Sample records for applying independent component

  1. Independent component analysis for automatic note extraction from musical trills

    NASA Astrophysics Data System (ADS)

    Brown, Judith C.; Smaragdis, Paris

    2004-05-01

    The method of principal component analysis, which is based on second-order statistics (or linear independence), has long been used for redundancy reduction of audio data. The more recent technique of independent component analysis, enforcing much stricter statistical criteria based on higher-order statistical independence, is introduced and shown to be far superior in separating independent musical sources. This theory has been applied to piano trills and a database of trill rates was assembled from experiments with a computer-driven piano, recordings of a professional pianist, and commercially available compact disks. The method of independent component analysis has thus been shown to be an outstanding, effective means of automatically extracting interesting musical information from a sea of redundant data.

  2. CO Component Estimation Based on the Independent Component Analysis

    NASA Astrophysics Data System (ADS)

    Ichiki, Kiyotomo; Kaji, Ryohei; Yamamoto, Hiroaki; Takeuchi, Tsutomu T.; Fukui, Yasuo

    2014-01-01

    Fast Independent Component Analysis (FastICA) is a component separation algorithm based on the levels of non-Gaussianity. Here we apply FastICA to the component separation problem of the microwave background, including carbon monoxide (CO) line emissions that are found to contaminate the PLANCK High Frequency Instrument (HFI) data. Specifically, we prepare 100 GHz, 143 GHz, and 217 GHz mock microwave sky maps, which include galactic thermal dust, NANTEN CO line, and the cosmic microwave background (CMB) emissions, and then estimate the independent components based on the kurtosis. We find that FastICA can successfully estimate the CO component as the first independent component in our deflection algorithm because its distribution has the largest degree of non-Gaussianity among the components. Thus, FastICA can be a promising technique to extract CO-like components without prior assumptions about their distributions and frequency dependences.

  3. Independent component analysis decomposition of hospital emergency department throughput measures

    NASA Astrophysics Data System (ADS)

    He, Qiang; Chu, Henry

    2016-05-01

    We present a method adapted from medical sensor data analysis, viz. independent component analysis of electroencephalography data, to health system analysis. Timely and effective care in a hospital emergency department is measured by throughput measures such as median times patients spent before they were admitted as an inpatient, before they were sent home, before they were seen by a healthcare professional. We consider a set of five such measures collected at 3,086 hospitals distributed across the U.S. One model of the performance of an emergency department is that these correlated throughput measures are linear combinations of some underlying sources. The independent component analysis decomposition of the data set can thus be viewed as transforming a set of performance measures collected at a site to a collection of outputs of spatial filters applied to the whole multi-measure data. We compare the independent component sources with the output of the conventional principal component analysis to show that the independent components are more suitable for understanding the data sets through visualizations.

  4. CO component estimation based on the independent component analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ichiki, Kiyotomo; Kaji, Ryohei; Yamamoto, Hiroaki

    2014-01-01

    Fast Independent Component Analysis (FastICA) is a component separation algorithm based on the levels of non-Gaussianity. Here we apply FastICA to the component separation problem of the microwave background, including carbon monoxide (CO) line emissions that are found to contaminate the PLANCK High Frequency Instrument (HFI) data. Specifically, we prepare 100 GHz, 143 GHz, and 217 GHz mock microwave sky maps, which include galactic thermal dust, NANTEN CO line, and the cosmic microwave background (CMB) emissions, and then estimate the independent components based on the kurtosis. We find that FastICA can successfully estimate the CO component as the first independentmore » component in our deflection algorithm because its distribution has the largest degree of non-Gaussianity among the components. Thus, FastICA can be a promising technique to extract CO-like components without prior assumptions about their distributions and frequency dependences.« less

  5. Ranking and averaging independent component analysis by reproducibility (RAICAR).

    PubMed

    Yang, Zhi; LaConte, Stephen; Weng, Xuchu; Hu, Xiaoping

    2008-06-01

    Independent component analysis (ICA) is a data-driven approach that has exhibited great utility for functional magnetic resonance imaging (fMRI). Standard ICA implementations, however, do not provide the number and relative importance of the resulting components. In addition, ICA algorithms utilizing gradient-based optimization give decompositions that are dependent on initialization values, which can lead to dramatically different results. In this work, a new method, RAICAR (Ranking and Averaging Independent Component Analysis by Reproducibility), is introduced to address these issues for spatial ICA applied to fMRI. RAICAR utilizes repeated ICA realizations and relies on the reproducibility between them to rank and select components. Different realizations are aligned based on correlations, leading to aligned components. Each component is ranked and thresholded based on between-realization correlations. Furthermore, different realizations of each aligned component are selectively averaged to generate the final estimate of the given component. Reliability and accuracy of this method are demonstrated with both simulated and experimental fMRI data. Copyright 2007 Wiley-Liss, Inc.

  6. Artifacts and noise removal in electrocardiograms using independent component analysis.

    PubMed

    Chawla, M P S; Verma, H K; Kumar, Vinod

    2008-09-26

    Independent component analysis (ICA) is a novel technique capable of separating independent components from electrocardiogram (ECG) complex signals. The purpose of this analysis is to evaluate the effectiveness of ICA in removing artifacts and noise from ECG recordings. ICA is applied to remove artifacts and noise in ECG segments of either an individual ECG CSE data base file or all files. The reconstructed ECGs are compared with the original ECG signal. For the four special cases discussed, the R-Peak magnitudes of the CSE data base ECG waveforms before and after applying ICA are also found. In the results, it is shown that in most of the cases, the percentage error in reconstruction is very small. The results show that there is a significant improvement in signal quality, i.e. SNR. All the ECG recording cases dealt showed an improved ECG appearance after the use of ICA. This establishes the efficacy of ICA in elimination of noise and artifacts in electrocardiograms.

  7. Using independent component analysis for electrical impedance tomography

    NASA Astrophysics Data System (ADS)

    Yan, Peimin; Mo, Yulong

    2004-05-01

    Independent component analysis (ICA) is a way to resolve signals into independent components based on the statistical characteristics of the signals. It is a method for factoring probability densities of measured signals into a set of densities that are as statistically independent as possible under the assumptions of a linear model. Electrical impedance tomography (EIT) is used to detect variations of the electric conductivity of the human body. Because there are variations of the conductivity distributions inside the body, EIT presents multi-channel data. In order to get all information contained in different location of tissue it is necessary to image the individual conductivity distribution. In this paper we consider to apply ICA to EIT on the signal subspace (individual conductivity distribution). Using ICA the signal subspace will then be decomposed into statistically independent components. The individual conductivity distribution can be reconstructed by the sensitivity theorem in this paper. Compute simulations show that the full information contained in the multi-conductivity distribution will be obtained by this method.

  8. Principal Component Noise Filtering for NAST-I Radiometric Calibration

    NASA Technical Reports Server (NTRS)

    Tian, Jialin; Smith, William L., Sr.

    2011-01-01

    The National Polar-orbiting Operational Environmental Satellite System (NPOESS) Airborne Sounder Testbed- Interferometer (NAST-I) instrument is a high-resolution scanning interferometer that measures emitted thermal radiation between 3.3 and 18 microns. The NAST-I radiometric calibration is achieved using internal blackbody calibration references at ambient and hot temperatures. In this paper, we introduce a refined calibration technique that utilizes a principal component (PC) noise filter to compensate for instrument distortions and artifacts, therefore, further improve the absolute radiometric calibration accuracy. To test the procedure and estimate the PC filter noise performance, we form dependent and independent test samples using odd and even sets of blackbody spectra. To determine the optimal number of eigenvectors, the PC filter algorithm is applied to both dependent and independent blackbody spectra with a varying number of eigenvectors. The optimal number of PCs is selected so that the total root-mean-square (RMS) error is minimized. To estimate the filter noise performance, we examine four different scenarios: apply PC filtering to both dependent and independent datasets, apply PC filtering to dependent calibration data only, apply PC filtering to independent data only, and no PC filters. The independent blackbody radiances are predicted for each case and comparisons are made. The results show significant reduction in noise in the final calibrated radiances with the implementation of the PC filtering algorithm.

  9. Characterization of Strombolian events by using independent component analysis

    NASA Astrophysics Data System (ADS)

    Ciaramella, A.; de Lauro, E.; de Martino, S.; di Lieto, B.; Falanga, M.; Tagliaferri, R.

    2004-10-01

    We apply Independent Component Analysis (ICA) to seismic signals recorded at Stromboli volcano. Firstly, we show how ICA works considering synthetic signals, which are generated by dynamical systems. We prove that Strombolian signals, both tremor and explosions, in the high frequency band (>0.5 Hz), are similar in time domain. This seems to give some insights to the organ pipe model generation for the source of these events. Moreover, we are able to recognize in the tremor signals a low frequency component (<0.5 Hz), with a well defined peak corresponding to 30s.

  10. Assessment of the Uniqueness of Wind Tunnel Strain-Gage Balance Load Predictions

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.

    2016-01-01

    A new test was developed to assess the uniqueness of wind tunnel strain-gage balance load predictions that are obtained from regression models of calibration data. The test helps balance users to gain confidence in load predictions of non-traditional balance designs. It also makes it possible to better evaluate load predictions of traditional balances that are not used as originally intended. The test works for both the Iterative and Non-Iterative Methods that are used in the aerospace testing community for the prediction of balance loads. It is based on the hypothesis that the total number of independently applied balance load components must always match the total number of independently measured bridge outputs or bridge output combinations. This hypothesis is supported by a control volume analysis of the inputs and outputs of a strain-gage balance. It is concluded from the control volume analysis that the loads and bridge outputs of a balance calibration data set must separately be tested for linear independence because it cannot always be guaranteed that a linearly independent load component set will result in linearly independent bridge output measurements. Simple linear math models for the loads and bridge outputs in combination with the variance inflation factor are used to test for linear independence. A highly unique and reversible mapping between the applied load component set and the measured bridge output set is guaranteed to exist if the maximum variance inflation factor of both sets is less than the literature recommended threshold of five. Data from the calibration of a six{component force balance is used to illustrate the application of the new test to real-world data.

  11. Nonlinear Extraction of Independent Components of Natural Images Using Radial Gaussianization

    PubMed Central

    Lyu, Siwei; Simoncelli, Eero P.

    2011-01-01

    We consider the problem of efficiently encoding a signal by transforming it to a new representation whose components are statistically independent. A widely studied linear solution, known as independent component analysis (ICA), exists for the case when the signal is generated as a linear transformation of independent nongaussian sources. Here, we examine a complementary case, in which the source is nongaussian and elliptically symmetric. In this case, no invertible linear transform suffices to decompose the signal into independent components, but we show that a simple nonlinear transformation, which we call radial gaussianization (RG), is able to remove all dependencies. We then examine this methodology in the context of natural image statistics. We first show that distributions of spatially proximal bandpass filter responses are better described as elliptical than as linearly transformed independent sources. Consistent with this, we demonstrate that the reduction in dependency achieved by applying RG to either nearby pairs or blocks of bandpass filter responses is significantly greater than that achieved by ICA. Finally, we show that the RG transformation may be closely approximated by divisive normalization, which has been used to model the nonlinear response properties of visual neurons. PMID:19191599

  12. Fetal ECG Extraction From Maternal Body Surface Measurement Using Independent Component Analysis

    DTIC Science & Technology

    2001-10-25

    Ibaraki 305-0901, Japan Abstract – A method applying independent component analysis (ICA) to detect the electrocardiogram of a prenatal cattle foetus is...monitoring the health status of an unborn cattle foetus is indispensable in preventing natural abortion and premature birth [3]. One of the applicable...and Y. Honda, “ECG and Heart Rate Detection of Prenatal Cattle Foetus Using Adaptive Digital Filtering,” World Congress on Med. Phys.& Biomed. Eng., Chicago TU-CXH-75, pp. 1-4, 2000.

  13. A first application of independent component analysis to extracting structure from stock returns.

    PubMed

    Back, A D; Weigend, A S

    1997-08-01

    This paper explores the application of a signal processing technique known as independent component analysis (ICA) or blind source separation to multivariate financial time series such as a portfolio of stocks. The key idea of ICA is to linearly map the observed multivariate time series into a new space of statistically independent components (ICs). We apply ICA to three years of daily returns of the 28 largest Japanese stocks and compare the results with those obtained using principal component analysis. The results indicate that the estimated ICs fall into two categories, (i) infrequent large shocks (responsible for the major changes in the stock prices), and (ii) frequent smaller fluctuations (contributing little to the overall level of the stocks). We show that the overall stock price can be reconstructed surprisingly well by using a small number of thresholded weighted ICs. In contrast, when using shocks derived from principal components instead of independent components, the reconstructed price is less similar to the original one. ICA is shown to be a potentially powerful method of analyzing and understanding driving mechanisms in financial time series. The application to portfolio optimization is described in Chin and Weigend (1998).

  14. Source separation on hyperspectral cube applied to dermatology

    NASA Astrophysics Data System (ADS)

    Mitra, J.; Jolivot, R.; Vabres, P.; Marzani, F. S.

    2010-03-01

    This paper proposes a method of quantification of the components underlying the human skin that are supposed to be responsible for the effective reflectance spectrum of the skin over the visible wavelength. The method is based on independent component analysis assuming that the epidermal melanin and the dermal haemoglobin absorbance spectra are independent of each other. The method extracts the source spectra that correspond to the ideal absorbance spectra of melanin and haemoglobin. The noisy melanin spectrum is fixed using a polynomial fit and the quantifications associated with it are reestimated. The results produce feasible quantifications of each source component in the examined skin patch.

  15. Addressing Spatial Dependence Bias in Climate Model Simulations—An Independent Component Analysis Approach

    NASA Astrophysics Data System (ADS)

    Nahar, Jannatun; Johnson, Fiona; Sharma, Ashish

    2018-02-01

    Conventional bias correction is usually applied on a grid-by-grid basis, meaning that the resulting corrections cannot address biases in the spatial distribution of climate variables. To solve this problem, a two-step bias correction method is proposed here to correct time series at multiple locations conjointly. The first step transforms the data to a set of statistically independent univariate time series, using a technique known as independent component analysis (ICA). The mutually independent signals can then be bias corrected as univariate time series and back-transformed to improve the representation of spatial dependence in the data. The spatially corrected data are then bias corrected at the grid scale in the second step. The method has been applied to two CMIP5 General Circulation Model simulations for six different climate regions of Australia for two climate variables—temperature and precipitation. The results demonstrate that the ICA-based technique leads to considerable improvements in temperature simulations with more modest improvements in precipitation. Overall, the method results in current climate simulations that have greater equivalency in space and time with observational data.

  16. Detection of explosives on the surface of banknotes by Raman hyperspectral imaging and independent component analysis.

    PubMed

    Almeida, Mariana R; Correa, Deleon N; Zacca, Jorge J; Logrado, Lucio Paulo Lima; Poppi, Ronei J

    2015-02-20

    The aim of this study was to develop a methodology using Raman hyperspectral imaging and chemometric methods for identification of pre- and post-blast explosive residues on banknote surfaces. The explosives studied were of military, commercial and propellant uses. After the acquisition of the hyperspectral imaging, independent component analysis (ICA) was applied to extract the pure spectra and the distribution of the corresponding image constituents. The performance of the methodology was evaluated by the explained variance and the lack of fit of the models, by comparing the ICA recovered spectra with the reference spectra using correlation coefficients and by the presence of rotational ambiguity in the ICA solutions. The methodology was applied to forensic samples to solve an automated teller machine explosion case. Independent component analysis proved to be a suitable method of resolving curves, achieving equivalent performance with the multivariate curve resolution with alternating least squares (MCR-ALS) method. At low concentrations, MCR-ALS presents some limitations, as it did not provide the correct solution. The detection limit of the methodology presented in this study was 50 μg cm(-2). Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Discrimination of a chestnut-oak forest unit for geologic mapping by means of a principal component enhancement of Landsat multispectral scanner data.

    USGS Publications Warehouse

    Krohn, M.D.; Milton, N.M.; Segal, D.; Enland, A.

    1981-01-01

    A principal component image enhancement has been effective in applying Landsat data to geologic mapping in a heavily forested area of E Virginia. The image enhancement procedure consists of a principal component transformation, a histogram normalization, and the inverse principal componnet transformation. The enhancement preserves the independence of the principal components, yet produces a more readily interpretable image than does a single principal component transformation. -from Authors

  18. Independent component analysis-based algorithm for automatic identification of Raman spectra applied to artistic pigments and pigment mixtures.

    PubMed

    González-Vidal, Juan José; Pérez-Pueyo, Rosanna; Soneira, María José; Ruiz-Moreno, Sergio

    2015-03-01

    A new method has been developed to automatically identify Raman spectra, whether they correspond to single- or multicomponent spectra. The method requires no user input or judgment. There are thus no parameters to be tweaked. Furthermore, it provides a reliability factor on the resulting identification, with the aim of becoming a useful support tool for the analyst in the decision-making process. The method relies on the multivariate techniques of principal component analysis (PCA) and independent component analysis (ICA), and on some metrics. It has been developed for the application of automated spectral analysis, where the analyzed spectrum is provided by a spectrometer that has no previous knowledge of the analyzed sample, meaning that the number of components in the sample is unknown. We describe the details of this method and demonstrate its efficiency by identifying both simulated spectra and real spectra. The method has been applied to artistic pigment identification. The reliable and consistent results that were obtained make the methodology a helpful tool suitable for the identification of pigments in artwork or in paint in general.

  19. BAYESIAN SEMI-BLIND COMPONENT SEPARATION FOR FOREGROUND REMOVAL IN INTERFEROMETRIC 21 cm OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Le; Timbie, Peter T.; Bunn, Emory F.

    In this paper, we present a new Bayesian semi-blind approach for foreground removal in observations of the 21 cm signal measured by interferometers. The technique, which we call H i Expectation–Maximization Independent Component Analysis (HIEMICA), is an extension of the Independent Component Analysis technique developed for two-dimensional (2D) cosmic microwave background maps to three-dimensional (3D) 21 cm cosmological signals measured by interferometers. This technique provides a fully Bayesian inference of power spectra and maps and separates the foregrounds from the signal based on the diversity of their power spectra. Relying only on the statistical independence of the components, this approachmore » can jointly estimate the 3D power spectrum of the 21 cm signal, as well as the 2D angular power spectrum and the frequency dependence of each foreground component, without any prior assumptions about the foregrounds. This approach has been tested extensively by applying it to mock data from interferometric 21 cm intensity mapping observations under idealized assumptions of instrumental effects. We also discuss the impact when the noise properties are not known completely. As a first step toward solving the 21 cm power spectrum analysis problem, we compare the semi-blind HIEMICA technique to the commonly used Principal Component Analysis. Under the same idealized circumstances, the proposed technique provides significantly improved recovery of the power spectrum. This technique can be applied in a straightforward manner to all 21 cm interferometric observations, including epoch of reionization measurements, and can be extended to single-dish observations as well.« less

  20. [Extraction of evoked related potentials by using the combination of independent component analysis and wavelet analysis].

    PubMed

    Zou, Ling; Chen, Shuyue; Sun, Yuqiang; Ma, Zhenghua

    2010-08-01

    In this paper we present a new method of combining Independent Component Analysis (ICA) and Wavelet de-noising algorithm to extract Evoked Related Potentials (ERPs). First, the extended Infomax-ICA algorithm is used to analyze EEG signals and obtain the independent components (Ics); Then, the Wave Shrink (WS) method is applied to the demixed Ics as an intermediate step; the EEG data were rebuilt by using the inverse ICA based on the new Ics; the ERPs were extracted by using de-noised EEG data after being averaged several trials. The experimental results showed that the combined method and ICA method could remove eye artifacts and muscle artifacts mixed in the ERPs, while the combined method could retain the brain neural activity mixed in the noise Ics and could extract the weak ERPs efficiently from strong background artifacts.

  1. Grouping individual independent BOLD effects: a new way to ICA group analysis

    NASA Astrophysics Data System (ADS)

    Duann, Jeng-Ren; Jung, Tzyy-Ping; Sejnowski, Terrence J.; Makeig, Scott

    2009-04-01

    A new group analysis method to summarize the task-related BOLD responses based on independent component analysis (ICA) was presented. As opposite to the previously proposed group ICA (gICA) method, which first combined multi-subject fMRI data in either temporal or spatial domain and applied ICA decomposition only once to the combined fMRI data to extract the task-related BOLD effects, the method presented here applied ICA decomposition to the individual subjects' fMRI data to first find the independent BOLD effects specifically for each individual subject. Then, the task-related independent BOLD component was selected among the resulting independent components from the single-subject ICA decomposition and hence grouped across subjects to derive the group inference. In this new ICA group analysis (ICAga) method, one does not need to assume that the task-related BOLD time courses are identical across brain areas and subjects as used in the grand ICA decomposition on the spatially concatenated fMRI data. Neither does one need to assume that after spatial normalization, the voxels at the same coordinates represent exactly the same functional or structural brain anatomies across different subjects. These two assumptions have been problematic given the recent BOLD activation evidences. Further, since the independent BOLD effects were obtained from each individual subject, the ICAga method can better account for the individual differences in the task-related BOLD effects. Unlike the gICA approach whereby the task-related BOLD effects could only be accounted for by a single unified BOLD model across multiple subjects. As a result, the newly proposed method, ICAga, was able to better fit the task-related BOLD effects at individual level and thus allow grouping more appropriate multisubject BOLD effects in the group analysis.

  2. Technical Note: Independent component analysis for quality assurance in functional MRI.

    PubMed

    Astrakas, Loukas G; Kallistis, Nikolaos S; Kalef-Ezra, John A

    2016-02-01

    Independent component analysis (ICA) is an established method of analyzing human functional MRI (fMRI) data. Here, an ICA-based fMRI quality control (QC) tool was developed and used. ICA-based fMRI QC tool to be used with a commercial phantom was developed. In an attempt to assess the performance of the tool relative to preexisting alternative tools, it was used seven weeks before and eight weeks after repair of a faulty gradient amplifier of a non-state-of-the-art MRI unit. More specifically, its performance was compared with the AAPM 100 acceptance testing and quality assurance protocol and two fMRI QC protocols, proposed by Freidman et al. ["Report on a multicenter fMRI quality assurance protocol," J. Magn. Reson. Imaging 23, 827-839 (2006)] and Stocker et al. ["Automated quality assurance routines for fMRI data applied to a multicenter study," Hum. Brain Mapp. 25, 237-246 (2005)], respectively. The easily developed and applied ICA-based QC protocol provided fMRI QC indices and maps equally sensitive to fMRI instabilities with the indices and maps of other established protocols. The ICA fMRI QC indices were highly correlated with indices of other fMRI QC protocols and in some cases theoretically related to them. Three or four independent components with slow varying time series are detected under normal conditions. ICA applied on phantom measurements is an easy and efficient tool for fMRI QC. Additionally, it can protect against misinterpretations of artifact components as human brain activations. Evaluating fMRI QC indices in the central region of a phantom is not always the optimal choice.

  3. A novel approach to analyzing fMRI and SNP data via parallel independent component analysis

    NASA Astrophysics Data System (ADS)

    Liu, Jingyu; Pearlson, Godfrey; Calhoun, Vince; Windemuth, Andreas

    2007-03-01

    There is current interest in understanding genetic influences on brain function in both the healthy and the disordered brain. Parallel independent component analysis, a new method for analyzing multimodal data, is proposed in this paper and applied to functional magnetic resonance imaging (fMRI) and a single nucleotide polymorphism (SNP) array. The method aims to identify the independent components of each modality and the relationship between the two modalities. We analyzed 92 participants, including 29 schizophrenia (SZ) patients, 13 unaffected SZ relatives, and 50 healthy controls. We found a correlation of 0.79 between one fMRI component and one SNP component. The fMRI component consists of activations in cingulate gyrus, multiple frontal gyri, and superior temporal gyrus. The related SNP component is contributed to significantly by 9 SNPs located in sets of genes, including those coding for apolipoprotein A-I, and C-III, malate dehydrogenase 1 and the gamma-aminobutyric acid alpha-2 receptor. A significant difference in the presences of this SNP component is found between the SZ group (SZ patients and their relatives) and the control group. In summary, we constructed a framework to identify the interactions between brain functional and genetic information; our findings provide new insight into understanding genetic influences on brain function in a common mental disorder.

  4. Dual-energy x-ray image decomposition by independent component analysis

    NASA Astrophysics Data System (ADS)

    Jiang, Yifeng; Jiang, Dazong; Zhang, Feng; Zhang, Dengfu; Lin, Gang

    2001-09-01

    The spatial distributions of bone and soft tissue in human body are separated by independent component analysis (ICA) of dual-energy x-ray images. It is because of the dual energy imaging modelí-s conformity to the ICA model that we can apply this method: (1) the absorption in body is mainly caused by photoelectric absorption and Compton scattering; (2) they take place simultaneously but are mutually independent; and (3) for monochromatic x-ray sources the total attenuation is achieved by linear combination of these two absorption. Compared with the conventional method, the proposed one needs no priori information about the accurate x-ray energy magnitude for imaging, while the results of the separation agree well with the conventional one.

  5. Gauge-origin independent formalism of two-component relativistic framework based on unitary transformation in nuclear magnetic shielding constant

    NASA Astrophysics Data System (ADS)

    Hayami, Masao; Seino, Junji; Nakai, Hiromi

    2018-03-01

    This article proposes a gauge-origin independent formalism of the nuclear magnetic shielding constant in the two-component relativistic framework based on the unitary transformation. The proposed scheme introduces the gauge factor and the unitary transformation into the atomic orbitals. The two-component relativistic equation is formulated by block-diagonalizing the Dirac Hamiltonian together with gauge factors. This formulation is available for arbitrary relativistic unitary transformations. Then, the infinite-order Douglas-Kroll-Hess (IODKH) transformation is applied to the present formulation. Next, the analytical derivatives of the IODKH Hamiltonian for the evaluation of the nuclear magnetic shielding constant are derived. Results obtained from the numerical assessments demonstrate that the present formulation removes the gauge-origin dependence completely. Furthermore, the formulation with the IODKH transformation gives results that are close to those in four-component and other two-component relativistic schemes.

  6. Crude oil price analysis and forecasting based on variational mode decomposition and independent component analysis

    NASA Astrophysics Data System (ADS)

    E, Jianwei; Bao, Yanling; Ye, Jimin

    2017-10-01

    As one of the most vital energy resources in the world, crude oil plays a significant role in international economic market. The fluctuation of crude oil price has attracted academic and commercial attention. There exist many methods in forecasting the trend of crude oil price. However, traditional models failed in predicting accurately. Based on this, a hybrid method will be proposed in this paper, which combines variational mode decomposition (VMD), independent component analysis (ICA) and autoregressive integrated moving average (ARIMA), called VMD-ICA-ARIMA. The purpose of this study is to analyze the influence factors of crude oil price and predict the future crude oil price. Major steps can be concluded as follows: Firstly, applying the VMD model on the original signal (crude oil price), the modes function can be decomposed adaptively. Secondly, independent components are separated by the ICA, and how the independent components affect the crude oil price is analyzed. Finally, forecasting the price of crude oil price by the ARIMA model, the forecasting trend demonstrates that crude oil price declines periodically. Comparing with benchmark ARIMA and EEMD-ICA-ARIMA, VMD-ICA-ARIMA can forecast the crude oil price more accurately.

  7. Principal and independent component analysis of concomitant functional near infrared spectroscopy and magnetic resonance imaging data

    NASA Astrophysics Data System (ADS)

    Schelkanova, Irina; Toronov, Vladislav

    2011-07-01

    Although near infrared spectroscopy (NIRS) is now widely used both in emerging clinical techniques and in cognitive neuroscience, the development of the apparatuses and signal processing methods for these applications is still a hot research topic. The main unresolved problem in functional NIRS is the separation of functional signals from the contaminations by systemic and local physiological fluctuations. This problem was approached by using various signal processing methods, including blind signal separation techniques. In particular, principal component analysis (PCA) and independent component analysis (ICA) were applied to the data acquired at the same wavelength and at multiple sites on the human or animal heads during functional activation. These signal processing procedures resulted in a number of principal or independent components that could be attributed to functional activity but their physiological meaning remained unknown. On the other hand, the best physiological specificity is provided by broadband NIRS. Also, a comparison with functional magnetic resonance imaging (fMRI) allows determining the spatial origin of fNIRS signals. In this study we applied PCA and ICA to broadband NIRS data to distill the components correlating with the breath hold activation paradigm and compared them with the simultaneously acquired fMRI signals. Breath holding was used because it generates blood carbon dioxide (CO2) which increases the blood-oxygen-level-dependent (BOLD) signal as CO2 acts as a cerebral vasodilator. Vasodilation causes increased cerebral blood flow which washes deoxyhaemoglobin out of the cerebral capillary bed thus increasing both the cerebral blood volume and oxygenation. Although the original signals were quite diverse, we found very few different components which corresponded to fMRI signals at different locations in the brain and to different physiological chromophores.

  8. Classification of fMRI resting-state maps using machine learning techniques: A comparative study

    NASA Astrophysics Data System (ADS)

    Gallos, Ioannis; Siettos, Constantinos

    2017-11-01

    We compare the efficiency of Principal Component Analysis (PCA) and nonlinear learning manifold algorithms (ISOMAP and Diffusion maps) for classifying brain maps between groups of schizophrenia patients and healthy from fMRI scans during a resting-state experiment. After a standard pre-processing pipeline, we applied spatial Independent component analysis (ICA) to reduce (a) noise and (b) spatial-temporal dimensionality of fMRI maps. On the cross-correlation matrix of the ICA components, we applied PCA, ISOMAP and Diffusion Maps to find an embedded low-dimensional space. Finally, support-vector-machines (SVM) and k-NN algorithms were used to evaluate the performance of the algorithms in classifying between the two groups.

  9. An automated method for identifying artifact in independent component analysis of resting-state FMRI.

    PubMed

    Bhaganagarapu, Kaushik; Jackson, Graeme D; Abbott, David F

    2013-01-01

    An enduring issue with data-driven analysis and filtering methods is the interpretation of results. To assist, we present an automatic method for identification of artifact in independent components (ICs) derived from functional MRI (fMRI). The method was designed with the following features: does not require temporal information about an fMRI paradigm; does not require the user to train the algorithm; requires only the fMRI images (additional acquisition of anatomical imaging not required); is able to identify a high proportion of artifact-related ICs without removing components that are likely to be of neuronal origin; can be applied to resting-state fMRI; is automated, requiring minimal or no human intervention. We applied the method to a MELODIC probabilistic ICA of resting-state functional connectivity data acquired in 50 healthy control subjects, and compared the results to a blinded expert manual classification. The method identified between 26 and 72% of the components as artifact (mean 55%). About 0.3% of components identified as artifact were discordant with the manual classification; retrospective examination of these ICs suggested the automated method had correctly identified these as artifact. We have developed an effective automated method which removes a substantial number of unwanted noisy components in ICA analyses of resting-state fMRI data. Source code of our implementation of the method is available.

  10. An Automated Method for Identifying Artifact in Independent Component Analysis of Resting-State fMRI

    PubMed Central

    Bhaganagarapu, Kaushik; Jackson, Graeme D.; Abbott, David F.

    2013-01-01

    An enduring issue with data-driven analysis and filtering methods is the interpretation of results. To assist, we present an automatic method for identification of artifact in independent components (ICs) derived from functional MRI (fMRI). The method was designed with the following features: does not require temporal information about an fMRI paradigm; does not require the user to train the algorithm; requires only the fMRI images (additional acquisition of anatomical imaging not required); is able to identify a high proportion of artifact-related ICs without removing components that are likely to be of neuronal origin; can be applied to resting-state fMRI; is automated, requiring minimal or no human intervention. We applied the method to a MELODIC probabilistic ICA of resting-state functional connectivity data acquired in 50 healthy control subjects, and compared the results to a blinded expert manual classification. The method identified between 26 and 72% of the components as artifact (mean 55%). About 0.3% of components identified as artifact were discordant with the manual classification; retrospective examination of these ICs suggested the automated method had correctly identified these as artifact. We have developed an effective automated method which removes a substantial number of unwanted noisy components in ICA analyses of resting-state fMRI data. Source code of our implementation of the method is available. PMID:23847511

  11. Developing a Complex Independent Component Analysis (CICA) Technique to Extract Non-stationary Patterns from Geophysical Time Series

    NASA Astrophysics Data System (ADS)

    Forootan, Ehsan; Kusche, Jürgen; Talpe, Matthieu; Shum, C. K.; Schmidt, Michael

    2017-12-01

    In recent decades, decomposition techniques have enabled increasingly more applications for dimension reduction, as well as extraction of additional information from geophysical time series. Traditionally, the principal component analysis (PCA)/empirical orthogonal function (EOF) method and more recently the independent component analysis (ICA) have been applied to extract, statistical orthogonal (uncorrelated), and independent modes that represent the maximum variance of time series, respectively. PCA and ICA can be classified as stationary signal decomposition techniques since they are based on decomposing the autocovariance matrix and diagonalizing higher (than two) order statistical tensors from centered time series, respectively. However, the stationarity assumption in these techniques is not justified for many geophysical and climate variables even after removing cyclic components, e.g., the commonly removed dominant seasonal cycles. In this paper, we present a novel decomposition method, the complex independent component analysis (CICA), which can be applied to extract non-stationary (changing in space and time) patterns from geophysical time series. Here, CICA is derived as an extension of real-valued ICA, where (a) we first define a new complex dataset that contains the observed time series in its real part, and their Hilbert transformed series as its imaginary part, (b) an ICA algorithm based on diagonalization of fourth-order cumulants is then applied to decompose the new complex dataset in (a), and finally, (c) the dominant independent complex modes are extracted and used to represent the dominant space and time amplitudes and associated phase propagation patterns. The performance of CICA is examined by analyzing synthetic data constructed from multiple physically meaningful modes in a simulation framework, with known truth. Next, global terrestrial water storage (TWS) data from the Gravity Recovery And Climate Experiment (GRACE) gravimetry mission (2003-2016), and satellite radiometric sea surface temperature (SST) data (1982-2016) over the Atlantic and Pacific Oceans are used with the aim of demonstrating signal separations of the North Atlantic Oscillation (NAO) from the Atlantic Multi-decadal Oscillation (AMO), and the El Niño Southern Oscillation (ENSO) from the Pacific Decadal Oscillation (PDO). CICA results indicate that ENSO-related patterns can be extracted from the Gravity Recovery And Climate Experiment Terrestrial Water Storage (GRACE TWS) with an accuracy of 0.5-1 cm in terms of equivalent water height (EWH). The magnitude of errors in extracting NAO or AMO from SST data using the complex EOF (CEOF) approach reaches up to 50% of the signal itself, while it is reduced to 16% when applying CICA. Larger errors with magnitudes of 100% and 30% of the signal itself are found while separating ENSO from PDO using CEOF and CICA, respectively. We thus conclude that the CICA is more effective than CEOF in separating non-stationary patterns.

  12. Independent component analysis applied to long bunch beams in the Los Alamos Proton Storage Ring

    NASA Astrophysics Data System (ADS)

    Kolski, Jeffrey S.; Macek, Robert J.; McCrady, Rodney C.; Pang, Xiaoying

    2012-11-01

    Independent component analysis (ICA) is a powerful blind source separation (BSS) method. Compared to the typical BSS method, principal component analysis, ICA is more robust to noise, coupling, and nonlinearity. The conventional ICA application to turn-by-turn position data from multiple beam position monitors (BPMs) yields information about cross-BPM correlations. With this scheme, multi-BPM ICA has been used to measure the transverse betatron phase and amplitude functions, dispersion function, linear coupling, sextupole strength, and nonlinear beam dynamics. We apply ICA in a new way to slices along the bunch revealing correlations of particle motion within the beam bunch. We digitize beam signals of the long bunch at the Los Alamos Proton Storage Ring with a single device (BPM or fast current monitor) for an entire injection-extraction cycle. ICA of the digitized beam signals results in source signals, which we identify to describe varying betatron motion along the bunch, locations of transverse resonances along the bunch, measurement noise, characteristic frequencies of the digitizing oscilloscopes, and longitudinal beam structure.

  13. Discriminant analysis of resting-state functional connectivity patterns on the Grassmann manifold

    NASA Astrophysics Data System (ADS)

    Fan, Yong; Liu, Yong; Jiang, Tianzi; Liu, Zhening; Hao, Yihui; Liu, Haihong

    2010-03-01

    The functional networks, extracted from fMRI images using independent component analysis, have been demonstrated informative for distinguishing brain states of cognitive functions and neurological diseases. In this paper, we propose a novel algorithm for discriminant analysis of functional networks encoded by spatial independent components. The functional networks of each individual are used as bases for a linear subspace, referred to as a functional connectivity pattern, which facilitates a comprehensive characterization of temporal signals of fMRI data. The functional connectivity patterns of different individuals are analyzed on the Grassmann manifold by adopting a principal angle based subspace distance. In conjunction with a support vector machine classifier, a forward component selection technique is proposed to select independent components for constructing the most discriminative functional connectivity pattern. The discriminant analysis method has been applied to an fMRI based schizophrenia study with 31 schizophrenia patients and 31 healthy individuals. The experimental results demonstrate that the proposed method not only achieves a promising classification performance for distinguishing schizophrenia patients from healthy controls, but also identifies discriminative functional networks that are informative for schizophrenia diagnosis.

  14. Classification of high-resolution multispectral satellite remote sensing images using extended morphological attribute profiles and independent component analysis

    NASA Astrophysics Data System (ADS)

    Wu, Yu; Zheng, Lijuan; Xie, Donghai; Zhong, Ruofei

    2017-07-01

    In this study, the extended morphological attribute profiles (EAPs) and independent component analysis (ICA) were combined for feature extraction of high-resolution multispectral satellite remote sensing images and the regularized least squares (RLS) approach with the radial basis function (RBF) kernel was further applied for the classification. Based on the major two independent components, the geometrical features were extracted using the EAPs method. In this study, three morphological attributes were calculated and extracted for each independent component, including area, standard deviation, and moment of inertia. The extracted geometrical features classified results using RLS approach and the commonly used LIB-SVM library of support vector machines method. The Worldview-3 and Chinese GF-2 multispectral images were tested, and the results showed that the features extracted by EAPs and ICA can effectively improve the accuracy of the high-resolution multispectral image classification, 2% larger than EAPs and principal component analysis (PCA) method, and 6% larger than APs and original high-resolution multispectral data. Moreover, it is also suggested that both the GURLS and LIB-SVM libraries are well suited for the multispectral remote sensing image classification. The GURLS library is easy to be used with automatic parameter selection but its computation time may be larger than the LIB-SVM library. This study would be helpful for the classification application of high-resolution multispectral satellite remote sensing images.

  15. Electromagnetic tweezers with independent force and torque control

    NASA Astrophysics Data System (ADS)

    Jiang, Chang; Lionberger, Troy A.; Wiener, Diane M.; Meyhofer, Edgar

    2016-08-01

    Magnetic tweezers are powerful tools to manipulate and study the mechanical properties of biological molecules and living cells. In this paper we present a novel, bona fide electromagnetic tweezer (EMT) setup that allows independent control of the force and torque applied via micrometer-sized magnetic beads to a molecule under study. We implemented this EMT by combining a single solenoid that generates force (f-EMT) with a set of four solenoids arranged into a symmetric quadrupole to generate torque (τ-EMT). To demonstrate the capability of the tweezers, we attached optically asymmetric Janus beads to single, tethered DNA molecules. We show that tension in the piconewton force range can be applied to single DNA molecules and the molecule can simultaneously be twisted with torques in the piconewton-nanometer range. Furthermore, the EMT allows the two components to be independently controlled. At various force levels applied to the Janus bead, the trap torsional stiffness can be continuously changed simply by varying the current magnitude applied to the τ-EMT. The flexible and independent control of force and torque by the EMT makes it an ideal tool for a range of measurements where tensional and torsional properties need to be studied simultaneously on a molecular or cellular level.

  16. Developing a complex independent component analysis technique to extract non-stationary patterns from geophysical time-series

    NASA Astrophysics Data System (ADS)

    Forootan, Ehsan; Kusche, Jürgen

    2016-04-01

    Geodetic/geophysical observations, such as the time series of global terrestrial water storage change or sea level and temperature change, represent samples of physical processes and therefore contain information about complex physical interactionswith many inherent time scales. Extracting relevant information from these samples, for example quantifying the seasonality of a physical process or its variability due to large-scale ocean-atmosphere interactions, is not possible by rendering simple time series approaches. In the last decades, decomposition techniques have found increasing interest for extracting patterns from geophysical observations. Traditionally, principal component analysis (PCA) and more recently independent component analysis (ICA) are common techniques to extract statistical orthogonal (uncorrelated) and independent modes that represent the maximum variance of observations, respectively. PCA and ICA can be classified as stationary signal decomposition techniques since they are based on decomposing the auto-covariance matrix or diagonalizing higher (than two)-order statistical tensors from centered time series. However, the stationary assumption is obviously not justifiable for many geophysical and climate variables even after removing cyclic components e.g., the seasonal cycles. In this paper, we present a new decomposition method, the complex independent component analysis (CICA, Forootan, PhD-2014), which can be applied to extract to non-stationary (changing in space and time) patterns from geophysical time series. Here, CICA is derived as an extension of real-valued ICA (Forootan and Kusche, JoG-2012), where we (i) define a new complex data set using a Hilbert transformation. The complex time series contain the observed values in their real part, and the temporal rate of variability in their imaginary part. (ii) An ICA algorithm based on diagonalization of fourth-order cumulants is then applied to decompose the new complex data set in (i). (iii) Dominant non-stationary patterns are recognized as independent complex patterns that can be used to represent the space and time amplitude and phase propagations. We present the results of CICA on simulated and real cases e.g., for quantifying the impact of large-scale ocean-atmosphere interaction on global mass changes. Forootan (PhD-2014) Statistical signal decomposition techniques for analyzing time-variable satellite gravimetry data, PhD Thesis, University of Bonn, http://hss.ulb.uni-bonn.de/2014/3766/3766.htm Forootan and Kusche (JoG-2012) Separation of global time-variable gravity signals into maximally independent components, Journal of Geodesy 86 (7), 477-497, doi: 10.1007/s00190-011-0532-5

  17. Real-space analysis of radiation-induced specific changes with independent component analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borek, Dominika; Bromberg, Raquel; Hattne, Johan

    A method of analysis is presented that allows for the separation of specific radiation-induced changes into distinct components in real space. The method relies on independent component analysis (ICA) and can be effectively applied to electron density maps and other types of maps, provided that they can be represented as sets of numbers on a grid. Here, for glucose isomerase crystals, ICA was used in a proof-of-concept analysis to separate temperature-dependent and temperature-independent components of specific radiation-induced changes for data sets acquired from multiple crystals across multiple temperatures. ICA identified two components, with the temperature-independent component being responsible for themore » majority of specific radiation-induced changes at temperatures below 130 K. The patterns of specific temperature-independent radiation-induced changes suggest a contribution from the tunnelling of electron holes as a possible explanation. In the second case, where a group of 22 data sets was collected on a single thaumatin crystal, ICA was used in another type of analysis to separate specific radiation-induced effects happening on different exposure-level scales. Here, ICA identified two components of specific radiation-induced changes that likely result from radiation-induced chemical reactions progressing with different rates at different locations in the structure. In addition, ICA unexpectedly identified the radiation-damage state corresponding to reduced disulfide bridges rather than the zero-dose extrapolated state as the highest contrast structure. The application of ICA to the analysis of specific radiation-induced changes in real space and the data pre-processing for ICA that relies on singular value decomposition, which was used previously in data space to validate a two-component physical model of X-ray radiation-induced changes, are discussed in detail. This work lays a foundation for a better understanding of protein-specific radiation chemistries and provides a framework for analysing effects of specific radiation damage in crystallographic and cryo-EM experiments.« less

  18. Structural covariance networks across healthy young adults and their consistency.

    PubMed

    Guo, Xiaojuan; Wang, Yan; Guo, Taomei; Chen, Kewei; Zhang, Jiacai; Li, Ke; Jin, Zhen; Yao, Li

    2015-08-01

    To investigate structural covariance networks (SCNs) as measured by regional gray matter volumes with structural magnetic resonance imaging (MRI) from healthy young adults, and to examine their consistency and stability. Two independent cohorts were included in this study: Group 1 (82 healthy subjects aged 18-28 years) and Group 2 (109 healthy subjects aged 20-28 years). Structural MRI data were acquired at 3.0T and 1.5T using a magnetization prepared rapid-acquisition gradient echo sequence for these two groups, respectively. We applied independent component analysis (ICA) to construct SCNs and further applied the spatial overlap ratio and correlation coefficient to evaluate the spatial consistency of the SCNs between these two datasets. Seven and six independent components were identified for Group 1 and Group 2, respectively. Moreover, six SCNs including the posterior default mode network, the visual and auditory networks consistently existed across the two datasets. The overlap ratios and correlation coefficients of the visual network reached the maximums of 72% and 0.71. This study demonstrates the existence of consistent SCNs corresponding to general functional networks. These structural covariance findings may provide insight into the underlying organizational principles of brain anatomy. © 2014 Wiley Periodicals, Inc.

  19. Appliance of Independent Component Analysis to System Intrusion Analysis

    NASA Astrophysics Data System (ADS)

    Ishii, Yoshikazu; Takagi, Tarou; Nakai, Kouji

    In order to analyze the output of the intrusion detection system and the firewall, we evaluated the applicability of ICA(independent component analysis). We developed a simulator for evaluation of intrusion analysis method. The simulator consists of the network model of an information system, the service model and the vulnerability model of each server, and the action model performed on client and intruder. We applied the ICA for analyzing the audit trail of simulated information system. We report the evaluation result of the ICA on intrusion analysis. In the simulated case, ICA separated two attacks correctly, and related an attack and the abnormalities of the normal application produced under the influence of the attach.

  20. Interactions Dominate the Dynamics of Visual Cognition

    ERIC Educational Resources Information Center

    Stephen, Damian G.; Mirman, Daniel

    2010-01-01

    Many cognitive theories have described behavior as the summation of independent contributions from separate components. Contrasting views have emphasized the importance of multiplicative interactions and emergent structure. We describe a statistical approach to distinguishing additive and multiplicative processes and apply it to the dynamics of…

  1. A Feature Fusion Based Forecasting Model for Financial Time Series

    PubMed Central

    Guo, Zhiqiang; Wang, Huaiqing; Liu, Quan; Yang, Jie

    2014-01-01

    Predicting the stock market has become an increasingly interesting research area for both researchers and investors, and many prediction models have been proposed. In these models, feature selection techniques are used to pre-process the raw data and remove noise. In this paper, a prediction model is constructed to forecast stock market behavior with the aid of independent component analysis, canonical correlation analysis, and a support vector machine. First, two types of features are extracted from the historical closing prices and 39 technical variables obtained by independent component analysis. Second, a canonical correlation analysis method is utilized to combine the two types of features and extract intrinsic features to improve the performance of the prediction model. Finally, a support vector machine is applied to forecast the next day's closing price. The proposed model is applied to the Shanghai stock market index and the Dow Jones index, and experimental results show that the proposed model performs better in the area of prediction than other two similar models. PMID:24971455

  2. A hybrid sales forecasting scheme by combining independent component analysis with K-means clustering and support vector regression.

    PubMed

    Lu, Chi-Jie; Chang, Chi-Chang

    2014-01-01

    Sales forecasting plays an important role in operating a business since it can be used to determine the required inventory level to meet consumer demand and avoid the problem of under/overstocking. Improving the accuracy of sales forecasting has become an important issue of operating a business. This study proposes a hybrid sales forecasting scheme by combining independent component analysis (ICA) with K-means clustering and support vector regression (SVR). The proposed scheme first uses the ICA to extract hidden information from the observed sales data. The extracted features are then applied to K-means algorithm for clustering the sales data into several disjoined clusters. Finally, the SVR forecasting models are applied to each group to generate final forecasting results. Experimental results from information technology (IT) product agent sales data reveal that the proposed sales forecasting scheme outperforms the three comparison models and hence provides an efficient alternative for sales forecasting.

  3. A Hybrid Sales Forecasting Scheme by Combining Independent Component Analysis with K-Means Clustering and Support Vector Regression

    PubMed Central

    2014-01-01

    Sales forecasting plays an important role in operating a business since it can be used to determine the required inventory level to meet consumer demand and avoid the problem of under/overstocking. Improving the accuracy of sales forecasting has become an important issue of operating a business. This study proposes a hybrid sales forecasting scheme by combining independent component analysis (ICA) with K-means clustering and support vector regression (SVR). The proposed scheme first uses the ICA to extract hidden information from the observed sales data. The extracted features are then applied to K-means algorithm for clustering the sales data into several disjoined clusters. Finally, the SVR forecasting models are applied to each group to generate final forecasting results. Experimental results from information technology (IT) product agent sales data reveal that the proposed sales forecasting scheme outperforms the three comparison models and hence provides an efficient alternative for sales forecasting. PMID:25045738

  4. Cumulative Effective Hölder Exponent Based Indicator for Real-Time Fetal Heartbeat Analysis during Labour

    NASA Astrophysics Data System (ADS)

    Struzik, Zbigniew R.; van Wijngaarden, Willem J.

    We introduce a special purpose cumulative indicator, capturing in real time the cumulative deviation from the reference level of the exponent h (local roughness, Hölder exponent) of the fetal heartbeat during labour. We verify that the indicator applied to the variability component of the heartbeat coincides with the fetal outcome as determined by blood samples. The variability component is obtained from running real time decomposition of fetal heartbeat into independent components using an adaptation of an oversampled Haar wavelet transform. The particular filters used and resolutions applied are motivated by obstetricial insight/practice. The methodology described has the potential for real-time monitoring of the fetus during labour and for the prediction of the fetal outcome, allerting the attending staff in the case of (threatening) hypoxia.

  5. Analysis of independent components of cognitive event related potentials in a group of ADHD adults.

    PubMed

    Markovska-Simoska, Silvana; Pop-Jordanova, Nada; Pop-Jordanov, Jordan

    In the last decade, many studies have tried to define the neural correlates of attention deficit hyperactivity disorder (ADHD). The main aim of this study is the comparison of the ERPs independent components in the four QEEG subtypes in a group of ADHD adults as a basis for defining the corresponding endophenotypes among ADHD population. Sixty-seven adults diagnosed as ADHD according to the DSM-IV criteria and 50 age-matched control subjects participated in the study. The brain activity of the subjects was recorded by 19 channel quantitative electroencephalography (QEEG) system in two neuropsychological tasks (visual and emotional continuous performance tests). The ICA method was applied for separation of the independent ERPs components. The components were associated with distinct psychological operations, such as engagement operations (P3bP component), comparison (vcomTL and vcom TR), motor inhibition (P3supF) and monitoring (P4monCC) operations. The ERPs results point out that there is disturbance in executive functioning in investigated ADHD group obtained by the significantly lower amplitude and longer latency for the engagement (P3bP), motor inhibition (P3supF) and monitoring (P4monCC) components. Particularly, the QEEG subtype IV was with the most significant ERPs differences comparing to the other subtypes. In particular, the most prominent difference in the ERPs independent components for the QEEG subtype IV in comparison to other three subtypes, rise many questions and becomes the subject for future research. This study aims to advance and facilitate the use of neurophysiological procedures (QEEG and ERPs) in clinical practice as objective measures of ADHD for better assessment, subtyping and treatment of ADHD.

  6. Histogram contrast analysis and the visual segregation of IID textures.

    PubMed

    Chubb, C; Econopouly, J; Landy, M S

    1994-09-01

    A new psychophysical methodology is introduced, histogram contrast analysis, that allows one to measure stimulus transformations, f, used by the visual system to draw distinctions between different image regions. The method involves the discrimination of images constructed by selecting texture micropatterns randomly and independently (across locations) on the basis of a given micropattern histogram. Different components of f are measured by use of different component functions to modulate the micropattern histogram until the resulting textures are discriminable. When no discrimination threshold can be obtained for a given modulating component function, a second titration technique may be used to measure the contribution of that component to f. The method includes several strong tests of its own assumptions. An example is given of the method applied to visual textures composed of small, uniform squares with randomly chosen gray levels. In particular, for a fixed mean gray level mu and a fixed gray-level variance sigma 2, histogram contrast analysis is used to establish that the class S of all textures composed of small squares with jointly independent, identically distributed gray levels with mean mu and variance sigma 2 is perceptually elementary in the following sense: there exists a single, real-valued function f S of gray level, such that two textures I and J in S are discriminable only if the average value of f S applied to the gray levels in I is significantly different from the average value of f S applied to the gray levels in J. Finally, histogram contrast analysis is used to obtain a seventh-order polynomial approximation of f S.

  7. Lattice modeling and application of independent component analysis to high power, long bunch beams in the Los Alamos Proton Storage Ring

    NASA Astrophysics Data System (ADS)

    Kolski, Jeffrey

    The linear lattice properties of the Proton Storage Ring (PSR) at the Los Alamos Neutron Science Center (LANSCE) in Los Alamos, NM were measured and applied to determine a better linear accelerator model. We found that the initial model was deficient in predicting the vertical focusing strength. The additional vertical focusing was located through fundamental understanding of experiment and statistically rigorous analysis. An improved model was constructed and compared against the initial model and measurement at operation set points and set points far away from nominal and was shown to indeed be an enhanced model. Independent component analysis (ICA) is a tool for data mining in many fields of science. Traditionally, ICA is applied to turn-by-turn beam position data as a means to measure the lattice functions of the real machine. Due to the diagnostic setup for the PSR, this method is not applicable. A new application method for ICA is derived, ICA applied along the length of the bunch. The ICA modes represent motions within the beam pulse. Several of the dominate ICA modes are experimentally identified.

  8. Applying different independent component analysis algorithms and support vector regression for IT chain store sales forecasting.

    PubMed

    Dai, Wensheng; Wu, Jui-Yu; Lu, Chi-Jie

    2014-01-01

    Sales forecasting is one of the most important issues in managing information technology (IT) chain store sales since an IT chain store has many branches. Integrating feature extraction method and prediction tool, such as support vector regression (SVR), is a useful method for constructing an effective sales forecasting scheme. Independent component analysis (ICA) is a novel feature extraction technique and has been widely applied to deal with various forecasting problems. But, up to now, only the basic ICA method (i.e., temporal ICA model) was applied to sale forecasting problem. In this paper, we utilize three different ICA methods including spatial ICA (sICA), temporal ICA (tICA), and spatiotemporal ICA (stICA) to extract features from the sales data and compare their performance in sales forecasting of IT chain store. Experimental results from a real sales data show that the sales forecasting scheme by integrating stICA and SVR outperforms the comparison models in terms of forecasting error. The stICA is a promising tool for extracting effective features from branch sales data and the extracted features can improve the prediction performance of SVR for sales forecasting.

  9. Applying Different Independent Component Analysis Algorithms and Support Vector Regression for IT Chain Store Sales Forecasting

    PubMed Central

    Dai, Wensheng

    2014-01-01

    Sales forecasting is one of the most important issues in managing information technology (IT) chain store sales since an IT chain store has many branches. Integrating feature extraction method and prediction tool, such as support vector regression (SVR), is a useful method for constructing an effective sales forecasting scheme. Independent component analysis (ICA) is a novel feature extraction technique and has been widely applied to deal with various forecasting problems. But, up to now, only the basic ICA method (i.e., temporal ICA model) was applied to sale forecasting problem. In this paper, we utilize three different ICA methods including spatial ICA (sICA), temporal ICA (tICA), and spatiotemporal ICA (stICA) to extract features from the sales data and compare their performance in sales forecasting of IT chain store. Experimental results from a real sales data show that the sales forecasting scheme by integrating stICA and SVR outperforms the comparison models in terms of forecasting error. The stICA is a promising tool for extracting effective features from branch sales data and the extracted features can improve the prediction performance of SVR for sales forecasting. PMID:25165740

  10. Identifying reliable independent components via split-half comparisons

    PubMed Central

    Groppe, David M.; Makeig, Scott; Kutas, Marta

    2011-01-01

    Independent component analysis (ICA) is a family of unsupervised learning algorithms that have proven useful for the analysis of the electroencephalogram (EEG) and magnetoencephalogram (MEG). ICA decomposes an EEG/MEG data set into a basis of maximally temporally independent components (ICs) that are learned from the data. As with any statistic, a concern with using ICA is the degree to which the estimated ICs are reliable. An IC may not be reliable if ICA was trained on insufficient data, if ICA training was stopped prematurely or at a local minimum (for some algorithms), or if multiple global minima were present. Consequently, evidence of ICA reliability is critical for the credibility of ICA results. In this paper, we present a new algorithm for assessing the reliability of ICs based on applying ICA separately to split-halves of a data set. This algorithm improves upon existing methods in that it considers both IC scalp topographies and activations, uses a probabilistically interpretable threshold for accepting ICs as reliable, and requires applying ICA only three times per data set. As evidence of the method’s validity, we show that the method can perform comparably to more time intensive bootstrap resampling and depends in a reasonable manner on the amount of training data. Finally, using the method we illustrate the importance of checking the reliability of ICs by demonstrating that IC reliability is dramatically increased by removing the mean EEG at each channel for each epoch of data rather than the mean EEG in a prestimulus baseline. PMID:19162199

  11. Comparison of common components analysis with principal components analysis and independent components analysis: Application to SPME-GC-MS volatolomic signatures.

    PubMed

    Bouhlel, Jihéne; Jouan-Rimbaud Bouveresse, Delphine; Abouelkaram, Said; Baéza, Elisabeth; Jondreville, Catherine; Travel, Angélique; Ratel, Jérémy; Engel, Erwan; Rutledge, Douglas N

    2018-02-01

    The aim of this work is to compare a novel exploratory chemometrics method, Common Components Analysis (CCA), with Principal Components Analysis (PCA) and Independent Components Analysis (ICA). CCA consists in adapting the multi-block statistical method known as Common Components and Specific Weights Analysis (CCSWA or ComDim) by applying it to a single data matrix, with one variable per block. As an application, the three methods were applied to SPME-GC-MS volatolomic signatures of livers in an attempt to reveal volatile organic compounds (VOCs) markers of chicken exposure to different types of micropollutants. An application of CCA to the initial SPME-GC-MS data revealed a drift in the sample Scores along CC2, as a function of injection order, probably resulting from time-related evolution in the instrument. This drift was eliminated by orthogonalization of the data set with respect to CC2, and the resulting data are used as the orthogonalized data input into each of the three methods. Since the first step in CCA is to norm-scale all the variables, preliminary data scaling has no effect on the results, so that CCA was applied only to orthogonalized SPME-GC-MS data, while, PCA and ICA were applied to the "orthogonalized", "orthogonalized and Pareto-scaled", and "orthogonalized and autoscaled" data. The comparison showed that PCA results were highly dependent on the scaling of variables, contrary to ICA where the data scaling did not have a strong influence. Nevertheless, for both PCA and ICA the clearest separations of exposed groups were obtained after autoscaling of variables. The main part of this work was to compare the CCA results using the orthogonalized data with those obtained with PCA and ICA applied to orthogonalized and autoscaled variables. The clearest separations of exposed chicken groups were obtained by CCA. CCA Loadings also clearly identified the variables contributing most to the Common Components giving separations. The PCA Loadings did not highlight the most influencing variables for each separation, whereas the ICA Loadings highlighted the same variables as did CCA. This study shows the potential of CCA for the extraction of pertinent information from a data matrix, using a procedure based on an original optimisation criterion, to produce results that are complementary, and in some cases may be superior, to those of PCA and ICA. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Applicability of the "Emotiv EEG Neuroheadset" as a user-friendly input interface.

    PubMed

    Boutani, Hidenori; Ohsuga, Mieko

    2013-01-01

    We aimed to develop an input interface by using the P3 component of visual event-related potentials (ERPs). When using electroencephalography (EEG) in daily applications, coping with ocular-motor artifacts and ensuring that the equipment is user-friendly are both important. To address the first issue, we applied a previously proposed method that applies an unmixing matrix to acquire independent components (ICs) obtained from another dataset. For the second issue, we introduced a 14-channel EEG commercial headset called the "Emotiv EEG Neuroheadset". An advantage of the Emotiv headset is that users can put it on by themselves within 1 min without any specific skills. However, only a few studies have investigated whether EEG and ERP signals are accurately measured by Emotiv. Additionally, no electrodes of the Emotiv headset are located over the centroparietal area of the head where P3 components are reported to show large amplitudes. Therefore, we first demonstrated that the P3 components obtained by the headset and by commercial plate electrodes and a multipurpose bioelectric amplifier during an oddball task were comparable. Next, we confirmed that eye-blink and ocular movement components could be decomposed by independent component analysis (ICA) using the 14-channel signals measured by the headset. We also demonstrated that artifacts could be removed with an unmixing matrix, as long as the matrix was obtained from the same person, even if they were measured on different days. Finally, we confirmed that the fluctuation of the sampling frequency of the Emotiv headset was not a major problem.

  13. Comparing Independent Component Analysis with Principle Component Analysis in Detecting Alterations of Porphyry Copper Deposit (case Study: Ardestan Area, Central Iran)

    NASA Astrophysics Data System (ADS)

    Mahmoudishadi, S.; Malian, A.; Hosseinali, F.

    2017-09-01

    The image processing techniques in transform domain are employed as analysis tools for enhancing the detection of mineral deposits. The process of decomposing the image into important components increases the probability of mineral extraction. In this study, the performance of Principal Component Analysis (PCA) and Independent Component Analysis (ICA) has been evaluated for the visible and near-infrared (VNIR) and Shortwave infrared (SWIR) subsystems of ASTER data. Ardestan is located in part of Central Iranian Volcanic Belt that hosts many well-known porphyry copper deposits. This research investigated the propylitic and argillic alteration zones and outer mineralogy zone in part of Ardestan region. The two mentioned approaches were applied to discriminate alteration zones from igneous bedrock using the major absorption of indicator minerals from alteration and mineralogy zones in spectral rang of ASTER bands. Specialized PC components (PC2, PC3 and PC6) were used to identify pyrite and argillic and propylitic zones that distinguish from igneous bedrock in RGB color composite image. Due to the eigenvalues, the components 2, 3 and 6 account for 4.26% ,0.9% and 0.09% of the total variance of the data for Ardestan scene, respectively. For the purpose of discriminating the alteration and mineralogy zones of porphyry copper deposit from bedrocks, those mentioned percentages of data in ICA independent components of IC2, IC3 and IC6 are more accurately separated than noisy bands of PCA. The results of ICA method conform to location of lithological units of Ardestan region, as well.

  14. Geographical and Temporal Body Size Variation in a Reptile: Roles of Sex, Ecology, Phylogeny and Ecology Structured in Phylogeny

    PubMed Central

    Aragón, Pedro; Fitze, Patrick S.

    2014-01-01

    Geographical body size variation has long interested evolutionary biologists, and a range of mechanisms have been proposed to explain the observed patterns. It is considered to be more puzzling in ectotherms than in endotherms, and integrative approaches are necessary for testing non-exclusive alternative mechanisms. Using lacertid lizards as a model, we adopted an integrative approach, testing different hypotheses for both sexes while incorporating temporal, spatial, and phylogenetic autocorrelation at the individual level. We used data on the Spanish Sand Racer species group from a field survey to disentangle different sources of body size variation through environmental and individual genetic data, while accounting for temporal and spatial autocorrelation. A variation partitioning method was applied to separate independent and shared components of ecology and phylogeny, and estimated their significance. Then, we fed-back our models by controlling for relevant independent components. The pattern was consistent with the geographical Bergmann's cline and the experimental temperature-size rule: adults were larger at lower temperatures (and/or higher elevations). This result was confirmed with additional multi-year independent data-set derived from the literature. Variation partitioning showed no sex differences in phylogenetic inertia but showed sex differences in the independent component of ecology; primarily due to growth differences. Interestingly, only after controlling for independent components did primary productivity also emerge as an important predictor explaining size variation in both sexes. This study highlights the importance of integrating individual-based genetic information, relevant ecological parameters, and temporal and spatial autocorrelation in sex-specific models to detect potentially important hidden effects. Our individual-based approach devoted to extract and control for independent components was useful to reveal hidden effects linked with alternative non-exclusive hypothesis, such as those of primary productivity. Also, including measurement date allowed disentangling and controlling for short-term temporal autocorrelation reflecting sex-specific growth plasticity. PMID:25090025

  15. Independent tasks scheduling in cloud computing via improved estimation of distribution algorithm

    NASA Astrophysics Data System (ADS)

    Sun, Haisheng; Xu, Rui; Chen, Huaping

    2018-04-01

    To minimize makespan for scheduling independent tasks in cloud computing, an improved estimation of distribution algorithm (IEDA) is proposed to tackle the investigated problem in this paper. Considering that the problem is concerned with multi-dimensional discrete problems, an improved population-based incremental learning (PBIL) algorithm is applied, which the parameter for each component is independent with other components in PBIL. In order to improve the performance of PBIL, on the one hand, the integer encoding scheme is used and the method of probability calculation of PBIL is improved by using the task average processing time; on the other hand, an effective adaptive learning rate function that related to the number of iterations is constructed to trade off the exploration and exploitation of IEDA. In addition, both enhanced Max-Min and Min-Min algorithms are properly introduced to form two initial individuals. In the proposed IEDA, an improved genetic algorithm (IGA) is applied to generate partial initial population by evolving two initial individuals and the rest of initial individuals are generated at random. Finally, the sampling process is divided into two parts including sampling by probabilistic model and IGA respectively. The experiment results show that the proposed IEDA not only gets better solution, but also has faster convergence speed.

  16. Application of Independent Component Analysis for the Data Mining of Simultaneous EEG-fMRI: Preliminary Experience on Sleep Onset

    PubMed Central

    Lee, Jong-Hwan; Oh, Sungsuk; Jolesz, Ferenc A.; Park, Hyunwook; Yoo, Seung-Schik

    2010-01-01

    The simultaneous acquisition of electroencephalogram (EEG) and functional MRI (fMRI) signals is potentially advantageous because of the superior resolution that is achieved in both the temporal and spatial domains, respectively. However, ballistocardiographic artifacts along with the ocular artifacts are a major obstacle for the detection of the EEG signatures of interest. Since the sources corresponding to these artifacts are independent from those producing the EEG signatures, we applied the Infomax-based independent component analysis (ICA) technique to separate the EEG signatures from the artifacts. The isolated EEG signatures were further utilized to model the canonical hemodynamic response functions (HRFs). Subsequently, the brain areas from which these EEG signatures originated were identified as locales of activation patterns from the analysis of fMRI data. Upon the identification and subsequent evaluation of brain areas generating interictal epileptic discharge (IED) spikes from an epileptic subject, the presented method was successfully applied to detect the theta- and alpha-rhythms that are sleep onset related EEG signatures along with the subsequent neural circuitries from a sleep deprived volunteer. These results suggest that the ICA technique may be useful for the preprocessing of simultaneous EEG-fMRI acquisitions, especially when a reference paradigm is unavailable. PMID:19922343

  17. Application of independent component analysis for the data mining of simultaneous Eeg-fMRI: preliminary experience on sleep onset.

    PubMed

    Lee, Jong-Hwan; Oh, Sungsuk; Jolesz, Ferenc A; Park, Hyunwook; Yoo, Seung-Schik

    2009-01-01

    The simultaneous acquisition of electroencephalogram (EEG) and functional MRI (fMRI) signals is potentially advantageous because of the superior resolution that is achieved in both the temporal and spatial domains, respectively. However, ballistocardiographic artifacts along with ocular artifacts are a major obstacle for the detection of the EEG signatures of interest. Since the sources corresponding to these artifacts are independent from those producing the EEG signatures, we applied the Infomax-based independent component analysis (ICA) technique to separate the EEG signatures from the artifacts. The isolated EEG signatures were further utilized to model the canonical hemodynamic response functions (HRFs). Subsequently, the brain areas from which these EEG signatures originated were identified as locales of activation patterns from the analysis of fMRI data. Upon the identification and subsequent evaluation of brain areas generating interictal epileptic discharge (IED) spikes from an epileptic subject, the presented method was successfully applied to detect the theta and alpha rhythms that are sleep onset-related EEG signatures along with the subsequent neural circuitries from a sleep-deprived volunteer. These results suggest that the ICA technique may be useful for the preprocessing of simultaneous EEG-fMRI acquisitions, especially when a reference paradigm is unavailable.

  18. Enhancement of multispectral thermal infrared images - Decorrelation contrast stretching

    NASA Technical Reports Server (NTRS)

    Gillespie, Alan R.

    1992-01-01

    Decorrelation contrast stretching is an effective method for displaying information from multispectral thermal infrared (TIR) images. The technique involves transformation of the data to principle components ('decorrelation'), independent contrast 'stretching' of data from the new 'decorrelated' image bands, and retransformation of the stretched data back to the approximate original axes, based on the inverse of the principle component rotation. The enhancement is robust in that colors of the same scene components are similar in enhanced images of similar scenes, or the same scene imaged at different times. Decorrelation contrast stretching is reviewed in the context of other enhancements applied to TIR images.

  19. Spatio-Chromatic Adaptation via Higher-Order Canonical Correlation Analysis of Natural Images

    PubMed Central

    Gutmann, Michael U.; Laparra, Valero; Hyvärinen, Aapo; Malo, Jesús

    2014-01-01

    Independent component and canonical correlation analysis are two general-purpose statistical methods with wide applicability. In neuroscience, independent component analysis of chromatic natural images explains the spatio-chromatic structure of primary cortical receptive fields in terms of properties of the visual environment. Canonical correlation analysis explains similarly chromatic adaptation to different illuminations. But, as we show in this paper, neither of the two methods generalizes well to explain both spatio-chromatic processing and adaptation at the same time. We propose a statistical method which combines the desirable properties of independent component and canonical correlation analysis: It finds independent components in each data set which, across the two data sets, are related to each other via linear or higher-order correlations. The new method is as widely applicable as canonical correlation analysis, and also to more than two data sets. We call it higher-order canonical correlation analysis. When applied to chromatic natural images, we found that it provides a single (unified) statistical framework which accounts for both spatio-chromatic processing and adaptation. Filters with spatio-chromatic tuning properties as in the primary visual cortex emerged and corresponding-colors psychophysics was reproduced reasonably well. We used the new method to make a theory-driven testable prediction on how the neural response to colored patterns should change when the illumination changes. We predict shifts in the responses which are comparable to the shifts reported for chromatic contrast habituation. PMID:24533049

  20. Spatio-chromatic adaptation via higher-order canonical correlation analysis of natural images.

    PubMed

    Gutmann, Michael U; Laparra, Valero; Hyvärinen, Aapo; Malo, Jesús

    2014-01-01

    Independent component and canonical correlation analysis are two general-purpose statistical methods with wide applicability. In neuroscience, independent component analysis of chromatic natural images explains the spatio-chromatic structure of primary cortical receptive fields in terms of properties of the visual environment. Canonical correlation analysis explains similarly chromatic adaptation to different illuminations. But, as we show in this paper, neither of the two methods generalizes well to explain both spatio-chromatic processing and adaptation at the same time. We propose a statistical method which combines the desirable properties of independent component and canonical correlation analysis: It finds independent components in each data set which, across the two data sets, are related to each other via linear or higher-order correlations. The new method is as widely applicable as canonical correlation analysis, and also to more than two data sets. We call it higher-order canonical correlation analysis. When applied to chromatic natural images, we found that it provides a single (unified) statistical framework which accounts for both spatio-chromatic processing and adaptation. Filters with spatio-chromatic tuning properties as in the primary visual cortex emerged and corresponding-colors psychophysics was reproduced reasonably well. We used the new method to make a theory-driven testable prediction on how the neural response to colored patterns should change when the illumination changes. We predict shifts in the responses which are comparable to the shifts reported for chromatic contrast habituation.

  1. Independent Component Analysis-motivated Approach to Classificatory Decomposition of Cortical Evoked Potentials

    PubMed Central

    Smolinski, Tomasz G; Buchanan, Roger; Boratyn, Grzegorz M; Milanova, Mariofanna; Prinz, Astrid A

    2006-01-01

    Background Independent Component Analysis (ICA) proves to be useful in the analysis of neural activity, as it allows for identification of distinct sources of activity. Applied to measurements registered in a controlled setting and under exposure to an external stimulus, it can facilitate analysis of the impact of the stimulus on those sources. The link between the stimulus and a given source can be verified by a classifier that is able to "predict" the condition a given signal was registered under, solely based on the components. However, the ICA's assumption about statistical independence of sources is often unrealistic and turns out to be insufficient to build an accurate classifier. Therefore, we propose to utilize a novel method, based on hybridization of ICA, multi-objective evolutionary algorithms (MOEA), and rough sets (RS), that attempts to improve the effectiveness of signal decomposition techniques by providing them with "classification-awareness." Results The preliminary results described here are very promising and further investigation of other MOEAs and/or RS-based classification accuracy measures should be pursued. Even a quick visual analysis of those results can provide an interesting insight into the problem of neural activity analysis. Conclusion We present a methodology of classificatory decomposition of signals. One of the main advantages of our approach is the fact that rather than solely relying on often unrealistic assumptions about statistical independence of sources, components are generated in the light of a underlying classification problem itself. PMID:17118151

  2. Automated EEG artifact elimination by applying machine learning algorithms to ICA-based features.

    PubMed

    Radüntz, Thea; Scouten, Jon; Hochmuth, Olaf; Meffert, Beate

    2017-08-01

    Biological and non-biological artifacts cause severe problems when dealing with electroencephalogram (EEG) recordings. Independent component analysis (ICA) is a widely used method for eliminating various artifacts from recordings. However, evaluating and classifying the calculated independent components (IC) as artifact or EEG is not fully automated at present. In this study, we propose a new approach for automated artifact elimination, which applies machine learning algorithms to ICA-based features. We compared the performance of our classifiers with the visual classification results given by experts. The best result with an accuracy rate of 95% was achieved using features obtained by range filtering of the topoplots and IC power spectra combined with an artificial neural network. Compared with the existing automated solutions, our proposed method is not limited to specific types of artifacts, electrode configurations, or number of EEG channels. The main advantages of the proposed method is that it provides an automatic, reliable, real-time capable, and practical tool, which avoids the need for the time-consuming manual selection of ICs during artifact removal.

  3. Automated EEG artifact elimination by applying machine learning algorithms to ICA-based features

    NASA Astrophysics Data System (ADS)

    Radüntz, Thea; Scouten, Jon; Hochmuth, Olaf; Meffert, Beate

    2017-08-01

    Objective. Biological and non-biological artifacts cause severe problems when dealing with electroencephalogram (EEG) recordings. Independent component analysis (ICA) is a widely used method for eliminating various artifacts from recordings. However, evaluating and classifying the calculated independent components (IC) as artifact or EEG is not fully automated at present. Approach. In this study, we propose a new approach for automated artifact elimination, which applies machine learning algorithms to ICA-based features. Main results. We compared the performance of our classifiers with the visual classification results given by experts. The best result with an accuracy rate of 95% was achieved using features obtained by range filtering of the topoplots and IC power spectra combined with an artificial neural network. Significance. Compared with the existing automated solutions, our proposed method is not limited to specific types of artifacts, electrode configurations, or number of EEG channels. The main advantages of the proposed method is that it provides an automatic, reliable, real-time capable, and practical tool, which avoids the need for the time-consuming manual selection of ICs during artifact removal.

  4. An evaluation of independent component analyses with an application to resting-state fMRI

    PubMed Central

    Matteson, David S.; Ruppert, David; Eloyan, Ani; Caffo, Brian S.

    2013-01-01

    Summary We examine differences between independent component analyses (ICAs) arising from different as-sumptions, measures of dependence, and starting points of the algorithms. ICA is a popular method with diverse applications including artifact removal in electrophysiology data, feature extraction in microarray data, and identifying brain networks in functional magnetic resonance imaging (fMRI). ICA can be viewed as a generalization of principal component analysis (PCA) that takes into account higher-order cross-correlations. Whereas the PCA solution is unique, there are many ICA methods–whose solutions may differ. Infomax, FastICA, and JADE are commonly applied to fMRI studies, with FastICA being arguably the most popular. Hastie and Tibshirani (2003) demonstrated that ProDenICA outperformed FastICA in simulations with two components. We introduce the application of ProDenICA to simulations with more components and to fMRI data. ProDenICA was more accurate in simulations, and we identified differences between biologically meaningful ICs from ProDenICA versus other methods in the fMRI analysis. ICA methods require nonconvex optimization, yet current practices do not recognize the importance of, nor adequately address sensitivity to, initial values. We found that local optima led to dramatically different estimates in both simulations and group ICA of fMRI, and we provide evidence that the global optimum from ProDenICA is the best estimate. We applied a modification of the Hungarian (Kuhn-Munkres) algorithm to match ICs from multiple estimates, thereby gaining novel insights into how brain networks vary in their sensitivity to initial values and ICA method. PMID:24350655

  5. Gravity Tides Extracted from Relative Gravimeter Data by Combining Empirical Mode Decomposition and Independent Component Analysis

    NASA Astrophysics Data System (ADS)

    Yu, Hongjuan; Guo, Jinyun; Kong, Qiaoli; Chen, Xiaodong

    2018-04-01

    The static observation data from a relative gravimeter contain noise and signals such as gravity tides. This paper focuses on the extraction of the gravity tides from the static relative gravimeter data for the first time applying the combined method of empirical mode decomposition (EMD) and independent component analysis (ICA), called the EMD-ICA method. The experimental results from the CG-5 gravimeter (SCINTREX Limited Ontario Canada) data show that the gravity tides time series derived by EMD-ICA are consistent with the theoretical reference (Longman formula) and the RMS of their differences only reaches 4.4 μGal. The time series of the gravity tides derived by EMD-ICA have a strong correlation with the theoretical time series and the correlation coefficient is greater than 0.997. The accuracy of the gravity tides estimated by EMD-ICA is comparable to the theoretical model and is slightly higher than that of independent component analysis (ICA). EMD-ICA could overcome the limitation of ICA having to process multiple observations and slightly improve the extraction accuracy and reliability of gravity tides from relative gravimeter data compared to that estimated with ICA.

  6. Concurrent white matter bundles and grey matter networks using independent component analysis.

    PubMed

    O'Muircheartaigh, Jonathan; Jbabdi, Saad

    2018-04-15

    Developments in non-invasive diffusion MRI tractography techniques have permitted the investigation of both the anatomy of white matter pathways connecting grey matter regions and their structural integrity. In parallel, there has been an expansion in automated techniques aimed at parcellating grey matter into distinct regions based on functional imaging. Here we apply independent component analysis to whole-brain tractography data to automatically extract brain networks based on their associated white matter pathways. This method decomposes the tractography data into components that consist of paired grey matter 'nodes' and white matter 'edges', and automatically separates major white matter bundles, including known cortico-cortical and cortico-subcortical tracts. We show how this framework can be used to investigate individual variations in brain networks (in terms of both nodes and edges) as well as their associations with individual differences in behaviour and anatomy. Finally, we investigate correspondences between tractography-based brain components and several canonical resting-state networks derived from functional MRI. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Determination of domain wall chirality using in situ Lorentz transmission electron microscopy

    DOE PAGES

    Chess, Jordan J.; Montoya, Sergio A.; Fullerton, Eric E.; ...

    2017-02-23

    Controlling domain wall chirality is increasingly seen in non-centrosymmetric materials. Mapping chiral magnetic domains requires knowledge about all the vector components of the magnetization, which poses a problem for conventional Lorentz transmission electron microscopy (LTEM) that is only sensitive to magnetic fields perpendicular to the electron beams direction of travel. The standard approach in LTEM for determining the third component of the magnetization is to tilt the sample to some angle and record a second image. Furthermore, this presents a problem for any domain structures that are stabilized by an applied external magnetic field (e.g. skyrmions), because the standard LTEMmore » setup does not allow independent control of the angle of an applied magnetic field, and sample tilt angle. Here we show that applying a modified transport of intensity equation analysis to LTEM images collected during an applied field sweep, we can determine the domain wall chirality of labyrinth domains in a perpendicularly magnetized material, avoiding the need to tilt the sample.« less

  8. Determination of domain wall chirality using in situ Lorentz transmission electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chess, Jordan J.; Montoya, Sergio A.; Fullerton, Eric E.

    Controlling domain wall chirality is increasingly seen in non-centrosymmetric materials. Mapping chiral magnetic domains requires knowledge about all the vector components of the magnetization, which poses a problem for conventional Lorentz transmission electron microscopy (LTEM) that is only sensitive to magnetic fields perpendicular to the electron beams direction of travel. The standard approach in LTEM for determining the third component of the magnetization is to tilt the sample to some angle and record a second image. Furthermore, this presents a problem for any domain structures that are stabilized by an applied external magnetic field (e.g. skyrmions), because the standard LTEMmore » setup does not allow independent control of the angle of an applied magnetic field, and sample tilt angle. Here we show that applying a modified transport of intensity equation analysis to LTEM images collected during an applied field sweep, we can determine the domain wall chirality of labyrinth domains in a perpendicularly magnetized material, avoiding the need to tilt the sample.« less

  9. Engineering controllable architecture in matrigel for 3D cell alignment.

    PubMed

    Jang, Jae Myung; Tran, Si-Hoai-Trung; Na, Sang Cheol; Jeon, Noo Li

    2015-02-04

    We report a microfluidic approach to impart alignment in ECM components in 3D hydrogels by continuously applying fluid flow across the bulk gel during the gelation process. The microfluidic device where each channel can be independently filled was tilted at 90° to generate continuous flow across the Matrigel as it gelled. The presence of flow helped that more than 70% of ECM components were oriented along the direction of flow, compared with randomly cross-linked Matrigel. Following the oriented ECM components, primary rat cortical neurons and mouse neural stem cells showed oriented outgrowth of neuronal processes within the 3D Matrigel matrix.

  10. A K-means multivariate approach for clustering independent components from magnetoencephalographic data.

    PubMed

    Spadone, Sara; de Pasquale, Francesco; Mantini, Dante; Della Penna, Stefania

    2012-09-01

    Independent component analysis (ICA) is typically applied on functional magnetic resonance imaging, electroencephalographic and magnetoencephalographic (MEG) data due to its data-driven nature. In these applications, ICA needs to be extended from single to multi-session and multi-subject studies for interpreting and assigning a statistical significance at the group level. Here a novel strategy for analyzing MEG independent components (ICs) is presented, Multivariate Algorithm for Grouping MEG Independent Components K-means based (MAGMICK). The proposed approach is able to capture spatio-temporal dynamics of brain activity in MEG studies by running ICA at subject level and then clustering the ICs across sessions and subjects. Distinctive features of MAGMICK are: i) the implementation of an efficient set of "MEG fingerprints" designed to summarize properties of MEG ICs as they are built on spatial, temporal and spectral parameters; ii) the implementation of a modified version of the standard K-means procedure to improve its data-driven character. This algorithm groups the obtained ICs automatically estimating the number of clusters through an adaptive weighting of the parameters and a constraint on the ICs independence, i.e. components coming from the same session (at subject level) or subject (at group level) cannot be grouped together. The performances of MAGMICK are illustrated by analyzing two sets of MEG data obtained during a finger tapping task and median nerve stimulation. The results demonstrate that the method can extract consistent patterns of spatial topography and spectral properties across sessions and subjects that are in good agreement with the literature. In addition, these results are compared to those from a modified version of affinity propagation clustering method. The comparison, evaluated in terms of different clustering validity indices, shows that our methodology often outperforms the clustering algorithm. Eventually, these results are confirmed by a comparison with a MEG tailored version of the self-organizing group ICA, which is largely used for fMRI IC clustering. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. In-hardware demonstration of model-independent adaptive tuning of noisy systems with arbitrary phase drift

    DOE PAGES

    Scheinker, Alexander; Baily, Scott; Young, Daniel; ...

    2014-08-01

    In this work, an implementation of a recently developed model-independent adaptive control scheme, for tuning uncertain and time varying systems, is demonstrated on the Los Alamos linear particle accelerator. The main benefits of the algorithm are its simplicity, ability to handle an arbitrary number of components without increased complexity, and the approach is extremely robust to measurement noise, a property which is both analytically proven and demonstrated in the experiments performed. We report on the application of this algorithm for simultaneous tuning of two buncher radio frequency (RF) cavities, in order to maximize beam acceptance into the accelerating electromagnetic fieldmore » cavities of the machine, with the tuning based only on a noisy measurement of the surviving beam current downstream from the two bunching cavities. The algorithm automatically responds to arbitrary phase shift of the cavity phases, automatically re-tuning the cavity settings and maximizing beam acceptance. Because it is model independent it can be utilized for continuous adaptation to time-variation of a large system, such as due to thermal drift, or damage to components, in which the remaining, functional components would be automatically re-tuned to compensate for the failing ones. We start by discussing the general model-independent adaptive scheme and how it may be digitally applied to a large class of multi-parameter uncertain systems, and then present our experimental results.« less

  12. Aggregate blood pressure responses to serial dietary sodium and potassium intervention: defining responses using independent component analysis.

    PubMed

    Chen, Gengsheng; de las Fuentes, Lisa; Gu, Chi C; He, Jiang; Gu, Dongfeng; Kelly, Tanika; Hixson, James; Jacquish, Cashell; Rao, D C; Rice, Treva K

    2015-06-20

    Hypertension is a complex trait that often co-occurs with other conditions such as obesity and is affected by genetic and environmental factors. Aggregate indices such as principal components among these variables and their responses to environmental interventions may represent novel information that is potentially useful for genetic studies. In this study of families participating in the Genetic Epidemiology Network of Salt Sensitivity (GenSalt) Study, blood pressure (BP) responses to dietary sodium interventions are explored. Independent component analysis (ICA) was applied to 20 variables indexing obesity and BP measured at baseline and during low sodium, high sodium and high sodium plus potassium dietary intervention periods. A "heat map" protocol that classifies subjects based on risk for hypertension is used to interpret the extracted components. ICA and heat map suggest four components best describe the data: (1) systolic hypertension, (2) general hypertension, (3) response to sodium intervention and (4) obesity. The largest heritabilities are for the systolic (64%) and general hypertension (56%) components. There is a pattern of higher heritability for the component response to intervention (40-42%) as compared to those for the traditional intervention responses computed as delta scores (24%-40%). In summary, the present study provides intermediate phenotypes that are heritable. Using these derived components may prove useful in gene discovery applications.

  13. Detection and Characterization of Ground Displacement Sources from Variational Bayesian Independent Component Analysis of GPS Time Series

    NASA Astrophysics Data System (ADS)

    Gualandi, A.; Serpelloni, E.; Belardinelli, M. E.

    2014-12-01

    A critical point in the analysis of ground displacements time series is the development of data driven methods that allow to discern and characterize the different sources that generate the observed displacements. A widely used multivariate statistical technique is the Principal Component Analysis (PCA), which allows to reduce the dimensionality of the data space maintaining most of the variance of the dataset explained. It reproduces the original data using a limited number of Principal Components, but it also shows some deficiencies. Indeed, PCA does not perform well in finding the solution to the so-called Blind Source Separation (BSS) problem, i.e. in recovering and separating the original sources that generated the observed data. This is mainly due to the assumptions on which PCA relies: it looks for a new Euclidean space where the projected data are uncorrelated. Usually, the uncorrelation condition is not strong enough and it has been proven that the BSS problem can be tackled imposing on the components to be independent. The Independent Component Analysis (ICA) is, in fact, another popular technique adopted to approach this problem, and it can be used in all those fields where PCA is also applied. An ICA approach enables us to explain the time series imposing a fewer number of constraints on the model, and to reveal anomalies in the data such as transient signals. However, the independence condition is not easy to impose, and it is often necessary to introduce some approximations. To work around this problem, we use a variational bayesian ICA (vbICA) method, which models the probability density function (pdf) of each source signal using a mix of Gaussian distributions. This technique allows for more flexibility in the description of the pdf of the sources, giving a more reliable estimate of them. Here we present the application of the vbICA technique to GPS position time series. First, we use vbICA on synthetic data that simulate a seismic cycle (interseismic + coseismic + postseismic + seasonal + noise), and study the ability of the algorithm to recover the original (known) sources of deformation. Secondly, we apply vbICA to different tectonically active scenarios, such as earthquakes in central and northern Italy, as well as the study of slow slip events in Cascadia.

  14. A simple iterative independent component analysis algorithm for vibration source signal identification of complex structures

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Sup; Cho, Dae-Seung; Kim, Kookhyun; Jeon, Jae-Jin; Jung, Woo-Jin; Kang, Myeng-Hwan; Kim, Jae-Ho

    2015-01-01

    Independent Component Analysis (ICA), one of the blind source separation methods, can be applied for extracting unknown source signals only from received signals. This is accomplished by finding statistical independence of signal mixtures and has been successfully applied to myriad fields such as medical science, image processing, and numerous others. Nevertheless, there are inherent problems that have been reported when using this technique: instability and invalid ordering of separated signals, particularly when using a conventional ICA technique in vibratory source signal identification of complex structures. In this study, a simple iterative algorithm of the conventional ICA has been proposed to mitigate these problems. The proposed method to extract more stable source signals having valid order includes an iterative and reordering process of extracted mixing matrix to reconstruct finally converged source signals, referring to the magnitudes of correlation coefficients between the intermediately separated signals and the signals measured on or nearby sources. In order to review the problems of the conventional ICA technique and to validate the proposed method, numerical analyses have been carried out for a virtual response model and a 30 m class submarine model. Moreover, in order to investigate applicability of the proposed method to real problem of complex structure, an experiment has been carried out for a scaled submarine mockup. The results show that the proposed method could resolve the inherent problems of a conventional ICA technique.

  15. Quantification method for the appearance of melanin pigmentation using independent component analysis

    NASA Astrophysics Data System (ADS)

    Ojima, Nobutoshi; Okiyama, Natsuko; Okaguchi, Saya; Tsumura, Norimichi; Nakaguchi, Toshiya; Hori, Kimihiko; Miyake, Yoichi

    2005-04-01

    In the cosmetics industry, skin color is very important because skin color gives a direct impression of the face. In particular, many people suffer from melanin pigmentation such as liver spots and freckles. However, it is very difficult to evaluate melanin pigmentation using conventional colorimetric values because these values contain information on various skin chromophores simultaneously. Therefore, it is necessary to extract information of the chromophore of individual skins independently as density information. The isolation of the melanin component image based on independent component analysis (ICA) from a single skin image was reported in 2003. However, this technique has not developed a quantification method for melanin pigmentation. This paper introduces a quantification method based on the ICA of a skin color image to isolate melanin pigmentation. The image acquisition system we used consists of commercially available equipment such as digital cameras and lighting sources with polarized light. The images taken were analyzed using ICA to extract the melanin component images, and Laplacian of Gaussian (LOG) filter was applied to extract the pigmented area. As a result, for skin images including those showing melanin pigmentation and acne, the method worked well. Finally, the total amount of extracted area had a strong correspondence to the subjective rating values for the appearance of pigmentation. Further analysis is needed to recognize the appearance of pigmentation concerning the size of the pigmented area and its spatial gradation.

  16. Large-scale galaxy flow from a non-gravitational impulse

    NASA Technical Reports Server (NTRS)

    Hogan, Craig J.; Kaiser, Nick

    1989-01-01

    A theory is presented describing linear perturbations of an expanding universe containing multiple, independently perturbed, collisionless, gravitationally coupled constituents. Solutions are found in the limit where one initially unperturbed component dominates the total density. The theory is applied to perturbations generated by a nongravitational process in one or more of the light components, as would occur in explosive or radiation-pressure-instability theories of galaxy formation. The apparent dynamical density parameter and correlations between density and velocity amplitude for various populations, are evaluated as a function of cosmic scale factor.

  17. Separating non-diffuse component from ambient seismic noise cross-correlation in southern California­­

    NASA Astrophysics Data System (ADS)

    Liu, X.; Beroza, G. C.; Nakata, N.

    2017-12-01

    Cross-correlation of fully diffuse wavefields provides Green's function between receivers, although the ambient noise field in the real world contains both diffuse and non-diffuse fields. The non-diffuse field potentially degrades the correlation functions. We attempt to blindly separate the diffuse and the non-diffuse components from cross-correlations of ambient seismic noise and analyze the potential bias caused by the non-diffuse components. We compute the 9-component noise cross-correlations for 17 stations in southern California. For the Rayleigh wave components, we assume that the cross-correlation of multiply scattered waves (diffuse component) is independent from the cross-correlation of ocean microseismic quasi-point source responses (non-diffuse component), and the cross-correlation function of ambient seismic data is the sum of both components. Thus we can blindly separate the non-diffuse component due to physical point sources and the more diffuse component due to cross-correlation of multiply scattered noise based on their statistical independence. We also perform beamforming over different frequency bands for the cross-correlations before and after the separation, and we find that the decomposed Rayleigh wave represents more coherent features among all Rayleigh wave polarization cross-correlation components. We show that after separating the non-diffuse component, the Frequency-Time Analysis results are less ambiguous. In addition, we estimate the bias in phase velocity on the raw cross-correlation data due to the non-diffuse component. We also apply this technique to a few borehole stations in Groningen, the Netherlands, to demonstrate its applicability in different instrument/geology settings.

  18. Principal components analysis in clinical studies.

    PubMed

    Zhang, Zhongheng; Castelló, Adela

    2017-09-01

    In multivariate analysis, independent variables are usually correlated to each other which can introduce multicollinearity in the regression models. One approach to solve this problem is to apply principal components analysis (PCA) over these variables. This method uses orthogonal transformation to represent sets of potentially correlated variables with principal components (PC) that are linearly uncorrelated. PCs are ordered so that the first PC has the largest possible variance and only some components are selected to represent the correlated variables. As a result, the dimension of the variable space is reduced. This tutorial illustrates how to perform PCA in R environment, the example is a simulated dataset in which two PCs are responsible for the majority of the variance in the data. Furthermore, the visualization of PCA is highlighted.

  19. Analysis and visualization of single-trial event-related potentials

    NASA Technical Reports Server (NTRS)

    Jung, T. P.; Makeig, S.; Westerfield, M.; Townsend, J.; Courchesne, E.; Sejnowski, T. J.

    2001-01-01

    In this study, a linear decomposition technique, independent component analysis (ICA), is applied to single-trial multichannel EEG data from event-related potential (ERP) experiments. Spatial filters derived by ICA blindly separate the input data into a sum of temporally independent and spatially fixed components arising from distinct or overlapping brain or extra-brain sources. Both the data and their decomposition are displayed using a new visualization tool, the "ERP image," that can clearly characterize single-trial variations in the amplitudes and latencies of evoked responses, particularly when sorted by a relevant behavioral or physiological variable. These tools were used to analyze data from a visual selective attention experiment on 28 control subjects plus 22 neurological patients whose EEG records were heavily contaminated with blink and other eye-movement artifacts. Results show that ICA can separate artifactual, stimulus-locked, response-locked, and non-event-related background EEG activities into separate components, a taxonomy not obtained from conventional signal averaging approaches. This method allows: (1) removal of pervasive artifacts of all types from single-trial EEG records, (2) identification and segregation of stimulus- and response-locked EEG components, (3) examination of differences in single-trial responses, and (4) separation of temporally distinct but spatially overlapping EEG oscillatory activities with distinct relationships to task events. The proposed methods also allow the interaction between ERPs and the ongoing EEG to be investigated directly. We studied the between-subject component stability of ICA decomposition of single-trial EEG epochs by clustering components with similar scalp maps and activation power spectra. Components accounting for blinks, eye movements, temporal muscle activity, event-related potentials, and event-modulated alpha activities were largely replicated across subjects. Applying ICA and ERP image visualization to the analysis of sets of single trials from event-related EEG (or MEG) experiments can increase the information available from ERP (or ERF) data. Copyright 2001 Wiley-Liss, Inc.

  20. Grouping and the pitch of a mistuned fundamental component: Effects of applying simultaneous multiple mistunings to the other harmonics.

    PubMed

    Roberts, Brian; Holmes, Stephen D

    2006-12-01

    Mistuning a harmonic produces an exaggerated change in its pitch. This occurs because the component becomes inconsistent with the regular pattern that causes the other harmonics (constituting the spectral frame) to integrate perceptually. These pitch shifts were measured when the fundamental (F0) component of a complex tone (nominal F0 frequency = 200 Hz) was mistuned by +8% and -8%. The pitch-shift gradient was defined as the difference between these values and its magnitude was used as a measure of frame integration. An independent and random perturbation (spectral jitter) was applied simultaneously to most or all of the frame components. The gradient magnitude declined gradually as the degree of jitter increased from 0% to +/-40% of F0. The component adjacent to the mistuned target made the largest contribution to the gradient, but more distant components also contributed. The stimuli were passed through an auditory model, and the exponential height of the F0-period peak in the averaged summary autocorrelation function correlated well with the gradient magnitude. The fit improved when the weighting on more distant channels was attenuated by a factor of three per octave. The results are consistent with a grouping mechanism that computes a weighted average of periodicity strength across several components.

  1. A Guide for Setting the Cut-Scores to Minimize Weighted Classification Errors in Test Batteries

    ERIC Educational Resources Information Center

    Grabovsky, Irina; Wainer, Howard

    2017-01-01

    In this article, we extend the methodology of the Cut-Score Operating Function that we introduced previously and apply it to a testing scenario with multiple independent components and different testing policies. We derive analytically the overall classification error rate for a test battery under the policy when several retakes are allowed for…

  2. Artifact Removal from Biosignal using Fixed Point ICA Algorithm for Pre-processing in Biometric Recognition

    NASA Astrophysics Data System (ADS)

    Mishra, Puneet; Singla, Sunil Kumar

    2013-01-01

    In the modern world of automation, biological signals, especially Electroencephalogram (EEG) and Electrocardiogram (ECG), are gaining wide attention as a source of biometric information. Earlier studies have shown that EEG and ECG show versatility with individuals and every individual has distinct EEG and ECG spectrum. EEG (which can be recorded from the scalp due to the effect of millions of neurons) may contain noise signals such as eye blink, eye movement, muscular movement, line noise, etc. Similarly, ECG may contain artifact like line noise, tremor artifacts, baseline wandering, etc. These noise signals are required to be separated from the EEG and ECG signals to obtain the accurate results. This paper proposes a technique for the removal of eye blink artifact from EEG and ECG signal using fixed point or FastICA algorithm of Independent Component Analysis (ICA). For validation, FastICA algorithm has been applied to synthetic signal prepared by adding random noise to the Electrocardiogram (ECG) signal. FastICA algorithm separates the signal into two independent components, i.e. ECG pure and artifact signal. Similarly, the same algorithm has been applied to remove the artifacts (Electrooculogram or eye blink) from the EEG signal.

  3. Force Limit System

    NASA Technical Reports Server (NTRS)

    Pawlik, Ralph; Krause, David; Bremenour, Frank

    2011-01-01

    The Force Limit System (FLS) was developed to protect test specimens from inadvertent overload. The load limit value is fully adjustable by the operator and works independently of the test system control as a mechanical (non-electrical) device. When a test specimen is loaded via an electromechanical or hydraulic test system, a chance of an overload condition exists. An overload applied to a specimen could result in irreparable damage to the specimen and/or fixturing. The FLS restricts the maximum load that an actuator can apply to a test specimen. When testing limited-run test articles or using very expensive fixtures, the use of such a device is highly recommended. Test setups typically use electronic peak protection, which can be the source of overload due to malfunctioning components or the inability to react quickly enough to load spikes. The FLS works independently of the electronic overload protection.

  4. The loss of essential oil components induced by the Purge Time in the Pressurized Liquid Extraction (PLE) procedure of Cupressus sempervirens.

    PubMed

    Dawidowicz, Andrzej L; Czapczyńska, Natalia B; Wianowska, Dorota

    2012-05-30

    The influence of different Purge Times on the effectiveness of Pressurized Liquid Extraction (PLE) of volatile oil components from cypress plant matrix (Cupressus sempervirens) was investigated, applying solvents of diverse extraction efficiencies. The obtained results show the decrease of the mass yields of essential oil components as a result of increased Purge Time. The loss of extracted components depends on the extrahent type - the greatest mass yield loss occurred in the case of non-polar solvents, whereas the smallest was found in polar extracts. Comparisons of the PLE method with Sea Sand Disruption Method (SSDM), Matrix Solid-Phase Dispersion Method (MSPD) and Steam Distillation (SD) were performed to assess the method's accuracy. Independent of the solvent and Purge Time applied in the PLE process, the total mass yield was lower than the one obtained for simple, short and relatively cheap low-temperature matrix disruption procedures - MSPD and SSDM. Thus, in the case of volatile oils analysis, the application of these methods is advisable. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Independent component analysis of DTI data reveals white matter covariances in Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Ouyang, Xin; Sun, Xiaoyu; Guo, Ting; Sun, Qiaoyue; Chen, Kewei; Yao, Li; Wu, Xia; Guo, Xiaojuan

    2014-03-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease with the clinical symptom of the continuous deterioration of cognitive and memory functions. Multiple diffusion tensor imaging (DTI) indices such as fractional anisotropy (FA) and mean diffusivity (MD) can successfully explain the white matter damages in AD patients. However, most studies focused on the univariate measures (voxel-based analysis) to examine the differences between AD patients and normal controls (NCs). In this investigation, we applied a multivariate independent component analysis (ICA) to investigate the white matter covariances based on FA measurement from DTI data in 35 AD patients and 45 NCs from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. We found that six independent components (ICs) showed significant FA reductions in white matter covariances in AD compared with NC, including the genu and splenium of corpus callosum (IC-1 and IC-2), middle temporal gyral of temporal lobe (IC-3), sub-gyral of frontal lobe (IC-4 and IC-5) and sub-gyral of parietal lobe (IC-6). Our findings revealed covariant white matter loss in AD patients and suggest that the unsupervised data-driven ICA method is effective to explore the changes of FA in AD. This study assists us in understanding the mechanism of white matter covariant reductions in the development of AD.

  6. Three component vibrational time reversal communication

    DOE PAGES

    Anderson, Brian E.; Ulrich, Timothy J.; Ten Cate, James A.

    2015-01-01

    Time reversal provides an optimal prefilter matched signal to apply to a communication signal before signal transmission. Time reversal allows compensation for wave speed dispersion and can function well in reverberant environments. Time reversal can be used to focus elastic energy to each of the three components of motion independently. A pipe encased in concrete was used to demonstrate the ability to conduct communications of information using three component time reversal. Furthermore, the ability of time reversal to compensate for multi-path distortion (overcoming reverberation) will be demonstrated and the rate of signal communication will be presented. [The U.S. Department ofmore » Energy, through the LANL/LDRD Program, is gratefully acknowledged for supporting this work.]« less

  7. Geometric metasurface enabling polarization independent beam splitting.

    PubMed

    Yoon, Gwanho; Lee, Dasol; Nam, Ki Tae; Rho, Junsuk

    2018-06-21

    A polarization independent holographic beam splitter that generates equal-intensity beams based on geometric metasurface is demonstrated. Although conventional geometric metasurfaces have the advantages of working over a broad frequency range and having intuitive design principles, geometric metasurfaces have the limitation that they only work for circular polarization. In this work, Fourier holography is used to overcome this limitation. A perfect overlap resulting from the origin-symmetry of the encoded image enables polarization independent operation of geometric metasurfaces. The designed metasurface beam splitter is experimentally demonstrated by using hydrogenated amorphous silicon, and the device performs consistent beam splitting regardless of incident polarizations as well as wavelengths. Our device can be applied to generate equal-intensity beams for entangled photon light sources in quantum optics, and the design approach provides a way to develop ultra-thin broadband polarization independent components for modern optics.

  8. Efficient use of bit planes in the generation of motion stimuli

    NASA Technical Reports Server (NTRS)

    Mulligan, Jeffrey B.; Stone, Leland S.

    1988-01-01

    The production of animated motion sequences on computer-controlled display systems presents a technical problem because large images cannot be transferred from disk storage to image memory at conventional frame rates. A technique is described in which a single base image can be used to generate a broad class of motion stimuli without the need for such memory transfers. This technique was applied to the generation of drifting sine-wave gratings (and by extension, sine wave plaids). For each drifting grating, sine and cosine spatial phase components are first reduced to 1 bit/pixel using a digital halftoning technique. The resulting pairs of 1-bit images are then loaded into pairs of bit planes of the display memory. To animate the patterns, the display hardware's color lookup table is modified on a frame-by-frame basis; for each frame the lookup table is set to display a weighted sum of the spatial sine and cosine phase components. Because the contrasts and temporal frequencies of the various components are mutually independent in each frame, the sine and cosine components can be counterphase modulated in temporal quadrature, yielding a single drifting grating. Using additional bit planes, multiple drifting gratings can be combined to form sine-wave plaid patterns. A large number of resultant plaid motions can be produced from a single image file because the temporal frequencies of all the components can be varied independently. For a graphics device having 8 bits/pixel, up to four drifting gratings may be combined, each having independently variable contrast and speed.

  9. Simulation of finite-strain inelastic phenomena governed by creep and plasticity

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Bloomfield, Max O.; Oberai, Assad A.

    2017-11-01

    Inelastic mechanical behavior plays an important role in many applications in science and engineering. Phenomenologically, this behavior is often modeled as plasticity or creep. Plasticity is used to represent the rate-independent component of inelastic deformation and creep is used to represent the rate-dependent component. In several applications, especially those at elevated temperatures and stresses, these processes occur simultaneously. In order to model these process, we develop a rate-objective, finite-deformation constitutive model for plasticity and creep. The plastic component of this model is based on rate-independent J_2 plasticity, and the creep component is based on a thermally activated Norton model. We describe the implementation of this model within a finite element formulation, and present a radial return mapping algorithm for it. This approach reduces the additional complexity of modeling plasticity and creep, over thermoelasticity, to just solving one nonlinear scalar equation at each quadrature point. We implement this algorithm within a multiphysics finite element code and evaluate the consistent tangent through automatic differentiation. We verify and validate the implementation, apply it to modeling the evolution of stresses in the flip chip manufacturing process, and test its parallel strong-scaling performance.

  10. Atmospheric pressure MALDI for the noninvasive characterization of carbonaceous ink from Renaissance documents.

    PubMed

    Grasso, Giuseppe; Calcagno, Marzia; Rapisarda, Alessandro; D'Agata, Roberta; Spoto, Giuseppe

    2017-06-01

    The analytical methods that are usually applied to determine the compositions of inks from ancient manuscripts usually focus on inorganic components, as in the case of iron gall ink. In this work, we describe the use of atmospheric pressure/matrix-assisted laser desorption ionization-mass spectrometry (AP/MALDI-MS) as a spatially resolved analytical technique for the study of the organic carbonaceous components of inks used in handwritten parts of ancient books for the first time. Large polycyclic aromatic hydrocarbons (L-PAH) were identified in situ in the ink of XVII century handwritten documents. We prove that it is possible to apply MALDI-MS as a suitable microdestructive diagnostic tool for analyzing samples in air at atmospheric pressure, thus simplifying investigations of the organic components of artistic and archaeological objects. The interpretation of the experimental MS results was supported by independent Raman spectroscopic investigations. Graphical abstract Atmospheric pressure/MALDI mass spectrometry detects in situ polycyclic aromatic hydrocarbons in the carbonaceous ink of XVII century manuscripts.

  11. Separation of GRACE geoid time-variations using Independent Component Analysis

    NASA Astrophysics Data System (ADS)

    Frappart, F.; Ramillien, G.; Maisongrande, P.; Bonnet, M.

    2009-12-01

    Independent Component Analysis (ICA) is a blind separation method based on the simple assumptions of the independence of the sources and the non-Gaussianity of the observations. An approach based on this numerical method is used here to extract hydrological signals over land and oceans from the polluting striping noise due to orbit repetitiveness and present in the GRACE global mass anomalies. We took advantage of the availability of monthly Level-2 solutions from three official providers (i.e., CSR, JPL and GFZ) that can be considered as different observations of the same phenomenon. The efficiency of the methodology is first demonstrated on a synthetic case. Applied to one month of GRACE solutions, it allows to clearly separate the total water storage change from the meridional-oriented spurious gravity signals on the continents but not on the oceans. This technique gives results equivalent as the destriping method for continental water storage for the hydrological patterns with less smoothing. This methodology is then used to filter the complete series of the 2002-2009 GRACE solutions.

  12. Stabilizing bidirectional associative memory with Principles in Independent Component Analysis and Null Space (PICANS)

    NASA Astrophysics Data System (ADS)

    LaRue, James P.; Luzanov, Yuriy

    2013-05-01

    A new extension to the way in which the Bidirectional Associative Memory (BAM) algorithms are implemented is presented here. We will show that by utilizing the singular value decomposition (SVD) and integrating principles of independent component analysis (ICA) into the nullspace (NS) we have created a novel approach to mitigating spurious attractors. We demonstrate this with two applications. The first application utilizes a one-layer association while the second application is modeled after the several hierarchal associations of ventral pathways. The first application will detail the way in which we manage the associations in terms of matrices. The second application will take what we have learned from the first example and apply it to a cascade of a convolutional neural network (CNN) and perceptron this being our signal processing model of the ventral pathways, i.e., visual systems.

  13. Spatiotemporal analysis of single-trial EEG of emotional pictures based on independent component analysis and source location

    NASA Astrophysics Data System (ADS)

    Liu, Jiangang; Tian, Jie

    2007-03-01

    The present study combined the Independent Component Analysis (ICA) and low-resolution brain electromagnetic tomography (LORETA) algorithms to identify the spatial distribution and time course of single-trial EEG record differences between neural responses to emotional stimuli vs. the neutral. Single-trial multichannel (129-sensor) EEG records were collected from 21 healthy, right-handed subjects viewing the emotion emotional (pleasant/unpleasant) and neutral pictures selected from International Affective Picture System (IAPS). For each subject, the single-trial EEG records of each emotional pictures were concatenated with the neutral, and a three-step analysis was applied to each of them in the same way. First, the ICA was performed to decompose each concatenated single-trial EEG records into temporally independent and spatially fixed components, namely independent components (ICs). The IC associated with artifacts were isolated. Second, the clustering analysis classified, across subjects, the temporally and spatially similar ICs into the same clusters, in which nonparametric permutation test for Global Field Power (GFP) of IC projection scalp maps identified significantly different temporal segments of each emotional condition vs. neutral. Third, the brain regions accounted for those significant segments were localized spatially with LORETA analysis. In each cluster, a voxel-by-voxel randomization test identified significantly different brain regions between each emotional condition vs. the neutral. Compared to the neutral, both emotional pictures elicited activation in the visual, temporal, ventromedial and dorsomedial prefrontal cortex and anterior cingulated gyrus. In addition, the pleasant pictures activated the left middle prefrontal cortex and the posterior precuneus, while the unpleasant pictures activated the right orbitofrontal cortex, posterior cingulated gyrus and somatosensory region. Our results were well consistent with other functional imaging studies, while revealed temporal dynamics of emotional processing of specific brain structure with high temporal resolution.

  14. Identification of Reliable Components in Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS): a Data-Driven Approach across Metabolic Processes.

    PubMed

    Motegi, Hiromi; Tsuboi, Yuuri; Saga, Ayako; Kagami, Tomoko; Inoue, Maki; Toki, Hideaki; Minowa, Osamu; Noda, Tetsuo; Kikuchi, Jun

    2015-11-04

    There is an increasing need to use multivariate statistical methods for understanding biological functions, identifying the mechanisms of diseases, and exploring biomarkers. In addition to classical analyses such as hierarchical cluster analysis, principal component analysis, and partial least squares discriminant analysis, various multivariate strategies, including independent component analysis, non-negative matrix factorization, and multivariate curve resolution, have recently been proposed. However, determining the number of components is problematic. Despite the proposal of several different methods, no satisfactory approach has yet been reported. To resolve this problem, we implemented a new idea: classifying a component as "reliable" or "unreliable" based on the reproducibility of its appearance, regardless of the number of components in the calculation. Using the clustering method for classification, we applied this idea to multivariate curve resolution-alternating least squares (MCR-ALS). Comparisons between conventional and modified methods applied to proton nuclear magnetic resonance ((1)H-NMR) spectral datasets derived from known standard mixtures and biological mixtures (urine and feces of mice) revealed that more plausible results are obtained by the modified method. In particular, clusters containing little information were detected with reliability. This strategy, named "cluster-aided MCR-ALS," will facilitate the attainment of more reliable results in the metabolomics datasets.

  15. Application of principal component analysis to distinguish patients with schizophrenia from healthy controls based on fractional anisotropy measurements.

    PubMed

    Caprihan, A; Pearlson, G D; Calhoun, V D

    2008-08-15

    Principal component analysis (PCA) is often used to reduce the dimension of data before applying more sophisticated data analysis methods such as non-linear classification algorithms or independent component analysis. This practice is based on selecting components corresponding to the largest eigenvalues. If the ultimate goal is separation of data in two groups, then these set of components need not have the most discriminatory power. We measured the distance between two such populations using Mahalanobis distance and chose the eigenvectors to maximize it, a modified PCA method, which we call the discriminant PCA (DPCA). DPCA was applied to diffusion tensor-based fractional anisotropy images to distinguish age-matched schizophrenia subjects from healthy controls. The performance of the proposed method was evaluated by the one-leave-out method. We show that for this fractional anisotropy data set, the classification error with 60 components was close to the minimum error and that the Mahalanobis distance was twice as large with DPCA, than with PCA. Finally, by masking the discriminant function with the white matter tracts of the Johns Hopkins University atlas, we identified left superior longitudinal fasciculus as the tract which gave the least classification error. In addition, with six optimally chosen tracts the classification error was zero.

  16. Independent Component Analysis applied to Ground-based observations

    NASA Astrophysics Data System (ADS)

    Martins-Filho, Walter; Griffith, Caitlin; Pearson, Kyle; Waldmann, Ingo; Alvarez-Candal, Alvaro; Zellem, Robert Thomas

    2018-01-01

    Transit measurements of Jovian-sized exoplanetary atmospheres allow one to study the composition of exoplanets, largely independent of the planet’s temperature profile. However, measurements of hot-Jupiter transits must archive a level of accuracy in the flux to determine the spectral modulation of the exoplanetary atmosphere. To accomplish this level of precision, we need to extract systematic errors, and, for ground-based measurements, the effects of Earth’s atmosphere, from signal due to the exoplanet, which is several orders of magnitude smaller. The effects of the terrestrial atmosphere and some of the time-dependent systematic errors of ground-based transit measurements are treated mainly by dividing the host star by a reference star at each wavelength and time step of the transit. Recently, Independent Component Analysis (ICA) have been used to remove systematics effects from the raw data of space-based observations (Waldmann, 2014, 2012; Morello et al., 2016, 2015). ICA is a statistical method born from the ideas of the blind-source separations studies, which can be used to de-trend several independent source signals of a data set (Hyvarinen and Oja, 2000). This technique requires no additional prior knowledge of the data set. In addition, this technique has the advantage of requiring no reference star. Here we apply the ICA to ground-based photometry of the exoplanet XO-2b recorded by the 61” Kuiper Telescope and compare the results of the ICA to those of a previous analysis from Zellem et al. (2015), which does not use ICA. We also simulate the effects of various conditions (concerning the systematic errors, noise and the stability of object on the detector) to determine the conditions under which an ICA can be used with high precision to extract the light curve of exoplanetary photometry measurements

  17. Independent Component Analysis applied to Ground-based observations

    NASA Astrophysics Data System (ADS)

    Martins-Filho, Walter; Griffith, Caitlin Ann; Pearson, Kyle; Waldmann, Ingo; Alvarez-Candal, Alvaro; Zellem, Robert

    2017-10-01

    Transit measurements of Jovian-sized exoplanetary atmospheres allow one to study the composition of exoplanets, largely independent of the planet’s temperature profile. However, measurements of hot-Jupiter transits must archive a level of accuracy in the flux to determine the spectral modulations of the exoplanetary atmosphere. To accomplish this level of precision, we need to extract systematic errors, and, for ground-based measurements, the effects of Earth’s atmosphere, from signal due to the exoplanet, which is several orders of magnitudes smaller.The effects of the terrestrial atmosphere and some of the time dependent systematic errors of ground-based transit measurements are treated mainly by dividing the host star by a reference star at each wavelength and time step of the transit. Recently, Independent Component Analyses (ICA) have been used to remove systematics effects from the raw data of space-based observations (Waldmann, 2014, 2012; Morello et al., 2016, 2015). ICA is a statistical method born from the ideas of the blind-source separations studies, which can be used to de-trend several independent source signals of a data set (Hyvarinen and Oja, 2000). This technique requires no additional prior knowledge of the data set. In addition this technique has the advantage of requiring no reference star.Here we apply the ICA to ground-based photometry of the exoplanet XO-2b recorded by the 61” Kuiper Telescope and compare the results of the ICA to those of a previous analysis from Zellem et al. (2015), which does not use ICA. We also simulate the effects of various conditions (concerning the systematic errors, noise and the stability of object on the detector) to determine the conditions under which an ICA can be used with high precision to extract the light curve of exoplanetary photometry measurements.

  18. Robust Measurement via A Fused Latent and Graphical Item Response Theory Model.

    PubMed

    Chen, Yunxiao; Li, Xiaoou; Liu, Jingchen; Ying, Zhiliang

    2018-03-12

    Item response theory (IRT) plays an important role in psychological and educational measurement. Unlike the classical testing theory, IRT models aggregate the item level information, yielding more accurate measurements. Most IRT models assume local independence, an assumption not likely to be satisfied in practice, especially when the number of items is large. Results in the literature and simulation studies in this paper reveal that misspecifying the local independence assumption may result in inaccurate measurements and differential item functioning. To provide more robust measurements, we propose an integrated approach by adding a graphical component to a multidimensional IRT model that can offset the effect of unknown local dependence. The new model contains a confirmatory latent variable component, which measures the targeted latent traits, and a graphical component, which captures the local dependence. An efficient proximal algorithm is proposed for the parameter estimation and structure learning of the local dependence. This approach can substantially improve the measurement, given no prior information on the local dependence structure. The model can be applied to measure both a unidimensional latent trait and multidimensional latent traits.

  19. Characterization of Ground Displacement Sources from Variational Bayesian Independent Component Analysis of Space Geodetic Time Series

    NASA Astrophysics Data System (ADS)

    Gualandi, Adriano; Serpelloni, Enrico; Elina Belardinelli, Maria; Bonafede, Maurizio; Pezzo, Giuseppe; Tolomei, Cristiano

    2015-04-01

    A critical point in the analysis of ground displacement time series, as those measured by modern space geodetic techniques (primarly continuous GPS/GNSS and InSAR) is the development of data driven methods that allow to discern and characterize the different sources that generate the observed displacements. A widely used multivariate statistical technique is the Principal Component Analysis (PCA), which allows to reduce the dimensionality of the data space maintaining most of the variance of the dataset explained. It reproduces the original data using a limited number of Principal Components, but it also shows some deficiencies, since PCA does not perform well in finding the solution to the so-called Blind Source Separation (BSS) problem. The recovering and separation of the different sources that generate the observed ground deformation is a fundamental task in order to provide a physical meaning to the possible different sources. PCA fails in the BSS problem since it looks for a new Euclidean space where the projected data are uncorrelated. Usually, the uncorrelation condition is not strong enough and it has been proven that the BSS problem can be tackled imposing on the components to be independent. The Independent Component Analysis (ICA) is, in fact, another popular technique adopted to approach this problem, and it can be used in all those fields where PCA is also applied. An ICA approach enables us to explain the displacement time series imposing a fewer number of constraints on the model, and to reveal anomalies in the data such as transient deformation signals. However, the independence condition is not easy to impose, and it is often necessary to introduce some approximations. To work around this problem, we use a variational bayesian ICA (vbICA) method, which models the probability density function (pdf) of each source signal using a mix of Gaussian distributions. This technique allows for more flexibility in the description of the pdf of the sources, giving a more reliable estimate of them. Here we introduce the vbICA technique and present its application on synthetic data that simulate a GPS network recording ground deformation in a tectonically active region, with synthetic time-series containing interseismic, coseismic, and postseismic deformation, plus seasonal deformation, and white and coloured noise. We study the ability of the algorithm to recover the original (known) sources of deformation, and then apply it to a real scenario: the Emilia seismic sequence (2012, northern Italy), which is an example of seismic sequence occurred in a slowly converging tectonic setting, characterized by several local to regional anthropogenic or natural sources of deformation, mainly subsidence due to fluid withdrawal and sediments compaction. We apply both PCA and vbICA to displacement time-series recorded by continuous GPS and InSAR (Pezzo et al., EGU2015-8950).

  20. Key issues in decomposing fMRI during naturalistic and continuous music experience with independent component analysis.

    PubMed

    Cong, Fengyu; Puoliväli, Tuomas; Alluri, Vinoo; Sipola, Tuomo; Burunat, Iballa; Toiviainen, Petri; Nandi, Asoke K; Brattico, Elvira; Ristaniemi, Tapani

    2014-02-15

    Independent component analysis (ICA) has been often used to decompose fMRI data mostly for the resting-state, block and event-related designs due to its outstanding advantage. For fMRI data during free-listening experiences, only a few exploratory studies applied ICA. For processing the fMRI data elicited by 512-s modern tango, a FFT based band-pass filter was used to further pre-process the fMRI data to remove sources of no interest and noise. Then, a fast model order selection method was applied to estimate the number of sources. Next, both individual ICA and group ICA were performed. Subsequently, ICA components whose temporal courses were significantly correlated with musical features were selected. Finally, for individual ICA, common components across majority of participants were found by diffusion map and spectral clustering. The extracted spatial maps (by the new ICA approach) common across most participants evidenced slightly right-lateralized activity within and surrounding the auditory cortices. Meanwhile, they were found associated with the musical features. Compared with the conventional ICA approach, more participants were found to have the common spatial maps extracted by the new ICA approach. Conventional model order selection methods underestimated the true number of sources in the conventionally pre-processed fMRI data for the individual ICA. Pre-processing the fMRI data by using a reasonable band-pass digital filter can greatly benefit the following model order selection and ICA with fMRI data by naturalistic paradigms. Diffusion map and spectral clustering are straightforward tools to find common ICA spatial maps. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. A global/local analysis method for treating details in structural design

    NASA Technical Reports Server (NTRS)

    Aminpour, Mohammad A.; Mccleary, Susan L.; Ransom, Jonathan B.

    1993-01-01

    A method for analyzing global/local behavior of plate and shell structures is described. In this approach, a detailed finite element model of the local region is incorporated within a coarser global finite element model. The local model need not be nodally compatible (i.e., need not have a one-to-one nodal correspondence) with the global model at their common boundary; therefore, the two models may be constructed independently. The nodal incompatibility of the models is accounted for by introducing appropriate constraint conditions into the potential energy in a hybrid variational formulation. The primary advantage of this method is that the need for transition modeling between global and local models is eliminated. Eliminating transition modeling has two benefits. First, modeling efforts are reduced since tedious and complex transitioning need not be performed. Second, errors due to the mesh distortion, often unavoidable in mesh transitioning, are minimized by avoiding distorted elements beyond what is needed to represent the geometry of the component. The method is applied reduced to a plate loaded in tension and transverse bending. The plate has a central hole, and various hole sixes and shapes are studied. The method is also applied to a composite laminated fuselage panel with a crack emanating from a window in the panel. While this method is applied herein to global/local problems, it is also applicable to the coupled analysis of independently modeled components as well as adaptive refinement.

  2. The SPAtial EFficiency metric (SPAEF): multiple-component evaluation of spatial patterns for optimization of hydrological models

    NASA Astrophysics Data System (ADS)

    Koch, Julian; Cüneyd Demirel, Mehmet; Stisen, Simon

    2018-05-01

    The process of model evaluation is not only an integral part of model development and calibration but also of paramount importance when communicating modelling results to the scientific community and stakeholders. The modelling community has a large and well-tested toolbox of metrics to evaluate temporal model performance. In contrast, spatial performance evaluation does not correspond to the grand availability of spatial observations readily available and to the sophisticate model codes simulating the spatial variability of complex hydrological processes. This study makes a contribution towards advancing spatial-pattern-oriented model calibration by rigorously testing a multiple-component performance metric. The promoted SPAtial EFficiency (SPAEF) metric reflects three equally weighted components: correlation, coefficient of variation and histogram overlap. This multiple-component approach is found to be advantageous in order to achieve the complex task of comparing spatial patterns. SPAEF, its three components individually and two alternative spatial performance metrics, i.e. connectivity analysis and fractions skill score, are applied in a spatial-pattern-oriented model calibration of a catchment model in Denmark. Results suggest the importance of multiple-component metrics because stand-alone metrics tend to fail to provide holistic pattern information. The three SPAEF components are found to be independent, which allows them to complement each other in a meaningful way. In order to optimally exploit spatial observations made available by remote sensing platforms, this study suggests applying bias insensitive metrics which further allow for a comparison of variables which are related but may differ in unit. This study applies SPAEF in the hydrological context using the mesoscale Hydrologic Model (mHM; version 5.8), but we see great potential across disciplines related to spatially distributed earth system modelling.

  3. Classification of fMRI independent components using IC-fingerprints and support vector machine classifiers.

    PubMed

    De Martino, Federico; Gentile, Francesco; Esposito, Fabrizio; Balsi, Marco; Di Salle, Francesco; Goebel, Rainer; Formisano, Elia

    2007-01-01

    We present a general method for the classification of independent components (ICs) extracted from functional MRI (fMRI) data sets. The method consists of two steps. In the first step, each fMRI-IC is associated with an IC-fingerprint, i.e., a representation of the component in a multidimensional space of parameters. These parameters are post hoc estimates of global properties of the ICs and are largely independent of a specific experimental design and stimulus timing. In the second step a machine learning algorithm automatically separates the IC-fingerprints into six general classes after preliminary training performed on a small subset of expert-labeled components. We illustrate this approach in a multisubject fMRI study employing visual structure-from-motion stimuli encoding faces and control random shapes. We show that: (1) IC-fingerprints are a valuable tool for the inspection, characterization and selection of fMRI-ICs and (2) automatic classifications of fMRI-ICs in new subjects present a high correspondence with those obtained by expert visual inspection of the components. Importantly, our classification procedure highlights several neurophysiologically interesting processes. The most intriguing of which is reflected, with high intra- and inter-subject reproducibility, in one IC exhibiting a transiently task-related activation in the 'face' region of the primary sensorimotor cortex. This suggests that in addition to or as part of the mirror system, somatotopic regions of the sensorimotor cortex are involved in disambiguating the perception of a moving body part. Finally, we show that the same classification algorithm can be successfully applied, without re-training, to fMRI collected using acquisition parameters, stimulation modality and timing considerably different from those used for training.

  4. How Many Separable Sources? Model Selection In Independent Components Analysis

    PubMed Central

    Woods, Roger P.; Hansen, Lars Kai; Strother, Stephen

    2015-01-01

    Unlike mixtures consisting solely of non-Gaussian sources, mixtures including two or more Gaussian components cannot be separated using standard independent components analysis methods that are based on higher order statistics and independent observations. The mixed Independent Components Analysis/Principal Components Analysis (mixed ICA/PCA) model described here accommodates one or more Gaussian components in the independent components analysis model and uses principal components analysis to characterize contributions from this inseparable Gaussian subspace. Information theory can then be used to select from among potential model categories with differing numbers of Gaussian components. Based on simulation studies, the assumptions and approximations underlying the Akaike Information Criterion do not hold in this setting, even with a very large number of observations. Cross-validation is a suitable, though computationally intensive alternative for model selection. Application of the algorithm is illustrated using Fisher's iris data set and Howells' craniometric data set. Mixed ICA/PCA is of potential interest in any field of scientific investigation where the authenticity of blindly separated non-Gaussian sources might otherwise be questionable. Failure of the Akaike Information Criterion in model selection also has relevance in traditional independent components analysis where all sources are assumed non-Gaussian. PMID:25811988

  5. Extraction of phase information in daily stock prices

    NASA Astrophysics Data System (ADS)

    Fujiwara, Yoshi; Maekawa, Satoshi

    2000-06-01

    It is known that, in an intermediate time-scale such as days, stock market fluctuations possess several statistical properties that are common to different markets. Namely, logarithmic returns of an asset price have (i) truncated Pareto-Lévy distribution, (ii) vanishing linear correlation, (iii) volatility clustering and its power-law autocorrelation. The fact (ii) is a consequence of nonexistence of arbitragers with simple strategies, but this does not mean statistical independence of market fluctuations. Little attention has been paid to temporal structure of higher-order statistics, although it contains some important information on market dynamics. We applied a signal separation technique, called Independent Component Analysis (ICA), to actual data of daily stock prices in Tokyo and New York Stock Exchange (TSE/NYSE). ICA does a linear transformation of lag vectors from time-series to find independent components by a nonlinear algorithm. We obtained a similar impulse response for these dataset. If it were a Martingale process, it can be shown that impulse response should be a delta-function under a few conditions that could be numerically checked and as was verified by surrogate data. This result would provide information on the market dynamics including speculative bubbles and arbitrating processes. .

  6. Determining the optimal number of independent components for reproducible transcriptomic data analysis.

    PubMed

    Kairov, Ulykbek; Cantini, Laura; Greco, Alessandro; Molkenov, Askhat; Czerwinska, Urszula; Barillot, Emmanuel; Zinovyev, Andrei

    2017-09-11

    Independent Component Analysis (ICA) is a method that models gene expression data as an action of a set of statistically independent hidden factors. The output of ICA depends on a fundamental parameter: the number of components (factors) to compute. The optimal choice of this parameter, related to determining the effective data dimension, remains an open question in the application of blind source separation techniques to transcriptomic data. Here we address the question of optimizing the number of statistically independent components in the analysis of transcriptomic data for reproducibility of the components in multiple runs of ICA (within the same or within varying effective dimensions) and in multiple independent datasets. To this end, we introduce ranking of independent components based on their stability in multiple ICA computation runs and define a distinguished number of components (Most Stable Transcriptome Dimension, MSTD) corresponding to the point of the qualitative change of the stability profile. Based on a large body of data, we demonstrate that a sufficient number of dimensions is required for biological interpretability of the ICA decomposition and that the most stable components with ranks below MSTD have more chances to be reproduced in independent studies compared to the less stable ones. At the same time, we show that a transcriptomics dataset can be reduced to a relatively high number of dimensions without losing the interpretability of ICA, even though higher dimensions give rise to components driven by small gene sets. We suggest a protocol of ICA application to transcriptomics data with a possibility of prioritizing components with respect to their reproducibility that strengthens the biological interpretation. Computing too few components (much less than MSTD) is not optimal for interpretability of the results. The components ranked within MSTD range have more chances to be reproduced in independent studies.

  7. Independent component model for cognitive functions of multiple subjects using [15O]H2O PET images.

    PubMed

    Park, Hae-Jeong; Kim, Jae-Jin; Youn, Tak; Lee, Dong Soo; Lee, Myung Chul; Kwon, Jun Soo

    2003-04-01

    An independent component model of multiple subjects' positron emission tomography (PET) images is proposed to explore the overall functional components involved in a task and to explain subject specific variations of metabolic activities under altered experimental conditions utilizing the Independent component analysis (ICA) concept. As PET images represent time-compressed activities of several cognitive components, we derived a mathematical model to decompose functional components from cross-sectional images based on two fundamental hypotheses: (1) all subjects share basic functional components that are common to subjects and spatially independent of each other in relation to the given experimental task, and (2) all subjects share common functional components throughout tasks which are also spatially independent. The variations of hemodynamic activities according to subjects or tasks can be explained by the variations in the usage weight of the functional components. We investigated the plausibility of the model using serial cognitive experiments of simple object perception, object recognition, two-back working memory, and divided attention of a syntactic process. We found that the independent component model satisfactorily explained the functional components involved in the task and discuss here the application of ICA in multiple subjects' PET images to explore the functional association of brain activations. Copyright 2003 Wiley-Liss, Inc.

  8. Functional connectivity analysis of the neural bases of emotion regulation: A comparison of independent component method with density-based k-means clustering method.

    PubMed

    Zou, Ling; Guo, Qian; Xu, Yi; Yang, Biao; Jiao, Zhuqing; Xiang, Jianbo

    2016-04-29

    Functional magnetic resonance imaging (fMRI) is an important tool in neuroscience for assessing connectivity and interactions between distant areas of the brain. To find and characterize the coherent patterns of brain activity as a means of identifying brain systems for the cognitive reappraisal of the emotion task, both density-based k-means clustering and independent component analysis (ICA) methods can be applied to characterize the interactions between brain regions involved in cognitive reappraisal of emotion. Our results reveal that compared with the ICA method, the density-based k-means clustering method provides a higher sensitivity of polymerization. In addition, it is more sensitive to those relatively weak functional connection regions. Thus, the study concludes that in the process of receiving emotional stimuli, the relatively obvious activation areas are mainly distributed in the frontal lobe, cingulum and near the hypothalamus. Furthermore, density-based k-means clustering method creates a more reliable method for follow-up studies of brain functional connectivity.

  9. [The application of the multidimensional statistical methods in the evaluation of the influence of atmospheric pollution on the population's health].

    PubMed

    Surzhikov, V D; Surzhikov, D V

    2014-01-01

    The search and measurement of causal relationships between exposure to air pollution and health state of the population is based on the system analysis and risk assessment to improve the quality of research. With this purpose there is applied the modern statistical analysis with the use of criteria of independence, principal component analysis and discriminate function analysis. As a result of analysis out of all atmospheric pollutants there were separated four main components: for diseases of the circulatory system main principal component is implied with concentrations of suspended solids, nitrogen dioxide, carbon monoxide, hydrogen fluoride, for the respiratory diseases the main c principal component is closely associated with suspended solids, sulfur dioxide and nitrogen dioxide, charcoal black. The discriminant function was shown to be used as a measure of the level of air pollution.

  10. Slow dynamics in protein fluctuations revealed by time-structure based independent component analysis: The case of domain motions

    NASA Astrophysics Data System (ADS)

    Naritomi, Yusuke; Fuchigami, Sotaro

    2011-02-01

    Protein dynamics on a long time scale was investigated using all-atom molecular dynamics (MD) simulation and time-structure based independent component analysis (tICA). We selected the lysine-, arginine-, ornithine-binding protein (LAO) as a target protein and focused on its domain motions in the open state. A MD simulation of the LAO in explicit water was performed for 600 ns, in which slow and large-amplitude domain motions of the LAO were observed. After extracting domain motions by rigid-body domain analysis, the tICA was applied to the obtained rigid-body trajectory, yielding slow modes of the LAO's domain motions in order of decreasing time scale. The slowest mode detected by the tICA represented not a closure motion described by a largest-amplitude mode determined by the principal component analysis but a twist motion with a time scale of tens of nanoseconds. The slow dynamics of the LAO were well described by only the slowest mode and were characterized by transitions between two basins. The results show that tICA is promising for describing and analyzing slow dynamics of proteins.

  11. Slow dynamics in protein fluctuations revealed by time-structure based independent component analysis: the case of domain motions.

    PubMed

    Naritomi, Yusuke; Fuchigami, Sotaro

    2011-02-14

    Protein dynamics on a long time scale was investigated using all-atom molecular dynamics (MD) simulation and time-structure based independent component analysis (tICA). We selected the lysine-, arginine-, ornithine-binding protein (LAO) as a target protein and focused on its domain motions in the open state. A MD simulation of the LAO in explicit water was performed for 600 ns, in which slow and large-amplitude domain motions of the LAO were observed. After extracting domain motions by rigid-body domain analysis, the tICA was applied to the obtained rigid-body trajectory, yielding slow modes of the LAO's domain motions in order of decreasing time scale. The slowest mode detected by the tICA represented not a closure motion described by a largest-amplitude mode determined by the principal component analysis but a twist motion with a time scale of tens of nanoseconds. The slow dynamics of the LAO were well described by only the slowest mode and were characterized by transitions between two basins. The results show that tICA is promising for describing and analyzing slow dynamics of proteins.

  12. Conformational states and folding pathways of peptides revealed by principal-independent component analyses.

    PubMed

    Nguyen, Phuong H

    2007-05-15

    Principal component analysis is a powerful method for projecting multidimensional conformational space of peptides or proteins onto lower dimensional subspaces in which the main conformations are present, making it easier to reveal the structures of molecules from e.g. molecular dynamics simulation trajectories. However, the identification of all conformational states is still difficult if the subspaces consist of more than two dimensions. This is mainly due to the fact that the principal components are not independent with each other, and states in the subspaces cannot be visualized. In this work, we propose a simple and fast scheme that allows one to obtain all conformational states in the subspaces. The basic idea is that instead of directly identifying the states in the subspace spanned by principal components, we first transform this subspace into another subspace formed by components that are independent of one other. These independent components are obtained from the principal components by employing the independent component analysis method. Because of independence between components, all states in this new subspace are defined as all possible combinations of the states obtained from each single independent component. This makes the conformational analysis much simpler. We test the performance of the method by analyzing the conformations of the glycine tripeptide and the alanine hexapeptide. The analyses show that our method is simple and quickly reveal all conformational states in the subspaces. The folding pathways between the identified states of the alanine hexapeptide are analyzed and discussed in some detail. 2007 Wiley-Liss, Inc.

  13. Translation of EEG Spatial Filters from Resting to Motor Imagery Using Independent Component Analysis

    PubMed Central

    Wang, Yijun; Wang, Yu-Te; Jung, Tzyy-Ping

    2012-01-01

    Electroencephalogram (EEG)-based brain-computer interfaces (BCIs) often use spatial filters to improve signal-to-noise ratio of task-related EEG activities. To obtain robust spatial filters, large amounts of labeled data, which are often expensive and labor-intensive to obtain, need to be collected in a training procedure before online BCI control. Several studies have recently developed zero-training methods using a session-to-session scenario in order to alleviate this problem. To our knowledge, a state-to-state translation, which applies spatial filters derived from one state to another, has never been reported. This study proposes a state-to-state, zero-training method to construct spatial filters for extracting EEG changes induced by motor imagery. Independent component analysis (ICA) was separately applied to the multi-channel EEG in the resting and the motor imagery states to obtain motor-related spatial filters. The resultant spatial filters were then applied to single-trial EEG to differentiate left- and right-hand imagery movements. On a motor imagery dataset collected from nine subjects, comparable classification accuracies were obtained by using ICA-based spatial filters derived from the two states (motor imagery: 87.0%, resting: 85.9%), which were both significantly higher than the accuracy achieved by using monopolar scalp EEG data (80.4%). The proposed method considerably increases the practicality of BCI systems in real-world environments because it is less sensitive to electrode misalignment across different sessions or days and does not require annotated pilot data to derive spatial filters. PMID:22666377

  14. Model-free fMRI group analysis using FENICA.

    PubMed

    Schöpf, V; Windischberger, C; Robinson, S; Kasess, C H; Fischmeister, F PhS; Lanzenberger, R; Albrecht, J; Kleemann, A M; Kopietz, R; Wiesmann, M; Moser, E

    2011-03-01

    Exploratory analysis of functional MRI data allows activation to be detected even if the time course differs from that which is expected. Independent Component Analysis (ICA) has emerged as a powerful approach, but current extensions to the analysis of group studies suffer from a number of drawbacks: they can be computationally demanding, results are dominated by technical and motion artefacts, and some methods require that time courses be the same for all subjects or that templates be defined to identify common components. We have developed a group ICA (gICA) method which is based on single-subject ICA decompositions and the assumption that the spatial distribution of signal changes in components which reflect activation is similar between subjects. This approach, which we have called Fully Exploratory Network Independent Component Analysis (FENICA), identifies group activation in two stages. ICA is performed on the single-subject level, then consistent components are identified via spatial correlation. Group activation maps are generated in a second-level GLM analysis. FENICA is applied to data from three studies employing a wide range of stimulus and presentation designs. These are an event-related motor task, a block-design cognition task and an event-related chemosensory experiment. In all cases, the group maps identified by FENICA as being the most consistent over subjects correspond to task activation. There is good agreement between FENICA results and regions identified in prior GLM-based studies. In the chemosensory task, additional regions are identified by FENICA and temporal concatenation ICA that we show is related to the stimulus, but exhibit a delayed response. FENICA is a fully exploratory method that allows activation to be identified without assumptions about temporal evolution, and isolates activation from other sources of signal fluctuation in fMRI. It has the advantage over other gICA methods that it is computationally undemanding, spotlights components relating to activation rather than artefacts, allows the use of familiar statistical thresholding through deployment of a higher level GLM analysis and can be applied to studies where the paradigm is different for all subjects. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Self-sustained vibrations in volcanic areas extracted by Independent Component Analysis: a review and new results

    NASA Astrophysics Data System (ADS)

    de Lauro, E.; de Martino, S.; Falanga, M.; Palo, M.

    2011-12-01

    We investigate the physical processes associated with volcanic tremor and explosions. A volcano is a complex system where a fluid source interacts with the solid edifice so generating seismic waves in a regime of low turbulence. Although the complex behavior escapes a simple universal description, the phases of activity generate stable (self-sustained) oscillations that can be described as a non-linear dynamical system of low dimensionality. So, the system requires to be investigated with non-linear methods able to individuate, decompose, and extract the main characteristics of the phenomenon. Independent Component Analysis (ICA), an entropy-based technique is a good candidate for this purpose. Here, we review the results of ICA applied to seismic signals acquired in some volcanic areas. We emphasize analogies and differences among the self-oscillations individuated in three cases: Stromboli (Italy), Erebus (Antarctica) and Volcán de Colima (Mexico). The waveforms of the extracted independent components are specific for each volcano, whereas the similarity can be ascribed to a very general common source mechanism involving the interaction between gas/magma flow and solid structures (the volcanic edifice). Indeed, chocking phenomena or inhomogeneities in the volcanic cavity can play the same role in generating self-oscillations as the languid and the reed do in musical instruments. The understanding of these background oscillations is relevant not only for explaining the volcanic source process and to make a forecast into the future, but sheds light on the physics of complex systems developing low turbulence.

  16. Development of Boundary Condition Independent Reduced Order Thermal Models using Proper Orthogonal Decomposition

    NASA Astrophysics Data System (ADS)

    Raghupathy, Arun; Ghia, Karman; Ghia, Urmila

    2008-11-01

    Compact Thermal Models (CTM) to represent IC packages has been traditionally developed using the DELPHI-based (DEvelopment of Libraries of PHysical models for an Integrated design) methodology. The drawbacks of this method are presented, and an alternative method is proposed. A reduced-order model that provides the complete thermal information accurately with less computational resources can be effectively used in system level simulations. Proper Orthogonal Decomposition (POD), a statistical method, can be used to reduce the order of the degree of freedom or variables of the computations for such a problem. POD along with the Galerkin projection allows us to create reduced-order models that reproduce the characteristics of the system with a considerable reduction in computational resources while maintaining a high level of accuracy. The goal of this work is to show that this method can be applied to obtain a boundary condition independent reduced-order thermal model for complex components. The methodology is applied to the 1D transient heat equation.

  17. Two-Stage Winch for Kites and Tethered Balloons or Blimps

    NASA Technical Reports Server (NTRS)

    Miles, Ted; Bland, Geoff

    2011-01-01

    A winch system provides a method for launch and recovery capabilities for kites and tethered blimps or balloons. Low power consumption is a key objective, as well as low weight for portability. This is accomplished by decoupling the tether-line storage and wind ing/ unwinding functions, and providing tailored and efficient mechanisms for each. The components of this system include rotational power input devices such as electric motors or other apparatus, line winding/unwinding reel(s), line storage reel(s), and independent drive trains. Power is applied to the wind/unwind reels to transport the tether line. Power is also applied to a line storage reel, from either the wind/unwind power source, the wind/unwind reel itself, or separate power source. The speeds of the two reels are synchronized, but not dependent on each other. This is accomplished via clutch mechanisms, variable transmissions, or independent motor controls. The speed of the storage reel is modulated as the effective diameter of the reel changes with line accumulation.

  18. ICA model order selection of task co-activation networks.

    PubMed

    Ray, Kimberly L; McKay, D Reese; Fox, Peter M; Riedel, Michael C; Uecker, Angela M; Beckmann, Christian F; Smith, Stephen M; Fox, Peter T; Laird, Angela R

    2013-01-01

    Independent component analysis (ICA) has become a widely used method for extracting functional networks in the brain during rest and task. Historically, preferred ICA dimensionality has widely varied within the neuroimaging community, but typically varies between 20 and 100 components. This can be problematic when comparing results across multiple studies because of the impact ICA dimensionality has on the topology of its resultant components. Recent studies have demonstrated that ICA can be applied to peak activation coordinates archived in a large neuroimaging database (i.e., BrainMap Database) to yield whole-brain task-based co-activation networks. A strength of applying ICA to BrainMap data is that the vast amount of metadata in BrainMap can be used to quantitatively assess tasks and cognitive processes contributing to each component. In this study, we investigated the effect of model order on the distribution of functional properties across networks as a method for identifying the most informative decompositions of BrainMap-based ICA components. Our findings suggest dimensionality of 20 for low model order ICA to examine large-scale brain networks, and dimensionality of 70 to provide insight into how large-scale networks fractionate into sub-networks. We also provide a functional and organizational assessment of visual, motor, emotion, and interoceptive task co-activation networks as they fractionate from low to high model-orders.

  19. ICA model order selection of task co-activation networks

    PubMed Central

    Ray, Kimberly L.; McKay, D. Reese; Fox, Peter M.; Riedel, Michael C.; Uecker, Angela M.; Beckmann, Christian F.; Smith, Stephen M.; Fox, Peter T.; Laird, Angela R.

    2013-01-01

    Independent component analysis (ICA) has become a widely used method for extracting functional networks in the brain during rest and task. Historically, preferred ICA dimensionality has widely varied within the neuroimaging community, but typically varies between 20 and 100 components. This can be problematic when comparing results across multiple studies because of the impact ICA dimensionality has on the topology of its resultant components. Recent studies have demonstrated that ICA can be applied to peak activation coordinates archived in a large neuroimaging database (i.e., BrainMap Database) to yield whole-brain task-based co-activation networks. A strength of applying ICA to BrainMap data is that the vast amount of metadata in BrainMap can be used to quantitatively assess tasks and cognitive processes contributing to each component. In this study, we investigated the effect of model order on the distribution of functional properties across networks as a method for identifying the most informative decompositions of BrainMap-based ICA components. Our findings suggest dimensionality of 20 for low model order ICA to examine large-scale brain networks, and dimensionality of 70 to provide insight into how large-scale networks fractionate into sub-networks. We also provide a functional and organizational assessment of visual, motor, emotion, and interoceptive task co-activation networks as they fractionate from low to high model-orders. PMID:24339802

  20. Comparison of multi-subject ICA methods for analysis of fMRI data

    PubMed Central

    Erhardt, Erik Barry; Rachakonda, Srinivas; Bedrick, Edward; Allen, Elena; Adali, Tülay; Calhoun, Vince D.

    2010-01-01

    Spatial independent component analysis (ICA) applied to functional magnetic resonance imaging (fMRI) data identifies functionally connected networks by estimating spatially independent patterns from their linearly mixed fMRI signals. Several multi-subject ICA approaches estimating subject-specific time courses (TCs) and spatial maps (SMs) have been developed, however there has not yet been a full comparison of the implications of their use. Here, we provide extensive comparisons of four multi-subject ICA approaches in combination with data reduction methods for simulated and fMRI task data. For multi-subject ICA, the data first undergo reduction at the subject and group levels using principal component analysis (PCA). Comparisons of subject-specific, spatial concatenation, and group data mean subject-level reduction strategies using PCA and probabilistic PCA (PPCA) show that computationally intensive PPCA is equivalent to PCA, and that subject-specific and group data mean subject-level PCA are preferred because of well-estimated TCs and SMs. Second, aggregate independent components are estimated using either noise free ICA or probabilistic ICA (PICA). Third, subject-specific SMs and TCs are estimated using back-reconstruction. We compare several direct group ICA (GICA) back-reconstruction approaches (GICA1-GICA3) and an indirect back-reconstruction approach, spatio-temporal regression (STR, or dual regression). Results show the earlier group ICA (GICA1) approximates STR, however STR has contradictory assumptions and may show mixed-component artifacts in estimated SMs. Our evidence-based recommendation is to use GICA3, introduced here, with subject-specific PCA and noise-free ICA, providing the most robust and accurate estimated SMs and TCs in addition to offering an intuitive interpretation. PMID:21162045

  1. Age-associated patterns in gray matter volume, cerebral perfusion and BOLD oscillations in children and adolescents.

    PubMed

    Bray, Signe

    2017-05-01

    Healthy brain development involves changes in brain structure and function that are believed to support cognitive maturation. However, understanding how structural changes such as grey matter thinning relate to functional changes is challenging. To gain insight into structure-function relationships in development, the present study took a data driven approach to define age-related patterns of variation in gray matter volume (GMV), cerebral blood flow (CBF) and blood-oxygen level dependent (BOLD) signal variation (fractional amplitude of low-frequency fluctuations; fALFF) in 59 healthy children aged 7-18 years, and examined relationships between modalities. Principal components analysis (PCA) was applied to each modality in parallel, and participant scores for the top components were assessed for age associations. We found that decompositions of CBF, GMV and fALFF all included components for which scores were significantly associated with age. The dominant patterns in GMV and CBF showed significant (GMV) or trend level (CBF) associations with age and a strong spatial overlap, driven by increased signal intensity in default mode network (DMN) regions. GMV, CBF and fALFF additionally showed components accounting for 3-5% of variability with significant age associations. However, these patterns were relatively spatially independent, with small-to-moderate overlap between modalities. Independence of age effects was further demonstrated by correlating individual subject maps between modalities: CBF was significantly less correlated with GMV and fALFF in older children relative to younger. These spatially independent effects of age suggest that the parallel decline observed in global GMV and CBF may not reflect spatially synchronized processes. Hum Brain Mapp 38:2398-2407, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Investigation of digital encoding techniques for television transmission

    NASA Technical Reports Server (NTRS)

    Schilling, D. L.

    1983-01-01

    Composite color television signals are sampled at four times the color subcarrier and transformed using intraframe two dimensional Walsh functions. It is shown that by properly sampling a composite color signal and employing a Walsh transform the YIQ time signals which sum to produce the composite color signal can be represented, in the transform domain, by three component signals in space. By suitably zonal quantizing the transform coefficients, the YIQ signals can be processed independently to achieve data compression and obtain the same results as component coding. Computer simulations of three bandwidth compressors operating at 1.09, 1.53 and 1.8 bits/ sample are presented. The above results can also be applied to the PAL color system.

  3. One-dimensional pinning behavior in Co-doped BaFe2As2 thin films

    NASA Astrophysics Data System (ADS)

    Mishev, V.; Seeböck, W.; Eisterer, M.; Iida, K.; Kurth, F.; Hänisch, J.; Reich, E.; Holzapfel, B.

    2013-12-01

    Angle-resolved transport measurements revealed that planar defects dominate flux pinning in the investigated Co-doped BaFe2As2 thin film. For any given field and temperature, the critical current depends only on the angle between the crystallographic c-axis and the applied magnetic field but not on the angle between the current and the field. The critical current is therefore limited only by the in-plane component of the Lorentz force but independent of the out-of-plane component, which is entirely balanced by the pinning force exerted by the planar defects. This one-dimensional pinning behavior shows similarities and differences to intrinsic pinning in layered superconductors.

  4. Nonlinear analysis of heart rate variability within independent frequency components during the sleep-wake cycle.

    PubMed

    Vigo, Daniel E; Dominguez, Javier; Guinjoan, Salvador M; Scaramal, Mariano; Ruffa, Eduardo; Solernó, Juan; Siri, Leonardo Nicola; Cardinali, Daniel P

    2010-04-19

    Heart rate variability (HRV) is a complex signal that results from the contribution of different sources of oscillation related to the autonomic nervous system activity. Although linear analysis of HRV has been applied to sleep studies, the nonlinear dynamics of HRV underlying frequency components during sleep is less known. We conducted a study to evaluate nonlinear HRV within independent frequency components in wake status, slow-wave sleep (SWS, stages III or IV of non-rapid eye movement sleep), and rapid-eye-movement sleep (REM). The sample included 10 healthy adults. Polysomnography was performed to detect sleep stages. HRV was studied globally during each phase and then very low frequency (VLF), low frequency (LF) and high frequency (HF) components were separated by means of the wavelet transform algorithm. HRV nonlinear dynamics was estimated with sample entropy (SampEn). A higher SampEn was found when analyzing global variability (Wake: 1.53+/-0.28, SWS: 1.76+/-0.32, REM: 1.45+/-0.19, p=0.005) and VLF variability (Wake: 0.13+/-0.03, SWS: 0.19+/-0.03, REM: 0.14+/-0.03, p<0.001) at SWS. REM was similar to wake status regarding nonlinear HRV. We propose nonlinear HRV is a useful index of the autonomic activity that characterizes the different sleep-wake cycle stages. 2009 Elsevier B.V. All rights reserved.

  5. Simultaneous and quasi-independent strain and temperature sensor based on microstructured optical fiber

    NASA Astrophysics Data System (ADS)

    Lopez-Aldaba, A.; Auguste, J.-L.; Jamier, R.; Roy, P.; Lopez-Amo, M.

    2017-04-01

    In this paper, a new sensor system for simultaneous and quasi-independent strain and temperature measurements is presented. The interrogation of the sensing head has been carried out by monitoring the FFT phase variations of two of the microstructured optical fiber (MOF) cavity interference frequencies. This method is independent of the signal amplitude and also avoids the need to track the wavelength evolution in the spectrum, which can be a handicap when there are multiple interference frequency components with different sensitivities. The sensor is operated within a range of temperature of 30°C-75°C, and 380μɛ of maximum strain were applied; being the sensitivities achieved of 127.5pm/°C and -19.1pm/μɛ respectively. Because the system uses an optical interrogator as unique active element, the system presents a cost-effective feature.

  6. Preferential sampling and Bayesian geostatistics: Statistical modeling and examples.

    PubMed

    Cecconi, Lorenzo; Grisotto, Laura; Catelan, Dolores; Lagazio, Corrado; Berrocal, Veronica; Biggeri, Annibale

    2016-08-01

    Preferential sampling refers to any situation in which the spatial process and the sampling locations are not stochastically independent. In this paper, we present two examples of geostatistical analysis in which the usual assumption of stochastic independence between the point process and the measurement process is violated. To account for preferential sampling, we specify a flexible and general Bayesian geostatistical model that includes a shared spatial random component. We apply the proposed model to two different case studies that allow us to highlight three different modeling and inferential aspects of geostatistical modeling under preferential sampling: (1) continuous or finite spatial sampling frame; (2) underlying causal model and relevant covariates; and (3) inferential goals related to mean prediction surface or prediction uncertainty. © The Author(s) 2016.

  7. PWC-ICA: A Method for Stationary Ordered Blind Source Separation with Application to EEG.

    PubMed

    Ball, Kenneth; Bigdely-Shamlo, Nima; Mullen, Tim; Robbins, Kay

    2016-01-01

    Independent component analysis (ICA) is a class of algorithms widely applied to separate sources in EEG data. Most ICA approaches use optimization criteria derived from temporal statistical independence and are invariant with respect to the actual ordering of individual observations. We propose a method of mapping real signals into a complex vector space that takes into account the temporal order of signals and enforces certain mixing stationarity constraints. The resulting procedure, which we call Pairwise Complex Independent Component Analysis (PWC-ICA), performs the ICA in a complex setting and then reinterprets the results in the original observation space. We examine the performance of our candidate approach relative to several existing ICA algorithms for the blind source separation (BSS) problem on both real and simulated EEG data. On simulated data, PWC-ICA is often capable of achieving a better solution to the BSS problem than AMICA, Extended Infomax, or FastICA. On real data, the dipole interpretations of the BSS solutions discovered by PWC-ICA are physically plausible, are competitive with existing ICA approaches, and may represent sources undiscovered by other ICA methods. In conjunction with this paper, the authors have released a MATLAB toolbox that performs PWC-ICA on real, vector-valued signals.

  8. PWC-ICA: A Method for Stationary Ordered Blind Source Separation with Application to EEG

    PubMed Central

    Bigdely-Shamlo, Nima; Mullen, Tim; Robbins, Kay

    2016-01-01

    Independent component analysis (ICA) is a class of algorithms widely applied to separate sources in EEG data. Most ICA approaches use optimization criteria derived from temporal statistical independence and are invariant with respect to the actual ordering of individual observations. We propose a method of mapping real signals into a complex vector space that takes into account the temporal order of signals and enforces certain mixing stationarity constraints. The resulting procedure, which we call Pairwise Complex Independent Component Analysis (PWC-ICA), performs the ICA in a complex setting and then reinterprets the results in the original observation space. We examine the performance of our candidate approach relative to several existing ICA algorithms for the blind source separation (BSS) problem on both real and simulated EEG data. On simulated data, PWC-ICA is often capable of achieving a better solution to the BSS problem than AMICA, Extended Infomax, or FastICA. On real data, the dipole interpretations of the BSS solutions discovered by PWC-ICA are physically plausible, are competitive with existing ICA approaches, and may represent sources undiscovered by other ICA methods. In conjunction with this paper, the authors have released a MATLAB toolbox that performs PWC-ICA on real, vector-valued signals. PMID:27340397

  9. Adaptive kernel independent component analysis and UV spectrometry applied to characterize the procedure for processing prepared rhubarb roots.

    PubMed

    Wang, Guoqing; Hou, Zhenyu; Peng, Yang; Wang, Yanjun; Sun, Xiaoli; Sun, Yu-an

    2011-11-07

    By determination of the number of absorptive chemical components (ACCs) in mixtures using median absolute deviation (MAD) analysis and extraction of spectral profiles of ACCs using kernel independent component analysis (KICA), an adaptive KICA (AKICA) algorithm was proposed. The proposed AKICA algorithm was used to characterize the procedure for processing prepared rhubarb roots by resolution of the measured mixed raw UV spectra of the rhubarb samples that were collected at different steaming intervals. The results show that the spectral features of ACCs in the mixtures can be directly estimated without chemical and physical pre-separation and other prior information. The estimated three independent components (ICs) represent different chemical components in the mixtures, which are mainly polysaccharides (IC1), tannin (IC2), and anthraquinone glycosides (IC3). The variations of the relative concentrations of the ICs can account for the chemical and physical changes during the processing procedure: IC1 increases significantly before the first 5 h, and is nearly invariant after 6 h; IC2 has no significant changes or is slightly decreased during the processing procedure; IC3 decreases significantly before the first 5 h and decreases slightly after 6 h. The changes of IC1 can explain why the colour became black and darkened during the processing procedure, and the changes of IC3 can explain why the processing procedure can reduce the bitter and dry taste of the rhubarb roots. The endpoint of the processing procedure can be determined as 5-6 h, when the increasing or decreasing trends of the estimated ICs are insignificant. The AKICA-UV method provides an alternative approach for the characterization of the processing procedure of rhubarb roots preparation, and provides a novel way for determination of the endpoint of the traditional Chinese medicine (TCM) processing procedure by inspection of the change trends of the ICs.

  10. Fourier Transform Infrared Spectroscopy (FTIR) and Multivariate Analysis for Identification of Different Vegetable Oils Used in Biodiesel Production

    PubMed Central

    Mueller, Daniela; Ferrão, Marco Flôres; Marder, Luciano; da Costa, Adilson Ben; de Cássia de Souza Schneider, Rosana

    2013-01-01

    The main objective of this study was to use infrared spectroscopy to identify vegetable oils used as raw material for biodiesel production and apply multivariate analysis to the data. Six different vegetable oil sources—canola, cotton, corn, palm, sunflower and soybeans—were used to produce biodiesel batches. The spectra were acquired by Fourier transform infrared spectroscopy using a universal attenuated total reflectance sensor (FTIR-UATR). For the multivariate analysis principal component analysis (PCA), hierarchical cluster analysis (HCA), interval principal component analysis (iPCA) and soft independent modeling of class analogy (SIMCA) were used. The results indicate that is possible to develop a methodology to identify vegetable oils used as raw material in the production of biodiesel by FTIR-UATR applying multivariate analysis. It was also observed that the iPCA found the best spectral range for separation of biodiesel batches using FTIR-UATR data, and with this result, the SIMCA method classified 100% of the soybean biodiesel samples. PMID:23539030

  11. Decision-making competence in younger and older adults: which cognitive abilities contribute to the application of decision rules?

    PubMed

    Rosi, Alessia; Bruine de Bruin, Wändi; Del Missier, Fabio; Cavallini, Elena; Russo, Riccardo

    2017-12-28

    Older adults perform worse than younger adults when applying decision rules to choose between options that vary along multiple attributes. Although previous studies have shown that general fluid cognitive abilities contribute to the accurate application of decision rules, relatively little is known about which specific cognitive abilities play the most important role. We examined the independent roles of working memory, verbal fluency, semantic knowledge, and components of executive functioning. We found that age-related decline in applying decision rules was statistically mediated by age-related decline in working memory and verbal fluency. Our results have implications for theories of aging and decision-making.

  12. Detection of independent functional networks during music listening using electroencephalogram and sLORETA-ICA.

    PubMed

    Jäncke, Lutz; Alahmadi, Nsreen

    2016-04-13

    The measurement of brain activation during music listening is a topic that is attracting increased attention from many researchers. Because of their high spatial accuracy, functional MRI measurements are often used for measuring brain activation in the context of music listening. However, this technique faces the issues of contaminating scanner noise and an uncomfortable experimental environment. Electroencephalogram (EEG), however, is a neural registration technique that allows the measurement of neurophysiological activation in silent and more comfortable experimental environments. Thus, it is optimal for recording brain activations during pleasant music stimulation. Using a new mathematical approach to calculate intracortical independent components (sLORETA-IC) on the basis of scalp-recorded EEG, we identified specific intracortical independent components during listening of a musical piece and scales, which differ substantially from intracortical independent components calculated from the resting state EEG. Most intracortical independent components are located bilaterally in perisylvian brain areas known to be involved in auditory processing and specifically in music perception. Some intracortical independent components differ between the music and scale listening conditions. The most prominent difference is found in the anterior part of the perisylvian brain region, with stronger activations seen in the left-sided anterior perisylvian regions during music listening, most likely indicating semantic processing during music listening. A further finding is that the intracortical independent components obtained for the music and scale listening are most prominent in higher frequency bands (e.g. beta-2 and beta-3), whereas the resting state intracortical independent components are active in lower frequency bands (alpha-1 and theta). This new technique for calculating intracortical independent components is able to differentiate independent neural networks associated with music and scale listening. Thus, this tool offers new opportunities for studying neural activations during music listening using the silent and more convenient EEG technology.

  13. Closed-form expressions of some stochastic adapting equations for nonlinear adaptive activation function neurons.

    PubMed

    Fiori, Simone

    2003-12-01

    In recent work, we introduced nonlinear adaptive activation function (FAN) artificial neuron models, which learn their activation functions in an unsupervised way by information-theoretic adapting rules. We also applied networks of these neurons to some blind signal processing problems, such as independent component analysis and blind deconvolution. The aim of this letter is to study some fundamental aspects of FAN units' learning by investigating the properties of the associated learning differential equation systems.

  14. Removing left-right asymmetry in a Sagnac interferometer applied to cancel its reflectance dependence on birefringence.

    PubMed

    Golub, Ilya; Exir, Hourieh

    2013-05-01

    We present a left-right symmetry restoring method, which removes the detrimental birefringence in the single-mode fiber Sagnac interferometer, achieved with the aid of a half waveplate oriented at a specific angle. We show theoretically and demonstrate experimentally that adding a π-shift between clockwise and counterclockwise propagating, horizontally (in fiber loop plane) polarized field components, the Sagnac loop mirror's reflection becomes independent on birefringence of an element placed in the loop.

  15. Rotation of EOFs by the Independent Component Analysis: Towards A Solution of the Mixing Problem in the Decomposition of Geophysical Time Series

    NASA Technical Reports Server (NTRS)

    Aires, Filipe; Rossow, William B.; Chedin, Alain; Hansen, James E. (Technical Monitor)

    2001-01-01

    The Independent Component Analysis is a recently developed technique for component extraction. This new method requires the statistical independence of the extracted components, a stronger constraint that uses higher-order statistics, instead of the classical decorrelation, a weaker constraint that uses only second-order statistics. This technique has been used recently for the analysis of geophysical time series with the goal of investigating the causes of variability in observed data (i.e. exploratory approach). We demonstrate with a data simulation experiment that, if initialized with a Principal Component Analysis, the Independent Component Analysis performs a rotation of the classical PCA (or EOF) solution. This rotation uses no localization criterion like other Rotation Techniques (RT), only the global generalization of decorrelation by statistical independence is used. This rotation of the PCA solution seems to be able to solve the tendency of PCA to mix several physical phenomena, even when the signal is just their linear sum.

  16. Independent life history evolution between generations of bivoltine species: a case study of cyclical parthenogenesis.

    PubMed

    Hood, Glen R; Ott, James R

    2017-04-01

    Successive generations of bi- and multivoltine species encounter differing biotic and abiotic environments intra-annually. The question of whether selection can independently adjust the relationship between body size and components of reproductive effort within successive generations in response to generation-specific environmental variation is applicable to a diversity of taxa. Herein, we develop a conceptual framework that illustrates increasingly independent life history adjustments between successive generations of taxa exhibiting complex life cycles. We apply this framework to the reproductive biology of the gall-forming insect, Belonocnema treatae (Hymenoptera: Cynipidae). This bivoltine species expresses cyclical parthenogenesis in which alternating sexual and asexual generations develop in different seasons and different environments. We tested the hypotheses that ecological divergence between the alternate generations is accompanied by generational differences in body size, egg size, and egg number and by changes in the relationships between body size and these components of reproductive effort. Increased potential reproductive effort of sexual generation B. treatae is attained by increased body size and egg number (with no trade-off between egg number and egg size) and by a significant increase in the slope of the relationship between body size and potential fecundity. These generation-specific relationships, interpreted in the context of the model framework, suggest that within each generation selection has independently molded the relationships relating body size to potential fecundity and potential reproductive effort in B. treatae. The conceptual framework is broadly applicable to comparisons involving the alternating generations of bi- and multivoltine species.

  17. Rambling and trembling in response to body loading.

    PubMed

    Tahayor, Behdad; Riley, Zachary A; Mahmoudian, Armaghan; Koceja, David M; Hong, Siang Lee

    2012-04-01

    Various studies have suggested that postural sway is controlled by at least two subsystems. Rambling-Trembling analysis is a widely accepted methodology to dissociate the signals generated by these two hypothetical subsystems. The core assumption of this method is based on the equilibrium point hypothesis which suggests that the central nervous system preserves upright standing by transiently shifting the center of pressure (COP) from one equilibrium point to another. The trajectory generated by this shifting is referred to as rambling and its difference from the original COP signal is referred to as trembling. In this study we showed that these two components of COP are differentially affected when standing with external loads. Using Detrended Fluctuation analysis, we compared the pattern of these two signals in different configurations of body loading. Our findings suggest that by applying an external load, the dynamics of the trembling component is altered independently of the area of postural sway and also independently of the rambling component. The dynamics of rambling changed only during the backloading condition in which the postural sway area also substantially increased. It can be suggested that during loaded standing, the trembling mechanism (which is suggested to be activated by peripheral mechanisms and reflexes) is altered without affecting the central influence on the shifts of the equilibrium point.

  18. Unconditionally energy stable time stepping scheme for Cahn–Morral equation: Application to multi-component spinodal decomposition and optimal space tiling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tavakoli, Rouhollah, E-mail: rtavakoli@sharif.ir

    An unconditionally energy stable time stepping scheme is introduced to solve Cahn–Morral-like equations in the present study. It is constructed based on the combination of David Eyre's time stepping scheme and Schur complement approach. Although the presented method is general and independent of the choice of homogeneous free energy density function term, logarithmic and polynomial energy functions are specifically considered in this paper. The method is applied to study the spinodal decomposition in multi-component systems and optimal space tiling problems. A penalization strategy is developed, in the case of later problem, to avoid trivial solutions. Extensive numerical experiments demonstrate themore » success and performance of the presented method. According to the numerical results, the method is convergent and energy stable, independent of the choice of time stepsize. Its MATLAB implementation is included in the appendix for the numerical evaluation of algorithm and reproduction of the presented results. -- Highlights: •Extension of Eyre's convex–concave splitting scheme to multiphase systems. •Efficient solution of spinodal decomposition in multi-component systems. •Efficient solution of least perimeter periodic space partitioning problem. •Developing a penalization strategy to avoid trivial solutions. •Presentation of MATLAB implementation of the introduced algorithm.« less

  19. A Velocity Distribution Model for Steady State Heat Transfer

    NASA Technical Reports Server (NTRS)

    Hall, Eric B.

    1996-01-01

    Consider a box that is filled with an ideal gas and that is aligned along Cartesian coordinates (x, y, z) having until length in the 'y' direction and unspecified length in the 'x' and 'z' directions. Heat is applied uniformly over the 'hot' end of the box (y = 1) and is removed uniformly over the 'cold' end (y = O) at a constant rate such that the ends of the box are maintained at temperatures T(sub 0) at y = O and T(sub 1) at y = 1. Let U, V, and W denote the respective velocity components of a molecule inside the box selected at some random time and at some location (x, y, z). If T(sub 0) = T(sub 1), then U, Y, and W are mutually independent and Gaussian, each with mean zero and variance RT(sub 0), where R is the gas constant. When T(sub 0) does not equal T(sub 1) the velocity components are not independent and are not Gaussian. Our objective is to characterize the joint distribution of the velocity components U, Y, and W as a function of y, and, in particular, to characterize the distribution of V given y. It is hoped that this research will lead to an increased physical understanding of the nature of turbulence.

  20. Applying independent component analysis to detect silent speech in magnetic resonance imaging signals.

    PubMed

    Abe, Kazuhiro; Takahashi, Toshimitsu; Takikawa, Yoriko; Arai, Hajime; Kitazawa, Shigeru

    2011-10-01

    Independent component analysis (ICA) can be usefully applied to functional imaging studies to evaluate the spatial extent and temporal profile of task-related brain activity. It requires no a priori assumptions about the anatomical areas that are activated or the temporal profile of the activity. We applied spatial ICA to detect a voluntary but hidden response of silent speech. To validate the method against a standard model-based approach, we used the silent speech of a tongue twister as a 'Yes' response to single questions that were delivered at given times. In the first task, we attempted to estimate one number that was chosen by a participant from 10 possibilities. In the second task, we increased the possibilities to 1000. In both tasks, spatial ICA was as effective as the model-based method for determining the number in the subject's mind (80-90% correct per digit), but spatial ICA outperformed the model-based method in terms of time, especially in the 1000-possibility task. In the model-based method, calculation time increased by 30-fold, to 15 h, because of the necessity of testing 1000 possibilities. In contrast, the calculation time for spatial ICA remained as short as 30 min. In addition, spatial ICA detected an unexpected response that occurred by mistake. This advantage was validated in a third task, with 13 500 possibilities, in which participants had the freedom to choose when to make one of four responses. We conclude that spatial ICA is effective for detecting the onset of silent speech, especially when it occurs unexpectedly. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  1. Long-term meteorologically independent trend analysis of ozone air quality at an urban site in the greater Houston area.

    PubMed

    Botlaguduru, Venkata S V; Kommalapati, Raghava R; Huque, Ziaul

    2018-04-19

    The Houston-Galveston-Brazoria (HGB) area of Texas has a history of ozone exceedances and is currently classified under moderate nonattainment status for the 2008 8-hr ozone standard of 75 ppb. The HGB area is characterized by intense solar radiation, high temperature, and humidity, which influence day-to-day variations in ozone concentrations. Long-term air quality trends independent of meteorological influence need to be constructed for ascertaining the effectiveness of air quality management in this area. The Kolmogorov-Zurbenko (KZ) filter technique used to separate different scales of motion in a time series, is applied in the current study for maximum daily 8-hr (MDA8) ozone concentrations at an urban site (EPA AQS Site ID: 48-201-0024, Aldine) in the HGB area. This site located within 10 miles of downtown Houston and the George Bush Intercontinental Airport, was selected for developing long-term meteorologically independent MDA8 ozone trends for the years 1990-2016. Results from this study indicate a consistent decrease in meteorologically independent MDA8 ozone between 2000-2016. This pattern could be partially attributed to a reduction in underlying NO X emissions, particularly that of lowering nitrogen dioxide (NO 2 ) levels, and a decrease in the release of highly reactive volatile organic compounds (HRVOC). Results also suggest solar radiation to be most strongly correlated to ozone, with temperature being the secondary meteorological control variable. Relative humidity and wind speed have tertiary influence at this site. This study observed that meteorological variability accounts for a high of 61% variability in baseline ozone (low-frequency component, sum of long-term and seasonal components), while 64% of the change in long-term MDA8 ozone post-2000 could be attributed to NO X emissions reduction. Long-term MDA8 ozone trend component was estimated to be decreasing at a linear rate of 0.412 ± 0.007 ppb/yr for the years 2000-2016, and 0.155 ± 0.005 ppb/yr for the overall period of 1990-2016. Implications Statement The effectiveness of air emission controls can be evaluated by developing long-term air quality trends independent of meteorological influences. KZ filter technique is a well-established method to separate an air quality time-series into: short-term, seasonal and long-term components. This paper applies the KZ filter technique to MDA8 ozone data between 1990-2016 at an urban site in the Greater Houston area and estimates the variance accounted for, by the primary meteorological control variables. Estimates for linear trends of MDA8 ozone are calculated and underlying causes are investigated to provide a guidance for further investigation into air quality management of the Greater Houston Area.

  2. Application of neural networks with novel independent component analysis methodologies to a Prussian blue modified glassy carbon electrode array.

    PubMed

    Wang, Liang; Yang, Die; Fang, Cheng; Chen, Zuliang; Lesniewski, Peter J; Mallavarapu, Megharaj; Naidu, Ravendra

    2015-01-01

    Sodium potassium absorption ratio (SPAR) is an important measure of agricultural water quality, wherein four exchangeable cations (K(+), Na(+), Ca(2+) and Mg(2+)) should be simultaneously determined. An ISE-array is suitable for this application because its simplicity, rapid response characteristics and lower cost. However, cross-interferences caused by the poor selectivity of ISEs need to be overcome using multivariate chemometric methods. In this paper, a solid contact ISE array, based on a Prussian blue modified glassy carbon electrode (PB-GCE), was applied with a novel chemometric strategy. One of the most popular independent component analysis (ICA) methods, the fast fixed-point algorithm for ICA (fastICA), was implemented by the genetic algorithm (geneticICA) to avoid the local maxima problem commonly observed with fastICA. This geneticICA can be implemented as a data preprocessing method to improve the prediction accuracy of the Back-propagation neural network (BPNN). The ISE array system was validated using 20 real irrigation water samples from South Australia, and acceptable prediction accuracies were obtained. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Multiple-component Decomposition from Millimeter Single-channel Data

    NASA Astrophysics Data System (ADS)

    Rodríguez-Montoya, Iván; Sánchez-Argüelles, David; Aretxaga, Itziar; Bertone, Emanuele; Chávez-Dagostino, Miguel; Hughes, David H.; Montaña, Alfredo; Wilson, Grant W.; Zeballos, Milagros

    2018-03-01

    We present an implementation of a blind source separation algorithm to remove foregrounds off millimeter surveys made by single-channel instruments. In order to make possible such a decomposition over single-wavelength data, we generate levels of artificial redundancy, then perform a blind decomposition, calibrate the resulting maps, and lastly measure physical information. We simulate the reduction pipeline using mock data: atmospheric fluctuations, extended astrophysical foregrounds, and point-like sources, but we apply the same methodology to the Aztronomical Thermal Emission Camera/ASTE survey of the Great Observatories Origins Deep Survey–South (GOODS-S). In both applications, our technique robustly decomposes redundant maps into their underlying components, reducing flux bias, improving signal-to-noise ratio, and minimizing information loss. In particular, GOODS-S is decomposed into four independent physical components: one of them is the already-known map of point sources, two are atmospheric and systematic foregrounds, and the fourth component is an extended emission that can be interpreted as the confusion background of faint sources.

  4. The evolution of complex life cycles when parasite mortality is size- or time-dependent.

    PubMed

    Ball, M A; Parker, G A; Chubb, J C

    2008-07-07

    In complex cycles, helminth larvae in their intermediate hosts typically grow to a fixed size. We define this cessation of growth before transmission to the next host as growth arrest at larval maturity (GALM). Where the larval parasite controls its own growth in the intermediate host, in order that growth eventually arrests, some form of size- or time-dependent increase in its death rate must apply. In contrast, the switch from growth to sexual reproduction in the definitive host can be regulated by constant (time-independent) mortality as in standard life history theory. We here develop a step-wise model for the evolution of complex helminth life cycles through trophic transmission, based on the approach of Parker et al. [2003a. Evolution of complex life cycles in helminth parasites. Nature London 425, 480-484], but which includes size- or time-dependent increase in mortality rate. We assume that the growing larval parasite has two components to its death rate: (i) a constant, size- or time-independent component, and (ii) a component that increases with size or time in the intermediate host. When growth stops at larval maturity, there is a discontinuous change in mortality to a constant (time-independent) rate. This model generates the same optimal size for the parasite larva at GALM in the intermediate host whether the evolutionary approach to the complex life cycle is by adding a new host above the original definitive host (upward incorporation), or below the original definitive host (downward incorporation). We discuss some unexplored problems for cases where complex life cycles evolve through trophic transmission.

  5. ELECTRONIC BIVANE WIND DIRECTION INDICATOR

    DOEpatents

    Moses, H.

    1961-05-01

    An apparatus is described for determining and recording three dimensional wind vectors. The apparatus comprises a rotatably mounted azimuthal wind component sensing head and an elevational wind component sensing head mounted to the azimuthal head and adapted to rotate therewith in the azimuthal plane and independently in the elevational plane. A heat source and thermocouples disposed thereabout are mounted within each of the sensing heads, the thermocouples providing electrical signals responsive to the temperature differential created by the passage of air through the sensing tuhes. The thermocouple signals are applied to drive mechanisms which position the sensing heads to a null wind position. Recording means are provided responsive to positional data from the drive mechanisms which are a measurement of the three dimensional wind vectors.

  6. Kinetic Monte Carlo Method for Rule-based Modeling of Biochemical Networks

    PubMed Central

    Yang, Jin; Monine, Michael I.; Faeder, James R.; Hlavacek, William S.

    2009-01-01

    We present a kinetic Monte Carlo method for simulating chemical transformations specified by reaction rules, which can be viewed as generators of chemical reactions, or equivalently, definitions of reaction classes. A rule identifies the molecular components involved in a transformation, how these components change, conditions that affect whether a transformation occurs, and a rate law. The computational cost of the method, unlike conventional simulation approaches, is independent of the number of possible reactions, which need not be specified in advance or explicitly generated in a simulation. To demonstrate the method, we apply it to study the kinetics of multivalent ligand-receptor interactions. We expect the method will be useful for studying cellular signaling systems and other physical systems involving aggregation phenomena. PMID:18851068

  7. A three-way parallel ICA approach to analyze links among genetics, brain structure and brain function.

    PubMed

    Vergara, Victor M; Ulloa, Alvaro; Calhoun, Vince D; Boutte, David; Chen, Jiayu; Liu, Jingyu

    2014-09-01

    Multi-modal data analysis techniques, such as the Parallel Independent Component Analysis (pICA), are essential in neuroscience, medical imaging and genetic studies. The pICA algorithm allows the simultaneous decomposition of up to two data modalities achieving better performance than separate ICA decompositions and enabling the discovery of links between modalities. However, advances in data acquisition techniques facilitate the collection of more than two data modalities from each subject. Examples of commonly measured modalities include genetic information, structural magnetic resonance imaging (MRI) and functional MRI. In order to take full advantage of the available data, this work extends the pICA approach to incorporate three modalities in one comprehensive analysis. Simulations demonstrate the three-way pICA performance in identifying pairwise links between modalities and estimating independent components which more closely resemble the true sources than components found by pICA or separate ICA analyses. In addition, the three-way pICA algorithm is applied to real experimental data obtained from a study that investigate genetic effects on alcohol dependence. Considered data modalities include functional MRI (contrast images during alcohol exposure paradigm), gray matter concentration images from structural MRI and genetic single nucleotide polymorphism (SNP). The three-way pICA approach identified links between a SNP component (pointing to brain function and mental disorder associated genes, including BDNF, GRIN2B and NRG1), a functional component related to increased activation in the precuneus area, and a gray matter component comprising part of the default mode network and the caudate. Although such findings need further verification, the simulation and in-vivo results validate the three-way pICA algorithm presented here as a useful tool in biomedical data fusion applications. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. The N400 and the P300 are not all that independent.

    PubMed

    Arbel, Yael; Spencer, Kevin M; Donchin, Emanuel

    2011-06-01

    This study assessed whether two ERP components that are elicited by unexpected events interact. The conditions that are known to elicit the N400 and the P300 ERP components were applied separately and in combination to terminal-words in sentences. Each sentence ended with a terminal-word that was highly expected, semantically unexpected, physically deviant, or both semantically unexpected and physically deviant. In addition, we varied the level of semantic relatedness between the unexpected terminal-words and the expected exemplars. Physically deviant words elicited a P300, whereas semantically unexpected words elicited an N400, whose amplitude was sensitive to the level of semantic relatedness. Words that were both semantically unexpected and physically deviant elicited both an N400 with enhanced amplitude, and a P300 with reduced amplitude. These results suggest an interaction between the processes manifested by the two components. Copyright © 2010 Society for Psychophysiological Research.

  9. Selective in situ potential-assisted SAM formation on multi electrode arrays

    NASA Astrophysics Data System (ADS)

    Haag, Ann-Lauriene; Toader, Violeta; Lennox, R. Bruce; Grutter, Peter

    2016-11-01

    The selective modification of individual components in a biosensor array is challenging. To address this challenge, we present a generalizable approach to selectively modify and characterize individual gold surfaces in an array, in an in situ manner. This is achieved by taking advantage of the potential dependent adsorption/desorption of surface-modified organic molecules. Control of the applied potential of the individual sensors in an array where each acts as a working electrode provides differential derivatization of the sensor surfaces. To demonstrate this concept, two different self-assembled monolayer (SAM)-forming electrochemically addressable ω-ferrocenyl alkanethiols (C11) are chemisorbed onto independent but spatially adjacent gold electrodes. The ferrocene alkanethiol does not chemisorb onto the surface when the applied potential is cathodic relative to the adsorption potential and the electrode remains underivatized. However, applying potentials that are modestly positive relative to the adsorption potential leads to extensive coverage within 10 min. The resulting SAM remains in a stable state while held at potentials <200 mV above the adsorption potential. In this state, the chemisorbed SAM does not significantly desorb nor do new ferrocenylalkythiols adsorb. Using three set applied potentials provides for controlled submonolayer alkylthiol marker coverage of each independent gold electrode. These three applied potentials are dependent upon the specifics of the respective adsorbate. Characterization of the ferrocene-modified electrodes via cyclic voltammetry demonstrates that each specific ferrocene marker is exclusively adsorbed to the desired target electrode.

  10. Functional subdivision of group-ICA results of fMRI data collected during cinema viewing.

    PubMed

    Pamilo, Siina; Malinen, Sanna; Hlushchuk, Yevhen; Seppä, Mika; Tikka, Pia; Hari, Riitta

    2012-01-01

    Independent component analysis (ICA) can unravel functional brain networks from functional magnetic resonance imaging (fMRI) data. The number of the estimated components affects both the spatial pattern of the identified networks and their time-course estimates. Here group-ICA was applied at four dimensionalities (10, 20, 40, and 58 components) to fMRI data collected from 15 subjects who viewed a 15-min silent film ("At land" by Maya Deren). We focused on the dorsal attention network, the default-mode network, and the sensorimotor network. The lowest dimensionalities demonstrated most prominent activity within the dorsal attention network, combined with the visual areas, and in the default-mode network; the sensorimotor network only appeared with ICA comprising at least 20 components. The results suggest that even very low-dimensional ICA can unravel the most prominent functionally-connected brain networks. However, increasing the number of components gives a more detailed picture and functionally feasible subdivision of the major networks. These results improve our understanding of the hierarchical subdivision of brain networks during viewing of a movie that provides continuous stimulation embedded in an attention-directing narrative.

  11. Values of a Patient and Observer Scar Assessment Scale to Evaluate the Facial Skin Graft Scar.

    PubMed

    Chae, Jin Kyung; Kim, Jeong Hee; Kim, Eun Jung; Park, Kun

    2016-10-01

    The patient and observer scar assessment scale (POSAS) recently emerged as a promising method, reflecting both observer's and patient's opinions in evaluating scar. This tool was shown to be consistent and reliable in burn scar assessment, but it has not been tested in the setting of skin graft scar in skin cancer patients. To evaluate facial skin graft scar applied to POSAS and to compare with objective scar assessment tools. Twenty three patients, who diagnosed with facial cutaneous malignancy and transplanted skin after Mohs micrographic surgery, were recruited. Observer assessment was performed by three independent rates using the observer component of the POSAS and Vancouver scar scale (VSS). Patient self-assessment was performed using the patient component of the POSAS. To quantify scar color and scar thickness more objectively, spectrophotometer and ultrasonography was applied. Inter-observer reliability was substantial with both VSS and the observer component of the POSAS (average measure intraclass coefficient correlation, 0.76 and 0.80, respectively). The observer component consistently showed significant correlations with patients' ratings for the parameters of the POSAS (all p -values<0.05). The correlation between subjective assessment using POSAS and objective assessment using spectrophotometer and ultrasonography showed low relationship. In facial skin graft scar assessment in skin cancer patients, the POSAS showed acceptable inter-observer reliability. This tool was more comprehensive and had higher correlation with patient's opinion.

  12. Visual target modulation of functional connectivity networks revealed by self-organizing group ICA.

    PubMed

    van de Ven, Vincent; Bledowski, Christoph; Prvulovic, David; Goebel, Rainer; Formisano, Elia; Di Salle, Francesco; Linden, David E J; Esposito, Fabrizio

    2008-12-01

    We applied a data-driven analysis based on self-organizing group independent component analysis (sogICA) to fMRI data from a three-stimulus visual oddball task. SogICA is particularly suited to the investigation of the underlying functional connectivity and does not rely on a predefined model of the experiment, which overcomes some of the limitations of hypothesis-driven analysis. Unlike most previous applications of ICA in functional imaging, our approach allows the analysis of the data at the group level, which is of particular interest in high order cognitive studies. SogICA is based on the hierarchical clustering of spatially similar independent components, derived from single subject decompositions. We identified four main clusters of components, centered on the posterior cingulate, bilateral insula, bilateral prefrontal cortex, and right posterior parietal and prefrontal cortex, consistently across all participants. Post hoc comparison of time courses revealed that insula, prefrontal cortex and right fronto-parietal components showed higher activity for targets than for distractors. Activation for distractors was higher in the posterior cingulate cortex, where deactivation was observed for targets. While our results conform to previous neuroimaging studies, they also complement conventional results by showing functional connectivity networks with unique contributions to the task that were consistent across subjects. SogICA can thus be used to probe functional networks of active cognitive tasks at the group-level and can provide additional insights to generate new hypotheses for further study. Copyright 2007 Wiley-Liss, Inc.

  13. A method for functional network connectivity among spatially independent resting-state components in schizophrenia.

    PubMed

    Jafri, Madiha J; Pearlson, Godfrey D; Stevens, Michael; Calhoun, Vince D

    2008-02-15

    Functional connectivity of the brain has been studied by analyzing correlation differences in time courses among seed voxels or regions with other voxels of the brain in healthy individuals as well as in patients with brain disorders. The spatial extent of strongly temporally coherent brain regions co-activated during rest has also been examined using independent component analysis (ICA). However, the weaker temporal relationships among ICA component time courses, which we operationally define as a measure of functional network connectivity (FNC), have not yet been studied. In this study, we propose an approach for evaluating FNC and apply it to functional magnetic resonance imaging (fMRI) data collected from persons with schizophrenia and healthy controls. We examined the connectivity and latency among ICA component time courses to test the hypothesis that patients with schizophrenia would show increased functional connectivity and increased lag among resting state networks compared to controls. Resting state fMRI data were collected and the inter-relationships among seven selected resting state networks (identified using group ICA) were evaluated by correlating each subject's ICA time courses with one another. Patients showed higher correlation than controls among most of the dominant resting state networks. Patients also had slightly more variability in functional connectivity than controls. We present a novel approach for quantifying functional connectivity among brain networks identified with spatial ICA. Significant differences between patient and control connectivity in different networks were revealed possibly reflecting deficiencies in cortical processing in patients.

  14. A Method for Functional Network Connectivity Among Spatially Independent Resting-State Components in Schizophrenia

    PubMed Central

    Jafri, Madiha J; Pearlson, Godfrey D; Stevens, Michael; Calhoun, Vince D

    2011-01-01

    Functional connectivity of the brain has been studied by analyzing correlation differences in time courses among seed voxels or regions with other voxels of the brain in patients versus controls. The spatial extent of strongly temporally coherent brain regions co-activated during rest has also been examined using independent component analysis (ICA). However, the weaker temporal relationships among ICA component time courses, which we operationally define as a measure of functional network connectivity (FNC), have not yet been studied. In this study, we propose an approach for evaluating FNC and apply it to functional magnetic resonance imaging (fMRI) data collected from persons with schizophrenia and healthy controls. We examined the connectivity and latency among ICA component time courses to test the hypothesis that patients with schizophrenia would show increased functional connectivity and increased lag among resting state networks compared to controls. Resting state fMRI data were collected and the inter-relationships among seven selected resting state networks (identified using group ICA) were evaluated by correlating each subject’s ICA time courses with one another. Patients showed higher correlation than controls among most of the dominant resting state networks. Patients also had slightly more variability in functional connectivity than controls. We present a novel approach for quantifying functional connectivity among brain networks identified with spatial ICA. Significant differences between patient and control connectivity in different networks were revealed possibly reflecting deficiencies in cortical processing in patients. PMID:18082428

  15. Lattice Independent Component Analysis for Mobile Robot Localization

    NASA Astrophysics Data System (ADS)

    Villaverde, Ivan; Fernandez-Gauna, Borja; Zulueta, Ekaitz

    This paper introduces an approach to appearance based mobile robot localization using Lattice Independent Component Analysis (LICA). The Endmember Induction Heuristic Algorithm (EIHA) is used to select a set of Strong Lattice Independent (SLI) vectors, which can be assumed to be Affine Independent, and therefore candidates to be the endmembers of the data. Selected endmembers are used to compute the linear unmixing of the robot's acquired images. The resulting mixing coefficients are used as feature vectors for view recognition through classification. We show on a sample path experiment that our approach can recognise the localization of the robot and we compare the results with the Independent Component Analysis (ICA).

  16. Detection of gear cracks in a complex gearbox of wind turbines using supervised bounded component analysis of vibration signals collected from multi-channel sensors

    NASA Astrophysics Data System (ADS)

    Li, Zhixiong; Yan, Xinping; Wang, Xuping; Peng, Zhongxiao

    2016-06-01

    In the complex gear transmission systems, in wind turbines a crack is one of the most common failure modes and can be fatal to the wind turbine power systems. A single sensor may suffer with issues relating to its installation position and direction, resulting in the collection of weak dynamic responses of the cracked gear. A multi-channel sensor system is hence applied in the signal acquisition and the blind source separation (BSS) technologies are employed to optimally process the information collected from multiple sensors. However, literature review finds that most of the BSS based fault detectors did not address the dependence/correlation between different moving components in the gear systems; particularly, the popular used independent component analysis (ICA) assumes mutual independence of different vibration sources. The fault detection performance may be significantly influenced by the dependence/correlation between vibration sources. In order to address this issue, this paper presents a new method based on the supervised order tracking bounded component analysis (SOTBCA) for gear crack detection in wind turbines. The bounded component analysis (BCA) is a state of art technology for dependent source separation and is applied limitedly to communication signals. To make it applicable for vibration analysis, in this work, the order tracking has been appropriately incorporated into the BCA framework to eliminate the noise and disturbance signal components. Then an autoregressive (AR) model built with prior knowledge about the crack fault is employed to supervise the reconstruction of the crack vibration source signature. The SOTBCA only outputs one source signal that has the closest distance with the AR model. Owing to the dependence tolerance ability of the BCA framework, interfering vibration sources that are dependent/correlated with the crack vibration source could be recognized by the SOTBCA, and hence, only useful fault information could be preserved in the reconstructed signal. The crack failure thus could be precisely identified by the cyclic spectral correlation analysis. A series of numerical simulations and experimental tests have been conducted to illustrate the advantages of the proposed SOTBCA method for fatigue crack detection. Comparisons to three representative techniques, i.e. Erdogan's BCA (E-BCA), joint approximate diagonalization of eigen-matrices (JADE), and FastICA, have demonstrated the effectiveness of the SOTBCA. Hence the proposed approach is suitable for accurate gear crack detection in practical applications.

  17. Multi-spectrometer calibration transfer based on independent component analysis.

    PubMed

    Liu, Yan; Xu, Hao; Xia, Zhenzhen; Gong, Zhiyong

    2018-02-26

    Calibration transfer is indispensable for practical applications of near infrared (NIR) spectroscopy due to the need for precise and consistent measurements across different spectrometers. In this work, a method for multi-spectrometer calibration transfer is described based on independent component analysis (ICA). A spectral matrix is first obtained by aligning the spectra measured on different spectrometers. Then, by using independent component analysis, the aligned spectral matrix is decomposed into the mixing matrix and the independent components of different spectrometers. These differing measurements between spectrometers can then be standardized by correcting the coefficients within the independent components. Two NIR datasets of corn and edible oil samples measured with three and four spectrometers, respectively, were used to test the reliability of this method. The results of both datasets reveal that spectra measurements across different spectrometers can be transferred simultaneously and that the partial least squares (PLS) models built with the measurements on one spectrometer can predict that the spectra can be transferred correctly on another.

  18. Spatial pattern separation of chemicals and frequency-independent components by terahertz spectroscopic imaging

    NASA Astrophysics Data System (ADS)

    Watanabe, Yuuki; Kawase, Kodo; Ikari, Tomofumi; Ito, Hiromasa; Ishikawa, Youichi; Minamide, Hiroaki

    2003-10-01

    We separated the component spatial patterns of frequency-dependent absorption in chemicals and frequency-independent components such as plastic, paper, and measurement noise in terahertz (THz) spectroscopic images, using known spectral curves. Our measurement system, which uses a widely tunable coherent THz-wave parametric oscillator source, can image at a specific frequency in the range 1-2 THz. The component patterns of chemicals can easily be extracted by use of the frequency-independent components. This method could be successfully used for nondestructive inspection for the detection of illegal drugs and devices of bioterrorism concealed, e.g., inside mail and packages.

  19. Dissecting the transcriptional phenotype of ribosomal protein deficiency: implications for Diamond-Blackfan Anemia

    PubMed Central

    Aspesi, Anna; Pavesi, Elisa; Robotti, Elisa; Crescitelli, Rossella; Boria, Ilenia; Avondo, Federica; Moniz, Hélène; Da Costa, Lydie; Mohandas, Narla; Roncaglia, Paola; Ramenghi, Ugo; Ronchi, Antonella; Gustincich, Stefano; Merlin, Simone; Marengo, Emilio; Ellis, Steven R.; Follenzi, Antonia; Santoro, Claudio; Dianzani, Irma

    2014-01-01

    Defects in genes encoding ribosomal proteins cause Diamond Blackfan Anemia (DBA), a red cell aplasia often associated with physical abnormalities. Other bone marrow failure syndromes have been attributed to defects in ribosomal components but the link between erythropoiesis and the ribosome remains to be fully defined. Several lines of evidence suggest that defects in ribosome synthesis lead to “ribosomal stress” with p53 activation and either cell cycle arrest or induction of apoptosis. Pathways independent of p53 have also been proposed to play a role in DBA pathogenesis. We took an unbiased approach to identify p53-independent pathways activated by defects in ribosome synthesis by analyzing global gene expression in various cellular models of DBA. Ranking-Principal Component Analysis (Ranking-PCA) was applied to the identified datasets to determine whether there are common sets of genes whose expression is altered in these different cellular models. We observed consistent changes in the expression of genes involved in cellular amino acid metabolic process, negative regulation of cell proliferation and cell redox homeostasis. These data indicate that cells respond to defects in ribosome synthesis by changing the level of expression of a limited subset of genes involved in critical cellular processes. Moreover, our data support a role for p53-independent pathways in the pathophysiology of DBA. PMID:24835311

  20. Patterns of glaucomatous visual field loss in sita fields automatically identified using independent component analysis.

    PubMed

    Goldbaum, Michael H; Jang, Gil-Jin; Bowd, Chris; Hao, Jiucang; Zangwill, Linda M; Liebmann, Jeffrey; Girkin, Christopher; Jung, Tzyy-Ping; Weinreb, Robert N; Sample, Pamela A

    2009-12-01

    To determine if the patterns uncovered with variational Bayesian-independent component analysis-mixture model (VIM) applied to a large set of normal and glaucomatous fields obtained with the Swedish Interactive Thresholding Algorithm (SITA) are distinct, recognizable, and useful for modeling the severity of the field loss. SITA fields were obtained with the Humphrey Visual Field Analyzer (Carl Zeiss Meditec, Inc, Dublin, California) on 1,146 normal eyes and 939 glaucoma eyes from subjects followed by the Diagnostic Innovations in Glaucoma Study and the African Descent and Glaucoma Evaluation Study. VIM modifies independent component analysis (ICA) to develop separate sets of ICA axes in the cluster of normal fields and the 2 clusters of abnormal fields. Of 360 models, the model with the best separation of normal and glaucomatous fields was chosen for creating the maximally independent axes. Grayscale displays of fields generated by VIM on each axis were compared. SITA fields most closely associated with each axis and displayed in grayscale were evaluated for consistency of pattern at all severities. The best VIM model had 3 clusters. Cluster 1 (1,193) was mostly normal (1,089, 95% specificity) and had 2 axes. Cluster 2 (596) contained mildly abnormal fields (513) and 2 axes; cluster 3 (323) held mostly moderately to severely abnormal fields (322) and 5 axes. Sensitivity for clusters 2 and 3 combined was 88.9%. The VIM-generated field patterns differed from each other and resembled glaucomatous defects (eg, nasal step, arcuate, temporal wedge). SITA fields assigned to an axis resembled each other and the VIM-generated patterns for that axis. Pattern severity increased in the positive direction of each axis by expansion or deepening of the axis pattern. VIM worked well on SITA fields, separating them into distinctly different yet recognizable patterns of glaucomatous field defects. The axis and pattern properties make VIM a good candidate as a preliminary process for detecting progression.

  1. Control of the spin geometric phase in semiconductor quantum rings.

    PubMed

    Nagasawa, Fumiya; Frustaglia, Diego; Saarikoski, Henri; Richter, Klaus; Nitta, Junsaku

    2013-01-01

    Since the formulation of the geometric phase by Berry, its relevance has been demonstrated in a large variety of physical systems. However, a geometric phase of the most fundamental spin-1/2 system, the electron spin, has not been observed directly and controlled independently from dynamical phases. Here we report experimental evidence on the manipulation of an electron spin through a purely geometric effect in an InGaAs-based quantum ring with Rashba spin-orbit coupling. By applying an in-plane magnetic field, a phase shift of the Aharonov-Casher interference pattern towards the small spin-orbit-coupling regions is observed. A perturbation theory for a one-dimensional Rashba ring under small in-plane fields reveals that the phase shift originates exclusively from the modulation of a pure geometric-phase component of the electron spin beyond the adiabatic limit, independently from dynamical phases. The phase shift is well reproduced by implementing two independent approaches, that is, perturbation theory and non-perturbative transport simulations.

  2. A method for multiprotein assembly in cells reveals independent action of kinesins in complex

    PubMed Central

    Norris, Stephen R.; Soppina, Virupakshi; Dizaji, Aslan S.; Schimert, Kristin I.; Sept, David; Cai, Dawen; Sivaramakrishnan, Sivaraj

    2014-01-01

    Teams of processive molecular motors are critical for intracellular transport and organization, yet coordination between motors remains poorly understood. Here, we develop a system using protein components to generate assemblies of defined spacing and composition inside cells. This system is applicable to studying macromolecular complexes in the context of cell signaling, motility, and intracellular trafficking. We use the system to study the emergent behavior of kinesin motors in teams. We find that two kinesin motors in complex act independently (do not help or hinder each other) and can alternate their activities. For complexes containing a slow kinesin-1 and fast kinesin-3 motor, the slow motor dominates motility in vitro but the fast motor can dominate on certain subpopulations of microtubules in cells. Both motors showed dynamic interactions with the complex, suggesting that motor–cargo linkages are sensitive to forces applied by the motors. We conclude that kinesin motors in complex act independently in a manner regulated by the microtubule track. PMID:25365993

  3. Confocal Raman microscopy and multivariate statistical analysis for determination of different penetration abilities of caffeine and propylene glycol applied simultaneously in a mixture on porcine skin ex vivo.

    PubMed

    Mujica Ascencio, Saul; Choe, ChunSik; Meinke, Martina C; Müller, Rainer H; Maksimov, George V; Wigger-Alberti, Walter; Lademann, Juergen; Darvin, Maxim E

    2016-07-01

    Propylene glycol is one of the known substances added in cosmetic formulations as a penetration enhancer. Recently, nanocrystals have been employed also to increase the skin penetration of active components. Caffeine is a component with many applications and its penetration into the epidermis is controversially discussed in the literature. In the present study, the penetration ability of two components - caffeine nanocrystals and propylene glycol, applied topically on porcine ear skin in the form of a gel, was investigated ex vivo using two confocal Raman microscopes operated at different excitation wavelengths (785nm and 633nm). Several depth profiles were acquired in the fingerprint region and different spectral ranges, i.e., 526-600cm(-1) and 810-880cm(-1) were chosen for independent analysis of caffeine and propylene glycol penetration into the skin, respectively. Multivariate statistical methods such as principal component analysis (PCA) and linear discriminant analysis (LDA) combined with Student's t-test were employed to calculate the maximum penetration depths of each substance (caffeine and propylene glycol). The results show that propylene glycol penetrates significantly deeper than caffeine (20.7-22.0μm versus 12.3-13.0μm) without any penetration enhancement effect on caffeine. The results confirm that different substances, even if applied onto the skin as a mixture, can penetrate differently. The penetration depths of caffeine and propylene glycol obtained using two different confocal Raman microscopes are comparable showing that both types of microscopes are well suited for such investigations and that multivariate statistical PCA-LDA methods combined with Student's t-test are very useful for analyzing the penetration of different substances into the skin. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Separation of the atmospheric variability into non-Gaussian multidimensional sources by projection pursuit techniques

    NASA Astrophysics Data System (ADS)

    Pires, Carlos A. L.; Ribeiro, Andreia F. S.

    2017-02-01

    We develop an expansion of space-distributed time series into statistically independent uncorrelated subspaces (statistical sources) of low-dimension and exhibiting enhanced non-Gaussian probability distributions with geometrically simple chosen shapes (projection pursuit rationale). The method relies upon a generalization of the principal component analysis that is optimal for Gaussian mixed signals and of the independent component analysis (ICA), optimized to split non-Gaussian scalar sources. The proposed method, supported by information theory concepts and methods, is the independent subspace analysis (ISA) that looks for multi-dimensional, intrinsically synergetic subspaces such as dyads (2D) and triads (3D), not separable by ICA. Basically, we optimize rotated variables maximizing certain nonlinear correlations (contrast functions) coming from the non-Gaussianity of the joint distribution. As a by-product, it provides nonlinear variable changes `unfolding' the subspaces into nearly Gaussian scalars of easier post-processing. Moreover, the new variables still work as nonlinear data exploratory indices of the non-Gaussian variability of the analysed climatic and geophysical fields. The method (ISA, followed by nonlinear unfolding) is tested into three datasets. The first one comes from the Lorenz'63 three-dimensional chaotic model, showing a clear separation into a non-Gaussian dyad plus an independent scalar. The second one is a mixture of propagating waves of random correlated phases in which the emergence of triadic wave resonances imprints a statistical signature in terms of a non-Gaussian non-separable triad. Finally the method is applied to the monthly variability of a high-dimensional quasi-geostrophic (QG) atmospheric model, applied to the Northern Hemispheric winter. We find that quite enhanced non-Gaussian dyads of parabolic shape, perform much better than the unrotated variables in which concerns the separation of the four model's centroid regimes (positive and negative phases of the Arctic Oscillation and of the North Atlantic Oscillation). Triads are also likely in the QG model but of weaker expression than dyads due to the imposed shape and dimension. The study emphasizes the existence of nonlinear dyadic and triadic nonlinear teleconnections.

  5. Anisotropy of MHD Turbulence at Low Magnetic Reynolds Number

    NASA Technical Reports Server (NTRS)

    Zikanov, O.; Vorobev, A.; Thess, A.; Davidson, P. A.; Knaepen, B.

    2004-01-01

    Turbulent fluctuations in MHD flows are known to become dimensionally anisotropic under the action of a sufficiently strong magnetic field. We consider the technologically relevant case of low magnetic Reynolds number and apply the method of DNS of forced flow in a periodic box to generate velocity fields. The analysis based on different anisotropy characteristics shows that the dimensional anisotropy is virtually scale-independent. We also find that, except for the case of very strong magnetic field, the flow is componentally isotropic. Its kinetic energy is practically uniformly distributed among the velocity components.

  6. Advancements in noncontact, multiparameter physiological measurements using a webcam.

    PubMed

    Poh, Ming-Zher; McDuff, Daniel J; Picard, Rosalind W

    2011-01-01

    We present a simple, low-cost method for measuring multiple physiological parameters using a basic webcam. By applying independent component analysis on the color channels in video recordings, we extracted the blood volume pulse from the facial regions. Heart rate (HR), respiratory rate, and HR variability (HRV, an index for cardiac autonomic activity) were subsequently quantified and compared to corresponding measurements using Food and Drug Administration-approved sensors. High degrees of agreement were achieved between the measurements across all physiological parameters. This technology has significant potential for advancing personal health care and telemedicine.

  7. Experimental heat transfer distribution on the SNAP 10A reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopenfeld, J.; Toews, R.E.

    1965-01-29

    Heating distributions have been obtained for the SNAP 10A reactor by means of a thermal paint technique in the Rhodes and Bloxsom 60 in. hypersonic wind tunnel. Data and correlations are presented only for those reactor components where the ratio of the local heat transfer to that on the stagnation point of the calibration sphere was found to be independent of tunnel conditions. It is shown that these heating distributions can be applied directly to reentry conditions provided the thermally painted and the bare reactor surfaces are both catalytic to atom recombination.

  8. Linear response to nonstationary random excitation.

    NASA Technical Reports Server (NTRS)

    Hasselman, T.

    1972-01-01

    Development of a method for computing the mean-square response of linear systems to nonstationary random excitation of the form given by y(t) = f(t) x(t), in which x(t) = a stationary process and f(t) is deterministic. The method is suitable for application to multidegree-of-freedom systems when the mean-square response at a point due to excitation applied at another point is desired. Both the stationary process, x(t), and the modulating function, f(t), may be arbitrary. The method utilizes a fundamental component of transient response dependent only on x(t) and the system, and independent of f(t) to synthesize the total response. The role played by this component is analogous to that played by the Green's function or impulse response function in the convolution integral.

  9. Predicting the response of olfactory sensory neurons to odor mixtures from single odor response

    NASA Astrophysics Data System (ADS)

    Marasco, Addolorata; de Paris, Alessandro; Migliore, Michele

    2016-04-01

    The response of olfactory receptor neurons to odor mixtures is not well understood. Here, using experimental constraints, we investigate the mathematical structure of the odor response space and its consequences. The analysis suggests that the odor response space is 3-dimensional, and predicts that the dose-response curve of an odor receptor can be obtained, in most cases, from three primary components with specific properties. This opens the way to an objective procedure to obtain specific olfactory receptor responses by manipulating mixtures in a mathematically predictable manner. This result is general and applies, independently of the number of odor components, to any olfactory sensory neuron type with a response curve that can be represented as a sigmoidal function of the odor concentration.

  10. Microelectromechanical safe arm device

    DOEpatents

    Roesler, Alexander W [Tijeras, NM

    2012-06-05

    Microelectromechanical (MEM) apparatus and methods for operating, for preventing unintentional detonation of energetic components comprising pyrotechnic and explosive materials, such as air bag deployment systems, munitions and pyrotechnics. The MEM apparatus comprises an interrupting member that can be moved to block (interrupt) or complete (uninterrupt) an explosive train that is part of an energetic component. One or more latching members are provided that engage and prevent the movement of the interrupting member, until the one or more latching members are disengaged from the interrupting member. The MEM apparatus can be utilized as a safe and arm device (SAD) and electronic safe and arm device (ESAD) in preventing unintentional detonations. Methods for operating the MEM apparatus include independently applying drive signals to the actuators coupled to the latching members, and an actuator coupled to the interrupting member.

  11. Spatial independent component analysis of functional MRI time-series: to what extent do results depend on the algorithm used?

    PubMed

    Esposito, Fabrizio; Formisano, Elia; Seifritz, Erich; Goebel, Rainer; Morrone, Renato; Tedeschi, Gioacchino; Di Salle, Francesco

    2002-07-01

    Independent component analysis (ICA) has been successfully employed to decompose functional MRI (fMRI) time-series into sets of activation maps and associated time-courses. Several ICA algorithms have been proposed in the neural network literature. Applied to fMRI, these algorithms might lead to different spatial or temporal readouts of brain activation. We compared the two ICA algorithms that have been used so far for spatial ICA (sICA) of fMRI time-series: the Infomax (Bell and Sejnowski [1995]: Neural Comput 7:1004-1034) and the Fixed-Point (Hyvärinen [1999]: Adv Neural Inf Proc Syst 10:273-279) algorithms. We evaluated the Infomax- and Fixed Point-based sICA decompositions of simulated motor, and real motor and visual activation fMRI time-series using an ensemble of measures. Log-likelihood (McKeown et al. [1998]: Hum Brain Mapp 6:160-188) was used as a measure of how significantly the estimated independent sources fit the statistical structure of the data; receiver operating characteristics (ROC) and linear correlation analyses were used to evaluate the algorithms' accuracy of estimating the spatial layout and the temporal dynamics of simulated and real activations; cluster sizing calculations and an estimation of a residual gaussian noise term within the components were used to examine the anatomic structure of ICA components and for the assessment of noise reduction capabilities. Whereas both algorithms produced highly accurate results, the Fixed-Point outperformed the Infomax in terms of spatial and temporal accuracy as long as inferential statistics were employed as benchmarks. Conversely, the Infomax sICA was superior in terms of global estimation of the ICA model and noise reduction capabilities. Because of its adaptive nature, the Infomax approach appears to be better suited to investigate activation phenomena that are not predictable or adequately modelled by inferential techniques. Copyright 2002 Wiley-Liss, Inc.

  12. Independent component analysis for cochlear implant artifacts attenuation from electrically evoked auditory steady-state response measurements

    NASA Astrophysics Data System (ADS)

    Deprez, Hanne; Gransier, Robin; Hofmann, Michael; van Wieringen, Astrid; Wouters, Jan; Moonen, Marc

    2018-02-01

    Objective. Electrically evoked auditory steady-state responses (EASSRs) are potentially useful for objective cochlear implant (CI) fitting and follow-up of the auditory maturation in infants and children with a CI. EASSRs are recorded in the electro-encephalogram (EEG) in response to electrical stimulation with continuous pulse trains, and are distorted by significant CI artifacts related to this electrical stimulation. The aim of this study is to evaluate a CI artifacts attenuation method based on independent component analysis (ICA) for three EASSR datasets. Approach. ICA has often been used to remove CI artifacts from the EEG to record transient auditory responses, such as cortical evoked auditory potentials. Independent components (ICs) corresponding to CI artifacts are then often manually identified. In this study, an ICA based CI artifacts attenuation method was developed and evaluated for EASSR measurements with varying CI artifacts and EASSR characteristics. Artifactual ICs were automatically identified based on their spectrum. Main results. For 40 Hz amplitude modulation (AM) stimulation at comfort level, in high SNR recordings, ICA succeeded in removing CI artifacts from all recording channels, without distorting the EASSR. For lower SNR recordings, with 40 Hz AM stimulation at lower levels, or 90 Hz AM stimulation, ICA either distorted the EASSR or could not remove all CI artifacts in most subjects, except for two of the seven subjects tested with low level 40 Hz AM stimulation. Noise levels were reduced after ICA was applied, and up to 29 ICs were rejected, suggesting poor ICA separation quality. Significance. We hypothesize that ICA is capable of separating CI artifacts and EASSR in case the contralateral hemisphere is EASSR dominated. For small EASSRs or large CI artifact amplitudes, ICA separation quality is insufficient to ensure complete CI artifacts attenuation without EASSR distortion.

  13. Asymptotic scalings of developing curved pipe flow

    NASA Astrophysics Data System (ADS)

    Ault, Jesse; Chen, Kevin; Stone, Howard

    2015-11-01

    Asymptotic velocity and pressure scalings are identified for the developing curved pipe flow problem in the limit of small pipe curvature and high Reynolds numbers. The continuity and Navier-Stokes equations in toroidal coordinates are linearized about Dean's analytical curved pipe flow solution (Dean 1927). Applying appropriate scaling arguments to the perturbation pressure and velocity components and taking the limits of small curvature and large Reynolds number yields a set of governing equations and boundary conditions for the perturbations, independent of any Reynolds number and pipe curvature dependence. Direct numerical simulations are used to confirm these scaling arguments. Fully developed straight pipe flow is simulated entering a curved pipe section for a range of Reynolds numbers and pipe-to-curvature radius ratios. The maximum values of the axial and secondary velocity perturbation components along with the maximum value of the pressure perturbation are plotted along the curved pipe section. The results collapse when the scaling arguments are applied. The numerically solved decay of the velocity perturbation is also used to determine the entrance/development lengths for the curved pipe flows, which are shown to scale linearly with the Reynolds number.

  14. Authentication of fattening diet of Iberian pigs according to their volatile compounds profile from raw subcutaneous fat.

    PubMed

    Narváez-Rivas, M; Pablos, F; Jurado, J M; León-Camacho, M

    2011-02-01

    The composition of volatile components of subcutaneous fat from Iberian pig has been studied. Purge and trap gas chromatography-mass spectrometry has been used. The composition of the volatile fraction of subcutaneous fat has been used for authentication purposes of different types of Iberian pig fat. Three types of this product have been considered, montanera, extensive cebo and intensive cebo. With classification purposes, several pattern recognition techniques have been applied. In order to find out possible tendencies in the sample distribution as well as the discriminant power of the variables, principal component analysis was applied as visualisation technique. Linear discriminant analysis (LDA) and soft independent modelling by class analogy (SIMCA) were used to obtain suitable classification models. LDA and SIMCA allowed the differentiation of three fattening diets by using the contents in 2,2,4,6,6-pentamethyl-heptane, m-xylene, 2,4-dimethyl-heptane, 6-methyl-tridecane, 1-methoxy-2-propanol, isopropyl alcohol, o-xylene, 3-ethyl-2,2-dimethyl-oxirane, 2,6-dimethyl-undecane, 3-methyl-3-pentanol and limonene.

  15. Towards Solving the Mixing Problem in the Decomposition of Geophysical Time Series by Independent Component Analysis

    NASA Technical Reports Server (NTRS)

    Aires, Filipe; Rossow, William B.; Chedin, Alain; Hansen, James E. (Technical Monitor)

    2000-01-01

    The use of the Principal Component Analysis technique for the analysis of geophysical time series has been questioned in particular for its tendency to extract components that mix several physical phenomena even when the signal is just their linear sum. We demonstrate with a data simulation experiment that the Independent Component Analysis, a recently developed technique, is able to solve this problem. This new technique requires the statistical independence of components, a stronger constraint, that uses higher-order statistics, instead of the classical decorrelation a weaker constraint, that uses only second-order statistics. Furthermore, ICA does not require additional a priori information such as the localization constraint used in Rotational Techniques.

  16. Hyperspectral functional imaging of the human brain

    NASA Astrophysics Data System (ADS)

    Toronov, Vladislav; Schelkanova, Irina

    2013-03-01

    We performed the independent component analysis of the hyperspectral functional near-infrared data acquired on humans during exercise and rest. We found that the hyperspectral functional data acquired on the human brain requires only two physiologically meaningful components to cover more than 50% o the temporal variance in hundreds of wavelengths. The analysis of the spectra of independent components showed that these components could be interpreted as results of changes in the cerebral blood volume and blood flow. Also, we found significant contributions of water and cytochrome c oxydase into changes associated with the independent components. Another remarkable effect of ICA was its good performance in terms of the filtering of the data noise.

  17. Progressive Disintegration of Brain Networking from Normal Aging to Alzheimer Disease: Analysis of Independent Components of 18F-FDG PET Data.

    PubMed

    Pagani, Marco; Giuliani, Alessandro; Öberg, Johanna; De Carli, Fabrizio; Morbelli, Silvia; Girtler, Nicola; Arnaldi, Dario; Accardo, Jennifer; Bauckneht, Matteo; Bongioanni, Francesca; Chincarini, Andrea; Sambuceti, Gianmario; Jonsson, Cathrine; Nobili, Flavio

    2017-07-01

    Brain connectivity has been assessed in several neurodegenerative disorders investigating the mutual correlations between predetermined regions or nodes. Selective breakdown of brain networks during progression from normal aging to Alzheimer disease dementia (AD) has also been observed. Methods: We implemented independent-component analysis of 18 F-FDG PET data in 5 groups of subjects with cognitive states ranging from normal aging to AD-including mild cognitive impairment (MCI) not converting or converting to AD-to disclose the spatial distribution of the independent components in each cognitive state and their accuracy in discriminating the groups. Results: We could identify spatially distinct independent components in each group, with generation of local circuits increasing proportionally to the severity of the disease. AD-specific independent components first appeared in the late-MCI stage and could discriminate converting MCI and AD from nonconverting MCI with an accuracy of 83.5%. Progressive disintegration of the intrinsic networks from normal aging to MCI to AD was inversely proportional to the conversion time. Conclusion: Independent-component analysis of 18 F-FDG PET data showed a gradual disruption of functional brain connectivity with progression of cognitive decline in AD. This information might be useful as a prognostic aid for individual patients and as a surrogate biomarker in intervention trials. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  18. Lattice Boltzmann formulation for conjugate heat transfer in heterogeneous media.

    PubMed

    Karani, Hamid; Huber, Christian

    2015-02-01

    In this paper, we propose an approach for studying conjugate heat transfer using the lattice Boltzmann method (LBM). The approach is based on reformulating the lattice Boltzmann equation for solving the conservative form of the energy equation. This leads to the appearance of a source term, which introduces the jump conditions at the interface between two phases or components with different thermal properties. The proposed source term formulation conserves conductive and advective heat flux simultaneously, which makes it suitable for modeling conjugate heat transfer in general multiphase or multicomponent systems. The simple implementation of the source term approach avoids any correction of distribution functions neighboring the interface and provides an algorithm that is independent from the topology of the interface. Moreover, our approach is independent of the choice of lattice discretization and can be easily applied to different advection-diffusion LBM solvers. The model is tested against several benchmark problems including steady-state convection-diffusion within two fluid layers with parallel and normal interfaces with respect to the flow direction, unsteady conduction in a three-layer stratified domain, and steady conduction in a two-layer annulus. The LBM results are in excellent agreement with analytical solution. Error analysis shows that our model is first-order accurate in space, but an extension to a second-order scheme is straightforward. We apply our LBM model to heat transfer in a two-component heterogeneous medium with a random microstructure. This example highlights that the method we propose is independent of the topology of interfaces between the different phases and, as such, is ideally suited for complex natural heterogeneous media. We further validate the present LBM formulation with a study of natural convection in a porous enclosure. The results confirm the reliability of the model in simulating complex coupled fluid and thermal dynamics in complex geometries.

  19. Time scale variations of the CIV resonance lines in HD 24534

    NASA Astrophysics Data System (ADS)

    Tsatsi, A.

    2012-01-01

    Many lines in the spectra of hot emission stars (Be and Oe) present peculiar and very complex profiles. As a result we can not find a classical theoretical distribution to fit these physical profiles; hence many physical parameters of the regions where these lines are created are difficult to be determined. In this paper, we adopt the Gauss-Rotation model (GR-model), that proposed the idea that these complex profiles consist of a number of independent Discrete or Satellite Absorption Components (DACs, SACs). The model is applied for CIV (λλ 1548.187, 1550.772 A) resonance lines in the spectra of HD 24534 (X Persei), taken by I.U.E. at three different periods. From this analysis we can calculate the values of a group of physical parameters, such as the apparent rotational and radial velocities, the random velocities of the thermal motions of the ions, as well as the Full Width at Half Maximum (FWHM) and the absorbed energy of the independent regions of matter which produce the main and the satellite components of the studied spectral lines. Finally, we calculate the time scale variation of the above physical parameters.

  20. Refining Collective Coordinates and Improving Free Energy Representation in Variational Enhanced Sampling.

    PubMed

    Yang, Yi Isaac; Parrinello, Michele

    2018-06-12

    Collective variables are used often in many enhanced sampling methods, and their choice is a crucial factor in determining sampling efficiency. However, at times, searching for good collective variables can be challenging. In a recent paper, we combined time-lagged independent component analysis with well-tempered metadynamics in order to obtain improved collective variables from metadynamics runs that use lower quality collective variables [ McCarty, J.; Parrinello, M. J. Chem. Phys. 2017 , 147 , 204109 ]. In this work, we extend these ideas to variationally enhanced sampling. This leads to an efficient scheme that is able to make use of the many advantages of the variational scheme. We apply the method to alanine-3 in water. From an alanine-3 variationally enhanced sampling trajectory in which all the six dihedral angles are biased, we extract much better collective variables able to describe in exquisite detail the protein complex free energy surface in a low dimensional representation. The success of this investigation is helped by a more accurate way of calculating the correlation functions needed in the time-lagged independent component analysis and from the introduction of a new basis set to describe the dihedral angles arrangement.

  1. Application of Independent Component Analysis to Legacy UV Quasar Spectra

    NASA Astrophysics Data System (ADS)

    Richards, Gordon

    2017-08-01

    We propose to apply a novel analysis technique to UV spectroscopy ofquasars in the HST archive. We endeavor to analyze all of thearchival quasar spectra, but will first focus on those quasars thatalso have optical spectroscopy from SDSS. An archival investigationby Sulentic et al. (2007) revealed 130 known quasars with UV coverageof CIV complementing optical emission line coverage. Today, thesample has grown considerably and now includes COS spectroscopy. Ourproposal includes a proof-of-concept demonstration of the power of atechnique called Independent Component Analysis (ICA). ICA allows usto reduce complexity of of quasar spectra to just a handful ofnumbers. In addition to providing a uniform set of traditional linemeasurements (and carefully calibrated redshifts), we will provide ICAweights to the community with examples of how they can be used to doscience that previously would have been quite difficult. The time isripe for such an investigation because 1) it has been a decade sincethe last significant archival investigation of UV emission lines fromHST quasars, 2) the future is uncertain for obtaining new UV quasarspectroscopy, and 3) the rise of machine learning has provided us withpowerful new tools. Thus our proposed work will provide a true UVlegacy database for quasar-based investigations.

  2. Real-time Adaptive EEG Source Separation using Online Recursive Independent Component Analysis

    PubMed Central

    Hsu, Sheng-Hsiou; Mullen, Tim; Jung, Tzyy-Ping; Cauwenberghs, Gert

    2016-01-01

    Independent Component Analysis (ICA) has been widely applied to electroencephalographic (EEG) biosignal processing and brain-computer interfaces. The practical use of ICA, however, is limited by its computational complexity, data requirements for convergence, and assumption of data stationarity, especially for high-density data. Here we study and validate an optimized online recursive ICA algorithm (ORICA) with online recursive least squares (RLS) whitening for blind source separation of high-density EEG data, which offers instantaneous incremental convergence upon presentation of new data. Empirical results of this study demonstrate the algorithm's: (a) suitability for accurate and efficient source identification in high-density (64-channel) realistically-simulated EEG data; (b) capability to detect and adapt to non-stationarity in 64-ch simulated EEG data; and (c) utility for rapidly extracting principal brain and artifact sources in real 61-channel EEG data recorded by a dry and wearable EEG system in a cognitive experiment. ORICA was implemented as functions in BCILAB and EEGLAB and was integrated in an open-source Real-time EEG Source-mapping Toolbox (REST), supporting applications in ICA-based online artifact rejection, feature extraction for real-time biosignal monitoring in clinical environments, and adaptable classifications in brain-computer interfaces. PMID:26685257

  3. Hybrid ICA-Bayesian Network approach reveals distinct effective connectivity differences in schizophrenia

    PubMed Central

    Kim, D.; Burge, J.; Lane, T.; Pearlson, G. D; Kiehl, K. A; Calhoun, V. D.

    2008-01-01

    We utilized a discrete dynamic Bayesian network (dDBN) approach (Burge et al., 2007) to determine differences in brain regions between patients with schizophrenia and healthy controls on a measure of effective connectivity, termed the approximate conditional likelihood score (ACL) (Burge and Lane, 2005). The ACL score represents a class-discriminative measure of effective connectivity by measuring the relative likelihood of the correlation between brain regions in one group versus another. The algorithm is capable of finding non-linear relationships between brain regions because it uses discrete rather than continuous values and attempts to model temporal relationships with a first-order Markov and stationary assumption constraint (Papoulis, 1991). Since Bayesian networks are overly sensitive to noisy data, we introduced an independent component analysis (ICA) filtering approach that attempted to reduce the noise found in fMRI data by unmixing the raw datasets into a set of independent spatial component maps. Components that represented noise were removed and the remaining components reconstructed into the dimensions of the original fMRI datasets. We applied the dDBN algorithm to a group of 35 patients with schizophrenia and 35 matched healthy controls using an ICA filtered and unfiltered approach. We determined that filtering the data significantly improved the magnitude of the ACL score. Patients showed the greatest ACL scores in several regions, most markedly the cerebellar vermis and hemispheres. Our findings suggest that schizophrenia patients exhibit weaker connectivity than healthy controls in multiple regions, including bilateral temporal and frontal cortices, plus cerebellum during an auditory paradigm. PMID:18602482

  4. Two components of the new ESPEN diagnostic criteria for malnutrition are independent predictors of lung function in hospitalized patients with chronic obstructive pulmonary disease (COPD).

    PubMed

    Ingadottir, Arora Ros; Beck, Anne Marie; Baldwin, Christine; Weekes, C Elizabeth; Geirsdottir, Olof Gudny; Ramel, Alfons; Gislason, Thorarinn; Gunnarsdottir, Ingibjorg

    2018-08-01

    Low fat free mass index (FFMI) is a component of the ESPEN diagnosis criteria of malnutrition, that only when accompanied with weight loss is considered to be a determinant of malnutrition. Our aims were to assess the prevalence of malnutrition in patients with chronic obstructive pulmonary disease (COPD) applying the ESPEN criteria, and to examine the ability of different components of the criteria to predict COPD severity, length of stay (LOS), hospital readmissions within 30 days and mortality. Subjects were COPD patients (n = 121) admitted to Landspitali University Hospital from March 2015 to March 2016. Patients were screened for nutritional risk using Icelandic screening tool (ISS) and NRS-2002. Body composition was measured by bioelectrical impedance analysis (BIA). Lung function was measured by spirometry. The prevalence of malnutrition according to the ESPEN criteria was 21%. The association between nutritional assessment, applying different components of the ESPEN criteria, and COPD severity was highly significant, with the highest risk being associated with low FFMI OR (95% CI) 4.77 (2.03, 11.20; p < 0.001). There was a trend towards higher risk of hospitalization for >7 days in subjects with low FFMI (OR 2.46 95% CI 0.92, 6.59; p = 0.074) and increased risk of 6 and 9 months' mortality (OR 2.72 95% CI 0.88, 8.39, P = 0.082 and OR 2.72 95% CI 0.94, 7.87, P = 0.065, respectively) in subjects diagnosed as malnourished by the ESPEN criteria. This study describes the prevalence of malnutrition in hospitalized COPD patients using the ESPEN criteria from 2015. Our findings suggest that FFMI could be used independently of weight loss for the diagnosis of malnutrition in COPD patients, although there remain some problems associated with its measurement in the clinical setting. Copyright © 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  5. Overall Key Performance Indicator to Optimizing Operation of High-Pressure Homogenizers for a Reliable Quantification of Intracellular Components in Pichia pastoris.

    PubMed

    Garcia-Ortega, Xavier; Reyes, Cecilia; Montesinos, José Luis; Valero, Francisco

    2015-01-01

    The most commonly used cell disruption procedures may present lack of reproducibility, which introduces significant errors in the quantification of intracellular components. In this work, an approach consisting in the definition of an overall key performance indicator (KPI) was implemented for a lab scale high-pressure homogenizer (HPH) in order to determine the disruption settings that allow the reliable quantification of a wide sort of intracellular components. This innovative KPI was based on the combination of three independent reporting indicators: decrease of absorbance, release of total protein, and release of alkaline phosphatase activity. The yeast Pichia pastoris growing on methanol was selected as model microorganism due to it presents an important widening of the cell wall needing more severe methods and operating conditions than Escherichia coli and Saccharomyces cerevisiae. From the outcome of the reporting indicators, the cell disruption efficiency achieved using HPH was about fourfold higher than other lab standard cell disruption methodologies, such bead milling cell permeabilization. This approach was also applied to a pilot plant scale HPH validating the methodology in a scale-up of the disruption process. This innovative non-complex approach developed to evaluate the efficacy of a disruption procedure or equipment can be easily applied to optimize the most common disruption processes, in order to reach not only reliable quantification but also recovery of intracellular components from cell factories of interest.

  6. Values of a Patient and Observer Scar Assessment Scale to Evaluate the Facial Skin Graft Scar

    PubMed Central

    Chae, Jin Kyung; Kim, Eun Jung; Park, Kun

    2016-01-01

    Background The patient and observer scar assessment scale (POSAS) recently emerged as a promising method, reflecting both observer's and patient's opinions in evaluating scar. This tool was shown to be consistent and reliable in burn scar assessment, but it has not been tested in the setting of skin graft scar in skin cancer patients. Objective To evaluate facial skin graft scar applied to POSAS and to compare with objective scar assessment tools. Methods Twenty three patients, who diagnosed with facial cutaneous malignancy and transplanted skin after Mohs micrographic surgery, were recruited. Observer assessment was performed by three independent rates using the observer component of the POSAS and Vancouver scar scale (VSS). Patient self-assessment was performed using the patient component of the POSAS. To quantify scar color and scar thickness more objectively, spectrophotometer and ultrasonography was applied. Results Inter-observer reliability was substantial with both VSS and the observer component of the POSAS (average measure intraclass coefficient correlation, 0.76 and 0.80, respectively). The observer component consistently showed significant correlations with patients' ratings for the parameters of the POSAS (all p-values<0.05). The correlation between subjective assessment using POSAS and objective assessment using spectrophotometer and ultrasonography showed low relationship. Conclusion In facial skin graft scar assessment in skin cancer patients, the POSAS showed acceptable inter-observer reliability. This tool was more comprehensive and had higher correlation with patient's opinion. PMID:27746642

  7. Overall Key Performance Indicator to Optimizing Operation of High-Pressure Homogenizers for a Reliable Quantification of Intracellular Components in Pichia pastoris

    PubMed Central

    Garcia-Ortega, Xavier; Reyes, Cecilia; Montesinos, José Luis; Valero, Francisco

    2015-01-01

    The most commonly used cell disruption procedures may present lack of reproducibility, which introduces significant errors in the quantification of intracellular components. In this work, an approach consisting in the definition of an overall key performance indicator (KPI) was implemented for a lab scale high-pressure homogenizer (HPH) in order to determine the disruption settings that allow the reliable quantification of a wide sort of intracellular components. This innovative KPI was based on the combination of three independent reporting indicators: decrease of absorbance, release of total protein, and release of alkaline phosphatase activity. The yeast Pichia pastoris growing on methanol was selected as model microorganism due to it presents an important widening of the cell wall needing more severe methods and operating conditions than Escherichia coli and Saccharomyces cerevisiae. From the outcome of the reporting indicators, the cell disruption efficiency achieved using HPH was about fourfold higher than other lab standard cell disruption methodologies, such bead milling cell permeabilization. This approach was also applied to a pilot plant scale HPH validating the methodology in a scale-up of the disruption process. This innovative non-complex approach developed to evaluate the efficacy of a disruption procedure or equipment can be easily applied to optimize the most common disruption processes, in order to reach not only reliable quantification but also recovery of intracellular components from cell factories of interest. PMID:26284241

  8. Automatic detection and segmentation of vascular structures in dermoscopy images using a novel vesselness measure based on pixel redness and tubularness

    NASA Astrophysics Data System (ADS)

    Kharazmi, Pegah; Lui, Harvey; Stoecker, William V.; Lee, Tim

    2015-03-01

    Vascular structures are one of the most important features in the diagnosis and assessment of skin disorders. The presence and clinical appearance of vascular structures in skin lesions is a discriminating factor among different skin diseases. In this paper, we address the problem of segmentation of vascular patterns in dermoscopy images. Our proposed method is composed of three parts. First, based on biological properties of human skin, we decompose the skin to melanin and hemoglobin component using independent component analysis of skin color images. The relative quantities and pure color densities of each component were then estimated. Subsequently, we obtain three reference vectors of the mean RGB values for normal skin, pigmented skin and blood vessels from the hemoglobin component by averaging over 100000 pixels of each group outlined by an expert. Based on the Euclidean distance thresholding, we generate a mask image that extracts the red regions of the skin. Finally, Frangi measure was applied to the extracted red areas to segment the tubular structures. Finally, Otsu's thresholding was applied to segment the vascular structures and get a binary vessel mask image. The algorithm was implemented on a set of 50 dermoscopy images. In order to evaluate the performance of our method, we have artificially extended some of the existing vessels in our dermoscopy data set and evaluated the performance of the algorithm to segment the newly added vessel pixels. A sensitivity of 95% and specificity of 87% were achieved.

  9. RHCV Telescope System Operations Manual

    DTIC Science & Technology

    2018-01-05

    hardware and software components. Several of the components are closely coupled and rely on one-another, while others are largely independent. This...of hardware and software components. Several of the components are closely coupled and rely on one-another, while others are largely independent. This...attendant training The use cases are briefly described in separate sections, and step-by-step instructions are presented. Each section begins on a new

  10. Unsupervised learning toward brain imaging data analysis: cigarette craving and resistance related neuronal activations from functional magnetic resonance imaging data analysis

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Youl; Lee, Jong-Hwan

    2014-05-01

    A data-driven unsupervised learning such as an independent component analysis was gainfully applied to bloodoxygenation- level-dependent (BOLD) functional magnetic resonance imaging (fMRI) data compared to a model-based general linear model (GLM). This is due to an ability of this unsupervised learning method to extract a meaningful neuronal activity from BOLD signal that is a mixture of confounding non-neuronal artifacts such as head motions and physiological artifacts as well as neuronal signals. In this study, we support this claim by identifying neuronal underpinnings of cigarette craving and cigarette resistance. The fMRI data were acquired from heavy cigarette smokers (n = 14) while they alternatively watched images with and without cigarette smoking. During acquisition of two fMRI runs, they were asked to crave when they watched cigarette smoking images or to resist the urge to smoke. Data driven approaches of group independent component analysis (GICA) method based on temporal concatenation (TC) and TCGICA with an extension of iterative dual-regression (TC-GICA-iDR) were applied to the data. From the results, cigarette craving and cigarette resistance related neuronal activations were identified in the visual area and superior frontal areas, respectively with a greater statistical significance from the TC-GICA-iDR method than the TC-GICA method. On the other hand, the neuronal activity levels in many of these regions were not statistically different from the GLM method between the cigarette craving and cigarette resistance due to potentially aberrant BOLD signals.

  11. A Guide for applying a revised version of the PARIHS framework for implementation

    PubMed Central

    2011-01-01

    Background Based on a critical synthesis of literature on use of the Promoting Action on Research Implementation in Health Services (PARIHS) framework, revisions and a companion Guide were developed by a group of researchers independent of the original PARIHS team. The purpose of the Guide is to enhance and optimize efforts of researchers using PARIHS in implementation trials and evaluations. Methods Authors used a planned, structured process to organize and synthesize critiques, discussions, and potential recommendations for refinements of the PARIHS framework arising from a systematic review. Using a templated form, each author independently recorded key components for each reviewed paper; that is, study definitions, perceived strengths/limitations of PARIHS, other observations regarding key issues and recommendations regarding needed refinements. After reaching consensus on these key components, the authors summarized the information and developed the Guide. Results A number of revisions, perceived as consistent with the PARIHS framework's general nature and intent, are proposed. The related Guide is composed of a set of reference tools, provided in Additional files. Its core content is built upon the basic elements of PARIHS and current implementation science. Conclusions We invite researchers using PARIHS for targeted evidence-based practice (EBP) implementations with a strong task-orientation to use this Guide as a companion and to apply the revised framework prospectively and comprehensively. Researchers also are encouraged to evaluate its use relative to perceived strengths and issues. Such evaluations and critical reflections regarding PARIHS and our Guide could thereby promote the framework's continued evolution. PMID:21878092

  12. Performance comparison of machine learning algorithms and number of independent components used in fMRI decoding of belief vs. disbelief.

    PubMed

    Douglas, P K; Harris, Sam; Yuille, Alan; Cohen, Mark S

    2011-05-15

    Machine learning (ML) has become a popular tool for mining functional neuroimaging data, and there are now hopes of performing such analyses efficiently in real-time. Towards this goal, we compared accuracy of six different ML algorithms applied to neuroimaging data of persons engaged in a bivariate task, asserting their belief or disbelief of a variety of propositional statements. We performed unsupervised dimension reduction and automated feature extraction using independent component (IC) analysis and extracted IC time courses. Optimization of classification hyperparameters across each classifier occurred prior to assessment. Maximum accuracy was achieved at 92% for Random Forest, followed by 91% for AdaBoost, 89% for Naïve Bayes, 87% for a J48 decision tree, 86% for K*, and 84% for support vector machine. For real-time decoding applications, finding a parsimonious subset of diagnostic ICs might be useful. We used a forward search technique to sequentially add ranked ICs to the feature subspace. For the current data set, we determined that approximately six ICs represented a meaningful basis set for classification. We then projected these six IC spatial maps forward onto a later scanning session within subject. We then applied the optimized ML algorithms to these new data instances, and found that classification accuracy results were reproducible. Additionally, we compared our classification method to our previously published general linear model results on this same data set. The highest ranked IC spatial maps show similarity to brain regions associated with contrasts for belief > disbelief, and disbelief < belief. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Principal component analysis-based unsupervised feature extraction applied to in silico drug discovery for posttraumatic stress disorder-mediated heart disease.

    PubMed

    Taguchi, Y-h; Iwadate, Mitsuo; Umeyama, Hideaki

    2015-04-30

    Feature extraction (FE) is difficult, particularly if there are more features than samples, as small sample numbers often result in biased outcomes or overfitting. Furthermore, multiple sample classes often complicate FE because evaluating performance, which is usual in supervised FE, is generally harder than the two-class problem. Developing sample classification independent unsupervised methods would solve many of these problems. Two principal component analysis (PCA)-based FE, specifically, variational Bayes PCA (VBPCA) was extended to perform unsupervised FE, and together with conventional PCA (CPCA)-based unsupervised FE, were tested as sample classification independent unsupervised FE methods. VBPCA- and CPCA-based unsupervised FE both performed well when applied to simulated data, and a posttraumatic stress disorder (PTSD)-mediated heart disease data set that had multiple categorical class observations in mRNA/microRNA expression of stressed mouse heart. A critical set of PTSD miRNAs/mRNAs were identified that show aberrant expression between treatment and control samples, and significant, negative correlation with one another. Moreover, greater stability and biological feasibility than conventional supervised FE was also demonstrated. Based on the results obtained, in silico drug discovery was performed as translational validation of the methods. Our two proposed unsupervised FE methods (CPCA- and VBPCA-based) worked well on simulated data, and outperformed two conventional supervised FE methods on a real data set. Thus, these two methods have suggested equivalence for FE on categorical multiclass data sets, with potential translational utility for in silico drug discovery.

  14. Principal component analysis for designed experiments.

    PubMed

    Konishi, Tomokazu

    2015-01-01

    Principal component analysis is used to summarize matrix data, such as found in transcriptome, proteome or metabolome and medical examinations, into fewer dimensions by fitting the matrix to orthogonal axes. Although this methodology is frequently used in multivariate analyses, it has disadvantages when applied to experimental data. First, the identified principal components have poor generality; since the size and directions of the components are dependent on the particular data set, the components are valid only within the data set. Second, the method is sensitive to experimental noise and bias between sample groups. It cannot reflect the experimental design that is planned to manage the noise and bias; rather, it estimates the same weight and independence to all the samples in the matrix. Third, the resulting components are often difficult to interpret. To address these issues, several options were introduced to the methodology. First, the principal axes were identified using training data sets and shared across experiments. These training data reflect the design of experiments, and their preparation allows noise to be reduced and group bias to be removed. Second, the center of the rotation was determined in accordance with the experimental design. Third, the resulting components were scaled to unify their size unit. The effects of these options were observed in microarray experiments, and showed an improvement in the separation of groups and robustness to noise. The range of scaled scores was unaffected by the number of items. Additionally, unknown samples were appropriately classified using pre-arranged axes. Furthermore, these axes well reflected the characteristics of groups in the experiments. As was observed, the scaling of the components and sharing of axes enabled comparisons of the components beyond experiments. The use of training data reduced the effects of noise and bias in the data, facilitating the physical interpretation of the principal axes. Together, these introduced options result in improved generality and objectivity of the analytical results. The methodology has thus become more like a set of multiple regression analyses that find independent models that specify each of the axes.

  15. Software components for medical image visualization and surgical planning

    NASA Astrophysics Data System (ADS)

    Starreveld, Yves P.; Gobbi, David G.; Finnis, Kirk; Peters, Terence M.

    2001-05-01

    Purpose: The development of new applications in medical image visualization and surgical planning requires the completion of many common tasks such as image reading and re-sampling, segmentation, volume rendering, and surface display. Intra-operative use requires an interface to a tracking system and image registration, and the application requires basic, easy to understand user interface components. Rapid changes in computer and end-application hardware, as well as in operating systems and network environments make it desirable to have a hardware and operating system as an independent collection of reusable software components that can be assembled rapidly to prototype new applications. Methods: Using the OpenGL based Visualization Toolkit as a base, we have developed a set of components that implement the above mentioned tasks. The components are written in both C++ and Python, but all are accessible from Python, a byte compiled scripting language. The components have been used on the Red Hat Linux, Silicon Graphics Iris, Microsoft Windows, and Apple OS X platforms. Rigorous object-oriented software design methods have been applied to ensure hardware independence and a standard application programming interface (API). There are components to acquire, display, and register images from MRI, MRA, CT, Computed Rotational Angiography (CRA), Digital Subtraction Angiography (DSA), 2D and 3D ultrasound, video and physiological recordings. Interfaces to various tracking systems for intra-operative use have also been implemented. Results: The described components have been implemented and tested. To date they have been used to create image manipulation and viewing tools, a deep brain functional atlas, a 3D ultrasound acquisition and display platform, a prototype minimally invasive robotic coronary artery bypass graft planning system, a tracked neuro-endoscope guidance system and a frame-based stereotaxy neurosurgery planning tool. The frame-based stereotaxy module has been licensed and certified for use in a commercial image guidance system. Conclusions: It is feasible to encapsulate image manipulation and surgical guidance tasks in individual, reusable software modules. These modules allow for faster development of new applications. The strict application of object oriented software design methods allows individual components of such a system to make the transition from the research environment to a commercial one.

  16. Functional Subdivision of Group-ICA Results of fMRI Data Collected during Cinema Viewing

    PubMed Central

    Pamilo, Siina; Malinen, Sanna; Hlushchuk, Yevhen; Seppä, Mika; Tikka, Pia; Hari, Riitta

    2012-01-01

    Independent component analysis (ICA) can unravel functional brain networks from functional magnetic resonance imaging (fMRI) data. The number of the estimated components affects both the spatial pattern of the identified networks and their time-course estimates. Here group-ICA was applied at four dimensionalities (10, 20, 40, and 58 components) to fMRI data collected from 15 subjects who viewed a 15-min silent film (“At land” by Maya Deren). We focused on the dorsal attention network, the default-mode network, and the sensorimotor network. The lowest dimensionalities demonstrated most prominent activity within the dorsal attention network, combined with the visual areas, and in the default-mode network; the sensorimotor network only appeared with ICA comprising at least 20 components. The results suggest that even very low-dimensional ICA can unravel the most prominent functionally-connected brain networks. However, increasing the number of components gives a more detailed picture and functionally feasible subdivision of the major networks. These results improve our understanding of the hierarchical subdivision of brain networks during viewing of a movie that provides continuous stimulation embedded in an attention-directing narrative. PMID:22860044

  17. Perturbational formulation of principal component analysis in molecular dynamics simulation.

    PubMed

    Koyama, Yohei M; Kobayashi, Tetsuya J; Tomoda, Shuji; Ueda, Hiroki R

    2008-10-01

    Conformational fluctuations of a molecule are important to its function since such intrinsic fluctuations enable the molecule to respond to the external environmental perturbations. For extracting large conformational fluctuations, which predict the primary conformational change by the perturbation, principal component analysis (PCA) has been used in molecular dynamics simulations. However, several versions of PCA, such as Cartesian coordinate PCA and dihedral angle PCA (dPCA), are limited to use with molecules with a single dominant state or proteins where the dihedral angle represents an important internal coordinate. Other PCAs with general applicability, such as the PCA using pairwise atomic distances, do not represent the physical meaning clearly. Therefore, a formulation that provides general applicability and clearly represents the physical meaning is yet to be developed. For developing such a formulation, we consider the conformational distribution change by the perturbation with arbitrary linearly independent perturbation functions. Within the second order approximation of the Kullback-Leibler divergence by the perturbation, the PCA can be naturally interpreted as a method for (1) decomposing a given perturbation into perturbations that independently contribute to the conformational distribution change or (2) successively finding the perturbation that induces the largest conformational distribution change. In this perturbational formulation of PCA, (i) the eigenvalue measures the Kullback-Leibler divergence from the unperturbed to perturbed distributions, (ii) the eigenvector identifies the combination of the perturbation functions, and (iii) the principal component determines the probability change induced by the perturbation. Based on this formulation, we propose a PCA using potential energy terms, and we designate it as potential energy PCA (PEPCA). The PEPCA provides both general applicability and clear physical meaning. For demonstrating its power, we apply the PEPCA to an alanine dipeptide molecule in vacuum as a minimal model of a nonsingle dominant conformational biomolecule. The first and second principal components clearly characterize two stable states and the transition state between them. Positive and negative components with larger absolute values of the first and second eigenvectors identify the electrostatic interactions, which stabilize or destabilize each stable state and the transition state. Our result therefore indicates that PCA can be applied, by carefully selecting the perturbation functions, not only to identify the molecular conformational fluctuation but also to predict the conformational distribution change by the perturbation beyond the limitation of the previous methods.

  18. Perturbational formulation of principal component analysis in molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Koyama, Yohei M.; Kobayashi, Tetsuya J.; Tomoda, Shuji; Ueda, Hiroki R.

    2008-10-01

    Conformational fluctuations of a molecule are important to its function since such intrinsic fluctuations enable the molecule to respond to the external environmental perturbations. For extracting large conformational fluctuations, which predict the primary conformational change by the perturbation, principal component analysis (PCA) has been used in molecular dynamics simulations. However, several versions of PCA, such as Cartesian coordinate PCA and dihedral angle PCA (dPCA), are limited to use with molecules with a single dominant state or proteins where the dihedral angle represents an important internal coordinate. Other PCAs with general applicability, such as the PCA using pairwise atomic distances, do not represent the physical meaning clearly. Therefore, a formulation that provides general applicability and clearly represents the physical meaning is yet to be developed. For developing such a formulation, we consider the conformational distribution change by the perturbation with arbitrary linearly independent perturbation functions. Within the second order approximation of the Kullback-Leibler divergence by the perturbation, the PCA can be naturally interpreted as a method for (1) decomposing a given perturbation into perturbations that independently contribute to the conformational distribution change or (2) successively finding the perturbation that induces the largest conformational distribution change. In this perturbational formulation of PCA, (i) the eigenvalue measures the Kullback-Leibler divergence from the unperturbed to perturbed distributions, (ii) the eigenvector identifies the combination of the perturbation functions, and (iii) the principal component determines the probability change induced by the perturbation. Based on this formulation, we propose a PCA using potential energy terms, and we designate it as potential energy PCA (PEPCA). The PEPCA provides both general applicability and clear physical meaning. For demonstrating its power, we apply the PEPCA to an alanine dipeptide molecule in vacuum as a minimal model of a nonsingle dominant conformational biomolecule. The first and second principal components clearly characterize two stable states and the transition state between them. Positive and negative components with larger absolute values of the first and second eigenvectors identify the electrostatic interactions, which stabilize or destabilize each stable state and the transition state. Our result therefore indicates that PCA can be applied, by carefully selecting the perturbation functions, not only to identify the molecular conformational fluctuation but also to predict the conformational distribution change by the perturbation beyond the limitation of the previous methods.

  19. Two-Component Noncollinear Time-Dependent Spin Density Functional Theory for Excited State Calculations.

    PubMed

    Egidi, Franco; Sun, Shichao; Goings, Joshua J; Scalmani, Giovanni; Frisch, Michael J; Li, Xiaosong

    2017-06-13

    We present a linear response formalism for the description of the electronic excitations of a noncollinear reference defined via Kohn-Sham spin density functional methods. A set of auxiliary variables, defined using the density and noncollinear magnetization density vector, allows the generalization of spin density functional kernels commonly used in collinear DFT to noncollinear cases, including local density, GGA, meta-GGA and hybrid functionals. Working equations and derivations of functional second derivatives with respect to the noncollinear density, required in the linear response noncollinear TDDFT formalism, are presented in this work. This formalism takes all components of the spin magnetization into account independent of the type of reference state (open or closed shell). As a result, the method introduced here is able to afford a nonzero local xc torque on the spin magnetization while still satisfying the zero-torque theorem globally. The formalism is applied to a few test cases using the variational exact-two-component reference including spin-orbit coupling to illustrate the capabilities of the method.

  20. Independent Orbiter Assessment (IOA): Analysis of the hydraulics/water spray boiler subsystem

    NASA Technical Reports Server (NTRS)

    Duval, J. D.; Davidson, W. R.; Parkman, William E.

    1986-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items (PCIs). To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results for the Orbiter Hydraulics/Water Spray Boiler Subsystem. The hydraulic system provides hydraulic power to gimbal the main engines, actuate the main engine propellant control valves, move the aerodynamic flight control surfaces, lower the landing gear, apply wheel brakes, steer the nosewheel, and dampen the external tank (ET) separation. Each hydraulic system has an associated water spray boiler which is used to cool the hydraulic fluid and APU lubricating oil. The IOA analysis process utilized available HYD/WSB hardware drawings, schematics and documents for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Of the 430 failure modes analyzed, 166 were determined to be PCIs.

  1. Selection of independent components based on cortical mapping of electromagnetic activity

    NASA Astrophysics Data System (ADS)

    Chan, Hui-Ling; Chen, Yong-Sheng; Chen, Li-Fen

    2012-10-01

    Independent component analysis (ICA) has been widely used to attenuate interference caused by noise components from the electromagnetic recordings of brain activity. However, the scalp topographies and associated temporal waveforms provided by ICA may be insufficient to distinguish functional components from artifactual ones. In this work, we proposed two component selection methods, both of which first estimate the cortical distribution of the brain activity for each component, and then determine the functional components based on the parcellation of brain activity mapped onto the cortical surface. Among all independent components, the first method can identify the dominant components, which have strong activity in the selected dominant brain regions, whereas the second method can identify those inter-regional associating components, which have similar component spectra between a pair of regions. For a targeted region, its component spectrum enumerates the amplitudes of its parceled brain activity across all components. The selected functional components can be remixed to reconstruct the focused electromagnetic signals for further analysis, such as source estimation. Moreover, the inter-regional associating components can be used to estimate the functional brain network. The accuracy of the cortical activation estimation was evaluated on the data from simulation studies, whereas the usefulness and feasibility of the component selection methods were demonstrated on the magnetoencephalography data recorded from a gender discrimination study.

  2. Bipolar electrode selection for a motor imagery based brain computer interface

    NASA Astrophysics Data System (ADS)

    Lou, Bin; Hong, Bo; Gao, Xiaorong; Gao, Shangkai

    2008-09-01

    A motor imagery based brain-computer interface (BCI) provides a non-muscular communication channel that enables people with paralysis to control external devices using their motor imagination. Reducing the number of electrodes is critical to improving the portability and practicability of the BCI system. A novel method is proposed to reduce the number of electrodes to a total of four by finding the optimal positions of two bipolar electrodes. Independent component analysis (ICA) is applied to find the source components of mu and alpha rhythms, and optimal electrodes are chosen by comparing the projection weights of sources on each channel. The results of eight subjects demonstrate the better classification performance of the optimal layout compared with traditional layouts, and the stability of this optimal layout over a one week interval was further verified.

  3. A projection pursuit algorithm to classify individuals using fMRI data: Application to schizophrenia.

    PubMed

    Demirci, Oguz; Clark, Vincent P; Calhoun, Vince D

    2008-02-15

    Schizophrenia is diagnosed based largely upon behavioral symptoms. Currently, no quantitative, biologically based diagnostic technique has yet been developed to identify patients with schizophrenia. Classification of individuals into patient with schizophrenia and healthy control groups based on quantitative biologically based data is of great interest to support and refine psychiatric diagnoses. We applied a novel projection pursuit technique on various components obtained with independent component analysis (ICA) of 70 subjects' fMRI activation maps obtained during an auditory oddball task. The validity of the technique was tested with a leave-one-out method and the detection performance varied between 80% and 90%. The findings suggest that the proposed data reduction algorithm is effective in classifying individuals into schizophrenia and healthy control groups and may eventually prove useful as a diagnostic tool.

  4. LDRD Report: Topological Design Optimization of Convolutes in Next Generation Pulsed Power Devices.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cyr, Eric C.; von Winckel, Gregory John; Kouri, Drew Philip

    This LDRD project was developed around the ambitious goal of applying PDE-constrained opti- mization approaches to design Z-machine components whose performance is governed by elec- tromagnetic and plasma models. This report documents the results of this LDRD project. Our differentiating approach was to use topology optimization methods developed for structural design and extend them for application to electromagnetic systems pertinent to the Z-machine. To achieve this objective a suite of optimization algorithms were implemented in the ROL library part of the Trilinos framework. These methods were applied to standalone demonstration problems and the Drekar multi-physics research application. Out of thismore » exploration a new augmented Lagrangian approach to structural design problems was developed. We demonstrate that this approach has favorable mesh-independent performance. Both the final design and the algorithmic performance were independent of the size of the mesh. In addition, topology optimization formulations for the design of conducting networks were developed and demonstrated. Of note, this formulation was used to develop a design for the inner magnetically insulated transmission line on the Z-machine. The resulting electromagnetic device is compared with theoretically postulated designs.« less

  5. Application and Evaluation of Independent Component Analysis Methods to Generalized Seizure Disorder Activities Exhibited in the Brain.

    PubMed

    George, S Thomas; Balakrishnan, R; Johnson, J Stanly; Jayakumar, J

    2017-07-01

    EEG records the spontaneous electrical activity of the brain using multiple electrodes placed on the scalp, and it provides a wealth of information related to the functions of brain. Nevertheless, the signals from the electrodes cannot be directly applied to a diagnostic tool like brain mapping as they undergo a "mixing" process because of the volume conduction effect in the scalp. A pervasive problem in neuroscience is determining which regions of the brain are active, given voltage measurements at the scalp. Because of which, there has been a surge of interest among the biosignal processing community to investigate the process of mixing and unmixing to identify the underlying active sources. According to the assumptions of independent component analysis (ICA) algorithms, the resultant mixture obtained from the scalp can be closely approximated by a linear combination of the "actual" EEG signals emanating from the underlying sources of electrical activity in the brain. As a consequence, using these well-known ICA techniques in preprocessing of the EEG signals prior to clinical applications could result in development of diagnostic tool like quantitative EEG which in turn can assist the neurologists to gain noninvasive access to patient-specific cortical activity, which helps in treating neuropathologies like seizure disorders. The popular and proven ICA schemes mentioned in various literature and applications were selected (which includes Infomax, JADE, and SOBI) and applied on generalized seizure disorder samples using EEGLAB toolbox in MATLAB environment to see their usefulness in source separations; and they were validated by the expert neurologist for clinical relevance in terms of pathologies on brain functionalities. The performance of Infomax method was found to be superior when compared with other ICA schemes applied on EEG and it has been established based on the validations carried by expert neurologist for generalized seizure and its clinical correlation. The results are encouraging for furthering the studies in the direction of developing useful brain mapping tools using ICA methods.

  6. Tidal Deformability from GW170817 as a Direct Probe of the Neutron Star Radius

    NASA Astrophysics Data System (ADS)

    Raithel, Carolyn A.; Özel, Feryal; Psaltis, Dimitrios

    2018-04-01

    Gravitational waves from the coalescence of two neutron stars were recently detected for the first time by the LIGO–Virgo Collaboration, in event GW170817. This detection placed an upper limit on the effective tidal deformability of the two neutron stars and tightly constrained the chirp mass of the system. We report here on a new simplification that arises in the effective tidal deformability of the binary, when the chirp mass is specified. We find that, in this case, the effective tidal deformability of the binary is surprisingly independent of the component masses of the individual neutron stars, and instead depends primarily on the ratio of the chirp mass to the neutron star radius. Thus, a measurement of the effective tidal deformability can be used to directly measure the neutron star radius. We find that the upper limit on the effective tidal deformability from GW170817 implies that the radius cannot be larger than ∼13 km, at the 90% level, independent of the assumed masses for the component stars. The result can be applied generally, to probe the stellar radii in any neutron star–neutron star merger with a measured chirp mass. The approximate mass independence disappears for neutron star–black hole mergers. Finally, we discuss a Bayesian inference of the equation of state that uses the measured chirp mass and tidal deformability from GW170817 combined with nuclear and astrophysical priors and discuss possible statistical biases in this inference.

  7. A two-step super-Gaussian independent component analysis approach for fMRI data.

    PubMed

    Ge, Ruiyang; Yao, Li; Zhang, Hang; Long, Zhiying

    2015-09-01

    Independent component analysis (ICA) has been widely applied to functional magnetic resonance imaging (fMRI) data analysis. Although ICA assumes that the sources underlying data are statistically independent, it usually ignores sources' additional properties, such as sparsity. In this study, we propose a two-step super-GaussianICA (2SGICA) method that incorporates the sparse prior of the sources into the ICA model. 2SGICA uses the super-Gaussian ICA (SGICA) algorithm that is based on a simplified Lewicki-Sejnowski's model to obtain the initial source estimate in the first step. Using a kernel estimator technique, the source density is acquired and fitted to the Laplacian function based on the initial source estimates. The fitted Laplacian prior is used for each source at the second SGICA step. Moreover, the automatic target generation process for initial value generation is used in 2SGICA to guarantee the stability of the algorithm. An adaptive step size selection criterion is also implemented in the proposed algorithm. We performed experimental tests on both simulated data and real fMRI data to investigate the feasibility and robustness of 2SGICA and made a performance comparison between InfomaxICA, FastICA, mean field ICA (MFICA) with Laplacian prior, sparse online dictionary learning (ODL), SGICA and 2SGICA. Both simulated and real fMRI experiments showed that the 2SGICA was most robust to noises, and had the best spatial detection power and the time course estimation among the six methods. Copyright © 2015. Published by Elsevier Inc.

  8. Estimation des paramètres d'un modèle hydrologique mixte appliqué à la région du haut plateau Bolivien

    NASA Astrophysics Data System (ADS)

    Gárfias, Jaime; Verrette, Jean-Louis; Antigüedad, Iñaki; André, Cécile

    1996-03-01

    This paper discusses the development and application of a technique which permits the analysis and improvement of hydrological models for the management of water resources of complex systems. Considering that such models are intended for practical application, the model was applied to the conditions of the Bolivian highlands. The model consisted of a deterministic part (HEC-1 model) linked to a stochastic component. The experience acquired indicated the possibility of adapting a more general procedure to compensate for the lack of rigour in the homoscedastic and independence hypothesis of the residuals. Use of this concept improved the estimation accuracy of the parameters and provided independent residuals with constant variance. A Box-Cox transformation was used to stabilize error variance and an autoregressive model was used to remove autocorrelation in the residuals.

  9. MODEL-INDEPENDENT LIMITS ON THE LINE-OF-SIGHT DEPTH OF CLUSTERS OF GALAXIES USING X-RAY AND SUNYAEV-ZEL'DOVICH DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahdavi, Andisheh; Chang Weihan

    2011-07-01

    We derive a model-independent expression for the minimum line-of-sight extent of the hot plasma in a cluster of galaxies. The only inputs are the 1-5 keV X-ray surface brightness and the Comptonization from Sunyaev-Zel'dovich (SZ) data. No a priori assumptions regarding equilibrium or geometry are required. The method applies when the X-ray emitting material has temperatures anywhere between 0.3 keV and 20 keV and metallicities between 0 and twice solar-conditions fulfilled by nearly all intracluster plasma. Using this method, joint APEX-SZ and Chandra X-ray Observatory data on the Bullet Cluster yield a lower limit of 400 {+-} 56 kpc onmore » the half-pressure depth of the main component, limiting it to being at least spherical, if not cigar-shaped primarily along the line of sight.« less

  10. A Cross-Classified CFA-MTMM Model for Structurally Different and Nonindependent Interchangeable Methods.

    PubMed

    Koch, Tobias; Schultze, Martin; Jeon, Minjeong; Nussbeck, Fridtjof W; Praetorius, Anna-Katharina; Eid, Michael

    2016-01-01

    Multirater (multimethod, multisource) studies are increasingly applied in psychology. Eid and colleagues (2008) proposed a multilevel confirmatory factor model for multitrait-multimethod (MTMM) data combining structurally different and multiple independent interchangeable methods (raters). In many studies, however, different interchangeable raters (e.g., peers, subordinates) are asked to rate different targets (students, supervisors), leading to violations of the independence assumption and to cross-classified data structures. In the present work, we extend the ML-CFA-MTMM model by Eid and colleagues (2008) to cross-classified multirater designs. The new C4 model (Cross-Classified CTC[M-1] Combination of Methods) accounts for nonindependent interchangeable raters and enables researchers to explicitly model the interaction between targets and raters as a latent variable. Using a real data application, it is shown how credibility intervals of model parameters and different variance components can be obtained using Bayesian estimation techniques.

  11. Response-reinforcer dependency and resistance to change.

    PubMed

    Cançado, Carlos R X; Abreu-Rodrigues, Josele; Aló, Raquel Moreira; Hauck, Flávia; Doughty, Adam H

    2018-01-01

    The effects of the response-reinforcer dependency on resistance to change were studied in three experiments with rats. In Experiment 1, lever pressing produced reinforcers at similar rates after variable interreinforcer intervals in each component of a two-component multiple schedule. Across conditions, in the fixed component, all reinforcers were response-dependent; in the alternative component, the percentage of response-dependent reinforcers was 100, 50 (i.e., 50% response-dependent and 50% response-independent) or 10% (i.e., 10% response-dependent and 90% response-independent). Resistance to extinction was greater in the alternative than in the fixed component when the dependency in the former was 10%, but was similar between components when this dependency was 100 or 50%. In Experiment 2, a three-component multiple schedule was used. The dependency was 100% in one component and 10% in the other two. The 10% components differed on how reinforcers were programmed. In one component, as in Experiment 1, a reinforcer had to be collected before the scheduling of other response-dependent or independent reinforcers. In the other component, response-dependent and -independent reinforcers were programmed by superimposing a variable-time schedule on an independent variable-interval schedule. Regardless of the procedure used to program the dependency, resistance to extinction was greater in the 10% components than in the 100% component. These results were replicated in Experiment 3 in which, instead of extinction, VT schedules replaced the baseline schedules in each multiple-schedule component during the test. We argue that the relative change in dependency from Baseline to Test, which is greater when baseline dependencies are high rather than low, could account for the differential resistance to change in the present experiments. The inconsistencies in results across the present and previous experiments suggest that the effects of dependency on resistance to change are not well understood. Additional systematic analyses are important to further understand the effects of the response-reinforcer relation on resistance to change and to the development of a more comprehensive theory of behavioral persistence. © 2017 Society for the Experimental Analysis of Behavior.

  12. Artifact removal in the context of group ICA: a comparison of single-subject and group approaches

    PubMed Central

    Du, Yuhui; Allen, Elena A.; He, Hao; Sui, Jing; Wu, Lei; Calhoun, Vince D.

    2018-01-01

    Independent component analysis (ICA) has been widely applied to identify intrinsic brain networks from fMRI data. Group ICA computes group-level components from all data and subsequently estimates individual-level components to recapture inter-subject variability. However, the best approach to handle artifacts, which may vary widely among subjects, is not yet clear. In this work, we study and compare two ICA approaches for artifacts removal. One approach, recommended in recent work by the Human Connectome Project, first performs ICA on individual subject data to remove artifacts, and then applies a group ICA on the cleaned data from all subjects. We refer to this approach as Individual ICA based artifacts Removal Plus Group ICA (IRPG). A second proposed approach, called Group Information Guided ICA (GIG-ICA), performs ICA on group data, then removes the group-level artifact components, and finally performs subject-specific ICAs using the group-level non-artifact components as spatial references. We used simulations to evaluate the two approaches with respect to the effects of data quality, data quantity, variable number of sources among subjects, and spatially unique artifacts. Resting-state test-retest datasets were also employed to investigate the reliability of functional networks. Results from simulations demonstrate GIG-ICA has greater performance compared to IRPG, even in the case when single-subject artifacts removal is perfect and when individual subjects have spatially unique artifacts. Experiments using test-retest data suggest that GIG-ICA provides more reliable functional networks. Based on high estimation accuracy, ease of implementation, and high reliability of functional networks, we find GIG-ICA to be a promising approach. PMID:26859308

  13. Modeling pollen time series using seasonal-trend decomposition procedure based on LOESS smoothing

    NASA Astrophysics Data System (ADS)

    Rojo, Jesús; Rivero, Rosario; Romero-Morte, Jorge; Fernández-González, Federico; Pérez-Badia, Rosa

    2017-02-01

    Analysis of airborne pollen concentrations provides valuable information on plant phenology and is thus a useful tool in agriculture—for predicting harvests in crops such as the olive and for deciding when to apply phytosanitary treatments—as well as in medicine and the environmental sciences. Variations in airborne pollen concentrations, moreover, are indicators of changing plant life cycles. By modeling pollen time series, we can not only identify the variables influencing pollen levels but also predict future pollen concentrations. In this study, airborne pollen time series were modeled using a seasonal-trend decomposition procedure based on LOcally wEighted Scatterplot Smoothing (LOESS) smoothing (STL). The data series—daily Poaceae pollen concentrations over the period 2006-2014—was broken up into seasonal and residual (stochastic) components. The seasonal component was compared with data on Poaceae flowering phenology obtained by field sampling. Residuals were fitted to a model generated from daily temperature and rainfall values, and daily pollen concentrations, using partial least squares regression (PLSR). This method was then applied to predict daily pollen concentrations for 2014 (independent validation data) using results for the seasonal component of the time series and estimates of the residual component for the period 2006-2013. Correlation between predicted and observed values was r = 0.79 (correlation coefficient) for the pre-peak period (i.e., the period prior to the peak pollen concentration) and r = 0.63 for the post-peak period. Separate analysis of each of the components of the pollen data series enables the sources of variability to be identified more accurately than by analysis of the original non-decomposed data series, and for this reason, this procedure has proved to be a suitable technique for analyzing the main environmental factors influencing airborne pollen concentrations.

  14. Modeling pollen time series using seasonal-trend decomposition procedure based on LOESS smoothing.

    PubMed

    Rojo, Jesús; Rivero, Rosario; Romero-Morte, Jorge; Fernández-González, Federico; Pérez-Badia, Rosa

    2017-02-01

    Analysis of airborne pollen concentrations provides valuable information on plant phenology and is thus a useful tool in agriculture-for predicting harvests in crops such as the olive and for deciding when to apply phytosanitary treatments-as well as in medicine and the environmental sciences. Variations in airborne pollen concentrations, moreover, are indicators of changing plant life cycles. By modeling pollen time series, we can not only identify the variables influencing pollen levels but also predict future pollen concentrations. In this study, airborne pollen time series were modeled using a seasonal-trend decomposition procedure based on LOcally wEighted Scatterplot Smoothing (LOESS) smoothing (STL). The data series-daily Poaceae pollen concentrations over the period 2006-2014-was broken up into seasonal and residual (stochastic) components. The seasonal component was compared with data on Poaceae flowering phenology obtained by field sampling. Residuals were fitted to a model generated from daily temperature and rainfall values, and daily pollen concentrations, using partial least squares regression (PLSR). This method was then applied to predict daily pollen concentrations for 2014 (independent validation data) using results for the seasonal component of the time series and estimates of the residual component for the period 2006-2013. Correlation between predicted and observed values was r = 0.79 (correlation coefficient) for the pre-peak period (i.e., the period prior to the peak pollen concentration) and r = 0.63 for the post-peak period. Separate analysis of each of the components of the pollen data series enables the sources of variability to be identified more accurately than by analysis of the original non-decomposed data series, and for this reason, this procedure has proved to be a suitable technique for analyzing the main environmental factors influencing airborne pollen concentrations.

  15. The Complexity of Human Walking: A Knee Osteoarthritis Study

    PubMed Central

    Kotti, Margarita; Duffell, Lynsey D.; Faisal, Aldo A.; McGregor, Alison H.

    2014-01-01

    This study proposes a framework for deconstructing complex walking patterns to create a simple principal component space before checking whether the projection to this space is suitable for identifying changes from the normality. We focus on knee osteoarthritis, the most common knee joint disease and the second leading cause of disability. Knee osteoarthritis affects over 250 million people worldwide. The motivation for projecting the highly dimensional movements to a lower dimensional and simpler space is our belief that motor behaviour can be understood by identifying a simplicity via projection to a low principal component space, which may reflect upon the underlying mechanism. To study this, we recruited 180 subjects, 47 of which reported that they had knee osteoarthritis. They were asked to walk several times along a walkway equipped with two force plates that capture their ground reaction forces along 3 axes, namely vertical, anterior-posterior, and medio-lateral, at 1000 Hz. Data when the subject does not clearly strike the force plate were excluded, leaving 1–3 gait cycles per subject. To examine the complexity of human walking, we applied dimensionality reduction via Probabilistic Principal Component Analysis. The first principal component explains 34% of the variance in the data, whereas over 80% of the variance is explained by 8 principal components or more. This proves the complexity of the underlying structure of the ground reaction forces. To examine if our musculoskeletal system generates movements that are distinguishable between normal and pathological subjects in a low dimensional principal component space, we applied a Bayes classifier. For the tested cross-validated, subject-independent experimental protocol, the classification accuracy equals 82.62%. Also, a novel complexity measure is proposed, which can be used as an objective index to facilitate clinical decision making. This measure proves that knee osteoarthritis subjects exhibit more variability in the two-dimensional principal component space. PMID:25232949

  16. Automatic removal of eye-movement and blink artifacts from EEG signals.

    PubMed

    Gao, Jun Feng; Yang, Yong; Lin, Pan; Wang, Pei; Zheng, Chong Xun

    2010-03-01

    Frequent occurrence of electrooculography (EOG) artifacts leads to serious problems in interpreting and analyzing the electroencephalogram (EEG). In this paper, a robust method is presented to automatically eliminate eye-movement and eye-blink artifacts from EEG signals. Independent Component Analysis (ICA) is used to decompose EEG signals into independent components. Moreover, the features of topographies and power spectral densities of those components are extracted to identify eye-movement artifact components, and a support vector machine (SVM) classifier is adopted because it has higher performance than several other classifiers. The classification results show that feature-extraction methods are unsuitable for identifying eye-blink artifact components, and then a novel peak detection algorithm of independent component (PDAIC) is proposed to identify eye-blink artifact components. Finally, the artifact removal method proposed here is evaluated by the comparisons of EEG data before and after artifact removal. The results indicate that the method proposed could remove EOG artifacts effectively from EEG signals with little distortion of the underlying brain signals.

  17. Therapy-induced brain reorganization patterns in aphasia.

    PubMed

    Abel, Stefanie; Weiller, Cornelius; Huber, Walter; Willmes, Klaus; Specht, Karsten

    2015-04-01

    Both hemispheres are engaged in recovery from word production deficits in aphasia. Lexical therapy has been shown to induce brain reorganization even in patients with chronic aphasia. However, the interplay of factors influencing reorganization patterns still remains unresolved. We were especially interested in the relation between lesion site, therapy-induced recovery, and beneficial reorganization patterns. Thus, we applied intensive lexical therapy, which was evaluated with functional magnetic resonance imaging, to 14 chronic patients with aphasic word retrieval deficits. In a group study, we aimed to illuminate brain reorganization of the naming network in comparison with healthy controls. Moreover, we intended to analyse the data with joint independent component analysis to relate lesion sites to therapy-induced brain reorganization, and to correlate resulting components with therapy gain. As a result, we found peri-lesional and contralateral activations basically overlapping with premorbid naming networks observed in healthy subjects. Reduced activation patterns for patients compared to controls before training comprised damaged left hemisphere language areas, right precentral and superior temporal gyrus, as well as left caudate and anterior cingulate cortex. There were decreasing activations of bilateral visuo-cognitive, articulatory, attention, and language areas due to therapy, with stronger decreases for patients in right middle temporal gyrus/superior temporal sulcus, bilateral precuneus as well as left anterior cingulate cortex and caudate. The joint independent component analysis revealed three components indexing lesion subtypes that were associated with patient-specific recovery patterns. Activation decreases (i) of an extended frontal lesion disconnecting language pathways occurred in left inferior frontal gyrus; (ii) of a small frontal lesion were found in bilateral inferior frontal gyrus; and (iii) of a large temporo-parietal lesion occurred in bilateral inferior frontal gyrus and contralateral superior temporal gyrus. All components revealed increases in prefrontal areas. One component was negatively correlated with therapy gain. Therapy was associated exclusively with activation decreases, which could mainly be attributed to higher processing efficiency within the naming network. In our joint independent component analysis, all three lesion patterns disclosed involved deactivation of left inferior frontal gyrus. Moreover, we found evidence for increased demands on control processes. As expected, we saw partly differential reorganization profiles depending on lesion patterns. There was no compensatory deactivation for the large left inferior frontal lesion, with its less advantageous outcome probably being related to its disconnection from crucial language processing pathways. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Mixture Modeling for Background and Sources Separation in x-ray Astronomical Images

    NASA Astrophysics Data System (ADS)

    Guglielmetti, Fabrizia; Fischer, Rainer; Dose, Volker

    2004-11-01

    A probabilistic technique for the joint estimation of background and sources in high-energy astrophysics is described. Bayesian probability theory is applied to gain insight into the coexistence of background and sources through a probabilistic two-component mixture model, which provides consistent uncertainties of background and sources. The present analysis is applied to ROSAT PSPC data (0.1-2.4 keV) in Survey Mode. A background map is modelled using a Thin-Plate spline. Source probability maps are obtained for each pixel (45 arcsec) independently and for larger correlation lengths, revealing faint and extended sources. We will demonstrate that the described probabilistic method allows for detection improvement of faint extended celestial sources compared to the Standard Analysis Software System (SASS) used for the production of the ROSAT All-Sky Survey (RASS) catalogues.

  19. A New Method for Conceptual Modelling of Information Systems

    NASA Astrophysics Data System (ADS)

    Gustas, Remigijus; Gustiene, Prima

    Service architecture is not necessarily bound to the technical aspects of information system development. It can be defined by using conceptual models that are independent of any implementation technology. Unfortunately, the conventional information system analysis and design methods cover just a part of required modelling notations for engineering of service architectures. They do not provide effective support to maintain semantic integrity between business processes and data. Service orientation is a paradigm that can be applied for conceptual modelling of information systems. The concept of service is rather well understood in different domains. It can be applied equally well for conceptualization of organizational and technical information system components. This chapter concentrates on analysis of the differences between service-oriented modelling and object-oriented modelling. Service-oriented method is used for semantic integration of information system static and dynamic aspects.

  20. A semiparametric graphical modelling approach for large-scale equity selection.

    PubMed

    Liu, Han; Mulvey, John; Zhao, Tianqi

    2016-01-01

    We propose a new stock selection strategy that exploits rebalancing returns and improves portfolio performance. To effectively harvest rebalancing gains, we apply ideas from elliptical-copula graphical modelling and stability inference to select stocks that are as independent as possible. The proposed elliptical-copula graphical model has a latent Gaussian representation; its structure can be effectively inferred using the regularized rank-based estimators. The resulting algorithm is computationally efficient and scales to large data-sets. To show the efficacy of the proposed method, we apply it to conduct equity selection based on a 16-year health care stock data-set and a large 34-year stock data-set. Empirical tests show that the proposed method is superior to alternative strategies including a principal component analysis-based approach and the classical Markowitz strategy based on the traditional buy-and-hold assumption.

  1. Formulation Effects and the Off-target Transport of Pyrethroid Insecticides from Urban Hard Surfaces

    PubMed Central

    Jorgenson, Brant C.; Young, Thomas M.

    2010-01-01

    Controlled rainfall experiments utilizing drop forming rainfall simulators were conducted to study various factors contributing to off-target transport of off-the-shelf formulated pyrethroid insecticides from concrete surfaces. Factors evaluated included active ingredient, product formulation, time between application and rainfall (set time), and rainfall intensity. As much as 60% and as little as 0.8% of pyrethroid applied could be recovered in surface runoff depending primarily on product formulation, and to a lesser extent on product set time. Resulting wash-off profiles during one-hour storm simulations could be categorized based on formulation, with formulations utilizing emulsifying surfactants rather than organic solvents resulting in unique wash-off profiles with overall higher wash-off efficiency. These higher wash-off efficiency profiles were qualitatively replicated by applying formulation-free neat pyrethroid in the presence of independently applied linear alkyl benzene sulfonate (LAS) surfactant, suggesting that the surfactant component of some formulated products may be influential in pyrethroid wash-off from urban hard surfaces. PMID:20524665

  2. A study of two statistical methods as applied to shuttle solid rocket booster expenditures

    NASA Technical Reports Server (NTRS)

    Perlmutter, M.; Huang, Y.; Graves, M.

    1974-01-01

    The state probability technique and the Monte Carlo technique are applied to finding shuttle solid rocket booster expenditure statistics. For a given attrition rate per launch, the probable number of boosters needed for a given mission of 440 launches is calculated. Several cases are considered, including the elimination of the booster after a maximum of 20 consecutive launches. Also considered is the case where the booster is composed of replaceable components with independent attrition rates. A simple cost analysis is carried out to indicate the number of boosters to build initially, depending on booster costs. Two statistical methods were applied in the analysis: (1) state probability method which consists of defining an appropriate state space for the outcome of the random trials, and (2) model simulation method or the Monte Carlo technique. It was found that the model simulation method was easier to formulate while the state probability method required less computing time and was more accurate.

  3. Analytical Methods to Distinguish the Positive and Negative Spectra of Mineral and Environmental Elements Using Deep Ablation Laser-Induced Breakdown Spectroscopy (LIBS).

    PubMed

    Kim, Dongyoung; Yang, Jun-Ho; Choi, Soojin; Yoh, Jack J

    2018-01-01

    Environments affect mineral surfaces, and the surface contamination or alteration can provide potential information to understanding their regional environments. However, when investigating mineral surfaces, mineral and environmental elements appear mixed in data. This makes it difficult to determine their atomic compositions independently. In this research, we developed four analytical methods to distinguish mineral and environmental elements into positive and negative spectra based on depth profiling data using laser-induced breakdown spectroscopy (LIBS). The principle of the methods is to utilize how intensity varied with depth for creating a new spectrum. The methods were applied to five mineral samples exposed to four environmental conditions including seawater, crude oil, sulfuric acid, and air as control. The proposed methods are then validated by applying the resultant spectra to principal component analysis and data were classified by the environmental conditions and atomic compositions of mineral. By applying the methods, the atomic information of minerals and environmental conditions were successfully inferred in the resultant spectrum.

  4. Constraints on signaling network logic reveal functional subgraphs on Multiple Myeloma OMIC data.

    PubMed

    Miannay, Bertrand; Minvielle, Stéphane; Magrangeas, Florence; Guziolowski, Carito

    2018-03-21

    The integration of gene expression profiles (GEPs) and large-scale biological networks derived from pathways databases is a subject which is being widely explored. Existing methods are based on network distance measures among significantly measured species. Only a small number of them include the directionality and underlying logic existing in biological networks. In this study we approach the GEP-networks integration problem by considering the network logic, however our approach does not require a prior species selection according to their gene expression level. We start by modeling the biological network representing its underlying logic using Logic Programming. This model points to reachable network discrete states that maximize a notion of harmony between the molecular species active or inactive possible states and the directionality of the pathways reactions according to their activator or inhibitor control role. Only then, we confront these network states with the GEP. From this confrontation independent graph components are derived, each of them related to a fixed and optimal assignment of active or inactive states. These components allow us to decompose a large-scale network into subgraphs and their molecular species state assignments have different degrees of similarity when compared to the same GEP. We apply our method to study the set of possible states derived from a subgraph from the NCI-PID Pathway Interaction Database. This graph links Multiple Myeloma (MM) genes to known receptors for this blood cancer. We discover that the NCI-PID MM graph had 15 independent components, and when confronted to 611 MM GEPs, we find 1 component as being more specific to represent the difference between cancer and healthy profiles.

  5. G-Protein Genomic Association With Normal Variation in Gray Matter Density

    PubMed Central

    Chen, Jiayu; Calhoun, Vince D.; Arias-Vasquez, Alejandro; Zwiers, Marcel P.; van Hulzen, Kimm; Fernández, Guillén; Fisher, Simon E.; Franke, Barbara; Turner, Jessica A.; Liu, Jingyu

    2017-01-01

    While detecting genetic variations underlying brain structures helps reveal mechanisms of neural disorders, high data dimensionality poses a major challenge for imaging genomic association studies. In this work, we present the application of a recently proposed approach, parallel independent component analysis with reference (pICA-R), to investigate genomic factors potentially regulating gray matter variation in a healthy population. This approach simultaneously assesses many variables for an aggregate effect and helps to elicit particular features in the data. We applied pICA-R to analyze gray matter density (GMD) images (274,131 voxels) in conjunction with single nucleotide polymorphism (SNP) data (666,019 markers) collected from 1,256 healthy individuals of the Brain Imaging Genetics (BIG) study. Guided by a genetic reference derived from the gene GNA14, pICA-R identified a significant SNP-GMD association (r = −0.16, P = 2.34 × 10−8), implying that subjects with specific genotypes have lower localized GMD. The identified components were then projected to an independent dataset from the Mind Clinical Imaging Consortium (MCIC) including 89 healthy individuals, and the obtained loadings again yielded a significant SNP-GMD association (r = −0.25, P = 0.02). The imaging component reflected GMD variations in frontal, precuneus, and cingulate regions. The SNP component was enriched in genes with neuronal functions, including synaptic plasticity, axon guidance, molecular signal transduction via PKA and CREB, highlighting the GRM1, PRKCH, GNA12, and CAMK2B genes. Collectively, our findings suggest that GNA12 and GNA14 play a key role in the genetic architecture underlying normal GMD variation in frontal and parietal regions. PMID:26248772

  6. Acceleration characteristics of human ocular accommodation.

    PubMed

    Bharadwaj, Shrikant R; Schor, Clifton M

    2005-01-01

    Position and velocity of accommodation are known to increase with stimulus magnitude, however, little is known about acceleration properties. We investigated three acceleration properties: peak acceleration, time-to-peak acceleration and total duration of acceleration to step changes in defocus. Peak velocity and total duration of acceleration increased with response magnitude. Peak acceleration and time-to-peak acceleration remained independent of response magnitude. Independent first-order and second-order dynamic components of accommodation demonstrate that neural control of accommodation has an initial open-loop component that is independent of response magnitude and a closed-loop component that increases with response magnitude.

  7. Task-evoked brain functional magnetic susceptibility mapping by independent component analysis (χICA).

    PubMed

    Chen, Zikuan; Calhoun, Vince D

    2016-03-01

    Conventionally, independent component analysis (ICA) is performed on an fMRI magnitude dataset to analyze brain functional mapping (AICA). By solving the inverse problem of fMRI, we can reconstruct the brain magnetic susceptibility (χ) functional states. Upon the reconstructed χ dataspace, we propose an ICA-based brain functional χ mapping method (χICA) to extract task-evoked brain functional map. A complex division algorithm is applied to a timeseries of fMRI phase images to extract temporal phase changes (relative to an OFF-state snapshot). A computed inverse MRI (CIMRI) model is used to reconstruct a 4D brain χ response dataset. χICA is implemented by applying a spatial InfoMax ICA algorithm to the reconstructed 4D χ dataspace. With finger-tapping experiments on a 7T system, the χICA-extracted χ-depicted functional map is similar to the SPM-inferred functional χ map by a spatial correlation of 0.67 ± 0.05. In comparison, the AICA-extracted magnitude-depicted map is correlated with the SPM magnitude map by 0.81 ± 0.05. The understanding of the inferiority of χICA to AICA for task-evoked functional map is an ongoing research topic. For task-evoked brain functional mapping, we compare the data-driven ICA method with the task-correlated SPM method. In particular, we compare χICA with AICA for extracting task-correlated timecourses and functional maps. χICA can extract a χ-depicted task-evoked brain functional map from a reconstructed χ dataspace without the knowledge about brain hemodynamic responses. The χICA-extracted brain functional χ map reveals a bidirectional BOLD response pattern that is unavailable (or different) from AICA. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Old torsion Balance Observations - too old for modern Exploration?

    NASA Astrophysics Data System (ADS)

    Götze, H.-J.

    2003-04-01

    Gravity gradiometry is a new gravity measurement technology that could fundamentally change the game of subsurface modelling and enhance geological interpretations: at fully inertial stabilized platforms they provide observed components of the E&{uml;o}tv&{uml;o}s tensor for 3D interpretations in mining and oil exploration and other fields of pure and applied geophysics. Although gravity gradiometry was among the first geophysical methods used successfully in applied Geophysics (E&{uml;o}tv&{uml;o}s torsion balance), the technology fell from favour in the 1930s. From this time measurements, done by torsion balances (Drehwaagen), are presented here which were observed to detect salt domes in the Northwest German basin. The data were digitized from old copies, then reprocessed and recalculated to draw Bouguer anomaly maps. However, the second derivatives of the gravity potential provide also independent data which can be used to constrain forward modelling. 3D modelling of Vxz, Vyz and other components of the E&{uml;o}tv&{uml;o}s tensor provide better insight into the geometry of the salt dome structure than modelling of the Bouguer gravity field. In addition to this first example results from gravity data processing by applying curvature techniques and again 3D forward modelling of second derivatives of the potential of density domains in the uppermost crust in the area of the Dead Sea Transform (Jordan) is presented here. The 3D modelling is conducted by the program package IGMAS which supply possibilities to calculate potential, gravity, its components and the Eötvös tensor components. Based on results so far one can conclude that the knowledge of the "second derivatives of the potential" could fundamentally change the role of gravity field measurements in the process of underground investigations not only for resource exploration but for investigations along large faults systems.

  9. From micro-correlations to macro-correlations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eliazar, Iddo, E-mail: iddo.eliazar@intel.com

    2016-11-15

    Random vectors with a symmetric correlation structure share a common value of pair-wise correlation between their different components. The symmetric correlation structure appears in a multitude of settings, e.g. mixture models. In a mixture model the components of the random vector are drawn independently from a general probability distribution that is determined by an underlying parameter, and the parameter itself is randomized. In this paper we study the overall correlation of high-dimensional random vectors with a symmetric correlation structure. Considering such a random vector, and terming its pair-wise correlation “micro-correlation”, we use an asymptotic analysis to derive the random vector’smore » “macro-correlation” : a score that takes values in the unit interval, and that quantifies the random vector’s overall correlation. The method of obtaining macro-correlations from micro-correlations is then applied to a diverse collection of frameworks that demonstrate the method’s wide applicability.« less

  10. Isolating the anthropogenic component of Arctic warming

    DOE PAGES

    Chylek, Petr; Hengartner, Nicholas; Lesins, Glen; ...

    2014-05-28

    Structural equation modeling is used in statistical applications as both confirmatory and exploratory modeling to test models and to suggest the most plausible explanation for a relationship between the independent and the dependent variables. Although structural analysis cannot prove causation, it can suggest the most plausible set of factors that influence the observed variable. Here, we apply structural model analysis to the annual mean Arctic surface air temperature from 1900 to 2012 to find the most effective set of predictors and to isolate the anthropogenic component of the recent Arctic warming by subtracting the effects of natural forcing and variabilitymore » from the observed temperature. We also find that anthropogenic greenhouse gases and aerosols radiative forcing and the Atlantic Multidecadal Oscillation internal mode dominate Arctic temperature variability. Finally, our structural model analysis of observational data suggests that about half of the recent Arctic warming of 0.64 K/decade may have anthropogenic causes.« less

  11. Multivariate statistical analysis of stream-sediment geochemistry in the Grazer Paläozoikum, Austria

    USGS Publications Warehouse

    Weber, L.; Davis, J.C.

    1990-01-01

    The Austrian reconnaissance study of stream-sediment composition — more than 30000 clay-fraction samples collected over an area of 40000 km2 — is summarized in an atlas of regional maps that show the distributions of 35 elements. These maps, rich in information, reveal complicated patterns of element abundance that are difficult to compare on more than a small number of maps at one time. In such a study, multivariate procedures such as simultaneous R-Q mode components analysis may be helpful. They can compress a large number of variables into a much smaller number of independent linear combinations. These composite variables may be mapped and relationships sought between them and geological properties. As an example, R-Q mode components analysis is applied here to the Grazer Paläozoikum, a tectonic unit northeast of the city of Graz, which is composed of diverse lithologies and contains many mineral deposits.

  12. Assessment of the uncertainties in the Radiological Protection Institute of Ireland (RPII) radon measurements service.

    PubMed

    Hanley, O; Gutiérrez-Villanueva, J L; Currivan, L; Pollard, D

    2008-10-01

    The RPII radon (Rn) laboratory holds accreditation for the International Standard ISO/IEC 17025. A requirement of this standard is an estimate of the uncertainty of measurement. This work shows two approaches to estimate the uncertainty. The bottom-up approach involved identifying the components that were found to contribute to the uncertainty. Estimates were made for each of these components, which were combined to give a combined uncertainty of 13.5% at a Rn concentration of approximately 2500 Bq m(-3) at the 68% confidence level. By applying a coverage factor of k=2, the expanded uncertainty is +/-27% at the 95% confidence level. The top-down approach used information previously gathered from intercomparison exercises to estimate the uncertainty. This investigation found an expanded uncertainty of +/-22% at approximately 95% confidence level. This is good agreement for such independent estimates.

  13. Glutamate-Mediated Primary Somatosensory Cortex Excitability Correlated with Circulating Copper and Ceruloplasmin

    PubMed Central

    Tecchio, Franca; Assenza, Giovanni; Zappasodi, Filippo; Mariani, Stefania; Salustri, Carlo; Squitti, Rosanna

    2011-01-01

    Objective. To verify whether markers of metal homeostasis are related to a magnetoencephalographic index representative of glutamate-mediated excitability of the primary somatosensory cortex. The index is identified as the source strength of the earliest component (M20) of the somatosensory magnetic fields (SEFs) evoked by right median nerve stimulation at wrist. Method. Thirty healthy right-handed subjects (51 ± 22 years) were enrolled in the study. A source reconstruction algorithm was applied to assess the amount of synchronously activated neurons subtending the M20 and the following SEF component (M30), which is generated by two independent contributions of gabaergic and glutamatergic transmission. Serum copper, ceruloplasmin, iron, transferrin, transferrin saturation, and zinc levels were measured. Results. Total copper and ceruloplasmin negatively correlated with the M20 source strength. Conclusion. This pilot study suggests that higher level of body copper reserve, as marked by ceruloplasmin variations, parallels lower cortical glutamatergic responsiveness. PMID:22145081

  14. Scattering amplitudes from multivariate polynomial division

    NASA Astrophysics Data System (ADS)

    Mastrolia, Pierpaolo; Mirabella, Edoardo; Ossola, Giovanni; Peraro, Tiziano

    2012-11-01

    We show that the evaluation of scattering amplitudes can be formulated as a problem of multivariate polynomial division, with the components of the integration-momenta as indeterminates. We present a recurrence relation which, independently of the number of loops, leads to the multi-particle pole decomposition of the integrands of the scattering amplitudes. The recursive algorithm is based on the weak Nullstellensatz theorem and on the division modulo the Gröbner basis associated to all possible multi-particle cuts. We apply it to dimensionally regulated one-loop amplitudes, recovering the well-known integrand-decomposition formula. Finally, we focus on the maximum-cut, defined as a system of on-shell conditions constraining the components of all the integration-momenta. By means of the Finiteness Theorem and of the Shape Lemma, we prove that the residue at the maximum-cut is parametrized by a number of coefficients equal to the number of solutions of the cut itself.

  15. Independent component processes underlying emotions during natural music listening

    PubMed Central

    Zollinger, Nina; Elmer, Stefan; Jäncke, Lutz

    2016-01-01

    The aim of this study was to investigate the brain processes underlying emotions during natural music listening. To address this, we recorded high-density electroencephalography (EEG) from 22 subjects while presenting a set of individually matched whole musical excerpts varying in valence and arousal. Independent component analysis was applied to decompose the EEG data into functionally distinct brain processes. A k-means cluster analysis calculated on the basis of a combination of spatial (scalp topography and dipole location mapped onto the Montreal Neurological Institute brain template) and functional (spectra) characteristics revealed 10 clusters referring to brain areas typically involved in music and emotion processing, namely in the proximity of thalamic-limbic and orbitofrontal regions as well as at frontal, fronto-parietal, parietal, parieto-occipital, temporo-occipital and occipital areas. This analysis revealed that arousal was associated with a suppression of power in the alpha frequency range. On the other hand, valence was associated with an increase in theta frequency power in response to excerpts inducing happiness compared to sadness. These findings are partly compatible with the model proposed by Heller, arguing that the frontal lobe is involved in modulating valenced experiences (the left frontal hemisphere for positive emotions) whereas the right parieto-temporal region contributes to the emotional arousal. PMID:27217116

  16. Modeling of intracerebral interictal epileptic discharges: Evidence for network interactions.

    PubMed

    Meesters, Stephan; Ossenblok, Pauly; Colon, Albert; Wagner, Louis; Schijns, Olaf; Boon, Paul; Florack, Luc; Fuster, Andrea

    2018-06-01

    The interictal epileptic discharges (IEDs) occurring in stereotactic EEG (SEEG) recordings are in general abundant compared to ictal discharges, but difficult to interpret due to complex underlying network interactions. A framework is developed to model these network interactions. To identify the synchronized neuronal activity underlying the IEDs, the variation in correlation over time of the SEEG signals is related to the occurrence of IEDs using the general linear model. The interdependency is assessed of the brain areas that reflect highly synchronized neural activity by applying independent component analysis, followed by cluster analysis of the spatial distributions of the independent components. The spatiotemporal interactions of the spike clusters reveal the leading or lagging of brain areas. The analysis framework was evaluated for five successfully operated patients, showing that the spike cluster that was related to the MRI-visible brain lesions coincided with the seizure onset zone. The additional value of the framework was demonstrated for two more patients, who were MRI-negative and for whom surgery was not successful. A network approach is promising in case of complex epilepsies. Analysis of IEDs is considered a valuable addition to routine review of SEEG recordings, with the potential to increase the success rate of epilepsy surgery. Copyright © 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  17. Quantifying biological samples using Linear Poisson Independent Component Analysis for MALDI-ToF mass spectra

    PubMed Central

    Deepaisarn, S; Tar, P D; Thacker, N A; Seepujak, A; McMahon, A W

    2018-01-01

    Abstract Motivation Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI) facilitates the analysis of large organic molecules. However, the complexity of biological samples and MALDI data acquisition leads to high levels of variation, making reliable quantification of samples difficult. We present a new analysis approach that we believe is well-suited to the properties of MALDI mass spectra, based upon an Independent Component Analysis derived for Poisson sampled data. Simple analyses have been limited to studying small numbers of mass peaks, via peak ratios, which is known to be inefficient. Conventional PCA and ICA methods have also been applied, which extract correlations between any number of peaks, but we argue makes inappropriate assumptions regarding data noise, i.e. uniform and Gaussian. Results We provide evidence that the Gaussian assumption is incorrect, motivating the need for our Poisson approach. The method is demonstrated by making proportion measurements from lipid-rich binary mixtures of lamb brain and liver, and also goat and cow milk. These allow our measurements and error predictions to be compared to ground truth. Availability and implementation Software is available via the open source image analysis system TINA Vision, www.tina-vision.net. Contact paul.tar@manchester.ac.uk Supplementary information Supplementary data are available at Bioinformatics online. PMID:29091994

  18. A Combined Methodology to Eliminate Artifacts in Multichannel Electrogastrogram Based on Independent Component Analysis and Ensemble Empirical Mode Decomposition.

    PubMed

    Sengottuvel, S; Khan, Pathan Fayaz; Mariyappa, N; Patel, Rajesh; Saipriya, S; Gireesan, K

    2018-06-01

    Cutaneous measurements of electrogastrogram (EGG) signals are heavily contaminated by artifacts due to cardiac activity, breathing, motion artifacts, and electrode drifts whose effective elimination remains an open problem. A common methodology is proposed by combining independent component analysis (ICA) and ensemble empirical mode decomposition (EEMD) to denoise gastric slow-wave signals in multichannel EGG data. Sixteen electrodes are fixed over the upper abdomen to measure the EGG signals under three gastric conditions, namely, preprandial, postprandial immediately, and postprandial 2 h after food for three healthy subjects and a subject with a gastric disorder. Instantaneous frequencies of intrinsic mode functions that are obtained by applying the EEMD technique are analyzed to individually identify and remove each of the artifacts. A critical investigation on the proposed ICA-EEMD method reveals its ability to provide a higher attenuation of artifacts and lower distortion than those obtained by the ICA-EMD method and conventional techniques, like bandpass and adaptive filtering. Characteristic changes in the slow-wave frequencies across the three gastric conditions could be determined from the denoised signals for all the cases. The results therefore encourage the use of the EEMD-based technique for denoising gastric signals to be used in clinical practice.

  19. DNA-histone complexes as ligands amplify cell penetration and nuclear targeting of anti-DNA antibodies via energy-independent mechanisms.

    PubMed

    Zannikou, Markella; Bellou, Sofia; Eliades, Petros; Hatzioannou, Aikaterini; Mantzaris, Michael D; Carayanniotis, George; Avrameas, Stratis; Lymberi, Peggy

    2016-01-01

    We have generated three monoclonal cell-penetrating antibodies (CPAbs) from a non-immunized lupus-prone (NZB × NZW)F1 mouse that exhibited high anti-DNA serum titres. These CPAbs are polyreactive because they bind to DNA and other cellular components, and localize mainly in the nucleus of HeLa cells, albeit with a distinct nuclear labelling profile. Herein, we have examined whether DNA-histone complexes (DHC) binding to CPAbs, before cell entry, could modify the cell penetration of CPAbs or their nuclear staining properties. By applying confocal microscopy and image analysis, we found that extracellular binding of purified CPAbs to DHC significantly enhanced their subsequent cell-entry, both in terms of percentages of positively labelled cells and fluorescence intensity (internalized CPAb amount), whereas there was a variable effect on their nuclear staining profile. Internalization of CPAbs, either alone or bound to DHC, remained unaltered after the addition of endocytosis-specific inhibitors at 37° or assay performance at 4°, suggesting the involvement of energy-independent mechanisms in the internalization process. These findings assign to CPAbs a more complex pathogenetic role in systemic lupus erythematosus where both CPAbs and nuclear components are abundant. © 2015 John Wiley & Sons Ltd.

  20. Cyber-Physical Correlations for Infrastructure Resilience: A Game-Theoretic Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Nageswara S; He, Fei; Ma, Chris Y. T.

    In several critical infrastructures, the cyber and physical parts are correlated so that disruptions to one affect the other and hence the whole system. These correlations may be exploited to strategically launch components attacks, and hence must be accounted for ensuring the infrastructure resilience, specified by its survival probability. We characterize the cyber-physical interactions at two levels: (i) the failure correlation function specifies the conditional survival probability of cyber sub-infrastructure given the physical sub-infrastructure as a function of their marginal probabilities, and (ii) the individual survival probabilities of both sub-infrastructures are characterized by first-order differential conditions. We formulate a resiliencemore » problem for infrastructures composed of discrete components as a game between the provider and attacker, wherein their utility functions consist of an infrastructure survival probability term and a cost term expressed in terms of the number of components attacked and reinforced. We derive Nash Equilibrium conditions and sensitivity functions that highlight the dependence of infrastructure resilience on the cost term, correlation function and sub-infrastructure survival probabilities. These results generalize earlier ones based on linear failure correlation functions and independent component failures. We apply the results to models of cloud computing infrastructures and energy grids.« less

  1. Revealing the underlying drivers of disaster risk: a global analysis

    NASA Astrophysics Data System (ADS)

    Peduzzi, Pascal

    2017-04-01

    Disasters events are perfect examples of compound events. Disaster risk lies at the intersection of several independent components such as hazard, exposure and vulnerability. Understanding the weight of each component requires extensive standardisation. Here, I show how footprints of past disastrous events were generated using GIS modelling techniques and used for extracting population and economic exposures based on distribution models. Using past event losses, it was possible to identify and quantify a wide range of socio-politico-economic drivers associated with human vulnerability. The analysis was applied to about nine thousand individual past disastrous events covering earthquakes, floods and tropical cyclones. Using a multiple regression analysis on these individual events it was possible to quantify each risk component and assess how vulnerability is influenced by various hazard intensities. The results show that hazard intensity, exposure, poverty, governance as well as other underlying factors (e.g. remoteness) can explain the magnitude of past disasters. Analysis was also performed to highlight the role of future trends in population and climate change and how this may impacts exposure to tropical cyclones in the future. GIS models combined with statistical multiple regression analysis provided a powerful methodology to identify, quantify and model disaster risk taking into account its various components. The same methodology can be applied to various types of risk at local to global scale. This method was applied and developed for the Global Risk Analysis of the Global Assessment Report on Disaster Risk Reduction (GAR). It was first applied on mortality risk in GAR 2009 and GAR 2011. New models ranging from global assets exposure and global flood hazard models were also recently developed to improve the resolution of the risk analysis and applied through CAPRA software to provide probabilistic economic risk assessments such as Average Annual Losses (AAL) and Probable Maximum Losses (PML) in GAR 2013 and GAR 2015. In parallel similar methodologies were developed to highlitght the role of ecosystems for Climate Change Adaptation (CCA) and Disaster Risk Reduction (DRR). New developments may include slow hazards (such as e.g. soil degradation and droughts), natech hazards (by intersecting with georeferenced critical infrastructures) The various global hazard, exposure and risk models can be visualized and download through the PREVIEW Global Risk Data Platform.

  2. Electroencephalographic dynamics of musical emotion perception revealed by independent spectral components.

    PubMed

    Lin, Yuan-Pin; Duann, Jeng-Ren; Chen, Jyh-Horng; Jung, Tzyy-Ping

    2010-04-21

    This study explores the electroencephalographic (EEG) correlates of emotional experience during music listening. Independent component analysis and analysis of variance were used to separate statistically independent spectral changes of the EEG in response to music-induced emotional processes. An independent brain process with equivalent dipole located in the fronto-central region exhibited distinct δ-band and θ-band power changes associated with self-reported emotional states. Specifically, the emotional valence was associated with δ-power decreases and θ-power increases in the frontal-central area, whereas the emotional arousal was accompanied by increases in both δ and θ powers. The resultant emotion-related component activations that were less interfered by the activities from other brain processes complement previous EEG studies of emotion perception to music.

  3. 34 CFR 364.39 - What requirements apply to the administration of grants under the Centers for Independent Living...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 2 2010-07-01 2010-07-01 false What requirements apply to the administration of grants under the Centers for Independent Living program? 364.39 Section 364.39 Education Regulations of the..., DEPARTMENT OF EDUCATION STATE INDEPENDENT LIVING SERVICES PROGRAM AND CENTERS FOR INDEPENDENT LIVING PROGRAM...

  4. 34 CFR 364.39 - What requirements apply to the administration of grants under the Centers for Independent Living...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 2 2011-07-01 2010-07-01 true What requirements apply to the administration of grants under the Centers for Independent Living program? 364.39 Section 364.39 Education Regulations of the..., DEPARTMENT OF EDUCATION STATE INDEPENDENT LIVING SERVICES PROGRAM AND CENTERS FOR INDEPENDENT LIVING PROGRAM...

  5. Extracting Independent Local Oscillatory Geophysical Signals by Geodetic Tropospheric Delay

    NASA Technical Reports Server (NTRS)

    Botai, O. J.; Combrinck, L.; Sivakumar, V.; Schuh, H.; Bohm, J.

    2010-01-01

    Zenith Tropospheric Delay (ZTD) due to water vapor derived from space geodetic techniques and numerical weather prediction simulated-reanalysis data exhibits non-linear and non-stationary properties akin to those in the crucial geophysical signals of interest to the research community. These time series, once decomposed into additive (and stochastic) components, have information about the long term global change (the trend) and other interpretable (quasi-) periodic components such as seasonal cycles and noise. Such stochastic component(s) could be a function that exhibits at most one extremum within a data span or a monotonic function within a certain temporal span. In this contribution, we examine the use of the combined Ensemble Empirical Mode Decomposition (EEMD) and Independent Component Analysis (ICA): the EEMD-ICA algorithm to extract the independent local oscillatory stochastic components in the tropospheric delay derived from the European Centre for Medium-Range Weather Forecasts (ECMWF) over six geodetic sites (HartRAO, Hobart26, Wettzell, Gilcreek, Westford, and Tsukub32). The proposed methodology allows independent geophysical processes to be extracted and assessed. Analysis of the quality index of the Independent Components (ICs) derived for each cluster of local oscillatory components (also called the Intrinsic Mode Functions (IMFs)) for all the geodetic stations considered in the study demonstrate that they are strongly site dependent. Such strong dependency seems to suggest that the localized geophysical signals embedded in the ZTD over the geodetic sites are not correlated. Further, from the viewpoint of non-linear dynamical systems, four geophysical signals the Quasi-Biennial Oscillation (QBO) index derived from the NCEP/NCAR reanalysis, the Southern Oscillation Index (SOI) anomaly from NCEP, the SIDC monthly Sun Spot Number (SSN), and the Length of Day (LoD) are linked to the extracted signal components from ZTD. Results from the synchronization analysis show that ZTD and the geophysical signals exhibit (albeit subtle) site dependent phase synchronization index.

  6. Estimating mean long-term hydrologic budget components for watersheds and counties: An application to the commonwealth of Virginia, USA

    USGS Publications Warehouse

    Sanford, Ward E.; Nelms, David L.; Pope, Jason P.; Selnick, David L.

    2015-01-01

    Mean long-term hydrologic budget components, such as recharge and base flow, are often difficult to estimate because they can vary substantially in space and time. Mean long-term fluxes were calculated in this study for precipitation, surface runoff, infiltration, total evapotranspiration (ET), riparian ET, recharge, base flow (or groundwater discharge) and net total outflow using long-term estimates of mean ET and precipitation and the assumption that the relative change in storage over that 30-year period is small compared to the total ET or precipitation. Fluxes of these components were first estimated on a number of real-time-gaged watersheds across Virginia. Specific conductance was used to distinguish and separate surface runoff from base flow. Specific-conductance (SC) data were collected every 15 minutes at 75 real-time gages for approximately 18 months between March 2007 and August 2008. Precipitation was estimated for 1971-2000 using PRISM climate data. Precipitation and temperature from the PRISM data were used to develop a regression-based relation to estimate total ET. The proportion of watershed precipitation that becomes surface runoff was related to physiographic province and rock type in a runoff regression equation. A new approach to estimate riparian ET using seasonal SC data gave results consistent with those from other methods. Component flux estimates from the watersheds were transferred to flux estimates for counties and independent cities using the ET and runoff regression equations. Only 48 of the 75 watersheds yielded sufficient data, and data from these 48 were used in the final runoff regression equation. Final results for the study are presented as component flux estimates for all counties and independent cities in Virginia. The method has the potential to be applied in many other states in the U.S. or in other regions or countries of the world where climate and stream flow data are plentiful.

  7. A comparison of independent component analysis algorithms and measures to discriminate between EEG and artifact components.

    PubMed

    Dharmaprani, Dhani; Nguyen, Hoang K; Lewis, Trent W; DeLosAngeles, Dylan; Willoughby, John O; Pope, Kenneth J

    2016-08-01

    Independent Component Analysis (ICA) is a powerful statistical tool capable of separating multivariate scalp electrical signals into their additive independent or source components, specifically EEG or electroencephalogram and artifacts. Although ICA is a widely accepted EEG signal processing technique, classification of the recovered independent components (ICs) is still flawed, as current practice still requires subjective human decisions. Here we build on the results from Fitzgibbon et al. [1] to compare three measures and three ICA algorithms. Using EEG data acquired during neuromuscular paralysis, we tested the ability of the measures (spectral slope, peripherality and spatial smoothness) and algorithms (FastICA, Infomax and JADE) to identify components containing EMG. Spatial smoothness showed differentiation between paralysis and pre-paralysis ICs comparable to spectral slope, whereas peripherality showed less differentiation. A combination of the measures showed better differentiation than any measure alone. Furthermore, FastICA provided the best discrimination between muscle-free and muscle-contaminated recordings in the shortest time, suggesting it may be the most suited to EEG applications of the considered algorithms. Spatial smoothness results suggest that a significant number of ICs are mixed, i.e. contain signals from more than one biological source, and so the development of an ICA algorithm that is optimised to produce ICs that are easily classifiable is warranted.

  8. IMF B(y) and day-night conductivity effects in the expanding polar cap convection model

    NASA Technical Reports Server (NTRS)

    Moses, J. J.; Gorney, D. J.; Siscoe, G. L.; Crooker, N. U.

    1987-01-01

    During southward B(z) periods the open field line region in the ionosphere (polar cap) expands due to increased dayside merging. Ionospheric plasma flow patterns result which can be classified by the sign of the interplanetary magnetic field (IMF) B(y) component. In this paper, a time-dependent ionospheric convection model is constructed to simulate these flows. The model consists of a spiral boundary with a gap in it. The sign of the IMF B(y) component determines the geometry of the gap. A potential is applied across the gap and distributed around the boundary. A flow results which enters the polar cap through the gap and uniformly pushes the boundary outward. Results of the model show that B(y) effects are greatest near the gap and virtually unnoticeable on the nightside of the polar cap. Adding a day-night ionospheric conductivity gradient concentrates the polar cap electric field toward dawn. The resulting flow curvature gives a sunward component that is independent of B(y). These patterns are shown to be consistent with published observations.

  9. Hierarchical clustering using mutual information

    NASA Astrophysics Data System (ADS)

    Kraskov, A.; Stögbauer, H.; Andrzejak, R. G.; Grassberger, P.

    2005-04-01

    We present a conceptually simple method for hierarchical clustering of data called mutual information clustering (MIC) algorithm. It uses mutual information (MI) as a similarity measure and exploits its grouping property: The MI between three objects X, Y, and Z is equal to the sum of the MI between X and Y, plus the MI between Z and the combined object (XY). We use this both in the Shannon (probabilistic) version of information theory and in the Kolmogorov (algorithmic) version. We apply our method to the construction of phylogenetic trees from mitochondrial DNA sequences and to the output of independent components analysis (ICA) as illustrated with the ECG of a pregnant woman.

  10. Strain Imaging of Nanoscale Semiconductor Heterostructures with X-Ray Bragg Projection Ptychography

    NASA Astrophysics Data System (ADS)

    Holt, Martin V.; Hruszkewycz, Stephan O.; Murray, Conal E.; Holt, Judson R.; Paskiewicz, Deborah M.; Fuoss, Paul H.

    2014-04-01

    We report the imaging of nanoscale distributions of lattice strain and rotation in complementary components of lithographically engineered epitaxial thin film semiconductor heterostructures using synchrotron x-ray Bragg projection ptychography (BPP). We introduce a new analysis method that enables lattice rotation and out-of-plane strain to be determined independently from a single BPP phase reconstruction, and we apply it to two laterally adjacent, multiaxially stressed materials in a prototype channel device. These results quantitatively agree with mechanical modeling and demonstrate the ability of BPP to map out-of-plane lattice dilatation, a parameter critical to the performance of electronic materials.

  11. Anomalous thermospin effect in the low-buckled Dirac materials

    NASA Astrophysics Data System (ADS)

    Gusynin, V. P.; Sharapov, S. G.; Varlamov, A. A.

    2014-10-01

    A strong spin Nernst effect with nontrivial dependences on the carrier concentration and electric field applied is expected in silicene and other low-buckled Dirac materials. These Dirac materials can be considered as being made of two independent electron subsystems of the two-component gapped Dirac fermions. For each subsystem, the gap breaks a time-reversal symmetry and thus plays the role of an effective magnetic field. Accordingly, the standard Kubo formalism has to be altered by including the effective magnetization in order to satisfy the third law of thermodynamics. We explicitly demonstrate this by calculating the magnetization and showing how the correct thermoelectric coefficient emerges.

  12. Failure criterion for materials with spatially correlated mechanical properties

    NASA Astrophysics Data System (ADS)

    Faillettaz, J.; Or, D.

    2015-03-01

    The role of spatially correlated mechanical elements in the failure behavior of heterogeneous materials represented by fiber bundle models (FBMs) was evaluated systematically for different load redistribution rules. Increasing the range of spatial correlation for FBMs with local load sharing is marked by a transition from ductilelike failure characteristics into brittlelike failure. The study identified a global failure criterion based on macroscopic properties (external load and cumulative damage) that is independent of spatial correlation or load redistribution rules. This general metric could be applied to assess the mechanical stability of complex and heterogeneous systems and thus provide an important component for early warning of a class of geophysical ruptures.

  13. SIGPI. Fault Tree Cut Set System Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patenaude, C.J.

    1992-01-13

    SIGPI computes the probabilistic performance of complex systems by combining cut set or other binary product data with probability information on each basic event. SIGPI is designed to work with either coherent systems, where the system fails when certain combinations of components fail, or noncoherent systems, where at least one cut set occurs only if at least one component of the system is operating properly. The program can handle conditionally independent components, dependent components, or a combination of component types and has been used to evaluate responses to environmental threats and seismic events. The three data types that can bemore » input are cut set data in disjoint normal form, basic component probabilities for independent basic components, and mean and covariance data for statistically dependent basic components.« less

  14. SIGPI. Fault Tree Cut Set System Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patenaude, C.J.

    1992-01-14

    SIGPI computes the probabilistic performance of complex systems by combining cut set or other binary product data with probability information on each basic event. SIGPI is designed to work with either coherent systems, where the system fails when certain combinations of components fail, or noncoherent systems, where at least one cut set occurs only if at least one component of the system is operating properly. The program can handle conditionally independent components, dependent components, or a combination of component types and has been used to evaluate responses to environmental threats and seismic events. The three data types that can bemore » input are cut set data in disjoint normal form, basic component probabilities for independent basic components, and mean and covariance data for statistically dependent basic components.« less

  15. Single-Vector Calibration of Wind-Tunnel Force Balances

    NASA Technical Reports Server (NTRS)

    Parker, P. A.; DeLoach, R.

    2003-01-01

    An improved method of calibrating a wind-tunnel force balance involves the use of a unique load application system integrated with formal experimental design methodology. The Single-Vector Force Balance Calibration System (SVS) overcomes the productivity and accuracy limitations of prior calibration methods. A force balance is a complex structural spring element instrumented with strain gauges for measuring three orthogonal components of aerodynamic force (normal, axial, and side force) and three orthogonal components of aerodynamic torque (rolling, pitching, and yawing moments). Force balances remain as the state-of-the-art instrument that provide these measurements on a scale model of an aircraft during wind tunnel testing. Ideally, each electrical channel of the balance would respond only to its respective component of load, and it would have no response to other components of load. This is not entirely possible even though balance designs are optimized to minimize these undesirable interaction effects. Ultimately, a calibration experiment is performed to obtain the necessary data to generate a mathematical model and determine the force measurement accuracy. In order to set the independent variables of applied load for the calibration 24 NASA Tech Briefs, October 2003 experiment, a high-precision mechanical system is required. Manual deadweight systems have been in use at Langley Research Center (LaRC) since the 1940s. These simple methodologies produce high confidence results, but the process is mechanically complex and labor-intensive, requiring three to four weeks to complete. Over the past decade, automated balance calibration systems have been developed. In general, these systems were designed to automate the tedious manual calibration process resulting in an even more complex system which deteriorates load application quality. The current calibration approach relies on a one-factor-at-a-time (OFAT) methodology, where each independent variable is incremented individually throughout its full-scale range, while all other variables are held at a constant magnitude. This OFAT approach has been widely accepted because of its inherent simplicity and intuitive appeal to the balance engineer. LaRC has been conducting research in a "modern design of experiments" (MDOE) approach to force balance calibration. Formal experimental design techniques provide an integrated view to the entire calibration process covering all three major aspects of an experiment; the design of the experiment, the execution of the experiment, and the statistical analyses of the data. In order to overcome the weaknesses in the available mechanical systems and to apply formal experimental techniques, a new mechanical system was required. The SVS enables the complete calibration of a six-component force balance with a series of single force vectors.

  16. Remote Measurements of Heart and Respiration Rates for Telemedicine

    PubMed Central

    Qian, Yi; Tsien, Joe Z.

    2013-01-01

    Non-contact and low-cost measurements of heart and respiration rates are highly desirable for telemedicine. Here, we describe a novel technique to extract blood volume pulse and respiratory wave from a single channel images captured by a video camera for both day and night conditions. The principle of our technique is to uncover the temporal dynamics of heart beat and breathing rate through delay-coordinate transformation and independent component analysis-based deconstruction of the single channel images. Our method further achieves robust elimination of false positives via applying ratio-variation probability distributions filtering approaches. Moreover, it enables a much needed low-cost means for preventing sudden infant death syndrome in new born infants and detecting stroke and heart attack in elderly population in home environments. This noncontact-based method can also be applied to a variety of animal model organisms for biomedical research. PMID:24115996

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cullen, David A; Koestner, Roland; Kukreja, Ratan

    Improved conditions for imaging and spectroscopic mapping of thin perfluorosulfonic acid (PFSA) ionomer layers in fuel cell electrodes by scanning transmission electron microscopy (STEM) have been investigated. These conditions are first identified on model systems of Nafion ionomer-coated nanostructured thin films and nanoporous Si. The optimized conditions are then applied in a quantitative study of the ionomer through-layer loading for two typical electrode catalyst coatings using electron energy loss and energy dispersive X-ray spectroscopy in the transmission electron microscope. The e-beam induced damage to the perfluorosulfonic acid (PFSA) ionomer is quantified by following the fluorine mass loss with electron exposuremore » and is then mitigated by a few orders of magnitude using cryogenic specimen cooling and a higher incident electron voltage. Multivariate statistical analysis is also applied to the analysis of spectrum images for data denoising and unbiased separation of independent components related to the catalyst, ionomer, and support.« less

  18. Selective pinning control of the average disease transmissibility in an HIV contact network

    NASA Astrophysics Data System (ADS)

    du Toit, E. F.; Craig, I. K.

    2015-07-01

    Medication is applied to the HIV-infected nodes of high-risk contact networks with the aim of controlling the spread of disease to a predetermined maximum level. This intervention, known as pinning control, is performed both selectively and randomly in the network. These strategies are applied to 300 independent realizations per reference level of incidence on connected undirectional networks without isolated components and varying in size from 100 to 10 000 nodes per network. It is shown that a selective on-off pinning control strategy can control the networks studied with limited steady-state error and, comparing the medians of the doses from both strategies, uses 51.3% less medication than random pinning of all infected nodes. Selective pinning could possibly be used by public health specialists to identify the maximum level of HIV incidence in a population that can be achieved in a constrained funding environment.

  19. Small-scale anisotropic intermittency in magnetohydrodynamic turbulence at low magnetic Reynolds numbers.

    PubMed

    Okamoto, Naoya; Yoshimatsu, Katsunori; Schneider, Kai; Farge, Marie

    2014-03-01

    Small-scale anisotropic intermittency is examined in three-dimensional incompressible magnetohydrodynamic turbulence subjected to a uniformly imposed magnetic field. Orthonormal wavelet analyses are applied to direct numerical simulation data at moderate Reynolds number and for different interaction parameters. The magnetic Reynolds number is sufficiently low such that the quasistatic approximation can be applied. Scale-dependent statistical measures are introduced to quantify anisotropy in terms of the flow components, either parallel or perpendicular to the imposed magnetic field, and in terms of the different directions. Moreover, the flow intermittency is shown to increase with increasing values of the interaction parameter, which is reflected in strongly growing flatness values when the scale decreases. The scale-dependent anisotropy of energy is found to be independent of scale for all considered values of the interaction parameter. The strength of the imposed magnetic field does amplify the anisotropy of the flow.

  20. Evaluation of FTIR spectroscopy as diagnostic tool for colorectal cancer using spectral analysis

    NASA Astrophysics Data System (ADS)

    Dong, Liu; Sun, Xuejun; Chao, Zhang; Zhang, Shiyun; Zheng, Jianbao; Gurung, Rajendra; Du, Junkai; Shi, Jingsen; Xu, Yizhuang; Zhang, Yuanfu; Wu, Jinguang

    2014-03-01

    The aim of this study is to confirm FTIR spectroscopy as a diagnostic tool for colorectal cancer. 180 freshly removed colorectal samples were collected from 90 patients for spectrum analysis. The ratios of spectral intensity and relative intensity (/I1460) were calculated. Principal component analysis (PCA) and Fisher's discriminant analysis (FDA) were applied to distinguish the malignant from normal. The FTIR parameters of colorectal cancer and normal tissues were distinguished due to the contents or configurations of nucleic acids, proteins, lipids and carbohydrates. Related to nitrogen containing, water, protein and nucleic acid were increased significantly in the malignant group. Six parameters were selected as independent factors to perform discriminant functions. The sensitivity for FTIR in diagnosing colorectal cancer was 96.6% by discriminant analysis. Our study demonstrates that FTIR can be a useful technique for detection of colorectal cancer and may be applied in clinical colorectal cancer diagnosis.

  1. A semiparametric graphical modelling approach for large-scale equity selection

    PubMed Central

    Liu, Han; Mulvey, John; Zhao, Tianqi

    2016-01-01

    We propose a new stock selection strategy that exploits rebalancing returns and improves portfolio performance. To effectively harvest rebalancing gains, we apply ideas from elliptical-copula graphical modelling and stability inference to select stocks that are as independent as possible. The proposed elliptical-copula graphical model has a latent Gaussian representation; its structure can be effectively inferred using the regularized rank-based estimators. The resulting algorithm is computationally efficient and scales to large data-sets. To show the efficacy of the proposed method, we apply it to conduct equity selection based on a 16-year health care stock data-set and a large 34-year stock data-set. Empirical tests show that the proposed method is superior to alternative strategies including a principal component analysis-based approach and the classical Markowitz strategy based on the traditional buy-and-hold assumption. PMID:28316507

  2. Parametric analysis for matched pair survival data.

    PubMed

    Manatunga, A K; Oakes, D

    1999-12-01

    Hougaard's (1986) bivariate Weibull distribution with positive stable frailties is applied to matched pairs survival data when either or both components of the pair may be censored and covariate vectors may be of arbitrary fixed length. When there is no censoring, we quantify the corresponding gain in Fisher information over a fixed-effects analysis. With the appropriate parameterization, the results take a simple algebraic form. An alternative marginal ("independence working model") approach to estimation is also considered. This method ignores the correlation between the two survival times in the derivation of the estimator, but provides a valid estimate of standard error. It is shown that when both the correlation between the two survival times is high, and the ratio of the within-pair variability to the between-pair variability of the covariates is high, the fixed-effects analysis captures most of the information about the regression coefficient but the independence working model does badly. When the correlation is low, and/or most of the variability of the covariates occurs between pairs, the reverse is true. The random effects model is applied to data on skin grafts, and on loss of visual acuity among diabetics. In conclusion some extensions of the methods are indicated and they are placed in a wider context of Generalized Estimation Equation methodology.

  3. A Bayesian Approach to Estimating Coupling Between Neural Components: Evaluation of the Multiple Component, Event-Related Potential (mcERP) Algorithm

    NASA Technical Reports Server (NTRS)

    Shah, Ankoor S.; Knuth, Kevin H.; Truccolo, Wilson A.; Ding, Ming-Zhou; Bressler, Steven L.; Schroeder, Charles E.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Accurate measurement of single-trial responses is key to a definitive use of complex electromagnetic and hemodynamic measurements in the investigation of brain dynamics. We developed the multiple component, Event-Related Potential (mcERP) approach to single-trial response estimation. To improve our resolution of dynamic interactions between neuronal ensembles located in different layers within a cortical region and/or in different cortical regions. The mcERP model assets that multiple components defined as stereotypic waveforms comprise the stimulus-evoked response and that these components may vary in amplitude and latency from trial to trial. Maximum a posteriori (MAP) solutions for the model are obtained by iterating a set of equations derived from the posterior probability. Our first goal was to use the ANTWERP algorithm to analyze interactions (specifically latency and amplitude correlation) between responses in different layers within a cortical region. Thus, we evaluated the model by applying the algorithm to synthetic data containing two correlated local components and one independent far-field component. Three cases were considered: the local components were correlated by an interaction in their single-trial amplitudes, by an interaction in their single-trial latencies, or by an interaction in both amplitude and latency. We then analyzed the accuracy with which the algorithm estimated the component waveshapes and the single-trial parameters as a function of the linearity of each of these relationships. Extensions of these analyses to real data are discussed as well as ongoing work to incorporate more detailed prior information.

  4. Using Patient Demographics and Statistical Modeling to Predict Knee Tibia Component Sizing in Total Knee Arthroplasty.

    PubMed

    Ren, Anna N; Neher, Robert E; Bell, Tyler; Grimm, James

    2018-06-01

    Preoperative planning is important to achieve successful implantation in primary total knee arthroplasty (TKA). However, traditional TKA templating techniques are not accurate enough to predict the component size to a very close range. With the goal of developing a general predictive statistical model using patient demographic information, ordinal logistic regression was applied to build a proportional odds model to predict the tibia component size. The study retrospectively collected the data of 1992 primary Persona Knee System TKA procedures. Of them, 199 procedures were randomly selected as testing data and the rest of the data were randomly partitioned between model training data and model evaluation data with a ratio of 7:3. Different models were trained and evaluated on the training and validation data sets after data exploration. The final model had patient gender, age, weight, and height as independent variables and predicted the tibia size within 1 size difference 96% of the time on the validation data, 94% of the time on the testing data, and 92% on a prospective cadaver data set. The study results indicated the statistical model built by ordinal logistic regression can increase the accuracy of tibia sizing information for Persona Knee preoperative templating. This research shows statistical modeling may be used with radiographs to dramatically enhance the templating accuracy, efficiency, and quality. In general, this methodology can be applied to other TKA products when the data are applicable. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. A harmonic analysis approach to joint inversion of P-receiver functions and wave dispersion data in high dense seismic profiles

    NASA Astrophysics Data System (ADS)

    Molina-Aguilera, A.; Mancilla, F. D. L.; Julià, J.; Morales, J.

    2017-12-01

    Joint inversion techniques of P-receiver functions and wave dispersion data implicitly assume an isotropic radial stratified earth. The conventional approach invert stacked radial component receiver functions from different back-azimuths to obtain a laterally homogeneous single-velocity model. However, in the presence of strong lateral heterogeneities as anisotropic layers and/or dipping interfaces, receiver functions are considerably perturbed and both the radial and transverse components exhibit back azimuthal dependences. Harmonic analysis methods exploit these azimuthal periodicities to separate the effects due to the isotropic flat-layered structure from those effects caused by lateral heterogeneities. We implement a harmonic analysis method based on radial and transverse receiver functions components and carry out a synthetic study to illuminate the capabilities of the method in isolating the isotropic flat-layered part of receiver functions and constrain the geometry and strength of lateral heterogeneities. The independent of the baz P receiver function are jointly inverted with phase and group dispersion curves using a linearized inversion procedure. We apply this approach to high dense seismic profiles ( 2 km inter-station distance, see figure) located in the central Betics (western Mediterranean region), a region which has experienced complex geodynamic processes and exhibit strong variations in Moho topography. The technique presented here is robust and can be applied systematically to construct a 3-D model of the crust and uppermost mantle across large networks.

  6. A numerical study of non-collinear wave mixing and generated resonant components.

    PubMed

    Sun, Zhenghao; Li, Fucai; Li, Hongguang

    2016-09-01

    Interaction of two non-collinear nonlinear ultrasonic waves in an elastic half-space with quadratic nonlinearity is investigated in this paper. A hyperbolic system of conservation laws is applied here and a semi-discrete central scheme is used to solve the numerical problem. The numerical results validate that the model can be used as an effective method to generate and evaluate a resonant wave when two primary waves mix together under certain resonant conditions. Features of the resonant wave are analyzed both in the time and frequency domains, and variation trends of the resonant waves together with second harmonics along the propagation path are analyzed. Applied with the pulse-inversion technique, components of resonant waves and second harmonics can be independently extracted and observed without distinguishing times of flight. The results show that under the circumstance of non-collinear wave mixing, both sum and difference resonant components can be clearly obtained especially in the tangential direction of their propagation. For several rays of observation points around the interaction zone, the further it is away from the excitation sources, generally the earlier the maximum of amplitude arises. From the parametric analysis of the phased array, it is found that both the length of array and the density of element have impact on the maximum of amplitude of the resonant waves. The spatial distribution of resonant waves will provide necessary information for the related experiments. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Architectural measures of the cancellous bone of the mandibular condyle identified by principal components analysis.

    PubMed

    Giesen, E B W; Ding, M; Dalstra, M; van Eijden, T M G J

    2003-09-01

    As several morphological parameters of cancellous bone express more or less the same architectural measure, we applied principal components analysis to group these measures and correlated these to the mechanical properties. Cylindrical specimens (n = 24) were obtained in different orientations from embalmed mandibular condyles; the angle of the first principal direction and the axis of the specimen, expressing the orientation of the trabeculae, ranged from 10 degrees to 87 degrees. Morphological parameters were determined by a method based on Archimedes' principle and by micro-CT scanning, and the mechanical properties were obtained by mechanical testing. The principal components analysis was used to obtain a set of independent components to describe the morphology. This set was entered into linear regression analyses for explaining the variance in mechanical properties. The principal components analysis revealed four components: amount of bone, number of trabeculae, trabecular orientation, and miscellaneous. They accounted for about 90% of the variance in the morphological variables. The component loadings indicated that a higher amount of bone was primarily associated with more plate-like trabeculae, and not with more or thicker trabeculae. The trabecular orientation was most determinative (about 50%) in explaining stiffness, strength, and failure energy. The amount of bone was second most determinative and increased the explained variance to about 72%. These results suggest that trabecular orientation and amount of bone are important in explaining the anisotropic mechanical properties of the cancellous bone of the mandibular condyle.

  8. Electrically evoked compound action potentials artefact rejection by independent component analysis: procedure automation.

    PubMed

    Akhoun, Idrick; McKay, Colette; El-Deredy, Wael

    2015-01-15

    Independent-components-analysis (ICA) successfully separated electrically-evoked compound action potentials (ECAPs) from the stimulation artefact and noise (ECAP-ICA, Akhoun et al., 2013). This paper shows how to automate the ECAP-ICA artefact cancellation process. Raw-ECAPs without artefact rejection were consecutively recorded for each stimulation condition from at least 8 intra-cochlear electrodes. Firstly, amplifier-saturated recordings were discarded, and the data from different stimulus conditions (different current-levels) were concatenated temporally. The key aspect of the automation procedure was the sequential deductive source categorisation after ICA was applied with a restriction to 4 sources. The stereotypical aspect of the 4 sources enables their automatic classification as two artefact components, a noise and the sought ECAP based on theoretical and empirical considerations. The automatic procedure was tested using 8 cochlear implant (CI) users and one to four stimulus electrodes. The artefact and noise sources were successively identified and discarded, leaving the ECAP as the remaining source. The automated ECAP-ICA procedure successfully extracted the correct ECAPs compared to standard clinical forward masking paradigm in 22 out of 26 cases. ECAP-ICA does not require extracting the ECAP from a combination of distinct buffers as it is the case with regular methods. It is an alternative that does not have the possible bias of traditional artefact rejections such as alternate-polarity or forward-masking paradigms. The ECAP-ICA procedure bears clinical relevance, for example as the artefact rejection sub-module of automated ECAP-threshold detection techniques, which are common features of CI clinical fitting software. Copyright © 2014. Published by Elsevier B.V.

  9. Dynamic Granger causality based on Kalman filter for evaluation of functional network connectivity in fMRI data

    PubMed Central

    Havlicek, Martin; Jan, Jiri; Brazdil, Milan; Calhoun, Vince D.

    2015-01-01

    Increasing interest in understanding dynamic interactions of brain neural networks leads to formulation of sophisticated connectivity analysis methods. Recent studies have applied Granger causality based on standard multivariate autoregressive (MAR) modeling to assess the brain connectivity. Nevertheless, one important flaw of this commonly proposed method is that it requires the analyzed time series to be stationary, whereas such assumption is mostly violated due to the weakly nonstationary nature of functional magnetic resonance imaging (fMRI) time series. Therefore, we propose an approach to dynamic Granger causality in the frequency domain for evaluating functional network connectivity in fMRI data. The effectiveness and robustness of the dynamic approach was significantly improved by combining a forward and backward Kalman filter that improved estimates compared to the standard time-invariant MAR modeling. In our method, the functional networks were first detected by independent component analysis (ICA), a computational method for separating a multivariate signal into maximally independent components. Then the measure of Granger causality was evaluated using generalized partial directed coherence that is suitable for bivariate as well as multivariate data. Moreover, this metric provides identification of causal relation in frequency domain, which allows one to distinguish the frequency components related to the experimental paradigm. The procedure of evaluating Granger causality via dynamic MAR was demonstrated on simulated time series as well as on two sets of group fMRI data collected during an auditory sensorimotor (SM) or auditory oddball discrimination (AOD) tasks. Finally, a comparison with the results obtained from a standard time-invariant MAR model was provided. PMID:20561919

  10. Classification of independent components of EEG into multiple artifact classes.

    PubMed

    Frølich, Laura; Andersen, Tobias S; Mørup, Morten

    2015-01-01

    In this study, we aim to automatically identify multiple artifact types in EEG. We used multinomial regression to classify independent components of EEG data, selecting from 65 spatial, spectral, and temporal features of independent components using forward selection. The classifier identified neural and five nonneural types of components. Between subjects within studies, high classification performances were obtained. Between studies, however, classification was more difficult. For neural versus nonneural classifications, performance was on par with previous results obtained by others. We found that automatic separation of multiple artifact classes is possible with a small feature set. Our method can reduce manual workload and allow for the selective removal of artifact classes. Identifying artifacts during EEG recording may be used to instruct subjects to refrain from activity causing them. Copyright © 2014 Society for Psychophysiological Research.

  11. A Systematic Review of the Measurement of Sustainable Diets.

    PubMed

    Jones, Andrew D; Hoey, Lesli; Blesh, Jennifer; Miller, Laura; Green, Ashley; Shapiro, Lilly Fink

    2016-07-01

    Sustainability has become an integral consideration of the dietary guidelines of many countries in recent decades. However, a lack of clear metrics and a shared approach to measuring the multiple components of sustainable diets has hindered progress toward generating the evidence needed to ensure the credibility of new guidelines. We performed a systematic literature review of empirical research studies on sustainable diets to identify the components of sustainability that were measured and the methods applied to do so. Two independent reviewers systematically searched 30 databases and other sources with the use of a uniform set of search terms and a priori exclusion criteria. In total, 113 empirical studies were included in the final review. Nearly all of the studies were focused on high-income countries. Although there was substantial heterogeneity in the components of sustainability measured, the estimated greenhouse gas emissions (GHGEs) of various dietary patterns were by far most commonly measured (n = 71 studies). Estimating the GHGEs of foods through various stages of production, use, and recycling with the use of the Life Cycle Assessment approach was the most common method applied to measure the environmental impacts of diets (n = 49 studies). Many components of sustainable diets identified in existing conceptual frameworks are disproportionately underrepresented in the empirical literature, as are studies that examine consumer demand for sustainable dietary alternatives. The emphasis in the literature on high-income countries also overlooks the production and dietary alternatives most relevant to low- and middle-income countries. We propose 3 methodological and measurement approaches that would both improve the global relevance of our understanding of sustainable diets and attend more completely to the existing multidimensional, multiscale conceptual framing of sustainable diets. © 2016 American Society for Nutrition.

  12. Low-rank Atlas Image Analyses in the Presence of Pathologies

    PubMed Central

    Liu, Xiaoxiao; Niethammer, Marc; Kwitt, Roland; Singh, Nikhil; McCormick, Matt; Aylward, Stephen

    2015-01-01

    We present a common framework, for registering images to an atlas and for forming an unbiased atlas, that tolerates the presence of pathologies such as tumors and traumatic brain injury lesions. This common framework is particularly useful when a sufficient number of protocol-matched scans from healthy subjects cannot be easily acquired for atlas formation and when the pathologies in a patient cause large appearance changes. Our framework combines a low-rank-plus-sparse image decomposition technique with an iterative, diffeomorphic, group-wise image registration method. At each iteration of image registration, the decomposition technique estimates a “healthy” version of each image as its low-rank component and estimates the pathologies in each image as its sparse component. The healthy version of each image is used for the next iteration of image registration. The low-rank and sparse estimates are refined as the image registrations iteratively improve. When that framework is applied to image-to-atlas registration, the low-rank image is registered to a pre-defined atlas, to establish correspondence that is independent of the pathologies in the sparse component of each image. Ultimately, image-to-atlas registrations can be used to define spatial priors for tissue segmentation and to map information across subjects. When that framework is applied to unbiased atlas formation, at each iteration, the average of the low-rank images from the patients is used as the atlas image for the next iteration, until convergence. Since each iteration’s atlas is comprised of low-rank components, it provides a population-consistent, pathology-free appearance. Evaluations of the proposed methodology are presented using synthetic data as well as simulated and clinical tumor MRI images from the brain tumor segmentation (BRATS) challenge from MICCAI 2012. PMID:26111390

  13. A Systematic Review of the Measurement of Sustainable Diets123

    PubMed Central

    Hoey, Lesli; Blesh, Jennifer; Miller, Laura; Green, Ashley; Shapiro, Lilly Fink

    2016-01-01

    Sustainability has become an integral consideration of the dietary guidelines of many countries in recent decades. However, a lack of clear metrics and a shared approach to measuring the multiple components of sustainable diets has hindered progress toward generating the evidence needed to ensure the credibility of new guidelines. We performed a systematic literature review of empirical research studies on sustainable diets to identify the components of sustainability that were measured and the methods applied to do so. Two independent reviewers systematically searched 30 databases and other sources with the use of a uniform set of search terms and a priori exclusion criteria. In total, 113 empirical studies were included in the final review. Nearly all of the studies were focused on high-income countries. Although there was substantial heterogeneity in the components of sustainability measured, the estimated greenhouse gas emissions (GHGEs) of various dietary patterns were by far most commonly measured (n = 71 studies). Estimating the GHGEs of foods through various stages of production, use, and recycling with the use of the Life Cycle Assessment approach was the most common method applied to measure the environmental impacts of diets (n = 49 studies). Many components of sustainable diets identified in existing conceptual frameworks are disproportionately underrepresented in the empirical literature, as are studies that examine consumer demand for sustainable dietary alternatives. The emphasis in the literature on high-income countries also overlooks the production and dietary alternatives most relevant to low- and middle-income countries. We propose 3 methodological and measurement approaches that would both improve the global relevance of our understanding of sustainable diets and attend more completely to the existing multidimensional, multiscale conceptual framing of sustainable diets. PMID:27422501

  14. A Baseline Load Schedule for the Manual Calibration of a Force Balance

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.; Gisler, R.

    2013-01-01

    A baseline load schedule for the manual calibration of a force balance is defined that takes current capabilities at the NASA Ames Balance Calibration Laboratory into account. The chosen load schedule consists of 18 load series with a total of 194 data points. It was designed to satisfy six requirements: (i) positive and negative loadings should be applied for each load component; (ii) at least three loadings should be applied between 0 % and 100 % load capacity; (iii) normal and side force loadings should be applied at the forward gage location, aft gage location, and the balance moment center; (iv) the balance should be used in "up" and "down" orientation to get positive and negative axial force loadings; (v) the constant normal and side force approaches should be used to get the rolling moment loadings; (vi) rolling moment loadings should be obtained for 0, 90, 180, and 270 degrees balance orientation. In addition, three different approaches are discussed in the paper that may be used to independently estimate the natural zeros, i.e., the gage outputs of the absolute load datum of the balance. These three approaches provide gage output differences that can be used to estimate the weight of both the metric and non-metric part of the balance. Data from the calibration of a six-component force balance will be used in the final manuscript of the paper to illustrate characteristics of the proposed baseline load schedule.

  15. Classifying Facial Actions

    PubMed Central

    Donato, Gianluca; Bartlett, Marian Stewart; Hager, Joseph C.; Ekman, Paul; Sejnowski, Terrence J.

    2010-01-01

    The Facial Action Coding System (FACS) [23] is an objective method for quantifying facial movement in terms of component actions. This system is widely used in behavioral investigations of emotion, cognitive processes, and social interaction. The coding is presently performed by highly trained human experts. This paper explores and compares techniques for automatically recognizing facial actions in sequences of images. These techniques include analysis of facial motion through estimation of optical flow; holistic spatial analysis, such as principal component analysis, independent component analysis, local feature analysis, and linear discriminant analysis; and methods based on the outputs of local filters, such as Gabor wavelet representations and local principal components. Performance of these systems is compared to naive and expert human subjects. Best performances were obtained using the Gabor wavelet representation and the independent component representation, both of which achieved 96 percent accuracy for classifying 12 facial actions of the upper and lower face. The results provide converging evidence for the importance of using local filters, high spatial frequencies, and statistical independence for classifying facial actions. PMID:21188284

  16. Guided Exploration of Genomic Risk for Gray Matter Abnormalities in Schizophrenia Using Parallel Independent Component Analysis with Reference

    PubMed Central

    Chen, Jiayu; Calhoun, Vince D.; Pearlson, Godfrey D.; Perrone-Bizzozero, Nora; Sui, Jing; Turner, Jessica A.; Bustillo, Juan R; Ehrlich, Stefan; Sponheim, Scott R.; Cañive, José M.; Ho, Beng-Choon; Liu, Jingyu

    2013-01-01

    One application of imaging genomics is to explore genetic variants associated with brain structure and function, presenting a new means of mapping genetic influences on mental disorders. While there is growing interest in performing genome-wide searches for determinants, it remains challenging to identify genetic factors of small effect size, especially in limited sample sizes. In an attempt to address this issue, we propose to take advantage of a priori knowledge, specifically to extend parallel independent component analysis (pICA) to incorporate a reference (pICA-R), aiming to better reveal relationships between hidden factors of a particular attribute. The new approach was first evaluated on simulated data for its performance under different configurations of effect size and dimensionality. Then pICA-R was applied to a 300-participant (140 schizophrenia (SZ) patients versus 160 healthy controls) dataset consisting of structural magnetic resonance imaging (sMRI) and single nucleotide polymorphism (SNP) data. Guided by a reference SNP set derived from ANK3, a gene implicated by the Psychiatric Genomic Consortium SZ study, pICA-R identified one pair of SNP and sMRI components with a significant loading correlation of 0.27 (p = 1.64×10−6). The sMRI component showed a significant group difference in loading parameters between patients and controls (p = 1.33×10−15), indicating SZ-related reduction in gray matter concentration in prefrontal and temporal regions. The linked SNP component also showed a group difference (p = 0.04) and was predominantly contributed to by 1,030 SNPs. The effect of these top contributing SNPs was verified using association test results of the Psychiatric Genomic Consortium SZ study, where the 1,030 SNPs exhibited significant SZ enrichment compared to the whole genome. In addition, pathway analyses indicated the genetic component majorly relating to neurotransmitter and nervous system signaling pathways. Given the simulation and experiment results, pICA-R may prove a promising multivariate approach for use in imaging genomics to discover reliable genetic risk factors under a scenario of relatively high dimensionality and small effect size. PMID:23727316

  17. Age-Dependent and Age-Independent Measures of Locus of Control.

    ERIC Educational Resources Information Center

    Sherman, Lawrence W.; Hofmann, Richard

    Using a longitudinal data set obtained from 169 pre-adolescent children between the ages of 8 and 13 years, this study statistically divided locus of control into two independent components. The first component was noted as "age-dependent" (AD) and was determined by predicted values generated by regressing children's ages onto their…

  18. A new multicriteria risk mapping approach based on a multiattribute frontier concept

    Treesearch

    Denys Yemshanov; Frank H. Koch; Yakov Ben-Haim; Marla Downing; Frank Sapio; Marty Siltanen

    2013-01-01

    Invasive species risk maps provide broad guidance on where to allocate resources for pest monitoring and regulation, but they often present individual risk components (such as climatic suitability, host abundance, or introduction potential) as independent entities. These independent risk components are integrated using various multicriteria analysis techniques that...

  19. 11 CFR 109.1 - When will this part apply?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Federal Elections FEDERAL ELECTION COMMISSION GENERAL COORDINATED AND INDEPENDENT EXPENDITURES (2 U.S.C... this part apply? This part applies to expenditures that are made independently from a candidate, an... coordination with a candidate, an authorized committee, a political party committee, or their agents. The rules...

  20. Definition, reporting, and interpretation of composite outcomes in clinical trials: systematic review

    PubMed Central

    Cordoba, Gloria; Schwartz, Lisa; Woloshin, Steven; Bae, Harold

    2010-01-01

    Objective To study how composite outcomes, which have combined several components into a single measure, are defined, reported, and interpreted. Design Systematic review of parallel group randomised clinical trials published in 2008 reporting a binary composite outcome. Two independent observers extracted the data using a standardised data sheet, and two other observers, blinded to the results, selected the most important component. Results Of 40 included trials, 29 (73%) were about cardiovascular topics and 24 (60%) were entirely or partly industry funded. Composite outcomes had a median of three components (range 2–9). Death or cardiovascular death was the most important component in 33 trials (83%). Only one trial provided a good rationale for the choice of components. We judged that the components were not of similar importance in 28 trials (70%); in 20 of these, death was combined with hospital admission. Other major problems were change in the definition of the composite outcome between the abstract, methods, and results sections (13 trials); missing, ambiguous, or uninterpretable data (9 trials); and post hoc construction of composite outcomes (4 trials). Only 24 trials (60%) provided reliable estimates for both the composite and its components, and only six trials (15%) had components of similar, or possibly similar, clinical importance and provided reliable estimates. In 11 of 16 trials with a statistically significant composite, the abstract conclusion falsely implied that the effect applied also to the most important component. Conclusions The use of composite outcomes in trials is problematic. Components are often unreasonably combined, inconsistently defined, and inadequately reported. These problems will leave many readers confused, often with an exaggerated perception of how well interventions work. PMID:20719825

  1. Definition, reporting, and interpretation of composite outcomes in clinical trials: systematic review.

    PubMed

    Cordoba, Gloria; Schwartz, Lisa; Woloshin, Steven; Bae, Harold; Gøtzsche, Peter C

    2010-08-18

    To study how composite outcomes, which have combined several components into a single measure, are defined, reported, and interpreted. Systematic review of parallel group randomised clinical trials published in 2008 reporting a binary composite outcome. Two independent observers extracted the data using a standardised data sheet, and two other observers, blinded to the results, selected the most important component. Of 40 included trials, 29 (73%) were about cardiovascular topics and 24 (60%) were entirely or partly industry funded. Composite outcomes had a median of three components (range 2-9). Death or cardiovascular death was the most important component in 33 trials (83%). Only one trial provided a good rationale for the choice of components. We judged that the components were not of similar importance in 28 trials (70%); in 20 of these, death was combined with hospital admission. Other major problems were change in the definition of the composite outcome between the abstract, methods, and results sections (13 trials); missing, ambiguous, or uninterpretable data (9 trials); and post hoc construction of composite outcomes (4 trials). Only 24 trials (60%) provided reliable estimates for both the composite and its components, and only six trials (15%) had components of similar, or possibly similar, clinical importance and provided reliable estimates. In 11 of 16 trials with a statistically significant composite, the abstract conclusion falsely implied that the effect applied also to the most important component. The use of composite outcomes in trials is problematic. Components are often unreasonably combined, inconsistently defined, and inadequately reported. These problems will leave many readers confused, often with an exaggerated perception of how well interventions work.

  2. Larval settlement rate: a leading determinant of structure in an ecological community of the marine intertidal zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaines, S.; Roughgarden, J.

    Field studies demonstrate that the population structure of the barnacle Balanus glandula differs between locations of high and low larval settlement rate. These observations, together with results from a model for the demography of an open, space-limited population, suggest that the settlement rate may be a more important determinant of rocky intertidal community structure than is presently realized. At the low-settlement location mortality of barnacles is independent of the area occupied by barnacles. At the high-settlement location mortality is cover-dependent due to increased predation by starfish on areas of high barnacle cover. In both locations the cover-independent component of mortalitymore » does not vary with age during the first 60 weeks. Generalizations that the highest species diversity in a rocky intertidal community is found at locations of intermediate disturbance, and that competition causes zonation between species of the barnacle genera Balanus and Chthamalus, seem to apply only to locations with high-settlement rates.« less

  3. ADJUST: An automatic EEG artifact detector based on the joint use of spatial and temporal features.

    PubMed

    Mognon, Andrea; Jovicich, Jorge; Bruzzone, Lorenzo; Buiatti, Marco

    2011-02-01

    A successful method for removing artifacts from electroencephalogram (EEG) recordings is Independent Component Analysis (ICA), but its implementation remains largely user-dependent. Here, we propose a completely automatic algorithm (ADJUST) that identifies artifacted independent components by combining stereotyped artifact-specific spatial and temporal features. Features were optimized to capture blinks, eye movements, and generic discontinuities on a feature selection dataset. Validation on a totally different EEG dataset shows that (1) ADJUST's classification of independent components largely matches a manual one by experts (agreement on 95.2% of the data variance), and (2) Removal of the artifacted components detected by ADJUST leads to neat reconstruction of visual and auditory event-related potentials from heavily artifacted data. These results demonstrate that ADJUST provides a fast, efficient, and automatic way to use ICA for artifact removal. Copyright © 2010 Society for Psychophysiological Research.

  4. Contact angle adjustment in equation-of-state-based pseudopotential model.

    PubMed

    Hu, Anjie; Li, Longjian; Uddin, Rizwan; Liu, Dong

    2016-05-01

    The single component pseudopotential lattice Boltzmann model has been widely applied in multiphase simulation due to its simplicity and stability. In many studies, it has been claimed that this model can be stable for density ratios larger than 1000. However, the application of the model is still limited to small density ratios when the contact angle is considered. The reason is that the original contact angle adjustment method influences the stability of the model. Moreover, simulation results in the present work show that, by applying the original contact angle adjustment method, the density distribution near the wall is artificially changed, and the contact angle is dependent on the surface tension. Hence, it is very inconvenient to apply this method with a fixed contact angle, and the accuracy of the model cannot be guaranteed. To solve these problems, a contact angle adjustment method based on the geometry analysis is proposed and numerically compared with the original method. Simulation results show that, with our contact angle adjustment method, the stability of the model is highly improved when the density ratio is relatively large, and it is independent of the surface tension.

  5. Contact angle adjustment in equation-of-state-based pseudopotential model

    NASA Astrophysics Data System (ADS)

    Hu, Anjie; Li, Longjian; Uddin, Rizwan; Liu, Dong

    2016-05-01

    The single component pseudopotential lattice Boltzmann model has been widely applied in multiphase simulation due to its simplicity and stability. In many studies, it has been claimed that this model can be stable for density ratios larger than 1000. However, the application of the model is still limited to small density ratios when the contact angle is considered. The reason is that the original contact angle adjustment method influences the stability of the model. Moreover, simulation results in the present work show that, by applying the original contact angle adjustment method, the density distribution near the wall is artificially changed, and the contact angle is dependent on the surface tension. Hence, it is very inconvenient to apply this method with a fixed contact angle, and the accuracy of the model cannot be guaranteed. To solve these problems, a contact angle adjustment method based on the geometry analysis is proposed and numerically compared with the original method. Simulation results show that, with our contact angle adjustment method, the stability of the model is highly improved when the density ratio is relatively large, and it is independent of the surface tension.

  6. A federated design for a neurobiological simulation engine: the CBI federated software architecture.

    PubMed

    Cornelis, Hugo; Coop, Allan D; Bower, James M

    2012-01-01

    Simulator interoperability and extensibility has become a growing requirement in computational biology. To address this, we have developed a federated software architecture. It is federated by its union of independent disparate systems under a single cohesive view, provides interoperability through its capability to communicate, execute programs, or transfer data among different independent applications, and supports extensibility by enabling simulator expansion or enhancement without the need for major changes to system infrastructure. Historically, simulator interoperability has relied on development of declarative markup languages such as the neuron modeling language NeuroML, while simulator extension typically occurred through modification of existing functionality. The software architecture we describe here allows for both these approaches. However, it is designed to support alternative paradigms of interoperability and extensibility through the provision of logical relationships and defined application programming interfaces. They allow any appropriately configured component or software application to be incorporated into a simulator. The architecture defines independent functional modules that run stand-alone. They are arranged in logical layers that naturally correspond to the occurrence of high-level data (biological concepts) versus low-level data (numerical values) and distinguish data from control functions. The modular nature of the architecture and its independence from a given technology facilitates communication about similar concepts and functions for both users and developers. It provides several advantages for multiple independent contributions to software development. Importantly, these include: (1) Reduction in complexity of individual simulator components when compared to the complexity of a complete simulator, (2) Documentation of individual components in terms of their inputs and outputs, (3) Easy removal or replacement of unnecessary or obsoleted components, (4) Stand-alone testing of components, and (5) Clear delineation of the development scope of new components.

  7. A Federated Design for a Neurobiological Simulation Engine: The CBI Federated Software Architecture

    PubMed Central

    Cornelis, Hugo; Coop, Allan D.; Bower, James M.

    2012-01-01

    Simulator interoperability and extensibility has become a growing requirement in computational biology. To address this, we have developed a federated software architecture. It is federated by its union of independent disparate systems under a single cohesive view, provides interoperability through its capability to communicate, execute programs, or transfer data among different independent applications, and supports extensibility by enabling simulator expansion or enhancement without the need for major changes to system infrastructure. Historically, simulator interoperability has relied on development of declarative markup languages such as the neuron modeling language NeuroML, while simulator extension typically occurred through modification of existing functionality. The software architecture we describe here allows for both these approaches. However, it is designed to support alternative paradigms of interoperability and extensibility through the provision of logical relationships and defined application programming interfaces. They allow any appropriately configured component or software application to be incorporated into a simulator. The architecture defines independent functional modules that run stand-alone. They are arranged in logical layers that naturally correspond to the occurrence of high-level data (biological concepts) versus low-level data (numerical values) and distinguish data from control functions. The modular nature of the architecture and its independence from a given technology facilitates communication about similar concepts and functions for both users and developers. It provides several advantages for multiple independent contributions to software development. Importantly, these include: (1) Reduction in complexity of individual simulator components when compared to the complexity of a complete simulator, (2) Documentation of individual components in terms of their inputs and outputs, (3) Easy removal or replacement of unnecessary or obsoleted components, (4) Stand-alone testing of components, and (5) Clear delineation of the development scope of new components. PMID:22242154

  8. Multiscale combination of climate model simulations and proxy records over the last millennium

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Xing, Pei; Luo, Yong; Nie, Suping; Zhao, Zongci; Huang, Jianbin; Tian, Qinhua

    2018-05-01

    To highlight the compatibility of climate model simulation and proxy reconstruction at different timescales, a timescale separation merging method combining proxy records and climate model simulations is presented. Annual mean surface temperature anomalies for the last millennium (851-2005 AD) at various scales over the land of the Northern Hemisphere were reconstructed with 2° × 2° spatial resolution, using an optimal interpolation (OI) algorithm. All target series were decomposed using an ensemble empirical mode decomposition method followed by power spectral analysis. Four typical components were obtained at inter-annual, decadal, multidecadal, and centennial timescales. A total of 323 temperature-sensitive proxy chronologies were incorporated after screening for each component. By scaling the proxy components using variance matching and applying a localized OI algorithm to all four components point by point, we obtained merged surface temperatures. Independent validation indicates that the most significant improvement was for components at the inter-annual scale, but this became less evident with increasing timescales. In mid-latitude land areas, 10-30% of grids were significantly corrected at the inter-annual scale. By assimilating the proxy records, the merged results reduced the gap in response to volcanic forcing between a pure reconstruction and simulation. Difficulty remained in verifying the centennial information and quantifying corresponding uncertainties, so additional effort should be devoted to this aspect in future research.

  9. Automated Classification and Removal of EEG Artifacts With SVM and Wavelet-ICA.

    PubMed

    Sai, Chong Yeh; Mokhtar, Norrima; Arof, Hamzah; Cumming, Paul; Iwahashi, Masahiro

    2018-05-01

    Brain electrical activity recordings by electroencephalography (EEG) are often contaminated with signal artifacts. Procedures for automated removal of EEG artifacts are frequently sought for clinical diagnostics and brain-computer interface applications. In recent years, a combination of independent component analysis (ICA) and discrete wavelet transform has been introduced as standard technique for EEG artifact removal. However, in performing the wavelet-ICA procedure, visual inspection or arbitrary thresholding may be required for identifying artifactual components in the EEG signal. We now propose a novel approach for identifying artifactual components separated by wavelet-ICA using a pretrained support vector machine (SVM). Our method presents a robust and extendable system that enables fully automated identification and removal of artifacts from EEG signals, without applying any arbitrary thresholding. Using test data contaminated by eye blink artifacts, we show that our method performed better in identifying artifactual components than did existing thresholding methods. Furthermore, wavelet-ICA in conjunction with SVM successfully removed target artifacts, while largely retaining the EEG source signals of interest. We propose a set of features including kurtosis, variance, Shannon's entropy, and range of amplitude as training and test data of SVM to identify eye blink artifacts in EEG signals. This combinatorial method is also extendable to accommodate multiple types of artifacts present in multichannel EEG. We envision future research to explore other descriptive features corresponding to other types of artifactual components.

  10. How does spatial extent of fMRI datasets affect independent component analysis decomposition?

    PubMed

    Aragri, Adriana; Scarabino, Tommaso; Seifritz, Erich; Comani, Silvia; Cirillo, Sossio; Tedeschi, Gioacchino; Esposito, Fabrizio; Di Salle, Francesco

    2006-09-01

    Spatial independent component analysis (sICA) of functional magnetic resonance imaging (fMRI) time series can generate meaningful activation maps and associated descriptive signals, which are useful to evaluate datasets of the entire brain or selected portions of it. Besides computational implications, variations in the input dataset combined with the multivariate nature of ICA may lead to different spatial or temporal readouts of brain activation phenomena. By reducing and increasing a volume of interest (VOI), we applied sICA to different datasets from real activation experiments with multislice acquisition and single or multiple sensory-motor task-induced blood oxygenation level-dependent (BOLD) signal sources with different spatial and temporal structure. Using receiver operating characteristics (ROC) methodology for accuracy evaluation and multiple regression analysis as benchmark, we compared sICA decompositions of reduced and increased VOI fMRI time-series containing auditory, motor and hemifield visual activation occurring separately or simultaneously in time. Both approaches yielded valid results; however, the results of the increased VOI approach were spatially more accurate compared to the results of the decreased VOI approach. This is consistent with the capability of sICA to take advantage of extended samples of statistical observations and suggests that sICA is more powerful with extended rather than reduced VOI datasets to delineate brain activity. (c) 2006 Wiley-Liss, Inc.

  11. Independent component processes underlying emotions during natural music listening.

    PubMed

    Rogenmoser, Lars; Zollinger, Nina; Elmer, Stefan; Jäncke, Lutz

    2016-09-01

    The aim of this study was to investigate the brain processes underlying emotions during natural music listening. To address this, we recorded high-density electroencephalography (EEG) from 22 subjects while presenting a set of individually matched whole musical excerpts varying in valence and arousal. Independent component analysis was applied to decompose the EEG data into functionally distinct brain processes. A k-means cluster analysis calculated on the basis of a combination of spatial (scalp topography and dipole location mapped onto the Montreal Neurological Institute brain template) and functional (spectra) characteristics revealed 10 clusters referring to brain areas typically involved in music and emotion processing, namely in the proximity of thalamic-limbic and orbitofrontal regions as well as at frontal, fronto-parietal, parietal, parieto-occipital, temporo-occipital and occipital areas. This analysis revealed that arousal was associated with a suppression of power in the alpha frequency range. On the other hand, valence was associated with an increase in theta frequency power in response to excerpts inducing happiness compared to sadness. These findings are partly compatible with the model proposed by Heller, arguing that the frontal lobe is involved in modulating valenced experiences (the left frontal hemisphere for positive emotions) whereas the right parieto-temporal region contributes to the emotional arousal. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  12. Accurate prediction of protein–protein interactions from sequence alignments using a Bayesian method

    PubMed Central

    Burger, Lukas; van Nimwegen, Erik

    2008-01-01

    Accurate and large-scale prediction of protein–protein interactions directly from amino-acid sequences is one of the great challenges in computational biology. Here we present a new Bayesian network method that predicts interaction partners using only multiple alignments of amino-acid sequences of interacting protein domains, without tunable parameters, and without the need for any training examples. We first apply the method to bacterial two-component systems and comprehensively reconstruct two-component signaling networks across all sequenced bacteria. Comparisons of our predictions with known interactions show that our method infers interaction partners genome-wide with high accuracy. To demonstrate the general applicability of our method we show that it also accurately predicts interaction partners in a recent dataset of polyketide synthases. Analysis of the predicted genome-wide two-component signaling networks shows that cognates (interacting kinase/regulator pairs, which lie adjacent on the genome) and orphans (which lie isolated) form two relatively independent components of the signaling network in each genome. In addition, while most genes are predicted to have only a small number of interaction partners, we find that 10% of orphans form a separate class of ‘hub' nodes that distribute and integrate signals to and from up to tens of different interaction partners. PMID:18277381

  13. A Removal of Eye Movement and Blink Artifacts from EEG Data Using Morphological Component Analysis

    PubMed Central

    Wagatsuma, Hiroaki

    2017-01-01

    EEG signals contain a large amount of ocular artifacts with different time-frequency properties mixing together in EEGs of interest. The artifact removal has been substantially dealt with by existing decomposition methods known as PCA and ICA based on the orthogonality of signal vectors or statistical independence of signal components. We focused on the signal morphology and proposed a systematic decomposition method to identify the type of signal components on the basis of sparsity in the time-frequency domain based on Morphological Component Analysis (MCA), which provides a way of reconstruction that guarantees accuracy in reconstruction by using multiple bases in accordance with the concept of “dictionary.” MCA was applied to decompose the real EEG signal and clarified the best combination of dictionaries for this purpose. In our proposed semirealistic biological signal analysis with iEEGs recorded from the brain intracranially, those signals were successfully decomposed into original types by a linear expansion of waveforms, such as redundant transforms: UDWT, DCT, LDCT, DST, and DIRAC. Our result demonstrated that the most suitable combination for EEG data analysis was UDWT, DST, and DIRAC to represent the baseline envelope, multifrequency wave-forms, and spiking activities individually as representative types of EEG morphologies. PMID:28194221

  14. High-throughput ocular artifact reduction in multichannel electroencephalography (EEG) using component subspace projection.

    PubMed

    Ma, Junshui; Bayram, Sevinç; Tao, Peining; Svetnik, Vladimir

    2011-03-15

    After a review of the ocular artifact reduction literature, a high-throughput method designed to reduce the ocular artifacts in multichannel continuous EEG recordings acquired at clinical EEG laboratories worldwide is proposed. The proposed method belongs to the category of component-based methods, and does not rely on any electrooculography (EOG) signals. Based on a concept that all ocular artifact components exist in a signal component subspace, the method can uniformly handle all types of ocular artifacts, including eye-blinks, saccades, and other eye movements, by automatically identifying ocular components from decomposed signal components. This study also proposes an improved strategy to objectively and quantitatively evaluate artifact reduction methods. The evaluation strategy uses real EEG signals to synthesize realistic simulated datasets with different amounts of ocular artifacts. The simulated datasets enable us to objectively demonstrate that the proposed method outperforms some existing methods when no high-quality EOG signals are available. Moreover, the results of the simulated datasets improve our understanding of the involved signal decomposition algorithms, and provide us with insights into the inconsistency regarding the performance of different methods in the literature. The proposed method was also applied to two independent clinical EEG datasets involving 28 volunteers and over 1000 EEG recordings. This effort further confirms that the proposed method can effectively reduce ocular artifacts in large clinical EEG datasets in a high-throughput fashion. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Reducing equifinality of hydrological models by integrating Functional Streamflow Disaggregation

    NASA Astrophysics Data System (ADS)

    Lüdtke, Stefan; Apel, Heiko; Nied, Manuela; Carl, Peter; Merz, Bruno

    2014-05-01

    A universal problem of the calibration of hydrological models is the equifinality of different parameter sets derived from the calibration of models against total runoff values. This is an intrinsic problem stemming from the quality of the calibration data and the simplified process representation by the model. However, discharge data contains additional information which can be extracted by signal processing methods. An analysis specifically developed for the disaggregation of runoff time series into flow components is the Functional Streamflow Disaggregation (FSD; Carl & Behrendt, 2008). This method is used in the calibration of an implementation of the hydrological model SWIM in a medium sized watershed in Thailand. FSD is applied to disaggregate the discharge time series into three flow components which are interpreted as base flow, inter-flow and surface runoff. In addition to total runoff, the model is calibrated against these three components in a modified GLUE analysis, with the aim to identify structural model deficiencies, assess the internal process representation and to tackle equifinality. We developed a model dependent (MDA) approach calibrating the model runoff components against the FSD components, and a model independent (MIA) approach comparing the FSD of the model results and the FSD of calibration data. The results indicate, that the decomposition provides valuable information for the calibration. Particularly MDA highlights and discards a number of standard GLUE behavioural models underestimating the contribution of soil water to river discharge. Both, MDA and MIA yield to a reduction of the parameter ranges by a factor up to 3 in comparison to standard GLUE. Based on these results, we conclude that the developed calibration approach is able to reduce the equifinality of hydrological model parameterizations. The effect on the uncertainty of the model predictions is strongest by applying MDA and shows only minor reductions for MIA. Besides further validation of FSD, the next steps include an extension of the study to different catchments and other hydrological models with a similar structure.

  16. Resolvability of regional density structure and the road to direct density inversion - a principal-component approach to resolution analysis

    NASA Astrophysics Data System (ADS)

    Płonka, Agnieszka; Fichtner, Andreas

    2017-04-01

    Lateral density variations are the source of mass transport in the Earth at all scales, acting as drivers of convective motion. However, the density structure of the Earth remains largely unknown since classic seismic observables and gravity provide only weak constraints with strong trade-offs. Current density models are therefore often based on velocity scaling, making strong assumptions on the origin of structural heterogeneities, which may not necessarily be correct. Our goal is to assess if 3D density structure may be resolvable with emerging full-waveform inversion techniques. We have previously quantified the impact of regional-scale crustal density structure on seismic waveforms with the conclusion that reasonably sized density variations within the crust can leave a strong imprint on both travel times and amplitudes, and, while this can produce significant biases in velocity and Q estimates, the seismic waveform inversion for density may become feasible. In this study we perform principal component analyses of sensitivity kernels for P velocity, S velocity, and density. This is intended to establish the extent to which these kernels are linearly independent, i.e. the extent to which the different parameters may be constrained independently. We apply the method to data from 81 events around the Iberian Penninsula, registered in total by 492 stations. The objective is to find a principal kernel which would maximize the sensitivity to density, potentially allowing for as independent as possible density resolution. We find that surface (mosty Rayleigh) waves have significant sensitivity to density, and that the trade-off with velocity is negligible. We also show the preliminary results of the inversion.

  17. Antimicrobial combinations: Bliss independence and Loewe additivity derived from mechanistic multi-hit models

    PubMed Central

    Yu, Guozhi; Hozé, Nathanaël; Rolff, Jens

    2016-01-01

    Antimicrobial peptides (AMPs) and antibiotics reduce the net growth rate of bacterial populations they target. It is relevant to understand if effects of multiple antimicrobials are synergistic or antagonistic, in particular for AMP responses, because naturally occurring responses involve multiple AMPs. There are several competing proposals describing how multiple types of antimicrobials add up when applied in combination, such as Loewe additivity or Bliss independence. These additivity terms are defined ad hoc from abstract principles explaining the supposed interaction between the antimicrobials. Here, we link these ad hoc combination terms to a mathematical model that represents the dynamics of antimicrobial molecules hitting targets on bacterial cells. In this multi-hit model, bacteria are killed when a certain number of targets are hit by antimicrobials. Using this bottom-up approach reveals that Bliss independence should be the model of choice if no interaction between antimicrobial molecules is expected. Loewe additivity, on the other hand, describes scenarios in which antimicrobials affect the same components of the cell, i.e. are not acting independently. While our approach idealizes the dynamics of antimicrobials, it provides a conceptual underpinning of the additivity terms. The choice of the additivity term is essential to determine synergy or antagonism of antimicrobials. This article is part of the themed issue ‘Evolutionary ecology of arthropod antimicrobial peptides’. PMID:27160596

  18. Interactions Dominate the Dynamics of Visual Cognition

    PubMed Central

    Stephen, Damian G.; Mirman, Daniel

    2010-01-01

    Many cognitive theories have described behavior as the summation of independent contributions from separate components. Contrasting views have emphasized the importance of multiplicative interactions and emergent structure. We describe a statistical approach to distinguishing additive and multiplicative processes and apply it to the dynamics of eye movements during classic visual cognitive tasks. The results reveal interaction-dominant dynamics in eye movements in each of the three tasks, and that fine-grained eye movements are modulated by task constraints. These findings reveal the interactive nature of cognitive processing and are consistent with theories that view cognition as an emergent property of processes that are broadly distributed over many scales of space and time rather than a componential assembly line. PMID:20070957

  19. Electric field-induced ferromagnetic resonance in a CoFeB/MgO magnetic tunnel junction under dc bias voltages

    NASA Astrophysics Data System (ADS)

    Kanai, Shun; Gajek, Martin; Worledge, D. C.; Matsukura, Fumihiro; Ohno, Hideo

    2014-12-01

    We measure homodyne-detected ferromagnetic resonance (FMR) induced by the electric-field effect in a CoFeB/MgO/CoFeB magnetic tunnel junction (MTJ) with perpendicular magnetic easy axis under dc bias voltages up to 0.1 V. From the bias dependence of the resonant frequency, we find that the first order perpendicular magnetic anisotropy is modulated by the applied electric field, whereas the second order component is virtually independent of the electric field. The lineshapes of the FMR spectra are bias dependent, which are explained by the combination of electric-field effect and reflection of the bias voltage from the MTJ.

  20. Independent EEG Sources Are Dipolar

    PubMed Central

    Delorme, Arnaud; Palmer, Jason; Onton, Julie; Oostenveld, Robert; Makeig, Scott

    2012-01-01

    Independent component analysis (ICA) and blind source separation (BSS) methods are increasingly used to separate individual brain and non-brain source signals mixed by volume conduction in electroencephalographic (EEG) and other electrophysiological recordings. We compared results of decomposing thirteen 71-channel human scalp EEG datasets by 22 ICA and BSS algorithms, assessing the pairwise mutual information (PMI) in scalp channel pairs, the remaining PMI in component pairs, the overall mutual information reduction (MIR) effected by each decomposition, and decomposition ‘dipolarity’ defined as the number of component scalp maps matching the projection of a single equivalent dipole with less than a given residual variance. The least well-performing algorithm was principal component analysis (PCA); best performing were AMICA and other likelihood/mutual information based ICA methods. Though these and other commonly-used decomposition methods returned many similar components, across 18 ICA/BSS algorithms mean dipolarity varied linearly with both MIR and with PMI remaining between the resulting component time courses, a result compatible with an interpretation of many maximally independent EEG components as being volume-conducted projections of partially-synchronous local cortical field activity within single compact cortical domains. To encourage further method comparisons, the data and software used to prepare the results have been made available (http://sccn.ucsd.edu/wiki/BSSComparison). PMID:22355308

  1. Chemical analyses of fossil bone.

    PubMed

    Zheng, Wenxia; Schweitzer, Mary Higby

    2012-01-01

    The preservation of microstructures consistent with soft tissues, cells, and other biological components in demineralized fragments of dinosaur bone tens of millions of years old was unexpected, and counter to current hypotheses of tissue, cellular, and molecular degradation. Although the morphological similarity of these tissues to extant counterparts was unmistakable, after at least 80 million years exposed to geochemical influences, morphological similarity is insufficient to support an endogenous source. To test this hypothesis, and to characterize these materials at a molecular level, we applied multiple independent chemical, molecular, and microscopic analyses to identify the presence of original components produced by the extinct organisms. Microscopic techniques included field emission scanning electron microscopy, analytical transmission electron microscopy, transmitted light microscopy (LM), and fluorescence microscopy (FM). The chemical and molecular techniques include enzyme-linked immunosorbant assay, sodium dodecyl sulfate polyacrylamide gel electrophoresis, western blot (immunoblot), and attenuated total reflectance infrared spectroscopy. In situ analyses performed directly on tissues included immunohistochemistry and time-of-flight secondary ion mass spectrometry. The details of sample preparation and methodology are described in detail herein.

  2. Non-contact cardiac pulse rate estimation based on web-camera

    NASA Astrophysics Data System (ADS)

    Wang, Yingzhi; Han, Tailin

    2015-12-01

    In this paper, we introduce a new methodology of non-contact cardiac pulse rate estimation based on the imaging Photoplethysmography (iPPG) and blind source separation. This novel's approach can be applied to color video recordings of the human face and is based on automatic face tracking along with blind source separation of the color channels into RGB three-channel component. First of all, we should do some pre-processings of the data which can be got from color video such as normalization and sphering. We can use spectrum analysis to estimate the cardiac pulse rate by Independent Component Analysis (ICA) and JADE algorithm. With Bland-Altman and correlation analysis, we compared the cardiac pulse rate extracted from videos recorded by a basic webcam to a Commercial pulse oximetry sensors and achieved high accuracy and correlation. Root mean square error for the estimated results is 2.06bpm, which indicates that the algorithm can realize the non-contact measurements of cardiac pulse rate.

  3. Blind source separation in retinal videos

    NASA Astrophysics Data System (ADS)

    Barriga, Eduardo S.; Truitt, Paul W.; Pattichis, Marios S.; Tüso, Dan; Kwon, Young H.; Kardon, Randy H.; Soliz, Peter

    2003-05-01

    An optical imaging device of retina function (OID-RF) has been developed to measure changes in blood oxygen saturation due to neural activity resulting from visual stimulation of the photoreceptors in the human retina. The video data that are collected represent a mixture of the functional signal in response to the retinal activation and other signals from undetermined physiological activity. Measured changes in reflectance in response to the visual stimulus are on the order of 0.1% to 1.0% of the total reflected intensity level which makes the functional signal difficult to detect by standard methods since it is masked by the other signals that are present. In this paper, we apply principal component analysis (PCA), blind source separation (BSS), using Extended Spatial Decorrelation (ESD) and independent component analysis (ICA) using the Fast-ICA algorithm to extract the functional signal from the retinal videos. The results revealed that the functional signal in a stimulated retina can be detected through the application of some of these techniques.

  4. Quantitative evaluation of hidden defects in cast iron components using ultrasound activated lock-in vibrothermography.

    PubMed

    Montanini, R; Freni, F; Rossi, G L

    2012-09-01

    This paper reports one of the first experimental results on the application of ultrasound activated lock-in vibrothermography for quantitative assessment of buried flaws in complex cast parts. The use of amplitude modulated ultrasonic heat generation allowed selective response of defective areas within the part, as the defect itself is turned into a local thermal wave emitter. Quantitative evaluation of hidden damages was accomplished by estimating independently both the area and the depth extension of the buried flaws, while x-ray 3D computed tomography was used as reference for sizing accuracy assessment. To retrieve flaw's area, a simple yet effective histogram-based phase image segmentation algorithm with automatic pixels classification has been developed. A clear correlation was found between the thermal (phase) signature measured by the infrared camera on the target surface and the actual mean cross-section area of the flaw. Due to the very fast cycle time (<30 s/part), the method could potentially be applied for 100% quality control of casting components.

  5. Design of experiments and principal component analysis as approaches for enhancing performance of gas-diffusional air-breathing bilirubin oxidase cathode

    NASA Astrophysics Data System (ADS)

    Babanova, Sofia; Artyushkova, Kateryna; Ulyanova, Yevgenia; Singhal, Sameer; Atanassov, Plamen

    2014-01-01

    Two statistical methods, design of experiments (DOE) and principal component analysis (PCA) are employed to investigate and improve performance of air-breathing gas-diffusional enzymatic electrodes. DOE is utilized as a tool for systematic organization and evaluation of various factors affecting the performance of the composite system. Based on the results from the DOE, an improved cathode is constructed. The current density generated utilizing the improved cathode (755 ± 39 μA cm-2 at 0.3 V vs. Ag/AgCl) is 2-5 times higher than the highest current density previously achieved. Three major factors contributing to the cathode performance are identified: the amount of enzyme, the volume of phosphate buffer used to immobilize the enzyme, and the thickness of the gas-diffusion layer (GDL). PCA is applied as an independent confirmation tool to support conclusions made by DOE and to visualize the contribution of factors in individual cathode configurations.

  6. Rapid Airplane Parametric Input Design(RAPID)

    NASA Technical Reports Server (NTRS)

    Smith, Robert E.; Bloor, Malcolm I. G.; Wilson, Michael J.; Thomas, Almuttil M.

    2004-01-01

    An efficient methodology is presented for defining a class of airplane configurations. Inclusive in this definition are surface grids, volume grids, and grid sensitivity. A small set of design parameters and grid control parameters govern the process. The general airplane configuration has wing, fuselage, vertical tail, horizontal tail, and canard components. The wing, tail, and canard components are manifested by solving a fourth-order partial differential equation subject to Dirichlet and Neumann boundary conditions. The design variables are incorporated into the boundary conditions, and the solution is expressed as a Fourier series. The fuselage has circular cross section, and the radius is an algebraic function of four design parameters and an independent computational variable. Volume grids are obtained through an application of the Control Point Form method. Grid sensitivity is obtained by applying the automatic differentiation precompiler ADIFOR to software for the grid generation. The computed surface grids, volume grids, and sensitivity derivatives are suitable for a wide range of Computational Fluid Dynamics simulation and configuration optimizations.

  7. Relevant principal component analysis applied to the characterisation of Portuguese heather honey.

    PubMed

    Martins, Rui C; Lopes, Victor V; Valentão, Patrícia; Carvalho, João C M F; Isabel, Paulo; Amaral, Maria T; Batista, Maria T; Andrade, Paula B; Silva, Branca M

    2008-01-01

    The main purpose of this study was the characterisation of 'Serra da Lousã' heather honey by using novel statistical methodology, relevant principal component analysis, in order to assess the correlations between production year, locality and composition. Herein, we also report its chemical composition in terms of sugars, glycerol and ethanol, and physicochemical parameters. Sugars profiles from 'Serra da Lousã' heather and 'Terra Quente de Trás-os-Montes' lavender honeys were compared and allowed the discrimination: 'Serra da Lousã' honeys do not contain sucrose, generally exhibit lower contents of turanose, trehalose and maltose and higher contents of fructose and glucose. Different localities from 'Serra da Lousã' provided groups of samples with high and low glycerol contents. Glycerol and ethanol contents were revealed to be independent of the sugars profiles. These data and statistical models can be very useful in the comparison and detection of adulterations during the quality control analysis of 'Serra da Lousã' honey.

  8. Extraction of a Weak Co-Channel Interfering Communication Signal Using Complex Independent Component Analysis

    DTIC Science & Technology

    2013-06-01

    zarzoso/ biblio /tnn10.pdf"> % "Robust independent component analysis by iterative maximization</a> % <a href = "http://www.i3s.unice.fr/~zarzoso... biblio /tnn10.pdf"> % of the kurtosis contrast with algebraic optimal step size"</a>, % IEEE Transactions on Neural Networks, vol. 21, no. 2, % pp

  9. Signaling added response-independent reinforcement to assess Pavlovian processes in resistance to change and relapse.

    PubMed

    Podlesnik, Christopher A; Fleet, James D

    2014-09-01

    Behavioral momentum theory asserts Pavlovian stimulus-reinforcer relations govern the persistence of operant behavior. Specifically, resistance to conditions of disruption (e.g., extinction, satiation) reflects the relation between discriminative stimuli and the prevailing reinforcement conditions. The present study assessed whether Pavlovian stimulus-reinforcer relations govern resistance to disruption in pigeons by arranging both response-dependent and -independent food reinforcers in two components of a multiple schedule. In one component, discrete-stimulus changes preceded response-independent reinforcers, paralleling methods that reduce Pavlovian conditioned responding to contextual stimuli. Compared to the control component with no added stimuli preceding response-independent reinforcement, response rates increased as discrete-stimulus duration increased (0, 5, 10, and 15 s) across conditions. Although resistance to extinction decreased as stimulus duration increased in the component with the added discrete stimulus, further tests revealed no effect of discrete stimuli, including other disrupters (presession food, intercomponent food, modified extinction) and reinstatement designed to control for generalization decrement. These findings call into question a straightforward conception that the stimulus-reinforcer relations governing resistance to disruption reflect the same processes as Pavlovian conditioning, as asserted by behavioral momentum theory. © Society for the Experimental Analysis of Behavior.

  10. Inverse Problems in Complex Models and Applications to Earth Sciences

    NASA Astrophysics Data System (ADS)

    Bosch, M. E.

    2015-12-01

    The inference of the subsurface earth structure and properties requires the integration of different types of data, information and knowledge, by combined processes of analysis and synthesis. To support the process of integrating information, the regular concept of data inversion is evolving to expand its application to models with multiple inner components (properties, scales, structural parameters) that explain multiple data (geophysical survey data, well-logs, core data). The probabilistic inference methods provide the natural framework for the formulation of these problems, considering a posterior probability density function (PDF) that combines the information from a prior information PDF and the new sets of observations. To formulate the posterior PDF in the context of multiple datasets, the data likelihood functions are factorized assuming independence of uncertainties for data originating across different surveys. A realistic description of the earth medium requires modeling several properties and structural parameters, which relate to each other according to dependency and independency notions. Thus, conditional probabilities across model components also factorize. A common setting proceeds by structuring the model parameter space in hierarchical layers. A primary layer (e.g. lithology) conditions a secondary layer (e.g. physical medium properties), which conditions a third layer (e.g. geophysical data). In general, less structured relations within model components and data emerge from the analysis of other inverse problems. They can be described with flexibility via direct acyclic graphs, which are graphs that map dependency relations between the model components. Examples of inverse problems in complex models can be shown at various scales. At local scale, for example, the distribution of gas saturation is inferred from pre-stack seismic data and a calibrated rock-physics model. At regional scale, joint inversion of gravity and magnetic data is applied for the estimation of lithological structure of the crust, with the lithotype body regions conditioning the mass density and magnetic susceptibility fields. At planetary scale, the Earth mantle temperature and element composition is inferred from seismic travel-time and geodetic data.

  11. Preserving subject variability in group fMRI analysis: performance evaluation of GICA vs. IVA

    PubMed Central

    Michael, Andrew M.; Anderson, Mathew; Miller, Robyn L.; Adalı, Tülay; Calhoun, Vince D.

    2014-01-01

    Independent component analysis (ICA) is a widely applied technique to derive functionally connected brain networks from fMRI data. Group ICA (GICA) and Independent Vector Analysis (IVA) are extensions of ICA that enable users to perform group fMRI analyses; however a full comparison of the performance limits of GICA and IVA has not been investigated. Recent interest in resting state fMRI data with potentially higher degree of subject variability makes the evaluation of the above techniques important. In this paper we compare component estimation accuracies of GICA and an improved version of IVA using simulated fMRI datasets. We systematically change the degree of inter-subject spatial variability of components and evaluate estimation accuracy over all spatial maps (SMs) and time courses (TCs) of the decomposition. Our results indicate the following: (1) at low levels of SM variability or when just one SM is varied, both GICA and IVA perform well, (2) at higher levels of SM variability or when more than one SMs are varied, IVA continues to perform well but GICA yields SM estimates that are composites of other SMs with errors in TCs, (3) both GICA and IVA remove spatial correlations of overlapping SMs and introduce artificial correlations in their TCs, (4) if number of SMs is over estimated, IVA continues to perform well but GICA introduces artifacts in the varying and extra SMs with artificial correlations in the TCs of extra components, and (5) in the absence or presence of SMs unique to one subject, GICA produces errors in TCs and IVA estimates are accurate. In summary, our simulation experiments (both simplistic and realistic) and our holistic analyses approach indicate that IVA produces results that are closer to ground truth and thereby better preserves subject variability. The improved version of IVA is now packaged into the GIFT toolbox (http://mialab.mrn.org/software/gift). PMID:25018704

  12. Hybrid ICA-Bayesian network approach reveals distinct effective connectivity differences in schizophrenia.

    PubMed

    Kim, D; Burge, J; Lane, T; Pearlson, G D; Kiehl, K A; Calhoun, V D

    2008-10-01

    We utilized a discrete dynamic Bayesian network (dDBN) approach (Burge, J., Lane, T., Link, H., Qiu, S., Clark, V.P., 2007. Discrete dynamic Bayesian network analysis of fMRI data. Hum Brain Mapp.) to determine differences in brain regions between patients with schizophrenia and healthy controls on a measure of effective connectivity, termed the approximate conditional likelihood score (ACL) (Burge, J., Lane, T., 2005. Learning Class-Discriminative Dynamic Bayesian Networks. Proceedings of the International Conference on Machine Learning, Bonn, Germany, pp. 97-104.). The ACL score represents a class-discriminative measure of effective connectivity by measuring the relative likelihood of the correlation between brain regions in one group versus another. The algorithm is capable of finding non-linear relationships between brain regions because it uses discrete rather than continuous values and attempts to model temporal relationships with a first-order Markov and stationary assumption constraint (Papoulis, A., 1991. Probability, random variables, and stochastic processes. McGraw-Hill, New York.). Since Bayesian networks are overly sensitive to noisy data, we introduced an independent component analysis (ICA) filtering approach that attempted to reduce the noise found in fMRI data by unmixing the raw datasets into a set of independent spatial component maps. Components that represented noise were removed and the remaining components reconstructed into the dimensions of the original fMRI datasets. We applied the dDBN algorithm to a group of 35 patients with schizophrenia and 35 matched healthy controls using an ICA filtered and unfiltered approach. We determined that filtering the data significantly improved the magnitude of the ACL score. Patients showed the greatest ACL scores in several regions, most markedly the cerebellar vermis and hemispheres. Our findings suggest that schizophrenia patients exhibit weaker connectivity than healthy controls in multiple regions, including bilateral temporal, frontal, and cerebellar regions during an auditory paradigm.

  13. Frequency-dependent population dynamics: effect of sex ratio and mating system on the elasticity of population growth rate.

    PubMed

    Haridas, C V; Eager, Eric Alan; Rebarber, Richard; Tenhumberg, Brigitte

    2014-11-01

    When vital rates depend on population structure (e.g., relative frequencies of males or females), an important question is how the long-term population growth rate λ responds to changes in rates. For instance, availability of mates may depend on the sex ratio of the population and hence reproductive rates could be frequency-dependent. In such cases change in any vital rate alters the structure, which in turn, affect frequency-dependent rates. We show that the elasticity of λ to a rate is the sum of (i) the effect of the linear change in the rate and (ii) the effect of nonlinear changes in frequency-dependent rates. The first component is always positive and is the classical elasticity in density-independent models obtained directly from the population projection matrix. The second component can be positive or negative and is absent in density-independent models. We explicitly express each component of the elasticity as a function of vital rates, eigenvalues and eigenvectors of the population projection matrix. We apply this result to a two-sex model, where male and female fertilities depend on adult sex ratio α (ratio of females to males) and the mating system (e.g., polygyny) through a harmonic mating function. We show that the nonlinear component of elasticity to a survival rate is negligible only when the average number of mates (per male) is close to α. In a strictly monogamous species, elasticity to female survival is larger than elasticity to male survival when α<1 (less females). In a polygynous species, elasticity to female survival can be larger than that of male survival even when sex ratio is female biased. Our results show how demography and mating system together determine the response to selection on sex-specific vital rates. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Sorbent, Sublimation, and Icing Modeling Methods: Experimental Validation and Application to an Integrated MTSA Subassembly Thermal Model

    NASA Technical Reports Server (NTRS)

    Bower, Chad; Padilla, Sebastian; Iacomini, Christie; Paul, Heather L.

    2010-01-01

    This paper details the validation of modeling methods for the three core components of a Metabolic heat regenerated Temperature Swing Adsorption (MTSA) subassembly, developed for use in a Portable Life Support System (PLSS). The first core component in the subassembly is a sorbent bed, used to capture and reject metabolically produced carbon dioxide (CO2). The sorbent bed performance can be augmented with a temperature swing driven by a liquid CO2 (LCO2) sublimation heat exchanger (SHX) for cooling the sorbent bed, and a condensing, icing heat exchanger (CIHX) for warming the sorbent bed. As part of the overall MTSA effort, scaled design validation test articles for each of these three components have been independently tested in laboratory conditions. Previously described modeling methodologies developed for implementation in Thermal Desktop and SINDA/FLUINT are reviewed and updated, their application in test article models outlined, and the results of those model correlations relayed. Assessment of the applicability of each modeling methodology to the challenge of simulating the response of the test articles and their extensibility to a full scale integrated subassembly model is given. The independent verified and validated modeling methods are applied to the development of a MTSA subassembly prototype model and predictions of the subassembly performance are given. These models and modeling methodologies capture simulation of several challenging and novel physical phenomena in the Thermal Desktop and SINDA/FLUINT software suite. Novel methodologies include CO2 adsorption front tracking and associated thermal response in the sorbent bed, heat transfer associated with sublimation of entrained solid CO2 in the SHX, and water mass transfer in the form of ice as low as 210 K in the CIHX.

  15. Variational Bayesian Learning for Wavelet Independent Component Analysis

    NASA Astrophysics Data System (ADS)

    Roussos, E.; Roberts, S.; Daubechies, I.

    2005-11-01

    In an exploratory approach to data analysis, it is often useful to consider the observations as generated from a set of latent generators or "sources" via a generally unknown mapping. For the noisy overcomplete case, where we have more sources than observations, the problem becomes extremely ill-posed. Solutions to such inverse problems can, in many cases, be achieved by incorporating prior knowledge about the problem, captured in the form of constraints. This setting is a natural candidate for the application of the Bayesian methodology, allowing us to incorporate "soft" constraints in a natural manner. The work described in this paper is mainly driven by problems in functional magnetic resonance imaging of the brain, for the neuro-scientific goal of extracting relevant "maps" from the data. This can be stated as a `blind' source separation problem. Recent experiments in the field of neuroscience show that these maps are sparse, in some appropriate sense. The separation problem can be solved by independent component analysis (ICA), viewed as a technique for seeking sparse components, assuming appropriate distributions for the sources. We derive a hybrid wavelet-ICA model, transforming the signals into a domain where the modeling assumption of sparsity of the coefficients with respect to a dictionary is natural. We follow a graphical modeling formalism, viewing ICA as a probabilistic generative model. We use hierarchical source and mixing models and apply Bayesian inference to the problem. This allows us to perform model selection in order to infer the complexity of the representation, as well as automatic denoising. Since exact inference and learning in such a model is intractable, we follow a variational Bayesian mean-field approach in the conjugate-exponential family of distributions, for efficient unsupervised learning in multi-dimensional settings. The performance of the proposed algorithm is demonstrated on some representative experiments.

  16. Concurrent multiscale modeling of microstructural effects on localization behavior in finite deformation solid mechanics

    DOE PAGES

    Alleman, Coleman N.; Foulk, James W.; Mota, Alejandro; ...

    2017-11-06

    The heterogeneity in mechanical fields introduced by microstructure plays a critical role in the localization of deformation. In order to resolve this incipient stage of failure, it is therefore necessary to incorporate microstructure with sufficient resolution. On the other hand, computational limitations make it infeasible to represent the microstructure in the entire domain at the component scale. Here, the authors demonstrate the use of concurrent multiscale modeling to incorporate explicit, finely resolved microstructure in a critical region while resolving the smoother mechanical fields outside this region with a coarser discretization to limit computational cost. The microstructural physics is modeled withmore » a high-fidelity model that incorporates anisotropic crystal elasticity and rate-dependent crystal plasticity to simulate the behavior of a stainless steel alloy. The component-scale material behavior is treated with a lower fidelity model incorporating isotropic linear elasticity and rate-independent J 2 plasticity. The microstructural and component scale subdomains are modeled concurrently, with coupling via the Schwarz alternating method, which solves boundary-value problems in each subdomain separately and transfers solution information between subdomains via Dirichlet boundary conditions. In this study, the framework is applied to model incipient localization in tensile specimens during necking.« less

  17. Diffusion Modelling Reveals the Decision Making Processes Underlying Negative Judgement Bias in Rats.

    PubMed

    Hales, Claire A; Robinson, Emma S J; Houghton, Conor J

    2016-01-01

    Human decision making is modified by emotional state. Rodents exhibit similar biases during interpretation of ambiguous cues that can be altered by affective state manipulations. In this study, the impact of negative affective state on judgement bias in rats was measured using an ambiguous-cue interpretation task. Acute treatment with an anxiogenic drug (FG7142), and chronic restraint stress and social isolation both induced a bias towards more negative interpretation of the ambiguous cue. The diffusion model was fit to behavioural data to allow further analysis of the underlying decision making processes. To uncover the way in which parameters vary together in relation to affective state manipulations, independent component analysis was conducted on rate of information accumulation and distances to decision threshold parameters for control data. Results from this analysis were applied to parameters from negative affective state manipulations. These projected components were compared to control components to reveal the changes in decision making processes that are due to affective state manipulations. Negative affective bias in rodents induced by either FG7142 or chronic stress is due to a combination of more negative interpretation of the ambiguous cue, reduced anticipation of the high reward and increased anticipation of the low reward.

  18. Constrained Null Space Component Analysis for Semiblind Source Separation Problem.

    PubMed

    Hwang, Wen-Liang; Lu, Keng-Shih; Ho, Jinn

    2018-02-01

    The blind source separation (BSS) problem extracts unknown sources from observations of their unknown mixtures. A current trend in BSS is the semiblind approach, which incorporates prior information on sources or how the sources are mixed. The constrained independent component analysis (ICA) approach has been studied to impose constraints on the famous ICA framework. We introduced an alternative approach based on the null space component (NCA) framework and referred to the approach as the c-NCA approach. We also presented the c-NCA algorithm that uses signal-dependent semidefinite operators, which is a bilinear mapping, as signatures for operator design in the c-NCA approach. Theoretically, we showed that the source estimation of the c-NCA algorithm converges with a convergence rate dependent on the decay of the sequence, obtained by applying the estimated operators on corresponding sources. The c-NCA can be formulated as a deterministic constrained optimization method, and thus, it can take advantage of solvers developed in optimization society for solving the BSS problem. As examples, we demonstrated electroencephalogram interference rejection problems can be solved by the c-NCA with proximal splitting algorithms by incorporating a sparsity-enforcing separation model and considering the case when reference signals are available.

  19. Some problems associated with the analysis and interpretation of mixed carbonate and quartz beach sands, illustrated by examples from North-West Ireland

    NASA Astrophysics Data System (ADS)

    Carter, R. W. G.

    1982-09-01

    Mixes of carbonate and quartz sands, which are commonly encountered in Recent coastal sediments, require careful analysis if they are to be correctly interpreted. Grain-size data fall into multimodal or segmented zig-zag distributions which may require some kind of component separation if they are to be summarised by conventional statistics, and before they can be assigned to a particular hydrodynamic depositional process or environment. Unfortunately, separation techniques are only spasmodically applied, usually without due regard to the consequences. Such artificially filtered or truncated distributions are of little subsequent use. Using a range of samples from two beaches in NW Ireland, where carbonate proportions range from nearly zero to over sixty percent, the interrelationships of the two dominant components were examined. Where only a small carbonate proportion is incorporated into a large quartz one, predictable modifications of the size-curve are apparent. However, the components are more independent if mixtures are near equal. The occurrence of a number of distinctive combinations of simple straight lines and complex zig-zag curves probably reflects the relatively dynamic nature of the carbonate fraction.

  20. Towards a Best Practice Approach in PBPK Modeling: Case Example of Developing a Unified Efavirenz Model Accounting for Induction of CYPs 3A4 and 2B6

    PubMed Central

    Ke, A; Barter, Z; Rowland‐Yeo, K

    2016-01-01

    In this study, we present efavirenz physiologically based pharmacokinetic (PBPK) model development as an example of our best practice approach that uses a stepwise approach to verify the different components of the model. First, a PBPK model for efavirenz incorporating in vitro and clinical pharmacokinetic (PK) data was developed to predict exposure following multiple dosing (600 mg q.d.). Alfentanil i.v. and p.o. drug‐drug interaction (DDI) studies were utilized to evaluate and refine the CYP3A4 induction component in the liver and gut. Next, independent DDI studies with substrates of CYP3A4 (maraviroc, atazanavir, and clarithromycin) and CYP2B6 (bupropion) verified the induction components of the model (area under the curve [AUC] ratios within 1.0–1.7‐fold of observed). Finally, the model was refined to incorporate the fractional contribution of enzymes, including CYP2B6, propagating autoinduction into the model (Racc 1.7 vs. 1.7 observed). This validated mechanistic model can now be applied in clinical pharmacology studies to prospectively assess both the victim and perpetrator DDI potential of efavirenz. PMID:27435752

  1. Concurrent multiscale modeling of microstructural effects on localization behavior in finite deformation solid mechanics

    NASA Astrophysics Data System (ADS)

    Alleman, Coleman N.; Foulk, James W.; Mota, Alejandro; Lim, Hojun; Littlewood, David J.

    2018-02-01

    The heterogeneity in mechanical fields introduced by microstructure plays a critical role in the localization of deformation. To resolve this incipient stage of failure, it is therefore necessary to incorporate microstructure with sufficient resolution. On the other hand, computational limitations make it infeasible to represent the microstructure in the entire domain at the component scale. In this study, the authors demonstrate the use of concurrent multiscale modeling to incorporate explicit, finely resolved microstructure in a critical region while resolving the smoother mechanical fields outside this region with a coarser discretization to limit computational cost. The microstructural physics is modeled with a high-fidelity model that incorporates anisotropic crystal elasticity and rate-dependent crystal plasticity to simulate the behavior of a stainless steel alloy. The component-scale material behavior is treated with a lower fidelity model incorporating isotropic linear elasticity and rate-independent J2 plasticity. The microstructural and component scale subdomains are modeled concurrently, with coupling via the Schwarz alternating method, which solves boundary-value problems in each subdomain separately and transfers solution information between subdomains via Dirichlet boundary conditions. In this study, the framework is applied to model incipient localization in tensile specimens during necking.

  2. Concurrent multiscale modeling of microstructural effects on localization behavior in finite deformation solid mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alleman, Coleman N.; Foulk, James W.; Mota, Alejandro

    The heterogeneity in mechanical fields introduced by microstructure plays a critical role in the localization of deformation. In order to resolve this incipient stage of failure, it is therefore necessary to incorporate microstructure with sufficient resolution. On the other hand, computational limitations make it infeasible to represent the microstructure in the entire domain at the component scale. Here, the authors demonstrate the use of concurrent multiscale modeling to incorporate explicit, finely resolved microstructure in a critical region while resolving the smoother mechanical fields outside this region with a coarser discretization to limit computational cost. The microstructural physics is modeled withmore » a high-fidelity model that incorporates anisotropic crystal elasticity and rate-dependent crystal plasticity to simulate the behavior of a stainless steel alloy. The component-scale material behavior is treated with a lower fidelity model incorporating isotropic linear elasticity and rate-independent J 2 plasticity. The microstructural and component scale subdomains are modeled concurrently, with coupling via the Schwarz alternating method, which solves boundary-value problems in each subdomain separately and transfers solution information between subdomains via Dirichlet boundary conditions. In this study, the framework is applied to model incipient localization in tensile specimens during necking.« less

  3. Techniques to evaluate the importance of common cause degradation on reliability and safety of nuclear weapons.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darby, John L.

    2011-05-01

    As the nuclear weapon stockpile ages, there is increased concern about common degradation ultimately leading to common cause failure of multiple weapons that could significantly impact reliability or safety. Current acceptable limits for the reliability and safety of a weapon are based on upper limits on the probability of failure of an individual item, assuming that failures among items are independent. We expanded the current acceptable limits to apply to situations with common cause failure. Then, we developed a simple screening process to quickly assess the importance of observed common degradation for both reliability and safety to determine if furthermore » action is necessary. The screening process conservatively assumes that common degradation is common cause failure. For a population with between 100 and 5000 items we applied the screening process and conclude the following. In general, for a reliability requirement specified in the Military Characteristics (MCs) for a specific weapon system, common degradation is of concern if more than 100(1-x)% of the weapons are susceptible to common degradation, where x is the required reliability expressed as a fraction. Common degradation is of concern for the safety of a weapon subsystem if more than 0.1% of the population is susceptible to common degradation. Common degradation is of concern for the safety of a weapon component or overall weapon system if two or more components/weapons in the population are susceptible to degradation. Finally, we developed a technique for detailed evaluation of common degradation leading to common cause failure for situations that are determined to be of concern using the screening process. The detailed evaluation requires that best estimates of common cause and independent failure probabilities be produced. Using these techniques, observed common degradation can be evaluated for effects on reliability and safety.« less

  4. Perturbation analyses of intermolecular interactions

    NASA Astrophysics Data System (ADS)

    Koyama, Yohei M.; Kobayashi, Tetsuya J.; Ueda, Hiroki R.

    2011-08-01

    Conformational fluctuations of a protein molecule are important to its function, and it is known that environmental molecules, such as water molecules, ions, and ligand molecules, significantly affect the function by changing the conformational fluctuations. However, it is difficult to systematically understand the role of environmental molecules because intermolecular interactions related to the conformational fluctuations are complicated. To identify important intermolecular interactions with regard to the conformational fluctuations, we develop herein (i) distance-independent and (ii) distance-dependent perturbation analyses of the intermolecular interactions. We show that these perturbation analyses can be realized by performing (i) a principal component analysis using conditional expectations of truncated and shifted intermolecular potential energy terms and (ii) a functional principal component analysis using products of intermolecular forces and conditional cumulative densities. We refer to these analyses as intermolecular perturbation analysis (IPA) and distance-dependent intermolecular perturbation analysis (DIPA), respectively. For comparison of the IPA and the DIPA, we apply them to the alanine dipeptide isomerization in explicit water. Although the first IPA principal components discriminate two states (the α state and PPII (polyproline II) + β states) for larger cutoff length, the separation between the PPII state and the β state is unclear in the second IPA principal components. On the other hand, in the large cutoff value, DIPA eigenvalues converge faster than that for IPA and the top two DIPA principal components clearly identify the three states. By using the DIPA biplot, the contributions of the dipeptide-water interactions to each state are analyzed systematically. Since the DIPA improves the state identification and the convergence rate with retaining distance information, we conclude that the DIPA is a more practical method compared with the IPA. To test the feasibility of the DIPA for larger molecules, we apply the DIPA to the ten-residue chignolin folding in explicit water. The top three principal components identify the four states (native state, two misfolded states, and unfolded state) and their corresponding eigenfunctions identify important chignolin-water interactions to each state. Thus, the DIPA provides the practical method to identify conformational states and their corresponding important intermolecular interactions with distance information.

  5. Perturbation analyses of intermolecular interactions.

    PubMed

    Koyama, Yohei M; Kobayashi, Tetsuya J; Ueda, Hiroki R

    2011-08-01

    Conformational fluctuations of a protein molecule are important to its function, and it is known that environmental molecules, such as water molecules, ions, and ligand molecules, significantly affect the function by changing the conformational fluctuations. However, it is difficult to systematically understand the role of environmental molecules because intermolecular interactions related to the conformational fluctuations are complicated. To identify important intermolecular interactions with regard to the conformational fluctuations, we develop herein (i) distance-independent and (ii) distance-dependent perturbation analyses of the intermolecular interactions. We show that these perturbation analyses can be realized by performing (i) a principal component analysis using conditional expectations of truncated and shifted intermolecular potential energy terms and (ii) a functional principal component analysis using products of intermolecular forces and conditional cumulative densities. We refer to these analyses as intermolecular perturbation analysis (IPA) and distance-dependent intermolecular perturbation analysis (DIPA), respectively. For comparison of the IPA and the DIPA, we apply them to the alanine dipeptide isomerization in explicit water. Although the first IPA principal components discriminate two states (the α state and PPII (polyproline II) + β states) for larger cutoff length, the separation between the PPII state and the β state is unclear in the second IPA principal components. On the other hand, in the large cutoff value, DIPA eigenvalues converge faster than that for IPA and the top two DIPA principal components clearly identify the three states. By using the DIPA biplot, the contributions of the dipeptide-water interactions to each state are analyzed systematically. Since the DIPA improves the state identification and the convergence rate with retaining distance information, we conclude that the DIPA is a more practical method compared with the IPA. To test the feasibility of the DIPA for larger molecules, we apply the DIPA to the ten-residue chignolin folding in explicit water. The top three principal components identify the four states (native state, two misfolded states, and unfolded state) and their corresponding eigenfunctions identify important chignolin-water interactions to each state. Thus, the DIPA provides the practical method to identify conformational states and their corresponding important intermolecular interactions with distance information.

  6. Principle component analysis (PCA) for investigation of relationship between population dynamics of microbial pathogenesis, chemical and sensory characteristics in beef slices containing Tarragon essential oil.

    PubMed

    Alizadeh Behbahani, Behrooz; Tabatabaei Yazdi, Farideh; Shahidi, Fakhri; Mortazavi, Seyed Ali; Mohebbi, Mohebbat

    2017-04-01

    Principle component analysis (PCA) was employed to examine the effect of the exerted treatments on the beef shelf life as well as discovering the correlations between the studied responses. Considering the variability of the dimensions of the responses, correlation coefficients were applied to form the matrix and extract the eigenvalue. Antimicrobial effect was evaluated on 10 pathogenic microorganisms through the methods of hole-plate diffusion method, disk diffusion method, pour plate method, minimum inhibitory concentration and minimum bactericidal/fungicidal concentration. Antioxidant potential and total phenolic content were examined through the method of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and Folin-Ciocalteu method, respectively. The components were identified through gas chromatography and gas chromatography/mass spectrometry. Barhang seed mucilage (BSM) based edible coating containing 0, 0.5, 1 and 1.5% (w/w) Tarragon (T) essential oil mix were applied on beef slices to control the growth of pathogenic microorganisms. Microbiological (total viable count, psychrotrophic count, Escherichia coli, Staphylococcus aureus and fungi), chemical (thiobarbituric acid, peroxide value and pH) and sensory characteristics (odor, color and overall acceptability) analysis measurements were made during the storage periodically. PCA was employed to examine the effect of the exerted treatments on the beef shelf life as well as discovering the correlations between the studied responses. Considering the variability of the dimensions of the responses, correlation coefficients were applied to form the matrix and extract the eigenvalue. The PCA showed that the properties of the uncoated meat samples on the 9th, 12th, 15th and 18th days of storage are continuously changing independent of the exerted treatments on the other samples. This reveals the effect of the exerted treatments on the samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Partitioning diversity into independent alpha and beta components.

    PubMed

    Jost, Lou

    2007-10-01

    Existing general definitions of beta diversity often produce a beta with a hidden dependence on alpha. Such a beta cannot be used to compare regions that differ in alpha diversity. To avoid misinterpretation, existing definitions of alpha and beta must be replaced by a definition that partitions diversity into independent alpha and beta components. Such a unique definition is derived here. When these new alpha and beta components are transformed into their numbers equivalents (effective numbers of elements), Whittaker's multiplicative law (alpha x beta = gamma) is necessarily true for all indices. The new beta gives the effective number of distinct communities. The most popular similarity and overlap measures of ecology (Jaccard, Sorensen, Horn, and Morisita-Horn indices) are monotonic transformations of the new beta diversity. Shannon measures follow deductively from this formalism and do not need to be borrowed from information theory; they are shown to be the only standard diversity measures which can be decomposed into meaningful independent alpha and beta components when community weights are unequal.

  8. Equivalent water height extracted from GRACE gravity field model with robust independent component analysis

    NASA Astrophysics Data System (ADS)

    Guo, Jinyun; Mu, Dapeng; Liu, Xin; Yan, Haoming; Dai, Honglei

    2014-08-01

    The Level-2 monthly GRACE gravity field models issued by Center for Space Research (CSR), GeoForschungs Zentrum (GFZ), and Jet Propulsion Laboratory (JPL) are treated as observations used to extract the equivalent water height (EWH) with the robust independent component analysis (RICA). The smoothing radii of 300, 400, and 500 km are tested, respectively, in the Gaussian smoothing kernel function to reduce the observation Gaussianity. Three independent components are obtained by RICA in the spatial domain; the first component matches the geophysical signal, and the other two match the north-south strip and the other noises. The first mode is used to estimate EWHs of CSR, JPL, and GFZ, and compared with the classical empirical decorrelation method (EDM). The EWH STDs for 12 months in 2010 extracted by RICA and EDM show the obvious fluctuation. The results indicate that the sharp EWH changes in some areas have an important global effect, like in Amazon, Mekong, and Zambezi basins.

  9. Improved application of independent component analysis to functional magnetic resonance imaging study via linear projection techniques.

    PubMed

    Long, Zhiying; Chen, Kewei; Wu, Xia; Reiman, Eric; Peng, Danling; Yao, Li

    2009-02-01

    Spatial Independent component analysis (sICA) has been widely used to analyze functional magnetic resonance imaging (fMRI) data. The well accepted implicit assumption is the spatially statistical independency of intrinsic sources identified by sICA, making the sICA applications difficult for data in which there exist interdependent sources and confounding factors. This interdependency can arise, for instance, from fMRI studies investigating two tasks in a single session. In this study, we introduced a linear projection approach and considered its utilization as a tool to separate task-related components from two-task fMRI data. The robustness and feasibility of the method are substantiated through simulation on computer data and fMRI real rest data. Both simulated and real two-task fMRI experiments demonstrated that sICA in combination with the projection method succeeded in separating spatially dependent components and had better detection power than pure model-based method when estimating activation induced by each task as well as both tasks.

  10. The Removal of EOG Artifacts From EEG Signals Using Independent Component Analysis and Multivariate Empirical Mode Decomposition.

    PubMed

    Wang, Gang; Teng, Chaolin; Li, Kuo; Zhang, Zhonglin; Yan, Xiangguo

    2016-09-01

    The recorded electroencephalography (EEG) signals are usually contaminated by electrooculography (EOG) artifacts. In this paper, by using independent component analysis (ICA) and multivariate empirical mode decomposition (MEMD), the ICA-based MEMD method was proposed to remove EOG artifacts (EOAs) from multichannel EEG signals. First, the EEG signals were decomposed by the MEMD into multiple multivariate intrinsic mode functions (MIMFs). The EOG-related components were then extracted by reconstructing the MIMFs corresponding to EOAs. After performing the ICA of EOG-related signals, the EOG-linked independent components were distinguished and rejected. Finally, the clean EEG signals were reconstructed by implementing the inverse transform of ICA and MEMD. The results of simulated and real data suggested that the proposed method could successfully eliminate EOAs from EEG signals and preserve useful EEG information with little loss. By comparing with other existing techniques, the proposed method achieved much improvement in terms of the increase of signal-to-noise and the decrease of mean square error after removing EOAs.

  11. A method for measuring quality of life through subjective weighting of functional status.

    PubMed

    Stineman, Margaret G; Wechsler, Barbara; Ross, Richard; Maislin, Greg

    2003-04-01

    To apply a new tool to understand the quality of life (QOL) implications of patients' functional status. Results from the Features-Resource Trade-Off Game were used to form utility weights by ranking functional activities by the relative value of achieving independence in each activity compared with all other component activities. The utility weights were combined with patients' actual levels of performance across the same activities to produce QOL-weighted functional status scores and to form "value rulers" to order activities by perceived importance. Persons with severe disabilities living in the community and clinicians practicing in various rehabilitation disciplines. Two panels of 5 consumers with disabilities and 2 panels of 5 rehabilitation clinicians. The 4 panels played the Features Resource Trade-Off Game by using the FIMT(TM) instrument definitions. Utility weights for each of the 18 FIM items, QOL-weighted FIM scores, and value rulers. All 4 panels valued the achievement of independence in cognitive and communication activities more than independence in physical activities. Consequently, the unweighted FIM scores of patients who have severe physical disabilities but relatively intact cognitive skills will underestimate QOL, while inflating QOL in those with low levels of independence in cognition and communication but higher physical function. Independence in some activities is more valued than in others; thus, 2 people with the same numeric functional status score could experience very different QOL. QOL-weighted functional status scores translate objectively measured functional status into its subjective meaning. This new technology for measuring subjective function-related QOL has a variety of applications to clinical, educational, and research practices.

  12. Role of diversity in ICA and IVA: theory and applications

    NASA Astrophysics Data System (ADS)

    Adalı, Tülay

    2016-05-01

    Independent component analysis (ICA) has been the most popular approach for solving the blind source separation problem. Starting from a simple linear mixing model and the assumption of statistical independence, ICA can recover a set of linearly-mixed sources to within a scaling and permutation ambiguity. It has been successfully applied to numerous data analysis problems in areas as diverse as biomedicine, communications, finance, geo- physics, and remote sensing. ICA can be achieved using different types of diversity—statistical property—and, can be posed to simultaneously account for multiple types of diversity such as higher-order-statistics, sample dependence, non-circularity, and nonstationarity. A recent generalization of ICA, independent vector analysis (IVA), generalizes ICA to multiple data sets and adds the use of one more type of diversity, statistical dependence across the data sets, for jointly achieving independent decomposition of multiple data sets. With the addition of each new diversity type, identification of a broader class of signals become possible, and in the case of IVA, this includes sources that are independent and identically distributed Gaussians. We review the fundamentals and properties of ICA and IVA when multiple types of diversity are taken into account, and then ask the question whether diversity plays an important role in practical applications as well. Examples from various domains are presented to demonstrate that in many scenarios it might be worthwhile to jointly account for multiple statistical properties. This paper is submitted in conjunction with the talk delivered for the "Unsupervised Learning and ICA Pioneer Award" at the 2016 SPIE Conference on Sensing and Analysis Technologies for Biomedical and Cognitive Applications.

  13. An independent component analysis confounding factor correction framework for identifying broad impact expression quantitative trait loci

    PubMed Central

    Ju, Jin Hyun; Crystal, Ronald G.

    2017-01-01

    Genome-wide expression Quantitative Trait Loci (eQTL) studies in humans have provided numerous insights into the genetics of both gene expression and complex diseases. While the majority of eQTL identified in genome-wide analyses impact a single gene, eQTL that impact many genes are particularly valuable for network modeling and disease analysis. To enable the identification of such broad impact eQTL, we introduce CONFETI: Confounding Factor Estimation Through Independent component analysis. CONFETI is designed to address two conflicting issues when searching for broad impact eQTL: the need to account for non-genetic confounding factors that can lower the power of the analysis or produce broad impact eQTL false positives, and the tendency of methods that account for confounding factors to model broad impact eQTL as non-genetic variation. The key advance of the CONFETI framework is the use of Independent Component Analysis (ICA) to identify variation likely caused by broad impact eQTL when constructing the sample covariance matrix used for the random effect in a mixed model. We show that CONFETI has better performance than other mixed model confounding factor methods when considering broad impact eQTL recovery from synthetic data. We also used the CONFETI framework and these same confounding factor methods to identify eQTL that replicate between matched twin pair datasets in the Multiple Tissue Human Expression Resource (MuTHER), the Depression Genes Networks study (DGN), the Netherlands Study of Depression and Anxiety (NESDA), and multiple tissue types in the Genotype-Tissue Expression (GTEx) consortium. These analyses identified both cis-eQTL and trans-eQTL impacting individual genes, and CONFETI had better or comparable performance to other mixed model confounding factor analysis methods when identifying such eQTL. In these analyses, we were able to identify and replicate a few broad impact eQTL although the overall number was small even when applying CONFETI. In light of these results, we discuss the broad impact eQTL that have been previously reported from the analysis of human data and suggest that considerable caution should be exercised when making biological inferences based on these reported eQTL. PMID:28505156

  14. An independent component analysis confounding factor correction framework for identifying broad impact expression quantitative trait loci.

    PubMed

    Ju, Jin Hyun; Shenoy, Sushila A; Crystal, Ronald G; Mezey, Jason G

    2017-05-01

    Genome-wide expression Quantitative Trait Loci (eQTL) studies in humans have provided numerous insights into the genetics of both gene expression and complex diseases. While the majority of eQTL identified in genome-wide analyses impact a single gene, eQTL that impact many genes are particularly valuable for network modeling and disease analysis. To enable the identification of such broad impact eQTL, we introduce CONFETI: Confounding Factor Estimation Through Independent component analysis. CONFETI is designed to address two conflicting issues when searching for broad impact eQTL: the need to account for non-genetic confounding factors that can lower the power of the analysis or produce broad impact eQTL false positives, and the tendency of methods that account for confounding factors to model broad impact eQTL as non-genetic variation. The key advance of the CONFETI framework is the use of Independent Component Analysis (ICA) to identify variation likely caused by broad impact eQTL when constructing the sample covariance matrix used for the random effect in a mixed model. We show that CONFETI has better performance than other mixed model confounding factor methods when considering broad impact eQTL recovery from synthetic data. We also used the CONFETI framework and these same confounding factor methods to identify eQTL that replicate between matched twin pair datasets in the Multiple Tissue Human Expression Resource (MuTHER), the Depression Genes Networks study (DGN), the Netherlands Study of Depression and Anxiety (NESDA), and multiple tissue types in the Genotype-Tissue Expression (GTEx) consortium. These analyses identified both cis-eQTL and trans-eQTL impacting individual genes, and CONFETI had better or comparable performance to other mixed model confounding factor analysis methods when identifying such eQTL. In these analyses, we were able to identify and replicate a few broad impact eQTL although the overall number was small even when applying CONFETI. In light of these results, we discuss the broad impact eQTL that have been previously reported from the analysis of human data and suggest that considerable caution should be exercised when making biological inferences based on these reported eQTL.

  15. Utilization of independent component analysis for accurate pathological ripple detection in intracranial EEG recordings recorded extra- and intra-operatively

    PubMed Central

    Shimamoto, Shoichi; Waldman, Zachary J.; Orosz, Iren; Song, Inkyung; Bragin, Anatol; Fried, Itzhak; Engel, Jerome; Staba, Richard; Sharan, Ashwini; Wu, Chengyuan; Sperling, Michael R.; Weiss, Shennan A.

    2018-01-01

    Objective To develop and validate a detector that identifies ripple (80–200 Hz) events in intracranial EEG (iEEG) recordings in a referential montage and utilizes independent component analysis (ICA) to eliminate or reduce high-frequency artifact contamination. Also, investigate the correspondence of detected ripples and the seizure onset zone (SOZ). Methods iEEG recordings from 16 patients were first band-pass filtered (80–600 Hz) and Infomax ICA was next applied to derive the first independent component (IC1). IC1 was subsequently pruned, and an artifact index was derived to reduce the identification of high-frequency events introduced by the reference electrode signal. A Hilbert detector identified ripple events in the processed iEEG recordings using amplitude and duration criteria. The identified ripple events were further classified and characterized as true or false ripple on spikes, or ripples on oscillations by utilizing a topographical analysis to their time-frequency plot, and confirmed by visual inspection. Results The signal to noise ratio was improved by pruning IC1. The precision of the detector for ripple events was 91.27 ± 4.3%, and the sensitivity of the detector was 79.4 ± 3.0% (N = 16 patients, 5842 ripple events). The sensitivity and precision of the detector was equivalent in iEEG recordings obtained during sleep or intra-operatively. Across all the patients, true ripple on spike rates and also the rates of false ripple on spikes, that were generated due to filter ringing, classified the seizure onset zone (SOZ) with an area under the receiver operating curve (AUROC) of >76%. The magnitude and spectral content of true ripple on spikes generated in the SOZ was distinct as compared with the ripples generated in the NSOZ (p < .001). Conclusions Utilizing ICA to analyze iEEG recordings in referential montage provides many benefits to the study of high-frequency oscillations. The ripple rates and properties defined using this approach may accurately delineate the seizure onset zone. Significance Strategies to improve the spatial resolution of intracranial EEG and reduce artifact can help improve the clinical utility of HFO biomarkers. PMID:29113719

  16. Component Analyses Using Single-Subject Experimental Designs: A Review

    ERIC Educational Resources Information Center

    Ward-Horner, John; Sturmey, Peter

    2010-01-01

    A component analysis is a systematic assessment of 2 or more independent variables or components that comprise a treatment package. Component analyses are important for the analysis of behavior; however, previous research provides only cursory descriptions of the topic. Therefore, in this review the definition of "component analysis" is discussed,…

  17. Independent and combined influence of the components of physical fitness on academic performance in youth.

    PubMed

    Esteban-Cornejo, Irene; Tejero-González, Carlos Ma; Martinez-Gomez, David; del-Campo, Juan; González-Galo, Ana; Padilla-Moledo, Carmen; Sallis, James F; Veiga, Oscar L

    2014-08-01

    To examine the independent and combined associations of the components of physical fitness with academic performance among youths. This cross-sectional study included a total of 2038 youths (989 girls) aged 6-18 years. Cardiorespiratory capacity was measured using the 20-m shuttle run test. Motor ability was assessed with the 4×10-m shuttle run test of speed of movement, agility, and coordination. A muscular strength z-score was computed based on handgrip strength and standing long jump distance. Academic performance was assessed through school records using 4 indicators: Mathematics, Language, an average of Mathematics and Language, and grade point average score. Cardiorespiratory capacity and motor ability were independently associated with all academic variables in youth, even after adjustment for fitness and fatness indicators (all P≤.001), whereas muscular strength was not associated with academic performance independent of the other 2 physical fitness components. In addition, the combined adverse effects of low cardiorespiratory capacity and motor ability on academic performance were observed across the risk groups (P for trend<.001). Cardiorespiratory capacity and motor ability, both independently and combined, may have a beneficial influence on academic performance in youth. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. High hunting pressure selects for earlier birth date: Wild boar as a case study

    USGS Publications Warehouse

    Gamelon, M.; Besnard, A.; Gaillard, J.-M.; Servanty, S.; Baubet, E.; Brandt, S.; Gimenez, O.

    2011-01-01

    Exploitation by humans affects the size and structure of populations. This has evolutionary and demographic consequences that have typically being studied independent of one another. We here applied a framework recently developed applying quantitative tools from population ecology and selection gradient analysis to quantify the selection on a quantitative trait-birth date-through its association with multiple fitness components. From the long-term monitoring (22 years) of a wild boar (Sus scrofa scrofa) population subject to markedly increasing hunting pressure, we found that birth dates have advanced by up to 12 days throughout the study period. During the period of low hunting pressure, there was no detectable selection. However, during the period of high hunting pressure, the selection gradient linking breeding probability in the first year of life to birth date was negative, supporting current life-history theory predicting selection for early births to reproduce within the first year of life with increasing adult mortality. ?? 2011 The Author(s). Evolution?? 2011 The Society for the Study of Evolution..

  19. An improved method of measuring heart rate using a webcam

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Ouyang, Jianfei; Yan, Yonggang

    2014-09-01

    Measuring heart rate traditionally requires special equipment and physical contact with the subject. Reliable non-contact and low-cost measurements are highly desirable for convenient and comfortable physiological self-assessment. Previous work has shown that consumer-grade cameras can provide useful signals for remote heart rate measurements. In this paper a simple and robust method of measuring the heart rate using low-cost webcam is proposed. Blood volume pulse is extracted by proper Region of Interest (ROI) and color channel selection from image sequences of human faces without complex computation. Heart rate is subsequently quantified by spectrum analysis. The method is successfully applied under natural lighting conditions. Results of experiments show that it takes less time, is much simpler, and has similar accuracy to the previously published and widely used method of Independent Component Analysis (ICA). Benefitting from non-contact, convenience, and low-costs, it provides great promise for popularization of home healthcare and can further be applied to biomedical research.

  20. Carrier velocity effect on carbon nanotube Schottky contact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fathi, Amir, E-mail: fathi.amir@hotmail.com; Ahmadi, M. T., E-mail: mt.ahmadi@urmia.ac.ir; Ismail, Razali, E-mail: Razali@fke.utm.my

    One of the most important drawbacks which caused the silicon based technologies to their technical limitations is the instability of their products at nano-level. On the other side, carbon based materials such as carbon nanotube (CNT) as alternative materials have been involved in scientific efforts. Some of the important advantages of CNTs over silicon components are high mechanical strength, high sensing capability and large surface-to-volume ratio. In this article, the model of CNT Schottky transistor current which is under exterior applied voltage is employed. This model shows that its current has a weak dependence on thermal velocity corresponding to themore » small applied voltage. The conditions are quite different for high bias voltages which are independent of temperature. Our results indicate that the current is increased by Fermi velocity, but the I–V curves will not have considerable changes with the variations in number of carriers. It means that the current doesn’t increase sharply by voltage variations over different number of carriers.« less

  1. Functionally independent components of the late positive event-related potential during visual spatial attention.

    PubMed

    Makeig, S; Westerfield, M; Jung, T P; Covington, J; Townsend, J; Sejnowski, T J; Courchesne, E

    1999-04-01

    Human event-related potentials (ERPs) were recorded from 10 subjects presented with visual target and nontarget stimuli at five screen locations and responding to targets presented at one of the locations. The late positive response complexes of 25-75 ERP average waveforms from the two task conditions were simultaneously analyzed with Independent Component Analysis, a new computational method for blindly separating linearly mixed signals. Three spatially fixed, temporally independent, behaviorally relevant, and physiologically plausible components were identified without reference to peaks in single-channel waveforms. A novel frontoparietal component (P3f) began at approximately 140 msec and peaked, in faster responders, at the onset of the motor command. The scalp distribution of P3f appeared consistent with brain regions activated during spatial orienting in functional imaging experiments. A longer-latency large component (P3b), positive over parietal cortex, was followed by a postmotor potential (Pmp) component that peaked 200 msec after the button press and reversed polarity near the central sulcus. A fourth component associated with a left frontocentral nontarget positivity (Pnt) was evoked primarily by target-like distractors presented in the attended location. When no distractors were presented, responses of five faster-responding subjects contained largest P3f and smallest Pmp components; when distractors were included, a Pmp component appeared only in responses of the five slower-responding subjects. Direct relationships between component amplitudes, latencies, and behavioral responses, plus similarities between component scalp distributions and regional activations reported in functional brain imaging experiments suggest that P3f, Pmp, and Pnt measure the time course and strength of functionally distinct brain processes.

  2. Simplified model of statistically stationary spacecraft rotation and associated induced gravity environments

    NASA Technical Reports Server (NTRS)

    Fichtl, G. H.; Holland, R. L.

    1978-01-01

    A stochastic model of spacecraft motion was developed based on the assumption that the net torque vector due to crew activity and rocket thruster firings is a statistically stationary Gaussian vector process. The process had zero ensemble mean value, and the components of the torque vector were mutually stochastically independent. The linearized rigid-body equations of motion were used to derive the autospectral density functions of the components of the spacecraft rotation vector. The cross-spectral density functions of the components of the rotation vector vanish for all frequencies so that the components of rotation were mutually stochastically independent. The autospectral and cross-spectral density functions of the induced gravity environment imparted to scientific apparatus rigidly attached to the spacecraft were calculated from the rotation rate spectral density functions via linearized inertial frame to body-fixed principal axis frame transformation formulae. The induced gravity process was a Gaussian one with zero mean value. Transformation formulae were used to rotate the principal axis body-fixed frame to which the rotation rate and induced gravity vector were referred to a body-fixed frame in which the components of the induced gravity vector were stochastically independent. Rice's theory of exceedances was used to calculate expected exceedance rates of the components of the rotation and induced gravity vector processes.

  3. Common mode error in Antarctic GPS coordinate time series on its effect on bedrock-uplift estimates

    NASA Astrophysics Data System (ADS)

    Liu, Bin; King, Matt; Dai, Wujiao

    2018-05-01

    Spatially-correlated common mode error always exists in regional, or-larger, GPS networks. We applied independent component analysis (ICA) to GPS vertical coordinate time series in Antarctica from 2010 to 2014 and made a comparison with the principal component analysis (PCA). Using PCA/ICA, the time series can be decomposed into a set of temporal components and their spatial responses. We assume the components with common spatial responses are common mode error (CME). An average reduction of ˜40% about the RMS values was achieved in both PCA and ICA filtering. However, the common mode components obtained from the two approaches have different spatial and temporal features. ICA time series present interesting correlations with modeled atmospheric and non-tidal ocean loading displacements. A white noise (WN) plus power law noise (PL) model was adopted in the GPS velocity estimation using maximum likelihood estimation (MLE) analysis, with ˜55% reduction of the velocity uncertainties after filtering using ICA. Meanwhile, spatiotemporal filtering reduces the amplitude of PL and periodic terms in the GPS time series. Finally, we compare the GPS uplift velocities, after correction for elastic effects, with recent models of glacial isostatic adjustment (GIA). The agreements of the GPS observed velocities and four GIA models are generally improved after the spatiotemporal filtering, with a mean reduction of ˜0.9 mm/yr of the WRMS values, possibly allowing for more confident separation of various GIA model predictions.

  4. Development of the upper-body dressing scale for a buttoned shirt: a preliminary correlational study.

    PubMed

    Suzuki, Makoto; Yamada, Sumio; Omori, Mikayo; Hatakeyama, Mayumi; Sugimura, Yuko; Matsushita, Kazuhiko; Tagawa, Yoshikatsu

    2008-09-01

    A patient with poststroke hemiparesis learns to use the nonparetic arm to compensate for the weakness of the paretic arm to achieve independence in dressing. This is the learning process of new component actions on dressing. The purpose of this study was to develop the Upper-Body Dressing Scale (UBDS) for buttoned shirt dressing, which evaluates the component actions of upper-body dressing, and to provide preliminary data on internal consistency of the UBDS, as well as its reproducibility, validity, and sensitivity to clinical change. Correlational study of concurrent validity and reliability in which 63 consecutive stroke patients were enrolled in the study and were assessed repeatedly by the UBDS and the dressing item of Functional Independent Measure (FIM). Fifty-one patients completed the 3-wk study. The Cronbach's coefficient alpha of UBDS was 0.88. The principal component analysis extracted two components, which explained 62.3% of total variance. All items of the scale had high loading on the first component (0.65-0.83). Actions on the paralytic side were the positive loadings and actions on the healthy side were the negative loadings on the second component. Intraclass correlation coefficient was 0.87. The level of correlation between UBDS score and FIM dressing item scores was -0.72. Logistic regression analysis showed that only the score of UBDS on the first day of evaluation was a significant independent predictor of dressing ability (odds ratio, 0.82; 95% confidence interval, 0.71-0.95). The UBDS scores for paralytic hand passed into the sleeve, sleeve pulled up beyond the elbow joint, and sleeve pulled up beyond the shoulder joint were worse than the score for the other components of the task. These component actions had positive loading on the second component, which was identified by the principal component analysis. The UBDS has good internal consistency, reproducibility, validity, and sensitivity to clinical changes of patients with poststroke hemiparesis. This detailed UBDS assessment enables us to document the most difficult stages in dressing and to assess motor and process skills for independence of dressing.

  5. SCGICAR: Spatial concatenation based group ICA with reference for fMRI data analysis.

    PubMed

    Shi, Yuhu; Zeng, Weiming; Wang, Nizhuan

    2017-09-01

    With the rapid development of big data, the functional magnetic resonance imaging (fMRI) data analysis of multi-subject is becoming more and more important. As a kind of blind source separation technique, group independent component analysis (GICA) has been widely applied for the multi-subject fMRI data analysis. However, spatial concatenated GICA is rarely used compared with temporal concatenated GICA due to its disadvantages. In this paper, in order to overcome these issues and to consider that the ability of GICA for fMRI data analysis can be improved by adding a priori information, we propose a novel spatial concatenation based GICA with reference (SCGICAR) method to take advantage of the priori information extracted from the group subjects, and then the multi-objective optimization strategy is used to implement this method. Finally, the post-processing means of principal component analysis and anti-reconstruction are used to obtain group spatial component and individual temporal component in the group, respectively. The experimental results show that the proposed SCGICAR method has a better performance on both single-subject and multi-subject fMRI data analysis compared with classical methods. It not only can detect more accurate spatial and temporal component for each subject of the group, but also can obtain a better group component on both temporal and spatial domains. These results demonstrate that the proposed SCGICAR method has its own advantages in comparison with classical methods, and it can better reflect the commonness of subjects in the group. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Derivation of the Data Reduction Equations for the Calibration of the Six-component Thrust Stand in the CE-22 Advanced Nozzle Test Facility

    NASA Technical Reports Server (NTRS)

    Wong, Kin C.

    2003-01-01

    This paper documents the derivation of the data reduction equations for the calibration of the six-component thrust stand located in the CE-22 Advanced Nozzle Test Facility. The purpose of the calibration is to determine the first-order interactions between the axial, lateral, and vertical load cells (second-order interactions are assumed to be negligible). In an ideal system, the measurements made by the thrust stand along the three coordinate axes should be independent. For example, when a test article applies an axial force on the thrust stand, the axial load cells should measure the full magnitude of the force, while the off-axis load cells (lateral and vertical) should read zero. Likewise, if a lateral force is applied, the lateral load cells should measure the entire force, while the axial and vertical load cells should read zero. However, in real-world systems, there may be interactions between the load cells. Through proper design of the thrust stand, these interactions can be minimized, but are hard to eliminate entirely. Therefore, the purpose of the thrust stand calibration is to account for these interactions, so that necessary corrections can be made during testing. These corrections can be expressed in the form of an interaction matrix, and this paper shows the derivation of the equations used to obtain the coefficients in this matrix.

  7. Multivariate pattern analysis of MEG and EEG: A comparison of representational structure in time and space.

    PubMed

    Cichy, Radoslaw Martin; Pantazis, Dimitrios

    2017-09-01

    Multivariate pattern analysis of magnetoencephalography (MEG) and electroencephalography (EEG) data can reveal the rapid neural dynamics underlying cognition. However, MEG and EEG have systematic differences in sampling neural activity. This poses the question to which degree such measurement differences consistently bias the results of multivariate analysis applied to MEG and EEG activation patterns. To investigate, we conducted a concurrent MEG/EEG study while participants viewed images of everyday objects. We applied multivariate classification analyses to MEG and EEG data, and compared the resulting time courses to each other, and to fMRI data for an independent evaluation in space. We found that both MEG and EEG revealed the millisecond spatio-temporal dynamics of visual processing with largely equivalent results. Beyond yielding convergent results, we found that MEG and EEG also captured partly unique aspects of visual representations. Those unique components emerged earlier in time for MEG than for EEG. Identifying the sources of those unique components with fMRI, we found the locus for both MEG and EEG in high-level visual cortex, and in addition for MEG in low-level visual cortex. Together, our results show that multivariate analyses of MEG and EEG data offer a convergent and complimentary view on neural processing, and motivate the wider adoption of these methods in both MEG and EEG research. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Definition of the limit of quantification in the presence of instrumental and non-instrumental errors. Comparison among various definitions applied to the calibration of zinc by inductively coupled plasma-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Badocco, Denis; Lavagnini, Irma; Mondin, Andrea; Favaro, Gabriella; Pastore, Paolo

    2015-12-01

    The limit of quantification (LOQ) in the presence of instrumental and non-instrumental errors was proposed. It was theoretically defined combining the two-component variance regression and LOQ schemas already present in the literature and applied to the calibration of zinc by the ICP-MS technique. At low concentration levels, the two-component variance LOQ definition should be always used above all when a clean room is not available. Three LOQ definitions were accounted for. One of them in the concentration and two in the signal domain. The LOQ computed in the concentration domain, proposed by Currie, was completed by adding the third order terms in the Taylor expansion because they are of the same order of magnitude of the second ones so that they cannot be neglected. In this context, the error propagation was simplified by eliminating the correlation contributions by using independent random variables. Among the signal domain definitions, a particular attention was devoted to the recently proposed approach based on at least one significant digit in the measurement. The relative LOQ values resulted very large in preventing the quantitative analysis. It was found that the Currie schemas in the signal and concentration domains gave similar LOQ values but the former formulation is to be preferred as more easily computable.

  9. Methods of Collection of Biological Information for Fatigue Evaluation during Visual Display Terminals (VDT) Operation

    NASA Astrophysics Data System (ADS)

    Hachiya, Yuriko; Ogai, Harutoshi; Okazaki, Hiroko; Fujisaki, Takeshi; Uchida, Kazuhiko; Oda, Susumu; Wada, Futoshi; Mori, Koji

    A method for the analysis of fatigue parameters has been rarely researched in VDT operation. Up to now, fatigue was evaluated by changing of biological information. If signals regarding fatigue are detected, fatigue can be measured. The purpose of this study proposed experiment and analysis method to extract parameters related to fatigue from the biological information during VDT operation using the Independent Component Analysis (ICA). An experiment had 11 subjects. As for the experiment were light loaded VDT operation and heavy loaded VDT operation. A measurement item were amount of work, a mistake number, subjective symptom, surface skin temperature (forehead and apex nasi), heart rate, skin blood flow of forearm and respiratory rate. In the heavy loaded operation group, mistake number and subjective symptom score were increased to compare with the other. And Two-factor ANOVA was used for analysis. The result of mistake number was confirmed that heavy loaded. After the moving averages of waveshape were calculated, it was made to extract independent components by using the ICA. The results of the ICA suggest that the independent components increase according to accumulation of fatigue. Thus, the independent components would be a possible parameter of fatigue. However, further experiments should continue in order to obtain the conclusive finding of our research.

  10. Independent Component Analysis of Textures

    NASA Technical Reports Server (NTRS)

    Manduchi, Roberto; Portilla, Javier

    2000-01-01

    A common method for texture representation is to use the marginal probability densities over the outputs of a set of multi-orientation, multi-scale filters as a description of the texture. We propose a technique, based on Independent Components Analysis, for choosing the set of filters that yield the most informative marginals, meaning that the product over the marginals most closely approximates the joint probability density function of the filter outputs. The algorithm is implemented using a steerable filter space. Experiments involving both texture classification and synthesis show that compared to Principal Components Analysis, ICA provides superior performance for modeling of natural and synthetic textures.

  11. Competency Test Items for Applied Principles of Agribusiness and Natural Resources Occupations. Forestry Component. A Report of Research.

    ERIC Educational Resources Information Center

    Cheek, Jimmy G.; McGhee, Max B.

    An activity was undertaken to develop written criterion-referenced tests for the forestry component of Applied Principles of Agribusiness and Natural Resources. Intended for tenth grade students who have completed Fundamentals of Agribusiness and Natural Resources Occupations, applied principles were designed to consist of three components, with…

  12. The components of working memory updating: an experimental decomposition and individual differences.

    PubMed

    Ecker, Ullrich K H; Lewandowsky, Stephan; Oberauer, Klaus; Chee, Abby E H

    2010-01-01

    Working memory updating (WMU) has been identified as a cognitive function of prime importance for everyday tasks and has also been found to be a significant predictor of higher mental abilities. Yet, little is known about the constituent processes of WMU. We suggest that operations required in a typical WMU task can be decomposed into 3 major component processes: retrieval, transformation, and substitution. We report a large-scale experiment that instantiated all possible combinations of those 3 component processes. Results show that the 3 components make independent contributions to updating performance. We additionally present structural equation models that link WMU task performance and working memory capacity (WMC) measures. These feature the methodological advancement of estimating interindividual covariation and experimental effects on mean updating measures simultaneously. The modeling results imply that WMC is a strong predictor of WMU skills in general, although some component processes-in particular, substitution skills-were independent of WMC. Hence, the reported predictive power of WMU measures may rely largely on common WM functions also measured in typical WMC tasks, although substitution skills may make an independent contribution to predicting higher mental abilities. (PsycINFO Database Record (c) 2009 APA, all rights reserved).

  13. Component Structure of Individual Differences in True and False Recognition of Faces

    ERIC Educational Resources Information Center

    Bartlett, James C.; Shastri, Kalyan K.; Abdi, Herve; Neville-Smith, Marsha

    2009-01-01

    Principal-component analyses of 4 face-recognition studies uncovered 2 independent components. The first component was strongly related to false-alarm errors with new faces as well as to facial "conjunctions" that recombine features of previously studied faces. The second component was strongly related to hits as well as to the conjunction/new…

  14. Interactions dominate the dynamics of visual cognition.

    PubMed

    Stephen, Damian G; Mirman, Daniel

    2010-04-01

    Many cognitive theories have described behavior as the summation of independent contributions from separate components. Contrasting views have emphasized the importance of multiplicative interactions and emergent structure. We describe a statistical approach to distinguishing additive and multiplicative processes and apply it to the dynamics of eye movements during classic visual cognitive tasks. The results reveal interaction-dominant dynamics in eye movements in each of the three tasks, and that fine-grained eye movements are modulated by task constraints. These findings reveal the interactive nature of cognitive processing and are consistent with theories that view cognition as an emergent property of processes that are broadly distributed over many scales of space and time rather than a componential assembly line. Copyright 2009 Elsevier B.V. All rights reserved.

  15. Bit-level plane image encryption based on coupled map lattice with time-varying delay

    NASA Astrophysics Data System (ADS)

    Lv, Xiupin; Liao, Xiaofeng; Yang, Bo

    2018-04-01

    Most of the existing image encryption algorithms had two basic properties: confusion and diffusion in a pixel-level plane based on various chaotic systems. Actually, permutation in a pixel-level plane could not change the statistical characteristics of an image, and many of the existing color image encryption schemes utilized the same method to encrypt R, G and B components, which means that the three color components of a color image are processed three times independently. Additionally, dynamical performance of a single chaotic system degrades greatly with finite precisions in computer simulations. In this paper, a novel coupled map lattice with time-varying delay therefore is applied in color images bit-level plane encryption to solve the above issues. Spatiotemporal chaotic system with both much longer period in digitalization and much excellent performances in cryptography is recommended. Time-varying delay embedded in coupled map lattice enhances dynamical behaviors of the system. Bit-level plane image encryption algorithm has greatly reduced the statistical characteristics of an image through the scrambling processing. The R, G and B components cross and mix with one another, which reduces the correlation among the three components. Finally, simulations are carried out and all the experimental results illustrate that the proposed image encryption algorithm is highly secure, and at the same time, also demonstrates superior performance.

  16. [Study on differences between pharmacokinetics and chromatopharmacodynamics for Chinese materia medica formulae].

    PubMed

    He, Fuyuan; Deng, Kaiwen; Zou, Huan; Qiu, Yun; Chen, Feng; Zhou, Honghao

    2011-01-01

    To study on the differences between chromatopharmacokinetics (pharmacokinetics with fingerprint chromatography) and chromatopharmacodynamics (pharmacodynamics with fingerprint chromatography) of Chinese materia medica formulae to answer the question whether the pharmacokinetic parameters of multiple composites can be utilized to guide the medication of multiple composites. On the base of established four chromatopharmacology (pharmacology with chromatographic fingerprint), the pharmacokinetics, and pharmacodynamics were analyzed comparably on their mathematical model and parameter definition. On the basis of quantitative pharmacology, the function expressions and total statistical parameters, such as total zero moment, total first moment, total second moment of the pharmacokinetics, and pharmacodynamics were analyzed to the common expressions and elucidated results for single and multiple components in Chinese materia medica formulae. Total quantitative pharmacokinetic, i.e., chromatopharmacokinetic parameter were decided by each component pharmacokinetic parameters, whereas the total quantitative pharmacodynamic, i.e., chromatopharmacodynamic parameter were decided by both of pharmacokinetic and pharmacodynamic parameters of each components. The pharmacokinetic parameters were corresponded to pharmacodynamic parameters with an existing stable effective coefficient when the constitutive ratio of each composite was a constant. The effects of Chinese materia medica were all controlled by pharmacokinetic and pharmacodynamic coefficient. It is a special case that the pharmacokinetic parameter could independently guide the clinical medication for single component whereas the chromatopharmacokinetic parameters are not applied to the multiple drug combination system, and not be used to solve problems of chromatopharmacokinetic of Chinese materia medica formulae.

  17. Partial Automation of Requirements Tracing

    NASA Technical Reports Server (NTRS)

    Hayes, Jane; Dekhtyar, Alex; Sundaram, Senthil; Vadlamudi, Sravanthi

    2006-01-01

    Requirements Tracing on Target (RETRO) is software for after-the-fact tracing of textual requirements to support independent verification and validation of software. RETRO applies one of three user-selectable information-retrieval techniques: (1) term frequency/inverse document frequency (TF/IDF) vector retrieval, (2) TF/IDF vector retrieval with simple thesaurus, or (3) keyword extraction. One component of RETRO is the graphical user interface (GUI) for use in initiating a requirements-tracing project (a pair of artifacts to be traced to each other, such as a requirements spec and a design spec). Once the artifacts have been specified and the IR technique chosen, another component constructs a representation of the artifact elements and stores it on disk. Next, the IR technique is used to produce a first list of candidate links (potential matches between the two artifact levels). This list, encoded in Extensible Markup Language (XML), is optionally processed by a filtering component designed to make the list somewhat smaller without sacrificing accuracy. Through the GUI, the user examines a number of links and returns decisions (yes, these are links; no, these are not links). Coded in XML, these decisions are provided to a "feedback processor" component that prepares the data for the next application of the IR technique. The feedback reduces the incidence of erroneous candidate links. Unlike related prior software, RETRO does not require the user to assign keywords, and automatically builds a document index.

  18. Borderline personality features and implicit shame-prone self-concept in middle childhood and early adolescence.

    PubMed

    Hawes, David J; Helyer, Rebekah; Herlianto, Eugene C; Willing, Jonah

    2013-01-01

    This study tested if children and adolescents with high levels of borderline personality features (BPF) exhibit the same shame-prone self-concept previously found to characterize adults with borderline personality disorder (Rüsch et al., 2007 ). Self-concept was indexed using the Implicit Association Test, in a community sample of children/adolescents aged 10 to 14 years (48% female; M age = 12.04 years). Common domains of child and adolescent psychopathology and core components of BPF were assessed using self-reports on the Strengths and Difficulties Questionnaire and the Borderline Personality Features Scale for Children. The identity problems component of BPF was found to significantly predict implicit levels of shame-prone self-concept, but only among girls. This effect was independent of the key dimensions of child and adolescent psychopathology that overlap with BPF-including features hyperactivity/inattention, disruptive behavior problems, and anxiety/depression-none of which were associated with shame-prone self-concept at the bivariate level or otherwise. The current findings provide preliminary evidence that self-schemas related to shame are uniquely associated with a core component of BPF in middle childhood and early adolescence and suggest that this correlate may apply uniquely to female individuals. These findings point to the identity problems component of BPF as a priority for future clinical and developmental research into mechanisms associated with BPF across childhood and adolescence.

  19. Higher-order scene statistics of breast images

    NASA Astrophysics Data System (ADS)

    Abbey, Craig K.; Sohl-Dickstein, Jascha N.; Olshausen, Bruno A.; Eckstein, Miguel P.; Boone, John M.

    2009-02-01

    Researchers studying human and computer vision have found description and construction of these systems greatly aided by analysis of the statistical properties of naturally occurring scenes. More specifically, it has been found that receptive fields with directional selectivity and bandwidth properties similar to mammalian visual systems are more closely matched to the statistics of natural scenes. It is argued that this allows for sparse representation of the independent components of natural images [Olshausen and Field, Nature, 1996]. These theories have important implications for medical image perception. For example, will a system that is designed to represent the independent components of natural scenes, where objects occlude one another and illumination is typically reflected, be appropriate for X-ray imaging, where features superimpose on one another and illumination is transmissive? In this research we begin to examine these issues by evaluating higher-order statistical properties of breast images from X-ray projection mammography (PM) and dedicated breast computed tomography (bCT). We evaluate kurtosis in responses of octave bandwidth Gabor filters applied to PM and to coronal slices of bCT scans. We find that kurtosis in PM rises and quickly saturates for filter center frequencies with an average value above 0.95. By contrast, kurtosis in bCT peaks near 0.20 cyc/mm with kurtosis of approximately 2. Our findings suggest that the human visual system may be tuned to represent breast tissue more effectively in bCT over a specific range of spatial frequencies.

  20. Within-subject joint independent component analysis of simultaneous fMRI/ERP in an auditory oddball paradigm

    PubMed Central

    MANGALATHU-ARUMANA, J.; BEARDSLEY, S. A.; LIEBENTHAL, E.

    2012-01-01

    The integration of event-related potential (ERP) and functional magnetic resonance imaging (fMRI) can contribute to characterizing neural networks with high temporal and spatial resolution. This research aimed to determine the sensitivity and limitations of applying joint independent component analysis (jICA) within-subjects, for ERP and fMRI data collected simultaneously in a parametric auditory frequency oddball paradigm. In a group of 20 subjects, an increase in ERP peak amplitude ranging 1–8 μV in the time window of the P300 (350–700ms), and a correlated increase in fMRI signal in a network of regions including the right superior temporal and supramarginal gyri, was observed with the increase in deviant frequency difference. JICA of the same ERP and fMRI group data revealed activity in a similar network, albeit with stronger amplitude and larger extent. In addition, activity in the left pre- and post- central gyri, likely associated with right hand somato-motor response, was observed only with the jICA approach. Within-subject, the jICA approach revealed significantly stronger and more extensive activity in the brain regions associated with the auditory P300 than the P300 linear regression analysis. The results suggest that with the incorporation of spatial and temporal information from both imaging modalities, jICA may be a more sensitive method for extracting common sources of activity between ERP and fMRI. PMID:22377443

  1. Rejecting deep brain stimulation artefacts from MEG data using ICA and mutual information.

    PubMed

    Abbasi, Omid; Hirschmann, Jan; Schmitz, Georg; Schnitzler, Alfons; Butz, Markus

    2016-08-01

    Recording brain activity during deep brain stimulation (DBS) using magnetoencephalography (MEG) can potentially help clarifying the neurophysiological mechanism of DBS. The DBS artefact, however, distorts MEG data significantly. We present an artefact rejection approach to remove the DBS artefact from MEG data. We developed an approach consisting of four consecutive steps: (i) independent component analysis was used to decompose MEG data to independent components (ICs); (ii) mutual information (MI) between stimulation signal and all ICs was calculated; (iii) artefactual ICs were identified by means of an MI threshold; and (iv) the MEG signal was reconstructed using only non-artefactual ICs. This approach was applied to MEG data from five Parkinson's disease patients with implanted DBS stimulators. MEG was recorded with DBS ON (unilateral stimulation of the subthalamic nucleus) and DBS OFF during two experimental conditions: a visual attention task and alternating right and left median nerve stimulation. With the presented approach most of the artefact could be removed. The signal of interest could be retrieved in both conditions. In contrast to existing artefact rejection methods for MEG-DBS data (tSSS and S(3)P), the proposed method uses the actual artefact source, i.e. the stimulation signal, as reference signal. Using the presented method, the DBS artefact can be significantly rejected and the physiological data can be restored. This will facilitate research addressing the impact of DBS on brain activity during rest and various tasks. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. A general probabilistic model for group independent component analysis and its estimation methods

    PubMed Central

    Guo, Ying

    2012-01-01

    SUMMARY Independent component analysis (ICA) has become an important tool for analyzing data from functional magnetic resonance imaging (fMRI) studies. ICA has been successfully applied to single-subject fMRI data. The extension of ICA to group inferences in neuroimaging studies, however, is challenging due to the unavailability of a pre-specified group design matrix and the uncertainty in between-subjects variability in fMRI data. We present a general probabilistic ICA (PICA) model that can accommodate varying group structures of multi-subject spatio-temporal processes. An advantage of the proposed model is that it can flexibly model various types of group structures in different underlying neural source signals and under different experimental conditions in fMRI studies. A maximum likelihood method is used for estimating this general group ICA model. We propose two EM algorithms to obtain the ML estimates. The first method is an exact EM algorithm which provides an exact E-step and an explicit noniterative M-step. The second method is an variational approximation EM algorithm which is computationally more efficient than the exact EM. In simulation studies, we first compare the performance of the proposed general group PICA model and the existing probabilistic group ICA approach. We then compare the two proposed EM algorithms and show the variational approximation EM achieves comparable accuracy to the exact EM with significantly less computation time. An fMRI data example is used to illustrate application of the proposed methods. PMID:21517789

  3. INVESTIGATING DIFFERENCES IN BRAIN FUNCTIONAL NETWORKS USING HIERARCHICAL COVARIATE-ADJUSTED INDEPENDENT COMPONENT ANALYSIS.

    PubMed

    Shi, Ran; Guo, Ying

    2016-12-01

    Human brains perform tasks via complex functional networks consisting of separated brain regions. A popular approach to characterize brain functional networks in fMRI studies is independent component analysis (ICA), which is a powerful method to reconstruct latent source signals from their linear mixtures. In many fMRI studies, an important goal is to investigate how brain functional networks change according to specific clinical and demographic variabilities. Existing ICA methods, however, cannot directly incorporate covariate effects in ICA decomposition. Heuristic post-ICA analysis to address this need can be inaccurate and inefficient. In this paper, we propose a hierarchical covariate-adjusted ICA (hc-ICA) model that provides a formal statistical framework for estimating covariate effects and testing differences between brain functional networks. Our method provides a more reliable and powerful statistical tool for evaluating group differences in brain functional networks while appropriately controlling for potential confounding factors. We present an analytically tractable EM algorithm to obtain maximum likelihood estimates of our model. We also develop a subspace-based approximate EM that runs significantly faster while retaining high accuracy. To test the differences in functional networks, we introduce a voxel-wise approximate inference procedure which eliminates the need of computationally expensive covariance matrix estimation and inversion. We demonstrate the advantages of our methods over the existing method via simulation studies. We apply our method to an fMRI study to investigate differences in brain functional networks associated with post-traumatic stress disorder (PTSD).

  4. Integrating chronological uncertainties for annually laminated lake sediments using layer counting, independent chronologies and Bayesian age modelling (Lake Ohau, South Island, New Zealand)

    NASA Astrophysics Data System (ADS)

    Vandergoes, Marcus J.; Howarth, Jamie D.; Dunbar, Gavin B.; Turnbull, Jocelyn C.; Roop, Heidi A.; Levy, Richard H.; Li, Xun; Prior, Christine; Norris, Margaret; Keller, Liz D.; Baisden, W. Troy; Ditchburn, Robert; Fitzsimons, Sean J.; Bronk Ramsey, Christopher

    2018-05-01

    Annually resolved (varved) lake sequences are important palaeoenvironmental archives as they offer a direct incremental dating technique for high-frequency reconstruction of environmental and climate change. Despite the importance of these records, establishing a robust chronology and quantifying its precision and accuracy (estimations of error) remains an essential but challenging component of their development. We outline an approach for building reliable independent chronologies, testing the accuracy of layer counts and integrating all chronological uncertainties to provide quantitative age and error estimates for varved lake sequences. The approach incorporates (1) layer counts and estimates of counting precision; (2) radiometric and biostratigrapic dating techniques to derive independent chronology; and (3) the application of Bayesian age modelling to produce an integrated age model. This approach is applied to a case study of an annually resolved sediment record from Lake Ohau, New Zealand. The most robust age model provides an average error of 72 years across the whole depth range. This represents a fractional uncertainty of ∼5%, higher than the <3% quoted for most published varve records. However, the age model and reported uncertainty represent the best fit between layer counts and independent chronology and the uncertainties account for both layer counting precision and the chronological accuracy of the layer counts. This integrated approach provides a more representative estimate of age uncertainty and therefore represents a statistically more robust chronology.

  5. Is the SDSS ZZ Ceti instability strip really pure?

    NASA Astrophysics Data System (ADS)

    de Souza Oliveira, Kepler

    2006-08-01

    We propose to obtain SNR > 60 optical spectra of the DA white dwarf stars for which the Sloan Digital Sky Survey spectra indicated temperatures inside de ZZ Ceti instability strip, but time series photometry show they are not variables. The Sloan spectra have insufficient SNR, specially below 4000A, where there are hydrogen lines whose strength can be used to measure surface gravity accurately. Theoretically and observationally, the location of the instability strip depends both on temperature and mass. To use the properties derived from the pulsating stars as applying to all white dwarf stars, and their progenitors, we must demonstrate pulsation is a normal evolutionary state. As the instability strip is only 1200K wide, accurate temperatures and log g must be obtained and therefore the spectra must include the log g sensitive lines Hgamma to H9. White dwarf stars, the objects of this proposal, are the end point of evolution of around 97% of all stars born. As they cool, they pass through instability strips, where they are seen as multi-periodic pulsators. Each pulsation is an independent measurement, placing another constraint on the stellar properties. Pulsations allow the determination of the stellar compositional layers, including the core, crucial to understand the progenitor's evolution, from AGB to planetary nebulae nuclei, "born again" phase, and their possible evolution to SNIa through accretion. As white dwarf progenitors lose at least half of their masses before turning into white dwarfs, they contribute to the interstellar medium enrichment, and measuring their structure in detail will allow us to decode nuclear reaction rates and convection, which determine their evolution. Pulsating white dwarf stars are also laboratories for physics at high densities as crystallization, neutrino cooling, and axion emission. White dwarf cooling, also measured through pulsations, allows an independent measurement of the age of the galactic components and was the first to indicate an age of 13 Gyr to the Universe, back in 1987. Now that we have observed white dwarf stars in all the components of our galaxy, possible differences in component ages are detectable. Our goal is to determine if the instalibity strip is pure, implying the information we obtain on the variables applies to white dwarf stars in general. As these stars are on average fainter than g=18.2, we require blue sensitive 8m class telescope.

  6. The gravity field model IGGT_R1 based on the second invariant of the GOCE gravitational gradient tensor

    NASA Astrophysics Data System (ADS)

    Lu, Biao; Luo, Zhicai; Zhong, Bo; Zhou, Hao; Flechtner, Frank; Förste, Christoph; Barthelmes, Franz; Zhou, Rui

    2017-11-01

    Based on tensor theory, three invariants of the gravitational gradient tensor (IGGT) are independent of the gradiometer reference frame (GRF). Compared to traditional methods for calculation of gravity field models based on the gravity field and steady-state ocean circulation explorer (GOCE) data, which are affected by errors in the attitude indicator, using IGGT and least squares method avoids the problem of inaccurate rotation matrices. The IGGT approach as studied in this paper is a quadratic function of the gravity field model's spherical harmonic coefficients. The linearized observation equations for the least squares method are obtained using a Taylor expansion, and the weighting equation is derived using the law of error propagation. We also investigate the linearization errors using existing gravity field models and find that this error can be ignored since the used a-priori model EIGEN-5C is sufficiently accurate. One problem when using this approach is that it needs all six independent gravitational gradients (GGs), but the components V_{xy} and V_{yz} of GOCE are worse due to the non-sensitive axes of the GOCE gradiometer. Therefore, we use synthetic GGs for both inaccurate gravitational gradient components derived from the a-priori gravity field model EIGEN-5C. Another problem is that the GOCE GGs are measured in a band-limited manner. Therefore, a forward and backward finite impulse response band-pass filter is applied to the data, which can also eliminate filter caused phase change. The spherical cap regularization approach (SCRA) and the Kaula rule are then applied to solve the polar gap problem caused by GOCE's inclination of 96.7° . With the techniques described above, a degree/order 240 gravity field model called IGGT_R1 is computed. Since the synthetic components of V_{xy} and V_{yz} are not band-pass filtered, the signals outside the measurement bandwidth are replaced by the a-priori model EIGEN-5C. Therefore, this model is practically a combined gravity field model which contains GOCE GGs signals and long wavelength signals from the a-priori model EIGEN-5C. Finally, IGGT_R1's accuracy is evaluated by comparison with other gravity field models in terms of difference degree amplitudes, the geostrophic velocity in the Agulhas current area, gravity anomaly differences as well as by comparison to GNSS/leveling data.

  7. Health behaviours, body weight and self-esteem among grade five students in Canada.

    PubMed

    Wu, Xiuyun; Kirk, Sara F L; Ohinmaa, Arto; Veugelers, Paul

    2016-01-01

    This study sought to identify the principal components of self-esteem and the health behavioural determinants of these components among grade five students. We analysed data from a population-based survey among 4918 grade five students, who are primarily 10 and 11 years of age, and their parents in the Canadian province of Nova Scotia. The survey comprised the Harvard Youth and Adolescent Questionnaire, parental reporting of students' physical activity (PA) and time spent watching television or using computer/video games. Students heights and weights were objectively measured. We applied principal component analysis (PCA) to derive the components of self-esteem, and multilevel, multivariable logistic regression to quantify associations of diet quality, PA, sedentary behaviour and body weight with these components of self-esteem. PCA identified four components for self-esteem: self-perception, externalizing problems, internalizing problems, social-perception. Influences of health behaviours and body weight on self-esteem varied across the components. Better diet quality was associated with higher self-perception and fewer externalizing problems. Less PA and more use of computer/video games were related to lower self-perception and social-perception. Excessive TV watching was associated with more internalizing problems. Students classified as obese were more likely to report low self- and social-perception, and to experience fewer externalizing problems relative to students classified as normal weight. This study demonstrates independent influences of diet quality, physical activity, sedentary behaviour and body weight on four aspects of self-esteem among children. These findings suggest that school programs and health promotion strategies that target health behaviours may benefit self-esteem in childhood, and mental health and quality of life later in life.

  8. Impact of multilayered compression bandages on sub-bandage interface pressure: a model.

    PubMed

    Al Khaburi, J; Nelson, E A; Hutchinson, J; Dehghani-Sanij, A A

    2011-03-01

    Multi-component medical compression bandages are widely used to treat venous leg ulcers. The sub-bandage interface pressures induced by individual components of the multi-component compression bandage systems are not always simply additive. Current models to explain compression bandage performance do not take account of the increase in leg circumference when each bandage is applied, and this may account for the difference between predicted and actual pressures. To calculate the interface pressure when a multi-component compression bandage system is applied to a leg. Use thick wall cylinder theory to estimate the sub-bandage pressure over the leg when a multi-component compression bandage is applied to a leg. A mathematical model was developed based on thick cylinder theory to include bandage thickness in the calculation of the interface pressure in multi-component compression systems. In multi-component compression systems, the interface pressure corresponds to the sum of the pressures applied by individual bandage layers. However, the change in the limb diameter caused by additional bandage layers should be considered in the calculation. Adding the interface pressure produced by single components without considering the bandage thickness will result in an overestimate of the overall interface pressure produced by the multi-component compression systems. At the ankle (circumference 25 cm) this error can be 19.2% or even more in the case of four components bandaging systems. Bandage thickness should be considered when calculating the pressure applied using multi-component compression systems.

  9. Pretreatment methods to improve nerve immunostaining in corneas from long-term fixed embryonic quail eyes

    NASA Technical Reports Server (NTRS)

    Barrett, J. E.; Wells, D. C.; Conrad, G. W.

    1999-01-01

    Pretreatment methods were used to improve neurofilament immunostaining in corneas from embryonic day 16 Japanese quail corneas that had been stored in fixative solution for several months. A sequential combination of the following three pretreatments: brief microwave heating in saline, followed by extraction with sodium dodecyl sulfate (SDS) at 37 degrees C, followed by digestion with hyaluronidase at 37 degrees C, produced significantly increased antibody staining of corneal neurofilament proteins, compared with embryonic corneas subjected to no prior pretreatments or to single or two-step protocols. After applying the sequence of all three pretreatments, darkest nerve staining and increased numbers of fine branches were observed, together with lower background staining. Thus, the result of applying the three-step pretreatment sequence is better than that of applying any of its component single pretreatments or even combinations of any two of them. These findings therefore suggest that each of these three pretreatments causes a unique effect, beneficial to immunostaining of neurofilament proteins, and that their individual effects are independent and additive. In addition to embryonic corneas, the three-step procedure also may be useful for immunostaining of nerves in other very delicate, highly-hydrated tissues containing an abundance of extracellular matrix.

  10. Constructing Hopf bifurcation lines for the stability of nonlinear systems with two time delays

    NASA Astrophysics Data System (ADS)

    Nguimdo, Romain Modeste

    2018-03-01

    Although the plethora real-life systems modeled by nonlinear systems with two independent time delays, the algebraic expressions for determining the stability of their fixed points remain the Achilles' heel. Typically, the approach for studying the stability of delay systems consists in finding the bifurcation lines separating the stable and unstable parameter regions. This work deals with the parametric construction of algebraic expressions and their use for the determination of the stability boundaries of fixed points in nonlinear systems with two independent time delays. In particular, we concentrate on the cases for which the stability of the fixed points can be ascertained from a characteristic equation corresponding to that of scalar two-delay differential equations, one-component dual-delay feedback, or nonscalar differential equations with two delays for which the characteristic equation for the stability analysis can be reduced to that of a scalar case. Then, we apply our obtained algebraic expressions to identify either the parameter regions of stable microwaves generated by dual-delay optoelectronic oscillators or the regions of amplitude death in identical coupled oscillators.

  11. Outage Probability of MRC for κ-μ Shadowed Fading Channels under Co-Channel Interference.

    PubMed

    Chen, Changfang; Shu, Minglei; Wang, Yinglong; Yang, Ming; Zhang, Chongqing

    2016-01-01

    In this paper, exact closed-form expressions are derived for the outage probability (OP) of the maximal ratio combining (MRC) scheme in the κ-μ shadowed fading channels, in which both the independent and correlated shadowing components are considered. The scenario assumes the received desired signals are corrupted by the independent Rayleigh-faded co-channel interference (CCI) and background white Gaussian noise. To this end, first, the probability density function (PDF) of the κ-μ shadowed fading distribution is obtained in the form of a power series. Then the incomplete generalized moment-generating function (IG-MGF) of the received signal-to-interference-plus-noise ratio (SINR) is derived in the closed form. By using the IG-MGF results, closed-form expressions for the OP of MRC scheme are obtained over the κ-μ shadowed fading channels. Simulation results are included to validate the correctness of the analytical derivations. These new statistical results can be applied to the modeling and analysis of several wireless communication systems, such as body centric communications.

  12. Outage Probability of MRC for κ-μ Shadowed Fading Channels under Co-Channel Interference

    PubMed Central

    Chen, Changfang; Shu, Minglei; Wang, Yinglong; Yang, Ming; Zhang, Chongqing

    2016-01-01

    In this paper, exact closed-form expressions are derived for the outage probability (OP) of the maximal ratio combining (MRC) scheme in the κ-μ shadowed fading channels, in which both the independent and correlated shadowing components are considered. The scenario assumes the received desired signals are corrupted by the independent Rayleigh-faded co-channel interference (CCI) and background white Gaussian noise. To this end, first, the probability density function (PDF) of the κ-μ shadowed fading distribution is obtained in the form of a power series. Then the incomplete generalized moment-generating function (IG-MGF) of the received signal-to-interference-plus-noise ratio (SINR) is derived in the closed form. By using the IG-MGF results, closed-form expressions for the OP of MRC scheme are obtained over the κ-μ shadowed fading channels. Simulation results are included to validate the correctness of the analytical derivations. These new statistical results can be applied to the modeling and analysis of several wireless communication systems, such as body centric communications. PMID:27851817

  13. Thickness-Independent Ultrasonic Imaging Applied to Abrasive Cut-Off Wheels: An Advanced Aerospace Materials Characterization Method for the Abrasives Industry. A NASA Lewis Research Center Technology Transfer Case History

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Farmer, Donald A.

    1998-01-01

    Abrasive cut-off wheels are at times unintentionally manufactured with nonuniformity that is difficult to identify and sufficiently characterize without time-consuming, destructive examination. One particular nonuniformity is a density variation condition occurring around the wheel circumference or along the radius, or both. This density variation, depending on its severity, can cause wheel warpage and wheel vibration resulting in unacceptable performance and perhaps premature failure of the wheel. Conventional nondestructive evaluation methods such as ultrasonic c-scan imaging and film radiography are inaccurate in their attempts at characterizing the density variation because a superimposing thickness variation exists as well in the wheel. In this article, the single transducer thickness-independent ultrasonic imaging method, developed specifically to allow more accurate characterization of aerospace components, is shown to precisely characterize the extent of the density variation in a cut-off wheel having a superimposing thickness variation. The method thereby has potential as an effective quality control tool in the abrasives industry for the wheel manufacturer.

  14. All-optical video-image encryption with enforced security level using independent component analysis

    NASA Astrophysics Data System (ADS)

    Alfalou, A.; Mansour, A.

    2007-10-01

    In the last two decades, wireless communications have been introduced in various applications. However, the transmitted data can be, at any moment, intercepted by non-authorized people. That could explain why data encryption and secure transmission have gained enormous popularity. In order to secure data transmission, we should pay attention to two aspects: transmission rate and encryption security level. In this paper, we address these two aspects by proposing a new video-image transmission scheme. This new system consists in using the advantage of optical high transmission rate and some powerful signal processing tools to secure the transmitted data. The main idea of our approach is to secure transmitted information at two levels: at the classical level by using an adaptation of standard optical techniques and at a second level (spatial diversity) by using independent transmitters. In the second level, a hacker would need to intercept not only one channel but all of them in order to retrieve information. At the receiver, we can easily apply ICA algorithms to decrypt the received signals and retrieve information.

  15. CFD: A Castle in the Sand?

    NASA Technical Reports Server (NTRS)

    Kleb, William L.; Wood, William A.

    2004-01-01

    The computational simulation community is not routinely publishing independently verifiable tests to accompany new models or algorithms. A survey reveals that only 22% of new models published are accompanied by tests suitable for independently verifying the new model. As the community develops larger codes with increased functionality, and hence increased complexity in terms of the number of building block components and their interactions, it becomes prohibitively expensive for each development group to derive the appropriate tests for each component. Therefore, the computational simulation community is building its collective castle on a very shaky foundation of components with unpublished and unrepeatable verification tests. The computational simulation community needs to begin publishing component level verification tests before the tide of complexity undermines its foundation.

  16. An examination of effect estimation in factorial and standardly-tailored designs

    PubMed Central

    Allore, Heather G; Murphy, Terrence E

    2012-01-01

    Background Many clinical trials are designed to test an intervention arm against a control arm wherein all subjects are equally eligible for all interventional components. Factorial designs have extended this to test multiple intervention components and their interactions. A newer design referred to as a ‘standardly-tailored’ design, is a multicomponent interventional trial that applies individual interventional components to modify risk factors identified a priori and tests whether health outcomes differ between treatment arms. Standardly-tailored designs do not require that all subjects be eligible for every interventional component. Although standardly-tailored designs yield an estimate for the net effect of the multicomponent intervention, it has not yet been shown if they permit separate, unbiased estimation of individual component effects. The ability to estimate the most potent interventional components has direct bearing on conducting second stage translational research. Purpose We present statistical issues related to the estimation of individual component effects in trials of geriatric conditions using factorial and standardly-tailored designs. The medical community is interested in second stage translational research involving the transfer of results from a randomized clinical trial to a community setting. Before such research is undertaken, main effects and synergistic and or antagonistic interactions between them should be identified. Knowledge of the relative strength and direction of the effects of the individual components and their interactions facilitates the successful transfer of clinically significant findings and may potentially reduce the number of interventional components needed. Therefore the current inability of the standardly-tailored design to provide unbiased estimates of individual interventional components is a serious limitation in their applicability to second stage translational research. Methods We discuss estimation of individual component effects from the family of factorial designs and this limitation for standardly-tailored designs. We use the phrase ‘factorial designs’ to describe full-factorial designs and their derivatives including the fractional factorial, partial factorial, incomplete factorial and modified reciprocal designs. We suggest two potential directions for designing multicomponent interventions to facilitate unbiased estimates of individual interventional components. Results Full factorial designs and their variants are the most common multicomponent trial design described in the literature and differ meaningfully from standardly-tailored designs. Factorial and standardly-tailored designs result in similar estimates of net effect with different levels of precision. Unbiased estimation of individual component effects from a standardly-tailored design will require new methodology. Limitations Although clinically relevant in geriatrics, previous applications of standardly-tailored designs have not provided unbiased estimates of the effects of individual interventional components. Discussion Future directions to estimate individual component effects from standardly-tailored designs include applying D-optimal designs and creating independent linear combinations of risk factors analogous to factor analysis. Conclusion Methods are needed to extract unbiased estimates of the effects of individual interventional components from standardly-tailored designs. PMID:18375650

  17. Independent component analysis algorithm FPGA design to perform real-time blind source separation

    NASA Astrophysics Data System (ADS)

    Meyer-Baese, Uwe; Odom, Crispin; Botella, Guillermo; Meyer-Baese, Anke

    2015-05-01

    The conditions that arise in the Cocktail Party Problem prevail across many fields creating a need for of Blind Source Separation. The need for BSS has become prevalent in several fields of work. These fields include array processing, communications, medical signal processing, and speech processing, wireless communication, audio, acoustics and biomedical engineering. The concept of the cocktail party problem and BSS led to the development of Independent Component Analysis (ICA) algorithms. ICA proves useful for applications needing real time signal processing. The goal of this research was to perform an extensive study on ability and efficiency of Independent Component Analysis algorithms to perform blind source separation on mixed signals in software and implementation in hardware with a Field Programmable Gate Array (FPGA). The Algebraic ICA (A-ICA), Fast ICA, and Equivariant Adaptive Separation via Independence (EASI) ICA were examined and compared. The best algorithm required the least complexity and fewest resources while effectively separating mixed sources. The best algorithm was the EASI algorithm. The EASI ICA was implemented on hardware with Field Programmable Gate Arrays (FPGA) to perform and analyze its performance in real time.

  18. Applying metapopulation theory to conservation of migratory birds

    USGS Publications Warehouse

    Esler, Daniel N.

    2000-01-01

    Metapopulation theory has proven useful for understanding the population structure and dynamics of many species of conservation concern. The metapopulation concept has been applied almost exclusively to nonmigratory species, however, for which subpopulation demographic independence—a requirement for a classically defined metapopulation - is explicitly related to geographic distribution and dispersal probabilities. Defining the degree of demographic independence among subpopulations of migratory animals, and thus the applicability of metapopulation theory as a conceptual framework for understanding population dynamics, is much more difficult. Unlike nonmigratory species, subpopulations of migratory animals cannot be defined as synonymous with geographic areas. Groups of migratory birds that are geographically separate at one part of the annual cycle may occur together at others, but co-occurrence in time and space does not preclude the demographic independence of subpopulations. I suggest that metapopulation theory can be applied to migratory species but that understanding the degree of subpopulation independence may require information about both spatial distribution throughout the annual cycle and behavioral mechanisms that may lead to subpopulation demographic independence. The key for applying metapopulation theory to migratory animals lies in identifying demographically independent subpopulations, even as they move during the annual cycle and potentially co-occur with other subpopulations. Using examples of migratory bird species, I demonstrate that spatial and temporal modes of subpopulation independence can interact with behavioral mechanisms to create demographically independent subpopulations, including cases in which subpopulations are not spatially distinct in some parts of the annual cycle.

  19. Three-way parallel independent component analysis for imaging genetics using multi-objective optimization.

    PubMed

    Ulloa, Alvaro; Jingyu Liu; Vergara, Victor; Jiayu Chen; Calhoun, Vince; Pattichis, Marios

    2014-01-01

    In the biomedical field, current technology allows for the collection of multiple data modalities from the same subject. In consequence, there is an increasing interest for methods to analyze multi-modal data sets. Methods based on independent component analysis have proven to be effective in jointly analyzing multiple modalities, including brain imaging and genetic data. This paper describes a new algorithm, three-way parallel independent component analysis (3pICA), for jointly identifying genomic loci associated with brain function and structure. The proposed algorithm relies on the use of multi-objective optimization methods to identify correlations among the modalities and maximally independent sources within modality. We test the robustness of the proposed approach by varying the effect size, cross-modality correlation, noise level, and dimensionality of the data. Simulation results suggest that 3p-ICA is robust to data with SNR levels from 0 to 10 dB and effect-sizes from 0 to 3, while presenting its best performance with high cross-modality correlations, and more than one subject per 1,000 variables. In an experimental study with 112 human subjects, the method identified links between a genetic component (pointing to brain function and mental disorder associated genes, including PPP3CC, KCNQ5, and CYP7B1), a functional component related to signal decreases in the default mode network during the task, and a brain structure component indicating increases of gray matter in brain regions of the default mode region. Although such findings need further replication, the simulation and in-vivo results validate the three-way parallel ICA algorithm presented here as a useful tool in biomedical data decomposition applications.

  20. Electromagnetic potential vectors and the Lagrangian of a charged particle

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1992-01-01

    Maxwell's equations can be shown to imply the existence of two independent three-dimensional potential vectors. A comparison between the potential vectors and the electric and magnetic field vectors, using a spatial Fourier transformation, reveals six independent potential components but only four independent electromagnetic field components for each mode. Although the electromagnetic fields determined by Maxwell's equations give a complete description of all possible classical electromagnetic phenomena, potential vectors contains more information and allow for a description of such quantum mechanical phenomena as the Aharonov-Bohm effect. A new result is that a charged particle Lagrangian written in terms of potential vectors automatically contains a 'spontaneous symmetry breaking' potential.

  1. Independent component analysis based digital signal processing in coherent optical fiber communication systems

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Luo, Ming; Qiu, Ying; Alphones, Arokiaswami; Zhong, Wen-De; Yu, Changyuan; Yang, Qi

    2018-02-01

    In this paper, channel equalization techniques for coherent optical fiber transmission systems based on independent component analysis (ICA) are reviewed. The principle of ICA for blind source separation is introduced. The ICA based channel equalization after both single-mode fiber and few-mode fiber transmission for single-carrier and orthogonal frequency division multiplexing (OFDM) modulation formats are investigated, respectively. The performance comparisons with conventional channel equalization techniques are discussed.

  2. Constrained independent component analysis approach to nonobtrusive pulse rate measurements

    NASA Astrophysics Data System (ADS)

    Tsouri, Gill R.; Kyal, Survi; Dianat, Sohail; Mestha, Lalit K.

    2012-07-01

    Nonobtrusive pulse rate measurement using a webcam is considered. We demonstrate how state-of-the-art algorithms based on independent component analysis suffer from a sorting problem which hinders their performance, and propose a novel algorithm based on constrained independent component analysis to improve performance. We present how the proposed algorithm extracts a photoplethysmography signal and resolves the sorting problem. In addition, we perform a comparative study between the proposed algorithm and state-of-the-art algorithms over 45 video streams using a finger probe oxymeter for reference measurements. The proposed algorithm provides improved accuracy: the root mean square error is decreased from 20.6 and 9.5 beats per minute (bpm) for existing algorithms to 3.5 bpm for the proposed algorithm. An error of 3.5 bpm is within the inaccuracy expected from the reference measurements. This implies that the proposed algorithm provided performance of equal accuracy to the finger probe oximeter.

  3. Constrained independent component analysis approach to nonobtrusive pulse rate measurements.

    PubMed

    Tsouri, Gill R; Kyal, Survi; Dianat, Sohail; Mestha, Lalit K

    2012-07-01

    Nonobtrusive pulse rate measurement using a webcam is considered. We demonstrate how state-of-the-art algorithms based on independent component analysis suffer from a sorting problem which hinders their performance, and propose a novel algorithm based on constrained independent component analysis to improve performance. We present how the proposed algorithm extracts a photoplethysmography signal and resolves the sorting problem. In addition, we perform a comparative study between the proposed algorithm and state-of-the-art algorithms over 45 video streams using a finger probe oxymeter for reference measurements. The proposed algorithm provides improved accuracy: the root mean square error is decreased from 20.6 and 9.5 beats per minute (bpm) for existing algorithms to 3.5 bpm for the proposed algorithm. An error of 3.5 bpm is within the inaccuracy expected from the reference measurements. This implies that the proposed algorithm provided performance of equal accuracy to the finger probe oximeter.

  4. Resolving fluorophores by unmixing multispectral fluorescence tomography with independent component analysis

    NASA Astrophysics Data System (ADS)

    Pu, Huangsheng; Zhang, Guanglei; He, Wei; Liu, Fei; Guang, Huizhi; Zhang, Yue; Bai, Jing; Luo, Jianwen

    2014-09-01

    It is a challenging problem to resolve and identify drug (or non-specific fluorophore) distribution throughout the whole body of small animals in vivo. In this article, an algorithm of unmixing multispectral fluorescence tomography (MFT) images based on independent component analysis (ICA) is proposed to solve this problem. ICA is used to unmix the data matrix assembled by the reconstruction results from MFT. Then the independent components (ICs) that represent spatial structures and the corresponding spectrum courses (SCs) which are associated with spectral variations can be obtained. By combining the ICs with SCs, the recovered MFT images can be generated and fluorophore concentration can be calculated. Simulation studies, phantom experiments and animal experiments with different concentration contrasts and spectrum combinations are performed to test the performance of the proposed algorithm. Results demonstrate that the proposed algorithm can not only provide the spatial information of fluorophores, but also recover the actual reconstruction of MFT images.

  5. Cracking the omega code: hydraulic architecture of the cycad leaf axis.

    PubMed

    Tomlinson, P Barry; Ricciardi, Alison; Huggett, Brett A

    2018-03-05

    The leaf axis of members of the order Cycadales ('cycads') has long been recognized by its configuration of independent vascular bundles that, in transverse section, resemble the Greek letter omega (hence the 'omega pattern'). This provides a useful diagnostic character for the order, especially when applied to paleobotany. The function of this pattern has never been elucidated. Here we provide a three-dimensional analysis and explain the pattern in terms of the hydraulic architecture of the pinnately compound cycad leaf. The genus Cycas was used as a simple model, because each leaflet is supplied by a single vascular bundle. Sequential sectioning was conducted throughout the leaf axis and photographed with a digital camera. Photographs were registered and converted to a cinematic format, which provided an objective method of analysis. The omega pattern in the petiole can be sub-divided into three vascular components, an abaxial 'circle', a central 'column' and two adaxial 'wings', the last being the only direct source of vascular supply to the leaflets. Each leaflet is supplied by a vascular bundle that has divided or migrated directly from the closest wing bundle. There is neither multiplication nor anastomoses of vascular bundles in the other two components. Thus, as one proceeds from base to apex along the leaf axis, the number of vascular bundles in circle and column components is reduced distally by their uniform migration throughout all components. Consequently, the distal leaflets are irrigated by the more abaxial bundles, guaranteeing uniform water supply along the length of the axis. The omega pattern exemplifies one of the many solutions plants have achieved in supplying distal appendages of an axis with a uniform water supply. Our method presents a model that can be applied to other genera of cycads with more complex vascular organization. © The Author(s) 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. The Role of the Isospin 3/2 Component in Elastic Neutron-Deuteron Scattering and in the Deuteron Breakup Reaction

    NASA Astrophysics Data System (ADS)

    Witała, H.; Golak, J.; Skibiński, R.; Topolnicki, K.; Kamada, H.

    We discuss the importance of the three-nucleon isospin T = 3/2 component in elastic neutron-deuteron scattering and in the deuteron breakup reaction. The contribution of this amplitude originates from charge-independence breaking of the nucleon-nucleon potential. We study the magnitude of that contribution to the elastic scattering and breakup observables, taking the Av18 nucleon-nucleon potential alone or combined with the Urbana IX three-nucleon force as well as the locally regularized chiral N4LO nucleon-nucleon potential alone or supplemented by the chiral N2LO three-nucleon force. We find that the isospin T = 3/2 component is important for the breakup reaction and the proper treatment of charge-independence breaking in this case requires the inclusion of the 1S 0 state with isospin T = 3/2. For neutron-deuteron elastic scattering the T = 3/2 contributions are insignificant and charge-independence breaking can be accounted for by neglecting T = 3/2 component and using the effective t-matrix generated with the so-called “2/3 ‑ 1/3″ rule.

  7. Rapid discrimination of plastic packaging materials using MIR spectroscopy coupled with independent components analysis (ICA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kassouf, Amine, E-mail: amine.kassouf@agroparistech.fr; INRA, UMR1145 Ingénierie Procédés Aliments, 1 Avenue des Olympiades, 91300 Massy; AgroParisTech, UMR1145 Ingénierie Procédés Aliments, 16 rue Claude Bernard, 75005 Paris

    2014-11-15

    Highlights: • An innovative technique, MIR-ICA, was applied to plastic packaging separation. • This study was carried out on PE, PP, PS, PET and PLA plastic packaging materials. • ICA was applied to discriminate plastics and 100% separation rates were obtained. • Analyses performed on two spectrometers proved the reproducibility of the method. • MIR-ICA is a simple and fast technique allowing plastic identification/classification. - Abstract: Plastic packaging wastes increased considerably in recent decades, raising a major and serious public concern on political, economical and environmental levels. Dealing with this kind of problems is generally done by landfilling and energymore » recovery. However, these two methods are becoming more and more expensive, hazardous to the public health and the environment. Therefore, recycling is gaining worldwide consideration as a solution to decrease the growing volume of plastic packaging wastes and simultaneously reduce the consumption of oil required to produce virgin resin. Nevertheless, a major shortage is encountered in recycling which is related to the sorting of plastic wastes. In this paper, a feasibility study was performed in order to test the potential of an innovative approach combining mid infrared (MIR) spectroscopy with independent components analysis (ICA), as a simple and fast approach which could achieve high separation rates. This approach (MIR-ICA) gave 100% discrimination rates in the separation of all studied plastics: polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), polystyrene (PS) and polylactide (PLA). In addition, some more specific discriminations were obtained separating plastic materials belonging to the same polymer family e.g. high density polyethylene (HDPE) from low density polyethylene (LDPE). High discrimination rates were obtained despite the heterogeneity among samples especially differences in colors, thicknesses and surface textures. The reproducibility of the proposed approach was also tested using two spectrometers with considerable differences in their sensitivities. Discrimination rates were not affected proving that the developed approach could be extrapolated to different spectrometers. MIR combined with ICA is a promising tool for plastic waste separation that can help improve performance in this field; however further technological improvements and developments are required before it can be applied at an industrial level given that all tests presented here were performed under laboratory conditions.« less

  8. Splice assembly tool and method of splicing

    DOEpatents

    Silva, Frank A.

    1980-01-01

    A splice assembly tool for assembling component parts of an electrical conductor while producing a splice connection between electrical cables therewith, comprises a first structural member adaptable for supporting force applying means thereon, said force applying means enabling a rotary force applied manually thereto to be converted to a longitudinal force for subsequent application against a first component part of said electrical connection, a second structural member adaptable for engaging a second component part in a manner to assist said first structural member in assembling the component parts relative to one another and transmission means for conveying said longitudinal force between said first and said second structural members, said first and said second structural members being coupled to one another by said transmission means, wherein at least one of said component parts comprises a tubular elastomeric sleeve and said force applying means provides a relatively high mechanical advantage when said rotary force is applied thereto so as to facilitate assembly of said at least one tubular elastomeric sleeve about said other component part in an interference fit manner.

  9. ESEA Title I Migrant. Final Technical Report.

    ERIC Educational Resources Information Center

    Austin Independent School District, TX. Office of Research and Evaluation.

    The 1981-82 Austin (Texas) Independent School District Title I Migrant Program consisted of seven components: three instructional components--prekindergarten, communication skills, and summer school; and four support components--health services, parental involvement, migrant student record transfer system (MSRTS), and evaluation. The major…

  10. 48 CFR 31.205-18 - Independent research and development and bid and proposal costs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., (2) applied research, (3) development, and (4) systems and other concept formulation studies. The... costs. (a) Definitions. As used in this subsection— Applied research means that effort which (1... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Independent research and...

  11. Effects of a Fipronil Spot-Treatment on field colonies of Coptotermes formosanus (Isoptera: Rhinotermitidae)

    USDA-ARS?s Scientific Manuscript database

    This field study investigated the colony effect of a Fipronil spot-treatment applied to active infestations of Formosan subterranean termite, Coptotermes formosanus Shiraki. Spot-treatments were applied to a single active independent monitor from each of four colonies in which multiple independent m...

  12. 40 CFR 60.2891 - Do all components of these new source performance standards apply at the same time?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Do all components of these new source performance standards apply at the same time? 60.2891 Section 60.2891 Protection of Environment ENVIRONMENTAL... Applicability § 60.2891 Do all components of these new source performance standards apply at the same time? No...

  13. Independent components of neural activity carry information on individual populations.

    PubMed

    Głąbska, Helena; Potworowski, Jan; Łęski, Szymon; Wójcik, Daniel K

    2014-01-01

    Local field potential (LFP), the low-frequency part of the potential recorded extracellularly in the brain, reflects neural activity at the population level. The interpretation of LFP is complicated because it can mix activity from remote cells, on the order of millimeters from the electrode. To understand better the relation between the recordings and the local activity of cells we used a large-scale network thalamocortical model to compute simultaneous LFP, transmembrane currents, and spiking activity. We used this model to study the information contained in independent components obtained from the reconstructed Current Source Density (CSD), which smooths transmembrane currents, decomposed further with Independent Component Analysis (ICA). We found that the three most robust components matched well the activity of two dominating cell populations: superior pyramidal cells in layer 2/3 (rhythmic spiking) and tufted pyramids from layer 5 (intrinsically bursting). The pyramidal population from layer 2/3 could not be well described as a product of spatial profile and temporal activation, but by a sum of two such products which we recovered in two of the ICA components in our analysis, which correspond to the two first principal components of PCA decomposition of layer 2/3 population activity. At low noise one more cell population could be discerned but it is unlikely that it could be recovered in experiment given typical noise ranges.

  14. Risk factors associated with liver steatosis and fibrosis in chronic hepatitis B patient with component of metabolic syndrome.

    PubMed

    Cai, Shaohang; Ou, Zejin; Liu, Duan; Liu, Lili; Liu, Ying; Wu, Xiaolu; Yu, Tao; Peng, Jie

    2018-05-01

    We investigated whether metabolic syndrome exacerbated the risk of liver fibrosis among chronic hepatitis B patients and risk factors associated with liver steatosis and fibrosis in chronic hepatitis B patients with components of metabolic syndrome. This study included 1236 chronic hepatitis B patients with at least one component of metabolic syndrome. The controlled attenuation parameter and liver stiffness, patient information and relevant laboratory data were recorded. Controlled attenuation parameter was increased progressively with the number of metabolic syndrome components ( p  < 0.001). Multivariate analysis indicated younger age, high gamma-glutamyltransferase level, high waist-hip ratio, and high body mass index were independent risk factors associated with nonalcoholic fatty liver disease among chronic hepatitis B patients with metabolic syndrome. In the fibrosis and non-fibrosis groups, most of blood lipid was relatively lower in fibrosis group. An increased proportion of chronic hepatitis B patients with liver fibrosis was found concomitant with an increasing number of components of metabolic syndrome. Male gender, older age, smoking, aspartate aminotransferase levels, high body mass index, and low platelet level were identified as independent risk factors associated with liver fibrosis. For chronic hepatitis B patients with coexisting components of metabolic syndrome, stratification by independent risk factors for nonalcoholic fatty liver disease and fibrosis can help with management of their disease.

  15. Independent Components of Neural Activity Carry Information on Individual Populations

    PubMed Central

    Głąbska, Helena; Potworowski, Jan; Łęski, Szymon; Wójcik, Daniel K.

    2014-01-01

    Local field potential (LFP), the low-frequency part of the potential recorded extracellularly in the brain, reflects neural activity at the population level. The interpretation of LFP is complicated because it can mix activity from remote cells, on the order of millimeters from the electrode. To understand better the relation between the recordings and the local activity of cells we used a large-scale network thalamocortical model to compute simultaneous LFP, transmembrane currents, and spiking activity. We used this model to study the information contained in independent components obtained from the reconstructed Current Source Density (CSD), which smooths transmembrane currents, decomposed further with Independent Component Analysis (ICA). We found that the three most robust components matched well the activity of two dominating cell populations: superior pyramidal cells in layer 2/3 (rhythmic spiking) and tufted pyramids from layer 5 (intrinsically bursting). The pyramidal population from layer 2/3 could not be well described as a product of spatial profile and temporal activation, but by a sum of two such products which we recovered in two of the ICA components in our analysis, which correspond to the two first principal components of PCA decomposition of layer 2/3 population activity. At low noise one more cell population could be discerned but it is unlikely that it could be recovered in experiment given typical noise ranges. PMID:25153730

  16. Application of blind source separation to gamma ray spectra acquired by GRaND around Vesta

    NASA Astrophysics Data System (ADS)

    Mizzon, H.; Toplis, M. J.; Forni, O.; Prettyman, T. H.; Raymond, C. A.; Russell, C. T.

    2012-12-01

    The bismuth germinate (BGO) scintillator is one of the sensors of the gamma ray and neutron detector (GRaND)1 on board the Dawn spacecraft, that has spent just over one year in orbit around the asteroid 4-Vesta. The BGO detector is excited by energetic gamma-rays produced by galactic cosmic rays (GCR) or energetic solar particles interacting either with Vesta and/or the Dawn spacecraft. In detail, during periods of quiet solar activity, gamma ray spectra produced by the scintillator can be considered as consisting of three signals: i) a contribution of gamma-rays from Vesta produced by GCR interactions at the asteroid's surface, ii) a contribution from the spacecraft excited by neutrons coming from Vesta, and iii) a contribution of the spacecraft excited by local interaction with galactic cosmic rays. While the first two contributions should be positive functions of the solid angle of Vesta in the field of view during acquisition, the last one should have a negative dependence because Vesta partly shields the spacecraft from GCR. This theoretical mix can be written formally as: S=aΩSV+bΩSSCNV+c(4π-Ω)SSCGCR (1) where S is the series of recorded spectra, Ω is the solid angle, SV is the contribution of gamma rays coming from Vesta, SSCNV is the contribution of gamma rays coming from the spacecraft excited by the neutron coming from Vesta and SSCGCR is the contribution of gamma rays coming from the spacecraft excited by GCR. A blind source separation method called independent component analysis enables separating additive subcomponents supposing the mutual statistical independence of the non-Gaussian source signals2. Applying this method to BGO spectra acquired during the first three months of the low-altitude measurement orbit (LAMO) reveals two main independent components. The first one is dominated by the positron electron annihilation peak and is positively correlated to the solid angle. The second is negatively correlated to the solid angle and displays peaks of elements present in the spacecraft, of energy in the range 1 to 3.5 MeV. At energy >3.5 MeV, the dominant independent component highlighted by this method has no significant peaks, suggesting that it is not influenced by Vesta itself which is known to have a strong signal associated with iron at 7.6 MeV. Our method therefore represents a first step in retrieving the contribution of the spacecraft that could be used in conjunction with the mixing equation (1) to determine the contribution from the planet itself. 1 : Prettyman, T. H., Mcsween, Jr., H. Y., Feldman, W. C., JUN 2010. Dawn's GRaND to map the chemical composition of asteroids Vesta and Ceres. Geochimica and Cosmochimica Acta 74 (12, 1), A832, Con- ference on Goldschmidt 2010 - Earth, Energy, and the Environment, Knoxville, TN, JUN 13-18, 2010. 2 : Hyvarinen, A., Oja, E., May-Jun 2000. Independent component analysis: algorithms and applications. Neural Networks 13 (4-5), 411-430.

  17. The Rice COLEOPTILE PHOTOTROPISM1 Gene Encoding an Ortholog of Arabidopsis NPH3 Is Required for Phototropism of Coleoptiles and Lateral Translocation of AuxinW⃞

    PubMed Central

    Haga, Ken; Takano, Makoto; Neumann, Ralf; Iino, Moritoshi

    2005-01-01

    We isolated a mutant, named coleoptile phototropism1 (cpt1), from γ-ray–mutagenized japonica-type rice (Oryza sativa). This mutant showed no coleoptile phototropism and severely reduced root phototropism after continuous stimulation. A map-based cloning strategy and transgenic complementation test were applied to demonstrate that a NPH3-like gene deleted in the mutant corresponds to CPT1. Phylogenetic analysis of putative CPT1 homologs of rice and related proteins indicated that CPT1 has an orthologous relationship with Arabidopsis thaliana NPH3. These results, along with those for Arabidopsis, demonstrate that NPH3/CPT1 is a key signal transduction component of higher plant phototropism. In an extended study with the cpt1 mutant, it was found that phototropic differential growth is accompanied by a CPT1-independent inhibition of net growth. Kinetic investigation further indicated that a small phototropism occurs in cpt1 coleoptiles. This response, induced only transiently, was thought to be caused by the CPT1-independent growth inhibition. The 3H-indole-3-acetic acid applied to the coleoptile tip was asymmetrically distributed between the two sides of phototropically responding coleoptiles. However, no asymmetry was induced in cpt1 coleoptiles, indicating that lateral translocation of auxin occurs downstream of CPT1. It is concluded that the CPT1-dependent major phototropism of coleoptiles is achieved by lateral auxin translocation and subsequent growth redistribution. PMID:15598797

  18. The Rice COLEOPTILE PHOTOTROPISM1 gene encoding an ortholog of Arabidopsis NPH3 is required for phototropism of coleoptiles and lateral translocation of auxin.

    PubMed

    Haga, Ken; Takano, Makoto; Neumann, Ralf; Iino, Moritoshi

    2005-01-01

    We isolated a mutant, named coleoptile phototropism1 (cpt1), from gamma-ray-mutagenized japonica-type rice (Oryza sativa). This mutant showed no coleoptile phototropism and severely reduced root phototropism after continuous stimulation. A map-based cloning strategy and transgenic complementation test were applied to demonstrate that a NPH3-like gene deleted in the mutant corresponds to CPT1. Phylogenetic analysis of putative CPT1 homologs of rice and related proteins indicated that CPT1 has an orthologous relationship with Arabidopsis thaliana NPH3. These results, along with those for Arabidopsis, demonstrate that NPH3/CPT1 is a key signal transduction component of higher plant phototropism. In an extended study with the cpt1 mutant, it was found that phototropic differential growth is accompanied by a CPT1-independent inhibition of net growth. Kinetic investigation further indicated that a small phototropism occurs in cpt1 coleoptiles. This response, induced only transiently, was thought to be caused by the CPT1-independent growth inhibition. The 3H-indole-3-acetic acid applied to the coleoptile tip was asymmetrically distributed between the two sides of phototropically responding coleoptiles. However, no asymmetry was induced in cpt1 coleoptiles, indicating that lateral translocation of auxin occurs downstream of CPT1. It is concluded that the CPT1-dependent major phototropism of coleoptiles is achieved by lateral auxin translocation and subsequent growth redistribution.

  19. Ensuring Quality in AFRINEST and SATT

    PubMed Central

    2013-01-01

    Background: Three randomized open-label clinical trials [Simplified Antibiotic Therapy Trial (SATT) Bangladesh, SATT Pakistan and African Neonatal Sepsis Trial (AFRINEST)] were developed to test the equivalence of simplified antibiotic regimens compared with the standard regimen of 7 days of parenteral antibiotics. These trials were originally conceived and designed separately; subsequently, significant efforts were made to develop and implement a common protocol and approach. Previous articles in this supplement briefly describe the specific quality control methods used in the individual trials; this article presents additional information about the systematic approaches used to minimize threats to validity and ensure quality across the trials. Methods: A critical component of quality control for AFRINEST and SATT was striving to eliminate variation in clinical assessments and decisions regarding eligibility, enrollment and treatment outcomes. Ensuring appropriate and consistent clinical judgment was accomplished through standardized approaches applied across the trials, including training, assessment of clinical skills and refresher training. Standardized monitoring procedures were also applied across the trials, including routine (day-to-day) internal monitoring of performance and adherence to protocols, systematic external monitoring by funding agencies and external monitoring by experienced, independent trial monitors. A group of independent experts (Technical Steering Committee/Technical Advisory Group) provided regular monitoring and technical oversight for the trials. Conclusions: Harmonization of AFRINEST and SATT have helped to ensure consistency and quality of implementation, both internally and across the trials as a whole, thereby minimizing potential threats to the validity of the trials’ results. PMID:23945575

  20. Diffusion Modelling Reveals the Decision Making Processes Underlying Negative Judgement Bias in Rats

    PubMed Central

    Hales, Claire A.; Robinson, Emma S. J.; Houghton, Conor J.

    2016-01-01

    Human decision making is modified by emotional state. Rodents exhibit similar biases during interpretation of ambiguous cues that can be altered by affective state manipulations. In this study, the impact of negative affective state on judgement bias in rats was measured using an ambiguous-cue interpretation task. Acute treatment with an anxiogenic drug (FG7142), and chronic restraint stress and social isolation both induced a bias towards more negative interpretation of the ambiguous cue. The diffusion model was fit to behavioural data to allow further analysis of the underlying decision making processes. To uncover the way in which parameters vary together in relation to affective state manipulations, independent component analysis was conducted on rate of information accumulation and distances to decision threshold parameters for control data. Results from this analysis were applied to parameters from negative affective state manipulations. These projected components were compared to control components to reveal the changes in decision making processes that are due to affective state manipulations. Negative affective bias in rodents induced by either FG7142 or chronic stress is due to a combination of more negative interpretation of the ambiguous cue, reduced anticipation of the high reward and increased anticipation of the low reward. PMID:27023442

  1. Thermoelastic Stress Analysis: An NDE Tool for the Residual Stress Assessment of Metallic Alloys

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, Andrew L.; Baaklini, George Y.

    2000-01-01

    During manufacturing, certain propulsion components that will be used in a cyclic fatigue environment are fabricated to contain compressive residual stresses on their surfaces because these stresses inhibit the nucleation of cracks. Overloads and elevated temperature excursions cause the induced residual stresses to dissipate while the component is still in service, lowering its resistance to crack initiation. Research at the NASA Glenn Research Center at Lewis Field has focused on employing the Thermoelastic Stress Analysis technique (TSA, also recognized as SPATE: Stress Pattern Analysis by Thermal Emission) as a tool for monitoring the residual stress state of propulsion components. TSA is based on the fact that materials experience small temperature changes when they are compressed or expanded. When a structure is cyclically loaded (i.e., cyclically compressed and expanded), the resulting surface-temperature profile correlates to the stress state of the structure s surface. The surface-temperature variations resulting from a cyclic load are measured with an infrared camera. Traditionally, the temperature amplitude of a TSA signal has been theoretically defined to be linearly dependent on the cyclic stress amplitude. As a result, the temperature amplitude resulting from an applied cyclic stress was assumed to be independent of the cyclic mean stress.

  2. A nonlinear circuit architecture for magnetoencephalographic signal analysis.

    PubMed

    Bucolo, M; Fortuna, L; Frasca, M; La Rosa, M; Virzì, M C; Shannahoff-Khalsa, D

    2004-01-01

    The objective of this paper was to face the complex spatio-temporal dynamics shown by Magnetoencephalography (MEG) data by applying a nonlinear distributed approach for the Blind Sources Separation. The effort was to characterize and differ-entiate the phases of a yogic respiratory exercise used in the treatment of obsessive compulsive disorders. The patient performed a precise respiratory protocol, at one breath per minute for 31 minutes, with 10 minutes resting phase before and after. The two steps of classical Independent Component Approach have been performed by using a Cellular Neural Network with two sets of templates. The choice of the couple of suitable templates has been carried out using genetic algorithm optimization techniques. Performing BSS with a nonlinear distributed approach, the outputs of the CNN have been compared to the ICA ones. In all the protocol phases, the main components founded with CNN have similar trends compared with that ones obtained with ICA. Moreover, using this distributed approach, a spatial location has been associated to each component. To underline the spatio-temporal and the nonlinearly of the neural process a distributed nonlinear architecture has been proposed. This strategy has been designed in order to overcome the hypothesis of linear combination among the sources signals, that is characteristic of the ICA approach, taking advantage of the spatial information.

  3. Programmable in vivo selection of arbitrary DNA sequences.

    PubMed

    Ben Yehezkel, Tuval; Biezuner, Tamir; Linshiz, Gregory; Mazor, Yair; Shapiro, Ehud

    2012-01-01

    The extraordinary fidelity, sensory and regulatory capacity of natural intracellular machinery is generally confined to their endogenous environment. Nevertheless, synthetic bio-molecular components have been engineered to interface with the cellular transcription, splicing and translation machinery in vivo by embedding functional features such as promoters, introns and ribosome binding sites, respectively, into their design. Tapping and directing the power of intracellular molecular processing towards synthetic bio-molecular inputs is potentially a powerful approach, albeit limited by our ability to streamline the interface of synthetic components with the intracellular machinery in vivo. Here we show how a library of synthetic DNA devices, each bearing an input DNA sequence and a logical selection module, can be designed to direct its own probing and processing by interfacing with the bacterial DNA mismatch repair (MMR) system in vivo and selecting for the most abundant variant, regardless of its function. The device provides proof of concept for programmable, function-independent DNA selection in vivo and provides a unique example of a logical-functional interface of an engineered synthetic component with a complex endogenous cellular system. Further research into the design, construction and operation of synthetic devices in vivo may lead to other functional devices that interface with other complex cellular processes for both research and applied purposes.

  4. Components of Standing Postural Control Evaluated in Pediatric Balance Measures: A Scoping Review.

    PubMed

    Sibley, Kathryn M; Beauchamp, Marla K; Van Ooteghem, Karen; Paterson, Marie; Wittmeier, Kristy D

    2017-10-01

    To identify measures of standing balance validated in pediatric populations, and to determine the components of postural control captured in each tool. Electronic searches of MEDLINE, Embase, and CINAHL databases using key word combinations of postural balance/equilibrium, psychometrics/reproducibility of results/predictive value of tests, and child/pediatrics; gray literature; and hand searches. Inclusion criteria were measures with a stated objective to assess balance, with pediatric (≤18y) populations, with at least 1 psychometric evaluation, with at least 1 standing task, with a standardized protocol and evaluation criteria, and published in English. Two reviewers independently identified studies for inclusion. There were 21 measures included. Two reviewers extracted descriptive characteristics, and 2 investigators independently coded components of balance in each measure using a systems perspective for postural control, an established framework for balance in pediatric populations. Components of balance evaluated in measures were underlying motor systems (100% of measures), anticipatory postural control (72%), static stability (62%), sensory integration (52%), dynamic stability (48%), functional stability limits (24%), cognitive influences (24%), verticality (9%), and reactive postural control (0%). Assessing children's balance with valid and comprehensive measures is important for ensuring development of safe mobility and independence with functional tasks. Balance measures validated in pediatric populations to date do not comprehensively assess standing postural control and omit some key components for safe mobility and independence. Existing balance measures, that have been validated in adult populations and address some of the existing gaps in pediatric measures, warrant consideration for validation in children. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  5. Cost component analysis.

    PubMed

    Lörincz, András; Póczos, Barnabás

    2003-06-01

    In optimizations the dimension of the problem may severely, sometimes exponentially increase optimization time. Parametric function approximatiors (FAPPs) have been suggested to overcome this problem. Here, a novel FAPP, cost component analysis (CCA) is described. In CCA, the search space is resampled according to the Boltzmann distribution generated by the energy landscape. That is, CCA converts the optimization problem to density estimation. Structure of the induced density is searched by independent component analysis (ICA). The advantage of CCA is that each independent ICA component can be optimized separately. In turn, (i) CCA intends to partition the original problem into subproblems and (ii) separating (partitioning) the original optimization problem into subproblems may serve interpretation. Most importantly, (iii) CCA may give rise to high gains in optimization time. Numerical simulations illustrate the working of the algorithm.

  6. Prevalence of sarcopenia and sarcopenic obesity in older German men using recognized definitions: high accordance but low overlap!

    PubMed

    Kemmler, W; Teschler, M; Weißenfels, A; Sieber, C; Freiberger, E; von Stengel, S

    2017-06-01

    The relevance of sarcopenia and sarcopenic Obesity (SO) is rising in our aging societies. Applying recognized definitions to 965 community-dwelling Bavarian men 70 years+ resulted in a prevalence for sarcopenia between 3.7 and 4.9 and between 2.1 and 4.1% for SO. Despite this high consistency, the overlap between the definitions/approaches was <50%. The relevance of sarcopenia and sarcopenic obesity (SO) is rising steadily in the aging societies of most developed nations. However, different definitions, components, and cutoff points hinder the evaluation of the prevalence of sarcopenia and SO. The purpose of this contribution was to determine the prevalence of sarcopenia and SO in a cohort of community-dwelling German men 70+ applying established sarcopenia (European Working Group on Sarcopenia in Older People, Foundation National Institute of Health, International Working Group on Sarcopenia) and obesity definitions. Further, we addressed the overlap between the definitions. Altogether, 965 community-dwelling men 70 years and older living in Northern Bavaria, Germany, were assessed during the screening phase of the Franconian Sarcopenic Obesity project. Segmental multi-frequency bio-impedance analysis (BIA) was applied to determine weight and body composition. Applying the definitions of EWGSOP, IWGS, and FNIH, 4.9, 3.8, and 3.7% of the total cohort were classified as sarcopenic, respectively. When further applying body fat to diagnose obesity, SO prevalence in the total cohort ranged from 4.1% (EWGSOP + body fat >25%) to 2.1% (IWGS + body fat >30%). Despite the apparently high consistency of the approaches with respect to prevalence, the overlap in individual sarcopenia diagnosis between the sarcopenia definitions was rather low (<50%). The prevalence of sarcopenia and SO in community-dwelling German men 70 years+ is relatively low (<5%) independently of the definition used. However, consistency of individual sarcopenia diagnosis varies considerably between the three definitions. Since sarcopenia is now recognized as an independent condition by the International Classification of Diseases, a mandatory definition must be stated. ClinicalTrials.gov: NCT2857660.

  7. NOTE: Entropy-based automated classification of independent components separated from fMCG

    NASA Astrophysics Data System (ADS)

    Comani, S.; Srinivasan, V.; Alleva, G.; Romani, G. L.

    2007-03-01

    Fetal magnetocardiography (fMCG) is a noninvasive technique suitable for the prenatal diagnosis of the fetal heart function. Reliable fetal cardiac signals can be reconstructed from multi-channel fMCG recordings by means of independent component analysis (ICA). However, the identification of the separated components is usually accomplished by visual inspection. This paper discusses a novel automated system based on entropy estimators, namely approximate entropy (ApEn) and sample entropy (SampEn), for the classification of independent components (ICs). The system was validated on 40 fMCG datasets of normal fetuses with the gestational age ranging from 22 to 37 weeks. Both ApEn and SampEn were able to measure the stability and predictability of the physiological signals separated with ICA, and the entropy values of the three categories were significantly different at p <0.01. The system performances were compared with those of a method based on the analysis of the time and frequency content of the components. The outcomes of this study showed a superior performance of the entropy-based system, in particular for early gestation, with an overall ICs detection rate of 98.75% and 97.92% for ApEn and SampEn respectively, as against a value of 94.50% obtained with the time-frequency-based system.

  8. Quantitative evaluation of deep and shallow tissue layers' contribution to fNIRS signal using multi-distance optodes and independent component analysis.

    PubMed

    Funane, Tsukasa; Atsumori, Hirokazu; Katura, Takusige; Obata, Akiko N; Sato, Hiroki; Tanikawa, Yukari; Okada, Eiji; Kiguchi, Masashi

    2014-01-15

    To quantify the effect of absorption changes in the deep tissue (cerebral) and shallow tissue (scalp, skin) layers on functional near-infrared spectroscopy (fNIRS) signals, a method using multi-distance (MD) optodes and independent component analysis (ICA), referred to as the MD-ICA method, is proposed. In previous studies, when the signal from the shallow tissue layer (shallow signal) needs to be eliminated, it was often assumed that the shallow signal had no correlation with the signal from the deep tissue layer (deep signal). In this study, no relationship between the waveforms of deep and shallow signals is assumed, and instead, it is assumed that both signals are linear combinations of multiple signal sources, which allows the inclusion of a "shared component" (such as systemic signals) that is contained in both layers. The method also assumes that the partial optical path length of the shallow layer does not change, whereas that of the deep layer linearly increases along with the increase of the source-detector (S-D) distance. Deep- and shallow-layer contribution ratios of each independent component (IC) are calculated using the dependence of the weight of each IC on the S-D distance. Reconstruction of deep- and shallow-layer signals are performed by the sum of ICs weighted by the deep and shallow contribution ratio. Experimental validation of the principle of this technique was conducted using a dynamic phantom with two absorbing layers. Results showed that our method is effective for evaluating deep-layer contributions even if there are high correlations between deep and shallow signals. Next, we applied the method to fNIRS signals obtained on a human head with 5-, 15-, and 30-mm S-D distances during a verbal fluency task, a verbal working memory task (prefrontal area), a finger tapping task (motor area), and a tetrametric visual checker-board task (occipital area) and then estimated the deep-layer contribution ratio. To evaluate the signal separation performance of our method, we used the correlation coefficients of a laser-Doppler flowmetry (LDF) signal and a nearest 5-mm S-D distance channel signal with the shallow signal. We demonstrated that the shallow signals have a higher temporal correlation with the LDF signals and with the 5-mm S-D distance channel than the deep signals. These results show the MD-ICA method can discriminate between deep and shallow signals. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Designing a Robust Micromixer Based on Fluid Stretching

    NASA Astrophysics Data System (ADS)

    Mott, David; Gautam, Dipesh; Voth, Greg; Oran, Elaine

    2010-11-01

    A metric for measuring fluid stretching based on finite-time Lyapunov exponents is described, and the use of this metric for optimizing mixing in microfluidic components is explored. The metric is implemented within an automated design approach called the Computational Toolbox (CTB). The CTB designs components by adding geometric features, such a grooves of various shapes, to a microchannel. The transport produced by each of these features in isolation was pre-computed and stored as an "advection map" for that feature, and the flow through a composite geometry that combines these features is calculated rapidly by applying the corresponding maps in sequence. A genetic algorithm search then chooses the feature combination that optimizes a user-specified metric. Metrics based on the variance of concentration generally require the user to specify the fluid distributions at inflow, which leads to different mixer designs for different inflow arrangements. The stretching metric is independent of the fluid arrangement at inflow. Mixers designed using the stretching metric are compared to those designed using a variance of concentration metric and show excellent performance across a variety of inflow distributions and diffusivities.

  10. Process monitored spectrophotometric titration coupled with chemometrics for simultaneous determination of mixtures of weak acids.

    PubMed

    Liao, Lifu; Yang, Jing; Yuan, Jintao

    2007-05-15

    A new spectrophotometric titration method coupled with chemometrics for the simultaneous determination of mixtures of weak acids has been developed. In this method, the titrant is a mixture of sodium hydroxide and an acid-base indicator, and the indicator is used to monitor the titration process. In a process of titration, both the added volume of titrant and the solution acidity at each titration point can be obtained simultaneously from an absorption spectrum by least square algorithm, and then the concentration of each component in the mixture can be obtained from the titration curves by principal component regression. The method only needs the information of absorbance spectra to obtain the analytical results, and is free of volumetric measurements. The analyses are independent of titration end point and do not need the accurate values of dissociation constants of the indicator and the acids. The method has been applied to the simultaneous determination of the mixtures of benzoic acid and salicylic acid, and the mixtures of phenol, o-chlorophenol and p-chlorophenol with satisfactory results.

  11. Organogenesis of the Ovary

    PubMed Central

    Ditewig, Amy C

    2005-01-01

    The general perspective of ovary organogenesis is that the ovary is the default organ which develops in the absence of testis-promoting factors. Testis formation, on the other hand, is a male-specific event promoted by active components that override the default ovarian process. However, when comparing the sex determination mechanism among different vertebrate species, it is apparent that this default view of ovary formation can only be applied to mammals. In species such as reptiles and birds, ovary formation is an active process stimulated by estrogen. Remnants of this estrogen-dominant pathway are still present in marsupials, a close relative of eutherian mammals, like humans and mice. Although initial formation of the mammalian ovary has become strictly regulated by genetic components and is therefore independent of estrogen, the feminizing effect of estrogen regains its command in adult ovaries. When estrogen production, or its signaling, is inhibited, transdifferentiation of ovarian tissues to testis structures occur in adult females. Taken together, these observations prompt us to reconsider the process of ovary organogenesis as the default organ and question if testis development is actually the default pathway. PMID:19521565

  12. Evaluating visibility of age spot and freckle based on simulated spectral reflectance distribution and facial color image

    NASA Astrophysics Data System (ADS)

    Hirose, Misa; Toyota, Saori; Tsumura, Norimichi

    2018-02-01

    In this research, we evaluate the visibility of age spot and freckle with changing the blood volume based on simulated spectral reflectance distribution and the actual facial color images, and compare these results. First, we generate three types of spatial distribution of age spot and freckle in patch-like images based on the simulated spectral reflectance. The spectral reflectance is simulated using Monte Carlo simulation of light transport in multi-layered tissue. Next, we reconstruct the facial color image with changing the blood volume. We acquire the concentration distribution of melanin, hemoglobin and shading components by applying the independent component analysis on a facial color image. We reproduce images using the obtained melanin and shading concentration and the changed hemoglobin concentration. Finally, we evaluate the visibility of pigmentations using simulated spectral reflectance distribution and facial color images. In the result of simulated spectral reflectance distribution, we found that the visibility became lower as the blood volume increases. However, we can see that a specific blood volume reduces the visibility of the actual pigmentations from the result of the facial color images.

  13. A comparison of PCA/ICA for data preprocessing in remote sensing imagery classification

    NASA Astrophysics Data System (ADS)

    He, Hui; Yu, Xianchuan

    2005-10-01

    In this paper a performance comparison of a variety of data preprocessing algorithms in remote sensing image classification is presented. These selected algorithms are principal component analysis (PCA) and three different independent component analyses, ICA (Fast-ICA (Aapo Hyvarinen, 1999), Kernel-ICA (KCCA and KGV (Bach & Jordan, 2002), EFFICA (Aiyou Chen & Peter Bickel, 2003). These algorithms were applied to a remote sensing imagery (1600×1197), obtained from Shunyi, Beijing. For classification, a MLC method is used for the raw and preprocessed data. The results show that classification with the preprocessed data have more confident results than that with raw data and among the preprocessing algorithms, ICA algorithms improve on PCA and EFFICA performs better than the others. The convergence of these ICA algorithms (for data points more than a million) are also studied, the result shows EFFICA converges much faster than the others. Furthermore, because EFFICA is a one-step maximum likelihood estimate (MLE) which reaches asymptotic Fisher efficiency (EFFICA), it computers quite small so that its demand of memory come down greatly, which settled the "out of memory" problem occurred in the other algorithms.

  14. Effect of noise in principal component analysis with an application to ozone pollution

    NASA Astrophysics Data System (ADS)

    Tsakiri, Katerina G.

    This thesis analyzes the effect of independent noise in principal components of k normally distributed random variables defined by a covariance matrix. We prove that the principal components as well as the canonical variate pairs determined from joint distribution of original sample affected by noise can be essentially different in comparison with those determined from the original sample. However when the differences between the eigenvalues of the original covariance matrix are sufficiently large compared to the level of the noise, the effect of noise in principal components and canonical variate pairs proved to be negligible. The theoretical results are supported by simulation study and examples. Moreover, we compare our results about the eigenvalues and eigenvectors in the two dimensional case with other models examined before. This theory can be applied in any field for the decomposition of the components in multivariate analysis. One application is the detection and prediction of the main atmospheric factor of ozone concentrations on the example of Albany, New York. Using daily ozone, solar radiation, temperature, wind speed and precipitation data, we determine the main atmospheric factor for the explanation and prediction of ozone concentrations. A methodology is described for the decomposition of the time series of ozone and other atmospheric variables into the global term component which describes the long term trend and the seasonal variations, and the synoptic scale component which describes the short term variations. By using the Canonical Correlation Analysis, we show that solar radiation is the only main factor between the atmospheric variables considered here for the explanation and prediction of the global and synoptic scale component of ozone. The global term components are modeled by a linear regression model, while the synoptic scale components by a vector autoregressive model and the Kalman filter. The coefficient of determination, R2, for the prediction of the synoptic scale ozone component was found to be the highest when we consider the synoptic scale component of the time series for solar radiation and temperature. KEY WORDS: multivariate analysis; principal component; canonical variate pairs; eigenvalue; eigenvector; ozone; solar radiation; spectral decomposition; Kalman filter; time series prediction

  15. Are There Gender Differences in Emotion Comprehension? Analysis of the Test of Emotion Comprehension.

    PubMed

    Fidalgo, Angel M; Tenenbaum, Harriet R; Aznar, Ana

    2018-01-01

    This article examines whether there are gender differences in understanding the emotions evaluated by the Test of Emotion Comprehension (TEC). The TEC provides a global index of emotion comprehension in children 3-11 years of age, which is the sum of the nine components that constitute emotion comprehension: (1) recognition of facial expressions, (2) understanding of external causes of emotions, (3) understanding of desire-based emotions, (4) understanding of belief-based emotions, (5) understanding of the influence of a reminder on present emotional states, (6) understanding of the possibility to regulate emotional states, (7) understanding of the possibility of hiding emotional states, (8) understanding of mixed emotions, and (9) understanding of moral emotions. We used the answers to the TEC given by 172 English girls and 181 boys from 3 to 8 years of age. First, the nine components into which the TEC is subdivided were analysed for differential item functioning (DIF), taking gender as the grouping variable. To evaluate DIF, the Mantel-Haenszel method and logistic regression analysis were used applying the Educational Testing Service DIF classification criteria. The results show that the TEC did not display gender DIF. Second, when absence of DIF had been corroborated, it was analysed for differences between boys and girls in the total TEC score and its components controlling for age. Our data are compatible with the hypothesis of independence between gender and level of comprehension in 8 of the 9 components of the TEC. Several hypotheses are discussed that could explain the differences found between boys and girls in the belief component. Given that the Belief component is basically a false belief task, the differences found seem to support findings in the literature indicating that girls perform better on this task.

  16. HPSEC reveals ubiquitous components in fluorescent dissolved organic matter across aquatic ecosystems

    NASA Astrophysics Data System (ADS)

    Wünsch, Urban; Murphy, Kathleen; Stedmon, Colin

    2017-04-01

    Absorbance and fluorescence spectroscopy are efficient tools for tracing the supply, turnover and fate of dissolved organic matter (DOM). The fluorescent fraction of DOM (FDOM) can be characterized by measuring excitation-emission matrices and decomposing the combined fluorescence signal into independent underlying fraction using Parallel Factor Analysis (PARAFAC). Comparisons between studies, facilitated by the OpenFluor database, reveal highly similar components across different aquatic systems and between studies. To obtain PARAFAC models in sufficient quality, scientists traditionally rely on analyzing dozens to hundreds of samples spanning environmental gradients. A cross-validation of this approach using different analytical tools has not yet been accomplished. In this study, we applied high-performance size-exclusion chromatography (HPSEC) to characterize the size-dependent optical properties of dissolved organic matter of samples from contrasting aquatic environments with online absorbance and fluorescence detectors. Each sample produced hundreds of absorbance spectra of colored DOM (CDOM) and hundreds of matrices of FDOM intensities. This approach facilitated the detailed study of CDOM spectral slopes and further allowed the reliable implementation of PARAFAC on individual samples. This revealed a high degree of overlap in the spectral properties of components identified from different sites. Moreover, many of the model components showed significant spectral congruence with spectra in the OpenFluor database. Our results provide evidence of the presence of ubiquitous FDOM components and additionally provide further evidence for the supramolecular assembly hypothesis. They demonstrate the potential for HPSEC to provide a wealth of new insights into the relationship between optical and chemical properties of DOM.

  17. Biostatistics Series Module 10: Brief Overview of Multivariate Methods.

    PubMed

    Hazra, Avijit; Gogtay, Nithya

    2017-01-01

    Multivariate analysis refers to statistical techniques that simultaneously look at three or more variables in relation to the subjects under investigation with the aim of identifying or clarifying the relationships between them. These techniques have been broadly classified as dependence techniques, which explore the relationship between one or more dependent variables and their independent predictors, and interdependence techniques, that make no such distinction but treat all variables equally in a search for underlying relationships. Multiple linear regression models a situation where a single numerical dependent variable is to be predicted from multiple numerical independent variables. Logistic regression is used when the outcome variable is dichotomous in nature. The log-linear technique models count type of data and can be used to analyze cross-tabulations where more than two variables are included. Analysis of covariance is an extension of analysis of variance (ANOVA), in which an additional independent variable of interest, the covariate, is brought into the analysis. It tries to examine whether a difference persists after "controlling" for the effect of the covariate that can impact the numerical dependent variable of interest. Multivariate analysis of variance (MANOVA) is a multivariate extension of ANOVA used when multiple numerical dependent variables have to be incorporated in the analysis. Interdependence techniques are more commonly applied to psychometrics, social sciences and market research. Exploratory factor analysis and principal component analysis are related techniques that seek to extract from a larger number of metric variables, a smaller number of composite factors or components, which are linearly related to the original variables. Cluster analysis aims to identify, in a large number of cases, relatively homogeneous groups called clusters, without prior information about the groups. The calculation intensive nature of multivariate analysis has so far precluded most researchers from using these techniques routinely. The situation is now changing with wider availability, and increasing sophistication of statistical software and researchers should no longer shy away from exploring the applications of multivariate methods to real-life data sets.

  18. Automatic identification of resting state networks: an extended version of multiple template-matching

    NASA Astrophysics Data System (ADS)

    Guaje, Javier; Molina, Juan; Rudas, Jorge; Demertzi, Athena; Heine, Lizette; Tshibanda, Luaba; Soddu, Andrea; Laureys, Steven; Gómez, Francisco

    2015-12-01

    Functional magnetic resonance imaging in resting state (fMRI-RS) constitutes an informative protocol to investigate several pathological and pharmacological conditions. A common approach to study this data source is through the analysis of changes in the so called resting state networks (RSNs). These networks correspond to well-defined functional entities that have been associated to different low and high brain order functions. RSNs may be characterized by using Independent Component Analysis (ICA). ICA provides a decomposition of the fMRI-RS signal into sources of brain activity, but it lacks of information about the nature of the signal, i.e., if the source is artifactual or not. Recently, a multiple template-matching (MTM) approach was proposed to automatically recognize RSNs in a set of Independent Components (ICs). This method provides valuable information to assess subjects at individual level. Nevertheless, it lacks of a mechanism to quantify how much certainty there is about the existence/absence of each network. This information may be important for the assessment of patients with severely damaged brains, in which RSNs may be greatly affected as a result of the pathological condition. In this work we propose a set of changes to the original MTM that improves the RSNs recognition task and also extends the functionality of the method. The key points of this improvement is a standardization strategy and a modification of method's constraints that adds flexibility to the approach. Additionally, we also introduce an analysis to the trustworthiness measurement of each RSN obtained by using template-matching approach. This analysis consists of a thresholding strategy applied over the computed Goodness-of-Fit (GOF) between the set of templates and the ICs. The proposed method was validated on 2 two independent studies (Baltimore, 23 healthy subjects and Liege, 27 healthy subjects) with different configurations of MTM. Results suggest that the method will provide complementary information for characterization of RSNs at individual level.

  19. Multichannel techniques for motion artifacts removal from electrocardiographic signals.

    PubMed

    Milanesi, M; Martini, N; Vanello, N; Positano, V; Santarelli, M F; Paradiso, R; De Rossi, D; Landini, L

    2006-01-01

    Electrocardiographic (ECG) signals are affected by several kinds of artifacts, that may hide vital signs of interest. Motion artifacts, due to the motion of the electrodes in relation to patient skin, are particularly frequent in bioelectrical signals acquired by wearable systems. In this paper we propose different approaches in order to get rid of motion confounds. The first approach we follow starts from measuring electrode motion provided by an accelerometer placed on the electrode and use this measurement in an adaptive filtering system to remove the noise present in the ECG. The second approach is based on independent component analysis methods applied to multichannel ECG recordings; we propose to use both instantaneous model and a frequency domain implementation of the convolutive model that accounts for different paths of the source signals to the electrodes.

  20. Separation of Atmospheric and Surface Spectral Features in Mars Global Surveyor Thermal Emission Spectrometer (TES) Spectra

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.; Bandfield, Joshua L.; Christensen, Philip R.

    2000-01-01

    We present two algorithms for the separation of spectral features caused by atmospheric and surface components in Thermal Emission Spectrometer (TES) data. One algorithm uses radiative transfer and successive least squares fitting to find spectral shapes first for atmospheric dust, then for water-ice aerosols, and then, finally, for surface emissivity. A second independent algorithm uses a combination of factor analysis, target transformation, and deconvolution to simultaneously find dust, water ice, and surface emissivity spectral shapes. Both algorithms have been applied to TES spectra, and both find very similar atmospheric and surface spectral shapes. For TES spectra taken during aerobraking and science phasing periods in nadir-geometry these two algorithms give meaningful and usable surface emissivity spectra that can be used for mineralogical identification.

  1. A Just-in-Time Learning based Monitoring and Classification Method for Hyper/Hypocalcemia Diagnosis.

    PubMed

    Peng, Xin; Tang, Yang; He, Wangli; Du, Wenli; Qian, Feng

    2017-01-20

    This study focuses on the classification and pathological status monitoring of hyper/hypo-calcemia in the calcium regulatory system. By utilizing the Independent Component Analysis (ICA) mixture model, samples from healthy patients are collected, diagnosed, and subsequently classified according to their underlying behaviors, characteristics, and mechanisms. Then, a Just-in-Time Learning (JITL) has been employed in order to estimate the diseased status dynamically. In terms of JITL, for the purpose of the construction of an appropriate similarity index to identify relevant datasets, a novel similarity index based on the ICA mixture model is proposed in this paper to improve online model quality. The validity and effectiveness of the proposed approach have been demonstrated by applying it to the calcium regulatory system under various hypocalcemic and hypercalcemic diseased conditions.

  2. Spatial-time-state fusion algorithm for defect detection through eddy current pulsed thermography

    NASA Astrophysics Data System (ADS)

    Xiao, Xiang; Gao, Bin; Woo, Wai Lok; Tian, Gui Yun; Xiao, Xiao Ting

    2018-05-01

    Eddy Current Pulsed Thermography (ECPT) has received extensive attention due to its high sensitive of detectability on surface and subsurface cracks. However, it remains as a difficult challenge in unsupervised detection as to identify defects without knowing any prior knowledge. This paper presents a spatial-time-state features fusion algorithm to obtain fully profile of the defects by directional scanning. The proposed method is intended to conduct features extraction by using independent component analysis (ICA) and automatic features selection embedding genetic algorithm. Finally, the optimal feature of each step is fused to obtain defects reconstruction by applying common orthogonal basis extraction (COBE) method. Experiments have been conducted to validate the study and verify the efficacy of the proposed method on blind defect detection.

  3. Clean image synthesis and target numerical marching for optical imaging with backscattering light

    PubMed Central

    Pu, Yang; Wang, Wubao

    2011-01-01

    Scanning backscattering imaging and independent component analysis (ICA) are used to probe targets hidden in the subsurface of a turbid medium. A new correction procedure is proposed and used to synthesize a “clean” image of a homogeneous host medium numerically from a set of raster-scanned “dirty” backscattering images of the medium with embedded targets. The independent intensity distributions on the surface of the medium corresponding to individual targets are then unmixed using ICA of the difference between the set of dirty images and the clean image. The target positions are localized by a novel analytical method, which marches the target to the surface of the turbid medium until a match with the retrieved independent component is accomplished. The unknown surface property of the turbid medium is automatically accounted for by this method. Employing clean image synthesis and target numerical marching, three-dimensional (3D) localization of objects embedded inside a turbid medium using independent component analysis in a backscattering geometry is demonstrated for the first time, using as an example, imaging a small piece of cancerous prostate tissue embedded in a host consisting of normal prostate tissue. PMID:21483608

  4. Magnetic Inflation and Stellar Mass. I. Revised Parameters for the Component Stars of the Kepler Low-mass Eclipsing Binary T-Cyg1-12664

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Eunkyu; Muirhead, Philip S.; Swift, Jonathan J.

    Several low-mass eclipsing binary stars show larger than expected radii for their measured mass, metallicity, and age. One proposed mechanism for this radius inflation involves inhibited internal convection and starspots caused by strong magnetic fields. One particular eclipsing binary, T-Cyg1-12664, has proven confounding to this scenario. Çakırlı et al. measured a radius for the secondary component that is twice as large as model predictions for stars with the same mass and age, but a primary mass that is consistent with predictions. Iglesias-Marzoa et al. independently measured the radii and masses of the component stars and found that the radius ofmore » the secondary is not in fact inflated with respect to models, but that the primary is, which is consistent with the inhibited convection scenario. However, in their mass determinations, Iglesias-Marzoa et al. lacked independent radial velocity measurements for the secondary component due to the star’s faintness at optical wavelengths. The secondary component is especially interesting, as its purported mass is near the transition from partially convective to a fully convective interior. In this article, we independently determined the masses and radii of the component stars of T-Cyg1-12664 using archival Kepler data and radial velocity measurements of both component stars obtained with IGRINS on the Discovery Channel Telescope and NIRSPEC and HIRES on the Keck Telescopes. We show that neither of the component stars is inflated with respect to models. Our results are broadly consistent with modern stellar evolutionary models for main-sequence M dwarf stars and do not require inhibited convection by magnetic fields to account for the stellar radii.« less

  5. Crack detection using resonant ultrasound spectroscopy

    DOEpatents

    Migliori, A.; Bell, T.M.; Rhodes, G.W.

    1994-10-04

    Method and apparatus are provided for detecting crack-like flaws in components. A plurality of exciting frequencies are generated and applied to a component in a dry condition to obtain a first ultrasonic spectrum of the component. The component is then wet with a selected liquid to penetrate any crack-like flaws in the component. The plurality of exciting frequencies are again applied to the component and a second ultrasonic spectrum of the component is obtained. The wet and dry ultrasonic spectra are then analyzed to determine the second harmonic components in each of the ultrasonic resonance spectra and the second harmonic components are compared to ascertain the presence of crack-like flaws in the component. 5 figs.

  6. Crack detection using resonant ultrasound spectroscopy

    DOEpatents

    Migliori, Albert; Bell, Thomas M.; Rhodes, George W.

    1994-01-01

    Method and apparatus are provided for detecting crack-like flaws in components. A plurality of exciting frequencies are generated and applied to a component in a dry condition to obtain a first ultrasonic spectrum of the component. The component is then wet with a selected liquid to penetrate any crack-like flaws in the component. The plurality of exciting frequencies are again applied to the component and a second ultrasonic spectrum of the component is obtained. The wet and dry ultrasonic spectra are then analyzed to determine the second harmonic components in each of the ultrasonic resonance spectra and the second harmonic components are compared to ascertain the presence of crack-like flaws in the component.

  7. 45 CFR 1309.44 - Independent analysis.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Independent analysis. 1309.44 Section 1309.44... § 1309.44 Independent analysis. (a) The responsible HHS official may direct the grantee applying for funds to acquire or make major renovations to a facility to obtain an independent analysis of the cost...

  8. 45 CFR 1309.44 - Independent analysis.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 4 2011-10-01 2011-10-01 false Independent analysis. 1309.44 Section 1309.44... § 1309.44 Independent analysis. (a) The responsible HHS official may direct the grantee applying for funds to acquire or make major renovations to a facility to obtain an independent analysis of the cost...

  9. Identification of statistically independent climatic pattern in GRACE and hydrological model data over West-Africa

    NASA Astrophysics Data System (ADS)

    Kusche, J.; Forootan, E.; Eicker, A.; Hoffmann-Dobrev, H.

    2012-04-01

    West-African countries have been exposed to changes in rainfall patterns over the last decades, including a significant negative trend. This causes adverse effects on water resources, for instance reduced freshwater availability, and changes in the frequency, duration and magnitude of droughts and floods. Extracting the main patterns of water storage change in West Africa from remote sensing and linking them to climate variability, is therefore an essential step to understand the hydrological aspects of the region. In this study, the higher order statistical method of Independent Component Analysis (ICA) is employed to extract statistically independent water storage patterns from monthly Gravity Recovery And Climate Experiment (GRACE), from the WaterGAP Global Hydrology Model (WGHM) and from Tropical Rainfall Measuring Mission (TRMM) products over West Africa, for the period 2002-2012. Then, to reveal the influences of climatic teleconnections on the individual patterns, these results were correlated to the El Nino-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) indices. To study the predictability of water storage changes, advanced statistical methods were applied on the main independent Sea Surface Temperature (SST) patterns over the Atlantic and Indian Oceans for the period 2002-2012 and the ICA results. Our results show a water storage decrease over the coastal regions of West Africa (including Sierra Leone, Liberia, Togo and Nigeria), associated with rainfall decrease. The comparison between GRACE estimations and WGHM results indicates some inconsistencies that underline the importance of forcing data for hydrological modeling of West Africa. Keywords: West Africa; GRACE-derived water storage; ICA; ENSO; IOD

  10. Resonant nonlinear ultrasound spectroscopy

    DOEpatents

    Johnson, Paul A.; TenCate, James A.; Guyer, Robert A.; Van Den Abeele, Koen E. A.

    2001-01-01

    Components with defects are identified from the response to strains applied at acoustic and ultrasound frequencies. The relative resonance frequency shift .vertline..DELTA..function./.function..sub.0.vertline., is determined as a function of applied strain amplitude for an acceptable component, where .function..sub.0 is the frequency of the resonance peak at the lowest amplitude of applied strain and .DELTA..function. is the frequency shift of the resonance peak of a selected mode to determine a reference relationship. Then, the relative resonance frequency shift .vertline..DELTA..function./.function..sub.0 is determined as a function of applied strain for a component under test, where fo .function..sub.0 the frequency of the resonance peak at the lowest amplitude of applied strain and .DELTA..function. is the frequency shift of the resonance peak to determine a quality test relationship. The reference relationship is compared with the quality test relationship to determine the presence of defects in the component under test.

  11. Evaluation of the impact of deep learning architectural components selection and dataset size on a medical imaging task

    NASA Astrophysics Data System (ADS)

    Dutta, Sandeep; Gros, Eric

    2018-03-01

    Deep Learning (DL) has been successfully applied in numerous fields fueled by increasing computational power and access to data. However, for medical imaging tasks, limited training set size is a common challenge when applying DL. This paper explores the applicability of DL to the task of classifying a single axial slice from a CT exam into one of six anatomy regions. A total of 29000 images selected from 223 CT exams were manually labeled for ground truth. An additional 54 exams were labeled and used as an independent test set. The network architecture developed for this application is composed of 6 convolutional layers and 2 fully connected layers with RELU non-linear activations between each layer. Max-pooling was used after every second convolutional layer, and a softmax layer was used at the end. Given this base architecture, the effect of inclusion of network architecture components such as Dropout and Batch Normalization on network performance and training is explored. The network performance as a function of training and validation set size is characterized by training each network architecture variation using 5,10,20,40,50 and 100% of the available training data. The performance comparison of the various network architectures was done for anatomy classification as well as two computer vision datasets. The anatomy classifier accuracy varied from 74.1% to 92.3% in this study depending on the training size and network layout used. Dropout layers improved the model accuracy for all training sizes.

  12. Form Follows Function: A Model for Clinical Supervision of Genetic Counseling Students.

    PubMed

    Wherley, Colleen; Veach, Patricia McCarthy; Martyr, Meredith A; LeRoy, Bonnie S

    2015-10-01

    Supervision plays a vital role in genetic counselor training, yet models describing genetic counseling supervision processes and outcomes are lacking. This paper describes a proposed supervision model intended to provide a framework to promote comprehensive and consistent clinical supervision training for genetic counseling students. Based on the principle "form follows function," the model reflects and reinforces McCarthy Veach et al.'s empirically derived model of genetic counseling practice - the "Reciprocal Engagement Model" (REM). The REM consists of mutually interactive educational, relational, and psychosocial components. The Reciprocal Engagement Model of Supervision (REM-S) has similar components and corresponding tenets, goals, and outcomes. The 5 REM-S tenets are: Learning and applying genetic information are key; Relationship is integral to genetic counseling supervision; Student autonomy must be supported; Students are capable; and Student emotions matter. The REM-S outcomes are: Student understands and applies information to independently provide effective services, develop professionally, and engage in self-reflective practice. The 16 REM-S goals are informed by the REM of genetic counseling practice and supported by prior literature. A review of models in medicine and psychology confirms the REM-S contains supervision elements common in healthcare fields, while remaining unique to genetic counseling. The REM-S shows promise for enhancing genetic counselor supervision training and practice and for promoting research on clinical supervision. The REM-S is presented in detail along with specific examples and training and research suggestions.

  13. An efficient and robust 3D mesh compression based on 3D watermarking and wavelet transform

    NASA Astrophysics Data System (ADS)

    Zagrouba, Ezzeddine; Ben Jabra, Saoussen; Didi, Yosra

    2011-06-01

    The compression and watermarking of 3D meshes are very important in many areas of activity including digital cinematography, virtual reality as well as CAD design. However, most studies on 3D watermarking and 3D compression are done independently. To verify a good trade-off between protection and a fast transfer of 3D meshes, this paper proposes a new approach which combines 3D mesh compression with mesh watermarking. This combination is based on a wavelet transformation. In fact, the used compression method is decomposed to two stages: geometric encoding and topologic encoding. The proposed approach consists to insert a signature between these two stages. First, the wavelet transformation is applied to the original mesh to obtain two components: wavelets coefficients and a coarse mesh. Then, the geometric encoding is done on these two components. The obtained coarse mesh will be marked using a robust mesh watermarking scheme. This insertion into coarse mesh allows obtaining high robustness to several attacks. Finally, the topologic encoding is applied to the marked coarse mesh to obtain the compressed mesh. The combination of compression and watermarking permits to detect the presence of signature after a compression of the marked mesh. In plus, it allows transferring protected 3D meshes with the minimum size. The experiments and evaluations show that the proposed approach presents efficient results in terms of compression gain, invisibility and robustness of the signature against of many attacks.

  14. Multivariate pattern dependence

    PubMed Central

    Saxe, Rebecca

    2017-01-01

    When we perform a cognitive task, multiple brain regions are engaged. Understanding how these regions interact is a fundamental step to uncover the neural bases of behavior. Most research on the interactions between brain regions has focused on the univariate responses in the regions. However, fine grained patterns of response encode important information, as shown by multivariate pattern analysis. In the present article, we introduce and apply multivariate pattern dependence (MVPD): a technique to study the statistical dependence between brain regions in humans in terms of the multivariate relations between their patterns of responses. MVPD characterizes the responses in each brain region as trajectories in region-specific multidimensional spaces, and models the multivariate relationship between these trajectories. We applied MVPD to the posterior superior temporal sulcus (pSTS) and to the fusiform face area (FFA), using a searchlight approach to reveal interactions between these seed regions and the rest of the brain. Across two different experiments, MVPD identified significant statistical dependence not detected by standard functional connectivity. Additionally, MVPD outperformed univariate connectivity in its ability to explain independent variance in the responses of individual voxels. In the end, MVPD uncovered different connectivity profiles associated with different representational subspaces of FFA: the first principal component of FFA shows differential connectivity with occipital and parietal regions implicated in the processing of low-level properties of faces, while the second and third components show differential connectivity with anterior temporal regions implicated in the processing of invariant representations of face identity. PMID:29155809

  15. Application of time series analysis on molecular dynamics simulations of proteins: a study of different conformational spaces by principal component analysis.

    PubMed

    Alakent, Burak; Doruker, Pemra; Camurdan, Mehmet C

    2004-09-08

    Time series analysis is applied on the collective coordinates obtained from principal component analysis of independent molecular dynamics simulations of alpha-amylase inhibitor tendamistat and immunity protein of colicin E7 based on the Calpha coordinates history. Even though the principal component directions obtained for each run are considerably different, the dynamics information obtained from these runs are surprisingly similar in terms of time series models and parameters. There are two main differences in the dynamics of the two proteins: the higher density of low frequencies and the larger step sizes for the interminima motions of colicin E7 than those of alpha-amylase inhibitor, which may be attributed to the higher number of residues of colicin E7 and/or the structural differences of the two proteins. The cumulative density function of the low frequencies in each run conforms to the expectations from the normal mode analysis. When different runs of alpha-amylase inhibitor are projected on the same set of eigenvectors, it is found that principal components obtained from a certain conformational region of a protein has a moderate explanation power in other conformational regions and the local minima are similar to a certain extent, while the height of the energy barriers in between the minima significantly change. As a final remark, time series analysis tools are further exploited in this study with the motive of explaining the equilibrium fluctuations of proteins. Copyright 2004 American Institute of Physics

  16. Application of time series analysis on molecular dynamics simulations of proteins: A study of different conformational spaces by principal component analysis

    NASA Astrophysics Data System (ADS)

    Alakent, Burak; Doruker, Pemra; Camurdan, Mehmet C.

    2004-09-01

    Time series analysis is applied on the collective coordinates obtained from principal component analysis of independent molecular dynamics simulations of α-amylase inhibitor tendamistat and immunity protein of colicin E7 based on the Cα coordinates history. Even though the principal component directions obtained for each run are considerably different, the dynamics information obtained from these runs are surprisingly similar in terms of time series models and parameters. There are two main differences in the dynamics of the two proteins: the higher density of low frequencies and the larger step sizes for the interminima motions of colicin E7 than those of α-amylase inhibitor, which may be attributed to the higher number of residues of colicin E7 and/or the structural differences of the two proteins. The cumulative density function of the low frequencies in each run conforms to the expectations from the normal mode analysis. When different runs of α-amylase inhibitor are projected on the same set of eigenvectors, it is found that principal components obtained from a certain conformational region of a protein has a moderate explanation power in other conformational regions and the local minima are similar to a certain extent, while the height of the energy barriers in between the minima significantly change. As a final remark, time series analysis tools are further exploited in this study with the motive of explaining the equilibrium fluctuations of proteins.

  17. The comparison of robust partial least squares regression with robust principal component regression on a real

    NASA Astrophysics Data System (ADS)

    Polat, Esra; Gunay, Suleyman

    2013-10-01

    One of the problems encountered in Multiple Linear Regression (MLR) is multicollinearity, which causes the overestimation of the regression parameters and increase of the variance of these parameters. Hence, in case of multicollinearity presents, biased estimation procedures such as classical Principal Component Regression (CPCR) and Partial Least Squares Regression (PLSR) are then performed. SIMPLS algorithm is the leading PLSR algorithm because of its speed, efficiency and results are easier to interpret. However, both of the CPCR and SIMPLS yield very unreliable results when the data set contains outlying observations. Therefore, Hubert and Vanden Branden (2003) have been presented a robust PCR (RPCR) method and a robust PLSR (RPLSR) method called RSIMPLS. In RPCR, firstly, a robust Principal Component Analysis (PCA) method for high-dimensional data on the independent variables is applied, then, the dependent variables are regressed on the scores using a robust regression method. RSIMPLS has been constructed from a robust covariance matrix for high-dimensional data and robust linear regression. The purpose of this study is to show the usage of RPCR and RSIMPLS methods on an econometric data set, hence, making a comparison of two methods on an inflation model of Turkey. The considered methods have been compared in terms of predictive ability and goodness of fit by using a robust Root Mean Squared Error of Cross-validation (R-RMSECV), a robust R2 value and Robust Component Selection (RCS) statistic.

  18. Cortical networks involved in visual awareness independent of visual attention.

    PubMed

    Webb, Taylor W; Igelström, Kajsa M; Schurger, Aaron; Graziano, Michael S A

    2016-11-29

    It is now well established that visual attention, as measured with standard spatial attention tasks, and visual awareness, as measured by report, can be dissociated. It is possible to attend to a stimulus with no reported awareness of the stimulus. We used a behavioral paradigm in which people were aware of a stimulus in one condition and unaware of it in another condition, but the stimulus drew a similar amount of spatial attention in both conditions. The paradigm allowed us to test for brain regions active in association with awareness independent of level of attention. Participants performed the task in an MRI scanner. We looked for brain regions that were more active in the aware than the unaware trials. The largest cluster of activity was obtained in the temporoparietal junction (TPJ) bilaterally. Local independent component analysis (ICA) revealed that this activity contained three distinct, but overlapping, components: a bilateral, anterior component; a left dorsal component; and a right dorsal component. These components had brain-wide functional connectivity that partially overlapped the ventral attention network and the frontoparietal control network. In contrast, no significant activity in association with awareness was found in the banks of the intraparietal sulcus, a region connected to the dorsal attention network and traditionally associated with attention control. These results show the importance of separating awareness and attention when testing for cortical substrates. They are also consistent with a recent proposal that awareness is associated with ventral attention areas, especially in the TPJ.

  19. Electron beam control for barely separated beams

    DOEpatents

    Douglas, David R.; Ament, Lucas J. P.

    2017-04-18

    A method for achieving independent control of multiple beams in close proximity to one another, such as in a multi-pass accelerator where coaxial beams are at different energies, but moving on a common axis, and need to be split into spatially separated beams for efficient recirculation transport. The method for independent control includes placing a magnet arrangement in the path of the barely separated beams with the magnet arrangement including at least two multipole magnets spaced closely together and having a multipole distribution including at least one odd multipole and one even multipole. The magnetic fields are then tuned to cancel out for a first of the barely separated beams to allow independent control of the second beam with common magnets. The magnetic fields may be tuned to cancel out either the dipole component or tuned to cancel out the quadrupole component in order to independently control the separate beams.

  20. A Local Learning Rule for Independent Component Analysis

    PubMed Central

    Isomura, Takuya; Toyoizumi, Taro

    2016-01-01

    Humans can separately recognize independent sources when they sense their superposition. This decomposition is mathematically formulated as independent component analysis (ICA). While a few biologically plausible learning rules, so-called local learning rules, have been proposed to achieve ICA, their performance varies depending on the parameters characterizing the mixed signals. Here, we propose a new learning rule that is both easy to implement and reliable. Both mathematical and numerical analyses confirm that the proposed rule outperforms other local learning rules over a wide range of parameters. Notably, unlike other rules, the proposed rule can separate independent sources without any preprocessing, even if the number of sources is unknown. The successful performance of the proposed rule is then demonstrated using natural images and movies. We discuss the implications of this finding for our understanding of neuronal information processing and its promising applications to neuromorphic engineering. PMID:27323661

  1. Nanomaterial Case Study: A Comparison of Multiwalled Carbon Nanotube and Decabromodiphenyl Ether Flame-Retardant Coatings Applied to Upholstery Textiles (Independent Peer Review Draft)

    EPA Science Inventory

    This Independent Peer Review Draft document presents a case study of multiwalled carbon nanotubes (MWCNTs); it focuses on the specific example of MWCNTs as used in flame-retardant coatings applied to upholstery textiles. This case study is organized around the comprehensive envir...

  2. Skp1 Independent Function of Cdc53/Cul1 in F-box Protein Homeostasis.

    PubMed

    Mathur, Radhika; Yen, James L; Kaiser, Peter

    2015-12-01

    Abundance of substrate receptor subunits of Cullin-RING ubiquitin ligases (CRLs) is tightly controlled to maintain the full repertoire of CRLs. Unbalanced levels can lead to sequestration of CRL core components by a few overabundant substrate receptors. Numerous diseases, including cancer, have been associated with misregulation of substrate receptor components, particularly for the largest class of CRLs, the SCF ligases. One relevant mechanism that controls abundance of their substrate receptors, the F-box proteins, is autocatalytic ubiquitylation by intact SCF complex followed by proteasome-mediated degradation. Here we describe an additional pathway for regulation of F-box proteins on the example of yeast Met30. This ubiquitylation and degradation pathway acts on Met30 that is dissociated from Skp1. Unexpectedly, this pathway required the cullin component Cdc53/Cul1 but was independent of the other central SCF component Skp1. We demonstrated that this non-canonical degradation pathway is critical for chromosome stability and effective defense against heavy metal stress. More importantly, our results assign important biological functions to a sub-complex of cullin-RING ligases that comprises Cdc53/Rbx1/Cdc34, but is independent of Skp1.

  3. Single-channel mixed signal blind source separation algorithm based on multiple ICA processing

    NASA Astrophysics Data System (ADS)

    Cheng, Xiefeng; Li, Ji

    2017-01-01

    Take separating the fetal heart sound signal from the mixed signal that get from the electronic stethoscope as the research background, the paper puts forward a single-channel mixed signal blind source separation algorithm based on multiple ICA processing. Firstly, according to the empirical mode decomposition (EMD), the single-channel mixed signal get multiple orthogonal signal components which are processed by ICA. The multiple independent signal components are called independent sub component of the mixed signal. Then by combining with the multiple independent sub component into single-channel mixed signal, the single-channel signal is expanded to multipath signals, which turns the under-determined blind source separation problem into a well-posed blind source separation problem. Further, the estimate signal of source signal is get by doing the ICA processing. Finally, if the separation effect is not very ideal, combined with the last time's separation effect to the single-channel mixed signal, and keep doing the ICA processing for more times until the desired estimated signal of source signal is get. The simulation results show that the algorithm has good separation effect for the single-channel mixed physiological signals.

  4. On signals faint and sparse: The ACICA algorithm for blind de-trending of exoplanetary transits with low signal-to-noise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waldmann, I. P., E-mail: ingo@star.ucl.ac.uk

    2014-01-01

    Independent component analysis (ICA) has recently been shown to be a promising new path in data analysis and de-trending of exoplanetary time series signals. Such approaches do not require or assume any prior or auxiliary knowledge about the data or instrument in order to de-convolve the astrophysical light curve signal from instrument or stellar systematic noise. These methods are often known as 'blind-source separation' (BSS) algorithms. Unfortunately, all BSS methods suffer from an amplitude and sign ambiguity of their de-convolved components, which severely limits these methods in low signal-to-noise (S/N) observations where their scalings cannot be determined otherwise. Here wemore » present a novel approach to calibrate ICA using sparse wavelet calibrators. The Amplitude Calibrated Independent Component Analysis (ACICA) allows for the direct retrieval of the independent components' scalings and the robust de-trending of low S/N data. Such an approach gives us an unique and unprecedented insight in the underlying morphology of a data set, which makes this method a powerful tool for exoplanetary data de-trending and signal diagnostics.« less

  5. 21 CFR 111.155 - What requirements apply to components of dietary supplements?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... MANUFACTURING, PACKAGING, LABELING, OR HOLDING OPERATIONS FOR DIETARY SUPPLEMENTS Production and Process Control... or Labeling as a Dietary Supplement § 111.155 What requirements apply to components of dietary... components before you use them in the manufacture of a dietary supplement until: (1) You collect...

  6. 21 CFR 111.155 - What requirements apply to components of dietary supplements?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... MANUFACTURING, PACKAGING, LABELING, OR HOLDING OPERATIONS FOR DIETARY SUPPLEMENTS Production and Process Control... or Labeling as a Dietary Supplement § 111.155 What requirements apply to components of dietary... components before you use them in the manufacture of a dietary supplement until: (1) You collect...

  7. 21 CFR 111.155 - What requirements apply to components of dietary supplements?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... MANUFACTURING, PACKAGING, LABELING, OR HOLDING OPERATIONS FOR DIETARY SUPPLEMENTS Production and Process Control... or Labeling as a Dietary Supplement § 111.155 What requirements apply to components of dietary... components before you use them in the manufacture of a dietary supplement until: (1) You collect...

  8. 21 CFR 111.155 - What requirements apply to components of dietary supplements?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... MANUFACTURING, PACKAGING, LABELING, OR HOLDING OPERATIONS FOR DIETARY SUPPLEMENTS Production and Process Control... or Labeling as a Dietary Supplement § 111.155 What requirements apply to components of dietary... components before you use them in the manufacture of a dietary supplement until: (1) You collect...

  9. [Previous abstinence time as a predictive factor at 12 months follow-up in a multi-component smoking cessation program].

    PubMed

    Moreno-Arnedillo, J J; Morante-Benadero, M E; Sánchez-Vegazo-Sánchez, E

    2014-01-01

    The objective of this study is to analyze the length of the longest period of previous abstinence time as a predictor of the results of a smoking cessation program at 12 months follow-up. A cross-sectional study was conducted on a sample of 475 smokers who had participated in a multi-component smoking cessation group therapy program. The independent variable is the longest abstinence time passed, measured in weeks, before the current treatment. Success was defined as self-reported abstinence. Bivariate analyses were applied to the independent variable and to other variables in order to determine the factors that would be part of a logistic regression model using contrasts Student t or χ(2) comparisons, as appropriate. Those that showed statistical significance were entered into a multivariate logistic regression model. Within the studied variables, previous abstinence time and sex were the only predictive variables of success at 12 month follow-up. The probability of being abstinent at 12 months follow-up was significantly associated with the length of the previous longest period of abstinence, and this is the best of the predictors considered. Successful cessation programs depend more on the relationship with the consumer biographical aspects than with biological factors. The history of previous attempts is a more valuable source of information for designing treatments than others traditionally considered. Copyright © 2013 Sociedad Española de Médicos de Atención Primaria (SEMERGEN). Publicado por Elsevier España. All rights reserved.

  10. Unsupervised neural spike sorting for high-density microelectrode arrays with convolutive independent component analysis.

    PubMed

    Leibig, Christian; Wachtler, Thomas; Zeck, Günther

    2016-09-15

    Unsupervised identification of action potentials in multi-channel extracellular recordings, in particular from high-density microelectrode arrays with thousands of sensors, is an unresolved problem. While independent component analysis (ICA) achieves rapid unsupervised sorting, it ignores the convolutive structure of extracellular data, thus limiting the unmixing to a subset of neurons. Here we present a spike sorting algorithm based on convolutive ICA (cICA) to retrieve a larger number of accurately sorted neurons than with instantaneous ICA while accounting for signal overlaps. Spike sorting was applied to datasets with varying signal-to-noise ratios (SNR: 3-12) and 27% spike overlaps, sampled at either 11.5 or 23kHz on 4365 electrodes. We demonstrate how the instantaneity assumption in ICA-based algorithms has to be relaxed in order to improve the spike sorting performance for high-density microelectrode array recordings. Reformulating the convolutive mixture as an instantaneous mixture by modeling several delayed samples jointly is necessary to increase signal-to-noise ratio. Our results emphasize that different cICA algorithms are not equivalent. Spike sorting performance was assessed with ground-truth data generated from experimentally derived templates. The presented spike sorter was able to extract ≈90% of the true spike trains with an error rate below 2%. It was superior to two alternative (c)ICA methods (≈80% accurately sorted neurons) and comparable to a supervised sorting. Our new algorithm represents a fast solution to overcome the current bottleneck in spike sorting of large datasets generated by simultaneous recording with thousands of electrodes. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Spatiotemporal reconstruction of auditory steady-state responses to acoustic amplitude modulations: Potential sources beyond the auditory pathway.

    PubMed

    Farahani, Ehsan Darestani; Goossens, Tine; Wouters, Jan; van Wieringen, Astrid

    2017-03-01

    Investigating the neural generators of auditory steady-state responses (ASSRs), i.e., auditory evoked brain responses, with a wide range of screening and diagnostic applications, has been the focus of various studies for many years. Most of these studies employed a priori assumptions regarding the number and location of neural generators. The aim of this study is to reconstruct ASSR sources with minimal assumptions in order to gain in-depth insight into the number and location of brain regions that are activated in response to low- as well as high-frequency acoustically amplitude modulated signals. In order to reconstruct ASSR sources, we applied independent component analysis with subsequent equivalent dipole modeling to single-subject EEG data (young adults, 20-30 years of age). These data were based on white noise stimuli, amplitude modulated at 4, 20, 40, or 80Hz. The independent components that exhibited a significant ASSR were clustered among all participants by means of a probabilistic clustering method based on a Gaussian mixture model. Results suggest that a widely distributed network of sources, located in cortical as well as subcortical regions, is active in response to 4, 20, 40, and 80Hz amplitude modulated noises. Some of these sources are located beyond the central auditory pathway. Comparison of brain sources in response to different modulation frequencies suggested that the identified brain sources in the brainstem, the left and the right auditory cortex show a higher responsiveness to 40Hz than to the other modulation frequencies. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Differences in Social Decision-Making between Proposers and Responders during the Ultimatum Game: An EEG Study.

    PubMed

    Horat, Sibylle K; Prévot, Anne; Richiardi, Jonas; Herrmann, François R; Favre, Grégoire; Merlo, Marco C G; Missonnier, Pascal

    2017-01-01

    The Ultimatum Game (UG) is a typical paradigm to investigate social decision-making. Although the behavior of humans in this task is already well established, the underlying brain processes remain poorly understood. Previous investigations using event-related potentials (ERPs) revealed three major components related to cognitive processes in participants engaged in the responder condition, the early ERP component P2, the feedback-related negativity (FRN) and a late positive wave (late positive component, LPC). However, the comparison of the ERP waveforms between the responder and proposer conditions has never been studied. Therefore, to investigate condition-related electrophysiological changes, we applied the UG paradigm and compared parameters of the P2, LPC and FRN components in twenty healthy participants. For the responder condition, we found a significantly decreased amplitude and delayed latency for the P2 component, whereas the mean amplitudes of the LPC and FRN increased compared to the proposer condition. Additionally, the proposer condition elicited an early component consisting of a negative deflection around 190 ms, in the upward slope of the P2, probably as a result of early conflict-related processing. Using independent component analysis (ICA), we extracted one functional component time-locked to this deflection, and with source reconstruction (LAURA) we found the anterior cingulate cortex (ACC) as one of the underlying sources. Overall, our findings indicate that intensity and time-course of neuronal systems engaged in the decision-making processes diverge between both UG conditions, suggesting differential cognitive processes. Understanding the electrophysiological bases of decision-making and social interactions in controls could be useful to further detect which steps are impaired in psychiatric patients in their ability to attribute mental states (such as beliefs, intents, or desires) to oneself and others. This ability is called mentalizing (also known as theory of mind).

  13. Condition monitoring of distributed systems using two-stage Bayesian inference data fusion

    NASA Astrophysics Data System (ADS)

    Jaramillo, Víctor H.; Ottewill, James R.; Dudek, Rafał; Lepiarczyk, Dariusz; Pawlik, Paweł

    2017-03-01

    In industrial practice, condition monitoring is typically applied to critical machinery. A particular piece of machinery may have its own condition monitoring system that allows the health condition of said piece of equipment to be assessed independently of any connected assets. However, industrial machines are typically complex sets of components that continuously interact with one another. In some cases, dynamics resulting from the inception and development of a fault can propagate between individual components. For example, a fault in one component may lead to an increased vibration level in both the faulty component, as well as in connected healthy components. In such cases, a condition monitoring system focusing on a specific element in a connected set of components may either incorrectly indicate a fault, or conversely, a fault might be missed or masked due to the interaction of a piece of equipment with neighboring machines. In such cases, a more holistic condition monitoring approach that can not only account for such interactions, but utilize them to provide a more complete and definitive diagnostic picture of the health of the machinery is highly desirable. In this paper, a Two-Stage Bayesian Inference approach allowing data from separate condition monitoring systems to be combined is presented. Data from distributed condition monitoring systems are combined in two stages, the first data fusion occurring at a local, or component, level, and the second fusion combining data at a global level. Data obtained from an experimental rig consisting of an electric motor, two gearboxes, and a load, operating under a range of different fault conditions is used to illustrate the efficacy of the method at pinpointing the root cause of a problem. The obtained results suggest that the approach is adept at refining the diagnostic information obtained from each of the different machine components monitored, therefore improving the reliability of the health assessment of each individual element, as well as the entire piece of machinery.

  14. Deformation due to the distension of cylindrical igneous contacts: A kinematic model

    NASA Astrophysics Data System (ADS)

    Morgan, John

    1980-06-01

    A simple kinematic model is described that predicts the state of overall wall-rock strain resulting from the distension of igneous contacts. It applies to the axially symmetric expansion of any pluton whose overall shape is a cylinder with circular cross section i.e. to late magmatic plutons which are circular or annular in cross section. The model is not capable of predicting the strain distribution in the zone of contact strain, but does predict components of overall strain whose magnitudes are calculated from the change in shape of the zone of contact strain. These strain components are: (1) overall radial shortening of the wall rocks overlineer; (2) overall vertical extension overlineev; and (3) overall horizontal extension parallel to the contact overlineeh (the axis of symmetry is arbitrarily oriented vertically). In addition, one local strain magnitude can be predicted, namely the horizontal extension of the contact surface ehc. The four strain parameters and {(1 + overlineev) }/{(1 + overlineeh}) are graphed as functions of two independent variables: (1) outward distension of the contact ( r - r0)/ r; and (2) depth of contact strain ( rd - r)/ r. r is the present, observed radius of the pluton, r0 is the original radius and rd is the radius of contact strain. If ( rd- r)/ r is reduced or ( r - r0)/ r is increased, absolute values of the overall strain components are increased, ehc increases with ( r - r0)/ r but is independent of ( r d - r)/r · (1 + overlineev)/(l + overlineeh) ≅ 1 over a large range of values of both independent variables. The model has been applied to two Archean plutons in northwestern Ontario. According to a previous study, strain near the contact of the Bamaji-Blackstone batholith is characterized by large values of extension parallel to the contact and shortening normal to the contact, ( r - r0)/r and ( rd - r)/ r are estimated to be less than 0.20 and 0.27 respectively. The horizontal extension parallel to the contact is apparently a minimum estimate of ehc and the depth of contact strain was previously underestimated. The range of values of ehc indicates that ( r - r0)/ r is larger than previously estimated by a factor of at least three. A similar problem has been encountered at the convex boundary of the Marmion Lake crescentic pluton. The pluton was emplaced along an older contact between greenstone and tonalitic gneiss. A minimum value of the outward displacement of the convex boundary of the pluton can be estimated from a major fold in the greenstone. It is found that the magnitude of this outward displacement is greater than the width of the pluton or ( r - r0). Apparently, the folding pre-dates the emplacement of the crescent; it probably dates from the emplacement of the tonalitic gneiss into greenstone cover.

  15. Evidence for modality-independent order coding in working memory.

    PubMed

    Depoorter, Ann; Vandierendonck, André

    2009-03-01

    The aim of the present study was to investigate the representation of serial order in working memory, more specifically whether serial order is coded by means of a modality-dependent or a modality-independent order code. This was investigated by means of a series of four experiments based on a dual-task methodology in which one short-term memory task was embedded between the presentation and recall of another short-term memory task. Two aspects were varied in these memory tasks--namely, the modality of the stimulus materials (verbal or visuo-spatial) and the presence of an order component in the task (an order or an item memory task). The results of this study showed impaired primary-task recognition performance when both the primary and the embedded task included an order component, irrespective of the modality of the stimulus materials. If one or both of the tasks did not contain an order component, less interference was found. The results of this study support the existence of a modality-independent order code.

  16. Ionization state and structure of l-1,2-dipalmitoylphosphatidylglycerol monolayers at the liquid/air interface.

    PubMed

    Maltseva, Elena; Shapovalov, Vladimir L; Möhwald, Helmuth; Brezesinski, Gerald

    2006-01-19

    Phosphatidylglycerols are components of biological membranes. The phase behavior of these phospholipids was extensively investigated. However, there is still no definite picture about the dependence of the ionization state and monolayer structure on subphase composition. The major problem of previous investigations is that none of the methods used allow obtaining the ionization degree directly. In the present work we apply techniques developed in the past decades for Langmuir monolayers: infrared reflection absorption spectroscopy (IRRAS) as well as X-ray diffraction and reflectivity techniques, which provide straightforward information about structure and ionization state of a L-1,2-dipalmitoylphosphatidylglycerol (DPPG) monolayer. The Gouy-Chapman model is applied to evaluate the intrinsic pKa. Therewith, the ionization degree can be determined even at low pH values. The experimental titration curves are in good agreement with theoretical curves based on the Gouy-Chapman model. The obtained instrinic pKa amounts to 1. The ionization degree of a DPPG monolayer is independent of the monovalent cation size. In contrast, the structure of a DPPG monolayer is strongly affected by the type of divalent cations.

  17. Changes in resting-state functionally connected parietofrontal networks after videogame practice.

    PubMed

    Martínez, Kenia; Solana, Ana Beatriz; Burgaleta, Miguel; Hernández-Tamames, Juan Antonio; Alvarez-Linera, Juan; Román, Francisco J; Alfayate, Eva; Privado, Jesús; Escorial, Sergio; Quiroga, María A; Karama, Sherif; Bellec, Pierre; Colom, Roberto

    2013-12-01

    Neuroimaging studies provide evidence for organized intrinsic activity under task-free conditions. This activity serves functionally relevant brain systems supporting cognition. Here, we analyze changes in resting-state functional connectivity after videogame practice applying a test-retest design. Twenty young females were selected from a group of 100 participants tested on four standardized cognitive ability tests. The practice and control groups were carefully matched on their ability scores. The practice group played during two sessions per week across 4 weeks (16 h total) under strict supervision in the laboratory, showing systematic performance improvements in the game. A group independent component analysis (GICA) applying multisession temporal concatenation on test-retest resting-state fMRI, jointly with a dual-regression approach, was computed. Supporting the main hypothesis, the key finding reveals an increased correlated activity during rest in certain predefined resting state networks (albeit using uncorrected statistics) attributable to practice with the cognitively demanding tasks of the videogame. Observed changes were mainly concentrated on parietofrontal networks involved in heterogeneous cognitive functions. Copyright © 2012 Wiley Periodicals, Inc.

  18. Archaeal S-Layers: Overview and Current State of the Art.

    PubMed

    Rodrigues-Oliveira, Thiago; Belmok, Aline; Vasconcellos, Deborah; Schuster, Bernhard; Kyaw, Cynthia M

    2017-01-01

    In contrast to bacteria, all archaea possess cell walls lacking peptidoglycan and a number of different cell envelope components have also been described. A paracrystalline protein surface layer, commonly referred to as S-layer, is present in nearly all archaea described to date. S-layers are composed of only one or two proteins and form different lattice structures. In this review, we summarize current understanding of archaeal S-layer proteins, discussing topics such as structure, lattice type distribution among archaeal phyla and glycosylation. The hexagonal lattice type is dominant within the phylum Euryarchaeota, while in the Crenarchaeota this feature is mainly associated with specific orders. S-layers exclusive to the Crenarchaeota have also been described, which are composed of two proteins. Information regarding S-layers in the remaining archaeal phyla is limited, mainly due to organism description through only culture-independent methods. Despite the numerous applied studies using bacterial S-layers, few reports have employed archaea as a study model. As such, archaeal S-layers represent an area for exploration in both basic and applied research.

  19. Noise from Supersonic Coaxial Jets. Part 2; Normal Velocity Profile

    NASA Technical Reports Server (NTRS)

    Dahl, M. D.; Morris, P. J.

    1997-01-01

    Instability waves have been established as noise generators in supersonic jets. Recent analysis of these slowly diverging jets has shown that these instability waves radiate noise to the far field when the waves have components with phase velocities that are supersonic relative to the ambient speed of sound. This instability wave noise generation model has been applied to supersonic jets with a single shear layer and is now applied to supersonic coaxial jets with two initial shear layers. In this paper the case of coaxial jets with normal velocity profiles is considered, where the inner jet stream velocity is higher than the outer jet stream velocity. To provide mean flow profiles at all axial locations, a numerical scheme is used to calculate the mean flow properties. Calculations are made for the stability characteristics in the coaxial jet shear layers and the noise radiated from the instability waves for different operating conditions with the same total thrust, mass flow and exit area as a single reference jet. The effects of changes in the velocity ratio, the density ratio and the area ratio are each considered independently.

  20. Archaeal S-Layers: Overview and Current State of the Art

    PubMed Central

    Rodrigues-Oliveira, Thiago; Belmok, Aline; Vasconcellos, Deborah; Schuster, Bernhard; Kyaw, Cynthia M.

    2017-01-01

    In contrast to bacteria, all archaea possess cell walls lacking peptidoglycan and a number of different cell envelope components have also been described. A paracrystalline protein surface layer, commonly referred to as S-layer, is present in nearly all archaea described to date. S-layers are composed of only one or two proteins and form different lattice structures. In this review, we summarize current understanding of archaeal S-layer proteins, discussing topics such as structure, lattice type distribution among archaeal phyla and glycosylation. The hexagonal lattice type is dominant within the phylum Euryarchaeota, while in the Crenarchaeota this feature is mainly associated with specific orders. S-layers exclusive to the Crenarchaeota have also been described, which are composed of two proteins. Information regarding S-layers in the remaining archaeal phyla is limited, mainly due to organism description through only culture-independent methods. Despite the numerous applied studies using bacterial S-layers, few reports have employed archaea as a study model. As such, archaeal S-layers represent an area for exploration in both basic and applied research. PMID:29312266

  1. ComDim for explorative multi-block data analysis of Cantal-type cheeses: Effects of salts, gentle heating and ripening.

    PubMed

    Loudiyi, M; Rutledge, D N; Aït-Kaddour, A

    2018-10-30

    Common Dimension (ComDim) chemometrics method for multi-block data analysis was employed to evaluate the impact of different added salts and ripening times on physicochemical, color, dynamic low amplitude oscillatory rheology, texture profile, and molecular structure (fluorescence and MIR spectroscopies) of five Cantal-type cheeses. Firstly, Independent Components Analysis (ICA) was applied separately on fluorescence and MIR spectra in order to extract the relevant signal source and the associated proportions related to molecular structure characteristics. ComDim was then applied on the 31 data tables corresponding to the proportion of ICA signals obtained for spectral methods and the global analysis of cheeses by the other techniques. The ComDim results indicated that generally cheeses made with 50% NaCl or with 75:25% NaCl/KCl exhibit the equivalent characteristics in structural, textural, meltability and color properties. The proposed methodology demonstrates the applicability of ComDim for the characterization of samples when different techniques describe the same samples. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Relevant Scatterers Characterization in SAR Images

    NASA Astrophysics Data System (ADS)

    Chaabouni, Houda; Datcu, Mihai

    2006-11-01

    Recognizing scenes in a single look meter resolution Synthetic Aperture Radar (SAR) images, requires the capability to identify relevant signal signatures in condition of variable image acquisition geometry, arbitrary objects poses and configurations. Among the methods to detect relevant scatterers in SAR images, we can mention the internal coherence. The SAR spectrum splitted in azimuth generates a series of images which preserve high coherence only for particular object scattering. The detection of relevant scatterers can be done by correlation study or Independent Component Analysis (ICA) methods. The present article deals with the state of the art for SAR internal correlation analysis and proposes further extensions using elements of inference based on information theory applied to complex valued signals. The set of azimuth looks images is analyzed using mutual information measures and an equivalent channel capacity is derived. The localization of the "target" requires analysis in a small image window, thus resulting in imprecise estimation of the second order statistics of the signal. For a better precision, a Hausdorff measure is introduced. The method is applied to detect and characterize relevant objects in urban areas.

  3. MoMaS reactive transport benchmark using PFLOTRAN

    NASA Astrophysics Data System (ADS)

    Park, H.

    2017-12-01

    MoMaS benchmark was developed to enhance numerical simulation capability for reactive transport modeling in porous media. The benchmark was published in late September of 2009; it is not taken from a real chemical system, but realistic and numerically challenging tests. PFLOTRAN is a state-of-art massively parallel subsurface flow and reactive transport code that is being used in multiple nuclear waste repository projects at Sandia National Laboratories including Waste Isolation Pilot Plant and Used Fuel Disposition. MoMaS benchmark has three independent tests with easy, medium, and hard chemical complexity. This paper demonstrates how PFLOTRAN is applied to this benchmark exercise and shows results of the easy benchmark test case which includes mixing of aqueous components and surface complexation. Surface complexations consist of monodentate and bidentate reactions which introduces difficulty in defining selectivity coefficient if the reaction applies to a bulk reference volume. The selectivity coefficient becomes porosity dependent for bidentate reaction in heterogeneous porous media. The benchmark is solved by PFLOTRAN with minimal modification to address the issue and unit conversions were made properly to suit PFLOTRAN.

  4. Arrhythmia Classification Based on Multi-Domain Feature Extraction for an ECG Recognition System.

    PubMed

    Li, Hongqiang; Yuan, Danyang; Wang, Youxi; Cui, Dianyin; Cao, Lu

    2016-10-20

    Automatic recognition of arrhythmias is particularly important in the diagnosis of heart diseases. This study presents an electrocardiogram (ECG) recognition system based on multi-domain feature extraction to classify ECG beats. An improved wavelet threshold method for ECG signal pre-processing is applied to remove noise interference. A novel multi-domain feature extraction method is proposed; this method employs kernel-independent component analysis in nonlinear feature extraction and uses discrete wavelet transform to extract frequency domain features. The proposed system utilises a support vector machine classifier optimized with a genetic algorithm to recognize different types of heartbeats. An ECG acquisition experimental platform, in which ECG beats are collected as ECG data for classification, is constructed to demonstrate the effectiveness of the system in ECG beat classification. The presented system, when applied to the MIT-BIH arrhythmia database, achieves a high classification accuracy of 98.8%. Experimental results based on the ECG acquisition experimental platform show that the system obtains a satisfactory classification accuracy of 97.3% and is able to classify ECG beats efficiently for the automatic identification of cardiac arrhythmias.

  5. Arrhythmia Classification Based on Multi-Domain Feature Extraction for an ECG Recognition System

    PubMed Central

    Li, Hongqiang; Yuan, Danyang; Wang, Youxi; Cui, Dianyin; Cao, Lu

    2016-01-01

    Automatic recognition of arrhythmias is particularly important in the diagnosis of heart diseases. This study presents an electrocardiogram (ECG) recognition system based on multi-domain feature extraction to classify ECG beats. An improved wavelet threshold method for ECG signal pre-processing is applied to remove noise interference. A novel multi-domain feature extraction method is proposed; this method employs kernel-independent component analysis in nonlinear feature extraction and uses discrete wavelet transform to extract frequency domain features. The proposed system utilises a support vector machine classifier optimized with a genetic algorithm to recognize different types of heartbeats. An ECG acquisition experimental platform, in which ECG beats are collected as ECG data for classification, is constructed to demonstrate the effectiveness of the system in ECG beat classification. The presented system, when applied to the MIT-BIH arrhythmia database, achieves a high classification accuracy of 98.8%. Experimental results based on the ECG acquisition experimental platform show that the system obtains a satisfactory classification accuracy of 97.3% and is able to classify ECG beats efficiently for the automatic identification of cardiac arrhythmias. PMID:27775596

  6. Space Suit Portable Life Support System (PLSS) 2.0 Pre-Installation Acceptance (PIA) Testing

    NASA Technical Reports Server (NTRS)

    Watts, Carly; Vogel, Matthew

    2016-01-01

    Following successful completion of the space suit Portable Life Support System (PLSS) 1.0 development and testing in 2011, the second system-level prototype, PLSS 2.0, was developed in 2012 to continue the maturation of the advanced PLSS design which is intended to reduce consumables, improve reliability and robustness, and incorporate additional sensing and functional capabilities over the current Space Shuttle/International Space Station Extravehicular Mobility Unit (EMU) PLSS. PLSS 2.0 represents the first attempt at a packaged design comprising first generation or later component prototypes and medium fidelity interfaces within a flight-like representative volume. Pre-Installation Acceptance (PIA) is carryover terminology from the Space Shuttle Program referring to the series of test sequences used to verify functionality of the EMU PLSS prior to installation into the Space Shuttle airlock for launch. As applied to the PLSS 2.0 development and testing effort, PIA testing designated the series of 27 independent test sequences devised to verify component and subsystem functionality, perform in situ instrument calibrations, generate mapping data to define set-points for control algorithms, evaluate hardware performance against advanced PLSS design requirements, and provide quantitative and qualitative feedback on evolving design requirements and performance specifications. PLSS 2.0 PIA testing was carried out from 3/20/13 - 3/15/14 using a variety of test configurations to perform test sequences that ranged from stand-alone component testing to system-level testing, with evaluations becoming increasingly integrated as the test series progressed. Each of the 27 test sequences was vetted independently, with verification of basic functionality required before completion. Because PLSS 2.0 design requirements were evolving concurrently with PLSS 2.0 PIA testing, the requirements were used as guidelines to assess performance during the tests; after the completion of PIA testing, test data served to improve the fidelity and maturity of design requirements as well as plans for future advanced PLSS functional testing.

  7. Quantifying variability in fast and slow solar wind: From turbulence to extremes

    NASA Astrophysics Data System (ADS)

    Tindale, E.; Chapman, S. C.; Moloney, N.; Watkins, N. W.

    2017-12-01

    Fast and slow solar wind exhibit variability across a wide range of spatiotemporal scales, with evolving turbulence producing fluctuations on sub-hour timescales and the irregular solar cycle modulating the system over many years. Here, we apply the data quantile-quantile (DQQ) method [Tindale and Chapman 2016, 2017] to over 20 years of Wind data, to study the time evolution of the statistical distribution of plasma parameters in fast and slow solar wind. This model-independent method allows us to simultaneously explore the evolution of fluctuations across all scales. We find a two-part functional form for the statistical distributions of the interplanetary magnetic field (IMF) magnitude and its components, with each region of the distribution evolving separately over the solar cycle. Up to a value of 8nT, turbulent fluctuations dominate the distribution of the IMF, generating the approximately lognormal shape found by Burlaga [2001]. The mean of this core-turbulence region tracks solar cycle activity, while its variance remains constant, independent of the fast or slow state of the solar wind. However, when we test the lognormality of this core-turbulence component over time, we find the model provides a poor description of the data at solar maximum, where sharp peaks in the distribution dominate over the lognormal shape. At IMF values higher than 8nT, we find a separate, extremal distribution component, whose moments are sensitive to solar cycle phase, the peak activity of the cycle and the solar wind state. We further investigate these `extremal' values using burst analysis, where a burst is defined as a continuous period of exceedance over a predefined threshold. This form of extreme value statistics allows us to study the stochastic process underlying the time series, potentially supporting a probabilistic forecast of high-energy events. Tindale, E., and S.C. Chapman (2016), Geophys. Res. Lett., 43(11) Tindale, E., and S.C. Chapman (2017), submitted Burlaga, L.F. (2001), J. Geophys. Res., 106(A8)

  8. Space Suit Portable Life Support System (PLSS) 2.0 Pre-Installation Acceptance (PIA) Testing

    NASA Technical Reports Server (NTRS)

    Anchondo, Ian; Cox, Marlon; Meginnis, Carly; Westheimer, David; Vogel, Matt R.

    2016-01-01

    Following successful completion of the space suit Portable Life Support System (PLSS) 1.0 development and testing in 2011, the second system-level prototype, PLSS 2.0, was developed in 2012 to continue the maturation of the advanced PLSS design. This advanced PLSS is intended to reduce consumables, improve reliability and robustness, and incorporate additional sensing and functional capabilities over the current Space Shuttle/International Space Station Extravehicular Mobility Unit (EMU) PLSS. PLSS 2.0 represents the first attempt at a packaged design comprising first generation or later component prototypes and medium fidelity interfaces within a flight-like representative volume. Pre-Installation Acceptance (PIA) is carryover terminology from the Space Shuttle Program referring to the series of test sequences used to verify functionality of the EMU PLSS prior to installation into the Space Shuttle airlock for launch. As applied to the PLSS 2.0 development and testing effort, PIA testing designated the series of 27 independent test sequences devised to verify component and subsystem functionality, perform in situ instrument calibrations, generate mapping data, define set-points, evaluate control algorithms, evaluate hardware performance against advanced PLSS design requirements, and provide quantitative and qualitative feedback on evolving design requirements and performance specifications. PLSS 2.0 PIA testing was carried out in 2013 and 2014 using a variety of test configurations to perform test sequences that ranged from stand-alone component testing to system-level testing, with evaluations becoming increasingly integrated as the test series progressed. Each of the 27 test sequences was vetted independently, with verification of basic functionality required before completion. Because PLSS 2.0 design requirements were evolving concurrently with PLSS 2.0 PIA testing, the requirements were used as guidelines to assess performance during the tests; after the completion of PIA testing, test data served to improve the fidelity and maturity of design requirements as well as plans for future advanced PLSS functional testing.

  9. Utilization of independent component analysis for accurate pathological ripple detection in intracranial EEG recordings recorded extra- and intra-operatively.

    PubMed

    Shimamoto, Shoichi; Waldman, Zachary J; Orosz, Iren; Song, Inkyung; Bragin, Anatol; Fried, Itzhak; Engel, Jerome; Staba, Richard; Sharan, Ashwini; Wu, Chengyuan; Sperling, Michael R; Weiss, Shennan A

    2018-01-01

    To develop and validate a detector that identifies ripple (80-200 Hz) events in intracranial EEG (iEEG) recordings in a referential montage and utilizes independent component analysis (ICA) to eliminate or reduce high-frequency artifact contamination. Also, investigate the correspondence of detected ripples and the seizure onset zone (SOZ). iEEG recordings from 16 patients were first band-pass filtered (80-600 Hz) and Infomax ICA was next applied to derive the first independent component (IC1). IC1 was subsequently pruned, and an artifact index was derived to reduce the identification of high-frequency events introduced by the reference electrode signal. A Hilbert detector identified ripple events in the processed iEEG recordings using amplitude and duration criteria. The identified ripple events were further classified and characterized as true or false ripple on spikes, or ripples on oscillations by utilizing a topographical analysis to their time-frequency plot, and confirmed by visual inspection. The signal to noise ratio was improved by pruning IC1. The precision of the detector for ripple events was 91.27 ± 4.3%, and the sensitivity of the detector was 79.4 ± 3.0% (N = 16 patients, 5842 ripple events). The sensitivity and precision of the detector was equivalent in iEEG recordings obtained during sleep or intra-operatively. Across all the patients, true ripple on spike rates and also the rates of false ripple on spikes, that were generated due to filter ringing, classified the seizure onset zone (SOZ) with an area under the receiver operating curve (AUROC) of >76%. The magnitude and spectral content of true ripple on spikes generated in the SOZ was distinct as compared with the ripples generated in the NSOZ (p < .001). Utilizing ICA to analyze iEEG recordings in referential montage provides many benefits to the study of high-frequency oscillations. The ripple rates and properties defined using this approach may accurately delineate the seizure onset zone. Strategies to improve the spatial resolution of intracranial EEG and reduce artifact can help improve the clinical utility of HFO biomarkers. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  10. Software component quality evaluation

    NASA Technical Reports Server (NTRS)

    Clough, A. J.

    1991-01-01

    The paper describes a software inspection process that can be used to evaluate the quality of software components. Quality criteria, process application, independent testing of the process and proposed associated tool support are covered. Early results indicate that this technique is well suited for assessing software component quality in a standardized fashion. With automated machine assistance to facilitate both the evaluation and selection of software components, such a technique should promote effective reuse of software components.

  11. Regulatory challenges to global harmonization and expanded access to concentrates: how will regulators balance the increasing cost of new safety requirements with the desire to increase the availability of affordable product?

    PubMed

    Farrugia, A

    2004-10-01

    The provision of concentrates of the deficient coagulation factors is an essential component of the provision of comprehensive haemophilia care. Their safety, quality and efficacy need to be assured independently of the measures dictated by the market and the individual manufacturers. Over the past 20 years, this assurance has become the role of regulatory authorities, which in the developed world have generated a framework that assesses haemophilia products as medicines in the highest category of risk relative to other therapeutic agents. Systems of official regulation mandating standards and other measures are now coupled with voluntary standards adopted by industry bodies as additional features of a comprehensive nexus of arrangements contributing to product quality and risk minimization. Currently, the regulation of products for haemophilia in less developed economies relies on reference to decisions in the first-world authorities. This may not always result in optimal outcomes as most of the haemophilia care in the developing world is through local plasma and cryoprecipitate, which are not subject to the oversight of mainstream regulators. Furthermore, the emergence of companies based outside the developed world and seeking to supply the emerging economies of the developing world with haemophilia concentrates has necessitated new strategies for regulation that are independent of the established frameworks. Overall, the principles used by mainstream agencies may be applied in all environments seeking to assure the quality of haemophilia care. Applied properly, they can contribute to maintaining the delivery of a form of therapy that is nowadays amongst the safest in therapeutic practice. A rigid interpretation can seriously impede access to treatment, and therefore the development of independent expertise and appropriate strategies in assuring product safety and quality in the developing world is essential if patient safety and access to products can be assured.

  12. The Influence of Alertness on Spatial and Nonspatial Components of Visual Attention

    ERIC Educational Resources Information Center

    Matthias, Ellen; Bublak, Peter; Muller, Hermann J.; Schneider, Werner X.; Krummenacher, Joseph; Finke, Kathrin

    2010-01-01

    Three experiments investigated whether spatial and nonspatial components of visual attention would be influenced by changes in (healthy, young) subjects' level of alertness and whether such effects on separable components would occur independently of each other. The experiments used a no-cue/alerting-cue design with varying cue-target stimulus…

  13. Examining the Relationships of Component Reading Skills to Reading Comprehension in Struggling Adult Readers

    ERIC Educational Resources Information Center

    Tighe, Elizabeth L.; Schatschneider, Christopher

    2016-01-01

    The current study employed a meta-analytic approach to investigate the relative importance of component reading skills to reading comprehension in struggling adult readers. A total of 10 component skills were consistently identified across 16 independent studies and 2,707 participants. Random effects models generated 76 predictor-reading…

  14. Automatic and Direct Identification of Blink Components from Scalp EEG

    PubMed Central

    Kong, Wanzeng; Zhou, Zhanpeng; Hu, Sanqing; Zhang, Jianhai; Babiloni, Fabio; Dai, Guojun

    2013-01-01

    Eye blink is an important and inevitable artifact during scalp electroencephalogram (EEG) recording. The main problem in EEG signal processing is how to identify eye blink components automatically with independent component analysis (ICA). Taking into account the fact that the eye blink as an external source has a higher sum of correlation with frontal EEG channels than all other sources due to both its location and significant amplitude, in this paper, we proposed a method based on correlation index and the feature of power distribution to automatically detect eye blink components. Furthermore, we prove mathematically that the correlation between independent components and scalp EEG channels can be translating directly from the mixing matrix of ICA. This helps to simplify calculations and understand the implications of the correlation. The proposed method doesn't need to select a template or thresholds in advance, and it works without simultaneously recording an electrooculography (EOG) reference. The experimental results demonstrate that the proposed method can automatically recognize eye blink components with a high accuracy on entire datasets from 15 subjects. PMID:23959240

  15. Identifying patients with poststroke mild cognitive impairment by pattern recognition of working memory load-related ERP.

    PubMed

    Li, Xiaoou; Yan, Yuning; Wei, Wenshi

    2013-01-01

    The early detection of subjects with probable cognitive deficits is crucial for effective appliance of treatment strategies. This paper explored a methodology used to discriminate between evoked related potential signals of stroke patients and their matched control subjects in a visual working memory paradigm. The proposed algorithm, which combined independent component analysis and orthogonal empirical mode decomposition, was applied to extract independent sources. Four types of target stimulus features including P300 peak latency, P300 peak amplitude, root mean square, and theta frequency band power were chosen. Evolutionary multiple kernel support vector machine (EMK-SVM) based on genetic programming was investigated to classify stroke patients and healthy controls. Based on 5-fold cross-validation runs, EMK-SVM provided better classification performance compared with other state-of-the-art algorithms. Comparing stroke patients with healthy controls using the proposed algorithm, we achieved the maximum classification accuracies of 91.76% and 82.23% for 0-back and 1-back tasks, respectively. Overall, the experimental results showed that the proposed method was effective. The approach in this study may eventually lead to a reliable tool for identifying suitable brain impairment candidates and assessing cognitive function.

  16. Study of Stark broadening of Li I 460 and 497 nm spectral lines with independent plasma diagnostics by Thomson scattering

    NASA Astrophysics Data System (ADS)

    Dzierżȩga, Krzysztof; Piȩta, Tomasz; Zawadzki, Witold; Stambulchik, Evgeny; Gavrilović-Božović, Marijana; Jovićević, Sonja; Pokrzywka, Bartłomiej

    2018-02-01

    We present results of experimental and theoretical studies of the Stark broadening of the Li I 460 nm spectral line with forbidden components and of the isolated 497 nm line. Plasma was induced by Nd:YAG laser radiation at 1064 nm with pulse duration ˜4.5 ns. Laser-induced plasma was generated in front of the alumina pellet, with some content of Li2CO3, placed in a vacuum chamber filled with argon under reduced pressure. Plasma diagnostics was performed using the laser Thomson scattering technique, free from assumptions about the plasma equilibrium state and its composition and so independently of plasma emission spectra. Spatially resolved spectra with Li lines were obtained from the measured, laterally integrated ones applying the inverse Abel transform. The Stark profiles were calculated by computer simulation method assuming a plasma in the local thermodynamic equilibrium. Calculations were performed for experimentally-inferred electron densities and temperatures, from 1.422 × 1023 to 3.55 × 1022 m-3 and from 1.96 eV to 1.04 eV, respectively. Our studies show very good agreement between experimental Stark profiles and those computer simulated.

  17. Correlation between use time of machine and decline curve for emerging enterprise information systems

    NASA Astrophysics Data System (ADS)

    Chang, Yao-Chung; Lai, Chin-Feng; Chuang, Chi-Cheng; Hou, Cheng-Yu

    2018-04-01

    With the progress of science and technology, more and more machines are adpot to help human life better and more convenient. When the machines have been used for a longer period of time so that the machine components are getting old, the amount of power comsumption will increase and easily cause the machine to overheat. This also causes a waste of invisible resources. If the Internet of Everything (IoE) technologies are able to be applied into the enterprise information systems for monitoring the machines use time, it can not only make energy can be effectively used, but aslo create a safer living environment. To solve the above problem, the correlation predict model is established to collect the data of power consumption converted into power eigenvalues. This study takes the power eigenvalue as the independent variable and use time as the dependent variable in order to establish the decline curve. Ultimately, the scoring and estimation modules are employed to seek the best power eigenvalue as the independent variable. To predict use time, the correlation is discussed between the use time and the decline curve to improve the entire behavioural analysis of the facilitate recognition of the use time of machines.

  18. Method and apparatus for component separation using microwave energy

    DOEpatents

    Morrow, Marvin S.; Schechter, Donald E.; Calhoun, Jr., Clyde L.

    2001-04-03

    A method for separating and recovering components includes the steps of providing at least a first component bonded to a second component by a microwave absorbent adhesive bonding material at a bonding area to form an assembly, the bonding material disposed between the components. Microwave energy is directly and selectively applied to the assembly so that substantially only the bonding material absorbs the microwave energy until the bonding material is at a debonding state. A separation force is applied while the bonding material is at the debonding state to permit disengaging and recovering the components. In addition, an apparatus for practicing the method includes holders for the components.

  19. Receiver function analysis applied to refraction survey data

    NASA Astrophysics Data System (ADS)

    Subaru, T.; Kyosuke, O.; Hitoshi, M.

    2008-12-01

    For the estimation of the thickness of oceanic crust or petrophysical investigation of subsurface material, refraction or reflection seismic exploration is one of the methods frequently practiced. These explorations use four-component (x,y,z component of acceleration and pressure) seismometer, but only compressional wave or vertical component of seismometers tends to be used in the analyses. Hence, it is needed to use shear wave or lateral component of seismograms for more precise investigation to estimate the thickness of oceanic crust. Receiver function is a function at a place that can be used to estimate the depth of velocity interfaces by receiving waves from teleseismic signal including shear wave. Receiver function analysis uses both vertical and horizontal components of seismograms and deconvolves the horizontal with the vertical to estimate the spectral difference of P-S converted waves arriving after the direct P wave. Once the phase information of the receiver function is obtained, then one can estimate the depth of the velocity interface. This analysis has advantage in the estimation of the depth of velocity interface including Mohorovicic discontinuity using two components of seismograms when P-to-S converted waves are generated at the interface. Our study presents results of the preliminary study using synthetic seismograms. First, we use three types of geological models that are composed of a single sediment layer, a crust layer, and a sloped Moho, respectively, for underground sources. The receiver function can estimate the depth and shape of Moho interface precisely for the three models. Second, We applied this method to synthetic refraction survey data generated not by earthquakes but by artificial sources on the ground or sea surface. Compressional seismic waves propagate under the velocity interface and radiate converted shear waves as well as at the other deep underground layer interfaces. However, the receiver function analysis applied to the second model cannot clearly estimate the velocity interface behind S-P converted wave or multi-reflected waves in a sediment layer. One of the causes is that the incidence angles of upcoming waves are too large compared to the underground source model due to the slanted interface. As a result, incident converted shear waves have non-negligible energy contaminating the vertical component of seismometers. Therefore, recorded refraction waves need to be transformed from depth-lateral coordinate into radial-tangential coordinate, and then Ps converted waves can be observed clearly. Finally, we applied the receiver function analysis to a more realistic model. This model has not only similar sloping Mohorovicic discontinuity and surface source locations as second model but the surface water layer. Receivers are aligned on the sea bottom (OBS; Ocean Bottom Seismometer survey case) Due to intricately bounced reflections, simulated seismic section becomes more complex than the other previously-mentioned models. In spite of the complexity in the seismic records, we could pick up the refraction waves from Moho interface, after stacking more than 20 receiver functions independently produced from each shot gather. After these processing, the receiver function analysis is justified as a method to estimate the depths of velocity interfaces and would be the applicable method for refraction wave analysis. The further study will be conducted for more realistic model that contain inhomogeneous sediment model, for example, and finally used in the inversion of the depth of velocity interfaces like Moho.

  20. Comparison of multivariate analysis methods for extracting the paraffin component from the paraffin-embedded cancer tissue spectra for Raman imaging

    NASA Astrophysics Data System (ADS)

    Meksiarun, Phiranuphon; Ishigaki, Mika; Huck-Pezzei, Verena A. C.; Huck, Christian W.; Wongravee, Kanet; Sato, Hidetoshi; Ozaki, Yukihiro

    2017-03-01

    This study aimed to extract the paraffin component from paraffin-embedded oral cancer tissue spectra using three multivariate analysis (MVA) methods; Independent Component Analysis (ICA), Partial Least Squares (PLS) and Independent Component - Partial Least Square (IC-PLS). The estimated paraffin components were used for removing the contribution of paraffin from the tissue spectra. These three methods were compared in terms of the efficiency of paraffin removal and the ability to retain the tissue information. It was found that ICA, PLS and IC-PLS could remove the paraffin component from the spectra at almost the same level while Principal Component Analysis (PCA) was incapable. In terms of retaining cancer tissue spectral integrity, effects of PLS and IC-PLS on the non-paraffin region were significantly less than that of ICA where cancer tissue spectral areas were deteriorated. The paraffin-removed spectra were used for constructing Raman images of oral cancer tissue and compared with Hematoxylin and Eosin (H&E) stained tissues for verification. This study has demonstrated the capability of Raman spectroscopy together with multivariate analysis methods as a diagnostic tool for the paraffin-embedded tissue section.

  1. The cementless anatomic medullary locking femoral component: an independent clinical and radiographic assessment

    PubMed Central

    Chess, David G.; Grainger, R. Wayne; Phillips, Tom; Zarzour, Zane D.; Sheppard, Bruce R.

    1996-01-01

    Objective To review the clinical performance of the anatomic medullary locking (AML) femoral stem in total hip arthroplasty. Design A clinical and radiographic review. Setting A tertiary lower limb joint replacement centre. Patients Two hundred and twenty-one patients with noninflammatory gonarthrosis. Interventions Two hundred and twenty-seven primary total hip arthroplasties with the noncemented AML component completed by two surgeons. Main Outcome Measures Independent review by two experienced reviewers of the postoperative Harris hip score, radiographs of component fixation, size and degree of diaphyseal fill. Results Harris hip score was 84 (range from 43 to 98); component fixation showed bone ingrowth in 41%, stable fixation with fibrous ingrowth in 56% and unstable fixation in 3%; severe thigh pain in 4% of cases correlated with unstable fixation, and there was mild thigh pain in 20% of cases. Conclusion The AML femoral stem performs well in replacement arthroplasty compared with other noncemented stems. PMID:8857987

  2. Signal, noise, and variation in neural and sensory-motor latency

    PubMed Central

    Lee, Joonyeol; Joshua, Mati; Medina, Javier F.; Lisberger, Stephen G.

    2016-01-01

    Analysis of the neural code for sensory-motor latency in smooth pursuit eye movements reveals general principles of neural variation and the specific origin of motor latency. The trial-by-trial variation in neural latency in MT comprises: a shared component expressed as neuron-neuron latency correlations; and an independent component that is local to each neuron. The independent component arises heavily from fluctuations in the underlying probability of spiking with an unexpectedly small contribution from the stochastic nature of spiking itself. The shared component causes the latency of single neuron responses in MT to be weakly predictive of the behavioral latency of pursuit. Neural latency deeper in the motor system is more strongly predictive of behavioral latency. A model reproduces both the variance of behavioral latency and the neuron-behavior latency correlations in MT if it includes realistic neural latency variation, neuron-neuron latency correlations in MT, and noisy gain control downstream from MT. PMID:26971946

  3. Empirical validation of the triple-code model of numerical processing for complex math operations using functional MRI and group Independent Component Analysis of the mental addition and subtraction of fractions.

    PubMed

    Schmithorst, Vincent J; Brown, Rhonda Douglas

    2004-07-01

    The suitability of a previously hypothesized triple-code model of numerical processing, involving analog magnitude, auditory verbal, and visual Arabic codes of representation, was investigated for the complex mathematical task of the mental addition and subtraction of fractions. Functional magnetic resonance imaging (fMRI) data from 15 normal adult subjects were processed using exploratory group Independent Component Analysis (ICA). Separate task-related components were found with activation in bilateral inferior parietal, left perisylvian, and ventral occipitotemporal areas. These results support the hypothesized triple-code model corresponding to the activated regions found in the individual components and indicate that the triple-code model may be a suitable framework for analyzing the neuropsychological bases of the performance of complex mathematical tasks. Copyright 2004 Elsevier Inc.

  4. Comparison of dimensionality reduction methods to predict genomic breeding values for carcass traits in pigs.

    PubMed

    Azevedo, C F; Nascimento, M; Silva, F F; Resende, M D V; Lopes, P S; Guimarães, S E F; Glória, L S

    2015-10-09

    A significant contribution of molecular genetics is the direct use of DNA information to identify genetically superior individuals. With this approach, genome-wide selection (GWS) can be used for this purpose. GWS consists of analyzing a large number of single nucleotide polymorphism markers widely distributed in the genome; however, because the number of markers is much larger than the number of genotyped individuals, and such markers are highly correlated, special statistical methods are widely required. Among these methods, independent component regression, principal component regression, partial least squares, and partial principal components stand out. Thus, the aim of this study was to propose an application of the methods of dimensionality reduction to GWS of carcass traits in an F2 (Piau x commercial line) pig population. The results show similarities between the principal and the independent component methods and provided the most accurate genomic breeding estimates for most carcass traits in pigs.

  5. Contact-free heart rate measurement using multiple video data

    NASA Astrophysics Data System (ADS)

    Hung, Pang-Chan; Lee, Kual-Zheng; Tsai, Luo-Wei

    2013-10-01

    In this paper, we propose a contact-free heart rate measurement method by analyzing sequential images of multiple video data. In the proposed method, skin-like pixels are firstly detected from multiple video data for extracting the color features. These color features are synchronized and analyzed by independent component analysis. A representative component is finally selected among these independent component candidates to measure the HR, which achieves under 2% deviation on average compared with a pulse oximeter in the controllable environment. The advantages of the proposed method include: 1) it uses low cost and high accessibility camera device; 2) it eases users' discomfort by utilizing contact-free measurement; and 3) it achieves the low error rate and the high stability by integrating multiple video data.

  6. A wearable neuro-feedback system with EEG-based mental status monitoring and transcranial electrical stimulation.

    PubMed

    Roh, Taehwan; Song, Kiseok; Cho, Hyunwoo; Shin, Dongjoo; Yoo, Hoi-Jun

    2014-12-01

    A wearable neuro-feedback system is proposed with a low-power neuro-feedback SoC (NFS), which supports mental status monitoring with encephalography (EEG) and transcranial electrical stimulation (tES) for neuro-modulation. Self-configured independent component analysis (ICA) is implemented to accelerate source separation at low power. Moreover, an embedded support vector machine (SVM) enables online source classification, configuring the ICA accelerator adaptively depending on the types of the decomposed components. Owing to the hardwired accelerating functions, the NFS dissipates only 4.45 mW to yield 16 independent components. For non-invasive neuro-modulation, tES stimulation up to 2 mA is implemented on the SoC. The NFS is fabricated in 130-nm CMOS technology.

  7. Methanol ice in the protostar GL 2136

    NASA Technical Reports Server (NTRS)

    Skinner, C. J.; Tielens, A. G. G. M.; Barlow, M. J.; Justtanont, K.

    1992-01-01

    We present ground-based spectra in the 10 and 20 micron atmospheric windows of the deeply embedded protostar GL 2136. These reveal narrow absorption features at 9.7 and 8.9 microns, which we ascribe to the CO-stretch and CH3 rock (respectively) of solid methanol in grain mantles. The peak position of the 9.7 micron band implies that methanol is an important ice mantle component. However, the CH3OH/H2O abundance ratio derived from the observed column densities is only 0.1. This discrepancy suggests that the solid methanol and water ice are located in independent grain components. These independent components may reflect chemical differentiation during grain mantle formation and/or partial outgassing close to the protostar.

  8. Halftoning method for the generation of motion stimuli

    NASA Technical Reports Server (NTRS)

    Mulligan, Jeffrey B.; Stone, Leland S.

    1989-01-01

    This paper describes a novel computer-graphic technique for the generation of a broad class of motion stimuli for vision research, which uses color table animation in conjunction with a single base image. Using this technique, contrast and temporal frequency can be varied with a negligible amount of computation, once a single-base image is produced. Since only two-bit planes are needed to display a single drifting grating, an eight-bit/pixel display can be used to generate four-component plaids, in which each component of the plaid has independently programmable contrast and temporal frequency. Because the contrast and temporal frequencies of the various components are mutually independent, a large number of two-dimensional stimulus motions can be produced from a single image file.

  9. Validation of Shared and Specific Independent Component Analysis (SSICA) for Between-Group Comparisons in fMRI

    PubMed Central

    Maneshi, Mona; Vahdat, Shahabeddin; Gotman, Jean; Grova, Christophe

    2016-01-01

    Independent component analysis (ICA) has been widely used to study functional magnetic resonance imaging (fMRI) connectivity. However, the application of ICA in multi-group designs is not straightforward. We have recently developed a new method named “shared and specific independent component analysis” (SSICA) to perform between-group comparisons in the ICA framework. SSICA is sensitive to extract those components which represent a significant difference in functional connectivity between groups or conditions, i.e., components that could be considered “specific” for a group or condition. Here, we investigated the performance of SSICA on realistic simulations, and task fMRI data and compared the results with one of the state-of-the-art group ICA approaches to infer between-group differences. We examined SSICA robustness with respect to the number of allowable extracted specific components and between-group orthogonality assumptions. Furthermore, we proposed a modified formulation of the back-reconstruction method to generate group-level t-statistics maps based on SSICA results. We also evaluated the consistency and specificity of the extracted specific components by SSICA. The results on realistic simulated and real fMRI data showed that SSICA outperforms the regular group ICA approach in terms of reconstruction and classification performance. We demonstrated that SSICA is a powerful data-driven approach to detect patterns of differences in functional connectivity across groups/conditions, particularly in model-free designs such as resting-state fMRI. Our findings in task fMRI show that SSICA confirms results of the general linear model (GLM) analysis and when combined with clustering analysis, it complements GLM findings by providing additional information regarding the reliability and specificity of networks. PMID:27729843

  10. Data analysis using a combination of independent component analysis and empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Lin, Shih-Lin; Tung, Pi-Cheng; Huang, Norden E.

    2009-06-01

    A combination of independent component analysis and empirical mode decomposition (ICA-EMD) is proposed in this paper to analyze low signal-to-noise ratio data. The advantages of ICA-EMD combination are these: ICA needs few sensory clues to separate the original source from unwanted noise and EMD can effectively separate the data into its constituting parts. The case studies reported here involve original sources contaminated by white Gaussian noise. The simulation results show that the ICA-EMD combination is an effective data analysis tool.

  11. An Aural Learning Project: Assimilating Jazz Education Methods for Traditional Applied Pedagogy

    ERIC Educational Resources Information Center

    Gamso, Nancy M.

    2011-01-01

    The Aural Learning Project (ALP) was developed to incorporate jazz method components into the author's classical practice and her applied woodwind lesson curriculum. The primary objective was to place a more focused pedagogical emphasis on listening and hearing than is traditionally used in the classical applied curriculum. The components of the…

  12. Optics measurement and correction for the Relativistic Heavy Ion Collider

    NASA Astrophysics Data System (ADS)

    Shen, Xiaozhe

    The quality of beam optics is of great importance for the performance of a high energy accelerator like the Relativistic Heavy Ion Collider (RHIC). The turn-by-turn (TBT) beam position monitor (BPM) data can be used to derive beam optics. However, the accuracy of the derived beam optics is often limited by the performance and imperfections of instruments as well as measurement methods and conditions. Therefore, a robust and model-independent data analysis method is highly desired to extract noise-free information from TBT BPM data. As a robust signal-processing technique, an independent component analysis (ICA) algorithm called second order blind identification (SOBI) has been proven to be particularly efficient in extracting physical beam signals from TBT BPM data even in the presence of instrument's noise and error. We applied the SOBI ICA algorithm to RHIC during the 2013 polarized proton operation to extract accurate linear optics from TBT BPM data of AC dipole driven coherent beam oscillation. From the same data, a first systematic estimation of RHIC BPM noise performance was also obtained by the SOBI ICA algorithm, and showed a good agreement with the RHIC BPM configurations. Based on the accurate linear optics measurement, a beta-beat response matrix correction method and a scheme of using horizontal closed orbit bumps at sextupoles for arc beta-beat correction were successfully applied to reach a record-low beam optics error at RHIC. This thesis presents principles of the SOBI ICA algorithm and theory as well as experimental results of optics measurement and correction at RHIC.

  13. Dysanapsis and the resistive work of breathing during exercise in healthy men and women.

    PubMed

    Dominelli, Paolo B; Molgat-Seon, Yannick; Bingham, Derek; Swartz, Philippa M; Road, Jeremy D; Foster, Glen E; Sheel, A William

    2015-11-15

    We asked if the higher work of breathing (Wb) during exercise in women compared with men is explained by biological sex. We created a statistical model that accounts for both the viscoelastic and the resistive components of the total Wb and independently compares the effects of biological sex. We applied the model to esophageal pressure-derived Wb values obtained during an incremental cycle test to exhaustion. Subjects were healthy men (n = 17) and women (n = 18) with a range of maximal aerobic capacities (V̇o2 max range: men = 40-68 and women = 39-60 ml·kg(-1)·min(-1)). We also calculated the dysanapsis ratio using measures of lung recoil and forced expiratory flow as index of airway caliber. By applying the model we found that the differences in the total Wb during exercise in women are due to a higher resistive Wb rather than viscoelastic Wb. We also found that the higher resistive Wb is independently explained by biological sex. To account for the known effect of lung volumes on the dysanapsis ratio we compared the sexes with an analysis of covariance procedures and found that when vital capacity was accounted for the adjusted mean dysanapsis ratio is statistically lower in women (0.17 vs. 0.25 arbitrary units; P < 0.05). Our collective findings suggest that innate sex-based differences may exist in human airways, which result in significant male-female differences in the Wb during exercise in healthy subjects. Copyright © 2015 the American Physiological Society.

  14. Testing independence of fragment lengths within VNTR loci

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geisser, S.; Johnson, W.

    1993-11-01

    Methods that were devised to test independence of the bivariate fragment lengths obtained from VNTR loci are applied to several population databases. It is shown that for many of the probes independence (Hardy-Weinberg equilibrium) cannot be sustained. 3 refs., 3 tabs.

  15. The number processing and calculation system: evidence from cognitive neuropsychology.

    PubMed

    Salguero-Alcañiz, M P; Alameda-Bailén, J R

    2015-04-01

    Cognitive neuropsychology focuses on the concepts of dissociation and double dissociation. The performance of number processing and calculation tasks by patients with acquired brain injury can be used to characterise the way in which the healthy cognitive system manipulates number symbols and quantities. The objective of this study is to determine the components of the numerical processing and calculation system. Participants consisted of 6 patients with acquired brain injuries in different cerebral localisations. We used Batería de evaluación del procesamiento numérico y el cálculo, a battery assessing number processing and calculation. Data was analysed using the difference in proportions test. Quantitative numerical knowledge is independent from number transcoding, qualitative numerical knowledge, and calculation. Recodification is independent from qualitative numerical knowledge and calculation. Quantitative numerical knowledge and calculation are also independent functions. The number processing and calculation system comprises at least 4 components that operate independently: quantitative numerical knowledge, number transcoding, qualitative numerical knowledge, and calculation. Therefore, each one may be damaged selectively without affecting the functioning of another. According to the main models of number processing and calculation, each component has different characteristics and cerebral localisations. Copyright © 2013 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  16. BIDIRECTIONAL PROSPECTIVE ASSOCIATIONS OF METABOLIC SYNDROME COMPONENTS WITH DEPRESSION, ANXIETY, AND ANTIDEPRESSANT USE.

    PubMed

    Hiles, Sarah A; Révész, Dóra; Lamers, Femke; Giltay, Erik; Penninx, Brenda W J H

    2016-08-01

    Metabolic syndrome components-waist circumference, high-density lipoprotein cholesterol (HDL-C), triglycerides, systolic blood pressure and fasting glucose-are cross-sectionally associated with depression and anxiety with differing strength. Few studies examine the relationships over time or whether antidepressants have independent effects. Participants were from the Netherlands Study of Depression and Anxiety (NESDA; N = 2,776; 18-65 years; 66% female). At baseline, 2- and 6-year follow-up, participants completed diagnostic interviews, depression and anxiety symptom inventories, antidepressant use assessment, and measurements of the five metabolic syndrome components. Data were analyzed for the consistency of associations between psychopathology indicators and metabolic syndrome components across the three assessment waves, and whether psychopathology or antidepressant use at one assessment predicts metabolic dysregulation at the next and vice versa. Consistently across waves, psychopathology was associated with generally poorer values of metabolic syndrome components, particularly waist circumference and triglycerides. Stronger associations were observed for psychopathology symptom severity than diagnosis. Antidepressant use was independently associated with higher waist circumference, triglycerides and number of metabolic syndrome abnormalities, and lower HDL-C. Symptom severity and antidepressant use were associated with subsequently increased number of abnormalities, waist circumference, and glucose after 2 but not 4 years. Conversely, there was little evidence that metabolic syndrome components were associated with subsequent psychopathology outcomes. Symptom severity and antidepressant use were independently associated with metabolic dysregulation consistently over time and also had negative consequences for short-term metabolic health. This is of concern given the chronicity of depression and anxiety and prevalence of antidepressant treatment. © 2016 The Authors. Depression and Anxiety published by Wiley Periodicals, Inc.

  17. A mixture model with a reference-based automatic selection of components for disease classification from protein and/or gene expression levels

    PubMed Central

    2011-01-01

    Background Bioinformatics data analysis is often using linear mixture model representing samples as additive mixture of components. Properly constrained blind matrix factorization methods extract those components using mixture samples only. However, automatic selection of extracted components to be retained for classification analysis remains an open issue. Results The method proposed here is applied to well-studied protein and genomic datasets of ovarian, prostate and colon cancers to extract components for disease prediction. It achieves average sensitivities of: 96.2 (sd = 2.7%), 97.6% (sd = 2.8%) and 90.8% (sd = 5.5%) and average specificities of: 93.6% (sd = 4.1%), 99% (sd = 2.2%) and 79.4% (sd = 9.8%) in 100 independent two-fold cross-validations. Conclusions We propose an additive mixture model of a sample for feature extraction using, in principle, sparseness constrained factorization on a sample-by-sample basis. As opposed to that, existing methods factorize complete dataset simultaneously. The sample model is composed of a reference sample representing control and/or case (disease) groups and a test sample. Each sample is decomposed into two or more components that are selected automatically (without using label information) as control specific, case specific and not differentially expressed (neutral). The number of components is determined by cross-validation. Automatic assignment of features (m/z ratios or genes) to particular component is based on thresholds estimated from each sample directly. Due to the locality of decomposition, the strength of the expression of each feature across the samples can vary. Yet, they will still be allocated to the related disease and/or control specific component. Since label information is not used in the selection process, case and control specific components can be used for classification. That is not the case with standard factorization methods. Moreover, the component selected by proposed method as disease specific can be interpreted as a sub-mode and retained for further analysis to identify potential biomarkers. As opposed to standard matrix factorization methods this can be achieved on a sample (experiment)-by-sample basis. Postulating one or more components with indifferent features enables their removal from disease and control specific components on a sample-by-sample basis. This yields selected components with reduced complexity and generally, it increases prediction accuracy. PMID:22208882

  18. Approaches to Capture Variance Differences in Rest fMRI Networks in the Spatial Geometric Features: Application to Schizophrenia.

    PubMed

    Gopal, Shruti; Miller, Robyn L; Baum, Stefi A; Calhoun, Vince D

    2016-01-01

    Identification of functionally connected regions while at rest has been at the forefront of research focusing on understanding interactions between different brain regions. Studies have utilized a variety of approaches including seed based as well as data-driven approaches to identifying such networks. Most such techniques involve differentiating groups based on group mean measures. There has been little work focused on differences in spatial characteristics of resting fMRI data. We present a method to identify between group differences in the variability in the cluster characteristics of network regions within components estimated via independent vector analysis (IVA). IVA is a blind source separation approach shown to perform well in capturing individual subject variability within a group model. We evaluate performance of the approach using simulations and then apply to a relatively large schizophrenia data set (82 schizophrenia patients and 89 healthy controls). We postulate, that group differences in the intra-network distributional characteristics of resting state network voxel intensities might indirectly capture important distinctions between the brain function of healthy and clinical populations. Results demonstrate that specific areas of the brain, superior, and middle temporal gyrus that are involved in language and recognition of emotions, show greater component level variance in amplitude weights for schizophrenia patients than healthy controls. Statistically significant correlation between component level spatial variance and component volume was observed in 19 of the 27 non-artifactual components implying an evident relationship between the two parameters. Additionally, the greater spread in the distance of the cluster peak of a component from the centroid in schizophrenia patients compared to healthy controls was observed for seven components. These results indicate that there is hidden potential in exploring variance and possibly higher-order measures in resting state networks to better understand diseases such as schizophrenia. It furthers comprehension of how spatial characteristics can highlight previously unexplored differences between populations such as schizophrenia patients and healthy controls.

  19. Planning minimum-energy paths in an off-road environment with anisotropic traversal costs and motion constraints. Doctoral thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, R.S.

    1989-06-01

    For a vehicle operating across arbitrarily-contoured terrain, finding the most fuel-efficient route between two points can be viewed as a high-level global path-planning problem with traversal costs and stability dependent on the direction of travel (anisotropic). The problem assumes a two-dimensional polygonal map of homogeneous cost regions for terrain representation constructed from elevation information. The anisotropic energy cost of vehicle motion has a non-braking component dependent on horizontal distance, a braking component dependent on vertical distance, and a constant path-independent component. The behavior of minimum-energy paths is then proved to be restricted to a small, but optimal set of traversalmore » types. An optimal-path-planning algorithm, using a heuristic search technique, reduces the infinite number of paths between the start and goal points to a finite number by generating sequences of goal-feasible window lists from analyzing the polygonal map and applying pruning criteria. The pruning criteria consist of visibility analysis, heading analysis, and region-boundary constraints. Each goal-feasible window lists specifies an associated convex optimization problem, and the best of all locally-optimal paths through the goal-feasible window lists is the globally-optimal path. These ideas have been implemented in a computer program, with results showing considerably better performance than the exponential average-case behavior predicted.« less

  20. Semantic interoperability--HL7 Version 3 compared to advanced architecture standards.

    PubMed

    Blobel, B G M E; Engel, K; Pharow, P

    2006-01-01

    To meet the challenge for high quality and efficient care, highly specialized and distributed healthcare establishments have to communicate and co-operate in a semantically interoperable way. Information and communication technology must be open, flexible, scalable, knowledge-based and service-oriented as well as secure and safe. For enabling semantic interoperability, a unified process for defining and implementing the architecture, i.e. structure and functions of the cooperating systems' components, as well as the approach for knowledge representation, i.e. the used information and its interpretation, algorithms, etc. have to be defined in a harmonized way. Deploying the Generic Component Model, systems and their components, underlying concepts and applied constraints must be formally modeled, strictly separating platform-independent from platform-specific models. As HL7 Version 3 claims to represent the most successful standard for semantic interoperability, HL7 has been analyzed regarding the requirements for model-driven, service-oriented design of semantic interoperable information systems, thereby moving from a communication to an architecture paradigm. The approach is compared with advanced architectural approaches for information systems such as OMG's CORBA 3 or EHR systems such as GEHR/openEHR and CEN EN 13606 Electronic Health Record Communication. HL7 Version 3 is maturing towards an architectural approach for semantic interoperability. Despite current differences, there is a close collaboration between the teams involved guaranteeing a convergence between competing approaches.

Top