronics. At the technological convergence stage, each technology exhibits idiosyncratic dynamics which tend to decrease technological differences and heterogeneity. Furthermore, through nonlinear regression analysis, we have found the decreasing patterns of disparity over a given total period in the evolution of technological convergence. This research has discovered the specific role of each element technology field and has consequently identified the co-evolutionary patterns of technological convergence. These new findings on the evolutionary patterns of technological convergence provide some implications for engineering and technology foresight research, as well as for corporate strategy and technology policy.

  11. Amine Neurotransmitter Regulation of Long-Term Synaptic Plasticity in Hippocampus.

    DTIC Science & Technology

    1987-04-27

    T.H. ontrol theory applied to neural networks illuminates synaptic basis of interictal epileptiform activity. In: Basic Mechanimw of the Epilepsies...the activity of voltage-dqmxfdm* calcium dwas in hixocaupal nerone . Nature (in press). atecir.U P. A., pebeda,# F. J., a nd Jduutoni, D. 4...Annual Synposium on Networks in Brain and ompiter Arhitecture at North Texas State University in Denton. Oct. 22-25 Attended Neurdehavioral Research

  12. Reliability of a Parallel Pipe Network

    NASA Technical Reports Server (NTRS)

    Herrera, Edgar; Chamis, Christopher (Technical Monitor)

    2001-01-01

    The goal of this NASA-funded research is to advance research and education objectives in theoretical and computational probabilistic structural analysis, reliability, and life prediction methods for improved aerospace and aircraft propulsion system components. Reliability methods are used to quantify response uncertainties due to inherent uncertainties in design variables. In this report, several reliability methods are applied to a parallel pipe network. The observed responses are the head delivered by a main pump and the head values of two parallel lines at certain flow rates. The probability that the flow rates in the lines will be less than their specified minimums will be discussed.

  13. Extremely high data-rate, reliable network systems research

    NASA Technical Reports Server (NTRS)

    Foudriat, E. C.; Maly, Kurt J.; Mukkamala, R.; Murray, Nicholas D.; Overstreet, C. Michael

    1990-01-01

    Significant progress was made over the year in the four focus areas of this research group: gigabit protocols, extensions of metropolitan protocols, parallel protocols, and distributed simulations. Two activities, a network management tool and the Carrier Sensed Multiple Access Collision Detection (CSMA/CD) protocol, have developed to the point that a patent is being applied for in the next year; a tool set for distributed simulation using the language SIMSCRIPT also has commercial potential and is to be further refined. The year's results for each of these areas are summarized and next year's activities are described.

  14. Brand communities embedded in social networks.

    PubMed

    Zaglia, Melanie E

    2013-02-01

    Brand communities represent highly valuable marketing, innovation management, and customer relationship management tools. However, applying successful marketing strategies today, and in the future, also means exploring and seizing the unprecedented opportunities of social network environments. This study combines these two social phenomena which have largely been researched separately, and aims to investigate the existence, functionality and different types of brand communities within social networks. The netnographic approach yields strong evidence of this existence; leading to a better understanding of such embedded brand communities, their peculiarities, and motivational drivers for participation; therefore the findings contribute to theory by combining two separate research streams. Due to the advantages of social networks, brand management is now able to implement brand communities with less time and financial effort; however, choosing the appropriate brand community type, cultivating consumers' interaction, and staying tuned to this social engagement are critical factors to gain anticipated brand outcomes.

  15. Selection and utilization of assessment instruments in substance abuse treatment trials: the National Drug Abuse Treatment Clinical Trials Network experience.

    PubMed

    Rosa, Carmen; Ghitza, Udi; Tai, Betty

    2012-07-17

    Based on recommendations from a US Institute of Medicine report, the National Institute on Drug Abuse established the National Drug Abuse Treatment Clinical Trials Network (CTN) in 1999, to accelerate the translation of science-based addiction treatment research into community-based practice, and to improve the quality of addiction treatment, using science as the vehicle. One of the CTN's primary tasks is to serve as a platform to forge bi-directional communications and collaborations between providers and scientists, to enhance the relevance of research, which generates empirical results that impact practice. Among many obstacles in moving research into real-world settings, this commentary mainly describes challenges and iterative experiences in regard to how the CTN develops its research protocols, with focus on how the CTN study teams select and utilize assessment instruments, which can reasonably balance the interests of both research scientists and practicing providers when applied in CTN trials. This commentary also discusses the process by which the CTN further selects a core set of common assessment instruments that may be applied across all trials, to allow easier cross-study analyses of comparable data.

  16. Big data analytics to aid developing livable communities.

    DOT National Transportation Integrated Search

    2015-12-31

    In transportation, ubiquitous deployment of low-cost sensors combined with powerful : computer hardware and high-speed network makes big data available. USDOT defines big : data research in transportation as a number of advanced techniques applied to...

  17. Integrating population genetics and conservation biology in the era of genomics.

    PubMed

    Ouborg, N Joop

    2010-02-23

    As one of the final activities of the ESF-CONGEN Networking programme, a conference entitled 'Integrating Population Genetics and Conservation Biology' was held at Trondheim, Norway, from 23 to 26 May 2009. Conference speakers and poster presenters gave a display of the state-of-the-art developments in the field of conservation genetics. Over the five-year running period of the successful ESF-CONGEN Networking programme, much progress has been made in theoretical approaches, basic research on inbreeding depression and other genetic processes associated with habitat fragmentation and conservation issues, and with applying principles of conservation genetics in the conservation of many species. Future perspectives were also discussed in the conference, and it was concluded that conservation genetics is evolving into conservation genomics, while at the same time basic and applied research on threatened species and populations from a population genetic point of view continues to be emphasized.

  18. Thinking on building the network cardiovasology of Chinese medicine.

    PubMed

    Yu, Gui; Wang, Jie

    2012-11-01

    With advances in complex network theory, the thinking and methods regarding complex systems have changed revolutionarily. Network biology and network pharmacology were built by applying network-based approaches in biomedical research. The cardiovascular system may be regarded as a complex network, and cardiovascular diseases may be taken as the damage of structure and function of the cardiovascular network. Although Chinese medicine (CM) is effective in treating cardiovascular diseases, its mechanisms are still unclear. With the guidance of complex network theory, network biology and network pharmacology, network-based approaches could be used in the study of CM in preventing and treating cardiovascular diseases. A new discipline-network cardiovasology of CM was, therefore, developed. In this paper, complex network theory, network biology and network pharmacology were introduced and the connotation of "disease-syndrome-formula-herb" was illustrated from the network angle. Network biology could be used to analyze cardiovascular diseases and syndromes and network pharmacology could be used to analyze CM formulas and herbs. The "network-network"-based approaches could provide a new view for elucidating the mechanisms of CM treatment.

  19. Neural Network Assisted Inverse Dynamic Guidance for Terminally Constrained Entry Flight

    PubMed Central

    Chen, Wanchun

    2014-01-01

    This paper presents a neural network assisted entry guidance law that is designed by applying Bézier approximation. It is shown that a fully constrained approximation of a reference trajectory can be made by using the Bézier curve. Applying this approximation, an inverse dynamic system for an entry flight is solved to generate guidance command. The guidance solution thus gotten ensures terminal constraints for position, flight path, and azimuth angle. In order to ensure terminal velocity constraint, a prediction of the terminal velocity is required, based on which, the approximated Bézier curve is adjusted. An artificial neural network is used for this prediction of the terminal velocity. The method enables faster implementation in achieving fully constrained entry flight. Results from simulations indicate improved performance of the neural network assisted method. The scheme is expected to have prospect for further research on automated onboard control of terminal velocity for both reentry and terminal guidance laws. PMID:24723821

  20. Epidemiologic research topics in Germany: a keyword network analysis of 2014 DGEpi conference presentations.

    PubMed

    Peter, Raphael Simon; Brehme, Torben; Völzke, Henry; Muche, Rainer; Rothenbacher, Dietrich; Büchele, Gisela

    2016-06-01

    Knowledge of epidemiologic research topics as well as trends is useful for scientific societies, researchers and funding agencies. In recent years researchers recognized the usefulness of keyword network analysis for visualizing and analyzing scientific research topics. Therefore, we applied keyword network analysis to present an overview of current epidemiologic research topics in Germany. Accepted submissions to the 9th annual congress of the German Society for Epidemiology (DGEpi) in 2014 were used as data source. Submitters had to choose one of 19 subject areas, and were ask to provide a title, structured abstract, names of authors along with their affiliations, and a list of freely selectable keywords. Keywords had been provided for 262 (82 %) submissions, 1030 keywords in total. Overall the most common keywords were: "migration" (18 times), "prevention" (15 times), followed by "children", "cohort study", "physical activity", and "secondary data analysis" (11 times each). Some keywords showed a certain concentration under one specific subject area, e.g. "migration" with 8 of 18 in social epidemiology or "breast cancer" with 4 of 7 in cancer epidemiology. While others like "physical activity" were equally distributed over multiple subject areas (cardiovascular & metabolic diseases, ageing, methods, paediatrics, prevention & health service research). This keyword network analysis demonstrated the high diversity of epidemiologic research topics with a large number of distinct keywords as presented at the annual conference of the DGEpi.

  1. The centrality of affective instability and identity in Borderline Personality Disorder: Evidence from network analysis.

    PubMed

    Richetin, Juliette; Preti, Emanuele; Costantini, Giulio; De Panfilis, Chiara

    2017-01-01

    We argue that the series of traits characterizing Borderline Personality Disorder samples do not weigh equally. In this regard, we believe that network approaches employed recently in Personality and Psychopathology research to provide information about the differential relationships among symptoms would be useful to test our claim. To our knowledge, this approach has never been applied to personality disorders. We applied network analysis to the nine Borderline Personality Disorder traits to explore their relationships in two samples drawn from university students and clinical populations (N = 1317 and N = 96, respectively). We used the Fused Graphical Lasso, a technique that allows estimating networks from different populations separately while considering their similarities and differences. Moreover, we examined centrality indices to determine the relative importance of each symptom in each network. The general structure of the two networks was very similar in the two samples, although some differences were detected. Results indicate the centrality of mainly affective instability, identity, and effort to avoid abandonment aspects in Borderline Personality Disorder. Results are consistent with the new DSM Alternative Model for Personality Disorders. We discuss them in terms of implications for therapy.

  2. The centrality of affective instability and identity in Borderline Personality Disorder: Evidence from network analysis

    PubMed Central

    Costantini, Giulio; De Panfilis, Chiara

    2017-01-01

    We argue that the series of traits characterizing Borderline Personality Disorder samples do not weigh equally. In this regard, we believe that network approaches employed recently in Personality and Psychopathology research to provide information about the differential relationships among symptoms would be useful to test our claim. To our knowledge, this approach has never been applied to personality disorders. We applied network analysis to the nine Borderline Personality Disorder traits to explore their relationships in two samples drawn from university students and clinical populations (N = 1317 and N = 96, respectively). We used the Fused Graphical Lasso, a technique that allows estimating networks from different populations separately while considering their similarities and differences. Moreover, we examined centrality indices to determine the relative importance of each symptom in each network. The general structure of the two networks was very similar in the two samples, although some differences were detected. Results indicate the centrality of mainly affective instability, identity, and effort to avoid abandonment aspects in Borderline Personality Disorder. Results are consistent with the new DSM Alternative Model for Personality Disorders. We discuss them in terms of implications for therapy. PMID:29040324

  3. How can social network analysis contribute to social behavior research in applied ethology?

    PubMed

    Makagon, Maja M; McCowan, Brenda; Mench, Joy A

    2012-05-01

    Social network analysis is increasingly used by behavioral ecologists and primatologists to describe the patterns and quality of interactions among individuals. We provide an overview of this methodology, with examples illustrating how it can be used to study social behavior in applied contexts. Like most kinds of social interaction analyses, social network analysis provides information about direct relationships (e.g. dominant-subordinate relationships). However, it also generates a more global model of social organization that determines how individual patterns of social interaction relate to individual and group characteristics. A particular strength of this approach is that it provides standardized mathematical methods for calculating metrics of sociality across levels of social organization, from the population and group levels to the individual level. At the group level these metrics can be used to track changes in social network structures over time, evaluate the effect of the environment on social network structure, or compare social structures across groups, populations or species. At the individual level, the metrics allow quantification of the heterogeneity of social experience within groups and identification of individuals who may play especially important roles in maintaining social stability or information flow throughout the network.

  4. Network analysis applications in hydrology

    NASA Astrophysics Data System (ADS)

    Price, Katie

    2017-04-01

    Applied network theory has seen pronounced expansion in recent years, in fields such as epidemiology, computer science, and sociology. Concurrent development of analytical methods and frameworks has increased possibilities and tools available to researchers seeking to apply network theory to a variety of problems. While water and nutrient fluxes through stream systems clearly demonstrate a directional network structure, the hydrological applications of network theory remain under­explored. This presentation covers a review of network applications in hydrology, followed by an overview of promising network analytical tools that potentially offer new insights into conceptual modeling of hydrologic systems, identifying behavioral transition zones in stream networks and thresholds of dynamical system response. Network applications were tested along an urbanization gradient in Atlanta, Georgia, USA. Peachtree Creek and Proctor Creek. Peachtree Creek contains a nest of five long­term USGS streamflow and water quality gages, allowing network application of long­term flow statistics. The watershed spans a range of suburban and heavily urbanized conditions. Summary flow statistics and water quality metrics were analyzed using a suite of network analysis techniques, to test the conceptual modeling and predictive potential of the methodologies. Storm events and low flow dynamics during Summer 2016 were analyzed using multiple network approaches, with an emphasis on tomogravity methods. Results indicate that network theory approaches offer novel perspectives for understanding long­ term and event­based hydrological data. Key future directions for network applications include 1) optimizing data collection, 2) identifying "hotspots" of contaminant and overland flow influx to stream systems, 3) defining process domains, and 4) analyzing dynamic connectivity of various system components, including groundwater­surface water interactions.

  5. Generalizing Gillespie’s Direct Method to Enable Network-Free Simulations

    DOE PAGES

    Suderman, Ryan T.; Mitra, Eshan David; Lin, Yen Ting; ...

    2018-03-28

    Gillespie’s direct method for stochastic simulation of chemical kinetics is a staple of computational systems biology research. However, the algorithm requires explicit enumeration of all reactions and all chemical species that may arise in the system. In many cases, this is not feasible due to the combinatorial explosion of reactions and species in biological networks. Rule-based modeling frameworks provide a way to exactly represent networks containing such combinatorial complexity, and generalizations of Gillespie’s direct method have been developed as simulation engines for rule-based modeling languages. Here, we provide both a high-level description of the algorithms underlying the simulation engines, termedmore » network-free simulation algorithms, and how they have been applied in systems biology research. We also define a generic rule-based modeling framework and describe a number of technical details required for adapting Gillespie’s direct method for network-free simulation. Lastly, we briefly discuss potential avenues for advancing network-free simulation and the role they continue to play in modeling dynamical systems in biology.« less

  6. Distributed communications and control network for robotic mining

    NASA Technical Reports Server (NTRS)

    Schiffbauer, William H.

    1989-01-01

    The application of robotics to coal mining machines is one approach pursued to increase productivity while providing enhanced safety for the coal miner. Toward that end, a network composed of microcontrollers, computers, expert systems, real time operating systems, and a variety of program languages are being integrated that will act as the backbone for intelligent machine operation. Actual mining machines, including a few customized ones, have been given telerobotic semiautonomous capabilities by applying the described network. Control devices, intelligent sensors and computers onboard these machines are showing promise of achieving improved mining productivity and safety benefits. Current research using these machines involves navigation, multiple machine interaction, machine diagnostics, mineral detection, and graphical machine representation. Guidance sensors and systems employed include: sonar, laser rangers, gyroscopes, magnetometers, clinometers, and accelerometers. Information on the network of hardware/software and its implementation on mining machines are presented. Anticipated coal production operations using the network are discussed. A parallelism is also drawn between the direction of present day underground coal mining research to how the lunar soil (regolith) may be mined. A conceptual lunar mining operation that employs a distributed communication and control network is detailed.

  7. Generalizing Gillespie’s Direct Method to Enable Network-Free Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suderman, Ryan T.; Mitra, Eshan David; Lin, Yen Ting

    Gillespie’s direct method for stochastic simulation of chemical kinetics is a staple of computational systems biology research. However, the algorithm requires explicit enumeration of all reactions and all chemical species that may arise in the system. In many cases, this is not feasible due to the combinatorial explosion of reactions and species in biological networks. Rule-based modeling frameworks provide a way to exactly represent networks containing such combinatorial complexity, and generalizations of Gillespie’s direct method have been developed as simulation engines for rule-based modeling languages. Here, we provide both a high-level description of the algorithms underlying the simulation engines, termedmore » network-free simulation algorithms, and how they have been applied in systems biology research. We also define a generic rule-based modeling framework and describe a number of technical details required for adapting Gillespie’s direct method for network-free simulation. Lastly, we briefly discuss potential avenues for advancing network-free simulation and the role they continue to play in modeling dynamical systems in biology.« less

  8. Developing a Knowledge Network for Applied Education Research to Mobilise Evidence in and for Educational Practice

    ERIC Educational Resources Information Center

    Campbell, Carol; Pollock, Katina; Briscoe, Patricia; Carr-Harris, Shasta; Tuters, Stephanie

    2017-01-01

    Background: The importance of "evidence-informed practice" has risen dramatically in education and in other public policy areas. This article focuses on the importance of knowledge mobilisation strategies, processes and outputs. It is concerned with how these can support the adaptation and implementation of evidence from research and…

  9. Comparing the Social Knowledge Construction Behavioral Patterns of Problem-Based Online Asynchronous Discussion in E/M-Learning Environments

    ERIC Educational Resources Information Center

    Lan, Yu-Feng; Tsai, Pei-Wei; Yang, Shih-Hsien; Hung, Chun-Ling

    2012-01-01

    In recent years, researchers have conducted various studies on applying wireless networking technology and mobile devices in education settings. However, research on behavioral patterns in learners' online asynchronous discussions with mobile devices is limited. The purposes of this study are to develop a mobile learning system, mobile interactive…

  10. Disease causality extraction based on lexical semantics and document-clause frequency from biomedical literature.

    PubMed

    Lee, Dong-Gi; Shin, Hyunjung

    2017-05-18

    Recently, research on human disease network has succeeded and has become an aid in figuring out the relationship between various diseases. In most disease networks, however, the relationship between diseases has been simply represented as an association. This representation results in the difficulty of identifying prior diseases and their influence on posterior diseases. In this paper, we propose a causal disease network that implements disease causality through text mining on biomedical literature. To identify the causality between diseases, the proposed method includes two schemes: the first is the lexicon-based causality term strength, which provides the causal strength on a variety of causality terms based on lexicon analysis. The second is the frequency-based causality strength, which determines the direction and strength of causality based on document and clause frequencies in the literature. We applied the proposed method to 6,617,833 PubMed literature, and chose 195 diseases to construct a causal disease network. From all possible pairs of disease nodes in the network, 1011 causal pairs of 149 diseases were extracted. The resulting network was compared with that of a previous study. In terms of both coverage and quality, the proposed method showed outperforming results; it determined 2.7 times more causalities and showed higher correlation with associated diseases than the existing method. This research has novelty in which the proposed method circumvents the limitations of time and cost in applying all possible causalities in biological experiments and it is a more advanced text mining technique by defining the concepts of causality term strength.

  11. Landscape of Research Areas for Zeolites and Metal-Organic Frameworks Using Computational Classification Based on Citation Networks.

    PubMed

    Ogawa, Takaya; Iyoki, Kenta; Fukushima, Tomohiro; Kajikawa, Yuya

    2017-12-14

    The field of porous materials is widely spreading nowadays, and researchers need to read tremendous numbers of papers to obtain a "bird's eye" view of a given research area. However, it is difficult for researchers to obtain an objective database based on statistical data without any relation to subjective knowledge related to individual research interests. Here, citation network analysis was applied for a comparative analysis of the research areas for zeolites and metal-organic frameworks as examples for porous materials. The statistical and objective data contributed to the analysis of: (1) the computational screening of research areas; (2) classification of research stages to a certain domain; (3) "well-cited" research areas; and (4) research area preferences of specific countries. Moreover, we proposed a methodology to assist researchers to gain potential research ideas by reviewing related research areas, which is based on the detection of unfocused ideas in one area but focused in the other area by a bibliometric approach.

  12. Landscape of Research Areas for Zeolites and Metal-Organic Frameworks Using Computational Classification Based on Citation Networks

    PubMed Central

    Ogawa, Takaya; Fukushima, Tomohiro; Kajikawa, Yuya

    2017-01-01

    The field of porous materials is widely spreading nowadays, and researchers need to read tremendous numbers of papers to obtain a “bird’s eye” view of a given research area. However, it is difficult for researchers to obtain an objective database based on statistical data without any relation to subjective knowledge related to individual research interests. Here, citation network analysis was applied for a comparative analysis of the research areas for zeolites and metal-organic frameworks as examples for porous materials. The statistical and objective data contributed to the analysis of: (1) the computational screening of research areas; (2) classification of research stages to a certain domain; (3) “well-cited” research areas; and (4) research area preferences of specific countries. Moreover, we proposed a methodology to assist researchers to gain potential research ideas by reviewing related research areas, which is based on the detection of unfocused ideas in one area but focused in the other area by a bibliometric approach. PMID:29240708

  13. Efficient priority queueing routing strategy on networks of mobile agents

    NASA Astrophysics Data System (ADS)

    Wu, Gan-Hua; Yang, Hui-Jie; Pan, Jia-Hui

    2018-03-01

    As a consequence of their practical implications for communications networks, traffic dynamics on complex networks have recently captivated researchers. Previous routing strategies for improving transport efficiency have paid little attention to the orders in which the packets should be forwarded, just simply used first-in-first-out queue discipline. Here, we apply a priority queuing discipline and propose a shortest-distance-first routing strategy on networks of mobile agents. Numerical experiments reveal that the proposed scheme remarkably improves both the network throughput and the packet arrival rate and reduces both the average traveling time and the rate of waiting time to traveling time. Moreover, we find that the network capacity increases with an increase in both the communication radius and the number of agents. Our work may be helpful for the design of routing strategies on networks of mobile agents.

  14. Intelligent route surveillance

    NASA Astrophysics Data System (ADS)

    Schoemaker, Robin; Sandbrink, Rody; van Voorthuijsen, Graeme

    2009-05-01

    Intelligence on abnormal and suspicious behaviour along roads in operational domains is extremely valuable for countering the IED (Improvised Explosive Device) threat. Local sensor networks at strategic spots can gather data for continuous monitoring of daily vehicle activity. Unattended intelligent ground sensor networks use simple sensing nodes, e.g. seismic, magnetic, radar, or acoustic, or combinations of these in one housing. The nodes deliver rudimentary data at any time to be processed with software that filters out the required information. At TNO (Netherlands Organisation for Applied Scientific Research) research has started on how to equip a sensor network with data analysis software to determine whether behaviour is suspicious or not. Furthermore, the nodes should be expendable, if necessary, and be small in size such that they are hard to detect by adversaries. The network should be self-configuring and self-sustaining and should be reliable, efficient, and effective during operational tasks - especially route surveillance - as well as robust in time and space. If data from these networks are combined with data from other remote sensing devices (e.g. UAVs (Unmanned Aerial Vehicles)/aerostats), an even more accurate assessment of the tactical situation is possible. This paper shall focus on the concepts of operation towards a working intelligent route surveillance (IRS) research demonstrator network for monitoring suspicious behaviour in IED sensitive domains.

  15. Applying network theory to prioritize multispecies habitat networks that are robust to climate and land-use change.

    PubMed

    Albert, Cécile H; Rayfield, Bronwyn; Dumitru, Maria; Gonzalez, Andrew

    2017-12-01

    Designing connected landscapes is among the most widespread strategies for achieving biodiversity conservation targets. The challenge lies in simultaneously satisfying the connectivity needs of multiple species at multiple spatial scales under uncertain climate and land-use change. To evaluate the contribution of remnant habitat fragments to the connectivity of regional habitat networks, we developed a method to integrate uncertainty in climate and land-use change projections with the latest developments in network-connectivity research and spatial, multipurpose conservation prioritization. We used land-use change simulations to explore robustness of species' habitat networks to alternative development scenarios. We applied our method to 14 vertebrate focal species of periurban Montreal, Canada. Accounting for connectivity in spatial prioritization strongly modified conservation priorities and the modified priorities were robust to uncertain climate change. Setting conservation priorities based on habitat quality and connectivity maintained a large proportion of the region's connectivity, despite anticipated habitat loss due to climate and land-use change. The application of connectivity criteria alongside habitat-quality criteria for protected-area design was efficient with respect to the amount of area that needs protection and did not necessarily amplify trade-offs among conservation criteria. Our approach and results are being applied in and around Montreal and are well suited to the design of ecological networks and green infrastructure for the conservation of biodiversity and ecosystem services in other regions, in particular regions around large cities, where connectivity is critically low. © 2017 Society for Conservation Biology.

  16. In-House Communication Support System Based on the Information Propagation Model Utilizes Social Network

    NASA Astrophysics Data System (ADS)

    Takeuchi, Susumu; Teranishi, Yuuichi; Harumoto, Kaname; Shimojo, Shinji

    Almost all companies are now utilizing computer networks to support speedier and more effective in-house information-sharing and communication. However, existing systems are designed to support communications only within the same department. Therefore, in our research, we propose an in-house communication support system which is based on the “Information Propagation Model (IPM).” The IPM is proposed to realize word-of-mouth communication in a social network, and to support information-sharing on the network. By applying the system in a real company, we found that information could be exchanged between different and unrelated departments, and such exchanges of information could help to build new relationships between the users who are apart on the social network.

  17. [Research on hyperspectral remote sensing in monitoring snow contamination concentration].

    PubMed

    Tang, Xu-guang; Liu, Dian-wei; Zhang, Bai; Du, Jia; Lei, Xiao-chun; Zeng, Li-hong; Wang, Yuan-dong; Song, Kai-shan

    2011-05-01

    Contaminants in the snow can be used to reflect regional and global environmental pollution caused by human activities. However, so far, the research on space-time monitoring of snow contamination concentration for a wide range or areas difficult for human to reach is very scarce. In the present paper, based on the simulated atmospheric deposition experiments, the spectroscopy technique method was applied to analyze the effect of different contamination concentration on the snow reflectance spectra. Then an evaluation of snow contamination concentration (SCC) retrieval methods was conducted using characteristic index method (SDI), principal component analysis (PCA), BP neural network and RBF neural network method, and the estimate effects of four methods were compared. The results showed that the neural network model combined with hyperspectral remote sensing data could estimate the SCC well.

  18. Performance of alternative diamond interchange forms : volume I -- research report.

    DOT National Transportation Integrated Search

    2017-01-01

    Service interchanges connect freeways to arterial roads and are the backbone of the U.S. road network. Improving the operations of service interchanges is possible by applying one of several new solutions: diverging diamond, single point interchanges...

  19. Complex Environmental Data Modelling Using Adaptive General Regression Neural Networks

    NASA Astrophysics Data System (ADS)

    Kanevski, Mikhail

    2015-04-01

    The research deals with an adaptation and application of Adaptive General Regression Neural Networks (GRNN) to high dimensional environmental data. GRNN [1,2,3] are efficient modelling tools both for spatial and temporal data and are based on nonparametric kernel methods closely related to classical Nadaraya-Watson estimator. Adaptive GRNN, using anisotropic kernels, can be also applied for features selection tasks when working with high dimensional data [1,3]. In the present research Adaptive GRNN are used to study geospatial data predictability and relevant feature selection using both simulated and real data case studies. The original raw data were either three dimensional monthly precipitation data or monthly wind speeds embedded into 13 dimensional space constructed by geographical coordinates and geo-features calculated from digital elevation model. GRNN were applied in two different ways: 1) adaptive GRNN with the resulting list of features ordered according to their relevancy; and 2) adaptive GRNN applied to evaluate all possible models N [in case of wind fields N=(2^13 -1)=8191] and rank them according to the cross-validation error. In both cases training were carried out applying leave-one-out procedure. An important result of the study is that the set of the most relevant features depends on the month (strong seasonal effect) and year. The predictabilities of precipitation and wind field patterns, estimated using the cross-validation and testing errors of raw and shuffled data, were studied in detail. The results of both approaches were qualitatively and quantitatively compared. In conclusion, Adaptive GRNN with their ability to select features and efficient modelling of complex high dimensional data can be widely used in automatic/on-line mapping and as an integrated part of environmental decision support systems. 1. Kanevski M., Pozdnoukhov A., Timonin V. Machine Learning for Spatial Environmental Data. Theory, applications and software. EPFL Press. With a CD: data, software, guides. (2009). 2. Kanevski M. Spatial Predictions of Soil Contamination Using General Regression Neural Networks. Systems Research and Information Systems, Volume 8, number 4, 1999. 3. Robert S., Foresti L., Kanevski M. Spatial prediction of monthly wind speeds in complex terrain with adaptive general regression neural networks. International Journal of Climatology, 33 pp. 1793-1804, 2013.

  20. The Use of Multi-Criteria Evaluation and Network Analysis in the Area Development Planning Process

    DTIC Science & Technology

    2013-03-01

    layouts. The alternative layout scoring process, base in multi-criteria evaluation, returns a quantitative score for each alternative layout and a...The purpose of this research was to develop improvements to the area development planning process. These plans are used to improve operations within...an installation sub-section by altering the physical layout of facilities. One methodology was developed based on apply network analysis concepts to

  1. Queuing theory models for computer networks

    NASA Technical Reports Server (NTRS)

    Galant, David C.

    1989-01-01

    A set of simple queuing theory models which can model the average response of a network of computers to a given traffic load has been implemented using a spreadsheet. The impact of variations in traffic patterns and intensities, channel capacities, and message protocols can be assessed using them because of the lack of fine detail in the network traffic rates, traffic patterns, and the hardware used to implement the networks. A sample use of the models applied to a realistic problem is included in appendix A. Appendix B provides a glossary of terms used in this paper. This Ames Research Center computer communication network is an evolving network of local area networks (LANs) connected via gateways and high-speed backbone communication channels. Intelligent planning of expansion and improvement requires understanding the behavior of the individual LANs as well as the collection of networks as a whole.

  2. Application of Mobile Router to Military Communications

    NASA Technical Reports Server (NTRS)

    Stewart, David H.; Ivancic, William D.; Bell, Terry L.; Kachmar, Brian A.; Shell, Dan; Leung, Kent

    2002-01-01

    Cisco Systems and NASA Glenn Research Center under a NASA Space Act Agreement have been performing joint networking research to apply Internet technologies and protocols to space-based communications. During this time, Cisco Systems developed the mobile-router which NASA and Cisco jointly tested. The early field trials of this technology have been successfully completed. The mobile-router is software code that resides in a network router. A Mobile-Router allows entire networks to roam while maintaining connectivity to the Internet. This router code is pertinent to a myriad of applications for both the government and commercial sectors. This technology will be applied to the wireless battlefield. NASA and the Department of Defense will utilize this technology for near-planetary observation and sensing spacecraft. It is the enabling technology for communication via the Internet or Intranets to aircraft. Information such as weather, air traffic control, voice and video can be easily and inexpensively transmitted to the aircraft using Internet protocols. The mobile router can be incorporated into emergency vehicles particularly ambulances and life-flight aircraft to provide real-time connectivity back to the hospital and healthcare experts. Commercial applications include entertainment services, IP telephone, and Internet connectivity for cruise ships, commercial shipping, tour busses, aircraft, and eventually cars. This paper will briefly describe the mobile router operation. An upcoming wide area network field test with application to US Coast Guard communications will be described. The paper will also highlight military and government networks that will benefit from the deployment of mobile router and the associated applications.

  3. A source-controlled data center network model.

    PubMed

    Yu, Yang; Liang, Mangui; Wang, Zhe

    2017-01-01

    The construction of data center network by applying SDN technology has become a hot research topic. The SDN architecture has innovatively separated the control plane from the data plane which makes the network more software-oriented and agile. Moreover, it provides virtual multi-tenancy, effective scheduling resources and centralized control strategies to meet the demand for cloud computing data center. However, the explosion of network information is facing severe challenges for SDN controller. The flow storage and lookup mechanisms based on TCAM device have led to the restriction of scalability, high cost and energy consumption. In view of this, a source-controlled data center network (SCDCN) model is proposed herein. The SCDCN model applies a new type of source routing address named the vector address (VA) as the packet-switching label. The VA completely defines the communication path and the data forwarding process can be finished solely relying on VA. There are four advantages in the SCDCN architecture. 1) The model adopts hierarchical multi-controllers and abstracts large-scale data center network into some small network domains that has solved the restriction for the processing ability of single controller and reduced the computational complexity. 2) Vector switches (VS) developed in the core network no longer apply TCAM for table storage and lookup that has significantly cut down the cost and complexity for switches. Meanwhile, the problem of scalability can be solved effectively. 3) The SCDCN model simplifies the establishment process for new flows and there is no need to download flow tables to VS. The amount of control signaling consumed when establishing new flows can be significantly decreased. 4) We design the VS on the NetFPGA platform. The statistical results show that the hardware resource consumption in a VS is about 27% of that in an OFS.

  4. A source-controlled data center network model

    PubMed Central

    Yu, Yang; Liang, Mangui; Wang, Zhe

    2017-01-01

    The construction of data center network by applying SDN technology has become a hot research topic. The SDN architecture has innovatively separated the control plane from the data plane which makes the network more software-oriented and agile. Moreover, it provides virtual multi-tenancy, effective scheduling resources and centralized control strategies to meet the demand for cloud computing data center. However, the explosion of network information is facing severe challenges for SDN controller. The flow storage and lookup mechanisms based on TCAM device have led to the restriction of scalability, high cost and energy consumption. In view of this, a source-controlled data center network (SCDCN) model is proposed herein. The SCDCN model applies a new type of source routing address named the vector address (VA) as the packet-switching label. The VA completely defines the communication path and the data forwarding process can be finished solely relying on VA. There are four advantages in the SCDCN architecture. 1) The model adopts hierarchical multi-controllers and abstracts large-scale data center network into some small network domains that has solved the restriction for the processing ability of single controller and reduced the computational complexity. 2) Vector switches (VS) developed in the core network no longer apply TCAM for table storage and lookup that has significantly cut down the cost and complexity for switches. Meanwhile, the problem of scalability can be solved effectively. 3) The SCDCN model simplifies the establishment process for new flows and there is no need to download flow tables to VS. The amount of control signaling consumed when establishing new flows can be significantly decreased. 4) We design the VS on the NetFPGA platform. The statistical results show that the hardware resource consumption in a VS is about 27% of that in an OFS. PMID:28328925

  5. Complex networks repair strategies: Dynamic models

    NASA Astrophysics Data System (ADS)

    Fu, Chaoqi; Wang, Ying; Gao, Yangjun; Wang, Xiaoyang

    2017-09-01

    Network repair strategies are tactical methods that restore the efficiency of damaged networks; however, unreasonable repair strategies not only waste resources, they are also ineffective for network recovery. Most extant research on network repair focuses on static networks, but results and findings on static networks cannot be applied to evolutionary dynamic networks because, in dynamic models, complex network repair has completely different characteristics. For instance, repaired nodes face more severe challenges, and require strategic repair methods in order to have a significant effect. In this study, we propose the Shell Repair Strategy (SRS) to minimize the risk of secondary node failures due to the cascading effect. Our proposed method includes the identification of a set of vital nodes that have a significant impact on network repair and defense. Our identification of these vital nodes reduces the number of switching nodes that face the risk of secondary failures during the dynamic repair process. This is positively correlated with the size of the average degree 〈 k 〉 and enhances network invulnerability.

  6. Reconstructing genome-wide regulatory network of E. coli using transcriptome data and predicted transcription factor activities

    PubMed Central

    2011-01-01

    Background Gene regulatory networks play essential roles in living organisms to control growth, keep internal metabolism running and respond to external environmental changes. Understanding the connections and the activity levels of regulators is important for the research of gene regulatory networks. While relevance score based algorithms that reconstruct gene regulatory networks from transcriptome data can infer genome-wide gene regulatory networks, they are unfortunately prone to false positive results. Transcription factor activities (TFAs) quantitatively reflect the ability of the transcription factor to regulate target genes. However, classic relevance score based gene regulatory network reconstruction algorithms use models do not include the TFA layer, thus missing a key regulatory element. Results This work integrates TFA prediction algorithms with relevance score based network reconstruction algorithms to reconstruct gene regulatory networks with improved accuracy over classic relevance score based algorithms. This method is called Gene expression and Transcription factor activity based Relevance Network (GTRNetwork). Different combinations of TFA prediction algorithms and relevance score functions have been applied to find the most efficient combination. When the integrated GTRNetwork method was applied to E. coli data, the reconstructed genome-wide gene regulatory network predicted 381 new regulatory links. This reconstructed gene regulatory network including the predicted new regulatory links show promising biological significances. Many of the new links are verified by known TF binding site information, and many other links can be verified from the literature and databases such as EcoCyc. The reconstructed gene regulatory network is applied to a recent transcriptome analysis of E. coli during isobutanol stress. In addition to the 16 significantly changed TFAs detected in the original paper, another 7 significantly changed TFAs have been detected by using our reconstructed network. Conclusions The GTRNetwork algorithm introduces the hidden layer TFA into classic relevance score-based gene regulatory network reconstruction processes. Integrating the TFA biological information with regulatory network reconstruction algorithms significantly improves both detection of new links and reduces that rate of false positives. The application of GTRNetwork on E. coli gene transcriptome data gives a set of potential regulatory links with promising biological significance for isobutanol stress and other conditions. PMID:21668997

  7. Exposure, hazard, and survival analysis of diffusion on social networks.

    PubMed

    Wu, Jiacheng; Crawford, Forrest W; Kim, David A; Stafford, Derek; Christakis, Nicholas A

    2018-04-29

    Sociologists, economists, epidemiologists, and others recognize the importance of social networks in the diffusion of ideas and behaviors through human societies. To measure the flow of information on real-world networks, researchers often conduct comprehensive sociometric mapping of social links between individuals and then follow the spread of an "innovation" from reports of adoption or change in behavior over time. The innovation is introduced to a small number of individuals who may also be encouraged to spread it to their network contacts. In conjunction with the known social network, the pattern of adoptions gives researchers insight into the spread of the innovation in the population and factors associated with successful diffusion. Researchers have used widely varying statistical tools to estimate these quantities, and there is disagreement about how to analyze diffusion on fully observed networks. Here, we describe a framework for measuring features of diffusion processes on social networks using the epidemiological concepts of exposure and competing risks. Given a realization of a diffusion process on a fully observed network, we show that classical survival regression models can be adapted to estimate the rate of diffusion, and actor/edge attributes associated with successful transmission or adoption, while accounting for the topology of the social network. We illustrate these tools by applying them to a randomized network intervention trial conducted in Honduras to estimate the rate of adoption of 2 health-related interventions-multivitamins and chlorine bleach for water purification-and determine factors associated with successful social transmission. Copyright © 2018 John Wiley & Sons, Ltd.

  8. State of the (net)work address Developing criteria for applying social networking to the work environment.

    PubMed

    Valdez, André Calero; Schaar, Anne Kathrin; Ziefle, Martina

    2012-01-01

    In an increasingly faster paced innovative world, maintaining the ability to innovate in spite of an aging work force will become every company's strongest leverage for success. Tapping the latent knowledge resources and creativity of overlooked employees and persisting crucial information for business conduct are promising results for social networking sites (SNS) in a working context. Usability and usefulness are exponential factors in creating a successful SNS. In order to make a SNS usable for a heterogeneous user group, analyses of user diversity in regard to social media need to be done. Furthermore differences in communication medium and frequency in regard to age, content, hierarchy position, departmental thresholds and company size need to be analyzed. For analysis purposes both qualitative and quantitative research methods were applied. Strong effects of age and communication content were found in survey with 194 participants.

  9. Engaging stakeholders: lessons from the use of participatory tools for improving maternal and child care health services.

    PubMed

    Ekirapa-Kiracho, Elizabeth; Ghosh, Upasona; Brahmachari, Rittika; Paina, Ligia

    2017-12-28

    Effective stakeholder engagement in research and implementation is important for improving the development and implementation of policies and programmes. A varied number of tools have been employed for stakeholder engagement. In this paper, we discuss two participatory methods for engaging with stakeholders - participatory social network analysis (PSNA) and participatory impact pathways analysis (PIPA). Based on our experience, we derive lessons about when and how to apply these tools. This paper was informed by a review of project reports and documents in addition to reflection meetings with the researchers who applied the tools. These reports were synthesised and used to make thick descriptions of the applications of the methods while highlighting key lessons. PSNA and PIPA both allowed a deep understanding of how the system actors are interconnected and how they influence maternal health and maternal healthcare services. The findings from the PSNA provided guidance on how stakeholders of a health system are interconnected and how they can stimulate more positive interaction between the stakeholders by exposing existing gaps. The PIPA meeting enabled the participants to envision how they could expand their networks and resources by mentally thinking about the contributions that they could make to the project. The processes that were considered critical for successful application of the tools and achievement of outcomes included training of facilitators, language used during the facilitation, the number of times the tool is applied, length of the tools, pretesting of the tools, and use of quantitative and qualitative methods. Whereas both tools allowed the identification of stakeholders and provided a deeper understanding of the type of networks and dynamics within the network, PIPA had a higher potential for promoting collaboration between stakeholders, likely due to allowing interaction between them. Additionally, it was implemented within a participatory action research project. PIPA also allowed participatory evaluation of the project from the perspective of the community. This paper provides lessons about the use of these participatory tools.

  10. Application of network methods for understanding evolutionary dynamics in discrete habitats.

    PubMed

    Greenbaum, Gili; Fefferman, Nina H

    2017-06-01

    In populations occupying discrete habitat patches, gene flow between habitat patches may form an intricate population structure. In such structures, the evolutionary dynamics resulting from interaction of gene-flow patterns with other evolutionary forces may be exceedingly complex. Several models describing gene flow between discrete habitat patches have been presented in the population-genetics literature; however, these models have usually addressed relatively simple settings of habitable patches and have stopped short of providing general methodologies for addressing nontrivial gene-flow patterns. In the last decades, network theory - a branch of discrete mathematics concerned with complex interactions between discrete elements - has been applied to address several problems in population genetics by modelling gene flow between habitat patches using networks. Here, we present the idea and concepts of modelling complex gene flows in discrete habitats using networks. Our goal is to raise awareness to existing network theory applications in molecular ecology studies, as well as to outline the current and potential contribution of network methods to the understanding of evolutionary dynamics in discrete habitats. We review the main branches of network theory that have been, or that we believe potentially could be, applied to population genetics and molecular ecology research. We address applications to theoretical modelling and to empirical population-genetic studies, and we highlight future directions for extending the integration of network science with molecular ecology. © 2017 John Wiley & Sons Ltd.

  11. Augmented neural networks and problem structure-based heuristics for the bin-packing problem

    NASA Astrophysics Data System (ADS)

    Kasap, Nihat; Agarwal, Anurag

    2012-08-01

    In this article, we report on a research project where we applied augmented-neural-networks (AugNNs) approach for solving the classical bin-packing problem (BPP). AugNN is a metaheuristic that combines a priority rule heuristic with the iterative search approach of neural networks to generate good solutions fast. This is the first time this approach has been applied to the BPP. We also propose a decomposition approach for solving harder BPP, in which subproblems are solved using a combination of AugNN approach and heuristics that exploit the problem structure. We discuss the characteristics of problems on which such problem structure-based heuristics could be applied. We empirically show the effectiveness of the AugNN and the decomposition approach on many benchmark problems in the literature. For the 1210 benchmark problems tested, 917 problems were solved to optimality and the average gap between the obtained solution and the upper bound for all the problems was reduced to under 0.66% and computation time averaged below 33 s per problem. We also discuss the computational complexity of our approach.

  12. A French network of bipolar expert centres: a model to close the gap between evidence-based medicine and routine practice.

    PubMed

    Henry, Chantal; Etain, Bruno; Mathieu, Flavie; Raust, Aurélie; Vibert, Jean-Francois; Scott, Jan; Leboyer, Marion

    2011-06-01

    Bipolar disorders are a major public health concern. Efforts to provide optimal care by general practitioners and psychiatrists are undermined by the complexity of the disorder and difficulties in applying clinical practice guidelines and new research findings to the spectrum of cases seen in day to day practice. A national network of bipolar expert centres was established. Each centre has established strong links to local health services and provides support to clinicians in delivering personalized care plans derived from systematic case assessments undertaken at the centre. A common set of diagnostic and clinical assessment tools has been adopted at eight centres. Evaluations are undertaken by trained assessors and cross-centre reliability is monitored. A web application, e-bipolar© is used to record data in a common computerized medical file. Anonymized data is entered into a shared national database for use in multi-centre audit and research. Instead of offering treatment advice based on clinical practice guidelines recommendations for selected sub-populations of patients (a 'top-down' approach), the French bipolar network offers systematic, comprehensive, longitudinal, and multi-dimensional assessments of cases representative of general bipolar populations. This 'bottom-up' strategy may offer a more efficient and effective way to transfer knowledge and share expertise as the referrer can appreciate the rationale underpinning suggested treatment protocols and more readily apply such principles and approaches to other cases. The network also builds an infrastructure for clinical cohort and comparative-effectiveness research on more representative patient populations. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Automatic voice recognition using traditional and artificial neural network approaches

    NASA Technical Reports Server (NTRS)

    Botros, Nazeih M.

    1989-01-01

    The main objective of this research is to develop an algorithm for isolated-word recognition. This research is focused on digital signal analysis rather than linguistic analysis of speech. Features extraction is carried out by applying a Linear Predictive Coding (LPC) algorithm with order of 10. Continuous-word and speaker independent recognition will be considered in future study after accomplishing this isolated word research. To examine the similarity between the reference and the training sets, two approaches are explored. The first is implementing traditional pattern recognition techniques where a dynamic time warping algorithm is applied to align the two sets and calculate the probability of matching by measuring the Euclidean distance between the two sets. The second is implementing a backpropagation artificial neural net model with three layers as the pattern classifier. The adaptation rule implemented in this network is the generalized least mean square (LMS) rule. The first approach has been accomplished. A vocabulary of 50 words was selected and tested. The accuracy of the algorithm was found to be around 85 percent. The second approach is in progress at the present time.

  14. Implications of network structure on public health collaboratives.

    PubMed

    Retrum, Jessica H; Chapman, Carrie L; Varda, Danielle M

    2013-10-01

    Interorganizational collaboration is an essential function of public health agencies. These partnerships form social networks that involve diverse types of partners and varying levels of interaction. Such collaborations are widely accepted and encouraged, yet very little comparative research exists on how public health partnerships develop and evolve, specifically in terms of how subsequent network structures are linked to outcomes. A systems science approach, that is, one that considers the interdependencies and nested features of networks, provides the appropriate methods to examine the complex nature of these networks. Applying Mays and Scutchfields's categorization of "structural signatures" (breadth, density, and centralization), this research examines how network structure influences the outcomes of public health collaboratives. Secondary data from the Program to Analyze, Record, and Track Networks to Enhance Relationships (www.partnertool.net) data set are analyzed. This data set consists of dyadic (N = 12,355), organizational (N = 2,486), and whole network (N = 99) data from public health collaborations around the United States. Network data are used to calculate structural signatures and weighted least squares regression is used to examine how network structures can predict selected intermediary outcomes (resource contributions, overall value and trust rankings, and outcomes) in public health collaboratives. Our findings suggest that network structure may have an influence on collaborative-related outcomes. The structural signature that had the most significant relationship to outcomes was density, with higher density indicating more positive outcomes. Also significant was the finding that more breadth creates new challenges such as difficulty in reaching consensus and creating ties with other members. However, assumptions that these structural components lead to improved outcomes for public health collaboratives may be slightly premature. Implications of these findings for research and practice are discussed.

  15. IntNetDB v1.0: an integrated protein-protein interaction network database generated by a probabilistic model

    PubMed Central

    Xia, Kai; Dong, Dong; Han, Jing-Dong J

    2006-01-01

    Background Although protein-protein interaction (PPI) networks have been explored by various experimental methods, the maps so built are still limited in coverage and accuracy. To further expand the PPI network and to extract more accurate information from existing maps, studies have been carried out to integrate various types of functional relationship data. A frequently updated database of computationally analyzed potential PPIs to provide biological researchers with rapid and easy access to analyze original data as a biological network is still lacking. Results By applying a probabilistic model, we integrated 27 heterogeneous genomic, proteomic and functional annotation datasets to predict PPI networks in human. In addition to previously studied data types, we show that phenotypic distances and genetic interactions can also be integrated to predict PPIs. We further built an easy-to-use, updatable integrated PPI database, the Integrated Network Database (IntNetDB) online, to provide automatic prediction and visualization of PPI network among genes of interest. The networks can be visualized in SVG (Scalable Vector Graphics) format for zooming in or out. IntNetDB also provides a tool to extract topologically highly connected network neighborhoods from a specific network for further exploration and research. Using the MCODE (Molecular Complex Detections) algorithm, 190 such neighborhoods were detected among all the predicted interactions. The predicted PPIs can also be mapped to worm, fly and mouse interologs. Conclusion IntNetDB includes 180,010 predicted protein-protein interactions among 9,901 human proteins and represents a useful resource for the research community. Our study has increased prediction coverage by five-fold. IntNetDB also provides easy-to-use network visualization and analysis tools that allow biological researchers unfamiliar with computational biology to access and analyze data over the internet. The web interface of IntNetDB is freely accessible at . Visualization requires Mozilla version 1.8 (or higher) or Internet Explorer with installation of SVGviewer. PMID:17112386

  16. Integration of Virtual Machine Technologies into Hastily Formed Networks in Support of Humanitarian Relief and Disaster Recovery Missions

    DTIC Science & Technology

    2011-12-01

    and measures of effectiveness (MOE). New technologies that offer solid-state hard drives built into modular VDI devices known as appliances ...Joint Reconfigurable Vehicle LAN Local Area Network LOS Line of Sight LTE Long Term Evolution MB Megabyte MOP Measure of Performance MOE Measure ...re-usable measures of performance and measures of effectiveness (MOP and MOE) and evaluation procedures will be applied to this research. A

  17. A comparison of back propagation and Generalized Regression Neural Networks performance in neutron spectrometry.

    PubMed

    Martínez-Blanco, Ma Del Rosario; Ornelas-Vargas, Gerardo; Solís-Sánchez, Luis Octavio; Castañeda-Miranada, Rodrigo; Vega-Carrillo, Héctor René; Celaya-Padilla, José M; Garza-Veloz, Idalia; Martínez-Fierro, Margarita; Ortiz-Rodríguez, José Manuel

    2016-11-01

    The process of unfolding the neutron energy spectrum has been subject of research for many years. Monte Carlo, iterative methods, the bayesian theory, the principle of maximum entropy are some of the methods used. The drawbacks associated with traditional unfolding procedures have motivated the research of complementary approaches. Back Propagation Neural Networks (BPNN), have been applied with success in neutron spectrometry and dosimetry domains, however, the structure and learning parameters are factors that highly impact in the networks performance. In ANN domain, Generalized Regression Neural Network (GRNN) is one of the simplest neural networks in term of network architecture and learning algorithm. The learning is instantaneous, requiring no time for training. Opposite to BPNN, a GRNN would be formed instantly with just a 1-pass training on the development data. In the network development phase, the only hurdle is to optimize the hyper-parameter, which is known as sigma, governing the smoothness of the network. The aim of this work was to compare the performance of BPNN and GRNN in the solution of the neutron spectrometry problem. From results obtained it can be observed that despite the very similar results, GRNN performs better than BPNN. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. An Iterative Approach for the Optimization of Pavement Maintenance Management at the Network Level

    PubMed Central

    Torres-Machí, Cristina; Chamorro, Alondra; Videla, Carlos; Yepes, Víctor

    2014-01-01

    Pavement maintenance is one of the major issues of public agencies. Insufficient investment or inefficient maintenance strategies lead to high economic expenses in the long term. Under budgetary restrictions, the optimal allocation of resources becomes a crucial aspect. Two traditional approaches (sequential and holistic) and four classes of optimization methods (selection based on ranking, mathematical optimization, near optimization, and other methods) have been applied to solve this problem. They vary in the number of alternatives considered and how the selection process is performed. Therefore, a previous understanding of the problem is mandatory to identify the most suitable approach and method for a particular network. This study aims to assist highway agencies, researchers, and practitioners on when and how to apply available methods based on a comparative analysis of the current state of the practice. Holistic approach tackles the problem considering the overall network condition, while the sequential approach is easier to implement and understand, but may lead to solutions far from optimal. Scenarios defining the suitability of these approaches are defined. Finally, an iterative approach gathering the advantages of traditional approaches is proposed and applied in a case study. The proposed approach considers the overall network condition in a simpler and more intuitive manner than the holistic approach. PMID:24741352

  19. An iterative approach for the optimization of pavement maintenance management at the network level.

    PubMed

    Torres-Machí, Cristina; Chamorro, Alondra; Videla, Carlos; Pellicer, Eugenio; Yepes, Víctor

    2014-01-01

    Pavement maintenance is one of the major issues of public agencies. Insufficient investment or inefficient maintenance strategies lead to high economic expenses in the long term. Under budgetary restrictions, the optimal allocation of resources becomes a crucial aspect. Two traditional approaches (sequential and holistic) and four classes of optimization methods (selection based on ranking, mathematical optimization, near optimization, and other methods) have been applied to solve this problem. They vary in the number of alternatives considered and how the selection process is performed. Therefore, a previous understanding of the problem is mandatory to identify the most suitable approach and method for a particular network. This study aims to assist highway agencies, researchers, and practitioners on when and how to apply available methods based on a comparative analysis of the current state of the practice. Holistic approach tackles the problem considering the overall network condition, while the sequential approach is easier to implement and understand, but may lead to solutions far from optimal. Scenarios defining the suitability of these approaches are defined. Finally, an iterative approach gathering the advantages of traditional approaches is proposed and applied in a case study. The proposed approach considers the overall network condition in a simpler and more intuitive manner than the holistic approach.

  20. Spatial Associations and Network Dynamics Between the Vaccine Exemption Dicsussion in Twitter and the Corresponding Geographic Space

    NASA Astrophysics Data System (ADS)

    Coronado, Alejandra

    Recent outbreaks of vaccine-preventable diseases in the United States have drawn attention to the phenomena of vaccine hesitancy and refusal. Hesitancy is seen through the increasing use of exemptions from state vaccine mandates and the recent use of social media for expressing opinions and perspectives related to vaccination. This research places the vaccination narrative into a geographic context and seeks to understand the relationship between vaccine refusal in physical space and the vaccine discussion in cyberspace. Vaccines have long been considered an effective means of eradicating diseases. Recently, however, California has experienced a decline in vaccination rates and an increase in vaccine exemptions. Until the passing of Senate Bill 277 (SB277) in 2015, children were allowed by California law to skip immunizations if a parent submitted a personal beliefs exemption (PBEs). Under SB277, children who are not vaccinated cannot attend school. Some children are still allowed to skip immunizations by submitting a medical exemption (PMEs) at enrollment. Other children are conditionally admitted to school on the 'condition' that they complete any remaining vaccinations when due. This research analyzed the spatial distribution of vaccine exemptions in kindergarten schools in California using the 2015-2016 school immunization data. The two methods used for analysis included Kernel Density Estimation (KDE) and choropleth maps using data aggregated by county. The results from the choropleth maps show that personal belief exemptions for public, private, and charter kindergarten schools are highly concentrated in northern and rural counties. Aggregating vaccine exemptions at the county level and normalizing by school enrollment showed that counties with high ratios of vaccine exemptions vary across public, private, and charter schools. This research also explored the diffusion networks of the vaccine exemption topic in Twitter. Twitter messages related to the California vaccine exemption topic were collected for the whole United States. However, this research only focused on analyzing tweets in California. Two types of information diffusion networks, retweet network and mention network, were examined. This research quantified the influence of users in the networks by applying two network metrics--degree centrality and betweenness centrality. Degree centrality measures the number of connections of a node and is useful to asses which nodes are central for spreading information and influencing others in their immediate neighborhood. Betweenness centrality identifies brokers of information or nodes that connect disparate clusters. Nodes with high betweenness centrality have control over the flow of information in the network. The results suggest that influential users are ranked differently by degree centrality and betweenness centrality for both networks. The results showed that ordinary users may also have strong impacts in the diffusion of information as seen by their high betweenness values despite their low degree centrality. Retweets were found to be more prominent in the diffusion of the vaccine exemption topic compared to mentions. Social network analysis does not capture diffusion processes from a spatial perspective. This research included the spatial context of the mention and retweet networks by using the location information embedded in each node. Nodes were aggregated at the county level and social networks were transformed into visual maps with spatial context. In addition to spatial networks, this research also created chord diagrams to represent the outbound flow and interactions between counties. The findings suggest that county population plays a role in the diffusion of information by social media. Highly populated counties, such as Los Angeles and Sacramento provided a large amount of mention and retweet activity. Additionally, the mention and retweet spatial networks showed counties to have higher in-degree value than out-degree values which indicates more in-flow hubs than out-flow hubs in the network. Unlike the results from the inter-personal social networks, the mention and retweet networks showed that the counties with the highest degree centralities also resulted being the counties with the highest betweenness centrality. Highly populated counties, such as Los Angeles and Sacramento, had very high betweenness centralities in both retweet and mention activity, which means that they served as the bridge and information broker for spreading information related to the vaccine exemption topic. This research is important because most vaccine literature is written from an epidemiological perspective and lacks a geographical component. This research presented an example of applying the spatial social network concept for studying the interaction dynamics between geographic areas. This research expanded studying inter-personal diffusion networks by adding a spatial component. The objective of this research was to study vaccine exemption use and information diffusion across a cyber-physical space in means of better understanding the dynamics of public opinions, views, and responses to the vaccine exemption topic. (Abstract shortened by ProQuest.).

  1. Plasma Physics Network Newsletter, no. 5

    NASA Astrophysics Data System (ADS)

    1992-08-01

    The fifth Plasma Physics Network Newsletter (IAEA, Vienna, Aug. 1992) includes the following topics: (1) the availability of a list of the members of the Third World Plasma Research Network (TWPRN); (2) the announcement of the fourteenth IAEA International Conference on Plasma Physics and Controlled Nuclear Fusion Research to be held in Wuerzburg, Germany, from 30 Sep. to 7 Oct. 1992; (3) the announcement of a Technical Committee Meeting on research using small tokamaks, organized by the IAEA as a satellite meeting to the aforementioned fusion conference; (4) IAEA Fellowships and Scientific Visits for the use of workers in developing member states, and for which plasma researchers are encouraged to apply through Dr. D. Banner, Head, Physics Section, IAEA, P.O. Box 100, A-1400 Vienna, Austria; (5) the initiation in 1993 of a new Coordinated Research Programme (CRP) on 'Development of Software for Numerical Simulation and Data Processing in Fusion Energy Research', as well as a proposed CRP on 'Fusion Research in Developing Countries using Middle- and Small-Scale Plasma Devices'; (6) support from the International Centre for Theoretical Physics (ICTP) for meetings held in Third World countries; (7) a report by W. Usada on Fusion Research in Indonesia; (8) News on ITER; (9) the Technical Committee Meeting planned 8-12 Sep. 1992, Canada, on Tokamak Plasma Biasing; (10) software made available for the study of tokamak transport; (11) the electronic mail address of the TWPRN; (12) the FAX, e-mail, and postal address for contributions to this plasma physics network newsletter.

  2. Patent citation network in nanotechnology (1976-2004)

    NASA Astrophysics Data System (ADS)

    Li, Xin; Chen, Hsinchun; Huang, Zan; Roco, Mihail C.

    2007-06-01

    The patent citation networks are described using critical node, core network, and network topological analysis. The main objective is understanding of the knowledge transfer processes between technical fields, institutions and countries. This includes identifying key influential players and subfields, the knowledge transfer patterns among them, and the overall knowledge transfer efficiency. The proposed framework is applied to the field of nanoscale science and engineering (NSE), including the citation networks of patent documents, submitting institutions, technology fields, and countries. The NSE patents were identified by keywords "full-text" searching of patents at the United States Patent and Trademark Office (USPTO). The analysis shows that the United States is the most important citation center in NSE research. The institution citation network illustrates a more efficient knowledge transfer between institutions than a random network. The country citation network displays a knowledge transfer capability as efficient as a random network. The technology field citation network and the patent document citation network exhibit a␣less efficient knowledge diffusion capability than a random network. All four citation networks show a tendency to form local citation clusters.

  3. Applications of self-organizing neural networks in virtual screening and diversity selection.

    PubMed

    Selzer, Paul; Ertl, Peter

    2006-01-01

    Artificial neural networks provide a powerful technique for the analysis and modeling of nonlinear relationships between molecular structures and pharmacological activity. Many network types, including Kohonen and counterpropagation, also provide an intuitive method for the visual assessment of correspondence between the input and output data. This work shows how a combination of neural networks and radial distribution function molecular descriptors can be applied in various areas of industrial pharmaceutical research. These applications include the prediction of biological activity, the selection of screening candidates (cherry picking), and the extraction of representative subsets from large compound collections such as combinatorial libraries. The methods described have also been implemented as an easy-to-use Web tool, allowing chemists to perform interactive neural network experiments on the Novartis intranet.

  4. Developing a New Wireless Sensor Network Platform and Its Application in Precision Agriculture

    PubMed Central

    Aquino-Santos, Raúl; González-Potes, Apolinar; Edwards-Block, Arthur; Virgen-Ortiz, Raúl Alejandro

    2011-01-01

    Wireless sensor networks are gaining greater attention from the research community and industrial professionals because these small pieces of “smart dust” offer great advantages due to their small size, low power consumption, easy integration and support for “green” applications. Green applications are considered a hot topic in intelligent environments, ubiquitous and pervasive computing. This work evaluates a new wireless sensor network platform and its application in precision agriculture, including its embedded operating system and its routing algorithm. To validate the technological platform and the embedded operating system, two different routing strategies were compared: hierarchical and flat. Both of these routing algorithms were tested in a small-scale network applied to a watermelon field. However, we strongly believe that this technological platform can be also applied to precision agriculture because it incorporates a modified version of LORA-CBF, a wireless location-based routing algorithm that uses cluster-based flooding. Cluster-based flooding addresses the scalability concerns of wireless sensor networks, while the modified LORA-CBF routing algorithm includes a metric to monitor residual battery energy. Furthermore, results show that the modified version of LORA-CBF functions well with both the flat and hierarchical algorithms, although it functions better with the flat algorithm in a small-scale agricultural network. PMID:22346622

  5. Developing a new wireless sensor network platform and its application in precision agriculture.

    PubMed

    Aquino-Santos, Raúl; González-Potes, Apolinar; Edwards-Block, Arthur; Virgen-Ortiz, Raúl Alejandro

    2011-01-01

    Wireless sensor networks are gaining greater attention from the research community and industrial professionals because these small pieces of "smart dust" offer great advantages due to their small size, low power consumption, easy integration and support for "green" applications. Green applications are considered a hot topic in intelligent environments, ubiquitous and pervasive computing. This work evaluates a new wireless sensor network platform and its application in precision agriculture, including its embedded operating system and its routing algorithm. To validate the technological platform and the embedded operating system, two different routing strategies were compared: hierarchical and flat. Both of these routing algorithms were tested in a small-scale network applied to a watermelon field. However, we strongly believe that this technological platform can be also applied to precision agriculture because it incorporates a modified version of LORA-CBF, a wireless location-based routing algorithm that uses cluster-based flooding. Cluster-based flooding addresses the scalability concerns of wireless sensor networks, while the modified LORA-CBF routing algorithm includes a metric to monitor residual battery energy. Furthermore, results show that the modified version of LORA-CBF functions well with both the flat and hierarchical algorithms, although it functions better with the flat algorithm in a small-scale agricultural network.

  6. Remote Sensing Image Classification Applied to the First National Geographical Information Census of China

    NASA Astrophysics Data System (ADS)

    Yu, Xin; Wen, Zongyong; Zhu, Zhaorong; Xia, Qiang; Shun, Lan

    2016-06-01

    Image classification will still be a long way in the future, although it has gone almost half a century. In fact, researchers have gained many fruits in the image classification domain, but there is still a long distance between theory and practice. However, some new methods in the artificial intelligence domain will be absorbed into the image classification domain and draw on the strength of each to offset the weakness of the other, which will open up a new prospect. Usually, networks play the role of a high-level language, as is seen in Artificial Intelligence and statistics, because networks are used to build complex model from simple components. These years, Bayesian Networks, one of probabilistic networks, are a powerful data mining technique for handling uncertainty in complex domains. In this paper, we apply Tree Augmented Naive Bayesian Networks (TAN) to texture classification of High-resolution remote sensing images and put up a new method to construct the network topology structure in terms of training accuracy based on the training samples. Since 2013, China government has started the first national geographical information census project, which mainly interprets geographical information based on high-resolution remote sensing images. Therefore, this paper tries to apply Bayesian network to remote sensing image classification, in order to improve image interpretation in the first national geographical information census project. In the experiment, we choose some remote sensing images in Beijing. Experimental results demonstrate TAN outperform than Naive Bayesian Classifier (NBC) and Maximum Likelihood Classification Method (MLC) in the overall classification accuracy. In addition, the proposed method can reduce the workload of field workers and improve the work efficiency. Although it is time consuming, it will be an attractive and effective method for assisting office operation of image interpretation.

  7. Dynamic modeling and optimization for space logistics using time-expanded networks

    NASA Astrophysics Data System (ADS)

    Ho, Koki; de Weck, Olivier L.; Hoffman, Jeffrey A.; Shishko, Robert

    2014-12-01

    This research develops a dynamic logistics network formulation for lifecycle optimization of mission sequences as a system-level integrated method to find an optimal combination of technologies to be used at each stage of the campaign. This formulation can find the optimal transportation architecture considering its technology trades over time. The proposed methodologies are inspired by the ground logistics analysis techniques based on linear programming network optimization. Particularly, the time-expanded network and its extension are developed for dynamic space logistics network optimization trading the quality of the solution with the computational load. In this paper, the methodologies are applied to a human Mars exploration architecture design problem. The results reveal multiple dynamic system-level trades over time and give recommendation of the optimal strategy for the human Mars exploration architecture. The considered trades include those between In-Situ Resource Utilization (ISRU) and propulsion technologies as well as the orbit and depot location selections over time. This research serves as a precursor for eventual permanent settlement and colonization of other planets by humans and us becoming a multi-planet species.

  8. Continuously Connected With Mobile IP

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Cisco Systems developed Cisco Mobile Networks, making IP devices mobile. With this innovation, a Cisco router and its connected IP devices can roam across network boundaries and connection types. Because a mobile user is able to keep the same IP address while roaming, a live IP connection can be maintained without interruption. Glenn Research Center jointly tested the technology with Cisco, and is working to use it on low-earth-orbiting research craft. With Cisco's Mobile Networks functionality now available in Cisco IOS Software release 12.2(4)T, the commercial advantages and benefits are numerous. The technology can be applied to public safety, military/homeland security, emergency management services, railroad and shipping systems, and the automotive industry. It will allow ambulances, police, firemen, and the U.S. Coast Guard to stay connected to their networks while on the move. In the wireless battlefield, the technology will provide rapid infrastructure deployment for U.S. national defense. Airline, train, and cruise passengers utilizing Cisco Mobile Networks can fly all around the world with a continuous Internet connection. Cisco IOS(R) Software is a registered trademark of Cisco Systems.

  9. Empirical Reference Distributions for Networks of Different Size

    PubMed Central

    Smith, Anna; Calder, Catherine A.; Browning, Christopher R.

    2016-01-01

    Network analysis has become an increasingly prevalent research tool across a vast range of scientific fields. Here, we focus on the particular issue of comparing network statistics, i.e. graph-level measures of network structural features, across multiple networks that differ in size. Although “normalized” versions of some network statistics exist, we demonstrate via simulation why direct comparison is often inappropriate. We consider normalizing network statistics relative to a simple fully parameterized reference distribution and demonstrate via simulation how this is an improvement over direct comparison, but still sometimes problematic. We propose a new adjustment method based on a reference distribution constructed as a mixture model of random graphs which reflect the dependence structure exhibited in the observed networks. We show that using simple Bernoulli models as mixture components in this reference distribution can provide adjusted network statistics that are relatively comparable across different network sizes but still describe interesting features of networks, and that this can be accomplished at relatively low computational expense. Finally, we apply this methodology to a collection of ecological networks derived from the Los Angeles Family and Neighborhood Survey activity location data. PMID:27721556

  10. Ontology-supported research on vaccine efficacy, safety and integrative biological networks.

    PubMed

    He, Yongqun

    2014-07-01

    While vaccine efficacy and safety research has dramatically progressed with the methods of in silico prediction and data mining, many challenges still exist. A formal ontology is a human- and computer-interpretable set of terms and relations that represent entities in a specific domain and how these terms relate to each other. Several community-based ontologies (including Vaccine Ontology, Ontology of Adverse Events and Ontology of Vaccine Adverse Events) have been developed to support vaccine and adverse event representation, classification, data integration, literature mining of host-vaccine interaction networks, and analysis of vaccine adverse events. The author further proposes minimal vaccine information standards and their ontology representations, ontology-based linked open vaccine data and meta-analysis, an integrative One Network ('OneNet') Theory of Life, and ontology-based approaches to study and apply the OneNet theory. In the Big Data era, these proposed strategies provide a novel framework for advanced data integration and analysis of fundamental biological networks including vaccine immune mechanisms.

  11. Ontology-supported Research on Vaccine Efficacy, Safety, and Integrative Biological Networks

    PubMed Central

    He, Yongqun

    2016-01-01

    Summary While vaccine efficacy and safety research has dramatically progressed with the methods of in silico prediction and data mining, many challenges still exist. A formal ontology is a human- and computer-interpretable set of terms and relations that represent entities in a specific domain and how these terms relate to each other. Several community-based ontologies (including the Vaccine Ontology, Ontology of Adverse Events, and Ontology of Vaccine Adverse Events) have been developed to support vaccine and adverse event representation, classification, data integration, literature mining of host-vaccine interaction networks, and analysis of vaccine adverse events. The author further proposes minimal vaccine information standards and their ontology representations, ontology-based linked open vaccine data and meta-analysis, an integrative One Network (“OneNet”) Theory of Life, and ontology-based approaches to study and apply the OneNet theory. In the Big Data era, these proposed strategies provide a novel framework for advanced data integration and analysis of fundamental biological networks including vaccine immune mechanisms. PMID:24909153

  12. Team knowledge representation: a network perspective.

    PubMed

    Espinosa, J Alberto; Clark, Mark A

    2014-03-01

    We propose a network perspective of team knowledge that offers both conceptual and methodological advantages, expanding explanatory value through representation and measurement of component structure and content. Team knowledge has typically been conceptualized and measured with relatively simple aggregates, without fully accounting for differing knowledge configurations among team members. Teams with similar aggregate values of team knowledge may have very different team dynamics depending on how knowledge isolates, cliques, and densities are distributed across the team; which members are the most knowledgeable; who shares knowledge with whom; and how knowledge clusters are distributed. We illustrate our proposed network approach through a sample of 57 teams, including how to compute, analyze, and visually represent team knowledge. Team knowledge network structures (isolation, centrality) are associated with outcomes of, respectively, task coordination, strategy coordination, and the proportion of team knowledge cliques, all after controlling for shared team knowledge. Network analysis helps to represent, measure, and understand the relationship of team knowledge to outcomes of interest to team researchers, members, and managers. Our approach complements existing team knowledge measures. Researchers and managers can apply network concepts and measures to help understand where team knowledge is held within a team and how this relational structure may influence team coordination, cohesion, and performance.

  13. Attractor controllability of Boolean networks by flipping a subset of their nodes

    NASA Astrophysics Data System (ADS)

    Rafimanzelat, Mohammad Reza; Bahrami, Fariba

    2018-04-01

    The controllability analysis of Boolean networks (BNs), as models of biomolecular regulatory networks, has drawn the attention of researchers in recent years. In this paper, we aim at governing the steady-state behavior of BNs using an intervention method which can easily be applied to most real system, which can be modeled as BNs, particularly to biomolecular regulatory networks. To this end, we introduce the concept of attractor controllability of a BN by flipping a subset of its nodes, as the possibility of making a BN converge from any of its attractors to any other one, by one-time flipping members of a subset of BN nodes. Our approach is based on the algebraic state-space representation of BNs using semi-tensor product of matrices. After introducing some new matrix tools, we use them to derive necessary and sufficient conditions for the attractor controllability of BNs. A forward search algorithm is then suggested to identify the minimal perturbation set for attractor controllability of a BN. Next, a lower bound is derived for the cardinality of this set. Two new indices are also proposed for quantifying the attractor controllability of a BN and the influence of each network variable on the attractor controllability of the network and the relationship between them is revealed. Finally, we confirm the efficiency of the proposed approach by applying it to the BN models of some real biomolecular networks.

  14. Deep learning in bioinformatics.

    PubMed

    Min, Seonwoo; Lee, Byunghan; Yoon, Sungroh

    2017-09-01

    In the era of big data, transformation of biomedical big data into valuable knowledge has been one of the most important challenges in bioinformatics. Deep learning has advanced rapidly since the early 2000s and now demonstrates state-of-the-art performance in various fields. Accordingly, application of deep learning in bioinformatics to gain insight from data has been emphasized in both academia and industry. Here, we review deep learning in bioinformatics, presenting examples of current research. To provide a useful and comprehensive perspective, we categorize research both by the bioinformatics domain (i.e. omics, biomedical imaging, biomedical signal processing) and deep learning architecture (i.e. deep neural networks, convolutional neural networks, recurrent neural networks, emergent architectures) and present brief descriptions of each study. Additionally, we discuss theoretical and practical issues of deep learning in bioinformatics and suggest future research directions. We believe that this review will provide valuable insights and serve as a starting point for researchers to apply deep learning approaches in their bioinformatics studies. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Networking for Successful Diversity Recruiting: Creating a Highly Diverse Research Experiences for Undergraduates Program by Networking with Mentors, Faculty, and Students.

    NASA Astrophysics Data System (ADS)

    Dalbotten, D. M.; Berthelote, A.; Watts, N. B.

    2017-12-01

    Successfully recruiting for diversity begins as you plan your program and make sure that all elements of the program support diverse participation. The REU on Sustainable Land and Water Resources continues to be one of the most diverse NSF-funded Research Experience for Undergraduate Programs in the geosciences. Every aspect of the program, from recruiting, the application process, selecting participants, and the methods developed to support participant success have been scrutinized and tailored towards broadening participation. While the focus of the research has been on collaboration with Native American reservations to create community-based participatory research projects and improving access for Native American students, the PIs strive for ethnic and cultural diversity of the participants. Emphasis on networking and building relationships with minority-serving institutions has led to increasing numbers of underrepresented students applying to the REU. In 2017, a full 30% of our applications were from underrepresented groups. The authors will discuss methods for improved diversity recruiting, as well as ways to make every aspect of your program support diversity in the geosciences.

  16. Adaptive control strategies for flexible robotic arm

    NASA Technical Reports Server (NTRS)

    Bialasiewicz, Jan T.

    1993-01-01

    The motivation of this research came about when a neural network direct adaptive control scheme was applied to control the tip position of a flexible robotic arm. Satisfactory control performance was not attainable due to the inherent non-minimum phase characteristics of the flexible robotic arm tip. Most of the existing neural network control algorithms are based on the direct method and exhibit very high sensitivity if not unstable closed-loop behavior. Therefore a neural self-tuning control (NSTC) algorithm is developed and applied to this problem and showed promising results. Simulation results of the NSTC scheme and the conventional self-tuning (STR) control scheme are used to examine performance factors such as control tracking mean square error, estimation mean square error, transient response, and steady state response.

  17. Mapping the semantic structure of cognitive neuroscience.

    PubMed

    Beam, Elizabeth; Appelbaum, L Gregory; Jack, Jordynn; Moody, James; Huettel, Scott A

    2014-09-01

    Cognitive neuroscience, as a discipline, links the biological systems studied by neuroscience to the processing constructs studied by psychology. By mapping these relations throughout the literature of cognitive neuroscience, we visualize the semantic structure of the discipline and point to directions for future research that will advance its integrative goal. For this purpose, network text analyses were applied to an exhaustive corpus of abstracts collected from five major journals over a 30-month period, including every study that used fMRI to investigate psychological processes. From this, we generate network maps that illustrate the relationships among psychological and anatomical terms, along with centrality statistics that guide inferences about network structure. Three terms--prefrontal cortex, amygdala, and anterior cingulate cortex--dominate the network structure with their high frequency in the literature and the density of their connections with other neuroanatomical terms. From network statistics, we identify terms that are understudied compared with their importance in the network (e.g., insula and thalamus), are underspecified in the language of the discipline (e.g., terms associated with executive function), or are imperfectly integrated with other concepts (e.g., subdisciplines like decision neuroscience that are disconnected from the main network). Taking these results as the basis for prescriptive recommendations, we conclude that semantic analyses provide useful guidance for cognitive neuroscience as a discipline, both by illustrating systematic biases in the conduct and presentation of research and by identifying directions that may be most productive for future research.

  18. A perspective on the advancement of natural language processing tasks via topological analysis of complex networks. Comment on "Approaching human language with complex networks" by Cong and Liu

    NASA Astrophysics Data System (ADS)

    Amancio, Diego Raphael

    2014-12-01

    Concepts and methods of complex networks have been applied to probe the properties of a myriad of real systems [1]. The finding that written texts modeled as graphs share several properties of other completely different real systems has inspired the study of language as a complex system [2]. Actually, language can be represented as a complex network in its several levels of complexity. As a consequence, morphological, syntactical and semantical properties have been employed in the construction of linguistic networks [3]. Even the character level has been useful to unfold particular patterns [4,5]. In the review by Cong and Liu [6], the authors emphasize the need to use the topological information of complex networks modeling the various spheres of the language to better understand its origins, evolution and organization. In addition, the authors cite the use of networks in applications aiming at holistic typology and stylistic variations. In this context, I will discuss some possible directions that could be followed in future research directed towards the understanding of language via topological characterization of complex linguistic networks. In addition, I will comment the use of network models for language processing applications. Additional prospects for future practical research lines will also be discussed in this comment.

  19. The Managing Epilepsy Well Network:: Advancing Epilepsy Self-Management.

    PubMed

    Sajatovic, Martha; Jobst, Barbara C; Shegog, Ross; Bamps, Yvan A; Begley, Charles E; Fraser, Robert T; Johnson, Erica K; Pandey, Dilip K; Quarells, Rakale C; Scal, Peter; Spruill, Tanya M; Thompson, Nancy J; Kobau, Rosemarie

    2017-03-01

    Epilepsy, a complex spectrum of disorders, affects about 2.9 million people in the U.S. Similar to other chronic disorders, people with epilepsy face challenges related to management of the disorder, its treatment, co-occurring depression, disability, social disadvantages, and stigma. Two national conferences on public health and epilepsy (1997, 2003) and a 2012 IOM report on the public health dimensions of epilepsy highlighted important knowledge gaps and emphasized the need for evidence-based, scalable epilepsy self-management programs. The Centers for Disease Control and Prevention translated recommendations on self-management research and dissemination into an applied research program through the Prevention Research Centers Managing Epilepsy Well (MEW) Network. MEW Network objectives are to advance epilepsy self-management research by developing effective interventions that can be broadly disseminated for use in people's homes, healthcare providers' offices, or in community settings. The aim of this report is to provide an update on the MEW Network research pipeline, which spans efficacy, effectiveness, and dissemination. Many of the interventions use e-health strategies to eliminate barriers to care (e.g., lack of transportation, functional limitations, and stigma). Strengths of this mature research network are the culture of collaboration, community-based partnerships, e-health methods, and its portfolio of prevention activities, which range from efficacy studies engaging hard-to-reach groups, to initiatives focused on provider training and knowledge translation. The MEW Network works with organizations across the country to expand its capacity, help leverage funding and other resources, and enhance the development, dissemination, and sustainability of MEW Network programs and tools. Guided by national initiatives targeting chronic disease or epilepsy burden since 2007, the MEW Network has been responsible for more than 43 scientific journal articles, two study reports, seven book chapters, and 62 presentations and posters. To date, two programs have been adopted and disseminated by the national Epilepsy Foundation, state Epilepsy Foundation affiliates, and other stakeholders. Recent expansion of the MEW Network membership will help to extend future reach and public health impact. Copyright © 2016 American Journal of Preventive Medicine. All rights reserved.

  20. The telecommunications and data acquisition report

    NASA Technical Reports Server (NTRS)

    Renzetti, N. A. (Editor)

    1982-01-01

    Progress in the development and operations of the Deep Space Network is reported. Developments in Earth-based radio technology as applied to other research programs are also reported. These programs include geodynamics, astrophysics, and radio searching for extraterrestrial intelligence in the microwave region of the electromagnetic spectrum.

  1. The Telecommunications and Data Acquisition report

    NASA Technical Reports Server (NTRS)

    Renzetti, N. A. (Editor)

    1981-01-01

    Progress in the development and operations of the Deep Space Network is reported including develoments in Earth-based radio technology as applied to other research programs. These programs are: geodynamics, astrophysics, and the radio search for extraterrestrial intelligence in the microwave region of the electromagnetic spectrum.

  2. Unified Airport Pavement Design and Analysis Concepts Workshops Held in Cambridge, Massachusetts on 16-17 July 1991

    DTIC Science & Technology

    1992-07-01

    researcher but have noa been used extensively for airpor pavemen analysis. Finally, thet are wodels that have been devope in otr egb elds tha c be applied...transportation network . Every year, system demands exceed capacity in many area. The capability of our airports to continually accommodate more operations...ability to produce long-lived pavement systems providing mnaximunm benefit - dollar and non-dollar - to the airpor network . This is the cenutr function

  3. On controlling networks of limit-cycle oscillators

    NASA Astrophysics Data System (ADS)

    Skardal, Per Sebastian; Arenas, Alex

    2016-09-01

    The control of network-coupled nonlinear dynamical systems is an active area of research in the nonlinear science community. Coupled oscillator networks represent a particularly important family of nonlinear systems, with applications ranging from the power grid to cardiac excitation. Here, we study the control of network-coupled limit cycle oscillators, extending the previous work that focused on phase oscillators. Based on stabilizing a target fixed point, our method aims to attain complete frequency synchronization, i.e., consensus, by applying control to as few oscillators as possible. We develop two types of controls. The first type directs oscillators towards larger amplitudes, while the second does not. We present numerical examples of both control types and comment on the potential failures of the method.

  4. Animal Social Network Theory Can Help Wildlife Conservation.

    PubMed

    Snijders, Lysanne; Blumstein, Daniel T; Stanley, Christina R; Franks, Daniel W

    2017-08-01

    Many animals preferentially associate with certain other individuals. This social structuring can influence how populations respond to changes to their environment, thus making network analysis a promising technique for understanding, predicting, and potentially manipulating population dynamics. Various network statistics can correlate with individual fitness components and key population-level processes, yet the logical role and formal application of animal social network theory for conservation and management have not been well articulated. We outline how understanding of direct and indirect relationships between animals can be profitably applied by wildlife managers and conservationists. By doing so, we aim to stimulate the development and implementation of practical tools for wildlife conservation and management and to inspire novel behavioral research in this field. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Cluster and propensity based approximation of a network

    PubMed Central

    2013-01-01

    Background The models in this article generalize current models for both correlation networks and multigraph networks. Correlation networks are widely applied in genomics research. In contrast to general networks, it is straightforward to test the statistical significance of an edge in a correlation network. It is also easy to decompose the underlying correlation matrix and generate informative network statistics such as the module eigenvector. However, correlation networks only capture the connections between numeric variables. An open question is whether one can find suitable decompositions of the similarity measures employed in constructing general networks. Multigraph networks are attractive because they support likelihood based inference. Unfortunately, it is unclear how to adjust current statistical methods to detect the clusters inherent in many data sets. Results Here we present an intuitive and parsimonious parametrization of a general similarity measure such as a network adjacency matrix. The cluster and propensity based approximation (CPBA) of a network not only generalizes correlation network methods but also multigraph methods. In particular, it gives rise to a novel and more realistic multigraph model that accounts for clustering and provides likelihood based tests for assessing the significance of an edge after controlling for clustering. We present a novel Majorization-Minimization (MM) algorithm for estimating the parameters of the CPBA. To illustrate the practical utility of the CPBA of a network, we apply it to gene expression data and to a bi-partite network model for diseases and disease genes from the Online Mendelian Inheritance in Man (OMIM). Conclusions The CPBA of a network is theoretically appealing since a) it generalizes correlation and multigraph network methods, b) it improves likelihood based significance tests for edge counts, c) it directly models higher-order relationships between clusters, and d) it suggests novel clustering algorithms. The CPBA of a network is implemented in Fortran 95 and bundled in the freely available R package PropClust. PMID:23497424

  6. Combining deep residual neural network features with supervised machine learning algorithms to classify diverse food image datasets.

    PubMed

    McAllister, Patrick; Zheng, Huiru; Bond, Raymond; Moorhead, Anne

    2018-04-01

    Obesity is increasing worldwide and can cause many chronic conditions such as type-2 diabetes, heart disease, sleep apnea, and some cancers. Monitoring dietary intake through food logging is a key method to maintain a healthy lifestyle to prevent and manage obesity. Computer vision methods have been applied to food logging to automate image classification for monitoring dietary intake. In this work we applied pretrained ResNet-152 and GoogleNet convolutional neural networks (CNNs), initially trained using ImageNet Large Scale Visual Recognition Challenge (ILSVRC) dataset with MatConvNet package, to extract features from food image datasets; Food 5K, Food-11, RawFooT-DB, and Food-101. Deep features were extracted from CNNs and used to train machine learning classifiers including artificial neural network (ANN), support vector machine (SVM), Random Forest, and Naive Bayes. Results show that using ResNet-152 deep features with SVM with RBF kernel can accurately detect food items with 99.4% accuracy using Food-5K validation food image dataset and 98.8% with Food-5K evaluation dataset using ANN, SVM-RBF, and Random Forest classifiers. Trained with ResNet-152 features, ANN can achieve 91.34%, 99.28% when applied to Food-11 and RawFooT-DB food image datasets respectively and SVM with RBF kernel can achieve 64.98% with Food-101 image dataset. From this research it is clear that using deep CNN features can be used efficiently for diverse food item image classification. The work presented in this research shows that pretrained ResNet-152 features provide sufficient generalisation power when applied to a range of food image classification tasks. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. The path to producing pharmaceuticals from natural products uncovered by academia-from the perspective of a science coordinator.

    PubMed

    Fujie, Akihiko

    2017-01-01

    To actualize the invention of all-Japanese medicines, the Department of Innovative Drug Discovery and Development (iD3) in the Japan Agency for Medical Research and Development (AMED) serves as the headquarters for the Drug Discovery Support Network. iD3 assists with creating research strategies for the seeds of medicines discovered by academia and provides technological support, intellectual property management, and aid for applying the seeds through industry-led efforts. In this review, from the perspective of a science coordinator, I will describe the current activities of the drug discovery support network and iD3 as well as the challenges and future developments of pharmaceutical research and development using the natural product drug discovery method.

  8. A topology visualization early warning distribution algorithm for large-scale network security incidents.

    PubMed

    He, Hui; Fan, Guotao; Ye, Jianwei; Zhang, Weizhe

    2013-01-01

    It is of great significance to research the early warning system for large-scale network security incidents. It can improve the network system's emergency response capabilities, alleviate the cyber attacks' damage, and strengthen the system's counterattack ability. A comprehensive early warning system is presented in this paper, which combines active measurement and anomaly detection. The key visualization algorithm and technology of the system are mainly discussed. The large-scale network system's plane visualization is realized based on the divide and conquer thought. First, the topology of the large-scale network is divided into some small-scale networks by the MLkP/CR algorithm. Second, the sub graph plane visualization algorithm is applied to each small-scale network. Finally, the small-scale networks' topologies are combined into a topology based on the automatic distribution algorithm of force analysis. As the algorithm transforms the large-scale network topology plane visualization problem into a series of small-scale network topology plane visualization and distribution problems, it has higher parallelism and is able to handle the display of ultra-large-scale network topology.

  9. First-order design of geodetic networks using the simulated annealing method

    NASA Astrophysics Data System (ADS)

    Berné, J. L.; Baselga, S.

    2004-09-01

    The general problem of the optimal design for a geodetic network subject to any extrinsic factors, namely the first-order design problem, can be dealt with as a numeric optimization problem. The classic theory of this problem and the optimization methods are revised. Then the innovative use of the simulated annealing method, which has been successfully applied in other fields, is presented for this classical geodetic problem. This method, belonging to iterative heuristic techniques in operational research, uses a thermodynamical analogy to crystalline networks to offer a solution that converges probabilistically to the global optimum. Basic formulation and some examples are studied.

  10. Semantic web for integrated network analysis in biomedicine.

    PubMed

    Chen, Huajun; Ding, Li; Wu, Zhaohui; Yu, Tong; Dhanapalan, Lavanya; Chen, Jake Y

    2009-03-01

    The Semantic Web technology enables integration of heterogeneous data on the World Wide Web by making the semantics of data explicit through formal ontologies. In this article, we survey the feasibility and state of the art of utilizing the Semantic Web technology to represent, integrate and analyze the knowledge in various biomedical networks. We introduce a new conceptual framework, semantic graph mining, to enable researchers to integrate graph mining with ontology reasoning in network data analysis. Through four case studies, we demonstrate how semantic graph mining can be applied to the analysis of disease-causal genes, Gene Ontology category cross-talks, drug efficacy analysis and herb-drug interactions analysis.

  11. A geovisual analytic approach to understanding geo-social relationships in the international trade network.

    PubMed

    Luo, Wei; Yin, Peifeng; Di, Qian; Hardisty, Frank; MacEachren, Alan M

    2014-01-01

    The world has become a complex set of geo-social systems interconnected by networks, including transportation networks, telecommunications, and the internet. Understanding the interactions between spatial and social relationships within such geo-social systems is a challenge. This research aims to address this challenge through the framework of geovisual analytics. We present the GeoSocialApp which implements traditional network analysis methods in the context of explicitly spatial and social representations. We then apply it to an exploration of international trade networks in terms of the complex interactions between spatial and social relationships. This exploration using the GeoSocialApp helps us develop a two-part hypothesis: international trade network clusters with structural equivalence are strongly 'balkanized' (fragmented) according to the geography of trading partners, and the geographical distance weighted by population within each network cluster has a positive relationship with the development level of countries. In addition to demonstrating the potential of visual analytics to provide insight concerning complex geo-social relationships at a global scale, the research also addresses the challenge of validating insights derived through interactive geovisual analytics. We develop two indicators to quantify the observed patterns, and then use a Monte-Carlo approach to support the hypothesis developed above.

  12. Bluetooth Low Power Modes Applied to the Data Transportation Network in Home Automation Systems.

    PubMed

    Etxaniz, Josu; Aranguren, Gerardo

    2017-04-30

    Even though home automation is a well-known research and development area, recent technological improvements in different areas such as context recognition, sensing, wireless communications or embedded systems have boosted wireless smart homes. This paper focuses on some of those areas related to home automation. The paper draws attention to wireless communications issues on embedded systems. Specifically, the paper discusses the multi-hop networking together with Bluetooth technology and latency, as a quality of service (QoS) metric. Bluetooth is a worldwide standard that provides low power multi-hop networking. It is a radio license free technology and establishes point-to-point and point-to-multipoint links, known as piconets, or multi-hop networks, known as scatternets. This way, many Bluetooth nodes can be interconnected to deploy ambient intelligent networks. This paper introduces the research on multi-hop latency done with park and sniff low power modes of Bluetooth over the test platform developed. Besides, an empirical model is obtained to calculate the latency of Bluetooth multi-hop communications over asynchronous links when links in scatternets are always in sniff or the park mode. Smart home devices and networks designers would take advantage of the models and the estimation of the delay they provide in communications along Bluetooth multi-hop networks.

  13. Bluetooth Low Power Modes Applied to the Data Transportation Network in Home Automation Systems

    PubMed Central

    Etxaniz, Josu; Aranguren, Gerardo

    2017-01-01

    Even though home automation is a well-known research and development area, recent technological improvements in different areas such as context recognition, sensing, wireless communications or embedded systems have boosted wireless smart homes. This paper focuses on some of those areas related to home automation. The paper draws attention to wireless communications issues on embedded systems. Specifically, the paper discusses the multi-hop networking together with Bluetooth technology and latency, as a quality of service (QoS) metric. Bluetooth is a worldwide standard that provides low power multi-hop networking. It is a radio license free technology and establishes point-to-point and point-to-multipoint links, known as piconets, or multi-hop networks, known as scatternets. This way, many Bluetooth nodes can be interconnected to deploy ambient intelligent networks. This paper introduces the research on multi-hop latency done with park and sniff low power modes of Bluetooth over the test platform developed. Besides, an empirical model is obtained to calculate the latency of Bluetooth multi-hop communications over asynchronous links when links in scatternets are always in sniff or the park mode. Smart home devices and networks designers would take advantage of the models and the estimation of the delay they provide in communications along Bluetooth multi-hop networks. PMID:28468294

  14. Network capability estimation. Vela network evaluation and automatic processing research. Technical report. [NETWORTH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snell, N.S.

    1976-09-24

    NETWORTH is a computer program which calculates the detection and location capability of seismic networks. A modified version of NETWORTH has been developed. This program has been used to evaluate the effect of station 'downtime', the signal amplitude variance, and the station detection threshold upon network detection capability. In this version all parameters may be changed separately for individual stations. The capability of using signal amplitude corrections has been added. The function of amplitude corrections is to remove possible bias in the magnitude estimate due to inhomogeneous signal attenuation. These corrections may be applied to individual stations, individual epicenters, ormore » individual station/epicenter combinations. An option has been added to calculate the effect of station 'downtime' upon network capability. This study indicates that, if capability loss due to detection errors can be minimized, then station detection threshold and station reliability will be the fundamental limits to network performance. A baseline network of thirteen stations has been performed. These stations are as follows: Alaskan Long Period Array, (ALPA); Ankara, (ANK); Chiang Mai, (CHG); Korean Seismic Research Station, (KSRS); Large Aperture Seismic Array, (LASA); Mashhad, (MSH); Mundaring, (MUN); Norwegian Seismic Array, (NORSAR); New Delhi, (NWDEL); Red Knife, Ontario, (RK-ON); Shillong, (SHL); Taipei, (TAP); and White Horse, Yukon, (WH-YK).« less

  15. An Outline of Data Aggregation Security in Heterogeneous Wireless Sensor Networks.

    PubMed

    Boubiche, Sabrina; Boubiche, Djallel Eddine; Bilami, Azzedine; Toral-Cruz, Homero

    2016-04-12

    Data aggregation processes aim to reduce the amount of exchanged data in wireless sensor networks and consequently minimize the packet overhead and optimize energy efficiency. Securing the data aggregation process is a real challenge since the aggregation nodes must access the relayed data to apply the aggregation functions. The data aggregation security problem has been widely addressed in classical homogeneous wireless sensor networks, however, most of the proposed security protocols cannot guarantee a high level of security since the sensor node resources are limited. Heterogeneous wireless sensor networks have recently emerged as a new wireless sensor network category which expands the sensor nodes' resources and capabilities. These new kinds of WSNs have opened new research opportunities where security represents a most attractive area. Indeed, robust and high security level algorithms can be used to secure the data aggregation at the heterogeneous aggregation nodes which is impossible in classical homogeneous WSNs. Contrary to the homogeneous sensor networks, the data aggregation security problem is still not sufficiently covered and the proposed data aggregation security protocols are numberless. To address this recent research area, this paper describes the data aggregation security problem in heterogeneous wireless sensor networks and surveys a few proposed security protocols. A classification and evaluation of the existing protocols is also introduced based on the adopted data aggregation security approach.

  16. A Geovisual Analytic Approach to Understanding Geo-Social Relationships in the International Trade Network

    PubMed Central

    Luo, Wei; Yin, Peifeng; Di, Qian; Hardisty, Frank; MacEachren, Alan M.

    2014-01-01

    The world has become a complex set of geo-social systems interconnected by networks, including transportation networks, telecommunications, and the internet. Understanding the interactions between spatial and social relationships within such geo-social systems is a challenge. This research aims to address this challenge through the framework of geovisual analytics. We present the GeoSocialApp which implements traditional network analysis methods in the context of explicitly spatial and social representations. We then apply it to an exploration of international trade networks in terms of the complex interactions between spatial and social relationships. This exploration using the GeoSocialApp helps us develop a two-part hypothesis: international trade network clusters with structural equivalence are strongly ‘balkanized’ (fragmented) according to the geography of trading partners, and the geographical distance weighted by population within each network cluster has a positive relationship with the development level of countries. In addition to demonstrating the potential of visual analytics to provide insight concerning complex geo-social relationships at a global scale, the research also addresses the challenge of validating insights derived through interactive geovisual analytics. We develop two indicators to quantify the observed patterns, and then use a Monte-Carlo approach to support the hypothesis developed above. PMID:24558409

  17. Clustered marginalization of minorities during social transitions induced by co-evolution of behaviour and network structure

    NASA Astrophysics Data System (ADS)

    Schleussner, Carl-Friedrich; Donges, Jonathan F.; Engemann, Denis A.; Levermann, Anders

    2016-08-01

    Large-scale transitions in societies are associated with both individual behavioural change and restructuring of the social network. These two factors have often been considered independently, yet recent advances in social network research challenge this view. Here we show that common features of societal marginalization and clustering emerge naturally during transitions in a co-evolutionary adaptive network model. This is achieved by explicitly considering the interplay between individual interaction and a dynamic network structure in behavioural selection. We exemplify this mechanism by simulating how smoking behaviour and the network structure get reconfigured by changing social norms. Our results are consistent with empirical findings: The prevalence of smoking was reduced, remaining smokers were preferentially connected among each other and formed increasingly marginalized clusters. We propose that self-amplifying feedbacks between individual behaviour and dynamic restructuring of the network are main drivers of the transition. This generative mechanism for co-evolution of individual behaviour and social network structure may apply to a wide range of examples beyond smoking.

  18. Clustered marginalization of minorities during social transitions induced by co-evolution of behaviour and network structure.

    PubMed

    Schleussner, Carl-Friedrich; Donges, Jonathan F; Engemann, Denis A; Levermann, Anders

    2016-08-11

    Large-scale transitions in societies are associated with both individual behavioural change and restructuring of the social network. These two factors have often been considered independently, yet recent advances in social network research challenge this view. Here we show that common features of societal marginalization and clustering emerge naturally during transitions in a co-evolutionary adaptive network model. This is achieved by explicitly considering the interplay between individual interaction and a dynamic network structure in behavioural selection. We exemplify this mechanism by simulating how smoking behaviour and the network structure get reconfigured by changing social norms. Our results are consistent with empirical findings: The prevalence of smoking was reduced, remaining smokers were preferentially connected among each other and formed increasingly marginalized clusters. We propose that self-amplifying feedbacks between individual behaviour and dynamic restructuring of the network are main drivers of the transition. This generative mechanism for co-evolution of individual behaviour and social network structure may apply to a wide range of examples beyond smoking.

  19. Entropy and Gravity Concepts as New Methodological Indexes to Investigate Technological Convergence: Patent Network-Based Approach

    PubMed Central

    Cho, Yongrae; Kim, Minsung

    2014-01-01

    The volatility and uncertainty in the process of technological developments are growing faster than ever due to rapid technological innovations. Such phenomena result in integration among disparate technology fields. At this point, it is a critical research issue to understand the different roles and the propensity of each element technology for technological convergence. In particular, the network-based approach provides a holistic view in terms of technological linkage structures. Furthermore, the development of new indicators based on network visualization can reveal the dynamic patterns among disparate technologies in the process of technological convergence and provide insights for future technological developments. This research attempts to analyze and discover the patterns of the international patent classification codes of the United States Patent and Trademark Office's patent data in printed electronics, which is a representative technology in the technological convergence process. To this end, we apply the physical idea as a new methodological approach to interpret technological convergence. More specifically, the concepts of entropy and gravity are applied to measure the activities among patent citations and the binding forces among heterogeneous technologies during technological convergence. By applying the entropy and gravity indexes, we could distinguish the characteristic role of each technology in printed electronics. At the technological convergence stage, each technology exhibits idiosyncratic dynamics which tend to decrease technological differences and heterogeneity. Furthermore, through nonlinear regression analysis, we have found the decreasing patterns of disparity over a given total period in the evolution of technological convergence. This research has discovered the specific role of each element technology field and has consequently identified the co-evolutionary patterns of technological convergence. These new findings on the evolutionary patterns of technological convergence provide some implications for engineering and technology foresight research, as well as for corporate strategy and technology policy. PMID:24914959

  20. [Cooperative Cardiovascular Disease Research Network (RECAVA)].

    PubMed

    García-Dorado, David; Castro-Beiras, Alfonso; Díez, Javier; Gabriel, Rafael; Gimeno-Blanes, Juan R; Ortiz de Landázuri, Manuel; Sánchez, Pedro L; Fernández-Avilés, Francisco

    2008-01-01

    Today, cardiovascular disease is the principal cause of death and hospitalization in Spain, and accounts for an annual healthcare budget of more than 4000 million euros. Consequently, early diagnosis, effective prevention, and the optimum treatment of cardiovascular disease present a significant social and healthcare challenge for the country. In this context, combining all available resources to increase the efficacy and healthcare benefits of scientific research is a priority. This rationale prompted the establishment of the Spanish Cooperative Cardiovascular Disease Research Network, or RECAVA (Red Temática de Investigación Cooperativa en Enfermedades Cardiovasculares), 5 years ago. Since its foundation, RECAVA's activities have focused on achieving four objectives: a) to facilitate contacts between basic, clinical and epidemiological researchers; b) to promote the shared use of advanced technological facilities; c) to apply research results to clinical practice, and d) to train a new generation of translational cardiovascular researchers in Spain. At present, RECAVA consists of 41 research groups and seven shared technological facilities. RECAVA's research strategy is based on a scientific design matrix centered on the most important cardiovascular processes. The level of RECAVA's research activity is reflected in the fact that 28 co-authored articles were published in international journals during the first six months of 2007, with each involving contributions from at least two groups in the network. Finally, RECAVA also participates in the work of the Spanish National Center for Cardiovascular Research, or CNIC (Centro Nacional de Investigación Cardiovascular), and some established Biomedical Research Network Centers, or CIBER (Centros de Investigación Biomédica en RED), with the aim of consolidating the development of a dynamic multidisciplinary research framework that is capable of meeting the growing challenge that cardiovascular disease will present in the future.

  1. The PBRN Initiative

    PubMed Central

    Curro, F.A.; Vena, D.; Naftolin, F.; Terracio, L.; Thompson, V.P.

    2012-01-01

    The NIDCR-supported Practice-based Research Network initiative presents dentistry with an unprecedented opportunity by providing a pathway for modifying and advancing the profession. It encourages practitioner participation in the transfer of science into practice for the improvement of patient care. PBRNs vary in infrastructure and design, and sustaining themselves in the long term may involve clinical trial validation by regulatory agencies. This paper discusses the PBRN concept in general and uses the New York University College of Dentistry’s Practitioners Engaged in Applied Research and Learning (PEARL) Network as a model to improve patient outcomes. The PEARL Network is structured to ensure generalizability of results, data integrity, and to provide an infrastructure in which scientists can address clinical practitioner research interests. PEARL evaluates new technologies, conducts comparative effectiveness research, participates in multidisciplinary clinical studies, helps evaluate alternative models of healthcare, educates and trains future clinical faculty for academic positions, expands continuing education to include “benchmarking” as a form of continuous feedback to practitioners, adds value to dental schools’ educational programs, and collaborates with the oral health care and pharmaceutical industries and medical PBRNs to advance the dental profession and further the integration of dental research and practice into contemporary healthcare (NCT00867997, NCT01268605). PMID:22699662

  2. The Next Era: Deep Learning in Pharmaceutical Research.

    PubMed

    Ekins, Sean

    2016-11-01

    Over the past decade we have witnessed the increasing sophistication of machine learning algorithms applied in daily use from internet searches, voice recognition, social network software to machine vision software in cameras, phones, robots and self-driving cars. Pharmaceutical research has also seen its fair share of machine learning developments. For example, applying such methods to mine the growing datasets that are created in drug discovery not only enables us to learn from the past but to predict a molecule's properties and behavior in future. The latest machine learning algorithm garnering significant attention is deep learning, which is an artificial neural network with multiple hidden layers. Publications over the last 3 years suggest that this algorithm may have advantages over previous machine learning methods and offer a slight but discernable edge in predictive performance. The time has come for a balanced review of this technique but also to apply machine learning methods such as deep learning across a wider array of endpoints relevant to pharmaceutical research for which the datasets are growing such as physicochemical property prediction, formulation prediction, absorption, distribution, metabolism, excretion and toxicity (ADME/Tox), target prediction and skin permeation, etc. We also show that there are many potential applications of deep learning beyond cheminformatics. It will be important to perform prospective testing (which has been carried out rarely to date) in order to convince skeptics that there will be benefits from investing in this technique.

  3. Analysis and simulation of wireless signal propagation applying geostatistical interpolation techniques

    NASA Astrophysics Data System (ADS)

    Kolyaie, S.; Yaghooti, M.; Majidi, G.

    2011-12-01

    This paper is a part of an ongoing research to examine the capability of geostatistical analysis for mobile networks coverage prediction, simulation and tuning. Mobile network coverage predictions are used to find network coverage gaps and areas with poor serviceability. They are essential data for engineering and management in order to make better decision regarding rollout, planning and optimisation of mobile networks.The objective of this research is to evaluate different interpolation techniques in coverage prediction. In method presented here, raw data collected from drive testing a sample of roads in study area is analysed and various continuous surfaces are created using different interpolation methods. Two general interpolation methods are used in this paper with different variables; first, Inverse Distance Weighting (IDW) with various powers and number of neighbours and second, ordinary kriging with Gaussian, spherical, circular and exponential semivariogram models with different number of neighbours. For the result comparison, we have used check points coming from the same drive test data. Prediction values for check points are extracted from each surface and the differences with actual value are computed. The output of this research helps finding an optimised and accurate model for coverage prediction.

  4. Language as a whole - A new framework for linguistic knowledge integration. Comment on "Approaching human language with complex networks" by Cong and Liu

    NASA Astrophysics Data System (ADS)

    Chen, Xinying

    2014-12-01

    Researchers have been talking about the language system theoretically for many years [1]. A well accepted assumption is that language is a complex adaptive system [2] which is hierarchical [3] and contains multiple levels along the meaning-form dimension [4]. Over the last decade or so, driven by the availability of digital language data and the popularity of statistical approach, many researchers interested in theoretical questions have started to try to quantitatively describe microscopic linguistic features in a certain level of a language system by using authentic language data. Despite the fruitful findings, one question remains unclear. That is, how does a whole language system look like? For answering this question, network approach, an analysis method emphasizes the macro features of structures, has been introduced into linguistic studies [5]. By analyzing the static and dynamic linguistics networks constructed from authentic language data, many macro and micro linguistic features, such as lexical, syntactic or semantic features have been discovered and successfully applied in linguistic typographical studies so that the huge potential of linguistic networks research has revealed [6].

  5. Toward Real Time Neural Net Flight Controllers

    NASA Technical Reports Server (NTRS)

    Jorgensen, C. C.; Mah, R. W.; Ross, J.; Lu, Henry, Jr. (Technical Monitor)

    1994-01-01

    NASA Ames Research Center has an ongoing program in neural network control technology targeted toward real time flight demonstrations using a modified F-15 which permits direct inner loop control of actuators, rapid switching between alternative control designs, and substitutable processors. An important part of this program is the ACTIVE flight project which is examining the feasibility of using neural networks in the design, control, and system identification of new aircraft prototypes. This paper discusses two research applications initiated with this objective in mind: utilization of neural networks for wind tunnel aircraft model identification and rapid learning algorithms for on line reconfiguration and control. The first application involves the identification of aerodynamic flight characteristics from analysis of wind tunnel test data. This identification is important in the early stages of aircraft design because complete specification of control architecture's may not be possible even though concept models at varying scales are available for aerodynamic wind tunnel testing. Testing of this type is often a long and expensive process involving measurement of aircraft lift, drag, and moment of inertia at varying angles of attack and control surface configurations. This information in turn can be used in the design of the flight control systems by applying the derived lookup tables to generate piece wise linearized controllers. Thus, reduced costs in tunnel test times and the rapid transfer of wind tunnel insights into prototype controllers becomes an important factor in more efficient generation and testing of new flight systems. NASA Ames Research Center is successfully applying modular neural networks as one way of anticipating small scale aircraft model performances prior to testing, thus reducing the number of in tunnel test hours and potentially, the number of intermediate scaled models required for estimation of surface flow effects.

  6. Using Deep Learning for Targeted Data Selection, Improving Satellite Observation Utilization for Model Initialization

    NASA Astrophysics Data System (ADS)

    Lee, Y. J.; Bonfanti, C. E.; Trailovic, L.; Etherton, B.; Govett, M.; Stewart, J.

    2017-12-01

    At present, a fraction of all satellite observations are ultimately used for model assimilation. The satellite data assimilation process is computationally expensive and data are often reduced in resolution to allow timely incorporation into the forecast. This problem is only exacerbated by the recent launch of Geostationary Operational Environmental Satellite (GOES)-16 satellite and future satellites providing several order of magnitude increase in data volume. At the NOAA Earth System Research Laboratory (ESRL) we are researching the use of machine learning the improve the initial selection of satellite data to be used in the model assimilation process. In particular, we are investigating the use of deep learning. Deep learning is being applied to many image processing and computer vision problems with great success. Through our research, we are using convolutional neural network to find and mark regions of interest (ROI) to lead to intelligent extraction of observations from satellite observation systems. These targeted observations will be used to improve the quality of data selected for model assimilation and ultimately improve the impact of satellite data on weather forecasts. Our preliminary efforts to identify the ROI's are focused in two areas: applying and comparing state-of-art convolutional neural network models using the analysis data from the National Center for Environmental Prediction (NCEP) Global Forecast System (GFS) weather model, and using these results as a starting point to optimize convolution neural network model for pattern recognition on the higher resolution water vapor data from GOES-WEST and other satellite. This presentation will provide an introduction to our convolutional neural network model to identify and process these ROI's, along with the challenges of data preparation, training the model, and parameter optimization.

  7. Extending unified-theory-of-reinforcement neural networks to steady-state operant behavior.

    PubMed

    Calvin, Olivia L; McDowell, J J

    2016-06-01

    The unified theory of reinforcement has been used to develop models of behavior over the last 20 years (Donahoe et al., 1993). Previous research has focused on the theory's concordance with the respondent behavior of humans and animals. In this experiment, neural networks were developed from the theory to extend the unified theory of reinforcement to operant behavior on single-alternative variable-interval schedules. This area of operant research was selected because previously developed neural networks could be applied to it without significant alteration. Previous research with humans and animals indicates that the pattern of their steady-state behavior is hyperbolic when plotted against the obtained rate of reinforcement (Herrnstein, 1970). A genetic algorithm was used in the first part of the experiment to determine parameter values for the neural networks, because values that were used in previous research did not result in a hyperbolic pattern of behavior. After finding these parameters, hyperbolic and other similar functions were fitted to the behavior produced by the neural networks. The form of the neural network's behavior was best described by an exponentiated hyperbola (McDowell, 1986; McLean and White, 1983; Wearden, 1981), which was derived from the generalized matching law (Baum, 1974). In post-hoc analyses the addition of a baseline rate of behavior significantly improved the fit of the exponentiated hyperbola and removed systematic residuals. The form of this function was consistent with human and animal behavior, but the estimated parameter values were not. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. The telecommunications and data acquisition report

    NASA Technical Reports Server (NTRS)

    Renzetti, N. A. (Editor)

    1981-01-01

    Deep Space Network operations, engineering, and implementation are reported. Developments in Earth-based radiotechnology as applied to other research programs in the fields of Geodynamics, Astrophysics, and programs related to radio searchers (instrumentation and methods) in extraterrestrial areas in the microwave region of the electromagnetic spectrum are also presented.

  9. Reframing Teachers' Work for Educational Innovation

    ERIC Educational Resources Information Center

    Kunnari, Irma; Ilomäki, Liisa

    2016-01-01

    The universities of applied sciences in Finland aim to support students in achieving work life competences by integrating authentic research, development and innovation (RDI) practices into learning. However, pursuing an educational change from a traditional higher education culture to a networked model of working is challenging for teachers. This…

  10. Examining a Terrorist Network Using Contingency Table Analysis

    DTIC Science & Technology

    2011-08-01

    Mathematics and Statistics, with a minor in Actuarial Science. This is my second year as a summer student at the U.S. Army Research Laboratory (ARL...After graduation, I plan on either attending graduate school to concentrate in applied statistics or becoming a mathematical statistician for the

  11. Neural Networks Applied to Signal Processing

    DTIC Science & Technology

    1989-09-01

    Distributed Processing, The MIT Press, Cambridge, MA, 1988. 3. Marvin Minsky and Seymour Papert, Perceptrons, The MIT Press, Cambridge, MA, 1969. 4...signum function, the linear function, and the sigmoid function. Initial research conducted in the 1950’s and 1960’s by Rosenblat, Minsky and others used

  12. Animal welfare: a social networks perspective.

    PubMed

    Kleinhappel, Tanja K; John, Elizabeth A; Pike, Thomas W; Wilkinson, Anna; Burman, Oliver H P

    2016-01-01

    Social network theory provides a useful tool to study complex social relationships in animals. The possibility to look beyond dyadic interactions by considering whole networks of social relationships allows researchers the opportunity to study social groups in more natural ways. As such, network-based analyses provide an informative way to investigate the factors influencing the social environment of group-living animals, and so has direct application to animal welfare. For example, animal groups in captivity are frequently disrupted by separations, reintroductions and/or mixing with unfamiliar individuals and this can lead to social stress and associated aggression. Social network analysis ofanimal groups can help identify the underlying causes of these socially-derived animal welfare concerns. In this review we discuss how this approach can be applied, and how it could be used to identify potential interventions and solutions in the area of animal welfare.

  13. Implementing MANETS in Android based environment using Wi-Fi direct

    NASA Astrophysics Data System (ADS)

    Waqas, Muhammad; Babar, Mohammad Inayatullah Khan; Zafar, Mohammad Haseeb

    2015-05-01

    Packet loss occurs in real-time voice transmission over wireless broadcast Ad-hoc network which creates disruptions in sound. Basic objective of this research is to design a wireless Ad-hoc network based on two Android devices by using the Wireless Fidelity (WIFI) Direct Application Programming Interface (API) and apply the Network Codec, Reed Solomon Code. The network codec is used to encode the data of a music wav file and recover the lost packets if any, packets are dropped using a loss module at the transmitter device to analyze the performance with the objective of retrieving the original file at the receiver device using the network codec. This resulted in faster transmission of the files despite dropped packets. In the end both files had the original formatted music files with complete performance analysis based on the transmission delay.

  14. Leverage Between the Buffering Effect and the Bystander Effect in Social Networking.

    PubMed

    Chiu, Yu-Ping; Chang, Shu-Chen

    2015-08-01

    This study examined encouraged and inhibited social feedback behaviors based on the theories of the buffering effect and the bystander effect. A system program was used to collect personal data and social feedback from a Facebook data set to test the research model. The results revealed that the buffering effect induced a positive relationship between social network size and feedback gained from friends when people's social network size was under a certain cognitive constraint. For people with a social network size that exceeds this cognitive constraint, the bystander effect may occur, in which having more friends may inhibit social feedback. In this study, two social psychological theories were applied to explain social feedback behavior on Facebook, and it was determined that social network size and social feedback exhibited no consistent linear relationship.

  15. Architecture and biological applications of artificial neural networks: a tuberculosis perspective.

    PubMed

    Darsey, Jerry A; Griffin, William O; Joginipelli, Sravanthi; Melapu, Venkata Kiran

    2015-01-01

    Advancement of science and technology has prompted researchers to develop new intelligent systems that can solve a variety of problems such as pattern recognition, prediction, and optimization. The ability of the human brain to learn in a fashion that tolerates noise and error has attracted many researchers and provided the starting point for the development of artificial neural networks: the intelligent systems. Intelligent systems can acclimatize to the environment or data and can maximize the chances of success or improve the efficiency of a search. Due to massive parallelism with large numbers of interconnected processers and their ability to learn from the data, neural networks can solve a variety of challenging computational problems. Neural networks have the ability to derive meaning from complicated and imprecise data; they are used in detecting patterns, and trends that are too complex for humans, or other computer systems. Solutions to the toughest problems will not be found through one narrow specialization; therefore we need to combine interdisciplinary approaches to discover the solutions to a variety of problems. Many researchers in different disciplines such as medicine, bioinformatics, molecular biology, and pharmacology have successfully applied artificial neural networks. This chapter helps the reader in understanding the basics of artificial neural networks, their applications, and methodology; it also outlines the network learning process and architecture. We present a brief outline of the application of neural networks to medical diagnosis, drug discovery, gene identification, and protein structure prediction. We conclude with a summary of the results from our study on tuberculosis data using neural networks, in diagnosing active tuberculosis, and predicting chronic vs. infiltrative forms of tuberculosis.

  16. Brand communities embedded in social networks☆

    PubMed Central

    Zaglia, Melanie E.

    2013-01-01

    Brand communities represent highly valuable marketing, innovation management, and customer relationship management tools. However, applying successful marketing strategies today, and in the future, also means exploring and seizing the unprecedented opportunities of social network environments. This study combines these two social phenomena which have largely been researched separately, and aims to investigate the existence, functionality and different types of brand communities within social networks. The netnographic approach yields strong evidence of this existence; leading to a better understanding of such embedded brand communities, their peculiarities, and motivational drivers for participation; therefore the findings contribute to theory by combining two separate research streams. Due to the advantages of social networks, brand management is now able to implement brand communities with less time and financial effort; however, choosing the appropriate brand community type, cultivating consumers’ interaction, and staying tuned to this social engagement are critical factors to gain anticipated brand outcomes. PMID:23564989

  17. The Strategic Environment Assessment bibliographic network: A quantitative literature review analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caschili, Simone, E-mail: s.caschili@ucl.ac.uk; De Montis, Andrea; Ganciu, Amedeo

    2014-07-01

    Academic literature has been continuously growing at such a pace that it can be difficult to follow the progression of scientific achievements; hence, the need to dispose of quantitative knowledge support systems to analyze the literature of a subject. In this article we utilize network analysis tools to build a literature review of scientific documents published in the multidisciplinary field of Strategic Environment Assessment (SEA). The proposed approach helps researchers to build unbiased and comprehensive literature reviews. We collect information on 7662 SEA publications and build the SEA Bibliographic Network (SEABN) employing the basic idea that two publications are interconnectedmore » if one cites the other. We apply network analysis at macroscopic (network architecture), mesoscopic (sub graph) and microscopic levels (node) in order to i) verify what network structure characterizes the SEA literature, ii) identify the authors, disciplines and journals that are contributing to the international discussion on SEA, and iii) scrutinize the most cited and important publications in the field. Results show that the SEA is a multidisciplinary subject; the SEABN belongs to the class of real small world networks with a dominance of publications in Environmental studies over a total of 12 scientific sectors. Christopher Wood, Olivia Bina, Matthew Cashmore, and Andrew Jordan are found to be the leading authors while Environmental Impact Assessment Review is by far the scientific journal with the highest number of publications in SEA studies. - Highlights: • We utilize network analysis to analyze scientific documents in the SEA field. • We build the SEA Bibliographic Network (SEABN) of 7662 publications. • We apply network analysis at macroscopic, mesoscopic and microscopic network levels. • We identify SEABN architecture, relevant publications, authors, subjects and journals.« less

  18. When is hub gene selection better than standard meta-analysis?

    PubMed

    Langfelder, Peter; Mischel, Paul S; Horvath, Steve

    2013-01-01

    Since hub nodes have been found to play important roles in many networks, highly connected hub genes are expected to play an important role in biology as well. However, the empirical evidence remains ambiguous. An open question is whether (or when) hub gene selection leads to more meaningful gene lists than a standard statistical analysis based on significance testing when analyzing genomic data sets (e.g., gene expression or DNA methylation data). Here we address this question for the special case when multiple genomic data sets are available. This is of great practical importance since for many research questions multiple data sets are publicly available. In this case, the data analyst can decide between a standard statistical approach (e.g., based on meta-analysis) and a co-expression network analysis approach that selects intramodular hubs in consensus modules. We assess the performance of these two types of approaches according to two criteria. The first criterion evaluates the biological insights gained and is relevant in basic research. The second criterion evaluates the validation success (reproducibility) in independent data sets and often applies in clinical diagnostic or prognostic applications. We compare meta-analysis with consensus network analysis based on weighted correlation network analysis (WGCNA) in three comprehensive and unbiased empirical studies: (1) Finding genes predictive of lung cancer survival, (2) finding methylation markers related to age, and (3) finding mouse genes related to total cholesterol. The results demonstrate that intramodular hub gene status with respect to consensus modules is more useful than a meta-analysis p-value when identifying biologically meaningful gene lists (reflecting criterion 1). However, standard meta-analysis methods perform as good as (if not better than) a consensus network approach in terms of validation success (criterion 2). The article also reports a comparison of meta-analysis techniques applied to gene expression data and presents novel R functions for carrying out consensus network analysis, network based screening, and meta analysis.

  19. Study on pattern recognition of Raman spectrum based on fuzzy neural network

    NASA Astrophysics Data System (ADS)

    Zheng, Xiangxiang; Lv, Xiaoyi; Mo, Jiaqing

    2017-10-01

    Hydatid disease is a serious parasitic disease in many regions worldwide, especially in Xinjiang, China. Raman spectrum of the serum of patients with echinococcosis was selected as the research object in this paper. The Raman spectrum of blood samples from healthy people and patients with echinococcosis are measured, of which the spectrum characteristics are analyzed. The fuzzy neural network not only has the ability of fuzzy logic to deal with uncertain information, but also has the ability to store knowledge of neural network, so it is combined with the Raman spectrum on the disease diagnosis problem based on Raman spectrum. Firstly, principal component analysis (PCA) is used to extract the principal components of the Raman spectrum, reducing the network input and accelerating the prediction speed and accuracy of Network based on remaining the original data. Then, the information of the extracted principal component is used as the input of the neural network, the hidden layer of the network is the generation of rules and the inference process, and the output layer of the network is fuzzy classification output. Finally, a part of samples are randomly selected for the use of training network, then the trained network is used for predicting the rest of the samples, and the predicted results are compared with general BP neural network to illustrate the feasibility and advantages of fuzzy neural network. Success in this endeavor would be helpful for the research work of spectroscopic diagnosis of disease and it can be applied in practice in many other spectral analysis technique fields.

  20. A Comparative Study of Unsupervised Anomaly Detection Techniques Using Honeypot Data

    NASA Astrophysics Data System (ADS)

    Song, Jungsuk; Takakura, Hiroki; Okabe, Yasuo; Inoue, Daisuke; Eto, Masashi; Nakao, Koji

    Intrusion Detection Systems (IDS) have been received considerable attention among the network security researchers as one of the most promising countermeasures to defend our crucial computer systems or networks against attackers on the Internet. Over the past few years, many machine learning techniques have been applied to IDSs so as to improve their performance and to construct them with low cost and effort. Especially, unsupervised anomaly detection techniques have a significant advantage in their capability to identify unforeseen attacks, i.e., 0-day attacks, and to build intrusion detection models without any labeled (i.e., pre-classified) training data in an automated manner. In this paper, we conduct a set of experiments to evaluate and analyze performance of the major unsupervised anomaly detection techniques using real traffic data which are obtained at our honeypots deployed inside and outside of the campus network of Kyoto University, and using various evaluation criteria, i.e., performance evaluation by similarity measurements and the size of training data, overall performance, detection ability for unknown attacks, and time complexity. Our experimental results give some practical and useful guidelines to IDS researchers and operators, so that they can acquire insight to apply these techniques to the area of intrusion detection, and devise more effective intrusion detection models.

  1. Social Network and Content Analysis of the North American Carbon Program as a Scientific Community of Practice

    NASA Technical Reports Server (NTRS)

    Brown, Molly E.; Ihli, Monica; Hendrick, Oscar; Delgado-Arias, Sabrina; Escobar, Vanessa M.; Griffith, Peter

    2015-01-01

    The North American Carbon Program (NACP) was formed to further the scientific understanding of sources, sinks, and stocks of carbon in Earth's environment. Carbon cycle science integrates multidisciplinary research, providing decision-support information for managing climate and carbon-related change across multiple sectors of society. This investigation uses the conceptual framework of com-munities of practice (CoP) to explore the role that the NACP has played in connecting researchers into a carbon cycle knowledge network, and in enabling them to conduct physical science that includes ideas from social science. A CoP describes the communities formed when people consistently engage in shared communication and activities toward a common passion or learning goal. We apply the CoP model by using keyword analysis of abstracts from scientific publications to analyze the research outputs of the NACP in terms of its knowledge domain. We also construct a co-authorship network from the publications of core NACP members, describe the structure and social pathways within the community. Results of the content analysis indicate that the NACP community of practice has substantially expanded its research on human and social impacts on the carbon cycle, contributing to a better understanding of how human and physical processes interact with one another. Results of the co-authorship social network analysis demonstrate that the NACP has formed a tightly connected community with many social pathways through which knowledge may flow, and that it has also expanded its network of institutions involved in carbon cycle research over the past seven years.

  2. Summer Research Program (1992). High School Apprenticeship Program (HSAP) Reports. Volume 14. Rome Laboratory.

    DTIC Science & Technology

    1992-12-28

    analysis. Marvin Minsky , carefully applying mathematical techniques, developed rigo.,ous theorems regarding netwcrk operation. His research led to the...electrical circuits but was later convened to computer simulation, which is still commonly used today. Early success by - Marvirn Minsky , Frank...publication of the book Perceptrons ( Minsky and Papert 1969), in which he and Seymore Papert proved that the single-layer networks then in use were

  3. Brain functional connectivity network studies of acupuncture: a systematic review on resting-state fMRI.

    PubMed

    Cai, Rong-Lin; Shen, Guo-Ming; Wang, Hao; Guan, Yuan-Yuan

    2018-01-01

    Functional magnetic resonance imaging (fMRI) is a novel method for studying the changes of brain networks due to acupuncture treatment. In recent years, more and more studies have focused on the brain functional connectivity network of acupuncture stimulation. To offer an overview of the different influences of acupuncture on the brain functional connectivity network from studies using resting-state fMRI. The authors performed a systematic search according to PRISMA guidelines. The database PubMed was searched from January 1, 2006 to December 31, 2016 with restriction to human studies in English language. Electronic searches were conducted in PubMed using the keywords "acupuncture" and "neuroimaging" or "resting-state fMRI" or "functional connectivity". Selection of included articles, data extraction and methodological quality assessments were respectively conducted by two review authors. Forty-four resting-state fMRI studies were included in this systematic review according to inclusion criteria. Thirteen studies applied manual acupuncture vs. sham, four studies applied electro-acupuncture vs. sham, two studies also compared transcutaneous electrical acupoint stimulation vs. sham, and nine applied sham acupoint as control. Nineteen studies with a total number of 574 healthy subjects selected to perform fMRI only considered healthy adult volunteers. The brain functional connectivity of the patients had varying degrees of change. Compared with sham acupuncture, verum acupuncture could increase default mode network and sensorimotor network connectivity with pain-, affective- and memory-related brain areas. It has significantly greater connectivity of genuine acupuncture between the periaqueductal gray, anterior cingulate cortex, left posterior cingulate cortex, right anterior insula, limbic/paralimbic and precuneus compared with sham acupuncture. Some research had also shown that acupuncture could adjust the limbic-paralimbic-neocortical network, brainstem, cerebellum, subcortical and hippocampus brain areas. It can be presumed that the functional connectivity network is closely related to the mechanism of acupuncture, and central integration plays a critical role in the acupuncture mechanism. Copyright © 2017 Shanghai Changhai Hospital. Published by Elsevier B.V. All rights reserved.

  4. Changes in Social Capital and Networks: A Study of Community-Based Environmental Management Through a School-Centered Research Program

    NASA Astrophysics Data System (ADS)

    Thornton, Teresa; Leahy, Jessica

    2012-02-01

    Social network analysis (SNA) is a social science research tool that has not been applied to educational programs. This analysis is critical to documenting the changes in social capital and networks that result from community based K-12 educational collaborations. We review SNA and show an application of this technique in a school-centered, community based environmental monitoring research (CBEMR) program. This CBEMR employs K-12 students, state and local government employees, environmental organization representatives, local businesses, colleges, and community volunteers. As citizen scientists and researchers, collaborators create a database of local groundwater quality to use as a baseline for long-term environmental health management and public education. Past studies have evaluated the reliability of data generated by students acting as scientists, but there have been few studies relating to power dynamics, social capital, and resilience in school-centered CBEMR programs. We use qualitative and quantitative data gathered from a science education program conducted in five states in the northeastern United States. SPSS and NVivo data were derived from semi-structured interviews with thirty-nine participants before and after their participation in the CBEMR. Pajek software was used to determine participant centralities and power brokers within networks. Results indicate that there were statistically significant increases in social capital and resilience in social networks after participation in the school-centered CBEMR program leading to an increased community involvement in environmental health management. Limiting factors to the CBMER were based on the educator/administration relationship.

  5. Neural networks and fault probability evaluation for diagnosis issues.

    PubMed

    Kourd, Yahia; Lefebvre, Dimitri; Guersi, Noureddine

    2014-01-01

    This paper presents a new FDI technique for fault detection and isolation in unknown nonlinear systems. The objective of the research is to construct and analyze residuals by means of artificial intelligence and probabilistic methods. Artificial neural networks are first used for modeling issues. Neural networks models are designed for learning the fault-free and the faulty behaviors of the considered systems. Once the residuals generated, an evaluation using probabilistic criteria is applied to them to determine what is the most likely fault among a set of candidate faults. The study also includes a comparison between the contributions of these tools and their limitations, particularly through the establishment of quantitative indicators to assess their performance. According to the computation of a confidence factor, the proposed method is suitable to evaluate the reliability of the FDI decision. The approach is applied to detect and isolate 19 fault candidates in the DAMADICS benchmark. The results obtained with the proposed scheme are compared with the results obtained according to a usual thresholding method.

  6. Virtual target tracking (VTT) as applied to mobile satellite communication networks

    NASA Astrophysics Data System (ADS)

    Amoozegar, Farid

    1999-08-01

    Traditionally, target tracking has been used for aerospace applications, such as, tracking highly maneuvering targets in a cluttered environment for missile-to-target intercept scenarios. Although the speed and maneuvering capability of current aerospace targets demand more efficient algorithms, many complex techniques have already been proposed in the literature, which primarily cover the defense applications of tracking methods. On the other hand, the rapid growth of Global Communication Systems, Global Information Systems (GIS), and Global Positioning Systems (GPS) is creating new and more diverse challenges for multi-target tracking applications. Mobile communication and computing can very well appreciate a huge market for Cellular Communication and Tracking Devices (CCTD), which will be tracking networked devices at the cellular level. The objective of this paper is to introduce a new concept, i.e., Virtual Target Tracking (VTT) for commercial applications of multi-target tracking algorithms and techniques as applied to mobile satellite communication networks. It would be discussed how Virtual Target Tracking would bring more diversity to target tracking research.

  7. Quality resource networks for young women in science: The role of Internet-facilitated ties

    NASA Astrophysics Data System (ADS)

    Gillette, Shana Cecile

    In communications, a new approach to the study of online interaction has been suggested by social network analysts. Garton, Haythornthwaite, and Wellman (1997) have outlined the importance of using network analysis to study how media are interconnected with other social aspects of a media user's world. As applied here, this approach to communication when combined with recent network studies from the fields of education and rural development, provides a method for looking at the role of Internet-facilitated ties in the development of resource networks in the learning communities of young women from seven rural schools across the state of Washington. Twenty-six young women (ages 14-16) from diverse cultural and ethnic backgrounds (approximately half of the participants are Hispanic or Native American, the other half are White) participated in the research. Participants were selected because they shared a common educational orientation through Rural Girls in Science, a NSF-funded program at the Northwest Center for Research on Women at the University of Washington. As part of the school-based component of the Rural Girls in Science program, all 26 participants designed and conducted year-long, community-based research projects in science. Each school in the program was provided an Internet workstation for communication and research. Through the Internet, students could conceivably maintain distant ties with mentors and research scientists whom they met at summer camp as well as seek additional information resources. Toward the conclusion of the long-term research projects, each student participant was interviewed using a participatory form of network analysis that included a combined qualitative and quantitative approach. Given the small number of participants and schools in the sample, the results from the analysis can not be generalized to a larger population. However the study of the structure and composition of networks among individuals and school groups provided insight into how media are implicated in the development of resource networks, in particular for a subset of students who have been underrepresented in science--young ethnic minority women.

  8. Schools, Social Capital and Space

    ERIC Educational Resources Information Center

    Allan, Julie; Catts, Ralph

    2014-01-01

    This paper reports on the significance of social capital in relation to education, exploring its relevance to teachers and other professionals as well as among young people. It draws on aspects of five case studies undertaken by the Schools and Social Capital Network, within the Applied Educational Research Scheme in Scotland. These case studies…

  9. Knowledge Management in Higher Education in Thailand

    ERIC Educational Resources Information Center

    Chumjit, Surat

    2012-01-01

    This study examines how knowledge management (KM) is applied to higher education in Thailand, and it will also examine whether higher education in Thailand is ready to combine KM with their educational missions in terms of teaching, research, administration, and strategic planning. Knowledge creation and social networking frameworks are used to…

  10. Artificial neural network intelligent method for prediction

    NASA Astrophysics Data System (ADS)

    Trifonov, Roumen; Yoshinov, Radoslav; Pavlova, Galya; Tsochev, Georgi

    2017-09-01

    Accounting and financial classification and prediction problems are high challenge and researchers use different methods to solve them. Methods and instruments for short time prediction of financial operations using artificial neural network are considered. The methods, used for prediction of financial data as well as the developed forecasting system with neural network are described in the paper. The architecture of a neural network used four different technical indicators, which are based on the raw data and the current day of the week is presented. The network developed is used for forecasting movement of stock prices one day ahead and consists of an input layer, one hidden layer and an output layer. The training method is algorithm with back propagation of the error. The main advantage of the developed system is self-determination of the optimal topology of neural network, due to which it becomes flexible and more precise The proposed system with neural network is universal and can be applied to various financial instruments using only basic technical indicators as input data.

  11. Measuring Road Network Vulnerability with Sensitivity Analysis

    PubMed Central

    Jun-qiang, Leng; Long-hai, Yang; Liu, Wei-yi; Zhao, Lin

    2017-01-01

    This paper focuses on the development of a method for road network vulnerability analysis, from the perspective of capacity degradation, which seeks to identify the critical infrastructures in the road network and the operational performance of the whole traffic system. This research involves defining the traffic utility index and modeling vulnerability of road segment, route, OD (Origin Destination) pair and road network. Meanwhile, sensitivity analysis method is utilized to calculate the change of traffic utility index due to capacity degradation. This method, compared to traditional traffic assignment, can improve calculation efficiency and make the application of vulnerability analysis to large actual road network possible. Finally, all the above models and calculation method is applied to actual road network evaluation to verify its efficiency and utility. This approach can be used as a decision-supporting tool for evaluating the performance of road network and identifying critical infrastructures in transportation planning and management, especially in the resource allocation for mitigation and recovery. PMID:28125706

  12. Application of Petri net theory for modelling and validation of the sucrose breakdown pathway in the potato tuber.

    PubMed

    Koch, Ina; Junker, Björn H; Heiner, Monika

    2005-04-01

    Because of the complexity of metabolic networks and their regulation, formal modelling is a useful method to improve the understanding of these systems. An essential step in network modelling is to validate the network model. Petri net theory provides algorithms and methods, which can be applied directly to metabolic network modelling and analysis in order to validate the model. The metabolism between sucrose and starch in the potato tuber is of great research interest. Even if the metabolism is one of the best studied in sink organs, it is not yet fully understood. We provide an approach for model validation of metabolic networks using Petri net theory, which we demonstrate for the sucrose breakdown pathway in the potato tuber. We start with hierarchical modelling of the metabolic network as a Petri net and continue with the analysis of qualitative properties of the network. The results characterize the net structure and give insights into the complex net behaviour.

  13. Information diffusion in structured online social networks

    NASA Astrophysics Data System (ADS)

    Li, Pei; Zhang, Yini; Qiao, Fengcai; Wang, Hui

    2015-05-01

    Nowadays, due to the word-of-mouth effect, online social networks have been considered to be efficient approaches to conduct viral marketing, which makes it of great importance to understand the diffusion dynamics in online social networks. However, most research on diffusion dynamics in epidemiology and existing social networks cannot be applied directly to characterize online social networks. In this paper, we propose models to characterize the information diffusion in structured online social networks with push-based forwarding mechanism. We introduce the term user influence to characterize the average number of times that messages are browsed which is incurred by a given type user generating a message, and study the diffusion threshold, above which the user influence of generating a message will approach infinity. We conduct simulations and provide the simulation results, which are consistent with the theoretical analysis results perfectly. These results are of use in understanding the diffusion dynamics in online social networks and also critical for advertisers in viral marketing who want to estimate the user influence before posting an advertisement.

  14. Neural self-tuning adaptive control of non-minimum phase system

    NASA Technical Reports Server (NTRS)

    Ho, Long T.; Bialasiewicz, Jan T.; Ho, Hai T.

    1993-01-01

    The motivation of this research came about when a neural network direct adaptive control scheme was applied to control the tip position of a flexible robotic arm. Satisfactory control performance was not attainable due to the inherent non-minimum phase characteristics of the flexible robotic arm tip. Most of the existing neural network control algorithms are based on the direct method and exhibit very high sensitivity, if not unstable, closed-loop behavior. Therefore, a neural self-tuning control (NSTC) algorithm is developed and applied to this problem and showed promising results. Simulation results of the NSTC scheme and the conventional self-tuning (STR) control scheme are used to examine performance factors such as control tracking mean square error, estimation mean square error, transient response, and steady state response.

  15. Implementations of back propagation algorithm in ecosystems applications

    NASA Astrophysics Data System (ADS)

    Ali, Khalda F.; Sulaiman, Riza; Elamir, Amir Mohamed

    2015-05-01

    Artificial Neural Networks (ANNs) have been applied to an increasing number of real world problems of considerable complexity. Their most important advantage is in solving problems which are too complex for conventional technologies, that do not have an algorithmic solutions or their algorithmic Solutions is too complex to be found. In general, because of their abstraction from the biological brain, ANNs are developed from concept that evolved in the late twentieth century neuro-physiological experiments on the cells of the human brain to overcome the perceived inadequacies with conventional ecological data analysis methods. ANNs have gained increasing attention in ecosystems applications, because of ANN's capacity to detect patterns in data through non-linear relationships, this characteristic confers them a superior predictive ability. In this research, ANNs is applied in an ecological system analysis. The neural networks use the well known Back Propagation (BP) Algorithm with the Delta Rule for adaptation of the system. The Back Propagation (BP) training Algorithm is an effective analytical method for adaptation of the ecosystems applications, the main reason because of their capacity to detect patterns in data through non-linear relationships. This characteristic confers them a superior predicting ability. The BP algorithm uses supervised learning, which means that we provide the algorithm with examples of the inputs and outputs we want the network to compute, and then the error is calculated. The idea of the back propagation algorithm is to reduce this error, until the ANNs learns the training data. The training begins with random weights, and the goal is to adjust them so that the error will be minimal. This research evaluated the use of artificial neural networks (ANNs) techniques in an ecological system analysis and modeling. The experimental results from this research demonstrate that an artificial neural network system can be trained to act as an expert ecosystem analyzer for many applications in ecological fields. The pilot ecosystem analyzer shows promising ability for generalization and requires further tuning and refinement of the basis neural network system for optimal performance.

  16. Nonlinear response and crack propagation in Articular Cartilage modeled as a biopolymer double network

    NASA Astrophysics Data System (ADS)

    Sindermann, Andrew; Bartell, Lena; Bonassar, Lawrence; Cohen, Itai; Das, Moumita

    Articular cartilage (AC) is a soft tissue that covers the ends of bones to distribute mechanical load in joints. It is primarily composed of water, type II collagen, and large aggregating proteoglycans called aggrecan. Its fracture toughness is extremely high compared to synthetic materials, but the underlying physical mechanism is not well understood. Here we investigate how the toughness of AC depends on its microscale composition and structure by modeling it as a double network made of collagen and aggrecan embedded in a background gel, and by using rigidity percolation theory to characterize its mechanical response to shear and compressive (or tensile) strains. Our calculations of the mechanical moduli, as well as network-wide heat maps of local strains and energy show shear-stiffening and compression-softening with increasing applied strain, in good qualitative agreement with known experimental results. Notches are then introduced in the network to study crack propagation under shear and tensile strains for various applied loads. Preliminary results indicate a loading threshold above which the network will undergo catastrophic failure by fracturing. Our results may help to formulate a Griffith-like criterion for crack propagation and fracture in soft tissues. This work was partially supported by a Cottrell College Science Award from the Research Corporation for Science Advancement.

  17. Analyzing big data in social media: Text and network analyses of an eating disorder forum.

    PubMed

    Moessner, Markus; Feldhege, Johannes; Wolf, Markus; Bauer, Stephanie

    2018-05-10

    Social media plays an important role in everyday life of young people. Numerous studies claim negative effects of social media and media in general on eating disorder risk factors. Despite the availability of big data, only few studies have exploited the possibilities so far in the field of eating disorders. Methods for data extraction, computerized content analysis, and network analysis will be introduced. Strategies and methods will be exemplified for an ad-hoc dataset of 4,247 posts and 34,118 comments by 3,029 users of the proed forum on Reddit. Text analysis with latent Dirichlet allocation identified nine topics related to social support and eating disorder specific content. Social network analysis describes the overall communication patterns, and could identify community structures and most influential users. A linear network autocorrelation model was applied to estimate associations in language among network neighbors. The supplement contains R code for data extraction and analyses. This paper provides an introduction to investigating social media data, and will hopefully stimulate big data social media research in eating disorders. When applied in real-time, the methods presented in this manuscript could contribute to improving the safety of ED-related online communication. © 2018 Wiley Periodicals, Inc.

  18. Classifying the molecular functions of Rab GTPases in membrane trafficking using deep convolutional neural networks.

    PubMed

    Le, Nguyen-Quoc-Khanh; Ho, Quang-Thai; Ou, Yu-Yen

    2018-06-13

    Deep learning has been increasingly used to solve a number of problems with state-of-the-art performance in a wide variety of fields. In biology, deep learning can be applied to reduce feature extraction time and achieve high levels of performance. In our present work, we apply deep learning via two-dimensional convolutional neural networks and position-specific scoring matrices to classify Rab protein molecules, which are main regulators in membrane trafficking for transferring proteins and other macromolecules throughout the cell. The functional loss of specific Rab molecular functions has been implicated in a variety of human diseases, e.g., choroideremia, intellectual disabilities, cancer. Therefore, creating a precise model for classifying Rabs is crucial in helping biologists understand the molecular functions of Rabs and design drug targets according to such specific human disease information. We constructed a robust deep neural network for classifying Rabs that achieved an accuracy of 99%, 99.5%, 96.3%, and 97.6% for each of four specific molecular functions. Our approach demonstrates superior performance to traditional artificial neural networks. Therefore, from our proposed study, we provide both an effective tool for classifying Rab proteins and a basis for further research that can improve the performance of biological modeling using deep neural networks. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Communication performance analysis and comparison of two patterns for data exchange between nodes in WorldFIP fieldbus network.

    PubMed

    Liang, Geng; Wang, Hong; Li, Wen; Li, Dazhong

    2010-10-01

    Data exchange patterns between nodes in WorldFIP fieldbus network are quite important and meaningful in improving the communication performance of WorldFIP network. Based on the basic communication ways supported in WorldFIP protocol, we propose two patterns for implementation of data exchange between peer nodes over WorldFIP network. Effects on communication performance of WorldFIP network in terms of some network parameters, such as number of bytes in user's data and turn-around time, in both the proposed patterns, are analyzed at length when different network speeds are applied. Such effects with the patterns of periodic message transmission using acknowledged and non-acknowledged messages, are also studied. Communication performance in both the proposed patterns are analyzed and compared. Practical applications of the research are presented. Through the study, it can be seen that different data exchange patterns make a great difference in improving communication efficiency with different network parameters, which is quite useful and helpful in the practical design of distributed systems based on WorldFIP network. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  20. NETWORK STRUCTURE, MULTIPLEXITY, AND EVOLUTION AS INFLUENCES ON COMMUNITY-BASED PARTICIPATORY INTERVENTIONS.

    PubMed

    Wang, Rong; Tanjasiri, Sora Park; Palmer, Paula; Valente, Thomas W

    2016-08-01

    This study applies an ecological perspective to the context of community-based participatory research (CBPR). Specifically, it examines how endogenous and exogenous factors influence the dynamics of CBPR partnerships, including the tendency toward reciprocity and transitivity, the organizational type, the level of resource sufficiency, the level of organizational influence, and the perceived CBPR effect on organizations. The results demonstrate that network structure is related to the selection and retention of interorganizational networks over time, and organizations of the same type are more likely to form partnerships with each other. It shows that the dynamics of the CBPR initiative presented in this article were driven by the structure of the interorganizational networks rather than their individual organizational attributes. Implications for sustaining CBPR partnerships are drawn from the findings.

  1. Use of behavioral biometrics in intrusion detection and online gaming

    NASA Astrophysics Data System (ADS)

    Yampolskiy, Roman V.; Govindaraju, Venu

    2006-04-01

    Behavior based intrusion detection is a frequently used approach for insuring network security. We expend behavior based intrusion detection approach to a new domain of game networks. Specifically, our research shows that a unique behavioral biometric can be generated based on the strategy used by an individual to play a game. We wrote software capable of automatically extracting behavioral profiles for each player in a game of Poker. Once a behavioral signature is generated for a player, it is continuously compared against player's current actions. Any significant deviations in behavior are reported to the game server administrator as potential security breaches. Our algorithm addresses a well-known problem of user verification and can be re-applied to the fields beyond game networks, such as operating systems and non-game networks security.

  2. Human Inspired Self-developmental Model of Neural Network (HIM): Introducing Content/Form Computing

    NASA Astrophysics Data System (ADS)

    Krajíček, Jiří

    This paper presents cross-disciplinary research between medical/psychological evidence on human abilities and informatics needs to update current models in computer science to support alternative methods for computation and communication. In [10] we have already proposed hypothesis introducing concept of human information model (HIM) as cooperative system. Here we continue on HIM design in detail. In our design, first we introduce Content/Form computing system which is new principle of present methods in evolutionary computing (genetic algorithms, genetic programming). Then we apply this system on HIM (type of artificial neural network) model as basic network self-developmental paradigm. Main inspiration of our natural/human design comes from well known concept of artificial neural networks, medical/psychological evidence and Sheldrake theory of "Nature as Alive" [22].

  3. NETWORK STRUCTURE, MULTIPLEXITY, AND EVOLUTION AS INFLUENCES ON COMMUNITY-BASED PARTICIPATORY INTERVENTIONS

    PubMed Central

    Wang, Rong; Tanjasiri, Sora Park; Palmer, Paula; Valente, Thomas W.

    2017-01-01

    This study applies an ecological perspective to the context of community-based participatory research (CBPR). Specifically, it examines how endogenous and exogenous factors influence the dynamics of CBPR partnerships, including the tendency toward reciprocity and transitivity, the organizational type, the level of resource sufficiency, the level of organizational influence, and the perceived CBPR effect on organizations. The results demonstrate that network structure is related to the selection and retention of interorganizational networks over time, and organizations of the same type are more likely to form partnerships with each other. It shows that the dynamics of the CBPR initiative presented in this article were driven by the structure of the interorganizational networks rather than their individual organizational attributes. Implications for sustaining CBPR partnerships are drawn from the findings. PMID:29430067

  4. Information theory in systems biology. Part II: protein-protein interaction and signaling networks.

    PubMed

    Mousavian, Zaynab; Díaz, José; Masoudi-Nejad, Ali

    2016-03-01

    By the development of information theory in 1948 by Claude Shannon to address the problems in the field of data storage and data communication over (noisy) communication channel, it has been successfully applied in many other research areas such as bioinformatics and systems biology. In this manuscript, we attempt to review some of the existing literatures in systems biology, which are using the information theory measures in their calculations. As we have reviewed most of the existing information-theoretic methods in gene regulatory and metabolic networks in the first part of the review, so in the second part of our study, the application of information theory in other types of biological networks including protein-protein interaction and signaling networks will be surveyed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Metabolic Brain Network Analysis of Hypothyroidism Symptom Based on [18F]FDG-PET of Rats.

    PubMed

    Wan, Hongkai; Tan, Ziyu; Zheng, Qiang; Yu, Jing

    2018-03-12

    Recent researches have demonstrated the value of using 2-deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG) positron emission tomography (PET) imaging to reveal the hypothyroidism-related damages in local brain regions. However, the influence of hypothyroidism on the entire brain network is barely studied. This study focuses on the application of graph theory on analyzing functional brain networks of the hypothyroidism symptom. For both the hypothyroidism and the control groups of Wistar rats, the functional brain networks were constructed by thresholding the glucose metabolism correlation matrices of 58 brain regions. The network topological properties (including the small-world properties and the nodal centralities) were calculated and compared between the two groups. We found that the rat brains, like human brains, have typical properties of the small-world network in both the hypothyroidism and the control groups. However, the hypothyroidism group demonstrated lower global efficiency and decreased local cliquishness of the brain network, indicating hypothyroidism-related impairment to the brain network. The hypothyroidism group also has decreased nodal centrality in the left posterior hippocampus, the right hypothalamus, pituitary, pons, and medulla. This observation accorded with the hypothyroidism-related functional disorder of hypothalamus-pituitary-thyroid (HPT) feedback regulation mechanism. Our research quantitatively confirms that hypothyroidism hampers brain cognitive function by causing impairment to the brain network of glucose metabolism. This study reveals the feasibility and validity of applying graph theory method to preclinical [ 18 F]FDG-PET images and facilitates future study on human subjects.

  6. Optimization Study of Hydrogen Gas Adsorption on Zig-zag Single-walled Carbon Nanotubes: The Artificial Neural Network Analysis

    NASA Astrophysics Data System (ADS)

    Nasruddin; Lestari, M.; Supriyadi; Sholahudin

    2018-03-01

    The use of hydrogen gas in fuel cell technology has a huge opportunity to be applied in upcoming vehicle technology. One of the most important problems in fuel cell technology is the hydrogen storage. The adsorption of hydrogen in carbon-based materials attracts a lot of attention because of its reliability. This study investigated the adsorption of hydrogen gas in Single-walled Carbon Nano Tubes (SWCNT) with chilarity of (0, 12), (0, 15), and (0, 18) to find the optimum chilarity. Artificial Neural Networks (ANN) can be used to predict the hydrogen storage capacity at different pressure and temperature conditions appropriately, using simulated series of data. The Artificial Neural Network is modeled as a predictor of the hydrogen adsorption capacity which provides solutions to some deficiencies in molecular dynamics (MD) simulations. In a previous study, ANN configurations have been developed for 77k, 233k, and 298k temperatures in hydrogen gas storage. To prepare this prediction, ANN is modeled to find out the configurations that exist in the set of training and validation of specified data selection, the distance between data, and the number of neurons that produce the smallest error. This configuration is needed to make an accurate artificial neural network. The configuration of neural network was then applied to this research. The neural network analysis results show that the best configuration of artificial neural network in hydrogen storage is at 233K temperature i.e. on SWCNT with chilarity of (0.12).

  7. No Reef Is an Island: Integrating Coral Reef Connectivity Data into the Design of Regional-Scale Marine Protected Area Networks.

    PubMed

    Schill, Steven R; Raber, George T; Roberts, Jason J; Treml, Eric A; Brenner, Jorge; Halpin, Patrick N

    2015-01-01

    We integrated coral reef connectivity data for the Caribbean and Gulf of Mexico into a conservation decision-making framework for designing a regional scale marine protected area (MPA) network that provides insight into ecological and political contexts. We used an ocean circulation model and regional coral reef data to simulate eight spawning events from 2008-2011, applying a maximum 30-day pelagic larval duration and 20% mortality rate. Coral larval dispersal patterns were analyzed between coral reefs across jurisdictional marine zones to identify spatial relationships between larval sources and destinations within countries and territories across the region. We applied our results in Marxan, a conservation planning software tool, to identify a regional coral reef MPA network design that meets conservation goals, minimizes underlying threats, and maintains coral reef connectivity. Our results suggest that approximately 77% of coral reefs identified as having a high regional connectivity value are not included in the existing MPA network. This research is unique because we quantify and report coral larval connectivity data by marine ecoregions and Exclusive Economic Zones (EZZ) and use this information to identify gaps in the current Caribbean-wide MPA network by integrating asymmetric connectivity information in Marxan to design a regional MPA network that includes important reef network connections. The identification of important reef connectivity metrics guides the selection of priority conservation areas and supports resilience at the whole system level into the future.

  8. No Reef Is an Island: Integrating Coral Reef Connectivity Data into the Design of Regional-Scale Marine Protected Area Networks

    PubMed Central

    Schill, Steven R.; Raber, George T.; Roberts, Jason J.; Treml, Eric A.; Brenner, Jorge; Halpin, Patrick N.

    2015-01-01

    We integrated coral reef connectivity data for the Caribbean and Gulf of Mexico into a conservation decision-making framework for designing a regional scale marine protected area (MPA) network that provides insight into ecological and political contexts. We used an ocean circulation model and regional coral reef data to simulate eight spawning events from 2008–2011, applying a maximum 30-day pelagic larval duration and 20% mortality rate. Coral larval dispersal patterns were analyzed between coral reefs across jurisdictional marine zones to identify spatial relationships between larval sources and destinations within countries and territories across the region. We applied our results in Marxan, a conservation planning software tool, to identify a regional coral reef MPA network design that meets conservation goals, minimizes underlying threats, and maintains coral reef connectivity. Our results suggest that approximately 77% of coral reefs identified as having a high regional connectivity value are not included in the existing MPA network. This research is unique because we quantify and report coral larval connectivity data by marine ecoregions and Exclusive Economic Zones (EZZ) and use this information to identify gaps in the current Caribbean-wide MPA network by integrating asymmetric connectivity information in Marxan to design a regional MPA network that includes important reef network connections. The identification of important reef connectivity metrics guides the selection of priority conservation areas and supports resilience at the whole system level into the future. PMID:26641083

  9. Prior knowledge driven Granger causality analysis on gene regulatory network discovery

    DOE PAGES

    Yao, Shun; Yoo, Shinjae; Yu, Dantong

    2015-08-28

    Our study focuses on discovering gene regulatory networks from time series gene expression data using the Granger causality (GC) model. However, the number of available time points (T) usually is much smaller than the number of target genes (n) in biological datasets. The widely applied pairwise GC model (PGC) and other regularization strategies can lead to a significant number of false identifications when n>>T. In this study, we proposed a new method, viz., CGC-2SPR (CGC using two-step prior Ridge regularization) to resolve the problem by incorporating prior biological knowledge about a target gene data set. In our simulation experiments, themore » propose new methodology CGC-2SPR showed significant performance improvement in terms of accuracy over other widely used GC modeling (PGC, Ridge and Lasso) and MI-based (MRNET and ARACNE) methods. In addition, we applied CGC-2SPR to a real biological dataset, i.e., the yeast metabolic cycle, and discovered more true positive edges with CGC-2SPR than with the other existing methods. In our research, we noticed a “ 1+1>2” effect when we combined prior knowledge and gene expression data to discover regulatory networks. Based on causality networks, we made a functional prediction that the Abm1 gene (its functions previously were unknown) might be related to the yeast’s responses to different levels of glucose. In conclusion, our research improves causality modeling by combining heterogeneous knowledge, which is well aligned with the future direction in system biology. Furthermore, we proposed a method of Monte Carlo significance estimation (MCSE) to calculate the edge significances which provide statistical meanings to the discovered causality networks. All of our data and source codes will be available under the link https://bitbucket.org/dtyu/granger-causality/wiki/Home.« less

  10. Modelling the evolution of a bi-partite network Peer referral in interlocking directorates*

    PubMed Central

    Edling, Christofer

    2010-01-01

    A central part of relational ties between social actors are constituted by shared affiliations and events. The action of joint participation reinforces personal ties between social actors as well as mutually shared values and norms that in turn perpetuate the patterns of social action that define groups. Therefore the study of bipartite networks is central to social science. Furthermore, the dynamics of these processes suggests that bipartite networks should not be considered static structures but rather be studied over time. In order to model the evolution of bipartite networks empirically we introduce a class of models and a Bayesian inference scheme that extends previous stochastic actor-oriented models for unimodal graphs. Contemporary research on interlocking directorates provides an area of research in which it seems reasonable to apply the model. Specifically, we address the question of how tie formation, i.e. director recruitment, contributes to the structural properties of the interlocking directorate network. For boards of directors on the Stockholm stock exchange we propose that a prolific mechanism in tie formation is that of peer referral. The results indicate that such a mechanism is present, generating multiple interlocks between boards. PMID:24944435

  11. Deep learning for brain tumor classification

    NASA Astrophysics Data System (ADS)

    Paul, Justin S.; Plassard, Andrew J.; Landman, Bennett A.; Fabbri, Daniel

    2017-03-01

    Recent research has shown that deep learning methods have performed well on supervised machine learning, image classification tasks. The purpose of this study is to apply deep learning methods to classify brain images with different tumor types: meningioma, glioma, and pituitary. A dataset was publicly released containing 3,064 T1-weighted contrast enhanced MRI (CE-MRI) brain images from 233 patients with either meningioma, glioma, or pituitary tumors split across axial, coronal, or sagittal planes. This research focuses on the 989 axial images from 191 patients in order to avoid confusing the neural networks with three different planes containing the same diagnosis. Two types of neural networks were used in classification: fully connected and convolutional neural networks. Within these two categories, further tests were computed via the augmentation of the original 512×512 axial images. Training neural networks over the axial data has proven to be accurate in its classifications with an average five-fold cross validation of 91.43% on the best trained neural network. This result demonstrates that a more general method (i.e. deep learning) can outperform specialized methods that require image dilation and ring-forming subregions on tumors.

  12. An investigation of emotion dynamics in major depressive disorder patients and healthy persons using sparse longitudinal networks.

    PubMed

    de Vos, Stijn; Wardenaar, Klaas J; Bos, Elisabeth H; Wit, Ernst C; Bouwmans, Mara E J; de Jonge, Peter

    2017-01-01

    Differences in within-person emotion dynamics may be an important source of heterogeneity in depression. To investigate these dynamics, researchers have previously combined multilevel regression analyses with network representations. However, sparse network methods, specifically developed for longitudinal network analyses, have not been applied. Therefore, this study used this approach to investigate population-level and individual-level emotion dynamics in healthy and depressed persons and compared this method with the multilevel approach. Time-series data were collected in pair-matched healthy persons and major depressive disorder (MDD) patients (n = 54). Seven positive affect (PA) and seven negative affect (NA) items were administered electronically at 90 times (30 days; thrice per day). The population-level (healthy vs. MDD) and individual-level time series were analyzed using a sparse longitudinal network model based on vector autoregression. The population-level model was also estimated with a multilevel approach. Effects of different preprocessing steps were evaluated as well. The characteristics of the longitudinal networks were investigated to gain insight into the emotion dynamics. In the population-level networks, longitudinal network connectivity was strongest in the healthy group, with nodes showing more and stronger longitudinal associations with each other. Individually estimated networks varied strongly across individuals. Individual variations in network connectivity were unrelated to baseline characteristics (depression status, neuroticism, severity). A multilevel approach applied to the same data showed higher connectivity in the MDD group, which seemed partly related to the preprocessing approach. The sparse network approach can be useful for the estimation of networks with multiple nodes, where overparameterization is an issue, and for individual-level networks. However, its current inability to model random effects makes it less useful as a population-level approach in case of large heterogeneity. Different preprocessing strategies appeared to strongly influence the results, complicating inferences about network density.

  13. Using social networking to understand social networks: analysis of a mobile phone closed user group used by a Ghanaian health team.

    PubMed

    Kaonga, Nadi Nina; Labrique, Alain; Mechael, Patricia; Akosah, Eric; Ohemeng-Dapaah, Seth; Sakyi Baah, Joseph; Kodie, Richmond; Kanter, Andrew S; Levine, Orin

    2013-04-03

    The network structure of an organization influences how well or poorly an organization communicates and manages its resources. In the Millennium Villages Project site in Bonsaaso, Ghana, a mobile phone closed user group has been introduced for use by the Bonsaaso Millennium Villages Project Health Team and other key individuals. No assessment on the benefits or barriers of the use of the closed user group had been carried out. The purpose of this research was to make the case for the use of social network analysis methods to be applied in health systems research--specifically related to mobile health. This study used mobile phone voice records of, conducted interviews with, and reviewed call journals kept by a mobile phone closed user group consisting of the Bonsaaso Millennium Villages Project Health Team. Social network analysis methodology complemented by a qualitative component was used. Monthly voice data of the closed user group from Airtel Bharti Ghana were analyzed using UCINET and visual depictions of the network were created using NetDraw. Interviews and call journals kept by informants were analyzed using NVivo. The methodology was successful in helping identify effective organizational structure. Members of the Health Management Team were the more central players in the network, rather than the Community Health Nurses (who might have been expected to be central). Social network analysis methodology can be used to determine the most productive structure for an organization or team, identify gaps in communication, identify key actors with greatest influence, and more. In conclusion, this methodology can be a useful analytical tool, especially in the context of mobile health, health services, and operational and managerial research.

  14. Social networks as embedded complex adaptive systems.

    PubMed

    Benham-Hutchins, Marge; Clancy, Thomas R

    2010-09-01

    As systems evolve over time, their natural tendency is to become increasingly more complex. Studies in the field of complex systems have generated new perspectives on management in social organizations such as hospitals. Much of this research appears as a natural extension of the cross-disciplinary field of systems theory. This is the 15th in a series of articles applying complex systems science to the traditional management concepts of planning, organizing, directing, coordinating, and controlling. In this article, the authors discuss healthcare social networks as a hierarchy of embedded complex adaptive systems. The authors further examine the use of social network analysis tools as a means to understand complex communication patterns and reduce medical errors.

  15. Who gets evicted? Assessing individual, neighborhood, and network factors.

    PubMed

    Desmond, Matthew; Gershenson, Carl

    2017-02-01

    The prevalence and consequences of eviction have transformed the lived experience of urban poverty in America, yet little is known about why some families avoid eviction while others do not. Applying discrete hazard models to a unique dataset of renters, this study empirically evaluates individual, neighborhood, and social network characteristics that explain disparities in displacement from housing. Family size, job loss, neighborhood crime and eviction rates, and network disadvantage are identified as significant and robust predictors of eviction, net of missed rental payments and other relevant factors. This study advances urban sociology and inequality research and informs policy interventions designed to prevent eviction and stem its consequences. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Factors Affecting Intention to Use in Social Networking Sites: An Empirical Study on Thai Society

    NASA Astrophysics Data System (ADS)

    Jairak, Rath; Sahakhunchai, Napath; Jairak, Kallaya; Praneetpolgrang, Prasong

    This research aims to explore the factors that affect the intention to use in Social Networking Sites (SNS). We apply the theory of Technology Acceptance Model (TAM), intrinsic motivation, and trust properties to develop the theoretical framework for SNS users' intention. The results show that the important factors influencing SNS users' intention for general purpose and collaborative learning are task-oriented, pleasure-oriented, and familiarity-based trust. In marketing usage, dispositional trust and pleasure-oriented are two main factors that reflect intention to use in SNS.

  17. Accuracy test for link prediction in terms of similarity index: The case of WS and BA models

    NASA Astrophysics Data System (ADS)

    Ahn, Min-Woo; Jung, Woo-Sung

    2015-07-01

    Link prediction is a technique that uses the topological information in a given network to infer the missing links in it. Since past research on link prediction has primarily focused on enhancing performance for given empirical systems, negligible attention has been devoted to link prediction with regard to network models. In this paper, we thus apply link prediction to two network models: The Watts-Strogatz (WS) model and Barabási-Albert (BA) model. We attempt to gain a better understanding of the relation between accuracy and each network parameter (mean degree, the number of nodes and the rewiring probability in the WS model) through network models. Six similarity indices are used, with precision and area under the ROC curve (AUC) value as the accuracy metrics. We observe a positive correlation between mean degree and accuracy, and size independence of the AUC value.

  18. A network engineering perspective on probing and perturbing cognition with neurofeedback

    PubMed Central

    Khambhati, Ankit N.

    2017-01-01

    Network science and engineering provide a flexible and generalizable tool set to describe and manipulate complex systems characterized by heterogeneous interaction patterns among component parts. While classically applied to social systems, these tools have recently proven to be particularly useful in the study of the brain. In this review, we describe the nascent use of these tools to understand human cognition, and we discuss their utility in informing the meaningful and predictable perturbation of cognition in combination with the emerging capabilities of neurofeedback. To blend these disparate strands of research, we build on emerging conceptualizations of how the brain functions (as a complex network) and how we can develop and target interventions or modulations (as a form of network control). We close with an outline of current frontiers that bridge neurofeedback, connectomics, and network control theory to better understand human cognition. PMID:28445589

  19. Representing distributed cognition in complex systems: how a submarine returns to periscope depth.

    PubMed

    Stanton, Neville A

    2014-01-01

    This paper presents the Event Analysis of Systemic Teamwork (EAST) method as a means of modelling distributed cognition in systems. The method comprises three network models (i.e. task, social and information) and their combination. This method was applied to the interactions between the sound room and control room in a submarine, following the activities of returning the submarine to periscope depth. This paper demonstrates three main developments in EAST. First, building the network models directly, without reference to the intervening methods. Second, the application of analysis metrics to all three networks. Third, the combination of the aforementioned networks in different ways to gain a broader understanding of the distributed cognition. Analyses have shown that EAST can be used to gain both qualitative and quantitative insights into distributed cognition. Future research should focus on the analyses of network resilience and modelling alternative versions of a system.

  20. Hybrid Neural-Network: Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics Developed and Demonstrated

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2002-01-01

    As part of the NASA Aviation Safety Program, a unique model-based diagnostics method that employs neural networks and genetic algorithms for aircraft engine performance diagnostics has been developed and demonstrated at the NASA Glenn Research Center against a nonlinear gas turbine engine model. Neural networks are applied to estimate the internal health condition of the engine, and genetic algorithms are used for sensor fault detection, isolation, and quantification. This hybrid architecture combines the excellent nonlinear estimation capabilities of neural networks with the capability to rank the likelihood of various faults given a specific sensor suite signature. The method requires a significantly smaller data training set than a neural network approach alone does, and it performs the combined engine health monitoring objectives of performance diagnostics and sensor fault detection and isolation in the presence of nominal and degraded engine health conditions.

  1. Vein matching using artificial neural network in vein authentication systems

    NASA Astrophysics Data System (ADS)

    Noori Hoshyar, Azadeh; Sulaiman, Riza

    2011-10-01

    Personal identification technology as security systems is developing rapidly. Traditional authentication modes like key; password; card are not safe enough because they could be stolen or easily forgotten. Biometric as developed technology has been applied to a wide range of systems. According to different researchers, vein biometric is a good candidate among other biometric traits such as fingerprint, hand geometry, voice, DNA and etc for authentication systems. Vein authentication systems can be designed by different methodologies. All the methodologies consist of matching stage which is too important for final verification of the system. Neural Network is an effective methodology for matching and recognizing individuals in authentication systems. Therefore, this paper explains and implements the Neural Network methodology for finger vein authentication system. Neural Network is trained in Matlab to match the vein features of authentication system. The Network simulation shows the quality of matching as 95% which is a good performance for authentication system matching.

  2. [Research, impact and adaptation in public health for the new climate of Quebec].

    PubMed

    Gosselin, Pierre; Bélanger, Diane

    2010-01-01

    After its modest beginnings focusing on arctic Quebec in 1999, the Quebec research programme on health and climate change became interested in the remainder of the province around 2002. The European heat wave in 2003 accelerated the pace of this programme and prompted the Quebec health sector's participation in the Ouranos Research Consortium. The research findings from the 2003-2006 period have directly fed into the health component of the Quebec government's climate change action plan (2006-2012), financed through the first carbon tax in the Americas. This component is planning for a series of adaptations to the health network and to some other public networks, which will apply to construction, the built environment and outdoor developments, clinical management methods and practices, public health surveillance as well as emergency preparedness. In this article, the authors describe how research is supporting action and implementation, while also preparing for the future, and how this interaction has progressively established itself over the last 10 years.

  3. Systems Engineering Design Via Experimental Operation Research: Complex Organizational Metric for Programmatic Risk Environments (COMPRE)

    NASA Technical Reports Server (NTRS)

    Mog, Robert A.

    1999-01-01

    Unique and innovative graph theory, neural network, organizational modeling, and genetic algorithms are applied to the design and evolution of programmatic and organizational architectures. Graph theory representations of programs and organizations increase modeling capabilities and flexibility, while illuminating preferable programmatic/organizational design features. Treating programs and organizations as neural networks results in better system synthesis, and more robust data modeling. Organizational modeling using covariance structures enhances the determination of organizational risk factors. Genetic algorithms improve programmatic evolution characteristics, while shedding light on rulebase requirements for achieving specified technological readiness levels, given budget and schedule resources. This program of research improves the robustness and verifiability of systems synthesis tools, including the Complex Organizational Metric for Programmatic Risk Environments (COMPRE).

  4. Lewis Information Network (LINK): Background and overview

    NASA Technical Reports Server (NTRS)

    Schulte, Roger R.

    1987-01-01

    The NASA Lewis Research Center supports many research facilities with many isolated buildings, including wind tunnels, test cells, and research laboratories. These facilities are all located on a 350 acre campus adjacent to the Cleveland Hopkins Airport. The function of NASA-Lewis is to do basic and applied research in all areas of aeronautics, fluid mechanics, materials and structures, space propulsion, and energy systems. These functions require a great variety of remote high speed, high volume data communications for computing and interactive graphic capabilities. In addition, new requirements for local distribution of intercenter video teleconferencing and data communications via satellite have developed. To address these and future communications requirements for the next 15 yrs, a project team was organized to design and implement a new high speed communication system that would handle both data and video information in a common lab-wide Local Area Network. The project team selected cable television broadband coaxial cable technology as the communications medium and first installation of in-ground cable began in the summer of 1980. The Lewis Information Network (LINK) became operational in August 1982 and has become the backbone of all data communications and video.

  5. Optimization of hydrometric monitoring network in urban drainage systems using information theory.

    PubMed

    Yazdi, J

    2017-10-01

    Regular and continuous monitoring of urban runoff in both quality and quantity aspects is of great importance for controlling and managing surface runoff. Due to the considerable costs of establishing new gauges, optimization of the monitoring network is essential. This research proposes an approach for site selection of new discharge stations in urban areas, based on entropy theory in conjunction with multi-objective optimization tools and numerical models. The modeling framework provides an optimal trade-off between the maximum possible information content and the minimum shared information among stations. This approach was applied to the main surface-water collection system in Tehran to determine new optimal monitoring points under the cost considerations. Experimental results on this drainage network show that the obtained cost-effective designs noticeably outperform the consulting engineers' proposal in terms of both information contents and shared information. The research also determined the highly frequent sites at the Pareto front which might be important for decision makers to give a priority for gauge installation on those locations of the network.

  6. An Outline of Data Aggregation Security in Heterogeneous Wireless Sensor Networks

    PubMed Central

    Boubiche, Sabrina; Boubiche, Djallel Eddine; Bilami, Azzedine; Toral-Cruz, Homero

    2016-01-01

    Data aggregation processes aim to reduce the amount of exchanged data in wireless sensor networks and consequently minimize the packet overhead and optimize energy efficiency. Securing the data aggregation process is a real challenge since the aggregation nodes must access the relayed data to apply the aggregation functions. The data aggregation security problem has been widely addressed in classical homogeneous wireless sensor networks, however, most of the proposed security protocols cannot guarantee a high level of security since the sensor node resources are limited. Heterogeneous wireless sensor networks have recently emerged as a new wireless sensor network category which expands the sensor nodes’ resources and capabilities. These new kinds of WSNs have opened new research opportunities where security represents a most attractive area. Indeed, robust and high security level algorithms can be used to secure the data aggregation at the heterogeneous aggregation nodes which is impossible in classical homogeneous WSNs. Contrary to the homogeneous sensor networks, the data aggregation security problem is still not sufficiently covered and the proposed data aggregation security protocols are numberless. To address this recent research area, this paper describes the data aggregation security problem in heterogeneous wireless sensor networks and surveys a few proposed security protocols. A classification and evaluation of the existing protocols is also introduced based on the adopted data aggregation security approach. PMID:27077866

  7. Application of fuzzy logic-neural network based reinforcement learning to proximity and docking operations

    NASA Technical Reports Server (NTRS)

    Jani, Yashvant

    1992-01-01

    As part of the Research Institute for Computing and Information Systems (RICIS) activity, the reinforcement learning techniques developed at Ames Research Center are being applied to proximity and docking operations using the Shuttle and Solar Max satellite simulation. This activity is carried out in the software technology laboratory utilizing the Orbital Operations Simulator (OOS). This interim report provides the status of the project and outlines the future plans.

  8. A systematic review of nurse-related social network analysis studies.

    PubMed

    Benton, D C; Pérez-Raya, F; Fernández-Fernández, M P; González-Jurado, M A

    2015-09-01

    Nurses frequently work as part of both uni- and multidisciplinary teams. Communication between team members is critical in the delivery of quality care. Social network analysis is increasingly being used to explore such communication. To explore the use of social network analysis involving nurses either as subjects of the study or as researchers. Standard systematic review procedures were applied to identify nurse-related studies that utilize social network analysis. A comparative thematic approach to synthesis was used. Both published and grey literature written in English, Spanish and Portuguese between January 1965 and December 2013 were identified via a structured search of CINAHL, SciELO and PubMed. In addition, Google and Yahoo search engines were used to identify additional grey literature using the same search strategy. Forty-three primary studies were identified with literature from North America dominating the published work. So far it would appear that no author or group of authors have developed a programme of research in the nursing field using the social network analysis approach although several authors may be in the process of doing so. The dominance of literature from North America may be viewed as problematic as the underlying structures and themes may be an artefact of cultural communication norms from this region. The use of social network analysis in relation to nursing and by nurse researchers has increased rapidly over the past two decades. The lack of longitudinal studies and the absence of replication across multiple sites should be seen as an opportunity for further research. This analytical approach is relatively new in the field of nursing but does show considerable promise in offering insights into the way information flows between individuals, teams, institutions and other structures. An understanding of these structures provides a means of improving communication. © 2014 International Council of Nurses.

  9. An novel frequent probability pattern mining algorithm based on circuit simulation method in uncertain biological networks.

    PubMed

    He, Jieyue; Wang, Chunyan; Qiu, Kunpu; Zhong, Wei

    2014-01-01

    Motif mining has always been a hot research topic in bioinformatics. Most of current research on biological networks focuses on exact motif mining. However, due to the inevitable experimental error and noisy data, biological network data represented as the probability model could better reflect the authenticity and biological significance, therefore, it is more biological meaningful to discover probability motif in uncertain biological networks. One of the key steps in probability motif mining is frequent pattern discovery which is usually based on the possible world model having a relatively high computational complexity. In this paper, we present a novel method for detecting frequent probability patterns based on circuit simulation in the uncertain biological networks. First, the partition based efficient search is applied to the non-tree like subgraph mining where the probability of occurrence in random networks is small. Then, an algorithm of probability isomorphic based on circuit simulation is proposed. The probability isomorphic combines the analysis of circuit topology structure with related physical properties of voltage in order to evaluate the probability isomorphism between probability subgraphs. The circuit simulation based probability isomorphic can avoid using traditional possible world model. Finally, based on the algorithm of probability subgraph isomorphism, two-step hierarchical clustering method is used to cluster subgraphs, and discover frequent probability patterns from the clusters. The experiment results on data sets of the Protein-Protein Interaction (PPI) networks and the transcriptional regulatory networks of E. coli and S. cerevisiae show that the proposed method can efficiently discover the frequent probability subgraphs. The discovered subgraphs in our study contain all probability motifs reported in the experiments published in other related papers. The algorithm of probability graph isomorphism evaluation based on circuit simulation method excludes most of subgraphs which are not probability isomorphism and reduces the search space of the probability isomorphism subgraphs using the mismatch values in the node voltage set. It is an innovative way to find the frequent probability patterns, which can be efficiently applied to probability motif discovery problems in the further studies.

  10. An novel frequent probability pattern mining algorithm based on circuit simulation method in uncertain biological networks

    PubMed Central

    2014-01-01

    Background Motif mining has always been a hot research topic in bioinformatics. Most of current research on biological networks focuses on exact motif mining. However, due to the inevitable experimental error and noisy data, biological network data represented as the probability model could better reflect the authenticity and biological significance, therefore, it is more biological meaningful to discover probability motif in uncertain biological networks. One of the key steps in probability motif mining is frequent pattern discovery which is usually based on the possible world model having a relatively high computational complexity. Methods In this paper, we present a novel method for detecting frequent probability patterns based on circuit simulation in the uncertain biological networks. First, the partition based efficient search is applied to the non-tree like subgraph mining where the probability of occurrence in random networks is small. Then, an algorithm of probability isomorphic based on circuit simulation is proposed. The probability isomorphic combines the analysis of circuit topology structure with related physical properties of voltage in order to evaluate the probability isomorphism between probability subgraphs. The circuit simulation based probability isomorphic can avoid using traditional possible world model. Finally, based on the algorithm of probability subgraph isomorphism, two-step hierarchical clustering method is used to cluster subgraphs, and discover frequent probability patterns from the clusters. Results The experiment results on data sets of the Protein-Protein Interaction (PPI) networks and the transcriptional regulatory networks of E. coli and S. cerevisiae show that the proposed method can efficiently discover the frequent probability subgraphs. The discovered subgraphs in our study contain all probability motifs reported in the experiments published in other related papers. Conclusions The algorithm of probability graph isomorphism evaluation based on circuit simulation method excludes most of subgraphs which are not probability isomorphism and reduces the search space of the probability isomorphism subgraphs using the mismatch values in the node voltage set. It is an innovative way to find the frequent probability patterns, which can be efficiently applied to probability motif discovery problems in the further studies. PMID:25350277

  11. Landcover Classification Using Deep Fully Convolutional Neural Networks

    NASA Astrophysics Data System (ADS)

    Wang, J.; Li, X.; Zhou, S.; Tang, J.

    2017-12-01

    Land cover classification has always been an essential application in remote sensing. Certain image features are needed for land cover classification whether it is based on pixel or object-based methods. Different from other machine learning methods, deep learning model not only extracts useful information from multiple bands/attributes, but also learns spatial characteristics. In recent years, deep learning methods have been developed rapidly and widely applied in image recognition, semantic understanding, and other application domains. However, there are limited studies applying deep learning methods in land cover classification. In this research, we used fully convolutional networks (FCN) as the deep learning model to classify land covers. The National Land Cover Database (NLCD) within the state of Kansas was used as training dataset and Landsat images were classified using the trained FCN model. We also applied an image segmentation method to improve the original results from the FCN model. In addition, the pros and cons between deep learning and several machine learning methods were compared and explored. Our research indicates: (1) FCN is an effective classification model with an overall accuracy of 75%; (2) image segmentation improves the classification results with better match of spatial patterns; (3) FCN has an excellent ability of learning which can attains higher accuracy and better spatial patterns compared with several machine learning methods.

  12. Network theory and its applications in economic systems

    NASA Astrophysics Data System (ADS)

    Huang, Xuqing

    This dissertation covers the two major parts of my Ph.D. research: i) developing theoretical framework of complex networks; and ii) applying complex networks models to quantitatively analyze economics systems. In part I, we focus on developing theories of interdependent networks, which includes two chapters: 1) We develop a mathematical framework to study the percolation of interdependent networks under targeted-attack and find that when the highly connected nodes are protected and have lower probability to fail, in contrast to single scale-free (SF) networks where the percolation threshold pc = 0, coupled SF networks are significantly more vulnerable with pc significantly larger than zero. 2) We analytically demonstrates that clustering, which quantifies the propensity for two neighbors of the same vertex to also be neighbors of each other, significantly increases the vulnerability of the system. In part II, we apply the complex networks models to study economics systems, which also includes two chapters: 1) We study the US corporate governance network, in which nodes representing directors and links between two directors representing their service on common company boards, and propose a quantitative measure of information and influence transformation in the network. Thus we are able to identify the most influential directors in the network. 2) We propose a bipartite networks model to simulate the risk propagation process among commercial banks during financial crisis. With empirical bank's balance sheet data in 2007 as input to the model, we find that our model efficiently identifies a significant portion of the actual failed banks reported by Federal Deposit Insurance Corporation during the financial crisis between 2008 and 2011. The results suggest that complex networks model could be useful for systemic risk stress testing for financial systems. The model also identifies that commercial rather than residential real estate assets are major culprits for the failure of over 350 US commercial banks during 2008 - 2011.

  13. Determining geophysical properties from well log data using artificial neural networks and fuzzy inference systems

    NASA Astrophysics Data System (ADS)

    Chang, Hsien-Cheng

    Two novel synergistic systems consisting of artificial neural networks and fuzzy inference systems are developed to determine geophysical properties by using well log data. These systems are employed to improve the determination accuracy in carbonate rocks, which are generally more complex than siliciclastic rocks. One system, consisting of a single adaptive resonance theory (ART) neural network and three fuzzy inference systems (FISs), is used to determine the permeability category. The other system, which is composed of three ART neural networks and a single FIS, is employed to determine the lithofacies. The geophysical properties studied in this research, permeability category and lithofacies, are treated as categorical data. The permeability values are transformed into a "permeability category" to account for the effects of scale differences between core analyses and well logs, and heterogeneity in the carbonate rocks. The ART neural networks dynamically cluster the input data sets into different groups. The FIS is used to incorporate geologic experts' knowledge, which is usually in linguistic forms, into systems. These synergistic systems thus provide viable alternative solutions to overcome the effects of heterogeneity, the uncertainties of carbonate rock depositional environments, and the scarcity of well log data. The results obtained in this research show promising improvements over backpropagation neural networks. For the permeability category, the prediction accuracies are 68.4% and 62.8% for the multiple-single ART neural network-FIS and a single backpropagation neural network, respectively. For lithofacies, the prediction accuracies are 87.6%, 79%, and 62.8% for the single-multiple ART neural network-FIS, a single ART neural network, and a single backpropagation neural network, respectively. The sensitivity analysis results show that the multiple-single ART neural networks-FIS and a single ART neural network possess the same matching trends in determining lithofacies. This research shows that the adaptive resonance theory neural networks enable decision-makers to clearly distinguish the importance of different pieces of data which are useful in three-dimensional subsurface modeling. Geologic experts' knowledge can be easily applied and maintained by using the fuzzy inference systems.

  14. Decentralized Routing and Diameter Bounds in Entangled Quantum Networks

    NASA Astrophysics Data System (ADS)

    Gyongyosi, Laszlo; Imre, Sandor

    2017-04-01

    Entangled quantum networks are a necessity for any future quantum internet, long-distance quantum key distribution, and quantum repeater networks. The entangled quantum nodes can communicate through several different levels of entanglement, leading to a heterogeneous, multi-level entangled network structure. The level of entanglement between the quantum nodes determines the hop distance, the number of spanned nodes, and the probability of the existence of an entangled link in the network. In this work we define a decentralized routing for entangled quantum networks. We show that the probability distribution of the entangled links can be modeled by a specific distribution in a base-graph. The results allow us to perform efficient routing to find the shortest paths in entangled quantum networks by using only local knowledge of the quantum nodes. We give bounds on the maximum value of the total number of entangled links of a path. The proposed scheme can be directly applied in practical quantum communications and quantum networking scenarios. This work was partially supported by the Hungarian Scientific Research Fund - OTKA K-112125.

  15. Clustered marginalization of minorities during social transitions induced by co-evolution of behaviour and network structure

    PubMed Central

    Schleussner, Carl-Friedrich; Donges, Jonathan F.; Engemann, Denis A.; Levermann, Anders

    2016-01-01

    Large-scale transitions in societies are associated with both individual behavioural change and restructuring of the social network. These two factors have often been considered independently, yet recent advances in social network research challenge this view. Here we show that common features of societal marginalization and clustering emerge naturally during transitions in a co-evolutionary adaptive network model. This is achieved by explicitly considering the interplay between individual interaction and a dynamic network structure in behavioural selection. We exemplify this mechanism by simulating how smoking behaviour and the network structure get reconfigured by changing social norms. Our results are consistent with empirical findings: The prevalence of smoking was reduced, remaining smokers were preferentially connected among each other and formed increasingly marginalized clusters. We propose that self-amplifying feedbacks between individual behaviour and dynamic restructuring of the network are main drivers of the transition. This generative mechanism for co-evolution of individual behaviour and social network structure may apply to a wide range of examples beyond smoking. PMID:27510641

  16. The Next Era: Deep Learning in Pharmaceutical Research

    PubMed Central

    Ekins, Sean

    2016-01-01

    Over the past decade we have witnessed the increasing sophistication of machine learning algorithms applied in daily use from internet searches, voice recognition, social network software to machine vision software in cameras, phones, robots and self-driving cars. Pharmaceutical research has also seen its fair share of machine learning developments. For example, applying such methods to mine the growing datasets that are created in drug discovery not only enables us to learn from the past but to predict a molecule’s properties and behavior in future. The latest machine learning algorithm garnering significant attention is deep learning, which is an artificial neural network with multiple hidden layers. Publications over the last 3 years suggest that this algorithm may have advantages over previous machine learning methods and offer a slight but discernable edge in predictive performance. The time has come for a balanced review of this technique but also to apply machine learning methods such as deep learning across a wider array of endpoints relevant to pharmaceutical research for which the datasets are growing such as physicochemical property prediction, formulation prediction, absorption, distribution, metabolism, excretion and toxicity (ADME/Tox), target prediction and skin permeation, etc. We also show that there are many potential applications of deep learning beyond cheminformatics. It will be important to perform prospective testing (which has been carried out rarely to date) in order to convince skeptics that there will be benefits from investing in this technique. PMID:27599991

  17. The AGING Initiative experience: a call for sustained support for team science networks.

    PubMed

    Garg, Tullika; Anzuoni, Kathryn; Landyn, Valentina; Hajduk, Alexandra; Waring, Stephen; Hanson, Leah R; Whitson, Heather E

    2018-05-18

    Team science, defined as collaborative research efforts that leverage the expertise of diverse disciplines, is recognised as a critical means to address complex healthcare challenges, but the practical implementation of team science can be difficult. Our objective is to describe the barriers, solutions and lessons learned from our team science experience as applied to the complex and growing challenge of multiple chronic conditions (MCC). MCC is the presence of two or more chronic conditions that have a collective adverse effect on health status, function or quality of life, and that require complex healthcare management, decision-making or coordination. Due to the increasing impact on the United States society, MCC research has been identified as a high priority research area by multiple federal agencies. In response to this need, two national research entities, the Healthcare Systems Research Network (HCSRN) and the Claude D. Pepper Older Americans Independence Centers (OAIC), formed the Advancing Geriatrics Infrastructure and Network Growth (AGING) Initiative to build nationwide capacity for MCC team science. This article describes the structure, lessons learned and initial outcomes of the AGING Initiative. We call for funding mechanisms to sustain infrastructures that have demonstrated success in fostering team science and innovation in translating findings to policy change necessary to solve complex problems in healthcare.

  18. Model, Framework, and Platform of Health Persuasive Social Network

    ERIC Educational Resources Information Center

    Al Ayubi, Soleh Udin

    2013-01-01

    Persuasive technology (PT) has the potential to support individuals to perform self-management and social support as a part of health behavior change. This has led a few researchers in the intersection of the areas of health behavior change and software engineering to apply behavior change and persuasion theories to software development practices,…

  19. An Auto-Scoring Mechanism for Evaluating Problem-Solving Ability in a Web-Based Learning Environment

    ERIC Educational Resources Information Center

    Chiou, Chuang-Kai; Hwang, Gwo-Jen; Tseng, Judy C. R.

    2009-01-01

    The rapid development of computer and network technologies has attracted researchers to investigate strategies for and the effects of applying information technologies in learning activities; simultaneously, learning environments have been developed to record the learning portfolios of students seeking web information for problem-solving. Although…

  20. Applied Research at Canadian Colleges and Institutes

    ERIC Educational Resources Information Center

    Association of Canadian Community Colleges, 2006

    2006-01-01

    Canada has a national network of over 150 colleges and institutes in over 900 communities in all regions of the country. These institutions are mandated to support the socio-economic development of the communities and regions. Colleges and institutes develop education and training programs to meet employer needs with direct input from business,…

  1. Mathematics Lectures as Narratives: Insights from Network Graph Methodology

    ERIC Educational Resources Information Center

    Weinberg, Aaron; Wiesner, Emilie; Fukawa-Connelly, Tim

    2016-01-01

    Although lecture is the traditional method of university mathematics instruction, there has been little empirical research that describes the general structure of lectures. In this paper, we adapt ideas from narrative analysis and apply them to an upper-level mathematics lecture. We develop a framework that enables us to conceptualize the lecture…

  2. Making the Most of "External" Group Members in Blended and Online Environments

    ERIC Educational Resources Information Center

    Hernández-Nanclares, Núria; García-Muñiz, Ana S.; Rienties, Bart

    2017-01-01

    Although the importance of boundary spanning in blended and online learning is widely acknowledged, most educational research has ignored whether and how students learn from others outside their assigned group. One potential approach for understanding cross-boundary knowledge sharing is Social Network Analysis (SNA). In this article, we apply four…

  3. Design and Implementation of Marine Information System, and Analysis of Learners' Intention toward

    ERIC Educational Resources Information Center

    Pan, Yu-Jen; Kao, Jui-Chung; Yu, Te-Cheng

    2016-01-01

    The goal of this study is to conduct further research and discussion on applying the internet on marine education, utilizing existing technologies such as cloud service, social network, data collection analysis, etc. to construct a marine environment education information system. The content to be explored includes marine education information…

  4. Style-based classification of Chinese ink and wash paintings

    NASA Astrophysics Data System (ADS)

    Sheng, Jiachuan; Jiang, Jianmin

    2013-09-01

    Following the fact that a large collection of ink and wash paintings (IWP) is being digitized and made available on the Internet, their automated content description, analysis, and management are attracting attention across research communities. While existing research in relevant areas is primarily focused on image processing approaches, a style-based algorithm is proposed to classify IWPs automatically by their authors. As IWPs do not have colors or even tones, the proposed algorithm applies edge detection to locate the local region and detect painting strokes to enable histogram-based feature extraction and capture of important cues to reflect the styles of different artists. Such features are then applied to drive a number of neural networks in parallel to complete the classification, and an information entropy balanced fusion is proposed to make an integrated decision for the multiple neural network classification results in which the entropy is used as a pointer to combine the global and local features. Evaluations via experiments support that the proposed algorithm achieves good performances, providing excellent potential for computerized analysis and management of IWPs.

  5. On the data-driven inference of modulatory networks in climate science: an application to West African rainfall

    NASA Astrophysics Data System (ADS)

    González, D. L., II; Angus, M. P.; Tetteh, I. K.; Bello, G. A.; Padmanabhan, K.; Pendse, S. V.; Srinivas, S.; Yu, J.; Semazzi, F.; Kumar, V.; Samatova, N. F.

    2014-04-01

    Decades of hypothesis-driven and/or first-principles research have been applied towards the discovery and explanation of the mechanisms that drive climate phenomena, such as western African Sahel summer rainfall variability. Although connections between various climate factors have been theorized, not all of the key relationships are fully understood. We propose a data-driven approach to identify candidate players in this climate system, which can help explain underlying mechanisms and/or even suggest new relationships, to facilitate building a more comprehensive and predictive model of the modulatory relationships influencing a climate phenomenon of interest. We applied coupled heterogeneous association rule mining (CHARM), Lasso multivariate regression, and Dynamic Bayesian networks to find relationships within a complex system, and explored means with which to obtain a consensus result from the application of such varied methodologies. Using this fusion of approaches, we identified relationships among climate factors that modulate Sahel rainfall, including well-known associations from prior climate knowledge, as well as promising discoveries that invite further research by the climate science community.

  6. Genetic network inference as a series of discrimination tasks.

    PubMed

    Kimura, Shuhei; Nakayama, Satoshi; Hatakeyama, Mariko

    2009-04-01

    Genetic network inference methods based on sets of differential equations generally require a great deal of time, as the equations must be solved many times. To reduce the computational cost, researchers have proposed other methods for inferring genetic networks by solving sets of differential equations only a few times, or even without solving them at all. When we try to obtain reasonable network models using these methods, however, we must estimate the time derivatives of the gene expression levels with great precision. In this study, we propose a new method to overcome the drawbacks of inference methods based on sets of differential equations. Our method infers genetic networks by obtaining classifiers capable of predicting the signs of the derivatives of the gene expression levels. For this purpose, we defined a genetic network inference problem as a series of discrimination tasks, then solved the defined series of discrimination tasks with a linear programming machine. Our experimental results demonstrated that the proposed method is capable of correctly inferring genetic networks, and doing so more than 500 times faster than the other inference methods based on sets of differential equations. Next, we applied our method to actual expression data of the bacterial SOS DNA repair system. And finally, we demonstrated that our approach relates to the inference method based on the S-system model. Though our method provides no estimation of the kinetic parameters, it should be useful for researchers interested only in the network structure of a target system. Supplementary data are available at Bioinformatics online.

  7. Identifying influential directors in the United States corporate governance network

    NASA Astrophysics Data System (ADS)

    Huang, Xuqing; Vodenska, Irena; Wang, Fengzhong; Havlin, Shlomo; Stanley, H. Eugene

    2011-10-01

    The influence of directors has been one of the most engaging topics recently, but surprisingly little research has been done to quantitatively evaluate the influence and power of directors. We analyze the structure of the US corporate governance network for the 11-year period 1996-2006 based on director data from the Investor Responsibility Research Center director database, and we develop a centrality measure named the influence factor to estimate the influence of directors quantitatively. The US corporate governance network is a network of directors with nodes representing directors and links between two directors representing their service on common company boards. We assume that information flows in the network through information-sharing processes among linked directors. The influence factor assigned to a director is based on the level of information that a director obtains from the entire network. We find that, contrary to commonly accepted belief that directors of large companies, measured by market capitalization, are the most powerful, in some instances, the directors who are influential do not necessarily serve on boards of large companies. By applying our influence factor method to identify the influential people contained in the lists created by popular magazines such as Fortune, Networking World, and Treasury and Risk Management, we find that the influence factor method is consistently either the best or one of the two best methods in identifying powerful people compared to other general centrality measures that are used to denote the significance of a node in complex network theory.

  8. Steering operational synergies in terrestrial observation networks: opportunity for advancing Earth system dynamics modelling

    NASA Astrophysics Data System (ADS)

    Baatz, Roland; Sullivan, Pamela L.; Li, Li; Weintraub, Samantha R.; Loescher, Henry W.; Mirtl, Michael; Groffman, Peter M.; Wall, Diana H.; Young, Michael; White, Tim; Wen, Hang; Zacharias, Steffen; Kühn, Ingolf; Tang, Jianwu; Gaillardet, Jérôme; Braud, Isabelle; Flores, Alejandro N.; Kumar, Praveen; Lin, Henry; Ghezzehei, Teamrat; Jones, Julia; Gholz, Henry L.; Vereecken, Harry; Van Looy, Kris

    2018-05-01

    Advancing our understanding of Earth system dynamics (ESD) depends on the development of models and other analytical tools that apply physical, biological, and chemical data. This ambition to increase understanding and develop models of ESD based on site observations was the stimulus for creating the networks of Long-Term Ecological Research (LTER), Critical Zone Observatories (CZOs), and others. We organized a survey, the results of which identified pressing gaps in data availability from these networks, in particular for the future development and evaluation of models that represent ESD processes, and provide insights for improvement in both data collection and model integration. From this survey overview of data applications in the context of LTER and CZO research, we identified three challenges: (1) widen application of terrestrial observation network data in Earth system modelling, (2) develop integrated Earth system models that incorporate process representation and data of multiple disciplines, and (3) identify complementarity in measured variables and spatial extent, and promoting synergies in the existing observational networks. These challenges lead to perspectives and recommendations for an improved dialogue between the observation networks and the ESD modelling community, including co-location of sites in the existing networks and further formalizing these recommendations among these communities. Developing these synergies will enable cross-site and cross-network comparison and synthesis studies, which will help produce insights around organizing principles, classifications, and general rules of coupling processes with environmental conditions.

  9. Identifying influential directors in the United States corporate governance network.

    PubMed

    Huang, Xuqing; Vodenska, Irena; Wang, Fengzhong; Havlin, Shlomo; Stanley, H Eugene

    2011-10-01

    The influence of directors has been one of the most engaging topics recently, but surprisingly little research has been done to quantitatively evaluate the influence and power of directors. We analyze the structure of the US corporate governance network for the 11-year period 1996-2006 based on director data from the Investor Responsibility Research Center director database, and we develop a centrality measure named the influence factor to estimate the influence of directors quantitatively. The US corporate governance network is a network of directors with nodes representing directors and links between two directors representing their service on common company boards. We assume that information flows in the network through information-sharing processes among linked directors. The influence factor assigned to a director is based on the level of information that a director obtains from the entire network. We find that, contrary to commonly accepted belief that directors of large companies, measured by market capitalization, are the most powerful, in some instances, the directors who are influential do not necessarily serve on boards of large companies. By applying our influence factor method to identify the influential people contained in the lists created by popular magazines such as Fortune, Networking World, and Treasury and Risk Management, we find that the influence factor method is consistently either the best or one of the two best methods in identifying powerful people compared to other general centrality measures that are used to denote the significance of a node in complex network theory.

  10. Classroom Peer Relationships and Behavioral Engagement in Elementary School: The Role of Social Network Equity

    PubMed Central

    Cappella, Elise; Kim, Ha Yeon; Neal, Jennifer W.; Jackson, Daisy R.

    2014-01-01

    Applying social capital and systems theories of social processes, we examine the role of the classroom peer context in the behavioral engagement of low-income students (N = 80) in urban elementary school classrooms (N = 22). Systematic child observations were conducted to assess behavioral engagement among second to fifth graders in the fall and spring of the same school year. Classroom observations, teacher and child questionnaires, and social network data were collected in the fall. Confirming prior research, results from multilevel models indicate that students with more behavioral difficulties or less academic motivation in the fall were less behaviorally engaged in the spring. Extending prior research, classrooms with more equitably distributed and interconnected social ties—social network equity—had more behaviorally engaged students in the spring, especially in classrooms with higher levels of observed organization (i.e., effective management of behavior, time, and attention). Moreover, social network equity attenuated the negative relation between student behavioral difficulties and behavioral engagement, suggesting that students with behavioral difficulties were less disengaged in classrooms with more equitably distributed and interconnected social ties. Findings illuminate the need to consider classroom peer contexts in future research and intervention focused on the behavioral engagement of students in urban elementary schools. PMID:24081319

  11. The potential of text mining in data integration and network biology for plant research: a case study on Arabidopsis.

    PubMed

    Van Landeghem, Sofie; De Bodt, Stefanie; Drebert, Zuzanna J; Inzé, Dirk; Van de Peer, Yves

    2013-03-01

    Despite the availability of various data repositories for plant research, a wealth of information currently remains hidden within the biomolecular literature. Text mining provides the necessary means to retrieve these data through automated processing of texts. However, only recently has advanced text mining methodology been implemented with sufficient computational power to process texts at a large scale. In this study, we assess the potential of large-scale text mining for plant biology research in general and for network biology in particular using a state-of-the-art text mining system applied to all PubMed abstracts and PubMed Central full texts. We present extensive evaluation of the textual data for Arabidopsis thaliana, assessing the overall accuracy of this new resource for usage in plant network analyses. Furthermore, we combine text mining information with both protein-protein and regulatory interactions from experimental databases. Clusters of tightly connected genes are delineated from the resulting network, illustrating how such an integrative approach is essential to grasp the current knowledge available for Arabidopsis and to uncover gene information through guilt by association. All large-scale data sets, as well as the manually curated textual data, are made publicly available, hereby stimulating the application of text mining data in future plant biology studies.

  12. Real-Time, Interactive Echocardiography Over High-Speed Networks: Feasibility and Functional Requirements

    NASA Technical Reports Server (NTRS)

    Bobinsky, Eric A.

    1998-01-01

    Real-time, Interactive Echocardiography Over High Speed Networks: Feasibility and Functional Requirements is an experiment in advanced telemedicine being conducted jointly by the NASA Lewis Research Center, the NASA Ames Research Center, and the Cleveland Clinic Foundation. In this project, a patient undergoes an echocardiographic examination in Cleveland while being diagnosed remotely by a cardiologist in California viewing a real-time display of echocardiographic video images transmitted over the broadband NASA Research and Education Network (NREN). The remote cardiologist interactively guides the sonographer administering the procedure through a two-way voice link between the two sites. Echocardiography is a noninvasive medical technique that applies ultrasound imaging to the heart, providing a "motion picture" of the heart in action. Normally, echocardiographic examinations are performed by a sonographer and cardiologist who are located in the same medical facility as the patient. The goal of telemedicine is to allow medical specialists to examine patients located elsewhere, typically in remote or medically underserved geographic areas. For example, a small, rural clinic might have access to an echocardiograph machine but not a cardiologist. By connecting this clinic to a major metropolitan medical facility through a communications network, a minimally trained technician would be able to carry out the procedure under the supervision and guidance of a qualified cardiologist.

  13. Local election: does bureaucracy become one of main political power?

    NASA Astrophysics Data System (ADS)

    Amin, Muryanto; Musthafa Sembiring, Walid

    2018-03-01

    This writing aims to analyze the emergence of bureaucracy as one of political power in local level after the local election is held in Indonesia. Due to information authorization, media network, and stable structure, the bureaucracy soon transforms into political power which can compete with the other political power at the local level. In Medan local election in 2010 and 2015 has evidently proven the power of bureaucracy network in winning the bureaucrat-background candidates. As methods of the research, the researcher held a Focus-Group Discussion (FGD) and had an in-depth interview with ten bureaucracy elites in Medan and local political elites. The observation and Focus-Group Discussion (FGD) are analyzed using qualitative analysis technique typology. The result states that the bureaucracy network in Medan has been used in a massive way as the political power of winning. The structure of bureaucracy – from the top to the low – is involved in the winning. The most governmental programs were applied to attract the mass’ sympathy toward the candidates. The bureaucratic proximity to media network is also used to do a campaign in a massive way. The conclusion of the research is that bureaucracy emerges as a new, massive, effective local political power in the local election.

  14. A Comprehensive Review on Adaptability of Network Forensics Frameworks for Mobile Cloud Computing

    PubMed Central

    Abdul Wahab, Ainuddin Wahid; Han, Qi; Bin Abdul Rahman, Zulkanain

    2014-01-01

    Network forensics enables investigation and identification of network attacks through the retrieved digital content. The proliferation of smartphones and the cost-effective universal data access through cloud has made Mobile Cloud Computing (MCC) a congenital target for network attacks. However, confines in carrying out forensics in MCC is interrelated with the autonomous cloud hosting companies and their policies for restricted access to the digital content in the back-end cloud platforms. It implies that existing Network Forensic Frameworks (NFFs) have limited impact in the MCC paradigm. To this end, we qualitatively analyze the adaptability of existing NFFs when applied to the MCC. Explicitly, the fundamental mechanisms of NFFs are highlighted and then analyzed using the most relevant parameters. A classification is proposed to help understand the anatomy of existing NFFs. Subsequently, a comparison is given that explores the functional similarities and deviations among NFFs. The paper concludes by discussing research challenges for progressive network forensics in MCC. PMID:25097880

  15. Artificial neural networks applied to forecasting time series.

    PubMed

    Montaño Moreno, Juan J; Palmer Pol, Alfonso; Muñoz Gracia, Pilar

    2011-04-01

    This study offers a description and comparison of the main models of Artificial Neural Networks (ANN) which have proved to be useful in time series forecasting, and also a standard procedure for the practical application of ANN in this type of task. The Multilayer Perceptron (MLP), Radial Base Function (RBF), Generalized Regression Neural Network (GRNN), and Recurrent Neural Network (RNN) models are analyzed. With this aim in mind, we use a time series made up of 244 time points. A comparative study establishes that the error made by the four neural network models analyzed is less than 10%. In accordance with the interpretation criteria of this performance, it can be concluded that the neural network models show a close fit regarding their forecasting capacity. The model with the best performance is the RBF, followed by the RNN and MLP. The GRNN model is the one with the worst performance. Finally, we analyze the advantages and limitations of ANN, the possible solutions to these limitations, and provide an orientation towards future research.

  16. Strategy on energy saving reconstruction of distribution networks based on life cycle cost

    NASA Astrophysics Data System (ADS)

    Chen, Xiaofei; Qiu, Zejing; Xu, Zhaoyang; Xiao, Chupeng

    2017-08-01

    Because the actual distribution network reconstruction project funds are often limited, the cost-benefit model and the decision-making method are crucial for distribution network energy saving reconstruction project. From the perspective of life cycle cost (LCC), firstly the research life cycle is determined for the energy saving reconstruction of distribution networks with multi-devices. Then, a new life cycle cost-benefit model for energy-saving reconstruction of distribution network is developed, in which the modification schemes include distribution transformers replacement, lines replacement and reactive power compensation. In the operation loss cost and maintenance cost area, the operation cost model considering the influence of load season characteristics and the maintenance cost segmental model of transformers are proposed. Finally, aiming at the highest energy saving profit per LCC, a decision-making method is developed while considering financial and technical constraints as well. The model and method are applied to a real distribution network reconstruction, and the results prove that the model and method are effective.

  17. A comprehensive review on adaptability of network forensics frameworks for mobile cloud computing.

    PubMed

    Khan, Suleman; Shiraz, Muhammad; Wahab, Ainuddin Wahid Abdul; Gani, Abdullah; Han, Qi; Rahman, Zulkanain Bin Abdul

    2014-01-01

    Network forensics enables investigation and identification of network attacks through the retrieved digital content. The proliferation of smartphones and the cost-effective universal data access through cloud has made Mobile Cloud Computing (MCC) a congenital target for network attacks. However, confines in carrying out forensics in MCC is interrelated with the autonomous cloud hosting companies and their policies for restricted access to the digital content in the back-end cloud platforms. It implies that existing Network Forensic Frameworks (NFFs) have limited impact in the MCC paradigm. To this end, we qualitatively analyze the adaptability of existing NFFs when applied to the MCC. Explicitly, the fundamental mechanisms of NFFs are highlighted and then analyzed using the most relevant parameters. A classification is proposed to help understand the anatomy of existing NFFs. Subsequently, a comparison is given that explores the functional similarities and deviations among NFFs. The paper concludes by discussing research challenges for progressive network forensics in MCC.

  18. Cascades on a stochastic pulse-coupled network

    NASA Astrophysics Data System (ADS)

    Wray, C. M.; Bishop, S. R.

    2014-09-01

    While much recent research has focused on understanding isolated cascades of networks, less attention has been given to dynamical processes on networks exhibiting repeated cascades of opposing influence. An example of this is the dynamic behaviour of financial markets where cascades of buying and selling can occur, even over short timescales. To model these phenomena, a stochastic pulse-coupled oscillator network with upper and lower thresholds is described and analysed. Numerical confirmation of asynchronous and synchronous regimes of the system is presented, along with analytical identification of the fixed point state vector of the asynchronous mean field system. A lower bound for the finite system mean field critical value of network coupling probability is found that separates the asynchronous and synchronous regimes. For the low-dimensional mean field system, a closed-form equation is found for cascade size, in terms of the network coupling probability. Finally, a description of how this model can be applied to interacting agents in a financial market is provided.

  19. Cascades on a stochastic pulse-coupled network

    PubMed Central

    Wray, C. M.; Bishop, S. R.

    2014-01-01

    While much recent research has focused on understanding isolated cascades of networks, less attention has been given to dynamical processes on networks exhibiting repeated cascades of opposing influence. An example of this is the dynamic behaviour of financial markets where cascades of buying and selling can occur, even over short timescales. To model these phenomena, a stochastic pulse-coupled oscillator network with upper and lower thresholds is described and analysed. Numerical confirmation of asynchronous and synchronous regimes of the system is presented, along with analytical identification of the fixed point state vector of the asynchronous mean field system. A lower bound for the finite system mean field critical value of network coupling probability is found that separates the asynchronous and synchronous regimes. For the low-dimensional mean field system, a closed-form equation is found for cascade size, in terms of the network coupling probability. Finally, a description of how this model can be applied to interacting agents in a financial market is provided. PMID:25213626

  20. Building a virtual network in a community health research training program.

    PubMed

    Lau, F; Hayward, R

    2000-01-01

    To describe the experiences, lessons, and implications of building a virtual network as part of a two-year community health research training program in a Canadian province. An action research field study in which 25 health professionals from 17 health regions participated in a seven-week training course on health policy, management, economics, research methods, data analysis, and computer technology. The participants then returned to their regions to apply the knowledge in different community health research projects. Ongoing faculty consultations and support were provided as needed. Each participant was given a notebook computer with the necessary software, Internet access, and technical support for two years, to access information resources, engage in group problem solving, share ideas and knowledge, and collaborate on projects. Data collected over two years consisted of program documents, records of interviews with participants and staff, meeting notes, computer usage statistics, automated online surveys, computer conference postings, program Web site, and course feedback. The analysis consisted of detailed review and comparison of the data from different sources. NUD*IST was then used to validate earlier study findings. The ten key lessons are that role clarity, technology vision, implementation staging, protected time, just-in-time training, ongoing facilitation, work integration, participatory design, relationship building, and the demonstration of results are essential ingredients for building a successful network. This study provides a descriptive model of the processes involved in developing, in the community health setting, virtual networks that can be used as the basis for future research and as a practical guide for managers.

  1. New Techniques for Deep Learning with Geospatial Data using TensorFlow, Earth Engine, and Google Cloud Platform

    NASA Astrophysics Data System (ADS)

    Hancher, M.

    2017-12-01

    Recent years have seen promising results from many research teams applying deep learning techniques to geospatial data processing. In that same timeframe, TensorFlow has emerged as the most popular framework for deep learning in general, and Google has assembled petabytes of Earth observation data from a wide variety of sources and made them available in analysis-ready form in the cloud through Google Earth Engine. Nevertheless, developing and applying deep learning to geospatial data at scale has been somewhat cumbersome to date. We present a new set of tools and techniques that simplify this process. Our approach combines the strengths of several underlying tools: TensorFlow for its expressive deep learning framework; Earth Engine for data management, preprocessing, postprocessing, and visualization; and other tools in Google Cloud Platform to train TensorFlow models at scale, perform additional custom parallel data processing, and drive the entire process from a single familiar Python development environment. These tools can be used to easily apply standard deep neural networks, convolutional neural networks, and other custom model architectures to a variety of geospatial data structures. We discuss our experiences applying these and related tools to a range of machine learning problems, including classic problems like cloud detection, building detection, land cover classification, as well as more novel problems like illegal fishing detection. Our improved tools will make it easier for geospatial data scientists to apply modern deep learning techniques to their own problems, and will also make it easier for machine learning researchers to advance the state of the art of those techniques.

  2. A QoS scheme for a congestion core network based on dissimilar QoS structures in smart-phone environments.

    PubMed

    Hong, Sung-Ryong; Na, Wonshik; Kang, Jang-Mook

    2010-01-01

    This study suggests an approach to effective transmission of multimedia content in a rapidly changing Internet environment including smart-phones. Guaranteeing QoS in networks is currently an important research topic. When transmitting Assured Forwarding (AF) packets in a Multi-DiffServ network environment, network A may assign priority in an order AF1, AF2, AF3 and AF4; on the other hand, network B may reverse the order to a priority AF4, AF3, AF2 and AF1. In this case, the AF1 packets that received the best quality of service in network A will receive the lowest in network B, which may result in dropping of packets in network B and vice versa. This study suggests a way to guarantee QoS between hosts by minimizing the loss of AF packet class when one network transmits AF class packets to another network with differing principles. It is expected that QoS guarantees and their experimental value may be utilized as principles which can be applied to various mobile-web environments based on smart-phones.

  3. Infectious disease transmission and contact networks in wildlife and livestock.

    PubMed

    Craft, Meggan E

    2015-05-26

    The use of social and contact networks to answer basic and applied questions about infectious disease transmission in wildlife and livestock is receiving increased attention. Through social network analysis, we understand that wild animal and livestock populations, including farmed fish and poultry, often have a heterogeneous contact structure owing to social structure or trade networks. Network modelling is a flexible tool used to capture the heterogeneous contacts of a population in order to test hypotheses about the mechanisms of disease transmission, simulate and predict disease spread, and test disease control strategies. This review highlights how to use animal contact data, including social networks, for network modelling, and emphasizes that researchers should have a pathogen of interest in mind before collecting or using contact data. This paper describes the rising popularity of network approaches for understanding transmission dynamics in wild animal and livestock populations; discusses the common mismatch between contact networks as measured in animal behaviour and relevant parasites to match those networks; and highlights knowledge gaps in how to collect and analyse contact data. Opportunities for the future include increased attention to experiments, pathogen genetic markers and novel computational tools. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  4. A QoS Scheme for a Congestion Core Network Based on Dissimilar QoS Structures in Smart-Phone Environments

    PubMed Central

    Hong, Sung-Ryong; Na, Wonshik; Kang, Jang-Mook

    2010-01-01

    This study suggests an approach to effective transmission of multimedia content in a rapidly changing Internet environment including smart-phones. Guaranteeing QoS in networks is currently an important research topic. When transmitting Assured Forwarding (AF) packets in a Multi-DiffServ network environment, network A may assign priority in an order AF1, AF2, AF3 and AF4; on the other hand, network B may reverse the order to a priority AF4, AF3, AF2 and AF1. In this case, the AF1 packets that received the best quality of service in network A will receive the lowest in network B, which may result in dropping of packets in network B and vice versa. This study suggests a way to guarantee QoS between hosts by minimizing the loss of AF packet class when one network transmits AF class packets to another network with differing principles. It is expected that QoS guarantees and their experimental value may be utilized as principles which can be applied to various mobile-web environments based on smart-phones. PMID:22163453

  5. Infectious disease transmission and contact networks in wildlife and livestock

    PubMed Central

    Craft, Meggan E.

    2015-01-01

    The use of social and contact networks to answer basic and applied questions about infectious disease transmission in wildlife and livestock is receiving increased attention. Through social network analysis, we understand that wild animal and livestock populations, including farmed fish and poultry, often have a heterogeneous contact structure owing to social structure or trade networks. Network modelling is a flexible tool used to capture the heterogeneous contacts of a population in order to test hypotheses about the mechanisms of disease transmission, simulate and predict disease spread, and test disease control strategies. This review highlights how to use animal contact data, including social networks, for network modelling, and emphasizes that researchers should have a pathogen of interest in mind before collecting or using contact data. This paper describes the rising popularity of network approaches for understanding transmission dynamics in wild animal and livestock populations; discusses the common mismatch between contact networks as measured in animal behaviour and relevant parasites to match those networks; and highlights knowledge gaps in how to collect and analyse contact data. Opportunities for the future include increased attention to experiments, pathogen genetic markers and novel computational tools. PMID:25870393

  6. Nature-Inspired Cognitive Evolution to Play MS. Pac-Man

    NASA Astrophysics Data System (ADS)

    Tan, Tse Guan; Teo, Jason; Anthony, Patricia

    Recent developments in nature-inspired computation have heightened the need for research into the three main areas of scientific, engineering and industrial applications. Some approaches have reported that it is able to solve dynamic problems and very useful for improving the performance of various complex systems. So far however, there has been little discussion about the effectiveness of the application of these models to computer and video games in particular. The focus of this research is to explore the hybridization of nature-inspired computation methods for optimization of neural network-based cognition in video games, in this case the combination of a neural network with an evolutionary algorithm. In essence, a neural network is an attempt to mimic the extremely complex human brain system, which is building an artificial brain that is able to self-learn intelligently. On the other hand, an evolutionary algorithm is to simulate the biological evolutionary processes that evolve potential solutions in order to solve the problems or tasks by applying the genetic operators such as crossover, mutation and selection into the solutions. This paper investigates the abilities of Evolution Strategies (ES) to evolve feed-forward artificial neural network's internal parameters (i.e. weight and bias values) for automatically generating Ms. Pac-man controllers. The main objective of this game is to clear a maze of dots while avoiding the ghosts and to achieve the highest possible score. The experimental results show that an ES-based system can be successfully applied to automatically generate artificial intelligence for a complex, dynamic and highly stochastic video game environment.

  7. Transformation of social networks in the late pre-Hispanic US Southwest.

    PubMed

    Mills, Barbara J; Clark, Jeffery J; Peeples, Matthew A; Haas, W R; Roberts, John M; Hill, J Brett; Huntley, Deborah L; Borck, Lewis; Breiger, Ronald L; Clauset, Aaron; Shackley, M Steven

    2013-04-09

    The late pre-Hispanic period in the US Southwest (A.D. 1200-1450) was characterized by large-scale demographic changes, including long-distance migration and population aggregation. To reconstruct how these processes reshaped social networks, we compiled a comprehensive artifact database from major sites dating to this interval in the western Southwest. We combine social network analysis with geographic information systems approaches to reconstruct network dynamics over 250 y. We show how social networks were transformed across the region at previously undocumented spatial, temporal, and social scales. Using well-dated decorated ceramics, we track changes in network topology at 50-y intervals to show a dramatic shift in network density and settlement centrality from the northern to the southern Southwest after A.D. 1300. Both obsidian sourcing and ceramic data demonstrate that long-distance network relationships also shifted from north to south after migration. Surprisingly, social distance does not always correlate with spatial distance because of the presence of network relationships spanning long geographic distances. Our research shows how a large network in the southern Southwest grew and then collapsed, whereas networks became more fragmented in the northern Southwest but persisted. The study also illustrates how formal social network analysis may be applied to large-scale databases of material culture to illustrate multigenerational changes in network structure.

  8. Transformation of social networks in the late pre-Hispanic US Southwest

    PubMed Central

    Mills, Barbara J.; Clark, Jeffery J.; Peeples, Matthew A.; Haas, W. R.; Roberts, John M.; Hill, J. Brett; Huntley, Deborah L.; Borck, Lewis; Breiger, Ronald L.; Clauset, Aaron; Shackley, M. Steven

    2013-01-01

    The late pre-Hispanic period in the US Southwest (A.D. 1200–1450) was characterized by large-scale demographic changes, including long-distance migration and population aggregation. To reconstruct how these processes reshaped social networks, we compiled a comprehensive artifact database from major sites dating to this interval in the western Southwest. We combine social network analysis with geographic information systems approaches to reconstruct network dynamics over 250 y. We show how social networks were transformed across the region at previously undocumented spatial, temporal, and social scales. Using well-dated decorated ceramics, we track changes in network topology at 50-y intervals to show a dramatic shift in network density and settlement centrality from the northern to the southern Southwest after A.D. 1300. Both obsidian sourcing and ceramic data demonstrate that long-distance network relationships also shifted from north to south after migration. Surprisingly, social distance does not always correlate with spatial distance because of the presence of network relationships spanning long geographic distances. Our research shows how a large network in the southern Southwest grew and then collapsed, whereas networks became more fragmented in the northern Southwest but persisted. The study also illustrates how formal social network analysis may be applied to large-scale databases of material culture to illustrate multigenerational changes in network structure. PMID:23530201

  9. Research on Environmental Adjustment of Cloud Ranch Based on BP Neural Network PID Control

    NASA Astrophysics Data System (ADS)

    Ren, Jinzhi; Xiang, Wei; Zhao, Lin; Wu, Jianbo; Huang, Lianzhen; Tu, Qinggang; Zhao, Heming

    2018-01-01

    In order to make the intelligent ranch management mode replace the traditional artificial one gradually, this paper proposes a pasture environment control system based on cloud server, and puts forward the PID control algorithm based on BP neural network to control temperature and humidity better in the pasture environment. First, to model the temperature and humidity (controlled object) of the pasture, we can get the transfer function. Then the traditional PID control algorithm and the PID one based on BP neural network are applied to the transfer function. The obtained step tracking curves can be seen that the PID controller based on BP neural network has obvious superiority in adjusting time and error, etc. This algorithm, calculating reasonable control parameters of the temperature and humidity to control environment, can be better used in the cloud service platform.

  10. Research of converter transformer fault diagnosis based on improved PSO-BP algorithm

    NASA Astrophysics Data System (ADS)

    Long, Qi; Guo, Shuyong; Li, Qing; Sun, Yong; Li, Yi; Fan, Youping

    2017-09-01

    To overcome those disadvantages that BP (Back Propagation) neural network and conventional Particle Swarm Optimization (PSO) converge at the global best particle repeatedly in early stage and is easy trapped in local optima and with low diagnosis accuracy when being applied in converter transformer fault diagnosis, we come up with the improved PSO-BP neural network to improve the accuracy rate. This algorithm improves the inertia weight Equation by using the attenuation strategy based on concave function to avoid the premature convergence of PSO algorithm and Time-Varying Acceleration Coefficient (TVAC) strategy was adopted to balance the local search and global search ability. At last the simulation results prove that the proposed approach has a better ability in optimizing BP neural network in terms of network output error, global searching performance and diagnosis accuracy.

  11. Multifractal analysis of mobile social networks

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; Zhang, Zifeng; Deng, Yufan

    2017-09-01

    As Wireless Fidelity (Wi-Fi)-enabled handheld devices have been widely used, the mobile social networks (MSNs) has been attracting extensive attention. Fractal approaches have also been widely applied to characterierize natural networks as useful tools to depict their spatial distribution and scaling properties. Moreover, when the complexity of the spatial distribution of MSNs cannot be properly charaterized by single fractal dimension, multifractal analysis is required. For further research, we introduced a multifractal analysis method based on box-covering algorithm to describe the structure of MSNs. Using this method, we find that the networks are multifractal at different time interval. The simulation results demonstrate that the proposed method is efficient for analyzing the multifractal characteristic of MSNs, which provides a distribution of singularities adequately describing both the heterogeneity of fractal patterns and the statistics of measurements across spatial scales in MSNs.

  12. Lessons learned from IDeAl - 33 recommendations from the IDeAl-net about design and analysis of small population clinical trials.

    PubMed

    Hilgers, Ralf-Dieter; Bogdan, Malgorzata; Burman, Carl-Fredrik; Dette, Holger; Karlsson, Mats; König, Franz; Male, Christoph; Mentré, France; Molenberghs, Geert; Senn, Stephen

    2018-05-11

    IDeAl (Integrated designs and analysis of small population clinical trials) is an EU funded project developing new statistical design and analysis methodologies for clinical trials in small population groups. Here we provide an overview of IDeAl findings and give recommendations to applied researchers. The description of the findings is broken down by the nine scientific IDeAl work packages and summarizes results from the project's more than 60 publications to date in peer reviewed journals. In addition, we applied text mining to evaluate the publications and the IDeAl work packages' output in relation to the design and analysis terms derived from in the IRDiRC task force report on small population clinical trials. The results are summarized, describing the developments from an applied viewpoint. The main result presented here are 33 practical recommendations drawn from the work, giving researchers a comprehensive guidance to the improved methodology. In particular, the findings will help design and analyse efficient clinical trials in rare diseases with limited number of patients available. We developed a network representation relating the hot topics developed by the IRDiRC task force on small population clinical trials to IDeAl's work as well as relating important methodologies by IDeAl's definition necessary to consider in design and analysis of small-population clinical trials. These network representation establish a new perspective on design and analysis of small-population clinical trials. IDeAl has provided a huge number of options to refine the statistical methodology for small-population clinical trials from various perspectives. A total of 33 recommendations developed and related to the work packages help the researcher to design small population clinical trial. The route to improvements is displayed in IDeAl-network representing important statistical methodological skills necessary to design and analysis of small-population clinical trials. The methods are ready for use.

  13. Research on two-port network of wavelet transform processor using surface acoustic wavelet devices and its application.

    PubMed

    Liu, Shoubing; Lu, Wenke; Zhu, Changchun

    2017-11-01

    The goal of this research is to study two-port network of wavelet transform processor (WTP) using surface acoustic wave (SAW) devices and its application. The motive was prompted by the inconvenience of the long research and design cycle and the huge research funding involved with traditional method in this field, which were caused by the lack of the simulation and emulation method of WTP using SAW devices. For this reason, we introduce the two-port network analysis tool, which has been widely used in the design and analysis of SAW devices with uniform interdigital transducers (IDTs). Because the admittance parameters calculation formula of the two-port network can only be used for the SAW devices with uniform IDTs, this analysis tool cannot be directly applied into the design and analysis of the processor using SAW devices, whose input interdigital transducer (IDT) is apodized weighting. Therefore, in this paper, we propose the channel segmentation method, which can convert the WTP using SAW devices into parallel channels, and also provide with the calculation formula of the number of channels, the number of finger pairs and the static capacitance of an interdigital period in each parallel channel firstly. From the parameters given above, we can calculate the admittance parameters of the two port network for each channel, so that we can obtain the admittance parameter of the two-port network of the WTP using SAW devices on the basis of the simplification rule of parallel two-port network. Through this analysis tool, not only can we get the impulse response function of the WTP using SAW devices but we can also get the matching circuit of it. Large numbers of studies show that the parameters of the two-port network obtained by this paper are consistent with those measured by network analyzer E5061A, and the impulse response function obtained by the two-port network analysis tool is also consistent with that measured by network analyzer E5061A, which can meet the accuracy requirements of the analysis of the WTP using SAW devices. Therefore the two-port network analysis tool discussed in this paper has comparatively higher theoretical and practical value. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Establishment of a hydrological monitoring network in a tropical African catchment: An integrated participatory approach

    NASA Astrophysics Data System (ADS)

    Gomani, M. C.; Dietrich, O.; Lischeid, G.; Mahoo, H.; Mahay, F.; Mbilinyi, B.; Sarmett, J.

    Sound decision making for water resources management has to be based on good knowledge of the dominant hydrological processes of a catchment. This information can only be obtained through establishing suitable hydrological monitoring networks. Research catchments are typically established without involving the key stakeholders, which results in instruments being installed at inappropriate places as well as at high risk of theft and vandalism. This paper presents an integrated participatory approach for establishing a hydrological monitoring network. We propose a framework with six steps beginning with (i) inception of idea; (ii) stakeholder identification; (iii) defining the scope of the network; (iv) installation; (v) monitoring; and (vi) feedback mechanism integrated within the participatory framework. The approach is illustrated using an example of the Ngerengere catchment in Tanzania. In applying the approach, the concept of establishing the Ngerengere catchment monitoring network was initiated in 2008 within the Resilient Agro-landscapes to Climate Change in Tanzania (ReACCT) research program. The main stakeholders included: local communities; Sokoine University of Agriculture; Wami Ruvu Basin Water Office and the ReACCT Research team. The scope of the network was based on expert experience in similar projects and lessons learnt from literature review of similar projects from elsewhere integrated with local expert knowledge. The installations involved reconnaissance surveys, detailed surveys, and expert consultations to identify best sites. First, a Digital Elevation Model, land use, and soil maps were used to identify potential monitoring sites. Local and expert knowledge was collected on flow regimes, indicators of shallow groundwater plant species, precipitation pattern, vegetation, and soil types. This information was integrated and used to select sites for installation of an automatic weather station, automatic rain gauges, river flow gauging stations, flow measurement sites and shallow groundwater wells. The network is now used to monitor hydro-meteorological parameters in collaboration with key stakeholders in the catchment. Preliminary results indicate that the network is working well. The benefits of this approach compared to conventional narrow scientific/technical approaches have been shown by gaining rapid insight into the hydrology of the catchment, identifying best sites for the instruments; and voluntary participation of stakeholders in installation, monitoring and safeguarding the installations. This approach has proved simple yet effective and yielded good results. Based on this experience gained in applying the approach in establishing the Ngerengere catchment monitoring network, we conclude that the integrated participatory approach helps to assimilate local and expert knowledge in catchments monitoring which consequently results in: (i) identifying best sites for the hydrologic monitoring; (ii) instilling the sense of ownership; (iii) providing security of the installed network; and (iv) minimizing costs for installation and monitoring.

  15. Information and communications technology, culture, and medical universities; organizational culture and netiquette among academic staff.

    PubMed

    Yarmohammadian, Mohammad Hossein; Iravani, Hoorsana; Abzari, Mehdi

    2012-01-01

    Netiquette is appropriate behavioral etiquette when communicating through computer networks or virtual space. Identification of a dominant organizational culture and its relationship with a network culture offers applied guidelines to top managers of the university to expand communications and develop and learn organization through the use of the internet. The aim of this research was to examine the relationship between netiquette and organizational culture among faculty members of the Isfahan University of Medical Sciences (IUMS), Iran. To achieve this aim, the research method in this study was correlational research, which belonged to the category of descriptive survey research. The target population comprised of 594 faculty members of the IUMS, from which a sample of 150 was randomly selected, based on a simple stratified sampling method. For collecting the required data, two researcher-made questionnaires were formulated. Even as the first questionnaire tended to measure the selected sample members' organizational culture according to Rabbin's model (1999), the latter was designed in the Health Management and Economic Research Center (HMERC), to evaluate netiquette. The reliability of the questionnaires was computed by Choronbach's alpha coefficient formula and they happened to be 0.97 and 0.89, respectively. Ultimately, SPSS Version #15 was used for the statistical analysis of the data. The findings revealed that the organizational culture and netiquette were below average level among the sample members, signifying a considerable gap in the mean. In spite of that, there was no significant relationship between netiquette and the organizational culture of the faculty members. Emphasizing the importance of cultural preparation and a network user's training, this research suggests that the expansion of network culture rules among IUMS and organizational official communications, through the use of internet networks, in order to promote university netiquette and convenience in communication development, on the basis of special etiquette.

  16. Information and communications technology, culture, and medical universities; organizational culture and netiquette among academic staff

    PubMed Central

    Yarmohammadian, Mohammad Hossein; Iravani, Hoorsana; Abzari, Mehdi

    2012-01-01

    Introduction: Netiquette is appropriate behavioral etiquette when communicating through computer networks or virtual space. Identification of a dominant organizational culture and its relationship with a network culture offers applied guidelines to top managers of the university to expand communications and develop and learn organization through the use of the internet. The aim of this research was to examine the relationship between netiquette and organizational culture among faculty members of the Isfahan University of Medical Sciences (IUMS), Iran. Materials and Methods: To achieve this aim, the research method in this study was correlational research, which belonged to the category of descriptive survey research. The target population comprised of 594 faculty members of the IUMS, from which a sample of 150 was randomly selected, based on a simple stratified sampling method. For collecting the required data, two researcher-made questionnaires were formulated. Even as the first questionnaire tended to measure the selected sample members’ organizational culture according to Rabbin's model (1999), the latter was designed in the Health Management and Economic Research Center (HMERC), to evaluate netiquette. The reliability of the questionnaires was computed by Choronbach's alpha coefficient formula and they happened to be 0.97 and 0.89, respectively. Ultimately, SPSS Version #15 was used for the statistical analysis of the data. Results: The findings revealed that the organizational culture and netiquette were below average level among the sample members, signifying a considerable gap in the mean. In spite of that, there was no significant relationship between netiquette and the organizational culture of the faculty members. Conclusion: Emphasizing the importance of cultural preparation and a network user's training, this research suggests that the expansion of network culture rules among IUMS and organizational official communications, through the use of internet networks, in order to promote university netiquette and convenience in communication development, on the basis of special etiquette. PMID:23555109

  17. Aplicación de técnicas de análisis de redes sociales y de co-ocurrencia de palabras en la determinación de frentes de investigación

    NASA Astrophysics Data System (ADS)

    Boeris, C. E.

    A bibliometric study of the scientific production of the IAR researchers has been performed, with the aim of determining the institute's research fronts and groups of researchers working on these fronts. Methods of analysis of co-occurrence of words, authorship analysis and social network analysis (SNA) has been applied by extracting keywords and the names of the authors on the base of published works. The results support the existence of two research fronts within the institution. FULL TEXT IN SPANISH

  18. ProteoLens: a visual analytic tool for multi-scale database-driven biological network data mining.

    PubMed

    Huan, Tianxiao; Sivachenko, Andrey Y; Harrison, Scott H; Chen, Jake Y

    2008-08-12

    New systems biology studies require researchers to understand how interplay among myriads of biomolecular entities is orchestrated in order to achieve high-level cellular and physiological functions. Many software tools have been developed in the past decade to help researchers visually navigate large networks of biomolecular interactions with built-in template-based query capabilities. To further advance researchers' ability to interrogate global physiological states of cells through multi-scale visual network explorations, new visualization software tools still need to be developed to empower the analysis. A robust visual data analysis platform driven by database management systems to perform bi-directional data processing-to-visualizations with declarative querying capabilities is needed. We developed ProteoLens as a JAVA-based visual analytic software tool for creating, annotating and exploring multi-scale biological networks. It supports direct database connectivity to either Oracle or PostgreSQL database tables/views, on which SQL statements using both Data Definition Languages (DDL) and Data Manipulation languages (DML) may be specified. The robust query languages embedded directly within the visualization software help users to bring their network data into a visualization context for annotation and exploration. ProteoLens supports graph/network represented data in standard Graph Modeling Language (GML) formats, and this enables interoperation with a wide range of other visual layout tools. The architectural design of ProteoLens enables the de-coupling of complex network data visualization tasks into two distinct phases: 1) creating network data association rules, which are mapping rules between network node IDs or edge IDs and data attributes such as functional annotations, expression levels, scores, synonyms, descriptions etc; 2) applying network data association rules to build the network and perform the visual annotation of graph nodes and edges according to associated data values. We demonstrated the advantages of these new capabilities through three biological network visualization case studies: human disease association network, drug-target interaction network and protein-peptide mapping network. The architectural design of ProteoLens makes it suitable for bioinformatics expert data analysts who are experienced with relational database management to perform large-scale integrated network visual explorations. ProteoLens is a promising visual analytic platform that will facilitate knowledge discoveries in future network and systems biology studies.

  19. The Telecommunications and Data Acquisition

    NASA Technical Reports Server (NTRS)

    Renzetti, N. A. (Editor)

    1981-01-01

    Progress in the development and operations of the Deep Space Network is reported including developments in Earth based radio technology as applied to other research programs. These programs include application of radio interferometry at microwave frequencies to geodetic measurements and geodynamics, use of deep space stations individually and in pairs as an interferometer by radio astronomers for astrophysics research by direct observations of radio sources, and radio search for extraterrestrial intelligence in the microwave region of the electromagnetic spectrum.

  20. Percolation Features on Climate Network under Attacks of El Niño Events

    NASA Astrophysics Data System (ADS)

    Lu, Z.

    2015-12-01

    Percolation theory under different attacks is one of the main research areas in complex networks but never be applied to investigate climate network. In this study, for the first time we construct a climate network of surface air temperature field to analyze its percolation features. Here, we regard El Niño event as a kind of naturally attacks generated from Pacific Ocean to attack its upper climate network. We find that El Niño event leads an abrupt percolation phase transition to the climate network which makes it splitting and unstable suddenly. Comparing the results of the climate network under three different forms of attacks, including most connected attack (MA), localized attack (LA) and random attack (RA) respectively, it is found that both MA and LA lead first-order transition and RA leads second-order transition to the climate network. Furthermore, we find that most real attacks consist of all these three forms of attacks. With El Niño event emerging, the ratios of LA and MA increase and dominate the style of attack while RA decreasing. It means the percolation phase transition due to El Niño events is close to first-order transition mostly affected by LA and MA. Our research may help us further understand two questions from perspective of percolation on network: (1) Why not all warming in Pacific Ocean but El Niño events could affect the climate. (2) Why the climate affected by El Niño events changes abruptly.

  1. A Time-constrained Network Voronoi Construction and Accessibility Analysis in Location-based Service Technology

    NASA Astrophysics Data System (ADS)

    Yu, W.; Ai, T.

    2014-11-01

    Accessibility analysis usually requires special models of spatial location analysis based on some geometric constructions, such as Voronoi diagram (abbreviated to VD). There are many achievements in classic Voronoi model research, however suffering from the following limitations for location-based services (LBS) applications. (1) It is difficult to objectively reflect the actual service areas of facilities by using traditional planar VDs, because human activities in LBS are usually constrained only to the network portion of the planar space. (2) Although some researchers have adopted network distance to construct VDs, their approaches are used in a static environment, where unrealistic measures of shortest path distance based on assumptions about constant travel speeds through the network were often used. (3) Due to the computational complexity of the shortest-path distance calculating, previous researches tend to be very time consuming, especially for large datasets and if multiple runs are required. To solve the above problems, a novel algorithm is developed in this paper. We apply network-based quadrat system and 1-D sequential expansion to find the corresponding subnetwork for each focus. The idea is inspired by the natural phenomenon that water flow extends along certain linear channels until meets others or arrives at the end of route. In order to accommodate the changes in traffic conditions, the length of network-quadrat is set upon the traffic condition of the corresponding street. The method has the advantage over Dijkstra's algorithm in that the time cost is avoided, and replaced with a linear time operation.

  2. Protecting clinical data in PACS, teleradiology systems, and research environments

    NASA Astrophysics Data System (ADS)

    Meissner, Marion C.; Collmann, Jeff R.; Tohme, Walid G.; Mun, Seong K.

    1997-05-01

    As clinical data is more widely stored in electronic patient record management systems and transmitted over the Internet and telephone lines, it becomes more accessible and therefore more useful, but also more vulnerable. Computer systems such as PACS, telemedicine applications, and medical research networks must protect against accidental or deliberate modification, disclosure, and violation of patient confidentiality in order to be viable. Conventional wisdom in the medical field and among lawmakers legislating the use of electronic medical records suggests that, although it may improve access to information, an electronic medical record cannot be as secure as a traditional paper record. This is not the case. Information security is a well-developed field in the computer and communications industry. If medical information systems, such as PACS, telemedicine applications, and research networks, properly apply information security techniques, they can ensure the accuracy and confidentiality of their patient information and even improve the security of their data over a traditional paper record. This paper will elaborate on some of these techniques and discuss how they can be applied to medical information systems. The following systems will be used as examples for the analysis: a research laboratory at Georgetown University Medical Center, the Deployable Radiology system installed to support the US Army's peace- keeping operation in Bosnia, a kidney dialysis telemedicine system in Washington, D.C., and various experiences with implementing and integrating PACS.

  3. Effects of threshold on the topology of gene co-expression networks.

    PubMed

    Couto, Cynthia Martins Villar; Comin, César Henrique; Costa, Luciano da Fontoura

    2017-09-26

    Several developments regarding the analysis of gene co-expression profiles using complex network theory have been reported recently. Such approaches usually start with the construction of an unweighted gene co-expression network, therefore requiring the selection of a suitable threshold defining which pairs of vertices will be connected. We aimed at addressing such an important problem by suggesting and comparing five different approaches for threshold selection. Each of the methods considers a respective biologically-motivated criterion for electing a potentially suitable threshold. A set of 21 microarray experiments from different biological groups was used to investigate the effect of applying the five proposed criteria to several biological situations. For each experiment, we used the Pearson correlation coefficient to measure the relationship between each gene pair, and the resulting weight matrices were thresholded considering several values, generating respective adjacency matrices (co-expression networks). Each of the five proposed criteria was then applied in order to select the respective threshold value. The effects of these thresholding approaches on the topology of the resulting networks were compared by using several measurements, and we verified that, depending on the database, the impact on the topological properties can be large. However, a group of databases was verified to be similarly affected by most of the considered criteria. Based on such results, it can be suggested that when the generated networks present similar measurements, the thresholding method can be chosen with greater freedom. If the generated networks are markedly different, the thresholding method that better suits the interests of each specific research study represents a reasonable choice.

  4. Currency arbitrage detection using a binary integer programming model

    NASA Astrophysics Data System (ADS)

    Soon, Wanmei; Ye, Heng-Qing

    2011-04-01

    In this article, we examine the use of a new binary integer programming (BIP) model to detect arbitrage opportunities in currency exchanges. This model showcases an excellent application of mathematics to the real world. The concepts involved are easily accessible to undergraduate students with basic knowledge in Operations Research. Through this work, students can learn to link several types of basic optimization models, namely linear programming, integer programming and network models, and apply the well-known sensitivity analysis procedure to accommodate realistic changes in the exchange rates. Beginning with a BIP model, we discuss how it can be reduced to an equivalent but considerably simpler model, where an efficient algorithm can be applied to find the arbitrages and incorporate the sensitivity analysis procedure. A simple comparison is then made with a different arbitrage detection model. This exercise helps students learn to apply basic Operations Research concepts to a practical real-life example, and provides insights into the processes involved in Operations Research model formulations.

  5. Recent Themes in Social Networking Service Research.

    PubMed

    Liu, John S; Ho, Mei Hsiu-Ching; Lu, Louis Y Y

    2017-01-01

    The body of literature addressing the phenomenon related to social networking services (SNSs) has grown rather fast recently. Through a systematic and quantitative approach, this study identifies the recent SNS research themes, which are the issues discussed by a coherent and growing subset of this literature. A set of academic articles retrieved from the Web of Science database is used as the basis for uncovering the recent themes. We begin the analysis by constructing a citation network which is further separated into groups after applying a widely used clustering method. The resulting clusters all consist of articles coherent in citation relationships. This study suggests eight fast growing recent themes. They span widely encompassing politics, romantic relationships, public relations, journalism, and health. Among them, four focus their issues largely on Twitter, three on Facebook, and one generally on both. While discussions on traditional issues in SNSs such as personality, motivations, self-disclosure, narcissism, etc. continue to lead the pack, the proliferation of the highlighted recent themes in the near future is very likely to happen.

  6. Conversion of National Health Insurance Service-National Sample Cohort (NHIS-NSC) Database into Observational Medical Outcomes Partnership-Common Data Model (OMOP-CDM).

    PubMed

    You, Seng Chan; Lee, Seongwon; Cho, Soo-Yeon; Park, Hojun; Jung, Sungjae; Cho, Jaehyeong; Yoon, Dukyong; Park, Rae Woong

    2017-01-01

    It is increasingly necessary to generate medical evidence applicable to Asian people compared to those in Western countries. Observational Health Data Sciences a Informatics (OHDSI) is an international collaborative which aims to facilitate generating high-quality evidence via creating and applying open-source data analytic solutions to a large network of health databases across countries. We aimed to incorporate Korean nationwide cohort data into the OHDSI network by converting the national sample cohort into Observational Medical Outcomes Partnership-Common Data Model (OMOP-CDM). The data of 1.13 million subjects was converted to OMOP-CDM, resulting in average 99.1% conversion rate. The ACHILLES, open-source OMOP-CDM-based data profiling tool, was conducted on the converted database to visualize data-driven characterization and access the quality of data. The OMOP-CDM version of National Health Insurance Service-National Sample Cohort (NHIS-NSC) can be a valuable tool for multiple aspects of medical research by incorporation into the OHDSI research network.

  7. Recent Themes in Social Networking Service Research

    PubMed Central

    Liu, John S.; Ho, Mei Hsiu-Ching; Lu, Louis Y. Y.

    2017-01-01

    The body of literature addressing the phenomenon related to social networking services (SNSs) has grown rather fast recently. Through a systematic and quantitative approach, this study identifies the recent SNS research themes, which are the issues discussed by a coherent and growing subset of this literature. A set of academic articles retrieved from the Web of Science database is used as the basis for uncovering the recent themes. We begin the analysis by constructing a citation network which is further separated into groups after applying a widely used clustering method. The resulting clusters all consist of articles coherent in citation relationships. This study suggests eight fast growing recent themes. They span widely encompassing politics, romantic relationships, public relations, journalism, and health. Among them, four focus their issues largely on Twitter, three on Facebook, and one generally on both. While discussions on traditional issues in SNSs such as personality, motivations, self-disclosure, narcissism, etc. continue to lead the pack, the proliferation of the highlighted recent themes in the near future is very likely to happen. PMID:28107541

  8. NASA's International Lunar Network Anchor Nodes and Robotic Lunar Lander Project Update

    NASA Technical Reports Server (NTRS)

    Morse, Brian J.; Reed, Cheryl L. B.; Kirby, Karen W.; Cohen, Barbara A.; Bassler, Julie A.; Harris, Danny W.; Chavers, D. Gregory

    2010-01-01

    In early 2008, NASA established the Lunar Quest Program, a new lunar science research program within NASA s Science Mission Directorate. The program included the establishment of the anchor nodes of the International Lunar Network (ILN), a network of lunar science stations envisioned to be emplaced by multiple nations. This paper describes the current status of the ILN Anchor Nodes mission development and the lander risk-reduction design and test activities implemented jointly by NASA s Marshall Space Flight Center and The Johns Hopkins University Applied Physics Laboratory. The lunar lander concepts developed by this team are applicable to multiple science missions, and this paper will describe a mission combining the functionality of an ILN node with an investigation of lunar polar volatiles.

  9. Graph Theoretical Framework of Brain Networks in Multiple Sclerosis: A Review of Concepts.

    PubMed

    Fleischer, Vinzenz; Radetz, Angela; Ciolac, Dumitru; Muthuraman, Muthuraman; Gonzalez-Escamilla, Gabriel; Zipp, Frauke; Groppa, Sergiu

    2017-11-01

    Network science provides powerful access to essential organizational principles of the human brain. It has been applied in combination with graph theory to characterize brain connectivity patterns. In multiple sclerosis (MS), analysis of the brain networks derived from either structural or functional imaging provides new insights into pathological processes within the gray and white matter. Beyond focal lesions and diffuse tissue damage, network connectivity patterns could be important for closely tracking and predicting the disease course. In this review, we describe concepts of graph theory, highlight novel issues of tissue reorganization in acute and chronic neuroinflammation and address pitfalls with regard to network analysis in MS patients. We further provide an outline of functional and structural connectivity patterns observed in MS, spanning from disconnection and disruption on one hand to adaptation and compensation on the other. Moreover, we link network changes and their relation to clinical disability based on the current literature. Finally, we discuss the perspective of network science in MS for future research and postulate its role in the clinical framework. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Flank wears Simulation by using back propagation neural network when cutting hardened H-13 steel in CNC End Milling

    NASA Astrophysics Data System (ADS)

    Hazza, Muataz Hazza F. Al; Adesta, Erry Y. T.; Riza, Muhammad

    2013-12-01

    High speed milling has many advantages such as higher removal rate and high productivity. However, higher cutting speed increase the flank wear rate and thus reducing the cutting tool life. Therefore estimating and predicting the flank wear length in early stages reduces the risk of unaccepted tooling cost. This research presents a neural network model for predicting and simulating the flank wear in the CNC end milling process. A set of sparse experimental data for finish end milling on AISI H13 at hardness of 48 HRC have been conducted to measure the flank wear length. Then the measured data have been used to train the developed neural network model. Artificial neural network (ANN) was applied to predict the flank wear length. The neural network contains twenty hidden layer with feed forward back propagation hierarchical. The neural network has been designed with MATLAB Neural Network Toolbox. The results show a high correlation between the predicted and the observed flank wear which indicates the validity of the models.

  11. Link monitor and control operator assistant: A prototype demonstrating semiautomated monitor and control

    NASA Technical Reports Server (NTRS)

    Lee, L. F.; Cooper, L. P.

    1993-01-01

    This article describes the approach, results, and lessons learned from an applied research project demonstrating how artificial intelligence (AI) technology can be used to improve Deep Space Network operations. Configuring antenna and associated equipment necessary to support a communications link is a time-consuming process. The time spent configuring the equipment is essentially overhead and results in reduced time for actual mission support operations. The NASA Office of Space Communications (Code O) and the NASA Office of Advanced Concepts and Technology (Code C) jointly funded an applied research project to investigate technologies which can be used to reduce configuration time. This resulted in the development and application of AI-based automated operations technology in a prototype system, the Link Monitor and Control Operator Assistant (LMC OA). The LMC OA was tested over the course of three months in a parallel experimental mode on very long baseline interferometry (VLBI) operations at the Goldstone Deep Space Communications Center. The tests demonstrated a 44 percent reduction in pre-calibration time for a VLBI pass on the 70-m antenna. Currently, this technology is being developed further under Research and Technology Operating Plan (RTOP)-72 to demonstrate the applicability of the technology to operations in the entire Deep Space Network.

  12. Improving nutrition surveillance and public health research in Central and Eastern Europe/Balkan Countries using the Balkan Food Platform and dietary tools.

    PubMed

    Gurinović, Mirjana; Milešević, Jelena; Novaković, Romana; Kadvan, Agnes; Djekić-Ivanković, Marija; Šatalić, Zvonimir; Korošec, Mojca; Spiroski, Igor; Ranić, Marija; Dupouy, Eleonora; Oshaug, Arne; Finglas, Paul; Glibetić, Maria

    2016-02-15

    The objective of this paper is to share experience and provide updated information on Capacity Development in the Central and Eastern Europe/Balkan Countries (CEE/BC) region relevant to public health nutrition, particularly in creation of food composition databases (FCDBs), applying dietary intake assessment and monitoring tools, and harmonizing methodology for nutrition surveillance. Balkan Food Platform was established by a Memorandum of Understanding among EuroFIR AISBL, Institute for Medical Research, Belgrade, Capacity Development Network in Nutrition in CEE - CAPNUTRA and institutions from nine countries in the region. Inventory on FCDB status identified lack of harmonized and standardized research tools. To strengthen harmonization in CEE/BC in line with European research trends, the Network members collaborated in development of a Regional FCDB, using web-based food composition data base management software following EuroFIR standards. Comprehensive nutrition assessment and planning tool - DIET ASSESS & PLAN could enable synchronization of nutrition surveillance across countries. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. A novel neural-wavelet approach for process diagnostics and complex system modeling

    NASA Astrophysics Data System (ADS)

    Gao, Rong

    Neural networks have been effective in several engineering applications because of their learning abilities and robustness. However certain shortcomings, such as slow convergence and local minima, are always associated with neural networks, especially neural networks applied to highly nonlinear and non-stationary problems. These problems can be effectively alleviated by integrating a new powerful tool, wavelets, into conventional neural networks. The multi-resolution analysis and feature localization capabilities of the wavelet transform offer neural networks new possibilities for learning. A neural wavelet network approach developed in this thesis enjoys fast convergence rate with little possibility to be caught at a local minimum. It combines the localization properties of wavelets with the learning abilities of neural networks. Two different testbeds are used for testing the efficiency of the new approach. The first is magnetic flowmeter-based process diagnostics: here we extend previous work, which has demonstrated that wavelet groups contain process information, to more general process diagnostics. A loop at Applied Intelligent Systems Lab (AISL) is used for collecting and analyzing data through the neural-wavelet approach. The research is important for thermal-hydraulic processes in nuclear and other engineering fields. The neural-wavelet approach developed is also tested with data from the electric power grid. More specifically, the neural-wavelet approach is used for performing short-term and mid-term prediction of power load demand. In addition, the feasibility of determining the type of load using the proposed neural wavelet approach is also examined. The notion of cross scale product has been developed as an expedient yet reliable discriminator of loads. Theoretical issues involved in the integration of wavelets and neural networks are discussed and future work outlined.

  14. Energy efficient mechanisms for high-performance Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Alsaify, Baha'adnan

    2009-12-01

    Due to recent advances in microelectronics, the development of low cost, small, and energy efficient devices became possible. Those advances led to the birth of the Wireless Sensor Networks (WSNs). WSNs consist of a large set of sensor nodes equipped with communication capabilities, scattered in the area to monitor. Researchers focus on several aspects of WSNs. Such aspects include the quality of service the WSNs provide (data delivery delay, accuracy of data, etc...), the scalability of the network to contain thousands of sensor nodes (the terms node and sensor node are being used interchangeably), the robustness of the network (allowing the network to work even if a certain percentage of nodes fails), and making the energy consumption in the network as low as possible to prolong the network's lifetime. In this thesis, we present an approach that can be applied to the sensing devices that are scattered in an area for Sensor Networks. This work will use the well-known approach of using a awaking scheduling to extend the network's lifespan. We designed a scheduling algorithm that will reduce the delay's upper bound the reported data will experience, while at the same time keeps the advantages that are offered by the use of the awaking scheduling -- the energy consumption reduction which will lead to the increase in the network's lifetime. The wakeup scheduling is based on the location of the node relative to its neighbors and its distance from the Base Station (the terms Base Station and sink are being used interchangeably). We apply the proposed method to a set of simulated nodes using the "ONE Simulator". We test the performance of this approach with three other approaches -- Direct Routing technique, the well known LEACH algorithm, and a multi-parent scheduling algorithm. We demonstrate a good improvement on the network's quality of service and a reduction of the consumed energy.

  15. Physician Networks and Ambulatory Care-sensitive Admissions.

    PubMed

    Casalino, Lawrence P; Pesko, Michael F; Ryan, Andrew M; Nyweide, David J; Iwashyna, Theodore J; Sun, Xuming; Mendelsohn, Jayme; Moody, James

    2015-06-01

    Research on the quality and cost of care traditionally focuses on individual physicians or medical groups. Social network theory suggests that the care a patient receives also depends on the network of physicians with whom a patient's physician is connected. The objectives of the study are: (1) identify physician networks; (2) determine whether the rate of ambulatory care-sensitive hospital admissions (ACSAs) varies across networks--even different networks at the same hospital; and (3) determine the relationship between ACSA rates and network characteristics. We identified networks by applying network detection algorithms to Medicare 2008 claims for 987,000 beneficiaries in 5 states. We estimated a fixed-effects model to determine the relationship between networks and ACSAs and a multivariable model to determine the relationship between network characteristics and ACSAs. We identified 417 networks. Mean size: 129 physicians; range, 26-963. In the fixed-effects model, ACSA rates varied significantly across networks: there was a 46% difference in rates between networks at the 25th and 75th performance percentiles. At 95% of hospitals with admissions from 2 networks, the networks had significantly different ACSA rates; the mean difference was 36% of the mean ACSA rate. Networks with a higher percentage of primary-care physicians and networks in which patients received care from a larger number of physicians had higher ACSA rates. Physician networks have a relationship with ACSAs that is independent of the physicians in the network. Physician networks could be an important focus for understanding variations in medical care and for intervening to improve care.

  16. Road safety performance indicators for the interurban road network.

    PubMed

    Yannis, George; Weijermars, Wendy; Gitelman, Victoria; Vis, Martijn; Chaziris, Antonis; Papadimitriou, Eleonora; Azevedo, Carlos Lima

    2013-11-01

    Various road safety performance indicators (SPIs) have been proposed for different road safety research areas, mainly as regards driver behaviour (e.g. seat belt use, alcohol, drugs, etc.) and vehicles (e.g. passive safety); however, no SPIs for the road network and design have been developed. The objective of this research is the development of an SPI for the road network, to be used as a benchmark for cross-region comparisons. The developed SPI essentially makes a comparison of the existing road network to the theoretically required one, defined as one which meets some minimum requirements with respect to road safety. This paper presents a theoretical concept for the determination of this SPI as well as a translation of this theory into a practical method. Also, the method is applied in a number of pilot countries namely the Netherlands, Portugal, Greece and Israel. The results show that the SPI could be efficiently calculated in all countries, despite some differences in the data sources. In general, the calculated overall SPI scores were realistic and ranged from 81 to 94%, with the exception of Greece where the SPI was relatively lower (67%). However, the SPI should be considered as a first attempt to determine the safety level of the road network. The proposed method has some limitations and could be further improved. The paper presents directions for further research to further develop the SPI. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Effectiveness of a resin-modified glass ionomer liner in reducing hypersensitivity in posterior restorations: a study from the practitioners engaged in applied research and learning network.

    PubMed

    Strober, Brad; Veitz-Keenan, Analia; Barna, Julie Ann; Matthews, Abigail G; Vena, Donald; Craig, Ronald G; Curro, Frederick A; Thompson, Van P

    2013-08-01

    The objectives of this randomized comparative effectiveness study conducted by members of the Practitioners Engaged in Applied Research and Learning (PEARL) Network were to determine whether using a resin-modified glass ionomer (RMGI) liner reduces postoperative hypersensitivity (POH) in dentin-bonded Class I and Class II resin-based composite (RBC) restorations, as well as to identify other factors (putative risk factors) associated with increased POH. PEARL Network practitioner-investigators (P-Is) (n = 28) were trained to assess sensitivity determination, enamel and dentin caries activity rankings, evaluation for sleep bruxism, and materials and techniques used. The P-Is enrolled 341 participants who had hypersensitive posterior lesions. Participants were randomly assigned to receive an RBC restoration with or without an RMGI liner before P-Is applied a one-step, self-etching bonding agent. P-Is conducted sensitivity evaluations at baseline, at one and four weeks after treatment, and at all visits according to patient-reported outcomes. P-Is collected complete data regarding 347 restorations (339 participants) at baseline, with 341 (98 percent) (333 participants) recalled at four weeks. Treatment groups were balanced across baseline characteristics and measures. RBC restorations with or without an RMGI liner had the same one-week and four-week POH outcomes, as measured clinically (by means of cold or air stimulation) and according to patient-reported outcomes. Use of an RMGI liner did not reduce clinically measured or patient-reported POH in moderate-depth Class I and Class II restorations. Cold and air clinical stimulation findings were similar between groups. Practical Implications. The time, effort and expense involved in placing an RMGI liner in these moderate-depth RBC restorations may be unnecessary, as the representative liner used did not improve hypersensitivity outcomes.

  18. Bandwidth Optimization On Design Of Visual Display Information System Based Networking At Politeknik Negeri Bali

    NASA Astrophysics Data System (ADS)

    Sudiartha, IKG; Catur Bawa, IGNB

    2018-01-01

    Information can not be separated from the social life of the community, especially in the world of education. One of the information fields is academic calendar information, activity agenda, announcement and campus activity news. In line with technological developments, text-based information is becoming obsolete. For that need creativity to present information more quickly, accurately and interesting by exploiting the development of digital technology and internet. In this paper will be developed applications for the provision of information in the form of visual display, applied to computer network system with multimedia applications. Network-based applications provide ease in updating data through internet services, attractive presentations with multimedia support. The application “Networking Visual Display Information Unit” can be used as a medium that provides information services for students and academic employee more interesting and ease in updating information than the bulletin board. The information presented in the form of Running Text, Latest Information, Agenda, Academic Calendar and Video provide an interesting presentation and in line with technological developments at the Politeknik Negeri Bali. Through this research is expected to create software “Networking Visual Display Information Unit” with optimal bandwidth usage by combining local data sources and data through the network. This research produces visual display design with optimal bandwidth usage and application in the form of supporting software.

  19. A Security Analysis of the 802.11s Wireless Mesh Network Routing Protocol and Its Secure Routing Protocols

    PubMed Central

    Tan, Whye Kit; Lee, Sang-Gon; Lam, Jun Huy; Yoo, Seong-Moo

    2013-01-01

    Wireless mesh networks (WMNs) can act as a scalable backbone by connecting separate sensor networks and even by connecting WMNs to a wired network. The Hybrid Wireless Mesh Protocol (HWMP) is the default routing protocol for the 802.11s WMN. The routing protocol is one of the most important parts of the network, and it requires protection, especially in the wireless environment. The existing security protocols, such as the Broadcast Integrity Protocol (BIP), Counter with cipher block chaining message authentication code protocol (CCMP), Secure Hybrid Wireless Mesh Protocol (SHWMP), Identity Based Cryptography HWMP (IBC-HWMP), Elliptic Curve Digital Signature Algorithm HWMP (ECDSA-HWMP), and Watchdog-HWMP aim to protect the HWMP frames. In this paper, we have analyzed the vulnerabilities of the HWMP and developed security requirements to protect these identified vulnerabilities. We applied the security requirements to analyze the existing secure schemes for HWMP. The results of our analysis indicate that none of these protocols is able to satisfy all of the security requirements. We also present a quantitative complexity comparison among the protocols and an example of a security scheme for HWMP to demonstrate how the result of our research can be utilized. Our research results thus provide a tool for designing secure schemes for the HWMP. PMID:24002231

  20. A security analysis of the 802.11s wireless mesh network routing protocol and its secure routing protocols.

    PubMed

    Tan, Whye Kit; Lee, Sang-Gon; Lam, Jun Huy; Yoo, Seong-Moo

    2013-09-02

    Wireless mesh networks (WMNs) can act as a scalable backbone by connecting separate sensor networks and even by connecting WMNs to a wired network. The Hybrid Wireless Mesh Protocol (HWMP) is the default routing protocol for the 802.11s WMN. The routing protocol is one of the most important parts of the network, and it requires protection, especially in the wireless environment. The existing security protocols, such as the Broadcast Integrity Protocol (BIP), Counter with cipher block chaining message authentication code protocol (CCMP), Secure Hybrid Wireless Mesh Protocol (SHWMP), Identity Based Cryptography HWMP (IBC-HWMP), Elliptic Curve Digital Signature Algorithm HWMP (ECDSA-HWMP), and Watchdog-HWMP aim to protect the HWMP frames. In this paper, we have analyzed the vulnerabilities of the HWMP and developed security requirements to protect these identified vulnerabilities. We applied the security requirements to analyze the existing secure schemes for HWMP. The results of our analysis indicate that none of these protocols is able to satisfy all of the security requirements. We also present a quantitative complexity comparison among the protocols and an example of a security scheme for HWMP to demonstrate how the result of our research can be utilized. Our research results thus provide a tool for designing secure schemes for the HWMP.

  1. Maths Meets Myths: Network Investigations of Ancient Narratives

    NASA Astrophysics Data System (ADS)

    Kenna, Ralph; Mac Carron, Pádraig

    2016-02-01

    Three years ago, we initiated a programme of research in which ideas and tools from statistical physics and network theory were applied to the field of comparative mythology. The eclecticism of the work, together with the perspectives it delivered, led to widespread media coverage and academic discussion. Here we review some aspects of the project, contextualised with a brief history of the long relationship between science and the humanities. We focus in particular on an Irish epic, summarising some of the outcomes of our quantitative investigation. We also describe the emergence of a new sub-discipline and our hopes for its future.

  2. [Clinical pathology on the verge of virtual microscopy].

    PubMed

    Tolonen, Teemu; Näpänkangas, Juha; Isola, Jorma

    2015-01-01

    For more than 100 years, examinations of pathology specimens have relied on the use of the light microscope. The technological progress of the last few years is enabling the digitizing of histologic specimen slides and application of the virtual microscope in diagnostics. Virtual microscopy will facilitate consultation possibilities, and digital image analysis serves to enhance the level of diagnostics. Organizing and monitoring clinicopathological meetings will become easier. Digital archive of histologic specimens and the virtual microscopy network are expected to benefit training and research as well, particularly what applies to the Finnish biobank network which is currently being established.

  3. A new intrusion prevention model using planning knowledge graph

    NASA Astrophysics Data System (ADS)

    Cai, Zengyu; Feng, Yuan; Liu, Shuru; Gan, Yong

    2013-03-01

    Intelligent plan is a very important research in artificial intelligence, which has applied in network security. This paper proposes a new intrusion prevention model base on planning knowledge graph and discuses the system architecture and characteristics of this model. The Intrusion Prevention based on plan knowledge graph is completed by plan recognition based on planning knowledge graph, and the Intrusion response strategies and actions are completed by the hierarchical task network (HTN) planner in this paper. Intrusion prevention system has the advantages of intelligent planning, which has the advantage of the knowledge-sharing, the response focused, learning autonomy and protective ability.

  4. Evaluation of the Regional Educational Laboratories. Interim Report. NCEE 2013-4014

    ERIC Educational Resources Information Center

    Carlson, Elaine; Scott, Jenna; Zhang, Xiaodong; Gutmann, Babette; Sinclair, Beth

    2013-01-01

    The Regional Educational Laboratories (RELs) are a networked system of 10 organizations that serve the educational needs of 10 designated regions across the United States and its territories. The U.S. Department of Education (ED) is authorized by the Education Sciences Reform Act (ESRA) to award contracts to 10 RELs to support applied research,…

  5. Policy Mobilities and Methodology: A Proposition for Inventive Methods in Education Policy Studies

    ERIC Educational Resources Information Center

    Gulson, Kalervo N.; Lewis, Steven; Lingard, Bob; Lubienski, Christopher; Takayama, Keita; Webb, P. Taylor

    2017-01-01

    The argument of this paper is that new methodologies associated with the emerging field of "policy mobilities" can be applied, and are in fact required, to examine and research the networked and relational, or "topological", nature of globalised education policy, which cuts across the new spaces of policymaking and new modes of…

  6. 75 FR 26796 - Investigations Regarding Certifications of Eligibility To Apply for Worker Adjustment Assistance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-12

    ... (formerly Genlyte Group) (Company). 73953 Freescale Semiconductors Austin, TX 04/19/10 04/16/10 (State/One... Nortel Networks (Workers).. Research Triangle 04/21/10 04/19/10 Park, NC. 73967 Hewlett Packard (Workers... 73969 Cummins, Inc. (Company).... El Paso, TX 04/21/10 04/19/10 73970 CareFusion (Company)....... San...

  7. Proceedings of the Annual Midwest Research-to-Practice Conference in Adult, Continuing and Community Education (16th, East Lansing, Michigan, October 15-17, 1997).

    ERIC Educational Resources Information Center

    Levine, S. Joseph, Ed.

    This proceedings contains 29 presentations: "Meaning of Participating in Technology Training" (Cynthia S. Blodgett-McDeavitt); "Applying Actor Network Theory to Curricular Change in Medical Schools" (Karen V. Busch); "Politics of Humanism" (Mary Katherine Cooper); "Reasons for the Nonparticipation of Adults in…

  8. Navigating the Challenges of Becoming a Culturally Responsive Teacher: Supportive Networking May Be the Key

    ERIC Educational Resources Information Center

    Nilsson, Nina L.; Kong, Ailing; Hubert, Shantel

    2016-01-01

    Research shows graduates of teacher education programs do not always transfer, or apply, the best practices they learn to instructional practice due to factors related to course features, the student, and workplace environment (e.g., Brown & Bentley, 2004; de Jong et al., 2010). This study examined the challenges a secondary-level English…

  9. Creation of defined single cell resolution neuronal circuits on microelectrode arrays

    NASA Astrophysics Data System (ADS)

    Pirlo, Russell Kirk

    2009-12-01

    The way cell-cell organization of neuronal networks influences activity and facilitates function is not well understood. Microelectrode arrays (MEAs) and advancing cell patterning technologies have enabled access to and control of in vitro neuronal networks spawning much new research in neuroscience and neuroengineering. We propose that small, simple networks of neurons with defined circuitry may serve as valuable research models where every connection can be analyzed, controlled and manipulated. Towards the goal of creating such neuronal networks we have applied microfabricated elastomeric membranes, surface modification and our unique laser cell patterning system to create defined neuronal circuits with single-cell precision on MEAs. Definition of synaptic connectivity was imposed by the 3D physical constraints of polydimethylsiloxane elastomeric membranes. The membranes had 20mum clear-through holes and 2-3mum deep channels which when applied to the surface of the MEA formed microwells to confine neurons to electrodes connected via shallow tunnels to direct neurite outgrowth. Tapering and turning of channels was used to influence neurite polarity. Biocompatibility of the membranes was increased by vacuum baking, oligomer extraction, and autoclaving. Membranes were bound to the MEA by oxygen plasma treatment and heated pressure. The MEA/membrane surface was treated with oxygen plasma, poly-D-lysine and laminin to improve neuron attachment, survival and neurite outgrowth. Prior to cell patterning the outer edge of culture area was seeded with 5x10 5 cells per cm and incubated for 2 days. Single embryonic day 7 chick forebrain neurons were then patterned into the microwells and onto the electrodes using our laser cell patterning system. Patterned neurons successfully attached to and were confined to the electrodes. Neurites extended through the interconnecting channels and connected with adjacent neurons. These results demonstrate that neuronal circuits can be created with clearly defined circuitry and a one-to-one neuron-electrode ratio. The techniques and processes described here may be used in future research to create defined neuronal circuits to model in vivo circuits and study neuronal network processing.

  10. Physical parameters collection based on wireless senor network

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Wu, Hong; Ji, Lei

    2013-12-01

    With the development of sensor technology, wireless senor network has been applied in the medical, military, entertainment field and our daily life. But the existing available wireless senor networks applied in human monitoring system still have some problems, such as big power consumption, low security and so on. To improve senor network applied in health monitoring system, the paper introduces a star wireless senor networks based on msp430 and DSP. We design a low-cost heart-rate monitor senor node. The communication between senor node and sink node is realized according to the newest protocol proposed by the IEEE 802.15.6 Task Group. This wireless senor network will be more energy-efficient and faster compared to traditional senor networks.

  11. Rationale, timeline, study design, and protocol overview of the therapeutic hypothermia after pediatric cardiac arrest trials.

    PubMed

    Moler, Frank W; Silverstein, Faye S; Meert, Kathleen L; Clark, Amy E; Holubkov, Richard; Browning, Brittan; Slomine, Beth S; Christensen, James R; Dean, J Michael

    2013-09-01

    To describe the rationale, timeline, study design, and protocol overview of the Therapeutic Hypothermia after Pediatric Cardiac Arrest trials. Multicenter randomized controlled trials. Pediatric intensive care and cardiac ICUs in the United States and Canada. Children from 48 hours to 18 years old, who have return of circulation after cardiac arrest, who meet trial eligibility criteria, and whose guardians provide written consent. Therapeutic hypothermia or therapeutic normothermia. From concept inception in 2002 until trial initiation in 2009, 7 years were required to plan and operationalize the Therapeutic Hypothermia after Pediatric Cardiac Arrest trials. Two National Institute of Child Health and Human Development clinical trial planning grants (R21 and R34) supported feasibility assessment and protocol development. Two clinical research networks, Pediatric Emergency Care Applied Research Network and Collaborative Pediatric Critical Care Research Network, provided infrastructure resources. Two National Heart Lung Blood Institute U01 awards provided funding to conduct separate trials of in-hospital and out-of-hospital cardiac arrest. A pilot vanguard phase that included half the clinical sites began on March 9, 2009, and this was followed by full trial funding through 2015. Over a decade will have been required to plan, design, operationalize, and conduct the Therapeutic Hypothermia after Pediatric Cardiac Arrest trials. Details described in this report, such as participation of clinical research networks and clinical trial planning grants utilization, may be of utility for individuals who are planning investigator-initiated, federally supported clinical trials.

  12. Development of a privacy and security policy framework for a multistate comparative effectiveness research network.

    PubMed

    Kim, Katherine K; McGraw, Deven; Mamo, Laura; Ohno-Machado, Lucila

    2013-08-01

    Comparative effectiveness research (CER) conducted in distributed research networks (DRNs) is subject to different state laws and regulations as well as institution-specific policies intended to protect privacy and security of health information. The goal of the Scalable National Network for Effectiveness Research (SCANNER) project is to develop and demonstrate a scalable, flexible technical infrastructure for DRNs that enables near real-time CER consistent with privacy and security laws and best practices. This investigation began with an analysis of privacy and security laws and state health information exchange (HIE) guidelines applicable to SCANNER participants from California, Illinois, Massachusetts, and the Federal Veteran's Administration. A 7-member expert panel of policy and technical experts reviewed the analysis and gave input into the framework during 5 meetings held in 2011-2012. The state/federal guidelines were applied to 3 CER use cases: safety of new oral hematologic medications; medication therapy management for patients with diabetes and hypertension; and informational interventions for providers in the treatment of acute respiratory infections. The policy framework provides flexibility, beginning with a use-case approach rather than a one-size-fits-all approach. The policies may vary depending on the type of patient data shared (aggregate counts, deidentified, limited, and fully identified datasets) and the flow of data. The types of agreements necessary for a DRN may include a network-level and data use agreements. The need for flexibility in the development and implementation of policies must be balanced with responsibilities of data stewardship.

  13. The difficulties of systematic reviews.

    PubMed

    Westgate, Martin J; Lindenmayer, David B

    2017-10-01

    The need for robust evidence to support conservation actions has driven the adoption of systematic approaches to research synthesis in ecology. However, applying systematic review to complex or open questions remains challenging, and this task is becoming more difficult as the quantity of scientific literature increases. We drew on the science of linguistics for guidance as to why the process of identifying and sorting information during systematic review remains so labor intensive, and to provide potential solutions. Several linguistic properties of peer-reviewed corpora-including nonrandom selection of review topics, small-world properties of semantic networks, and spatiotemporal variation in word meaning-greatly increase the effort needed to complete the systematic review process. Conversely, the resolution of these semantic complexities is a common motivation for narrative reviews, but this process is rarely enacted with the rigor applied during linguistic analysis. Therefore, linguistics provides a unifying framework for understanding some key challenges of systematic review and highlights 2 useful directions for future research. First, in cases where semantic complexity generates barriers to synthesis, ecologists should consider drawing on existing methods-such as natural language processing or the construction of research thesauri and ontologies-that provide tools for mapping and resolving that complexity. These tools could help individual researchers classify research material in a more robust manner and provide valuable guidance for future researchers on that topic. Second, a linguistic perspective highlights that scientific writing is a rich resource worthy of detailed study, an observation that can sometimes be lost during the search for data during systematic review or meta-analysis. For example, mapping semantic networks can reveal redundancy and complementarity among scientific concepts, leading to new insights and research questions. Consequently, wider adoption of linguistic approaches may facilitate improved rigor and richness in research synthesis. © 2017 Society for Conservation Biology.

  14. The "Measuring Outcomes of Clinical Connectivity" (MOCC) trial: investigating data entry errors in the Electronic Primary Care Research Network (ePCRN).

    PubMed

    Fontaine, Patricia; Mendenhall, Tai J; Peterson, Kevin; Speedie, Stuart M

    2007-01-01

    The electronic Primary Care Research Network (ePCRN) enrolled PBRN researchers in a feasibility trial to test the functionality of the network's electronic architecture and investigate error rates associated with two data entry strategies used in clinical trials. PBRN physicians and research assistants who registered with the ePCRN were eligible to participate. After online consent and randomization, participants viewed simulated patient records, presented as either abstracted data (short form) or progress notes (long form). Participants transcribed 50 data elements onto electronic case report forms (CRFs) without integrated field restrictions. Data errors were analyzed. Ten geographically dispersed PBRNs enrolled 100 members and completed the study in less than 7 weeks. The estimated overall error rate if field restrictions had been applied was 2.3%. Participants entering data from the short form had a higher rate of correctly entered data fields (94.5% vs 90.8%, P = .004) and significantly more error-free records (P = .003). Feasibility outcomes integral to completion of an Internet-based, multisite study were successfully achieved. Further development of programmable electronic safeguards is indicated. The error analysis conducted in this study will aid design of specific field restrictions for electronic CRFs, an important component of clinical trial management systems.

  15. Neural Networks for Flight Control

    NASA Technical Reports Server (NTRS)

    Jorgensen, Charles C.

    1996-01-01

    Neural networks are being developed at NASA Ames Research Center to permit real-time adaptive control of time varying nonlinear systems, enhance the fault-tolerance of mission hardware, and permit online system reconfiguration. In general, the problem of controlling time varying nonlinear systems with unknown structures has not been solved. Adaptive neural control techniques show considerable promise and are being applied to technical challenges including automated docking of spacecraft, dynamic balancing of the space station centrifuge, online reconfiguration of damaged aircraft, and reducing cost of new air and spacecraft designs. Our experiences have shown that neural network algorithms solved certain problems that conventional control methods have been unable to effectively address. These include damage mitigation in nonlinear reconfiguration flight control, early performance estimation of new aircraft designs, compensation for damaged planetary mission hardware by using redundant manipulator capability, and space sensor platform stabilization. This presentation explored these developments in the context of neural network control theory. The discussion began with an overview of why neural control has proven attractive for NASA application domains. The more important issues in control system development were then discussed with references to significant technical advances in the literature. Examples of how these methods have been applied were given, followed by projections of emerging application needs and directions.

  16. A comparison of two IPv4/IPv6 transition mechanisms - OpenVPN and IVI

    NASA Astrophysics Data System (ADS)

    Vu, Cong Tuan; Tran, Quang Anh; Jiang, Frank

    2012-09-01

    This document presents a comparison of two IPv4/IPv6 transition mechanisms. They are OpenVPN and IVI. Meanwhile OpenVPN is based on tunneling technology, IVI is a stateless IPv4/IPv6 translation technique which is developed by China Education and Research Network (CERNET). This research focus on the quantitative and qualitative comparison of these two main mechanisms; how they are applied in practical situation by the Internet Service Providers, as well as their advantages and drawbacks.

  17. Social network analysis of multi-stakeholder platforms in agricultural research for development: Opportunities and constraints for innovation and scaling.

    PubMed

    Hermans, Frans; Sartas, Murat; van Schagen, Boudy; van Asten, Piet; Schut, Marc

    2017-01-01

    Multi-stakeholder platforms (MSPs) are seen as a promising vehicle to achieve agricultural development impacts. By increasing collaboration, exchange of knowledge and influence mediation among farmers, researchers and other stakeholders, MSPs supposedly enhance their 'capacity to innovate' and contribute to the 'scaling of innovations'. The objective of this paper is to explore the capacity to innovate and scaling potential of three MSPs in Burundi, Rwanda and the South Kivu province located in the eastern part of Democratic Republic of Congo (DRC). In order to do this, we apply Social Network Analysis and Exponential Random Graph Modelling (ERGM) to investigate the structural properties of the collaborative, knowledge exchange and influence networks of these MSPs and compared them against value propositions derived from the innovation network literature. Results demonstrate a number of mismatches between collaboration, knowledge exchange and influence networks for effective innovation and scaling processes in all three countries: NGOs and private sector are respectively over- and under-represented in the MSP networks. Linkages between local and higher levels are weak, and influential organisations (e.g., high-level government actors) are often not part of the MSP or are not actively linked to by other organisations. Organisations with a central position in the knowledge network are more sought out for collaboration. The scaling of innovations is primarily between the same type of organisations across different administrative levels, but not between different types of organisations. The results illustrate the potential of Social Network Analysis and ERGMs to identify the strengths and limitations of MSPs in terms of achieving development impacts.

  18. Identification of Human Disease Genes from Interactome Network Using Graphlet Interaction

    PubMed Central

    Yang, Lun; Wei, Dong-Qing; Qi, Ying-Xin; Jiang, Zong-Lai

    2014-01-01

    Identifying genes related to human diseases, such as cancer and cardiovascular disease, etc., is an important task in biomedical research because of its applications in disease diagnosis and treatment. Interactome networks, especially protein-protein interaction networks, had been used to disease genes identification based on the hypothesis that strong candidate genes tend to closely relate to each other in some kinds of measure on the network. We proposed a new measure to analyze the relationship between network nodes which was called graphlet interaction. The graphlet interaction contained 28 different isomers. The results showed that the numbers of the graphlet interaction isomers between disease genes in interactome networks were significantly larger than random picked genes, while graphlet signatures were not. Then, we designed a new type of score, based on the network properties, to identify disease genes using graphlet interaction. The genes with higher scores were more likely to be disease genes, and all candidate genes were ranked according to their scores. Then the approach was evaluated by leave-one-out cross-validation. The precision of the current approach achieved 90% at about 10% recall, which was apparently higher than the previous three predominant algorithms, random walk, Endeavour and neighborhood based method. Finally, the approach was applied to predict new disease genes related to 4 common diseases, most of which were identified by other independent experimental researches. In conclusion, we demonstrate that the graphlet interaction is an effective tool to analyze the network properties of disease genes, and the scores calculated by graphlet interaction is more precise in identifying disease genes. PMID:24465923

  19. Water supply pipe dimensioning using hydraulic power dissipation

    NASA Astrophysics Data System (ADS)

    Sreemathy, J. R.; Rashmi, G.; Suribabu, C. R.

    2017-07-01

    Proper sizing of the pipe component of water distribution networks play an important role in the overall design of the any water supply system. Several approaches have been applied for the design of networks from an economical point of view. Traditional optimization techniques and population based stochastic algorithms are widely used to optimize the networks. But the use of these approaches is mostly found to be limited to the research level due to difficulties in understanding by the practicing engineers, design engineers and consulting firms. More over due to non-availability of commercial software related to the optimal design of water distribution system,it forces the practicing engineers to adopt either trial and error or experience-based design. This paper presents a simple approach based on power dissipation in each pipeline as a parameter to design the network economically, but not to the level of global minimum cost.

  20. Managing RFID sensors networks with a general purpose RFID middleware.

    PubMed

    Abad, Ismael; Cerrada, Carlos; Cerrada, Jose A; Heradio, Rubén; Valero, Enrique

    2012-01-01

    RFID middleware is anticipated to one of the main research areas in the field of RFID applications in the near future. The Data EPC Acquisition System (DEPCAS) is an original proposal designed by our group to transfer and apply fundamental ideas from System and Data Acquisition (SCADA) systems into the areas of RFID acquisition, processing and distribution systems. In this paper we focus on how to organize and manage generic RFID sensors (edge readers, readers, PLCs, etc…) inside the DEPCAS middleware. We denote by RFID Sensors Networks Management (RSNM) this part of DEPCAS, which is built on top of two new concepts introduced and developed in this work: MARC (Minimum Access Reader Command) and RRTL (RFID Reader Topology Language). MARC is an abstraction layer used to hide heterogeneous devices inside a homogeneous acquisition network. RRTL is a language to define RFID Reader networks and to describe the relationship between them (concentrator, peer to peer, master/submaster).

  1. Research on FBG-Based CFRP Structural Damage Identification Using BP Neural Network

    NASA Astrophysics Data System (ADS)

    Geng, Xiangyi; Lu, Shizeng; Jiang, Mingshun; Sui, Qingmei; Lv, Shanshan; Xiao, Hang; Jia, Yuxi; Jia, Lei

    2018-06-01

    A damage identification system of carbon fiber reinforced plastics (CFRP) structures is investigated using fiber Bragg grating (FBG) sensors and back propagation (BP) neural network. FBG sensors are applied to construct the sensing network to detect the structural dynamic response signals generated by active actuation. The damage identification model is built based on the BP neural network. The dynamic signal characteristics extracted by the Fourier transform are the inputs, and the damage states are the outputs of the model. Besides, damages are simulated by placing lumped masses with different weights instead of inducing real damages, which is confirmed to be feasible by finite element analysis (FEA). At last, the damage identification system is verified on a CFRP plate with 300 mm × 300 mm experimental area, with the accurate identification of varied damage states. The system provides a practical way for CFRP structural damage identification.

  2. Current Status of the International Lunar Network (ILN) Anchor Nodes Mission

    NASA Astrophysics Data System (ADS)

    Cohen, Barbara; Bassler, J.; Harris, D.; Morse, B.; Reed, C.; Kirby, K.; Eng, D.

    2009-09-01

    NASA's Science Mission Directorate's (SMD) International Lunar Network Anchor Nodes Mission continues its concept development and is scheduled to complete the first formal milestone gate of a Mission Concept Review (MCR) in late 2009. The mission will establish two-four nodes of the International Lunar Network (ILN), a network of lunar geophysical stations envisioned to be emplaced by the many nations collaborating on this joint endeavor. This mission will operate over six years or more and make significant progress in satisfying many of the National Research Council's lunar science objectives, while strategically contributing to the U.S. Vision for Space Exploration Policy's objective for a robust robotic lunar program. This paper will provide a status report on the ILN Anchor Nodes mission and overview of the concept to date, which is being implemented jointly by NASA's Marshall Space Flight Center and The Johns Hopkins University Applied Physics Laboratory.

  3. Modeling Emergence in Neuroprotective Regulatory Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanfilippo, Antonio P.; Haack, Jereme N.; McDermott, Jason E.

    2013-01-05

    The use of predictive modeling in the analysis of gene expression data can greatly accelerate the pace of scientific discovery in biomedical research by enabling in silico experimentation to test disease triggers and potential drug therapies. Techniques that focus on modeling emergence, such as agent-based modeling and multi-agent simulations, are of particular interest as they support the discovery of pathways that may have never been observed in the past. Thus far, these techniques have been primarily applied at the multi-cellular level, or have focused on signaling and metabolic networks. We present an approach where emergence modeling is extended to regulatorymore » networks and demonstrate its application to the discovery of neuroprotective pathways. An initial evaluation of the approach indicates that emergence modeling provides novel insights for the analysis of regulatory networks that can advance the discovery of acute treatments for stroke and other diseases.« less

  4. Characterisation of hydrogeological connections in a lowland karst network using time series analysis of water levels in ephemeral groundwater-fed lakes (turloughs)

    NASA Astrophysics Data System (ADS)

    Gill, L. W.; Naughton, O.; Johnston, P. M.; Basu, B.; Ghosh, B.

    2013-08-01

    This research has used continuous water level measurements five groundwater-fed lakes (or turloughs) in a linked lowland karst network of south Galway in Ireland over a 3 year period in order to elucidate the hydrogeological controls and conduit configurations forming the flooded karstic hydraulic system beneath the ground. The main spring outflow from this network discharges below mean sea level making it difficult to determine the hydraulic nature of the network using traditional rainfall-spring flow cross analysis, as has been done in many other studies on karst systems. However, the localised groundwater-surface water interactions (the turloughs) in this flooded lowland karst system can yield information about the nature of the hydraulic connections beneath the ground. Various different analytical techniques have been applied to the fluctuating turlough water level time series data in order to determine the nature of the linkage between them as well as hydraulic pipe configurations at key points in order to improve the conceptual model of the overall karst network. Initially, simple cross correlations between the different turlough water levels were carried out applying different time lags. Frequency analysis of the signals was then carried out using Fast Fourier transform analysis and then both discrete and continuous wavelet analyses have been applied to the data sets to characterise these inherently non-stationary time-series of fluctuating water levels. The analysis has indicated which turloughs are on the main line conduit system and which are somewhat off-line, the relative size of the main conduit in the network including evidence of localised constrictions, as well as clearly showing the tidal influence on the water levels in the three lower turloughs at shallow depths ∼8 km from the main spring outfall at the sea. It has also indicated that the timing of high rainfall events coincident with maximum spring tide levels may promote more consistent, long duration flooding of the turloughs throughout the winter.

  5. Game Theory-Based Cooperation for Underwater Acoustic Sensor Networks: Taxonomy, Review, Research Challenges and Directions

    PubMed Central

    Muhammed, Dalhatu; Anisi, Mohammad Hossein; Vargas-Rosales, Cesar; Khan, Anwar

    2018-01-01

    Exploring and monitoring the underwater world using underwater sensors is drawing a lot of attention these days. In this field cooperation between acoustic sensor nodes has been a critical problem due to the challenging features such as acoustic channel failure (sound signal), long propagation delay of acoustic signal, limited bandwidth and loss of connectivity. There are several proposed methods to improve cooperation between the nodes by incorporating information/game theory in the node’s cooperation. However, there is a need to classify the existing works and demonstrate their performance in addressing the cooperation issue. In this paper, we have conducted a review to investigate various factors affecting cooperation in underwater acoustic sensor networks. We study various cooperation techniques used for underwater acoustic sensor networks from different perspectives, with a concentration on communication reliability, energy consumption, and security and present a taxonomy for underwater cooperation. Moreover, we further review how the game theory can be applied to make the nodes cooperate with each other. We further analyze different cooperative game methods, where their performance on different metrics is compared. Finally, open issues and future research direction in underwater acoustic sensor networks are highlighted. PMID:29389874

  6. Game Theory-Based Cooperation for Underwater Acoustic Sensor Networks: Taxonomy, Review, Research Challenges and Directions.

    PubMed

    Muhammed, Dalhatu; Anisi, Mohammad Hossein; Zareei, Mahdi; Vargas-Rosales, Cesar; Khan, Anwar

    2018-02-01

    Exploring and monitoring the underwater world using underwater sensors is drawing a lot of attention these days. In this field cooperation between acoustic sensor nodes has been a critical problem due to the challenging features such as acoustic channel failure (sound signal), long propagation delay of acoustic signal, limited bandwidth and loss of connectivity. There are several proposed methods to improve cooperation between the nodes by incorporating information/game theory in the node's cooperation. However, there is a need to classify the existing works and demonstrate their performance in addressing the cooperation issue. In this paper, we have conducted a review to investigate various factors affecting cooperation in underwater acoustic sensor networks. We study various cooperation techniques used for underwater acoustic sensor networks from different perspectives, with a concentration on communication reliability, energy consumption, and security and present a taxonomy for underwater cooperation. Moreover, we further review how the game theory can be applied to make the nodes cooperate with each other. We further analyze different cooperative game methods, where their performance on different metrics is compared. Finally, open issues and future research direction in underwater acoustic sensor networks are highlighted.

  7. Artificial neural networks for document analysis and recognition.

    PubMed

    Marinai, Simone; Gori, Marco; Soda, Giovanni; Society, Computer

    2005-01-01

    Artificial neural networks have been extensively applied to document analysis and recognition. Most efforts have been devoted to the recognition of isolated handwritten and printed characters with widely recognized successful results. However, many other document processing tasks, like preprocessing, layout analysis, character segmentation, word recognition, and signature verification, have been effectively faced with very promising results. This paper surveys the most significant problems in the area of offline document image processing, where connectionist-based approaches have been applied. Similarities and differences between approaches belonging to different categories are discussed. A particular emphasis is given on the crucial role of prior knowledge for the conception of both appropriate architectures and learning algorithms. Finally, the paper provides a critical analysis on the reviewed approaches and depicts the most promising research guidelines in the field. In particular, a second generation of connectionist-based models are foreseen which are based on appropriate graphical representations of the learning environment.

  8. A network engineering perspective on probing and perturbing cognition with neurofeedback.

    PubMed

    Bassett, Danielle S; Khambhati, Ankit N

    2017-05-01

    Network science and engineering provide a flexible and generalizable tool set to describe and manipulate complex systems characterized by heterogeneous interaction patterns among component parts. While classically applied to social systems, these tools have recently proven to be particularly useful in the study of the brain. In this review, we describe the nascent use of these tools to understand human cognition, and we discuss their utility in informing the meaningful and predictable perturbation of cognition in combination with the emerging capabilities of neurofeedback. To blend these disparate strands of research, we build on emerging conceptualizations of how the brain functions (as a complex network) and how we can develop and target interventions or modulations (as a form of network control). We close with an outline of current frontiers that bridge neurofeedback, connectomics, and network control theory to better understand human cognition. © 2017 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals Inc. on behalf of The New York Academy of Sciences.

  9. Empirical modeling of an alcohol expectancy memory network using multidimensional scaling.

    PubMed

    Rather, B C; Goldman, M S; Roehrich, L; Brannick, M

    1992-02-01

    Risk-related antecedent variables can be linked to later alcohol consumption by memory processes, and alcohol expectancies may be one relevant memory content. To advance research in this area, it would be useful to apply current memory models such as semantic network theory to explain drinking decision processes. We used multidimensional scaling (MDS) to empirically model a preliminary alcohol expectancy semantic network, from which a theoretical account of drinking decision making was generated. Subanalyses (PREFMAP) showed how individuals with differing alcohol consumption histories may have had different association pathways within the expectancy network. These pathways may have, in turn influenced future drinking levels and behaviors while the person was under the influence of alcohol. All individuals associated positive/prosocial effects with drinking, but heavier drinkers indicated arousing effects as their highest probability associates, whereas light drinkers expected sedation. An important early step in this MDS modeling process is the determination of iso-meaning expectancy adjective groups, which correspond to theoretical network nodes.

  10. Gender differences in working memory networks: A BrainMap meta-analysis

    PubMed Central

    Hill, Ashley C.; Laird, Angela R.; Robinson, Jennifer L.

    2014-01-01

    Gender differences in psychological processes have been of great interest in a variety of fields. While the majority of research in this area has focused on specific differences in relation to test performance, this study sought to determine the underlying neurofunctional differences observed during working memory, a pivotal cognitive process shown to be predictive of academic achievement and intelligence. Using the BrainMap database, we performed a meta-analysis and applied activation likelihood estimation to our search set. Our results demonstrate consistent working memory networks across genders, but also provide evidence for gender-specific networks whereby females consistently activate more limbic (e.g., amygdala and hippocampus) and prefrontal structures (e.g., right inferior frontal gyrus), and males activate a distributed network inclusive of more parietal regions. These data provide a framework for future investigation using functional or effective connectivity methods to elucidate the underpinnings of gender differences in neural network recruitment during working memory tasks. PMID:25042764

  11. Gender differences in working memory networks: a BrainMap meta-analysis.

    PubMed

    Hill, Ashley C; Laird, Angela R; Robinson, Jennifer L

    2014-10-01

    Gender differences in psychological processes have been of great interest in a variety of fields. While the majority of research in this area has focused on specific differences in relation to test performance, this study sought to determine the underlying neurofunctional differences observed during working memory, a pivotal cognitive process shown to be predictive of academic achievement and intelligence. Using the BrainMap database, we performed a meta-analysis and applied activation likelihood estimation to our search set. Our results demonstrate consistent working memory networks across genders, but also provide evidence for gender-specific networks whereby females consistently activate more limbic (e.g., amygdala and hippocampus) and prefrontal structures (e.g., right inferior frontal gyrus), and males activate a distributed network inclusive of more parietal regions. These data provide a framework for future investigations using functional or effective connectivity methods to elucidate the underpinnings of gender differences in neural network recruitment during working memory tasks. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Inferring the interplay between network structure and market effects in Bitcoin

    NASA Astrophysics Data System (ADS)

    Kondor, Dániel; Csabai, István; Szüle, János; Pósfai, Márton; Vattay, Gábor

    2014-12-01

    A main focus in economics research is understanding the time series of prices of goods and assets. While statistical models using only the properties of the time series itself have been successful in many aspects, we expect to gain a better understanding of the phenomena involved if we can model the underlying system of interacting agents. In this article, we consider the history of Bitcoin, a novel digital currency system, for which the complete list of transactions is available for analysis. Using this dataset, we reconstruct the transaction network between users and analyze changes in the structure of the subgraph induced by the most active users. Our approach is based on the unsupervised identification of important features of the time variation of the network. Applying the widely used method of Principal Component Analysis to the matrix constructed from snapshots of the network at different times, we are able to show how structural changes in the network accompany significant changes in the exchange price of bitcoins.

  13. To trade or not to trade: Link prediction in the virtual water network

    NASA Astrophysics Data System (ADS)

    Tuninetti, Marta; Tamea, Stefania; Laio, Francesco; Ridolfi, Luca

    2017-12-01

    In the international trade network, links express the (temporary) presence of a commercial exchange of goods between any two countries. Given the dynamical behaviour of the trade network, where links are created and dismissed every year, predicting the link activation/deactivation is an open research question. Through the international trade network of agricultural goods, water resources are 'virtually' transferred from the country of production to the country of consumption. We propose a novel methodology for link prediction applied to the network of virtual water trade. Starting from the assumption of having links between any two countries, we estimate the associated virtual water flows by means of a gravity-law model using country and link characteristics as drivers. We consider the links with estimated flows higher than 1000 m3/year as active links, while the others as non-active links. Flows traded along estimated active links are then re-estimated using a similar but differently-calibrated gravity-law model. We were able to correctly model 84% of the existing links and 93% of the non-existing links in year 2011. It is worth to note that the predicted active links carry 99% of the global virtual water flow; hence, missed links are mainly those where a minimum volume of virtual water is exchanged. Results indicate that, over the period from 1986 to 2011, population, geographical distances between countries, and agricultural efficiency (through fertilizers use) are the major factors driving the link activation and deactivation. As opposed to other (network-based) models for link prediction, the proposed method is able to reconstruct the network architecture without any prior knowledge of the network topology, using only the nodes and links attributes; it thus represents a general method that can be applied to other networks such as food or value trade networks.

  14. Stabilization of perturbed Boolean network attractors through compensatory interactions

    PubMed Central

    2014-01-01

    Background Understanding and ameliorating the effects of network damage are of significant interest, due in part to the variety of applications in which network damage is relevant. For example, the effects of genetic mutations can cascade through within-cell signaling and regulatory networks and alter the behavior of cells, possibly leading to a wide variety of diseases. The typical approach to mitigating network perturbations is to consider the compensatory activation or deactivation of system components. Here, we propose a complementary approach wherein interactions are instead modified to alter key regulatory functions and prevent the network damage from triggering a deregulatory cascade. Results We implement this approach in a Boolean dynamic framework, which has been shown to effectively model the behavior of biological regulatory and signaling networks. We show that the method can stabilize any single state (e.g., fixed point attractors or time-averaged representations of multi-state attractors) to be an attractor of the repaired network. We show that the approach is minimalistic in that few modifications are required to provide stability to a chosen attractor and specific in that interventions do not have undesired effects on the attractor. We apply the approach to random Boolean networks, and further show that the method can in some cases successfully repair synchronous limit cycles. We also apply the methodology to case studies from drought-induced signaling in plants and T-LGL leukemia and find that it is successful in both stabilizing desired behavior and in eliminating undesired outcomes. Code is made freely available through the software package BooleanNet. Conclusions The methodology introduced in this report offers a complementary way to manipulating node expression levels. A comprehensive approach to evaluating network manipulation should take an "all of the above" perspective; we anticipate that theoretical studies of interaction modification, coupled with empirical advances, will ultimately provide researchers with greater flexibility in influencing system behavior. PMID:24885780

  15. Cross-layer restoration with software defined networking based on IP over optical transport networks

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Cheng, Lei; Deng, Junni; Zhao, Yongli; Zhang, Jie; Lee, Young

    2015-10-01

    The IP over optical transport network is a very promising networking architecture applied to the interconnection of geographically distributed data centers due to the performance guarantee of low delay, huge bandwidth and high reliability at a low cost. It can enable efficient resource utilization and support heterogeneous bandwidth demands in highly-available, cost-effective and energy-effective manner. In case of cross-layer link failure, to ensure a high-level quality of service (QoS) for user request after the failure becomes a research focus. In this paper, we propose a novel cross-layer restoration scheme for data center services with software defined networking based on IP over optical network. The cross-layer restoration scheme can enable joint optimization of IP network and optical network resources, and enhance the data center service restoration responsiveness to the dynamic end-to-end service demands. We quantitatively evaluate the feasibility and performances through the simulation under heavy traffic load scenario in terms of path blocking probability and path restoration latency. Numeric results show that the cross-layer restoration scheme improves the recovery success rate and minimizes the overall recovery time.

  16. Social networks and trade of services: modelling interregional flows with spatial and network autocorrelation effects

    NASA Astrophysics Data System (ADS)

    de la Mata, Tamara; Llano, Carlos

    2013-07-01

    Recent literature on border effect has fostered research on informal barriers to trade and the role played by network dependencies. In relation to social networks, it has been shown that intensity of trade in goods is positively correlated with migration flows between pairs of countries/regions. In this article, we investigate whether such a relation also holds for interregional trade of services. We also consider whether interregional trade flows in services linked with tourism exhibit spatial and/or social network dependence. Conventional empirical gravity models assume the magnitude of bilateral flows between regions is independent of flows to/from regions located nearby in space, or flows to/from regions related through social/cultural/ethic network connections. With this aim, we provide estimates from a set of gravity models showing evidence of statistically significant spatial and network (demographic) dependence in the bilateral flows of the trade of services considered. The analysis has been applied to the Spanish intra- and interregional monetary flows of services from the accommodation, restaurants and travel agencies for the period 2000-2009, using alternative datasets for the migration stocks and definitions of network effects.

  17. Equality of opportunities for next generation researchers: bridging the gap between theory and practice in Eastern Europe

    NASA Astrophysics Data System (ADS)

    Žagar, Nedjeljka; Alkauskas, Audrius; Gyürky, György; Heiri, Oliver; Robinson, Nathaniel D.; Schäfer, Thomas

    2016-04-01

    Twenty-five years after the fall of the Berlin wall and the historical opening of the European Union to the countries of Central and Eastern Europe, there is still a striking difference in the success of European countries in attracting research funds and talented researchers. A number of indicators document the differences in research success and research opportunities between Eastern and Western European countries, and even between Northern and Southern Europe. Differences, as described for example by a number of secured ERC grants, apply to all research fields and to researchers at all stages of their careers. While statistical analysis document large gradients in research performance across the continent, the underlying issues that young researchers struggle with are common across Europe, although they impact research environment to a different extent. These issues are presently being discussed within Sci-Generation, a COST Targeted Network that aims to enhance the European research environment for the next generation of young researchers. The major goal of the network is to contribute ideas towards overcoming these differences in opportunities across Europe. Targeting researchers in the early stage of their independent carrier or in the transition to independence, Sci-Generation is devoted to inclusiveness in order to represent a diversity of issues in science policy in Europe. In particular, the network's Working Group 1 focuses on the countries of Eastern and Southern Europe with less success in attracting European research funding. Among other issues, we considered the involvement of young researchers in decision-making processes at all levels important in order to increase the systems' transparency. As shown by an ongoing study of how language affects the evaluation of research applications, the use of the local language serves, in some cases, as one of the last stands of "science-managing elites" that grew up in systems before 1990. We discuss how a lack of research opportunities and "brain drain" in parts of Eastern Europe are not only due to economic constraints; but, on top of these challenges come opaque selection procedures that can keep even the most enthusiastic and "home sick" talented young researchers abroad. The atmospheric and ocean circulation know no borders, and it is thus not strange that the earliest international collaborations developed in meteorology. An example of the 20-year long collaboration in atmospheric sciences among countries of Central and Eastern Europe devoted to the improvement of numerical weather prediction will be presented with focus on its impact on applied sciences and the society.

  18. Sustainable Revitalization in Cultural Heritage Kampong Kauman Surakarta Supported by Spatial Analysis

    NASA Astrophysics Data System (ADS)

    Musyawaroh, M.; Pitana, T. S.; Masykuri, M.; Nandariyah

    2018-02-01

    Revitalization is a much-needed for a historic kampong as a settlement, place of business, and as tourist destinations. The research was conducted in Kauman as one of the cultural heritage kampong which was formerly as a residence of abdidalemulamaKeraton who also work as batik entrepreneurs. This study aims to formulate a sustainable revitalization step based on the character of the area and the building. Aspects of sustainable revitalization that analyzed are the physical and non-physical condition of the environment. This research is an applied research with qualitative rationalistic approach supported with spatial distribution analysis through satellite imagery and Arch-GIS. The results revealed that sustainable revitalization for Kaumancan be done through: 1) Physical condition of the environment consists of land and building use, green open space, recreational park and sport activities, streets, drainage network, sewer network, the garbage disposal network; 2) Non-physical of the environment consists of economy, heritage socio-cultural, and the engagement of relevant stakeholders. The difference of this study with others is, this study is a continuation of the Kauman revitalization assistance program which involves community participation to produce a more appropriate solution for the problem of kampong.

  19. A Source Anonymity-Based Lightweight Secure AODV Protocol for Fog-Based MANET

    PubMed Central

    Fang, Weidong; Zhang, Wuxiong; Xiao, Jinchao; Yang, Yang; Chen, Wei

    2017-01-01

    Fog-based MANET (Mobile Ad hoc networks) is a novel paradigm of a mobile ad hoc network with the advantages of both mobility and fog computing. Meanwhile, as traditional routing protocol, ad hoc on-demand distance vector (AODV) routing protocol has been applied widely in fog-based MANET. Currently, how to improve the transmission performance and enhance security are the two major aspects in AODV’s research field. However, the researches on joint energy efficiency and security seem to be seldom considered. In this paper, we propose a source anonymity-based lightweight secure AODV (SAL-SAODV) routing protocol to meet the above requirements. In SAL-SAODV protocol, source anonymous and secure transmitting schemes are proposed and applied. The scheme involves the following three parts: the source anonymity algorithm is employed to achieve the source node, without being tracked and located; the improved secure scheme based on the polynomial of CRC-4 is applied to substitute the RSA digital signature of SAODV and guarantee the data integrity, in addition to reducing the computation and energy consumption; the random delayed transmitting scheme (RDTM) is implemented to separate the check code and transmitted data, and achieve tamper-proof results. The simulation results show that the comprehensive performance of the proposed SAL-SAODV is a trade-off of the transmission performance, energy efficiency, and security, and better than AODV and SAODV. PMID:28629142

  20. A Source Anonymity-Based Lightweight Secure AODV Protocol for Fog-Based MANET.

    PubMed

    Fang, Weidong; Zhang, Wuxiong; Xiao, Jinchao; Yang, Yang; Chen, Wei

    2017-06-17

    Fog-based MANET (Mobile Ad hoc networks) is a novel paradigm of a mobile ad hoc network with the advantages of both mobility and fog computing. Meanwhile, as traditional routing protocol, ad hoc on-demand distance vector (AODV) routing protocol has been applied widely in fog-based MANET. Currently, how to improve the transmission performance and enhance security are the two major aspects in AODV's research field. However, the researches on joint energy efficiency and security seem to be seldom considered. In this paper, we propose a source anonymity-based lightweight secure AODV (SAL-SAODV) routing protocol to meet the above requirements. In SAL-SAODV protocol, source anonymous and secure transmitting schemes are proposed and applied. The scheme involves the following three parts: the source anonymity algorithm is employed to achieve the source node, without being tracked and located; the improved secure scheme based on the polynomial of CRC-4 is applied to substitute the RSA digital signature of SAODV and guarantee the data integrity, in addition to reducing the computation and energy consumption; the random delayed transmitting scheme (RDTM) is implemented to separate the check code and transmitted data, and achieve tamper-proof results. The simulation results show that the comprehensive performance of the proposed SAL-SAODV is a trade-off of the transmission performance, energy efficiency, and security, and better than AODV and SAODV.

  1. Development of Methodologies for IV and V of Neural Networks

    NASA Technical Reports Server (NTRS)

    Taylor, Brian; Darrah, Marjorie

    2003-01-01

    Non-deterministic systems often rely upon neural network (NN) technology to "lean" to manage flight systems under controlled conditions using carefully chosen training sets. How can these adaptive systems be certified to ensure that they will become increasingly efficient and behave appropriately in real-time situations? The bulk of Independent Verification and Validation (IV&V) research of non-deterministic software control systems such as Adaptive Flight Controllers (AFC's) addresses NNs in well-behaved and constrained environments such as simulations and strict process control. However, neither substantive research, nor effective IV&V techniques have been found to address AFC's learning in real-time and adapting to live flight conditions. Adaptive flight control systems offer good extensibility into commercial aviation as well as military aviation and transportation. Consequently, this area of IV&V represents an area of growing interest and urgency. ISR proposes to further the current body of knowledge to meet two objectives: Research the current IV&V methods and assess where these methods may be applied toward a methodology for the V&V of Neural Network; and identify effective methods for IV&V of NNs that learn in real-time, including developing a prototype test bed for IV&V of AFC's. Currently. no practical method exists. lSR will meet these objectives through the tasks identified and described below. First, ISR will conduct a literature review of current IV&V technology. TO do this, ISR will collect the existing body of research on IV&V of non-deterministic systems and neural network. ISR will also develop the framework for disseminating this information through specialized training. This effort will focus on developing NASA's capability to conduct IV&V of neural network systems and to provide training to meet the increasing need for IV&V expertise in such systems.

  2. Pacific Research Platform - Creation of a West Coast Big Data Freeway System Applied to the CONNected objECT (CONNECT) Data Mining Framework for Earth Science Knowledge Discovery

    NASA Astrophysics Data System (ADS)

    Sellars, S. L.; Nguyen, P.; Tatar, J.; Graham, J.; Kawsenuk, B.; DeFanti, T.; Smarr, L.; Sorooshian, S.; Ralph, M.

    2017-12-01

    A new era in computational earth sciences is within our grasps with the availability of ever-increasing earth observational data, enhanced computational capabilities, and innovative computation approaches that allow for the assimilation, analysis and ability to model the complex earth science phenomena. The Pacific Research Platform (PRP), CENIC and associated technologies such as the Flash I/O Network Appliance (FIONA) provide scientists a unique capability for advancing towards this new era. This presentation reports on the development of multi-institutional rapid data access capabilities and data pipeline for applying a novel image characterization and segmentation approach, CONNected objECT (CONNECT) algorithm to study Atmospheric River (AR) events impacting the Western United States. ARs are often associated with torrential rains, swollen rivers, flash flooding, and mudslides. CONNECT is computationally intensive, reliant on very large data transfers, storage and data mining techniques. The ability to apply the method to multiple variables and datasets located at different University of California campuses has previously been challenged by inadequate network bandwidth and computational constraints. The presentation will highlight how the inter-campus CONNECT data mining framework improved from our prior download speeds of 10MB/s to 500MB/s using the PRP and the FIONAs. We present a worked example using the NASA MERRA data to describe how the PRP and FIONA have provided researchers with the capability for advancing knowledge about ARs. Finally, we will discuss future efforts to expand the scope to additional variables in earth sciences.

  3. The Potential of Text Mining in Data Integration and Network Biology for Plant Research: A Case Study on Arabidopsis[C][W

    PubMed Central

    Van Landeghem, Sofie; De Bodt, Stefanie; Drebert, Zuzanna J.; Inzé, Dirk; Van de Peer, Yves

    2013-01-01

    Despite the availability of various data repositories for plant research, a wealth of information currently remains hidden within the biomolecular literature. Text mining provides the necessary means to retrieve these data through automated processing of texts. However, only recently has advanced text mining methodology been implemented with sufficient computational power to process texts at a large scale. In this study, we assess the potential of large-scale text mining for plant biology research in general and for network biology in particular using a state-of-the-art text mining system applied to all PubMed abstracts and PubMed Central full texts. We present extensive evaluation of the textual data for Arabidopsis thaliana, assessing the overall accuracy of this new resource for usage in plant network analyses. Furthermore, we combine text mining information with both protein–protein and regulatory interactions from experimental databases. Clusters of tightly connected genes are delineated from the resulting network, illustrating how such an integrative approach is essential to grasp the current knowledge available for Arabidopsis and to uncover gene information through guilt by association. All large-scale data sets, as well as the manually curated textual data, are made publicly available, hereby stimulating the application of text mining data in future plant biology studies. PMID:23532071

  4. Integrating social networks and human social motives to achieve social influence at scale

    PubMed Central

    Contractor, Noshir S.; DeChurch, Leslie A.

    2014-01-01

    The innovations of science often point to ideas and behaviors that must spread and take root in communities to have impact. Ideas, practices, and behaviors need to go from accepted truths on the part of a few scientists to commonplace beliefs and norms in the minds of the many. Moving from scientific discoveries to public good requires social influence. We introduce a structured influence process (SIP) framework to explain how social networks (i.e., the structure of social influence) and human social motives (i.e., the process of social influence wherein one person’s attitudes and behaviors affect another’s) are used collectively to enact social influence within a community. The SIP framework advances the science of scientific communication by positing social influence events that consider both the “who” and the “how” of social influence. This framework synthesizes core ideas from two bodies of research on social influence. The first is network research on social influence structures, which identifies who are the opinion leaders and who among their network of peers shapes their attitudes and behaviors. The second is research on social influence processes in psychology, which explores how human social motives such as the need for accuracy or the need for affiliation stimulate behavior change. We illustrate the practical implications of the SIP framework by applying it to the case of reducing neonatal mortality in India. PMID:25225373

  5. Integrating social networks and human social motives to achieve social influence at scale.

    PubMed

    Contractor, Noshir S; DeChurch, Leslie A

    2014-09-16

    The innovations of science often point to ideas and behaviors that must spread and take root in communities to have impact. Ideas, practices, and behaviors need to go from accepted truths on the part of a few scientists to commonplace beliefs and norms in the minds of the many. Moving from scientific discoveries to public good requires social influence. We introduce a structured influence process (SIP) framework to explain how social networks (i.e., the structure of social influence) and human social motives (i.e., the process of social influence wherein one person's attitudes and behaviors affect another's) are used collectively to enact social influence within a community. The SIP framework advances the science of scientific communication by positing social influence events that consider both the "who" and the "how" of social influence. This framework synthesizes core ideas from two bodies of research on social influence. The first is network research on social influence structures, which identifies who are the opinion leaders and who among their network of peers shapes their attitudes and behaviors. The second is research on social influence processes in psychology, which explores how human social motives such as the need for accuracy or the need for affiliation stimulate behavior change. We illustrate the practical implications of the SIP framework by applying it to the case of reducing neonatal mortality in India.

  6. Conducting multicenter research in healthcare simulation: Lessons learned from the INSPIRE network.

    PubMed

    Cheng, Adam; Kessler, David; Mackinnon, Ralph; Chang, Todd P; Nadkarni, Vinay M; Hunt, Elizabeth A; Duval-Arnould, Jordan; Lin, Yiqun; Pusic, Martin; Auerbach, Marc

    2017-01-01

    Simulation-based research has grown substantially over the past two decades; however, relatively few published simulation studies are multicenter in nature. Multicenter research confers many distinct advantages over single-center studies, including larger sample sizes for more generalizable findings, sharing resources amongst collaborative sites, and promoting networking. Well-executed multicenter studies are more likely to improve provider performance and/or have a positive impact on patient outcomes. In this manuscript, we offer a step-by-step guide to conducting multicenter, simulation-based research based upon our collective experience with the International Network for Simulation-based Pediatric Innovation, Research and Education (INSPIRE). Like multicenter clinical research, simulation-based multicenter research can be divided into four distinct phases. Each phase has specific differences when applied to simulation research: (1) Planning phase , to define the research question, systematically review the literature, identify outcome measures, and conduct pilot studies to ensure feasibility and estimate power; (2) Project Development phase , when the primary investigator identifies collaborators, develops the protocol and research operations manual, prepares grant applications, obtains ethical approval and executes subsite contracts, registers the study in a clinical trial registry, forms a manuscript oversight committee, and conducts feasibility testing and data validation at each site; (3) Study Execution phase , involving recruitment and enrollment of subjects, clear communication and decision-making, quality assurance measures and data abstraction, validation, and analysis; and (4) Dissemination phase , where the research team shares results via conference presentations, publications, traditional media, social media, and implements strategies for translating results to practice. With this manuscript, we provide a guide to conducting quantitative multicenter research with a focus on simulation-specific issues.

  7. Testing paradigms of ecosystem change under climate warming in Antarctica.

    PubMed

    Melbourne-Thomas, Jessica; Constable, Andrew; Wotherspoon, Simon; Raymond, Ben

    2013-01-01

    Antarctic marine ecosystems have undergone significant changes as a result of human activities in the past and are now responding in varied and often complicated ways to climate change impacts. Recent years have seen the emergence of large-scale mechanistic explanations-or "paradigms of change"-that attempt to synthesize our understanding of past and current changes. In many cases, these paradigms are based on observations that are spatially and temporally patchy. The West Antarctic Peninsula (WAP), one of Earth's most rapidly changing regions, has been an area of particular research focus. A recently proposed mechanistic explanation for observed changes in the WAP region relates changes in penguin populations to variability in krill biomass and regional warming. While this scheme is attractive for its simplicity and chronology, it may not account for complex spatio-temporal processes that drive ecosystem dynamics in the region. It might also be difficult to apply to other Antarctic regions that are experiencing some, though not all, of the changes documented for the WAP. We use qualitative network models of differing levels of complexity to test paradigms of change for the WAP ecosystem. Importantly, our approach captures the emergent effects of feedback processes in complex ecological networks and provides a means to identify and incorporate uncertain linkages between network elements. Our findings highlight key areas of uncertainty in the drivers of documented trends, and suggest that a greater level of model complexity is needed in devising explanations for ecosystem change in the Southern Ocean. We suggest that our network approach to evaluating a recent and widely cited paradigm of change for the Antarctic region could be broadly applied in hypothesis testing for other regions and research fields.

  8. Testing Paradigms of Ecosystem Change under Climate Warming in Antarctica

    PubMed Central

    Melbourne-Thomas, Jessica; Constable, Andrew; Wotherspoon, Simon; Raymond, Ben

    2013-01-01

    Antarctic marine ecosystems have undergone significant changes as a result of human activities in the past and are now responding in varied and often complicated ways to climate change impacts. Recent years have seen the emergence of large-scale mechanistic explanations–or “paradigms of change”–that attempt to synthesize our understanding of past and current changes. In many cases, these paradigms are based on observations that are spatially and temporally patchy. The West Antarctic Peninsula (WAP), one of Earth’s most rapidly changing regions, has been an area of particular research focus. A recently proposed mechanistic explanation for observed changes in the WAP region relates changes in penguin populations to variability in krill biomass and regional warming. While this scheme is attractive for its simplicity and chronology, it may not account for complex spatio-temporal processes that drive ecosystem dynamics in the region. It might also be difficult to apply to other Antarctic regions that are experiencing some, though not all, of the changes documented for the WAP. We use qualitative network models of differing levels of complexity to test paradigms of change for the WAP ecosystem. Importantly, our approach captures the emergent effects of feedback processes in complex ecological networks and provides a means to identify and incorporate uncertain linkages between network elements. Our findings highlight key areas of uncertainty in the drivers of documented trends, and suggest that a greater level of model complexity is needed in devising explanations for ecosystem change in the Southern Ocean. We suggest that our network approach to evaluating a recent and widely cited paradigm of change for the Antarctic region could be broadly applied in hypothesis testing for other regions and research fields. PMID:23405116

  9. Building sustainable multi-functional prospective electronic clinical data systems.

    PubMed

    Randhawa, Gurvaneet S; Slutsky, Jean R

    2012-07-01

    A better alignment in the goals of the biomedical research enterprise and the health care delivery system can help fill the large gaps in our knowledge of the impact of clinical interventions on patient outcomes in the real world. There are several initiatives underway to align the research priorities of patients, providers, researchers, and policy makers. These include Agency for Healthcare Research and Quality (AHRQ)-supported projects to build flexible prospective clinical electronic data infrastructure that meet the needs of these diverse users. AHRQ has previously supported the creation of 2 distributed research networks as a new approach to conduct comparative effectiveness research (CER) while protecting a patient's confidential information and the proprietary needs of a clinical organization. It has applied its experience in building these networks in directing the American Recovery and Reinvestment Act funds for CER to support new clinical electronic infrastructure projects that can be used for several purposes including CER, quality improvement, clinical decision support, and disease surveillance. In addition, AHRQ has funded a new Electronic Data Methods forum to advance the methods in clinical informatics, research analytics, and governance by actively engaging investigators from the American Recovery and Reinvestment Act-funded projects and external stakeholders.

  10. The social determinants of oral health: new approaches to conceptualizing and researching complex causal networks.

    PubMed

    Newton, J Timothy; Bower, Elizabeth J

    2005-02-01

    Oral epidemiological research into the social determinants of oral health has been limited by the absence of a theoretical framework which reflects the complexity of real life social processes and the network of causal pathways between social structure and oral health and disease. In the absence of such a framework, social determinants are treated as isolated risk factors, attributable to the individual, having a direct impact on oral health. There is little sense of how such factors interrelate over time and place and the pathways between the factors and oral health. Features of social life which impact on individuals' oral health but are not reducible to the individual remain under-researched. A conceptual framework informing mainstream epidemiological research into the social determinants of health is applied to oral epidemiology. The framework suggests complex causal pathways between social structure and health via interlinking material, psychosocial and behavioural pathways. Methodological implications for oral epidemiological research informed by the framework, such as the use of multilevel modelling, path analysis and structural equation modelling, combining qualitative and quantitative research methods, and collaborative research, are discussed. Copyright Blackwell Munksgaard, 2005.

  11. Research review for information management

    NASA Technical Reports Server (NTRS)

    Bishop, Peter C.

    1988-01-01

    The goal of RICIS research in information management is to apply currently available technology to existing problems in information management. Research projects include the following: the Space Business Research Center (SBRC), the Management Information and Decision Support Environment (MIDSE), and the investigation of visual interface technology. Several additional projects issued reports. New projects include the following: (1) the AdaNET project to develop a technology transfer network for software engineering and the Ada programming language; and (2) work on designing a communication system for the Space Station Project Office at JSC. The central aim of all projects is to use information technology to help people work more productively.

  12. Comparing multilayer brain networks between groups: Introducing graph metrics and recommendations.

    PubMed

    Mandke, Kanad; Meier, Jil; Brookes, Matthew J; O'Dea, Reuben D; Van Mieghem, Piet; Stam, Cornelis J; Hillebrand, Arjan; Tewarie, Prejaas

    2018-02-01

    There is an increasing awareness of the advantages of multi-modal neuroimaging. Networks obtained from different modalities are usually treated in isolation, which is however contradictory to accumulating evidence that these networks show non-trivial interdependencies. Even networks obtained from a single modality, such as frequency-band specific functional networks measured from magnetoencephalography (MEG) are often treated independently. Here, we discuss how a multilayer network framework allows for integration of multiple networks into a single network description and how graph metrics can be applied to quantify multilayer network organisation for group comparison. We analyse how well-known biases for single layer networks, such as effects of group differences in link density and/or average connectivity, influence multilayer networks, and we compare four schemes that aim to correct for such biases: the minimum spanning tree (MST), effective graph resistance cost minimisation, efficiency cost optimisation (ECO) and a normalisation scheme based on singular value decomposition (SVD). These schemes can be applied to the layers independently or to the multilayer network as a whole. For correction applied to whole multilayer networks, only the SVD showed sufficient bias correction. For correction applied to individual layers, three schemes (ECO, MST, SVD) could correct for biases. By using generative models as well as empirical MEG and functional magnetic resonance imaging (fMRI) data, we further demonstrated that all schemes were sensitive to identify network topology when the original networks were perturbed. In conclusion, uncorrected multilayer network analysis leads to biases. These biases may differ between centres and studies and could consequently lead to unreproducible results in a similar manner as for single layer networks. We therefore recommend using correction schemes prior to multilayer network analysis for group comparisons. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Evolutionary neural networks for anomaly detection based on the behavior of a program.

    PubMed

    Han, Sang-Jun; Cho, Sung-Bae

    2006-06-01

    The process of learning the behavior of a given program by using machine-learning techniques (based on system-call audit data) is effective to detect intrusions. Rule learning, neural networks, statistics, and hidden Markov models (HMMs) are some of the kinds of representative methods for intrusion detection. Among them, neural networks are known for good performance in learning system-call sequences. In order to apply this knowledge to real-world problems successfully, it is important to determine the structures and weights of these call sequences. However, finding the appropriate structures requires very long time periods because there are no suitable analytical solutions. In this paper, a novel intrusion-detection technique based on evolutionary neural networks (ENNs) is proposed. One advantage of using ENNs is that it takes less time to obtain superior neural networks than when using conventional approaches. This is because they discover the structures and weights of the neural networks simultaneously. Experimental results with the 1999 Defense Advanced Research Projects Agency (DARPA) Intrusion Detection Evaluation (IDEVAL) data confirm that ENNs are promising tools for intrusion detection.

  14. Estimating User Influence in Online Social Networks Subject to Information Overload

    NASA Astrophysics Data System (ADS)

    Li, Pei; Sun, Yunchuan; Chen, Yingwen; Tian, Zhi

    2014-11-01

    Online social networks have attracted remarkable attention since they provide various approaches for hundreds of millions of people to stay connected with their friends. Due to the existence of information overload, the research on diffusion dynamics in epidemiology cannot be adopted directly to that in online social networks. In this paper, we consider diffusion dynamics in online social networks subject to information overload, and model the information-processing process of a user by a queue with a batch arrival and a finite buffer. We use the average number of times a message is processed after it is generated by a given user to characterize the user influence, which is then estimated through theoretical analysis for a given network. We validate the accuracy of our estimation by simulations, and apply the results to study the impacts of different factors on the user influence. Among the observations, we find that the impact of network size on the user influence is marginal while the user influence decreases with assortativity due to information overload, which is particularly interesting.

  15. Adaptive neural network/expert system that learns fault diagnosis for different structures

    NASA Astrophysics Data System (ADS)

    Simon, Solomon H.

    1992-08-01

    Corporations need better real-time monitoring and control systems to improve productivity by watching quality and increasing production flexibility. The innovative technology to achieve this goal is evolving in the form artificial intelligence and neural networks applied to sensor processing, fusion, and interpretation. By using these advanced Al techniques, we can leverage existing systems and add value to conventional techniques. Neural networks and knowledge-based expert systems can be combined into intelligent sensor systems which provide real-time monitoring, control, evaluation, and fault diagnosis for production systems. Neural network-based intelligent sensor systems are more reliable because they can provide continuous, non-destructive monitoring and inspection. Use of neural networks can result in sensor fusion and the ability to model highly, non-linear systems. Improved models can provide a foundation for more accurate performance parameters and predictions. We discuss a research software/hardware prototype which integrates neural networks, expert systems, and sensor technologies and which can adapt across a variety of structures to perform fault diagnosis. The flexibility and adaptability of the prototype in learning two structures is presented. Potential applications are discussed.

  16. A 500-600 MHz GaN power amplifier with RC-LC stability network

    NASA Astrophysics Data System (ADS)

    Ma, Xinyu; Duan, Baoxing; Yang, Yintang

    2017-08-01

    A 500-600 MHz high-efficiency, high-power GaN power amplifier is designed and realized on the basis of the push-pull structure. The RC-LC stability network is proposed and applied to the power amplifier circuit for the first time. The RC-LC stability network can significantly reduce the high gain out the band, which eliminates the instability of the power amplifier circuit. The developed power amplifier exhibits 58.5 dBm (700 W) output power with a 17 dB gain and 85% PAE at 500-600 MHz, 300 μs, 20% duty cycle. It has the highest PAE in P-band among the products at home and abroad. Project supported by the National Key Basic Research Program of China (No. 2014CB339901).

  17. Agent-Based Chemical Plume Tracing Using Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Zarzhitsky, Dimitri; Spears, Diana; Thayer, David; Spears, William

    2004-01-01

    This paper presents a rigorous evaluation of a novel, distributed chemical plume tracing algorithm. The algorithm is a combination of the best aspects of the two most popular predecessors for this task. Furthermore, it is based on solid, formal principles from the field of fluid mechanics. The algorithm is applied by a network of mobile sensing agents (e.g., robots or micro-air vehicles) that sense the ambient fluid velocity and chemical concentration, and calculate derivatives. The algorithm drives the robotic network to the source of the toxic plume, where measures can be taken to disable the source emitter. This work is part of a much larger effort in research and development of a physics-based approach to developing networks of mobile sensing agents for monitoring, tracking, reporting and responding to hazardous conditions.

  18. Deep Learning with Convolutional Neural Networks Applied to Electromyography Data: A Resource for the Classification of Movements for Prosthetic Hands

    PubMed Central

    Atzori, Manfredo; Cognolato, Matteo; Müller, Henning

    2016-01-01

    Natural control methods based on surface electromyography (sEMG) and pattern recognition are promising for hand prosthetics. However, the control robustness offered by scientific research is still not sufficient for many real life applications, and commercial prostheses are capable of offering natural control for only a few movements. In recent years deep learning revolutionized several fields of machine learning, including computer vision and speech recognition. Our objective is to test its methods for natural control of robotic hands via sEMG using a large number of intact subjects and amputees. We tested convolutional networks for the classification of an average of 50 hand movements in 67 intact subjects and 11 transradial amputees. The simple architecture of the neural network allowed to make several tests in order to evaluate the effect of pre-processing, layer architecture, data augmentation and optimization. The classification results are compared with a set of classical classification methods applied on the same datasets. The classification accuracy obtained with convolutional neural networks using the proposed architecture is higher than the average results obtained with the classical classification methods, but lower than the results obtained with the best reference methods in our tests. The results show that convolutional neural networks with a very simple architecture can produce accurate results comparable to the average classical classification methods. They show that several factors (including pre-processing, the architecture of the net and the optimization parameters) can be fundamental for the analysis of sEMG data. Larger networks can achieve higher accuracy on computer vision and object recognition tasks. This fact suggests that it may be interesting to evaluate if larger networks can increase sEMG classification accuracy too. PMID:27656140

  19. Deep Learning with Convolutional Neural Networks Applied to Electromyography Data: A Resource for the Classification of Movements for Prosthetic Hands.

    PubMed

    Atzori, Manfredo; Cognolato, Matteo; Müller, Henning

    2016-01-01

    Natural control methods based on surface electromyography (sEMG) and pattern recognition are promising for hand prosthetics. However, the control robustness offered by scientific research is still not sufficient for many real life applications, and commercial prostheses are capable of offering natural control for only a few movements. In recent years deep learning revolutionized several fields of machine learning, including computer vision and speech recognition. Our objective is to test its methods for natural control of robotic hands via sEMG using a large number of intact subjects and amputees. We tested convolutional networks for the classification of an average of 50 hand movements in 67 intact subjects and 11 transradial amputees. The simple architecture of the neural network allowed to make several tests in order to evaluate the effect of pre-processing, layer architecture, data augmentation and optimization. The classification results are compared with a set of classical classification methods applied on the same datasets. The classification accuracy obtained with convolutional neural networks using the proposed architecture is higher than the average results obtained with the classical classification methods, but lower than the results obtained with the best reference methods in our tests. The results show that convolutional neural networks with a very simple architecture can produce accurate results comparable to the average classical classification methods. They show that several factors (including pre-processing, the architecture of the net and the optimization parameters) can be fundamental for the analysis of sEMG data. Larger networks can achieve higher accuracy on computer vision and object recognition tasks. This fact suggests that it may be interesting to evaluate if larger networks can increase sEMG classification accuracy too.

  20. Multiple-region directed functional connectivity based on phase delays.

    PubMed

    Goelman, Gadi; Dan, Rotem

    2017-03-01

    Network analysis is increasingly advancing the field of neuroimaging. Neural networks are generally constructed from pairwise interactions with an assumption of linear relations between them. Here, a high-order statistical framework to calculate directed functional connectivity among multiple regions, using wavelet analysis and spectral coherence has been presented. The mathematical expression for 4 regions was derived and used to characterize a quartet of regions as a linear, combined (nonlinear), or disconnected network. Phase delays between regions were used to obtain network's temporal hierarchy and directionality. The validity of the mathematical derivation along with the effects of coupling strength and noise on its outcomes were studied by computer simulations of the Kuramoto model. The simulations demonstrated correct directionality for a large range of coupling strength and low sensitivity to Gaussian noise compared with pairwise coherences. The analysis was applied to resting-state fMRI data of 40 healthy young subjects to characterize the ventral visual system, motor system and default mode network (DMN). It was shown that the ventral visual system was predominantly composed of linear networks while the motor system and the DMN were composed of combined (nonlinear) networks. The ventral visual system exhibits its known temporal hierarchy, the motor system exhibits center ↔ out hierarchy and the DMN has dorsal ↔ ventral and anterior ↔ posterior organizations. The analysis can be applied in different disciplines such as seismology, or economy and in a variety of brain data including stimulus-driven fMRI, electrophysiology, EEG, and MEG, thus open new horizons in brain research. Hum Brain Mapp 38:1374-1386, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Descriptive vs. mechanistic network models in plant development in the post-genomic era.

    PubMed

    Davila-Velderrain, J; Martinez-Garcia, J C; Alvarez-Buylla, E R

    2015-01-01

    Network modeling is now a widespread practice in systems biology, as well as in integrative genomics, and it constitutes a rich and diverse scientific research field. A conceptually clear understanding of the reasoning behind the main existing modeling approaches, and their associated technical terminologies, is required to avoid confusions and accelerate the transition towards an undeniable necessary more quantitative, multidisciplinary approach to biology. Herein, we focus on two main network-based modeling approaches that are commonly used depending on the information available and the intended goals: inference-based methods and system dynamics approaches. As far as data-based network inference methods are concerned, they enable the discovery of potential functional influences among molecular components. On the other hand, experimentally grounded network dynamical models have been shown to be perfectly suited for the mechanistic study of developmental processes. How do these two perspectives relate to each other? In this chapter, we describe and compare both approaches and then apply them to a given specific developmental module. Along with the step-by-step practical implementation of each approach, we also focus on discussing their respective goals, utility, assumptions, and associated limitations. We use the gene regulatory network (GRN) involved in Arabidopsis thaliana Root Stem Cell Niche patterning as our illustrative example. We show that descriptive models based on functional genomics data can provide important background information consistent with experimentally supported functional relationships integrated in mechanistic GRN models. The rationale of analysis and modeling can be applied to any other well-characterized functional developmental module in multicellular organisms, like plants and animals.

  2. Swelling characteristics of acrylic acid polyelectrolyte hydrogel in a dc electric field

    NASA Astrophysics Data System (ADS)

    Jabbari, Esmaiel; Tavakoli, Javad; Sarvestani, Alireza S.

    2007-10-01

    A novel application of environmentally sensitive polyelectrolytes is in the fabrication of BioMEMS devices as sensors and actuators. Poly(acrylic acid) (PAA) gels are anionic polyelectrolyte networks that exhibit volume expansion in aqueous physiological environments. When an electric field is applied to PAA polyelectrolyte gels, the fixed anionic polyelectrolyte charges and the requirement of electro-neutrality in the network generate an osmotic pressure, above that in the absence of the electric field, to expand the network. The objective of this research was to investigate the effect of an externally applied dc electric field on the volume expansion of the PAA polyelectrolyte gel in a simulated physiological solution of phosphate buffer saline (PBS). For swelling studies in the electric field, two platinum-coated plates, as electrodes, were wrapped in a polyethylene sheet to protect the plates from corrosion and placed vertically in a vessel filled with PBS. The plates were placed on a rail such that the distance between the two plates could be adjusted. The PAA gel was synthesized by free radical crosslinking of acrylic acid monomer with ethylene glycol dimethacrylate (EGDMA) crosslinker. Our results demonstrate that volume expansion depends on the intensity of the electric field, the PAA network density, network homogeneity, and the position of the gel in the field relative to positive/negative electrodes. Our model predictions for PAA volume expansion, based on the dilute electrolyte concentration in the gel network, is in excellent agreement with the experimental findings in the high-electric-field regime (250-300 Newton/Coulomb).

  3. An Instructional Model to Support Problem-Based Historical Inquiry: The Persistent Issues in History Network

    ERIC Educational Resources Information Center

    Brush, Thomas; Saye, John

    2014-01-01

    For over a decade, we have collaborated with secondary school history teachers in an evolving line of inquiry that applies research-based propositions to the design and testing of a problem-based learning framework and a set of wise practices that represent a professional teaching knowledge base for implementing a particular model of instruction,…

  4. An Inquiry into the Efficiency of WhatsApp for Self- and Peer-Assessments of Oral Language Proficiency

    ERIC Educational Resources Information Center

    Samaie, Mahmoud; Mansouri Nejad, Ali; Qaracholloo, Mahmoud

    2018-01-01

    Social networking applications such as WhatsApp have been extensively used for language research; however, they have rarely been applied for language assessment purposes. To explore the efficiency of WhatsApp for assessment purposes, 30 Iranian English learners doing self- and peer-assessments on WhatsApp are studied. The changes and the reasons…

  5. Applying a World-City Network Approach to Globalizing Higher Education: Conceptualization, Data Collection and the Lists of World Cities

    ERIC Educational Resources Information Center

    Chow, Alice S. Y.; Loo, Becky P. Y.

    2015-01-01

    Both the commercial and education sectors experience an increase in inter-city exchanges in the forms of goods, capital, commands, people and information/knowledge under globalization. The quantification of flows and structural relations among cities in globalizing education are under-researched compared to the well-established world/global cities…

  6. Multicausal Systems Ask for Multicausal Approaches: A Network Perspective on Subjective Well-Being in Individuals with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Deserno, Marie K.; Borsboom, Denny; Begeer, Sander; Geurts, Hilde M.

    2017-01-01

    Given the heterogeneity of autism spectrum disorder, an important limitation of much autism spectrum disorder research is that outcome measures are statistically modeled as separate dependent variables. Often, their multivariate structure is either ignored or treated as a nuisance. This study aims to lift this limitation by applying network…

  7. Intercreativity: Mapping Online Activism

    NASA Astrophysics Data System (ADS)

    Meikle, Graham

    How do activists use the Internet? This article maps a wide range of activist practice and research by applying and developing Tim Berners-Lee's concept of ‘intercreativity' (1999). It identifies four dimensions of Net activism: intercreative texts, tactics, strategies and networks. It develops these through examples of manifestations of Net activism around one cluster of issues: support campaigns for refugees and asylum seekers.

  8. On the data-driven inference of modulatory networks in climate science: an application to West African rainfall

    NASA Astrophysics Data System (ADS)

    González, D. L., II; Angus, M. P.; Tetteh, I. K.; Bello, G. A.; Padmanabhan, K.; Pendse, S. V.; Srinivas, S.; Yu, J.; Semazzi, F.; Kumar, V.; Samatova, N. F.

    2015-01-01

    Decades of hypothesis-driven and/or first-principles research have been applied towards the discovery and explanation of the mechanisms that drive climate phenomena, such as western African Sahel summer rainfall~variability. Although connections between various climate factors have been theorized, not all of the key relationships are fully understood. We propose a data-driven approach to identify candidate players in this climate system, which can help explain underlying mechanisms and/or even suggest new relationships, to facilitate building a more comprehensive and predictive model of the modulatory relationships influencing a climate phenomenon of interest. We applied coupled heterogeneous association rule mining (CHARM), Lasso multivariate regression, and dynamic Bayesian networks to find relationships within a complex system, and explored means with which to obtain a consensus result from the application of such varied methodologies. Using this fusion of approaches, we identified relationships among climate factors that modulate Sahel rainfall. These relationships fall into two categories: well-known associations from prior climate knowledge, such as the relationship with the El Niño-Southern Oscillation (ENSO) and putative links, such as North Atlantic Oscillation, that invite further research.

  9. On the data-driven inference of modulatory networks in climate science: An application to West African rainfall

    DOE PAGES

    Gonzalez, II, D. L.; Angus, M. P.; Tetteh, I. K.; ...

    2015-01-13

    Decades of hypothesis-driven and/or first-principles research have been applied towards the discovery and explanation of the mechanisms that drive climate phenomena, such as western African Sahel summer rainfall~variability. Although connections between various climate factors have been theorized, not all of the key relationships are fully understood. We propose a data-driven approach to identify candidate players in this climate system, which can help explain underlying mechanisms and/or even suggest new relationships, to facilitate building a more comprehensive and predictive model of the modulatory relationships influencing a climate phenomenon of interest. We applied coupled heterogeneous association rule mining (CHARM), Lasso multivariate regression,more » and dynamic Bayesian networks to find relationships within a complex system, and explored means with which to obtain a consensus result from the application of such varied methodologies. Using this fusion of approaches, we identified relationships among climate factors that modulate Sahel rainfall. As a result, these relationships fall into two categories: well-known associations from prior climate knowledge, such as the relationship with the El Niño–Southern Oscillation (ENSO) and putative links, such as North Atlantic Oscillation, that invite further research.« less

  10. Neural Network Classifier Architectures for Phoneme Recognition. CRC Technical Note No. CRC-TN-92-001.

    ERIC Educational Resources Information Center

    Treurniet, William

    A study applied artificial neural networks, trained with the back-propagation learning algorithm, to modelling phonemes extracted from the DARPA TIMIT multi-speaker, continuous speech data base. A number of proposed network architectures were applied to the phoneme classification task, ranging from the simple feedforward multilayer network to more…

  11. Connectivity of Multi-Channel Fluvial Systems: A Comparison of Topology Metrics for Braided Rivers and Delta Networks

    NASA Astrophysics Data System (ADS)

    Tejedor, A.; Marra, W. A.; Addink, E. A.; Foufoula-Georgiou, E.; Kleinhans, M. G.

    2016-12-01

    Advancing quantitative understanding of the structure and dynamics of complex networks has transformed research in many fields as diverse as protein interactions in a cell to page connectivity in the World Wide Web and relationships in human societies. However, Geosciences have not benefited much from this new conceptual framework, although connectivity is at the center of many processes in hydro-geomorphology. One of the first efforts in this direction was the seminal work of Smart and Moruzzi (1971), proposing the use of graph theory for studying the intricate structure of delta channel networks. In recent years, this preliminary work has precipitated in a body of research that examines the connectivity of multiple-channel fluvial systems, such as delta networks and braided rivers. In this work, we compare two approaches recently introduced in the literature: (1) Marra et al. (2014) utilized network centrality measures to identify important channels in a braided section of the Jamuna River, and used the changes of bifurcations within the network over time to explain the overall river evolution; and (2) Tejedor et al. (2015a,b) developed a set of metrics to characterize the complexity of deltaic channel networks, as well as defined a vulnerability index that quantifies the relative change of sediment and water delivery to the shoreline outlets in response to upstream perturbations. Here we present a comparative analysis of metrics of centrality and vulnerability applied to both braided and deltaic channel networks to depict critical channels in those systems, i.e., channels where a change would contribute more substantially to overall system changes, and to understand what attributes of interest in a channel network are most succinctly depicted in what metrics. Marra, W. A., Kleinhans, M. G., & Addink, E. A. (2014). Earth Surface Processes and Landforms, doi:10.1002/esp.3482Smart, J. S., and V. L. Moruzzi (1971), Quantitative properties of delta channel networks, Tech. Rep. 3, 27 pp., IBM Thomas J. Watson Res. Cent., Yorktown, NYTejedor, A., Longjas, A., Zaliapin, I., & Foufoula-Georgiou, E. (2015a/b). Water Resources Research, doi:10.1002/2014WR016259 & doi:10.1002/2014WR016604

  12. Research on the Wireless Sensor Networks Applied in the Battlefield Situation Awareness System

    NASA Astrophysics Data System (ADS)

    Hua, Guan; Li, Yan-Xiao; Yan, Xiao-Mei

    In the modern warfare information is the crucial key of winning. Battlefield situation awareness contributes to grasping and retaining the intelligence predominance. Due to its own special characteristics Wireless Sensor Networks (WSN) have been widely used to realize reconnaissance and surveillance in the joint operations and provide simultaneous, comprehensive, accurate data to multiechelon commanders and the combatant personnel for decision making and rapid response. Military sensors have drawn great attention in the ongoing projects which have satisfied the initial design or research purpose. As the interface of the "Internet of Things" which will have an eye on every corner of the battlespace WSNs play the necessary role in the incorporated situation awareness system. WSNs, radar, infrared ray or other means work together to acquire awareness intelligence for the deployed functional units to enhance the fighting effect.

  13. Exascale Virtualized and Programmable Distributed Cyber Resource Control: Final Scientific Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, S.J.Ben; Lauer, Gregory S.

    Extreme-science drives the need for distributed exascale processing and communications that are carefully, yet flexibly, managed. Exponential growth of data for scientific simulations, experimental data, collaborative data analyses, remote visualization and GRID computing requirements of scientists in fields as diverse as high energy physics, climate change, genomics, fusion, synchrotron radiation, material science, medicine, and other scientific disciplines cannot be accommodated by simply applying existing transport protocols to faster pipes. Further, scientific challenges today demand diverse research teams, heightening the need for and increasing the complexity of collaboration. To address these issues within the network layer and physical layer, we havemore » performed a number of research activities surrounding effective allocation and management of elastic optical network (EON) resources, particularly focusing on FlexGrid transponders. FlexGrid transponders support the opportunity to build Layer-1 connections at a wide range of bandwidths and to reconfigure them rapidly. The new flexibility supports complex new ways of using the physical layer that must be carefully managed and hidden from the scientist end-users. FlexGrid networks utilize flexible (or elastic) spectral bandwidths for each data link without using fixed wavelength grids. The flexibility in spectrum allocation brings many appealing features to network operations. Current networks are designed for the worst case impairments in transmission performance and the assigned spectrum is over-provisioned. In contrast, the FlexGrid networks can operate with the highest spectral efficiency and minimum bandwidth for the given traffic demand while meeting the minimum quality of transmission (QoT) requirement. Two primary focuses of our research are: (1) resource and spectrum allocation (RSA) for IP traffic over EONs, and (2) RSA for cross-domain optical networks. Previous work concentrates primarily on large file transfers within a single domain. Adding support for IP traffic changes the nature of the RSA problem: instead of choosing to accept or deny each request for network support, IP traffic is inherently elastic and thus lends itself to a bandwidth maximization formulation. We developed a number of algorithms that could be easily deployed within existing and new FlexGrid networks, leading to networks that better support scientific collaboration. Cross-domain RSA research is essential to support large-scale FlexGrid networks, since configuration information is generally not shared or coordinated across domains. The results presented here are in their early stages. They are technically feasible and practical, but still require coordination among organizations and equipment owners and a higher-layer framework for managing network requests.« less

  14. Management of Dentin Hypersensitivity by National Dental Practice-Based Research Network practitioners: results from a questionnaire administered prior to initiation of a clinical study on this topic.

    PubMed

    Kopycka-Kedzierawski, Dorota T; Meyerowitz, Cyril; Litaker, Mark S; Chonowski, Sidney; Heft, Marc W; Gordan, Valeria V; Yardic, Robin L; Madden, Theresa E; Reyes, Stephanie C; Gilbert, Gregg H

    2017-01-13

    Dentin hypersensitivity (DH) is a common problem encountered in clinical practice. The purpose of this study was to identify the management approaches for DH among United States dentists. One hundred eighty five National Dental Practice-Based Research Network clinicians completed a questionnaire regarding their preferred methods to diagnose and manage DH in the practice setting, and their beliefs about DH predisposing factors. Almost all dentists (99%) reported using more than one method to diagnose DH. Most frequently, they reported using spontaneous patient reports coupled with excluding other causes of oral pain by direct clinical examination (48%); followed by applying an air blast (26%), applying cold water (12%), and obtaining patient reports after dentist's query (6%). In managing DH, the most frequent first choice was desensitizing, over-the-counter (OTC), potassium nitrate toothpaste (48%), followed by fluorides (38%), and glutaraldehyde/HEMA (3%). A total of 86% of respondents reported using a combination of products when treating DH, most frequently using fluoride varnish and desensitizing OTC potassium nitrate toothpaste (70%). The most frequent predisposing factor leading to DH, as reported by the practitioners, was recessed gingiva (66%), followed by abrasion, erosion, abfraction/attrition lesions (59%) and bruxism (32%). The majority of network practitioners use multiple methods to diagnose and manage DH. Desensitizing OTC potassium nitrate toothpaste and fluoride formulations are the most widely used products to manage DH in dental practice setting.

  15. Social Media and Mentoring in Biomedical Research Faculty Development.

    PubMed

    Teruya, Stacey Alan; Bazargan-Hejazi, Shahrzad

    2014-09-01

    To determine how effective and collegial mentoring in biomedical research faculty development may be implemented and facilitated through social media. The authors reviewed the literature for objectives, concerns, and limitations of career development for junior research faculty. They tabularized these as developmental goals, and aligned them with relevant social media strengths and capabilities facilitated through traditional and/or peer mentoring. The authors derived a model in which social media is leveraged to achieve developmental goals reflected in independent and shared projects, and in the creation and expansion of support and research networks. Social media may be successfully leveraged and applied in achieving developmental goals for biomedical research faculty, and potentially for those in other fields and disciplines.

  16. Breakdown of interdependent directed networks.

    PubMed

    Liu, Xueming; Stanley, H Eugene; Gao, Jianxi

    2016-02-02

    Increasing evidence shows that real-world systems interact with one another via dependency connectivities. Failing connectivities are the mechanism behind the breakdown of interacting complex systems, e.g., blackouts caused by the interdependence of power grids and communication networks. Previous research analyzing the robustness of interdependent networks has been limited to undirected networks. However, most real-world networks are directed, their in-degrees and out-degrees may be correlated, and they are often coupled to one another as interdependent directed networks. To understand the breakdown and robustness of interdependent directed networks, we develop a theoretical framework based on generating functions and percolation theory. We find that for interdependent Erdős-Rényi networks the directionality within each network increases their vulnerability and exhibits hybrid phase transitions. We also find that the percolation behavior of interdependent directed scale-free networks with and without degree correlations is so complex that two criteria are needed to quantify and compare their robustness: the percolation threshold and the integrated size of the giant component during an entire attack process. Interestingly, we find that the in-degree and out-degree correlations in each network layer increase the robustness of interdependent degree heterogeneous networks that most real networks are, but decrease the robustness of interdependent networks with homogeneous degree distribution and with strong coupling strengths. Moreover, by applying our theoretical analysis to real interdependent international trade networks, we find that the robustness of these real-world systems increases with the in-degree and out-degree correlations, confirming our theoretical analysis.

  17. Conditional robustness analysis for fragility discovery and target identification in biochemical networks and in cancer systems biology.

    PubMed

    Bianconi, Fortunato; Baldelli, Elisa; Ludovini, Vienna; Luovini, Vienna; Petricoin, Emanuel F; Crinò, Lucio; Valigi, Paolo

    2015-10-19

    The study of cancer therapy is a key issue in the field of oncology research and the development of target therapies is one of the main problems currently under investigation. This is particularly relevant in different types of tumor where traditional chemotherapy approaches often fail, such as lung cancer. We started from the general definition of robustness introduced by Kitano and applied it to the analysis of dynamical biochemical networks, proposing a new algorithm based on moment independent analysis of input/output uncertainty. The framework utilizes novel computational methods which enable evaluating the model fragility with respect to quantitative performance measures and parameters such as reaction rate constants and initial conditions. The algorithm generates a small subset of parameters that can be used to act on complex networks and to obtain the desired behaviors. We have applied the proposed framework to the EGFR-IGF1R signal transduction network, a crucial pathway in lung cancer, as an example of Cancer Systems Biology application in drug discovery. Furthermore, we have tested our framework on a pulse generator network as an example of Synthetic Biology application, thus proving the suitability of our methodology to the characterization of the input/output synthetic circuits. The achieved results are of immediate practical application in computational biology, and while we demonstrate their use in two specific examples, they can in fact be used to study a wider class of biological systems.

  18. Hybrid Scheme for Modeling Local Field Potentials from Point-Neuron Networks.

    PubMed

    Hagen, Espen; Dahmen, David; Stavrinou, Maria L; Lindén, Henrik; Tetzlaff, Tom; van Albada, Sacha J; Grün, Sonja; Diesmann, Markus; Einevoll, Gaute T

    2016-12-01

    With rapidly advancing multi-electrode recording technology, the local field potential (LFP) has again become a popular measure of neuronal activity in both research and clinical applications. Proper understanding of the LFP requires detailed mathematical modeling incorporating the anatomical and electrophysiological features of neurons near the recording electrode, as well as synaptic inputs from the entire network. Here we propose a hybrid modeling scheme combining efficient point-neuron network models with biophysical principles underlying LFP generation by real neurons. The LFP predictions rely on populations of network-equivalent multicompartment neuron models with layer-specific synaptic connectivity, can be used with an arbitrary number of point-neuron network populations, and allows for a full separation of simulated network dynamics and LFPs. We apply the scheme to a full-scale cortical network model for a ∼1 mm 2 patch of primary visual cortex, predict laminar LFPs for different network states, assess the relative LFP contribution from different laminar populations, and investigate effects of input correlations and neuron density on the LFP. The generic nature of the hybrid scheme and its public implementation in hybridLFPy form the basis for LFP predictions from other and larger point-neuron network models, as well as extensions of the current application with additional biological detail. © The Author 2016. Published by Oxford University Press.

  19. Cancer Transcriptome Dataset Analysis: Comparing Methods of Pathway and Gene Regulatory Network-Based Cluster Identification.

    PubMed

    Nam, Seungyoon

    2017-04-01

    Cancer transcriptome analysis is one of the leading areas of Big Data science, biomarker, and pharmaceutical discovery, not to forget personalized medicine. Yet, cancer transcriptomics and postgenomic medicine require innovation in bioinformatics as well as comparison of the performance of available algorithms. In this data analytics context, the value of network generation and algorithms has been widely underscored for addressing the salient questions in cancer pathogenesis. Analysis of cancer trancriptome often results in complicated networks where identification of network modularity remains critical, for example, in delineating the "druggable" molecular targets. Network clustering is useful, but depends on the network topology in and of itself. Notably, the performance of different network-generating tools for network cluster (NC) identification has been little investigated to date. Hence, using gastric cancer (GC) transcriptomic datasets, we compared two algorithms for generating pathway versus gene regulatory network-based NCs, showing that the pathway-based approach better agrees with a reference set of cancer-functional contexts. Finally, by applying pathway-based NC identification to GC transcriptome datasets, we describe cancer NCs that associate with candidate therapeutic targets and biomarkers in GC. These observations collectively inform future research on cancer transcriptomics, drug discovery, and rational development of new analysis tools for optimal harnessing of omics data.

  20. Calculation of Crystallographic Texture of BCC Steels During Cold Rolling

    NASA Astrophysics Data System (ADS)

    Das, Arpan

    2017-05-01

    BCC alloys commonly tend to develop strong fibre textures and often represent as isointensity diagrams in φ 1 sections or by fibre diagrams. Alpha fibre in bcc steels is generally characterised by <110> crystallographic axis parallel to the rolling direction. The objective of present research is to correlate carbon content, carbide dispersion, rolling reduction, Euler angles (ϕ) (when φ 1 = 0° and φ 2 = 45° along alpha fibre) and the resulting alpha fibre texture orientation intensity. In the present research, Bayesian neural computation has been employed to correlate these and compare with the existing feed-forward neural network model comprehensively. Excellent match to the measured texture data within the bounding box of texture training data set has been already predicted through the feed-forward neural network model by other researchers. Feed-forward neural network prediction outside the bounds of training texture data showed deviations from the expected values. Currently, Bayesian computation has been similarly applied to confirm that the predictions are reasonable in the context of basic metallurgical principles, and matched better outside the bounds of training texture data set than the reported feed-forward neural network. Bayesian computation puts error bars on predicted values and allows significance of each individual parameters to be estimated. Additionally, it is also possible by Bayesian computation to estimate the isolated influence of particular variable such as carbon concentration, which exactly cannot in practice be varied independently. This shows the ability of the Bayesian neural network to examine the new phenomenon in situations where the data cannot be accessed through experiments.

Top