Sample records for applying multi-agent design

  1. Research and application of multi-agent genetic algorithm in tower defense game

    NASA Astrophysics Data System (ADS)

    Jin, Shaohua

    2018-04-01

    In this paper, a new multi-agent genetic algorithm based on orthogonal experiment is proposed, which is based on multi-agent system, genetic algorithm and orthogonal experimental design. The design of neighborhood competition operator, orthogonal crossover operator, Son and self-learning operator. The new algorithm is applied to mobile tower defense game, according to the characteristics of the game, the establishment of mathematical models, and finally increases the value of the game's monster.

  2. Teamwork Reasoning and Multi-Satellite Missions

    NASA Technical Reports Server (NTRS)

    Marsella, Stacy C.; Plaunt, Christian (Technical Monitor)

    2002-01-01

    NASA is rapidly moving towards the use of spatially distributed multiple satellites operating in near Earth orbit and Deep Space. Effective operation of such multi-satellite constellations raises many key research issues. In particular, the satellites will be required to cooperate with each other as a team that must achieve common objectives with a high degree of autonomy from ground based operations. The multi-agent research community has made considerable progress in investigating the challenges of realizing such teamwork. In this report, we discuss some of the teamwork issues that will be faced by multi-satellite operations. The basis of the discussion is a particular proposed mission, the Magnetospheric MultiScale mission to explore Earth's magnetosphere. We describe this mission and then consider how multi-agent technologies might be applied in the design and operation of these missions. We consider the potential benefits of these technologies as well as the research challenges that will be raised in applying them to NASA multi-satellite missions. We conclude with some recommendations for future work.

  3. Application of zonal model on indoor air sensor network design

    NASA Astrophysics Data System (ADS)

    Chen, Y. Lisa; Wen, Jin

    2007-04-01

    Growing concerns over the safety of the indoor environment have made the use of sensors ubiquitous. Sensors that detect chemical and biological warfare agents can offer early warning of dangerous contaminants. However, current sensor system design is more informed by intuition and experience rather by systematic design. To develop a sensor system design methodology, a proper indoor airflow modeling approach is needed. Various indoor airflow modeling techniques, from complicated computational fluid dynamics approaches to simplified multi-zone approaches, exist in the literature. In this study, the effects of two airflow modeling techniques, multi-zone modeling technique and zonal modeling technique, on indoor air protection sensor system design are discussed. Common building attack scenarios, using a typical CBW agent, are simulated. Both multi-zone and zonal models are used to predict airflows and contaminant dispersion. Genetic Algorithm is then applied to optimize the sensor location and quantity. Differences in the sensor system design resulting from the two airflow models are discussed for a typical office environment and a large hall environment.

  4. Quadratic stabilisability of multi-agent systems under switching topologies

    NASA Astrophysics Data System (ADS)

    Guan, Yongqiang; Ji, Zhijian; Zhang, Lin; Wang, Long

    2014-12-01

    This paper addresses the stabilisability of multi-agent systems (MASs) under switching topologies. Necessary and/or sufficient conditions are presented in terms of graph topology. These conditions explicitly reveal how the intrinsic dynamics of the agents, the communication topology and the external control input affect stabilisability jointly. With the appropriate selection of some agents to which the external inputs are applied and the suitable design of neighbour-interaction rules via a switching topology, an MAS is proved to be stabilisable even if so is not for each of uncertain subsystem. In addition, a method is proposed to constructively design a switching rule for MASs with norm-bounded time-varying uncertainties. The switching rules designed via this method do not rely on uncertainties, and the switched MAS is quadratically stabilisable via decentralised external self-feedback for all uncertainties. With respect to applications of the stabilisability results, the formation control and the cooperative tracking control are addressed. Numerical simulations are presented to demonstrate the effectiveness of the proposed results.

  5. Multi-agent Reinforcement Learning Model for Effective Action Selection

    NASA Astrophysics Data System (ADS)

    Youk, Sang Jo; Lee, Bong Keun

    Reinforcement learning is a sub area of machine learning concerned with how an agent ought to take actions in an environment so as to maximize some notion of long-term reward. In the case of multi-agent, especially, which state space and action space gets very enormous in compared to single agent, so it needs to take most effective measure available select the action strategy for effective reinforcement learning. This paper proposes a multi-agent reinforcement learning model based on fuzzy inference system in order to improve learning collect speed and select an effective action in multi-agent. This paper verifies an effective action select strategy through evaluation tests based on Robocop Keep away which is one of useful test-beds for multi-agent. Our proposed model can apply to evaluate efficiency of the various intelligent multi-agents and also can apply to strategy and tactics of robot soccer system.

  6. Distributed Optimization of Multi-Agent Systems: Framework, Local Optimizer, and Applications

    NASA Astrophysics Data System (ADS)

    Zu, Yue

    Convex optimization problem can be solved in a centralized or distributed manner. Compared with centralized methods based on single-agent system, distributed algorithms rely on multi-agent systems with information exchanging among connected neighbors, which leads to great improvement on the system fault tolerance. Thus, a task within multi-agent system can be completed with presence of partial agent failures. By problem decomposition, a large-scale problem can be divided into a set of small-scale sub-problems that can be solved in sequence/parallel. Hence, the computational complexity is greatly reduced by distributed algorithm in multi-agent system. Moreover, distributed algorithm allows data collected and stored in a distributed fashion, which successfully overcomes the drawbacks of using multicast due to the bandwidth limitation. Distributed algorithm has been applied in solving a variety of real-world problems. Our research focuses on the framework and local optimizer design in practical engineering applications. In the first one, we propose a multi-sensor and multi-agent scheme for spatial motion estimation of a rigid body. Estimation performance is improved in terms of accuracy and convergence speed. Second, we develop a cyber-physical system and implement distributed computation devices to optimize the in-building evacuation path when hazard occurs. The proposed Bellman-Ford Dual-Subgradient path planning method relieves the congestion in corridor and the exit areas. At last, highway traffic flow is managed by adjusting speed limits to minimize the fuel consumption and travel time in the third project. Optimal control strategy is designed through both centralized and distributed algorithm based on convex problem formulation. Moreover, a hybrid control scheme is presented for highway network travel time minimization. Compared with no controlled case or conventional highway traffic control strategy, the proposed hybrid control strategy greatly reduces total travel time on test highway network.

  7. Guidance and Navigation Software Architecture Design for the Autonomous Multi-Agent Physically Interacting Spacecraft (AMPHIS) Test Bed

    DTIC Science & Technology

    2006-12-01

    NAVIGATION SOFTWARE ARCHITECTURE DESIGN FOR THE AUTONOMOUS MULTI-AGENT PHYSICALLY INTERACTING SPACECRAFT (AMPHIS) TEST BED by Blake D. Eikenberry...Engineer Degree 4. TITLE AND SUBTITLE Guidance and Navigation Software Architecture Design for the Autonomous Multi- Agent Physically Interacting...iii Approved for public release; distribution is unlimited GUIDANCE AND NAVIGATION SOFTWARE ARCHITECTURE DESIGN FOR THE AUTONOMOUS MULTI

  8. An Approach for Autonomy: A Collaborative Communication Framework for Multi-Agent Systems

    NASA Technical Reports Server (NTRS)

    Dufrene, Warren Russell, Jr.

    2005-01-01

    Research done during the last three years has studied the emersion properties of Complex Adaptive Systems (CAS). The deployment of Artificial Intelligence (AI) techniques applied to remote Unmanned Aerial Vehicles has led the author to investigate applications of CAS within the field of Autonomous Multi-Agent Systems. The core objective of current research efforts is focused on the simplicity of Intelligent Agents (IA) and the modeling of these agents within complex systems. This research effort looks at the communication, interaction, and adaptability of multi-agents as applied to complex systems control. The embodiment concept applied to robotics has application possibilities within multi-agent frameworks. A new framework for agent awareness within a virtual 3D world concept is possible where the vehicle is composed of collaborative agents. This approach has many possibilities for applications to complex systems. This paper describes the development of an approach to apply this virtual framework to the NASA Goddard Space Flight Center (GSFC) tetrahedron structure developed under the Autonomous Nano Technology Swarm (ANTS) program and the Super Miniaturized Addressable Reconfigurable Technology (SMART) architecture program. These projects represent an innovative set of novel concepts deploying adaptable, self-organizing structures composed of many tetrahedrons. This technology is pushing current applied Agents Concepts to new levels of requirements and adaptability.

  9. Investigating accident causation through information network modelling.

    PubMed

    Griffin, T G C; Young, M S; Stanton, N A

    2010-02-01

    Management of risk in complex domains such as aviation relies heavily on post-event investigations, requiring complex approaches to fully understand the integration of multi-causal, multi-agent and multi-linear accident sequences. The Event Analysis of Systemic Teamwork methodology (EAST; Stanton et al. 2008) offers such an approach based on network models. In this paper, we apply EAST to a well-known aviation accident case study, highlighting communication between agents as a central theme and investigating the potential for finding agents who were key to the accident. Ultimately, this work aims to develop a new model based on distributed situation awareness (DSA) to demonstrate that the risk inherent in a complex system is dependent on the information flowing within it. By identifying key agents and information elements, we can propose proactive design strategies to optimize the flow of information and help work towards avoiding aviation accidents. Statement of Relevance: This paper introduces a novel application of an holistic methodology for understanding aviation accidents. Furthermore, it introduces an ongoing project developing a nonlinear and prospective method that centralises distributed situation awareness and communication as themes. The relevance of findings are discussed in the context of current ergonomic and aviation issues of design, training and human-system interaction.

  10. An agent based architecture for high-risk neonate management at neonatal intensive care unit.

    PubMed

    Malak, Jaleh Shoshtarian; Safdari, Reza; Zeraati, Hojjat; Nayeri, Fatemeh Sadat; Mohammadzadeh, Niloofar; Farajollah, Seide Sedighe Seied

    2018-01-01

    In recent years, the use of new tools and technologies has decreased the neonatal mortality rate. Despite the positive effect of using these technologies, the decisions are complex and uncertain in critical conditions when the neonate is preterm or has a low birth weight or malformations. There is a need to automate the high-risk neonate management process by creating real-time and more precise decision support tools. To create a collaborative and real-time environment to manage neonates with critical conditions at the NICU (Neonatal Intensive Care Unit) and to overcome high-risk neonate management weaknesses by applying a multi agent based analysis and design methodology as a new solution for NICU management. This study was a basic research for medical informatics method development that was carried out in 2017. The requirement analysis was done by reviewing articles on NICU Decision Support Systems. PubMed, Science Direct, and IEEE databases were searched. Only English articles published after 1990 were included; also, a needs assessment was done by reviewing the extracted features and current processes at the NICU environment where the research was conducted. We analyzed the requirements and identified the main system roles (agents) and interactions by a comparative study of existing NICU decision support systems. The Universal Multi Agent Platform (UMAP) was applied to implement a prototype of our multi agent based high-risk neonate management architecture. Local environment agents interacted inside a container and each container interacted with external resources, including other NICU systems and consultation centers. In the NICU container, the main identified agents were reception, monitoring, NICU registry, and outcome prediction, which interacted with human agents including nurses and physicians. Managing patients at the NICU units requires online data collection, real-time collaboration, and management of many components. Multi agent systems are applied as a well-known solution for management, coordination, modeling, and control of NICU processes. We are currently working on an outcome prediction module using artificial intelligence techniques for neonatal mortality risk prediction. The full implementation of the proposed architecture and evaluation is considered the future work.

  11. IMAGE: A Design Integration Framework Applied to the High Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Hale, Mark A.; Craig, James I.

    1993-01-01

    Effective design of the High Speed Civil Transport requires the systematic application of design resources throughout a product's life-cycle. Information obtained from the use of these resources is used for the decision-making processes of Concurrent Engineering. Integrated computing environments facilitate the acquisition, organization, and use of required information. State-of-the-art computing technologies provide the basis for the Intelligent Multi-disciplinary Aircraft Generation Environment (IMAGE) described in this paper. IMAGE builds upon existing agent technologies by adding a new component called a model. With the addition of a model, the agent can provide accountable resource utilization in the presence of increasing design fidelity. The development of a zeroth-order agent is used to illustrate agent fundamentals. Using a CATIA(TM)-based agent from previous work, a High Speed Civil Transport visualization system linking CATIA, FLOPS, and ASTROS will be shown. These examples illustrate the important role of the agent technologies used to implement IMAGE, and together they demonstrate that IMAGE can provide an integrated computing environment for the design of the High Speed Civil Transport.

  12. Multi-agent cooperation pursuit based on an extension of AALAADIN organisational model

    NASA Astrophysics Data System (ADS)

    Souidi, Mohammed El Habib; Songhao, Piao; Guo, Li; Lin, Chang

    2016-11-01

    An approach of cooperative pursuit for multiple mobile targets based on multi-agents system is discussed. In this kind of problem the pursuit process is divided into two kinds of tasks. The first one (coalition problem) is designed to solve the problem of the pursuit team formation. To achieve this mission, we used an innovative method based on a dynamic organisation and reorganisation of the pursuers' groups. We introduce our coalition strategy extended from the organisational agent, group, role model by assigning an access mechanism to the groups inspired by fuzzy logic principles. The second task (motion problem) is the treatment of the pursuers' motion strategy. To manage this problem we applied the principles of the Markov decision process. Simulation results show the feasibility and validity of the given proposal.

  13. Distributed consensus for discrete-time heterogeneous multi-agent systems

    NASA Astrophysics Data System (ADS)

    Zhao, Huanyu; Fei, Shumin

    2018-06-01

    This paper studies the consensus problem for a class of discrete-time heterogeneous multi-agent systems. Two kinds of consensus algorithms will be considered. The heterogeneous multi-agent systems considered are converted into equivalent error systems by a model transformation. Then we analyse the consensus problem of the original systems by analysing the stability problem of the error systems. Some sufficient conditions for consensus of heterogeneous multi-agent systems are obtained by applying algebraic graph theory and matrix theory. Simulation examples are presented to show the usefulness of the results.

  14. Competitive-Cooperative Automated Reasoning from Distributed and Multiple Source of Data

    NASA Astrophysics Data System (ADS)

    Fard, Amin Milani

    Knowledge extraction from distributed database systems, have been investigated during past decade in order to analyze billions of information records. In this work a competitive deduction approach in a heterogeneous data grid environment is proposed using classic data mining and statistical methods. By applying a game theory concept in a multi-agent model, we tried to design a policy for hierarchical knowledge discovery and inference fusion. To show the system run, a sample multi-expert system has also been developed.

  15. Designing Agent Utilities for Coordinated, Scalable and Robust Multi-Agent Systems

    NASA Technical Reports Server (NTRS)

    Tumer, Kagan

    2005-01-01

    Coordinating the behavior of a large number of agents to achieve a system level goal poses unique design challenges. In particular, problems of scaling (number of agents in the thousands to tens of thousands), observability (agents have limited sensing capabilities), and robustness (the agents are unreliable) make it impossible to simply apply methods developed for small multi-agent systems composed of reliable agents. To address these problems, we present an approach based on deriving agent goals that are aligned with the overall system goal, and can be computed using information readily available to the agents. Then, each agent uses a simple reinforcement learning algorithm to pursue its own goals. Because of the way in which those goals are derived, there is no need to use difficult to scale external mechanisms to force collaboration or coordination among the agents, or to ensure that agents actively attempt to appropriate the tasks of agents that suffered failures. To present these results in a concrete setting, we focus on the problem of finding the sub-set of a set of imperfect devices that results in the best aggregate device. This is a large distributed agent coordination problem where each agent (e.g., device) needs to determine whether to be part of the aggregate device. Our results show that the approach proposed in this work provides improvements of over an order of magnitude over both traditional search methods and traditional multi-agent methods. Furthermore, the results show that even in extreme cases of agent failures (i.e., half the agents failed midway through the simulation) the system's performance degrades gracefully and still outperforms a failure-free and centralized search algorithm. The results also show that the gains increase as the size of the system (e.g., number of agents) increases. This latter result is particularly encouraging and suggests that this method is ideally suited for domains where the number of agents is currently in the thousands and will reach tens or hundreds of thousands in the near future.

  16. Verifying Multi-Agent Systems via Unbounded Model Checking

    NASA Technical Reports Server (NTRS)

    Kacprzak, M.; Lomuscio, A.; Lasica, T.; Penczek, W.; Szreter, M.

    2004-01-01

    We present an approach to the problem of verification of epistemic properties in multi-agent systems by means of symbolic model checking. In particular, it is shown how to extend the technique of unbounded model checking from a purely temporal setting to a temporal-epistemic one. In order to achieve this, we base our discussion on interpreted systems semantics, a popular semantics used in multi-agent systems literature. We give details of the technique and show how it can be applied to the well known train, gate and controller problem. Keywords: model checking, unbounded model checking, multi-agent systems

  17. Learning Sequences of Actions in Collectives of Autonomous Agents

    NASA Technical Reports Server (NTRS)

    Turner, Kagan; Agogino, Adrian K.; Wolpert, David H.; Clancy, Daniel (Technical Monitor)

    2001-01-01

    In this paper we focus on the problem of designing a collective of autonomous agents that individually learn sequences of actions such that the resultant sequence of joint actions achieves a predetermined global objective. We are particularly interested in instances of this problem where centralized control is either impossible or impractical. For single agent systems in similar domains, machine learning methods (e.g., reinforcement learners) have been successfully used. However, applying such solutions directly to multi-agent systems often proves problematic, as agents may work at cross-purposes, or have difficulty in evaluating their contribution to achievement of the global objective, or both. Accordingly, the crucial design step in multiagent systems centers on determining the private objectives of each agent so that as the agents strive for those objectives, the system reaches a good global solution. In this work we consider a version of this problem involving multiple autonomous agents in a grid world. We use concepts from collective intelligence to design goals for the agents that are 'aligned' with the global goal, and are 'learnable' in that agents can readily see how their behavior affects their utility. We show that reinforcement learning agents using those goals outperform both 'natural' extensions of single agent algorithms and global reinforcement, learning solutions based on 'team games'.

  18. Directional Bias and Pheromone for Discovery and Coverage on Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fink, Glenn A.; Berenhaut, Kenneth S.; Oehmen, Christopher S.

    2012-09-11

    Natural multi-agent systems often rely on “correlated random walks” (random walks that are biased toward a current heading) to distribute their agents over a space (e.g., for foraging, search, etc.). Our contribution involves creation of a new movement and pheromone model that applies the concept of heading bias in random walks to a multi-agent, digital-ants system designed for cyber-security monitoring. We examine the relative performance effects of both pheromone and heading bias on speed of discovery of a target and search-area coverage in a two-dimensional network layout. We found that heading bias was unexpectedly helpful in reducing search time andmore » that it was more influential than pheromone for improving coverage. We conclude that while pheromone is very important for rapid discovery, heading bias can also greatly improve both performance metrics.« less

  19. A Mobile Multi-Agent Information System for Ubiquitous Fetal Monitoring

    PubMed Central

    Su, Chuan-Jun; Chu, Ta-Wei

    2014-01-01

    Electronic fetal monitoring (EFM) systems integrate many previously separate clinical activities related to fetal monitoring. Promoting the use of ubiquitous fetal monitoring services with real time status assessments requires a robust information platform equipped with an automatic diagnosis engine. This paper presents the design and development of a mobile multi-agent platform-based open information systems (IMAIS) with an automated diagnosis engine to support intensive and distributed ubiquitous fetal monitoring. The automatic diagnosis engine that we developed is capable of analyzing data in both traditional paper-based and digital formats. Issues related to interoperability, scalability, and openness in heterogeneous e-health environments are addressed through the adoption of a FIPA2000 standard compliant agent development platform—the Java Agent Development Environment (JADE). Integrating the IMAIS with light-weight, portable fetal monitor devices allows for continuous long-term monitoring without interfering with a patient’s everyday activities and without restricting her mobility. The system architecture can be also applied to vast monitoring scenarios such as elder care and vital sign monitoring. PMID:24452256

  20. [Research of preparation craft of Danshen phenolic acid fast release unit in multi-drug delivery system of Tongmai micro-pellets].

    PubMed

    Chen, Bin; Xiao, Wei; Jia, Xiao-Bin; Huang, Yang

    2012-07-01

    To prepare Danshen phenolic acid fast release micro-pellets and study its preparation craft. The factors which could impact yield, extrude shaping, dissolution of Danshen phenolic acid micro-pellets such as wetting agent, drug loading dose, adjuvant, lactose dose, disintegrant, CMS-Na dose and wetting agent dose was investigated. The optimum preparation craft of Danshen phenolic acid fast release micro-pellets was screened out by orhogonal design. Formula of Danshen phenolic acid fast release micro-pellets was calculated as volume dose 50 g. The formula was as follows: principal agent 22.5 g, lactose 5 g, CMS-Na 2 g, MCC 20.5 g, 27 mL 30% ethanol as wetting agent. Extrusion-spheronization was applied. The optimum conditions were screened out as follows: extrusion frequency (25 Hz), spheronization machine frequency (50 Hz), spheronization time (4 min). The process was scientific and rational. The preparation is stable settles basis for multi-drug delivery system of Tongmai micro-pellets.

  1. Combining a Multi-Agent System and Communication Middleware for Smart Home Control: A Universal Control Platform Architecture

    PubMed Central

    Zheng, Song; Zhang, Qi; Zheng, Rong; Huang, Bi-Qin; Song, Yi-Lin; Chen, Xin-Chu

    2017-01-01

    In recent years, the smart home field has gained wide attention for its broad application prospects. However, families using smart home systems must usually adopt various heterogeneous smart devices, including sensors and devices, which makes it more difficult to manage and control their home system. How to design a unified control platform to deal with the collaborative control problem of heterogeneous smart devices is one of the greatest challenges in the current smart home field. The main contribution of this paper is to propose a universal smart home control platform architecture (IAPhome) based on a multi-agent system and communication middleware, which shows significant adaptability and advantages in many aspects, including heterogeneous devices connectivity, collaborative control, human-computer interaction and user self-management. The communication middleware is an important foundation to design and implement this architecture which makes it possible to integrate heterogeneous smart devices in a flexible way. A concrete method of applying the multi-agent software technique to solve the integrated control problem of the smart home system is also presented. The proposed platform architecture has been tested in a real smart home environment, and the results indicate that the effectiveness of our approach for solving the collaborative control problem of different smart devices. PMID:28926957

  2. Combining a Multi-Agent System and Communication Middleware for Smart Home Control: A Universal Control Platform Architecture.

    PubMed

    Zheng, Song; Zhang, Qi; Zheng, Rong; Huang, Bi-Qin; Song, Yi-Lin; Chen, Xin-Chu

    2017-09-16

    In recent years, the smart home field has gained wide attention for its broad application prospects. However, families using smart home systems must usually adopt various heterogeneous smart devices, including sensors and devices, which makes it more difficult to manage and control their home system. How to design a unified control platform to deal with the collaborative control problem of heterogeneous smart devices is one of the greatest challenges in the current smart home field. The main contribution of this paper is to propose a universal smart home control platform architecture (IAPhome) based on a multi-agent system and communication middleware, which shows significant adaptability and advantages in many aspects, including heterogeneous devices connectivity, collaborative control, human-computer interaction and user self-management. The communication middleware is an important foundation to design and implement this architecture which makes it possible to integrate heterogeneous smart devices in a flexible way. A concrete method of applying the multi-agent software technique to solve the integrated control problem of the smart home system is also presented. The proposed platform architecture has been tested in a real smart home environment, and the results indicate that the effectiveness of our approach for solving the collaborative control problem of different smart devices.

  3. Output Containment Control of Linear Heterogeneous Multi-Agent Systems Using Internal Model Principle.

    PubMed

    Zuo, Shan; Song, Yongduan; Lewis, Frank L; Davoudi, Ali

    2017-01-04

    This paper studies the output containment control of linear heterogeneous multi-agent systems, where the system dynamics and even the state dimensions can generally be different. Since the states can have different dimensions, standard results from state containment control do not apply. Therefore, the control objective is to guarantee the convergence of the output of each follower to the dynamic convex hull spanned by the outputs of leaders. This can be achieved by making certain output containment errors go to zero asymptotically. Based on this formulation, two different control protocols, namely, full-state feedback and static output-feedback, are designed based on internal model principles. Sufficient local conditions for the existence of the proposed control protocols are developed in terms of stabilizing the local followers' dynamics and satisfying a certain H∞ criterion. Unified design procedures to solve the proposed two control protocols are presented by formulation and solution of certain local state-feedback and static output-feedback problems, respectively. Numerical simulations are given to validate the proposed control protocols.

  4. Adaptive tracking control of leader-following linear multi-agent systems with external disturbances

    NASA Astrophysics Data System (ADS)

    Lin, Hanquan; Wei, Qinglai; Liu, Derong; Ma, Hongwen

    2016-10-01

    In this paper, the consensus problem for leader-following linear multi-agent systems with external disturbances is investigated. Brownian motions are used to describe exogenous disturbances. A distributed tracking controller based on Riccati inequalities with an adaptive law for adjusting coupling weights between neighbouring agents is designed for leader-following multi-agent systems under fixed and switching topologies. In traditional distributed static controllers, the coupling weights depend on the communication graph. However, coupling weights associated with the feedback gain matrix in our method are updated by state errors between neighbouring agents. We further present the stability analysis of leader-following multi-agent systems with stochastic disturbances under switching topology. Most traditional literature requires the graph to be connected all the time, while the communication graph is only assumed to be jointly connected in this paper. The design technique is based on Riccati inequalities and algebraic graph theory. Finally, simulations are given to show the validity of our method.

  5. Observer-based distributed adaptive iterative learning control for linear multi-agent systems

    NASA Astrophysics Data System (ADS)

    Li, Jinsha; Liu, Sanyang; Li, Junmin

    2017-10-01

    This paper investigates the consensus problem for linear multi-agent systems from the viewpoint of two-dimensional systems when the state information of each agent is not available. Observer-based fully distributed adaptive iterative learning protocol is designed in this paper. A local observer is designed for each agent and it is shown that without using any global information about the communication graph, all agents achieve consensus perfectly for all undirected connected communication graph when the number of iterations tends to infinity. The Lyapunov-like energy function is employed to facilitate the learning protocol design and property analysis. Finally, simulation example is given to illustrate the theoretical analysis.

  6. Distributed robust finite-time nonlinear consensus protocols for multi-agent systems

    NASA Astrophysics Data System (ADS)

    Zuo, Zongyu; Tie, Lin

    2016-04-01

    This paper investigates the robust finite-time consensus problem of multi-agent systems in networks with undirected topology. Global nonlinear consensus protocols augmented with a variable structure are constructed with the aid of Lyapunov functions for each single-integrator agent dynamics in the presence of external disturbances. In particular, it is shown that the finite settling time of the proposed general framework for robust consensus design is upper bounded for any initial condition. This makes it possible for network consensus problems to design and estimate the convergence time offline for a multi-agent team with a given undirected information flow. Finally, simulation results are presented to demonstrate the performance and effectiveness of our finite-time protocols.

  7. Self Organized Multi Agent Swarms (SOMAS) for Network Security Control

    DTIC Science & Technology

    2009-03-01

    Normal hierarchy vs entangled hierarchy 2.5.7 Quantifying Entangledness . While self organization means that the swarm develops a consistent structure of...flexibility due to centralization of control and com- munication. Thus, self organized, entangled hierarchy multi-agent swarms are evolved in this study to...technique. The resulting design exhibits a self organized multi-agent swarm (SOMAS) with entangled hierarchical control and communication through the

  8. INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Trajectory Control of Scale-Free Dynamical Networks with Exogenous Disturbances

    NASA Astrophysics Data System (ADS)

    Yang, Hong-Yong; Zhang, Shun; Zong, Guang-Deng

    2011-01-01

    In this paper, the trajectory control of multi-agent dynamical systems with exogenous disturbances is studied. Suppose multiple agents composing of a scale-free network topology, the performance of rejecting disturbances for the low degree node and high degree node is analyzed. Firstly, the consensus of multi-agent systems without disturbances is studied by designing a pinning control strategy on a part of agents, where this pinning control can bring multiple agents' states to an expected consensus track. Then, the influence of the disturbances is considered by developing disturbance observers, and disturbance observers based control (DOBC) are developed for disturbances generated by an exogenous system to estimate the disturbances. Asymptotical consensus of the multi-agent systems with disturbances under the composite controller can be achieved for scale-free network topology. Finally, by analyzing examples of multi-agent systems with scale-free network topology and exogenous disturbances, the verities of the results are proved. Under the DOBC with the designed parameters, the trajectory convergence of multi-agent systems is researched by pinning two class of the nodes. We have found that it has more stronger robustness to exogenous disturbances for the high degree node pinned than that of the low degree node pinned.

  9. Elements of decisional dynamics: An agent-based approach applied to artificial financial market

    NASA Astrophysics Data System (ADS)

    Lucas, Iris; Cotsaftis, Michel; Bertelle, Cyrille

    2018-02-01

    This paper introduces an original mathematical description for describing agents' decision-making process in the case of problems affected by both individual and collective behaviors in systems characterized by nonlinear, path dependent, and self-organizing interactions. An application to artificial financial markets is proposed by designing a multi-agent system based on the proposed formalization. In this application, agents' decision-making process is based on fuzzy logic rules and the price dynamics is purely deterministic according to the basic matching rules of a central order book. Finally, while putting most parameters under evolutionary control, the computational agent-based system is able to replicate several stylized facts of financial time series (distributions of stock returns showing a heavy tail with positive excess kurtosis, absence of autocorrelations in stock returns, and volatility clustering phenomenon).

  10. Elements of decisional dynamics: An agent-based approach applied to artificial financial market.

    PubMed

    Lucas, Iris; Cotsaftis, Michel; Bertelle, Cyrille

    2018-02-01

    This paper introduces an original mathematical description for describing agents' decision-making process in the case of problems affected by both individual and collective behaviors in systems characterized by nonlinear, path dependent, and self-organizing interactions. An application to artificial financial markets is proposed by designing a multi-agent system based on the proposed formalization. In this application, agents' decision-making process is based on fuzzy logic rules and the price dynamics is purely deterministic according to the basic matching rules of a central order book. Finally, while putting most parameters under evolutionary control, the computational agent-based system is able to replicate several stylized facts of financial time series (distributions of stock returns showing a heavy tail with positive excess kurtosis, absence of autocorrelations in stock returns, and volatility clustering phenomenon).

  11. Design and Control of Large Collections of Learning Agents

    NASA Technical Reports Server (NTRS)

    Agogino, Adrian

    2001-01-01

    The intelligent control of multiple autonomous agents is an important yet difficult task. Previous methods used to address this problem have proved to be either too brittle, too hard to use, or not scalable to large systems. The 'Collective Intelligence' project at NASA/Ames provides an elegant, machine-learning approach to address these problems. This approach mathematically defines some essential properties that a reward system should have to promote coordinated behavior among reinforcement learners. This work has focused on creating additional key properties and algorithms within the mathematics of the Collective Intelligence framework. One of the additions will allow agents to learn more quickly, in a more coordinated manner. The other will let agents learn with less knowledge of their environment. These additions will allow the framework to be applied more easily, to a much larger domain of multi-agent problems.

  12. Designing multi-targeted agents: An emerging anticancer drug discovery paradigm.

    PubMed

    Fu, Rong-Geng; Sun, Yuan; Sheng, Wen-Bing; Liao, Duan-Fang

    2017-08-18

    The dominant paradigm in drug discovery is to design ligands with maximum selectivity to act on individual drug targets. With the target-based approach, many new chemical entities have been discovered, developed, and further approved as drugs. However, there are a large number of complex diseases such as cancer that cannot be effectively treated or cured only with one medicine to modulate the biological function of a single target. As simultaneous intervention of two (or multiple) cancer progression relevant targets has shown improved therapeutic efficacy, the innovation of multi-targeted drugs has become a promising and prevailing research topic and numerous multi-targeted anticancer agents are currently at various developmental stages. However, most multi-pharmacophore scaffolds are usually discovered by serendipity or screening, while rational design by combining existing pharmacophore scaffolds remains an enormous challenge. In this review, four types of multi-pharmacophore modes are discussed, and the examples from literature will be used to introduce attractive lead compounds with the capability of simultaneously interfering with different enzyme or signaling pathway of cancer progression, which will reveal the trends and insights to help the design of the next generation multi-targeted anticancer agents. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Delay-dependent coupling for a multi-agent LTI consensus system with inter-agent delays

    NASA Astrophysics Data System (ADS)

    Qiao, Wei; Sipahi, Rifat

    2014-01-01

    Delay-dependent coupling (DDC) is considered in this paper in a broadly studied linear time-invariant multi-agent consensus system in which agents communicate with each other under homogeneous delays, while attempting to reach consensus. The coupling among the agents is designed here as an explicit parameter of this delay, allowing couplings to autonomously adapt based on the delay value, and in order to guarantee stability and a certain degree of robustness in the network despite the destabilizing effect of delay. Design procedures, analysis of convergence speed of consensus, comprehensive numerical studies for the case of time-varying delay, and limitations are presented.

  14. Leaderless consensus for the fractional-order nonlinear multi-agent systems under directed interaction topology

    NASA Astrophysics Data System (ADS)

    Bai, Jing; Wen, Guoguang; Rahmani, Ahmed

    2018-04-01

    Leaderless consensus for the fractional-order nonlinear multi-agent systems is investigated in this paper. At the first part, a control protocol is proposed to achieve leaderless consensus for the nonlinear single-integrator multi-agent systems. At the second part, based on sliding mode estimator, a control protocol is given to solve leaderless consensus for the the nonlinear single-integrator multi-agent systems. It shows that the control protocol can improve the systems' convergence speed. At the third part, a control protocol is designed to accomplish leaderless consensus for the nonlinear double-integrator multi-agent systems. To judge the systems' stability in this paper, two classic continuous Lyapunov candidate functions are chosen. Finally, several worked out examples under directed interaction topology are given to prove above results.

  15. A data-driven approach for evaluating multi-modal therapy in traumatic brain injury

    PubMed Central

    Haefeli, Jenny; Ferguson, Adam R.; Bingham, Deborah; Orr, Adrienne; Won, Seok Joon; Lam, Tina I.; Shi, Jian; Hawley, Sarah; Liu, Jialing; Swanson, Raymond A.; Massa, Stephen M.

    2017-01-01

    Combination therapies targeting multiple recovery mechanisms have the potential for additive or synergistic effects, but experimental design and analyses of multimodal therapeutic trials are challenging. To address this problem, we developed a data-driven approach to integrate and analyze raw source data from separate pre-clinical studies and evaluated interactions between four treatments following traumatic brain injury. Histologic and behavioral outcomes were measured in 202 rats treated with combinations of an anti-inflammatory agent (minocycline), a neurotrophic agent (LM11A-31), and physical therapy consisting of assisted exercise with or without botulinum toxin-induced limb constraint. Data was curated and analyzed in a linked workflow involving non-linear principal component analysis followed by hypothesis testing with a linear mixed model. Results revealed significant benefits of the neurotrophic agent LM11A-31 on learning and memory outcomes after traumatic brain injury. In addition, modulations of LM11A-31 effects by co-administration of minocycline and by the type of physical therapy applied reached statistical significance. These results suggest a combinatorial effect of drug and physical therapy interventions that was not evident by univariate analysis. The study designs and analytic techniques applied here form a structured, unbiased, internally validated workflow that may be applied to other combinatorial studies, both in animals and humans. PMID:28205533

  16. A data-driven approach for evaluating multi-modal therapy in traumatic brain injury.

    PubMed

    Haefeli, Jenny; Ferguson, Adam R; Bingham, Deborah; Orr, Adrienne; Won, Seok Joon; Lam, Tina I; Shi, Jian; Hawley, Sarah; Liu, Jialing; Swanson, Raymond A; Massa, Stephen M

    2017-02-16

    Combination therapies targeting multiple recovery mechanisms have the potential for additive or synergistic effects, but experimental design and analyses of multimodal therapeutic trials are challenging. To address this problem, we developed a data-driven approach to integrate and analyze raw source data from separate pre-clinical studies and evaluated interactions between four treatments following traumatic brain injury. Histologic and behavioral outcomes were measured in 202 rats treated with combinations of an anti-inflammatory agent (minocycline), a neurotrophic agent (LM11A-31), and physical therapy consisting of assisted exercise with or without botulinum toxin-induced limb constraint. Data was curated and analyzed in a linked workflow involving non-linear principal component analysis followed by hypothesis testing with a linear mixed model. Results revealed significant benefits of the neurotrophic agent LM11A-31 on learning and memory outcomes after traumatic brain injury. In addition, modulations of LM11A-31 effects by co-administration of minocycline and by the type of physical therapy applied reached statistical significance. These results suggest a combinatorial effect of drug and physical therapy interventions that was not evident by univariate analysis. The study designs and analytic techniques applied here form a structured, unbiased, internally validated workflow that may be applied to other combinatorial studies, both in animals and humans.

  17. Distributed reconfigurable control strategies for switching topology networked multi-agent systems.

    PubMed

    Gallehdari, Z; Meskin, N; Khorasani, K

    2017-11-01

    In this paper, distributed control reconfiguration strategies for directed switching topology networked multi-agent systems are developed and investigated. The proposed control strategies are invoked when the agents are subject to actuator faults and while the available fault detection and isolation (FDI) modules provide inaccurate and unreliable information on the estimation of faults severities. Our proposed strategies will ensure that the agents reach a consensus while an upper bound on the team performance index is ensured and satisfied. Three types of actuator faults are considered, namely: the loss of effectiveness fault, the outage fault, and the stuck fault. By utilizing quadratic and convex hull (composite) Lyapunov functions, two cooperative and distributed recovery strategies are designed and provided to select the gains of the proposed control laws such that the team objectives are guaranteed. Our proposed reconfigurable control laws are applied to a team of autonomous underwater vehicles (AUVs) under directed switching topologies and subject to simultaneous actuator faults. Simulation results demonstrate the effectiveness of our proposed distributed reconfiguration control laws in compensating for the effects of sudden actuator faults and subject to fault diagnosis module uncertainties and unreliabilities. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Multi-Agent Design and Implementation for an Online Peer Help System

    ERIC Educational Resources Information Center

    Meng, Anbo

    2014-01-01

    With the rapid advance of e-learning, the online peer help is playing increasingly important role. This paper explores the application of MAS to an online peer help system (MAPS). In the design phase, the architecture of MAPS is proposed, which consists of a set of agents including the personal agent, the course agent, the diagnosis agent, the DF…

  19. A self-taught artificial agent for multi-physics computational model personalization.

    PubMed

    Neumann, Dominik; Mansi, Tommaso; Itu, Lucian; Georgescu, Bogdan; Kayvanpour, Elham; Sedaghat-Hamedani, Farbod; Amr, Ali; Haas, Jan; Katus, Hugo; Meder, Benjamin; Steidl, Stefan; Hornegger, Joachim; Comaniciu, Dorin

    2016-12-01

    Personalization is the process of fitting a model to patient data, a critical step towards application of multi-physics computational models in clinical practice. Designing robust personalization algorithms is often a tedious, time-consuming, model- and data-specific process. We propose to use artificial intelligence concepts to learn this task, inspired by how human experts manually perform it. The problem is reformulated in terms of reinforcement learning. In an off-line phase, Vito, our self-taught artificial agent, learns a representative decision process model through exploration of the computational model: it learns how the model behaves under change of parameters. The agent then automatically learns an optimal strategy for on-line personalization. The algorithm is model-independent; applying it to a new model requires only adjusting few hyper-parameters of the agent and defining the observations to match. The full knowledge of the model itself is not required. Vito was tested in a synthetic scenario, showing that it could learn how to optimize cost functions generically. Then Vito was applied to the inverse problem of cardiac electrophysiology and the personalization of a whole-body circulation model. The obtained results suggested that Vito could achieve equivalent, if not better goodness of fit than standard methods, while being more robust (up to 11% higher success rates) and with faster (up to seven times) convergence rate. Our artificial intelligence approach could thus make personalization algorithms generalizable and self-adaptable to any patient and any model. Copyright © 2016. Published by Elsevier B.V.

  20. Multi-Agent Systems Design for Novices

    ERIC Educational Resources Information Center

    Lynch, Simon; Rajendran, Keerthi

    2005-01-01

    Advanced approaches to the construction of software systems can present difficulties to learners. This is true for multi-agent systems (MAS) which exhibit concurrency, non-determinacy of structure and composition and sometimes emergent behavior characteristics. Additional barriers exist for learners because mainstream MAS technology is young and…

  1. Initial and long-term bond strengths of one-step self-etch adhesives with silane coupling agent to enamel-dentin-composite in combined situation.

    PubMed

    Mamanee, Teerapong; Takahashi, Masahiro; Nakajima, Masatoshi; Foxton, Richard M; Tagami, Junji

    2015-01-01

    This study evaluated the effect of adding silane coupling agent on initial and long-term bond strengths of one-step self-etch adhesives to enamel-dentin-composite in combined situation. Cervical cavities were prepared on extracted molars and filled with Clearfil AP-X. After water-storage for one-week, the filled teeth were sectioned in halves to expose enamel, dentin and composite surfaces and then enamel-dentin-composite surface was totally applied with one of adhesive treatments (Clearfil SE One, Clearfil SE One with Clearfil Porcelain Bond Activator, Beautibond Multi, Beautibond Multi with Beautibond Multi PR Plus and Scotchbond Universal). After designed period, micro-shear bond strengths (µSBSs) to each substrate were determined. For each period of water-storage, additive silane treatments significantly increased µSBS to composite (p<0.001). On the other hand, they significantly decreased µSBS to dentin (p<0.001), although did not have adverse effect on µSBS to enamel (p>0.05). Moreover, the stability of µSBS was depended on materials and substrates used.

  2. Multi Agent Systems with Symbiotic Learning and Evolution using GNP

    NASA Astrophysics Data System (ADS)

    Eguchi, Toru; Hirasawa, Kotaro; Hu, Jinglu; Murata, Junichi

    Recently, various attempts relevant to Multi Agent Systems (MAS) which is one of the most promising systems based on Distributed Artificial Intelligence have been studied to control large and complicated systems efficiently. In these trends of MAS, Multi Agent Systems with Symbiotic Learning and Evolution named Masbiole has been proposed. In Masbiole, symbiotic phenomena among creatures are considered in the process of learning and evolution of MAS. So we can expect more flexible and sophisticated solutions than conventional MAS. In this paper, we apply Masbiole to Iterative Prisoner’s Dilemma Games (IPD Games) using Genetic Network Programming (GNP) which is a newly developed evolutionary computation method for constituting agents. Some characteristics of Masbiole using GNP in IPD Games are clarified.

  3. Distributed Consensus of Stochastic Delayed Multi-agent Systems Under Asynchronous Switching.

    PubMed

    Wu, Xiaotai; Tang, Yang; Cao, Jinde; Zhang, Wenbing

    2016-08-01

    In this paper, the distributed exponential consensus of stochastic delayed multi-agent systems with nonlinear dynamics is investigated under asynchronous switching. The asynchronous switching considered here is to account for the time of identifying the active modes of multi-agent systems. After receipt of confirmation of mode's switching, the matched controller can be applied, which means that the switching time of the matched controller in each node usually lags behind that of system switching. In order to handle the coexistence of switched signals and stochastic disturbances, a comparison principle of stochastic switched delayed systems is first proved. By means of this extended comparison principle, several easy to verified conditions for the existence of an asynchronously switched distributed controller are derived such that stochastic delayed multi-agent systems with asynchronous switching and nonlinear dynamics can achieve global exponential consensus. Two examples are given to illustrate the effectiveness of the proposed method.

  4. Rendezvous with connectivity preservation for multi-robot systems with an unknown leader

    NASA Astrophysics Data System (ADS)

    Dong, Yi

    2018-02-01

    This paper studies the leader-following rendezvous problem with connectivity preservation for multi-agent systems composed of uncertain multi-robot systems subject to external disturbances and an unknown leader, both of which are generated by a so-called exosystem with parametric uncertainty. By combining internal model design, potential function technique and adaptive control, two distributed control strategies are proposed to maintain the connectivity of the communication network, to achieve the asymptotic tracking of all the followers to the output of the unknown leader system, as well as to reject unknown external disturbances. It is also worth to mention that the uncertain parameters in the multi-robot systems and exosystem are further allowed to belong to unknown and unbounded sets when applying the second fully distributed control law containing a dynamic gain inspired by high-gain adaptive control or self-tuning regulator.

  5. The Design of a Multi-Agent NDE Inspection Qualification System

    NASA Astrophysics Data System (ADS)

    McLean, N.; McKenna, J. P.; Gachagan, A.; McArthur, S.; Hayward, G.

    2007-03-01

    A novel Multi-Agent system (MAS) for NDE inspection qualification is being developed to facilitate a scalable environment allowing integration and automation of new and existing inspection qualification tools. This paper discusses the advantages of using a MAS approach to integrate the large number of disparate NDE software tools. The design and implementation of the system architecture is described, including the development of an ontology to describe the NDE domain.

  6. Multi-agent system as a new approach to effective chronic heart failure management: key considerations.

    PubMed

    Mohammadzadeh, Niloofar; Safdari, Reza; Rahimi, Azin

    2013-09-01

    Given the importance of the follow-up of chronic heart failure (CHF) patients to reduce common causes of re-admission and deterioration of their status that lead to imposing spiritual and physical costs on patients and society, modern technology tools should be used to the best advantage. The aim of this article is to explain key points which should be considered in designing an appropriate multi-agent system to improve CHF management. In this literature review articles were searched with keywords like multi-agent system, heart failure, chronic disease management in Science Direct, Google Scholar and PubMed databases without regard to the year of publications. Agents are an innovation in the field of artificial intelligence. Because agents are capable of solving complex and dynamic health problems, to take full advantage of e-Health, the healthcare system must take steps to make use of this technology. Key factors in CHF management through a multi-agent system approach must be considered such as organization, confidentiality in general aspects and design and architecture points in specific aspects. Note that use of agent systems only with a technical view is associated with many problems. Hence, in delivering healthcare to CHF patients, considering social and human aspects is essential. It is obvious that identifying and resolving technical and non-technical challenges is vital in the successful implementation of this technology.

  7. Multi-Agent System as a New Approach to Effective Chronic Heart Failure Management: Key Considerations

    PubMed Central

    Mohammadzadeh, Niloofar; Rahimi, Azin

    2013-01-01

    Objectives Given the importance of the follow-up of chronic heart failure (CHF) patients to reduce common causes of re-admission and deterioration of their status that lead to imposing spiritual and physical costs on patients and society, modern technology tools should be used to the best advantage. The aim of this article is to explain key points which should be considered in designing an appropriate multi-agent system to improve CHF management. Methods In this literature review articles were searched with keywords like multi-agent system, heart failure, chronic disease management in Science Direct, Google Scholar and PubMed databases without regard to the year of publications. Results Agents are an innovation in the field of artificial intelligence. Because agents are capable of solving complex and dynamic health problems, to take full advantage of e-Health, the healthcare system must take steps to make use of this technology. Key factors in CHF management through a multi-agent system approach must be considered such as organization, confidentiality in general aspects and design and architecture points in specific aspects. Conclusions Note that use of agent systems only with a technical view is associated with many problems. Hence, in delivering healthcare to CHF patients, considering social and human aspects is essential. It is obvious that identifying and resolving technical and non-technical challenges is vital in the successful implementation of this technology. PMID:24195010

  8. Formal Modeling of Multi-Agent Systems using the Pi-Calculus and Epistemic Logic

    NASA Technical Reports Server (NTRS)

    Rorie, Toinette; Esterline, Albert

    1998-01-01

    Multi-agent systems have become important recently in computer science, especially in artificial intelligence (AI). We allow a broad sense of agent, but require at least that an agent has some measure of autonomy and interacts with other agents via some kind of agent communication language. We are concerned in this paper with formal modeling of multi-agent systems, with emphasis on communication. We propose for this purpose to use the pi-calculus, an extension of the process algebra CCS. Although the literature on the pi-calculus refers to agents, the term is used there in the sense of a process in general. It is our contention, however, that viewing agents in the AI sense as agents in the pi-calculus sense affords significant formal insight. One formalism that has been applied to agents in the AI sense is epistemic logic, the logic of knowledge. The success of epistemic logic in computer science in general has come in large part from its ability to handle concepts of knowledge that apply to groups. We maintain that the pi-calculus affords a natural yet rigorous means by which groups that are significant to epistemic logic may be identified, encapsulated, structured into hierarchies, and restructured in a principled way. This paper is organized as follows: Section 2 introduces the pi-calculus; Section 3 takes a scenario from the classical paper on agent-oriented programming [Sh93] and translates it into a very simple subset of the n-calculus; Section 4 then shows how more sophisticated features of the pi-calculus may bc brought into play; Section 5 discusses how the pi-calculus may be used to define groups for epistemic logic; and Section 6 is the conclusion.

  9. Towards Time Automata and Multi-Agent Systems

    NASA Technical Reports Server (NTRS)

    Hutzler, G.; Klaudel, H.; Wang, D. Y.

    2004-01-01

    The design of reactive systems must comply with logical correctness (the system does what it is supposed to do) and timeliness (the system has to satisfy a set of temporal constraints) criteria. In this paper, we propose a global approach for the design of adaptive reactive systems, i.e., systems that dynamically adapt their architecture depending on the context. We use the timed automata formalism for the design of the agents' behavior. This allows evaluating beforehand the properties of the system (regarding logical correctness and timeliness), thanks to model-checking and simulation techniques. This model is enhanced with tools that we developed for the automatic generation of code, allowing to produce very quickly a running multi-agent prototype satisfying the properties of the model.

  10. Hybrid flotation--membrane filtration process for the removal of heavy metal ions from wastewater.

    PubMed

    Blöcher, C; Dorda, J; Mavrov, V; Chmiel, H; Lazaridis, N K; Matis, K A

    2003-09-01

    A promising process for the removal of heavy metal ions from aqueous solutions involves bonding the metals firstly to a special bonding agent and then separating the loaded bonding agents from the wastewater stream by separation processes. For the separation stage, a new hybrid process of flotation and membrane separation has been developed in this work by integrating specially designed submerged microfiltration modules directly into a flotation reactor. This made it possible to combine the advantages of both flotation and membrane separation while overcoming the limitations. The feasibility of this hybrid process was proven using powdered synthetic zeolites as bonding agents. Stable fluxes of up to 80l m(-2)h(-1) were achieved with the ceramic flat-sheet multi-channel membranes applied at low transmembrane pressure (<100 mbar). The process was applied in lab-scale to treat wastewater from the electronics industry. All toxic metals in question, namely copper, nickel and zinc, were reduced from initial concentrations of 474, 3.3 and 167mg x l(-1), respectively, to below 0.05 mg x l(-1), consistently meeting the discharge limits.

  11. Human-Centered Design for the Personal Satellite Assistant

    NASA Technical Reports Server (NTRS)

    Bradshaw, Jeffrey M.; Sierhuis, Maarten; Gawdiak, Yuri; Thomas, Hans; Greaves, Mark; Clancey, William J.; Swanson, Keith (Technical Monitor)

    2000-01-01

    The Personal Satellite Assistant (PSA) is a softball-sized flying robot designed to operate autonomously onboard manned spacecraft in pressurized micro-gravity environments. We describe how the Brahms multi-agent modeling and simulation environment in conjunction with a KAoS agent teamwork approach can be used to support human-centered design for the PSA.

  12. Finite-time synchronization for second-order nonlinear multi-agent system via pinning exponent sliding mode control.

    PubMed

    Hou, Huazhou; Zhang, Qingling

    2016-11-01

    In this paper we investigate the finite-time synchronization for second-order multi-agent system via pinning exponent sliding mode control. Firstly, for the nonlinear multi-agent system, differential mean value theorem is employed to transfer the nonlinear system into linear system, then, by pinning only one node in the system with novel exponent sliding mode control, we can achieve synchronization in finite time. Secondly, considering the 3-DOF helicopter system with nonlinear dynamics and disturbances, the novel exponent sliding mode control protocol is applied to only one node to achieve the synchronization. Finally, the simulation results show the effectiveness and the advantages of the proposed method. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Non-fragile consensus algorithms for a network of diffusion PDEs with boundary local interaction

    NASA Astrophysics Data System (ADS)

    Xiong, Jun; Li, Junmin

    2017-07-01

    In this study, non-fragile consensus algorithm is proposed to solve the average consensus problem of a network of diffusion PDEs, modelled by boundary controlled heat equations. The problem deals with the case where the Neumann-type boundary controllers are corrupted by additive persistent disturbances. To achieve consensus between agents, a linear local interaction rule addressing this requirement is given. The proposed local interaction rules are analysed by applying a Lyapunov-based approach. The multiplicative and additive non-fragile feedback control algorithms are designed and sufficient conditions for the consensus of the multi-agent systems are presented in terms of linear matrix inequalities, respectively. Simulation results are presented to support the effectiveness of the proposed algorithms.

  14. Quicker Q-Learning in Multi-Agent Systems

    NASA Technical Reports Server (NTRS)

    Agogino, Adrian K.; Tumer, Kagan

    2005-01-01

    Multi-agent learning in Markov Decisions Problems is challenging because of the presence ot two credit assignment problems: 1) How to credit an action taken at time step t for rewards received at t' greater than t; and 2) How to credit an action taken by agent i considering the system reward is a function of the actions of all the agents. The first credit assignment problem is typically addressed with temporal difference methods such as Q-learning OK TD(lambda) The second credit assi,onment problem is typically addressed either by hand-crafting reward functions that assign proper credit to an agent, or by making certain independence assumptions about an agent's state-space and reward function. To address both credit assignment problems simultaneously, we propose the Q Updates with Immediate Counterfactual Rewards-learning (QUICR-learning) designed to improve both the convergence properties and performance of Q-learning in large multi-agent problems. Instead of assuming that an agent s value function can be made independent of other agents, this method suppresses the impact of other agents using counterfactual rewards. Results on multi-agent grid-world problems over multiple topologies show that QUICR-learning can achieve up to thirty fold improvements in performance over both conventional and local Q-learning in the largest tested systems.

  15. Monte-Carlo Tree Search in Settlers of Catan

    NASA Astrophysics Data System (ADS)

    Szita, István; Chaslot, Guillaume; Spronck, Pieter

    Games are considered important benchmark opportunities for artificial intelligence research. Modern strategic board games can typically be played by three or more people, which makes them suitable test beds for investigating multi-player strategic decision making. Monte-Carlo Tree Search (MCTS) is a recently published family of algorithms that achieved successful results with classical, two-player, perfect-information games such as Go. In this paper we apply MCTS to the multi-player, non-deterministic board game Settlers of Catan. We implemented an agent that is able to play against computer-controlled and human players. We show that MCTS can be adapted successfully to multi-agent environments, and present two approaches of providing the agent with a limited amount of domain knowledge. Our results show that the agent has a considerable playing strength when compared to game implementation with existing heuristics. So, we may conclude that MCTS is a suitable tool for achieving a strong Settlers of Catan player.

  16. Multi-agent grid system Agent-GRID with dynamic load balancing of cluster nodes

    NASA Astrophysics Data System (ADS)

    Satymbekov, M. N.; Pak, I. T.; Naizabayeva, L.; Nurzhanov, Ch. A.

    2017-12-01

    In this study the work presents the system designed for automated load balancing of the contributor by analysing the load of compute nodes and the subsequent migration of virtual machines from loaded nodes to less loaded ones. This system increases the performance of cluster nodes and helps in the timely processing of data. A grid system balances the work of cluster nodes the relevance of the system is the award of multi-agent balancing for the solution of such problems.

  17. A Multi-Agent Environment for Negotiation

    NASA Astrophysics Data System (ADS)

    Hindriks, Koen V.; Jonker, Catholijn M.; Tykhonov, Dmytro

    In this chapter we introduce the System for Analysis of Multi-Issue Negotiation (SAMIN). SAMIN offers a negotiation environment that supports and facilitates the setup of various negotiation setups. The environment has been designed to analyse negotiation processes between human negotiators, between human and software agents, and between software agents. It offers a range of different agents, different domains, and other options useful to define a negotiation setup. The environment has been used to test and evaluate a range of negotiation strategies in various domains playing against other negotiating agents as well as humans. We discuss some of the results obtained by means of these experiments.

  18. Multi-Scale Behavioral Modeling and Analysis Promoting a Fundamental Understanding of Agent-Based System Design and Operation

    DTIC Science & Technology

    2007-03-01

    Chains," Mathematics of Control, Signals, and Systems, vol. 3(1), pp. 1-29, 1990. [4] A . Arnold, J . A . Carrillo, and I. Gamba, "Low and High Field...Aronson, C. L. A ., and J . L. Vázquez, "Interfaces with a corner point in one- dimensional porous medium flow," Comm. Pure Appl. Math, vol. 38(4), pp. 375...K. Levin, "Damage analysis of fiber composites," Computer Methods in Applied Mechanics and Engineering. [10] K. S. Barber, A . Goel, T. J . Graser, T

  19. Developing Access Control Model of Web OLAP over Trusted and Collaborative Data Warehouses

    NASA Astrophysics Data System (ADS)

    Fugkeaw, Somchart; Mitrpanont, Jarernsri L.; Manpanpanich, Piyawit; Juntapremjitt, Sekpon

    This paper proposes the design and development of Role- based Access Control (RBAC) model for the Single Sign-On (SSO) Web-OLAP query spanning over multiple data warehouses (DWs). The model is based on PKI Authentication and Privilege Management Infrastructure (PMI); it presents a binding model of RBAC authorization based on dimension privilege specified in attribute certificate (AC) and user identification. Particularly, the way of attribute mapping between DW user authentication and privilege of dimensional access is illustrated. In our approach, we apply the multi-agent system to automate flexible and effective management of user authentication, role delegation as well as system accountability. Finally, the paper culminates in the prototype system A-COLD (Access Control of web-OLAP over multiple DWs) that incorporates the OLAP features and authentication and authorization enforcement in the multi-user and multi-data warehouse environment.

  20. TACtic- A Multi Behavioral Agent for Trading Agent Competition

    NASA Astrophysics Data System (ADS)

    Khosravi, Hassan; Shiri, Mohammad E.; Khosravi, Hamid; Iranmanesh, Ehsan; Davoodi, Alireza

    Software agents are increasingly being used to represent humans in online auctions. Such agents have the advantages of being able to systematically monitor a wide variety of auctions and then make rapid decisions about what bids to place in what auctions. They can do this continuously and repetitively without losing concentration. To provide a means of evaluating and comparing (benchmarking) research methods in this area the trading agent competition (TAC) was established. This paper describes the design, of TACtic. Our agent uses multi behavioral techniques at the heart of its decision making to make bidding decisions in the face of uncertainty, to make predictions about the likely outcomes of auctions, and to alter the agent's bidding strategy in response to the prevailing market conditions.

  1. Leader–follower fixed-time consensus of multi-agent systems with high-order integrator dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Bailing; Zuo, Zongyu; Wang, Hong

    The leader-follower fixed-time consensus of high-order multi-agent systems with external disturbances is investigated in this paper. A novel sliding manifold is designed to ensure that the tracking errors converge to zero in a fixed-time during the sliding motion. Then, a distributed control law is designed based on Lyapunov technique to drive the system states to the sliding manifold in finite-time independent of initial conditions. Finally, the efficiency of the proposed method is illustrated by numerical simulations.

  2. Synthesis and evaluation of multi-wall carbon nanotube-paclitaxel complex as an anti-cancer agent.

    PubMed

    Ghasemvand, Fariba; Biazar, Esmaeil; Tavakolifard, Sara; Khaledian, Mohammad; Rahmanzadeh, Saeid; Momenzadeh, Daruosh; Afroosheh, Roshanak; Zarkalami, Faezeh; Shabannezhad, Marjan; Hesami Tackallou, Saeed; Massoudi, Nilofar; Heidari Keshel, Saeed

    2016-01-01

    The aim of this study was to design multi-walled carbon nanotubes (MWCNTs) loaded with paclitaxel (PTX) anti-cancer drug and investigate its anti-cancerous efficacy of human gastric cancer. Carbon nanotubes (CNTs) represent a novel nano-materials applied in various fields such as drug delivery due to their unique chemical properties and high drug loading. In this study, multi-walled carbon nanotubes (MWCNTs) pre-functionalized covalently with a paclitaxel (PTX) as an anti-cancer drug and evaluated by different analyses including, scanning electron microscope (SEM), particle size analyzer and cellular analyses. A well conjugated of anti-cancer drug on the carbon nanotube surfaces was shown. This study demonstrates that the MWCN-PTX complex is a potentially useful system for delivery of anti-cancer drugs. The flow cytometry, CFU and MTT assay results have disclosed that MWCNT/PTXs might promote apoptosis in MKN-45 gastric adenocarcinoma cell line. According to results, our simple method can be designed a candidate material for chemotherapy. It has presented a few bio-related applications including, their successful use as a nano-carriers for drug transport.

  3. The Study on Collaborative Manufacturing Platform Based on Agent

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-yan; Qu, Zheng-geng

    To fulfill the trends of knowledge-intensive in collaborative manufacturing development, we have described multi agent architecture supporting knowledge-based platform of collaborative manufacturing development platform. In virtue of wrapper service and communication capacity agents provided, the proposed architecture facilitates organization and collaboration of multi-disciplinary individuals and tools. By effectively supporting the formal representation, capture, retrieval and reuse of manufacturing knowledge, the generalized knowledge repository based on ontology library enable engineers to meaningfully exchange information and pass knowledge across boundaries. Intelligent agent technology increases traditional KBE systems efficiency and interoperability and provides comprehensive design environments for engineers.

  4. A market-based optimization approach to sensor and resource management

    NASA Astrophysics Data System (ADS)

    Schrage, Dan; Farnham, Christopher; Gonsalves, Paul G.

    2006-05-01

    Dynamic resource allocation for sensor management is a problem that demands solutions beyond traditional approaches to optimization. Market-based optimization applies solutions from economic theory, particularly game theory, to the resource allocation problem by creating an artificial market for sensor information and computational resources. Intelligent agents are the buyers and sellers in this market, and they represent all the elements of the sensor network, from sensors to sensor platforms to computational resources. These agents interact based on a negotiation mechanism that determines their bidding strategies. This negotiation mechanism and the agents' bidding strategies are based on game theory, and they are designed so that the aggregate result of the multi-agent negotiation process is a market in competitive equilibrium, which guarantees an optimal allocation of resources throughout the sensor network. This paper makes two contributions to the field of market-based optimization: First, we develop a market protocol to handle heterogeneous goods in a dynamic setting. Second, we develop arbitrage agents to improve the efficiency in the market in light of its dynamic nature.

  5. Reinforcement learning in supply chains.

    PubMed

    Valluri, Annapurna; North, Michael J; Macal, Charles M

    2009-10-01

    Effective management of supply chains creates value and can strategically position companies. In practice, human beings have been found to be both surprisingly successful and disappointingly inept at managing supply chains. The related fields of cognitive psychology and artificial intelligence have postulated a variety of potential mechanisms to explain this behavior. One of the leading candidates is reinforcement learning. This paper applies agent-based modeling to investigate the comparative behavioral consequences of three simple reinforcement learning algorithms in a multi-stage supply chain. For the first time, our findings show that the specific algorithm that is employed can have dramatic effects on the results obtained. Reinforcement learning is found to be valuable in multi-stage supply chains with several learning agents, as independent agents can learn to coordinate their behavior. However, learning in multi-stage supply chains using these postulated approaches from cognitive psychology and artificial intelligence take extremely long time periods to achieve stability which raises questions about their ability to explain behavior in real supply chains. The fact that it takes thousands of periods for agents to learn in this simple multi-agent setting provides new evidence that real world decision makers are unlikely to be using strict reinforcement learning in practice.

  6. Multi-agent Water Resources Management

    NASA Astrophysics Data System (ADS)

    Castelletti, A.; Giuliani, M.

    2011-12-01

    Increasing environmental awareness and emerging trends such as water trading, energy market, deregulation and democratization of water-related services are challenging integrated water resources planning and management worldwide. The traditional approach to water management design based on sector-by-sector optimization has to be reshaped to account for multiple interrelated decision-makers and many stakeholders with increasing decision power. Centralized management, though interesting from a conceptual point of view, is unfeasible in most of the modern social and institutional contexts, and often economically inefficient. Coordinated management, where different actors interact within a full open trust exchange paradigm under some institutional supervision is a promising alternative to the ideal centralized solution and the actual uncoordinated practices. This is a significant issue in most of the Southern Alps regulated lakes, where upstream hydropower reservoirs maximize their benefit independently form downstream users; it becomes even more relevant in the case of transboundary systems, where water management upstream affects water availability downstream (e.g. the River Zambesi flowing through Zambia, Zimbabwe and Mozambique or the Red River flowing from South-Western China through Northern Vietnam. In this study we apply Multi-Agent Systems (MAS) theory to design an optimal management in a decentralized way, considering a set of multiple autonomous agents acting in the same environment and taking into account the pay-off of individual water users, which are inherently distributed along the river and need to coordinate to jointly reach their objectives. In this way each real-world actor, representing the decision-making entity (e.g. the operator of a reservoir or a diversion dam) can be represented one-to-one by a computer agent, defined as a computer system that is situated in some environment and that is capable of autonomous action in this environment in order to meet its design objectives. The proposed approach is numerically tested on a synthetic case study, characterized by two multi-purpose reservoirs in cascade, two diversion dams and four different conflicting water uses: hydropower energy production, drinking supply, flooding prevention along the reservoir shores and irrigation supply. The system is therefore composed by four agents: the two operators of the diversion dams, which are purely reactive agents since they simply respond directly to the environment, and the operators of the two reservoirs, which are more complex agents because they have an internal state and their decisions are taken according to a closed-loop control scheme. In particular, the set of agents can act considering only their own objectives or they can coordinate to jointly reach better compromise solutions. Different interaction scenarios between the two extreme behaviours of centralized management and completely non-cooperation are simulated and analysed.

  7. Adaptive planning for applications with dynamic objectives

    NASA Technical Reports Server (NTRS)

    Hadavi, Khosrow; Hsu, Wen-Ling; Pinedo, Michael

    1992-01-01

    We devise a qualitative control layer to be integrated into a real-time multi-agent reactive planner. The reactive planning system consists of distributed planning agents attending to various perspectives of the task environment. Each perspective corresponds to an objective. The set of objectives considered are sometimes in conflict with each other. Each agent receives information about events as they occur, and a set of actions based on heuristics can be taken by the agents. Within the qualitative control scheme, we use a set of qualitative feature vectors to describe the effects of applying actions. A qualitative transition vector is used to denote the qualitative distance between the current state and the target state. We will then apply on-line learning at the qualitative control level to achieve adaptive planning. Our goal is to design a mechanism to refine the heuristics used by the reactive planner every time an action is taken toward achieving the objectives, using feedback from the results of the actions. When the outcome is compared with expectations, our prior objectives may be modified and a new set of objectives (or a new assessment of the relative importance of the different objectives) can be introduced. Because we are able to obtain better estimates of the time-varying objectives, the reactive strategies can be improved and better prediction can be achieved.

  8. A Cognitive Game Theoretic Analysis of Conflict Alerts in Air Traffic Control

    NASA Technical Reports Server (NTRS)

    Erev, Ido; Gopher, Daniel; Remington, Roger

    1999-01-01

    The current research was motivated by the recommendation made by a joint Government/Industry committee to introduce a new traffic control system, referred to as the Free Flight. This system is designed to use recent new technology to facilitate efficient and safe air transportation. We addressed one of the major difficulties that arise in the design of this and similar multi-agent systems: the adaptive (and slippery) nature of human agents. To facilitate a safe and efficient design of this multi-agent system, designers have to rely on assessments of the expected behavior of the different agents under various scenarios. Whereas the behavior of the computerized agents is predictable, the behavior of the human agents (including air traffic controllers and pilots) is not. Experimental and empirical observations suggest that human agents are likely to adjust their behavior to the design of the system. To see the difficulty that the adaptive nature of human agents creates assume that a good approximation of the way operators currently behave is available. Given this information an optimal design can be performed. The problem arises as the human operator will learn to adjust their behavior to the new system. Following this adjustment process the assumptions made by the designer concerning the operators behavior will no longer be accurate and the system might reach a suboptimal state. In extreme situations these potential suboptimal states might involve unnecessary risk. That is, the fact that operators learn in an adaptive fashion does not imply that the system will become safer as they gain experience. At least in the context of Safety dilemmas, experience can lead to a pareto deficient risk taking behavior.

  9. Pharmacophore based design of some multi-targeted compounds targeted against pathways of diabetic complications.

    PubMed

    Chadha, Navriti; Silakari, Om

    2017-09-01

    Diabetic complications is a complex metabolic disorder developed primarily due to prolonged hyperglycemia in the body. The complexity of the disease state as well as the unifying pathophysiology discussed in the literature reports exhibited that the use of multi-targeted agents with multiple complementary biological activities may offer promising therapy for the intervention of the disease over the single-target drugs. In the present study, novel thiazolidine-2,4-dione analogues were designed as multi-targeted agents implicated against the molecular pathways involved in diabetic complications using knowledge based as well as in-silico approaches such as pharmacophore mapping, molecular docking etc. The hit molecules were duly synthesized and biochemical estimation of these molecules against aldose reductase (ALR2), protein kinase Cβ (PKCβ) and poly (ADP-ribose) polymerase 1 (PARP-1) led to identification of compound 2 that showed good potency against PARP-1 and ALR2 enzymes. These positive results support the progress of a low cost multi-targeted agent with putative roles in diabetic complications. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Finite-time containment control of perturbed multi-agent systems based on sliding-mode control

    NASA Astrophysics Data System (ADS)

    Yu, Di; Ji, Xiang Yang

    2018-01-01

    Aimed at faster convergence rate, this paper investigates finite-time containment control problem for second-order multi-agent systems with norm-bounded non-linear perturbation. When topology between the followers are strongly connected, the nonsingular fast terminal sliding-mode error is defined, corresponding discontinuous control protocol is designed and the appropriate value range of control parameter is obtained by applying finite-time stability analysis, so that the followers converge to and move along the desired trajectories within the convex hull formed by the leaders in finite time. Furthermore, on the basis of the sliding-mode error defined, the corresponding distributed continuous control protocols are investigated with fast exponential reaching law and double exponential reaching law, so as to make the followers move to the small neighbourhoods of their desired locations and keep within the dynamic convex hull formed by the leaders in finite time to achieve practical finite-time containment control. Meanwhile, we develop the faster control scheme according to comparison of the convergence rate of these two different reaching laws. Simulation examples are given to verify the correctness of theoretical results.

  11. Modeling of a production system using the multi-agent approach

    NASA Astrophysics Data System (ADS)

    Gwiazda, A.; Sękala, A.; Banaś, W.

    2017-08-01

    The method that allows for the analysis of complex systems is a multi-agent simulation. The multi-agent simulation (Agent-based modeling and simulation - ABMS) is modeling of complex systems consisting of independent agents. In the case of the model of the production system agents may be manufactured pieces set apart from other types of agents like machine tools, conveyors or replacements stands. Agents are magazines and buffers. More generally speaking, the agents in the model can be single individuals, but you can also be defined as agents of collective entities. They are allowed hierarchical structures. It means that a single agent could belong to a certain class. Depending on the needs of the agent may also be a natural or physical resource. From a technical point of view, the agent is a bundle of data and rules describing its behavior in different situations. Agents can be autonomous or non-autonomous in making the decision about the types of classes of agents, class sizes and types of connections between elements of the system. Multi-agent modeling is a very flexible technique for modeling and model creating in the convention that could be adapted to any research problem analyzed from different points of views. One of the major problems associated with the organization of production is the spatial organization of the production process. Secondly, it is important to include the optimal scheduling. For this purpose use can approach multi-purposeful. In this regard, the model of the production process will refer to the design and scheduling of production space for four different elements. The program system was developed in the environment NetLogo. It was also used elements of artificial intelligence. The main agent represents the manufactured pieces that, according to previously assumed rules, generate the technological route and allow preprint the schedule of that line. Machine lines, reorientation stands, conveyors and transport devices also represent the other type of agent that are utilized in the described simulation. The article presents the idea of an integrated program approach and shows the resulting production layout as a virtual model. This model was developed in the NetLogo multi-agent program environment.

  12. An Agent-Based Data Mining System for Ontology Evolution

    NASA Astrophysics Data System (ADS)

    Hadzic, Maja; Dillon, Darshan

    We have developed an evidence-based mental health ontological model that represents mental health in multiple dimensions. The ongoing addition of new mental health knowledge requires a continual update of the Mental Health Ontology. In this paper, we describe how the ontology evolution can be realized using a multi-agent system in combination with data mining algorithms. We use the TICSA methodology to design this multi-agent system which is composed of four different types of agents: Information agent, Data Warehouse agent, Data Mining agents and Ontology agent. We use UML 2.1 sequence diagrams to model the collaborative nature of the agents and a UML 2.1 composite structure diagram to model the structure of individual agents. The Mental Heath Ontology has the potential to underpin various mental health research experiments of a collaborative nature which are greatly needed in times of increasing mental distress and illness.

  13. An Application of Artificial Intelligence to the Implementation of Electronic Commerce

    NASA Astrophysics Data System (ADS)

    Srivastava, Anoop Kumar

    In this paper, we present an application of Artificial Intelligence (AI) to the implementation of Electronic Commerce. We provide a multi autonomous agent based framework. Our agent based architecture leads to flexible design of a spectrum of multiagent system (MAS) by distributing computation and by providing a unified interface to data and programs. Autonomous agents are intelligent enough and provide autonomy, simplicity of communication, computation, and a well developed semantics. The steps of design and implementation are discussed in depth, structure of Electronic Marketplace, an ontology, the agent model, and interaction pattern between agents is given. We have developed mechanisms for coordination between agents using a language, which is called Virtual Enterprise Modeling Language (VEML). VEML is a integration of Java and Knowledge Query and Manipulation Language (KQML). VEML provides application programmers with potential to globally develop different kinds of MAS based on their requirements and applications. We have implemented a multi autonomous agent based system called VE System. We demonstrate efficacy of our system by discussing experimental results and its salient features.

  14. Distributed containment control of heterogeneous fractional-order multi-agent systems with communication delays

    NASA Astrophysics Data System (ADS)

    Yang, Hongyong; Han, Fujun; Zhao, Mei; Zhang, Shuning; Yue, Jun

    2017-08-01

    Because many networked systems can only be characterized with fractional-order dynamics in complex environments, fractional-order calculus has been studied deeply recently. When diverse individual features are shown in different agents of networked systems, heterogeneous fractional-order dynamics will be used to describe the complex systems. Based on the distinguishing properties of agents, heterogeneous fractional-order multi-agent systems (FOMAS) are presented. With the supposition of multiple leader agents in FOMAS, distributed containment control of FOMAS is studied in directed weighted topologies. By applying Laplace transformation and frequency domain theory of the fractional-order operator, an upper bound of delays is obtained to ensure containment consensus of delayed heterogenous FOMAS. Consensus results of delayed FOMAS in this paper can be extended to systems with integer-order models. Finally, numerical examples are used to verify our results.

  15. INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Consensus of Multi-Agent Systems with Prestissimo Scale-Free Networks

    NASA Astrophysics Data System (ADS)

    Yang, Hong-Yong; Lu, Lan; Cao, Ke-Cai; Zhang, Si-Ying

    2010-04-01

    In this paper, the relations of the network topology and the moving consensus of multi-agent systems are studied. A consensus-prestissimo scale-free network model with the static preferential-consensus attachment is presented on the rewired link of the regular network. The effects of the static preferential-consensus BA network on the algebraic connectivity of the topology graph are compared with the regular network. The robustness gain to delay is analyzed for variable network topology with the same scale. The time to reach the consensus is studied for the dynamic network with and without communication delays. By applying the computer simulations, it is validated that the speed of the convergence of multi-agent systems can be greatly improved in the preferential-consensus BA network model with different configuration.

  16. Robust adaptive fault-tolerant control for leader-follower flocking of uncertain multi-agent systems with actuator failure.

    PubMed

    Yazdani, Sahar; Haeri, Mohammad

    2017-11-01

    In this work, we study the flocking problem of multi-agent systems with uncertain dynamics subject to actuator failure and external disturbances. By considering some standard assumptions, we propose a robust adaptive fault tolerant protocol for compensating of the actuator bias fault, the partial loss of actuator effectiveness fault, the model uncertainties, and external disturbances. Under the designed protocol, velocity convergence of agents to that of virtual leader is guaranteed while the connectivity preservation of network and collision avoidance among agents are ensured as well. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Relay tracking control for second-order multi-agent systems with damaged agents.

    PubMed

    Dong, Lijing; Li, Jing; Liu, Qin

    2017-11-01

    This paper investigates a situation where smart agents capable of sensory and mobility are deployed to monitor a designated area. A preset number of agents start tracking when a target intrudes this area. Some of the tracking agents are possible to be out of order over the tracking course. Thus, we propose a cooperative relay tracking strategy to ensure the successful tracking with existence of damaged agents. Relay means that, when a tracking agent quits tracking due to malfunction, one of the near deployed agents replaces it to continue the tracking task. This results in jump of tracking errors and dynamic switching of topology of the multi-agent system. Switched system technique is employed to solve this specific problem. Finally, the effectiveness of proposed tracking strategy and validity of the theoretical results are verified by conducting a numerical simulation. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  18. The agent-based spatial information semantic grid

    NASA Astrophysics Data System (ADS)

    Cui, Wei; Zhu, YaQiong; Zhou, Yong; Li, Deren

    2006-10-01

    Analyzing the characteristic of multi-Agent and geographic Ontology, The concept of the Agent-based Spatial Information Semantic Grid (ASISG) is defined and the architecture of the ASISG is advanced. ASISG is composed with Multi-Agents and geographic Ontology. The Multi-Agent Systems are composed with User Agents, General Ontology Agent, Geo-Agents, Broker Agents, Resource Agents, Spatial Data Analysis Agents, Spatial Data Access Agents, Task Execution Agent and Monitor Agent. The architecture of ASISG have three layers, they are the fabric layer, the grid management layer and the application layer. The fabric layer what is composed with Data Access Agent, Resource Agent and Geo-Agent encapsulates the data of spatial information system so that exhibits a conceptual interface for the Grid management layer. The Grid management layer, which is composed with General Ontology Agent, Task Execution Agent and Monitor Agent and Data Analysis Agent, used a hybrid method to manage all resources that were registered in a General Ontology Agent that is described by a General Ontology System. The hybrid method is assembled by resource dissemination and resource discovery. The resource dissemination push resource from Local Ontology Agent to General Ontology Agent and the resource discovery pull resource from the General Ontology Agent to Local Ontology Agents. The Local Ontology Agent is derived from special domain and describes the semantic information of local GIS. The nature of the Local Ontology Agents can be filtrated to construct a virtual organization what could provides a global scheme. The virtual organization lightens the burdens of guests because they need not search information site by site manually. The application layer what is composed with User Agent, Geo-Agent and Task Execution Agent can apply a corresponding interface to a domain user. The functions that ASISG should provide are: 1) It integrates different spatial information systems on the semantic The Grid management layer establishes a virtual environment that integrates seamlessly all GIS notes. 2) When the resource management system searches data on different spatial information systems, it transfers the meaning of different Local Ontology Agents rather than access data directly. So the ability of search and query can be said to be on the semantic level. 3) The data access procedure is transparent to guests, that is, they could access the information from remote site as current disk because the General Ontology Agent could automatically link data by the Data Agents that link the Ontology concept to GIS data. 4) The capability of processing massive spatial data. Storing, accessing and managing massive spatial data from TB to PB; efficiently analyzing and processing spatial data to produce model, information and knowledge; and providing 3D and multimedia visualization services. 5) The capability of high performance computing and processing on spatial information. Solving spatial problems with high precision, high quality, and on a large scale; and process spatial information in real time or on time, with high-speed and high efficiency. 6) The capability of sharing spatial resources. The distributed heterogeneous spatial information resources are Shared and realizing integrated and inter-operated on semantic level, so as to make best use of spatial information resources,such as computing resources, storage devices, spatial data (integrating from GIS, RS and GPS), spatial applications and services, GIS platforms, 7) The capability of integrating legacy GIS system. A ASISG can not only be used to construct new advanced spatial application systems, but also integrate legacy GIS system, so as to keep extensibility and inheritance and guarantee investment of users. 8) The capability of collaboration. Large-scale spatial information applications and services always involve different departments in different geographic places, so remote and uniform services are needed. 9) The capability of supporting integration of heterogeneous systems. Large-scale spatial information systems are always synthetically applications, so ASISG should provide interoperation and consistency through adopting open and applied technology standards. 10) The capability of adapting dynamic changes. Business requirements, application patterns, management strategies, and IT products always change endlessly for any departments, so ASISG should be self-adaptive. Two examples are provided in this paper, those examples provide a detailed way on how you design your semantic grid based on Multi-Agent systems and Ontology. In conclusion, the semantic grid of spatial information system could improve the ability of the integration and interoperability of spatial information grid.

  19. Multi-agent electricity market modeling with EMCAS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    North, M.; Macal, C.; Conzelmann, G.

    2002-09-05

    Electricity systems are a central component of modern economies. Many electricity markets are transitioning from centrally regulated systems to decentralized markets. Furthermore, several electricity markets that have recently undergone this transition have exhibited extremely unsatisfactory results, most notably in California. These high stakes transformations require the introduction of largely untested regulatory structures. Suitable tools that can be used to test these regulatory structures before they are applied to real systems are required. Multi-agent models can provide such tools. To better understand the requirements such as tool, a live electricity market simulation was created. This experience helped to shape the developmentmore » of the multi-agent Electricity Market Complex Adaptive Systems (EMCAS) model. To explore EMCAS' potential, several variations of the live simulation were created. These variations probed the possible effects of changing power plant outages and price setting rules on electricity market prices.« less

  20. A Systematic Literature Review of Agents Applied in Healthcare.

    PubMed

    Isern, David; Moreno, Antonio

    2016-02-01

    Intelligent agents and healthcare have been intimately linked in the last years. The intrinsic complexity and diversity of care can be tackled with the flexibility, dynamics and reliability of multi-agent systems. The purpose of this review is to show the feasibility of applying intelligent agents in the healthcare domain and use the findings to provide a discussion of current trends and devise future research directions. A review of the most recent literature (2009-2014) of applications of agents in healthcare is discussed, and two classifications considering the main goal of the health systems as well as the main actors involved have been investigated. This review shows that the number of published works exhibits a growing interest of researchers in this field in a wide range of applications.

  1. Designing of Roaming Protocol for Bluetooth Equipped Multi Agent Systems

    NASA Astrophysics Data System (ADS)

    Subhan, Fazli; Hasbullah, Halabi B.

    Bluetooth is an established standard for low cost, low power, wireless personal area network. Currently, Bluetooth does not support any roaming protocol in which handoff occurs dynamically when a Bluetooth device is moving out of the piconet. If a device is losing its connection to the master device, no provision is made to transfer it to another master. Handoff is not possible in a piconet, as in order to stay within the network, a slave would have to keep the same master. So, by definition intra-handoff is not possible within a piconet. This research mainly focuses on Bluetooth technology and designing a roaming protocol for Bluetooth equipped multi agent systems. A mathematical model is derived for an agent. The idea behind the mathematical model is to know when to initiate the roaming process for an agent. A desired trajectory for the agent is calculated using its x and y coordinates system, and is simulated in SIMULINK. Various roaming techniques are also studied and discussed. The advantage of designing a roaming protocol is to ensure the Bluetooth enabled roaming devices can freely move inside the network coverage without losing its connection or break of service in case of changing the base stations.

  2. A new class of finite-time nonlinear consensus protocols for multi-agent systems

    NASA Astrophysics Data System (ADS)

    Zuo, Zongyu; Tie, Lin

    2014-02-01

    This paper is devoted to investigating the finite-time consensus problem for a multi-agent system in networks with undirected topology. A new class of global continuous time-invariant consensus protocols is constructed for each single-integrator agent dynamics with the aid of Lyapunov functions. In particular, it is shown that the settling time of the proposed new class of finite-time consensus protocols is upper bounded for arbitrary initial conditions. This makes it possible for network consensus problems that the convergence time is designed and estimated offline for a given undirected information flow and a group volume of agents. Finally, a numerical simulation example is presented as a proof of concept.

  3. Developing a Conceptual Architecture for a Generalized Agent-based Modeling Environment (GAME)

    DTIC Science & Technology

    2008-03-01

    4. REPAST (Java, Python , C#, Open Source) ........28 5. MASON: Multi-Agent Modeling Language (Swarm Extension... Python , C#, Open Source) Repast (Recursive Porous Agent Simulation Toolkit) was designed for building agent-based models and simulations in the...Repast makes it easy for inexperienced users to build models by including a built-in simple model and provide interfaces through which menus and Python

  4. Application of agent-based system for bioprocess description and process improvement.

    PubMed

    Gao, Ying; Kipling, Katie; Glassey, Jarka; Willis, Mark; Montague, Gary; Zhou, Yuhong; Titchener-Hooker, Nigel J

    2010-01-01

    Modeling plays an important role in bioprocess development for design and scale-up. Predictive models can also be used in biopharmaceutical manufacturing to assist decision-making either to maintain process consistency or to identify optimal operating conditions. To predict the whole bioprocess performance, the strong interactions present in a processing sequence must be adequately modeled. Traditionally, bioprocess modeling considers process units separately, which makes it difficult to capture the interactions between units. In this work, a systematic framework is developed to analyze the bioprocesses based on a whole process understanding and considering the interactions between process operations. An agent-based approach is adopted to provide a flexible infrastructure for the necessary integration of process models. This enables the prediction of overall process behavior, which can then be applied during process development or once manufacturing has commenced, in both cases leading to the capacity for fast evaluation of process improvement options. The multi-agent system comprises a process knowledge base, process models, and a group of functional agents. In this system, agent components co-operate with each other in performing their tasks. These include the description of the whole process behavior, evaluating process operating conditions, monitoring of the operating processes, predicting critical process performance, and providing guidance to decision-making when coping with process deviations. During process development, the system can be used to evaluate the design space for process operation. During manufacture, the system can be applied to identify abnormal process operation events and then to provide suggestions as to how best to cope with the deviations. In all cases, the function of the system is to ensure an efficient manufacturing process. The implementation of the agent-based approach is illustrated via selected application scenarios, which demonstrate how such a framework may enable the better integration of process operations by providing a plant-wide process description to facilitate process improvement. Copyright 2009 American Institute of Chemical Engineers

  5. A problem of optimal control and observation for distributed homogeneous multi-agent system

    NASA Astrophysics Data System (ADS)

    Kruglikov, Sergey V.

    2017-12-01

    The paper considers the implementation of a algorithm for controlling a distributed complex of several mobile multi-robots. The concept of a unified information space of the controlling system is applied. The presented information and mathematical models of participants and obstacles, as real agents, and goals and scenarios, as virtual agents, create the base forming the algorithmic and software background for computer decision support system. The controlling scheme assumes the indirect management of the robotic team on the basis of optimal control and observation problem predicting intellectual behavior in a dynamic, hostile environment. A basic content problem is a compound cargo transportation by a group of participants in the case of a distributed control scheme in the terrain with multiple obstacles.

  6. Emergency response nurse scheduling with medical support robot by multi-agent and fuzzy technique.

    PubMed

    Kono, Shinya; Kitamura, Akira

    2015-08-01

    In this paper, a new co-operative re-scheduling method corresponding the medical support tasks that the time of occurrence can not be predicted is described, assuming robot can co-operate medical activities with the nurse. Here, Multi-Agent-System (MAS) is used for the co-operative re-scheduling, in which Fuzzy-Contract-Net (FCN) is applied to the robots task assignment for the emergency tasks. As the simulation results, it is confirmed that the re-scheduling results by the proposed method can keep the patients satisfaction and decrease the work load of the nurse.

  7. Distributed cooperative H∞ optimal tracking control of MIMO nonlinear multi-agent systems in strict-feedback form via adaptive dynamic programming

    NASA Astrophysics Data System (ADS)

    Luy, N. T.

    2018-04-01

    The design of distributed cooperative H∞ optimal controllers for multi-agent systems is a major challenge when the agents' models are uncertain multi-input and multi-output nonlinear systems in strict-feedback form in the presence of external disturbances. In this paper, first, the distributed cooperative H∞ optimal tracking problem is transformed into controlling the cooperative tracking error dynamics in affine form. Second, control schemes and online algorithms are proposed via adaptive dynamic programming (ADP) and the theory of zero-sum differential graphical games. The schemes use only one neural network (NN) for each agent instead of three from ADP to reduce computational complexity as well as avoid choosing initial NN weights for stabilising controllers. It is shown that despite not using knowledge of cooperative internal dynamics, the proposed algorithms not only approximate values to Nash equilibrium but also guarantee all signals, such as the NN weight approximation errors and the cooperative tracking errors in the closed-loop system, to be uniformly ultimately bounded. Finally, the effectiveness of the proposed method is shown by simulation results of an application to wheeled mobile multi-robot systems.

  8. Computational memory architectures for autobiographic agents interacting in a complex virtual environment: a working model

    NASA Astrophysics Data System (ADS)

    Ho, Wan Ching; Dautenhahn, Kerstin; Nehaniv, Chrystopher

    2008-03-01

    In this paper, we discuss the concept of autobiographic agent and how memory may extend an agent's temporal horizon and increase its adaptability. These concepts are applied to an implementation of a scenario where agents are interacting in a complex virtual artificial life environment. We present computational memory architectures for autobiographic virtual agents that enable agents to retrieve meaningful information from their dynamic memories which increases their adaptation and survival in the environment. The design of the memory architectures, the agents, and the virtual environment are described in detail. Next, a series of experimental studies and their results are presented which show the adaptive advantage of autobiographic memory, i.e. from remembering significant experiences. Also, in a multi-agent scenario where agents can communicate via stories based on their autobiographic memory, it is found that new adaptive behaviours can emerge from an individual's reinterpretation of experiences received from other agents whereby higher communication frequency yields better group performance. An interface is described that visualises the memory contents of an agent. From an observer perspective, the agents' behaviours can be understood as individually structured, and temporally grounded, and, with the communication of experience, can be seen to rely on emergent mixed narrative reconstructions combining the experiences of several agents. This research leads to insights into how bottom-up story-telling and autobiographic reconstruction in autonomous, adaptive agents allow temporally grounded behaviour to emerge. The article concludes with a discussion of possible implications of this research direction for future autobiographic, narrative agents.

  9. Convoy Protection under Multi-Threat Scenario

    DTIC Science & Technology

    2017-06-01

    14. SUBJECT TERMS antisubmarine warfare, convoy protection, screening, design of experiments, agent-based simulation 15. NUMBER OF...46 5. Scenarios 33–36 (Red Submarine Tactic-2) ...............................46 IV. DESIGN OF EXPERIMENT...47 C. NEARLY ORTHOGONAL LATIN HYPERCUBE DESIGN ............51 V. DATA ANALYSIS

  10. Designing normative open virtual enterprises

    NASA Astrophysics Data System (ADS)

    Garcia, Emilia; Giret, Adriana; Botti, Vicente

    2016-03-01

    There is an increasing interest on developing virtual enterprises in order to deal with the globalisation of the economy, the rapid growth of information technologies and the increase of competitiveness. In this paper we deal with the development of normative open virtual enterprises (NOVEs). They are systems with a global objective that are composed of a set of heterogeneous entities and enterprises that exchange services following a specific normative context. In order to analyse and design systems of this kind the multi-agent paradigm seems suitable because it offers a specific solution for supporting the social and contractual relationships between enterprises and for formalising their business processes. This paper presents how the Regulated Open Multi-agent systems (ROMAS) methodology, an agent-oriented software methodology, can be used to analyse and design NOVEs. ROMAS offers a complete development process that allows identifying and formalising of the structure of NOVEs, their normative context and the interactions among their members. The use of ROMAS is exemplified by means of a case study that represents an automotive supply chain.

  11. Optimal Wonderful Life Utility Functions in Multi-Agent Systems

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.; Tumer, Kagan; Swanson, Keith (Technical Monitor)

    2000-01-01

    The mathematics of Collective Intelligence (COINs) is concerned with the design of multi-agent systems so as to optimize an overall global utility function when those systems lack centralized communication and control. Typically in COINs each agent runs a distinct Reinforcement Learning (RL) algorithm, so that much of the design problem reduces to how best to initialize/update each agent's private utility function, as far as the ensuing value of the global utility is concerned. Traditional team game solutions to this problem assign to each agent the global utility as its private utility function. In previous work we used the COIN framework to derive the alternative Wonderful Life Utility (WLU), and experimentally established that having the agents use it induces global utility performance up to orders of magnitude superior to that induced by use of the team game utility. The WLU has a free parameter (the clamping parameter) which we simply set to zero in that previous work. Here we derive the optimal value of the clamping parameter, and demonstrate experimentally that using that optimal value can result in significantly improved performance over that of clamping to zero, over and above the improvement beyond traditional approaches.

  12. Biomorphic Multi-Agent Architecture for Persistent Computing

    NASA Technical Reports Server (NTRS)

    Lodding, Kenneth N.; Brewster, Paul

    2009-01-01

    A multi-agent software/hardware architecture, inspired by the multicellular nature of living organisms, has been proposed as the basis of design of a robust, reliable, persistent computing system. Just as a multicellular organism can adapt to changing environmental conditions and can survive despite the failure of individual cells, a multi-agent computing system, as envisioned, could adapt to changing hardware, software, and environmental conditions. In particular, the computing system could continue to function (perhaps at a reduced but still reasonable level of performance) if one or more component( s) of the system were to fail. One of the defining characteristics of a multicellular organism is unity of purpose. In biology, the purpose is survival of the organism. The purpose of the proposed multi-agent architecture is to provide a persistent computing environment in harsh conditions in which repair is difficult or impossible. A multi-agent, organism-like computing system would be a single entity built from agents or cells. Each agent or cell would be a discrete hardware processing unit that would include a data processor with local memory, an internal clock, and a suite of communication equipment capable of both local line-of-sight communications and global broadcast communications. Some cells, denoted specialist cells, could contain such additional hardware as sensors and emitters. Each cell would be independent in the sense that there would be no global clock, no global (shared) memory, no pre-assigned cell identifiers, no pre-defined network topology, and no centralized brain or control structure. Like each cell in a living organism, each agent or cell of the computing system would contain a full description of the system encoded as genes, but in this case, the genes would be components of a software genome.

  13. A distributed model predictive control scheme for leader-follower multi-agent systems

    NASA Astrophysics Data System (ADS)

    Franzè, Giuseppe; Lucia, Walter; Tedesco, Francesco

    2018-02-01

    In this paper, we present a novel receding horizon control scheme for solving the formation problem of leader-follower configurations. The algorithm is based on set-theoretic ideas and is tuned for agents described by linear time-invariant (LTI) systems subject to input and state constraints. The novelty of the proposed framework relies on the capability to jointly use sequences of one-step controllable sets and polyhedral piecewise state-space partitions in order to online apply the 'better' control action in a distributed receding horizon fashion. Moreover, we prove that the design of both robust positively invariant sets and one-step-ahead controllable regions is achieved in a distributed sense. Simulations and numerical comparisons with respect to centralised and local-based strategies are finally performed on a group of mobile robots to demonstrate the effectiveness of the proposed control strategy.

  14. Design and Simulation of Material-Integrated Distributed Sensor Processing with a Code-Based Agent Platform and Mobile Multi-Agent Systems

    PubMed Central

    Bosse, Stefan

    2015-01-01

    Multi-agent systems (MAS) can be used for decentralized and self-organizing data processing in a distributed system, like a resource-constrained sensor network, enabling distributed information extraction, for example, based on pattern recognition and self-organization, by decomposing complex tasks in simpler cooperative agents. Reliable MAS-based data processing approaches can aid the material-integration of structural-monitoring applications, with agent processing platforms scaled to the microchip level. The agent behavior, based on a dynamic activity-transition graph (ATG) model, is implemented with program code storing the control and the data state of an agent, which is novel. The program code can be modified by the agent itself using code morphing techniques and is capable of migrating in the network between nodes. The program code is a self-contained unit (a container) and embeds the agent data, the initialization instructions and the ATG behavior implementation. The microchip agent processing platform used for the execution of the agent code is a standalone multi-core stack machine with a zero-operand instruction format, leading to a small-sized agent program code, low system complexity and high system performance. The agent processing is token-queue-based, similar to Petri-nets. The agent platform can be implemented in software, too, offering compatibility at the operational and code level, supporting agent processing in strong heterogeneous networks. In this work, the agent platform embedded in a large-scale distributed sensor network is simulated at the architectural level by using agent-based simulation techniques. PMID:25690550

  15. Design and simulation of material-integrated distributed sensor processing with a code-based agent platform and mobile multi-agent systems.

    PubMed

    Bosse, Stefan

    2015-02-16

    Multi-agent systems (MAS) can be used for decentralized and self-organizing data processing in a distributed system, like a resource-constrained sensor network, enabling distributed information extraction, for example, based on pattern recognition and self-organization, by decomposing complex tasks in simpler cooperative agents. Reliable MAS-based data processing approaches can aid the material-integration of structural-monitoring applications, with agent processing platforms scaled to the microchip level. The agent behavior, based on a dynamic activity-transition graph (ATG) model, is implemented with program code storing the control and the data state of an agent, which is novel. The program code can be modified by the agent itself using code morphing techniques and is capable of migrating in the network between nodes. The program code is a self-contained unit (a container) and embeds the agent data, the initialization instructions and the ATG behavior implementation. The microchip agent processing platform used for the execution of the agent code is a standalone multi-core stack machine with a zero-operand instruction format, leading to a small-sized agent program code, low system complexity and high system performance. The agent processing is token-queue-based, similar to Petri-nets. The agent platform can be implemented in software, too, offering compatibility at the operational and code level, supporting agent processing in strong heterogeneous networks. In this work, the agent platform embedded in a large-scale distributed sensor network is simulated at the architectural level by using agent-based simulation techniques.

  16. Clustering recommendations to compute agent reputation

    NASA Astrophysics Data System (ADS)

    Bedi, Punam; Kaur, Harmeet

    2005-03-01

    Traditional centralized approaches to security are difficult to apply to multi-agent systems which are used nowadays in e-commerce applications. Developing a notion of trust that is based on the reputation of an agent can provide a softer notion of security that is sufficient for many multi-agent applications. Our paper proposes a mechanism for computing reputation of the trustee agent for use by the trustier agent. The trustier agent computes the reputation based on its own experience as well as the experience the peer agents have with the trustee agents. The trustier agents intentionally interact with the peer agents to get their experience information in the form of recommendations. We have also considered the case of unintentional encounters between the referee agents and the trustee agent, which can be directly between them or indirectly through a set of interacting agents. The clustering is done to filter off the noise in the recommendations in the form of outliers. The trustier agent clusters the recommendations received from referee agents on the basis of the distances between recommendations using the hierarchical agglomerative method. The dendogram hence obtained is cut at the required similarity level which restricts the maximum distance between any two recommendations within a cluster. The cluster with maximum number of elements denotes the views of the majority of recommenders. The center of this cluster represents the reputation of the trustee agent which can be computed using c-means algorithm.

  17. Multi-objective optimization of radiotherapy: distributed Q-learning and agent-based simulation

    NASA Astrophysics Data System (ADS)

    Jalalimanesh, Ammar; Haghighi, Hamidreza Shahabi; Ahmadi, Abbas; Hejazian, Hossein; Soltani, Madjid

    2017-09-01

    Radiotherapy (RT) is among the regular techniques for the treatment of cancerous tumours. Many of cancer patients are treated by this manner. Treatment planning is the most important phase in RT and it plays a key role in therapy quality achievement. As the goal of RT is to irradiate the tumour with adequately high levels of radiation while sparing neighbouring healthy tissues as much as possible, it is a multi-objective problem naturally. In this study, we propose an agent-based model of vascular tumour growth and also effects of RT. Next, we use multi-objective distributed Q-learning algorithm to find Pareto-optimal solutions for calculating RT dynamic dose. We consider multiple objectives and each group of optimizer agents attempt to optimise one of them, iteratively. At the end of each iteration, agents compromise the solutions to shape the Pareto-front of multi-objective problem. We propose a new approach by defining three schemes of treatment planning created based on different combinations of our objectives namely invasive, conservative and moderate. In invasive scheme, we enforce killing cancer cells and pay less attention about irradiation effects on normal cells. In conservative scheme, we take more care of normal cells and try to destroy cancer cells in a less stressed manner. The moderate scheme stands in between. For implementation, each of these schemes is handled by one agent in MDQ-learning algorithm and the Pareto optimal solutions are discovered by the collaboration of agents. By applying this methodology, we could reach Pareto treatment plans through building different scenarios of tumour growth and RT. The proposed multi-objective optimisation algorithm generates robust solutions and finds the best treatment plan for different conditions.

  18. Global adaptation in networks of selfish components: emergent associative memory at the system scale.

    PubMed

    Watson, Richard A; Mills, Rob; Buckley, C L

    2011-01-01

    In some circumstances complex adaptive systems composed of numerous self-interested agents can self-organize into structures that enhance global adaptation, efficiency, or function. However, the general conditions for such an outcome are poorly understood and present a fundamental open question for domains as varied as ecology, sociology, economics, organismic biology, and technological infrastructure design. In contrast, sufficient conditions for artificial neural networks to form structures that perform collective computational processes such as associative memory/recall, classification, generalization, and optimization are well understood. Such global functions within a single agent or organism are not wholly surprising, since the mechanisms (e.g., Hebbian learning) that create these neural organizations may be selected for this purpose; but agents in a multi-agent system have no obvious reason to adhere to such a structuring protocol or produce such global behaviors when acting from individual self-interest. However, Hebbian learning is actually a very simple and fully distributed habituation or positive feedback principle. Here we show that when self-interested agents can modify how they are affected by other agents (e.g., when they can influence which other agents they interact with), then, in adapting these inter-agent relationships to maximize their own utility, they will necessarily alter them in a manner homologous with Hebbian learning. Multi-agent systems with adaptable relationships will thereby exhibit the same system-level behaviors as neural networks under Hebbian learning. For example, improved global efficiency in multi-agent systems can be explained by the inherent ability of associative memory to generalize by idealizing stored patterns and/or creating new combinations of subpatterns. Thus distributed multi-agent systems can spontaneously exhibit adaptive global behaviors in the same sense, and by the same mechanism, as with the organizational principles familiar in connectionist models of organismic learning.

  19. Distributed event-triggered consensus strategy for multi-agent systems under limited resources

    NASA Astrophysics Data System (ADS)

    Noorbakhsh, S. Mohammad; Ghaisari, Jafar

    2016-01-01

    The paper proposes a distributed structure to address an event-triggered consensus problem for multi-agent systems which aims at concurrent reduction in inter-agent communication, control input actuation and energy consumption. Following the proposed approach, asymptotic convergence of all agents to consensus requires that each agent broadcasts its sampled-state to the neighbours and updates its control input only at its own triggering instants, unlike the existing related works. Obviously, it decreases the network bandwidth usage, sensor energy consumption, computation resources usage and actuator wears. As a result, it facilitates the implementation of the proposed consensus protocol in the real-world applications with limited resources. The stability of the closed-loop system under an event-based protocol is proved analytically. Some numerical results are presented which confirm the analytical discussion on the effectiveness of the proposed design.

  20. Observer-based output consensus of a class of heterogeneous multi-agent systems with unmatched disturbances

    NASA Astrophysics Data System (ADS)

    Zhang, Jiancheng; Zhu, Fanglai

    2018-03-01

    In this paper, the output consensus of a class of linear heterogeneous multi-agent systems with unmatched disturbances is considered. Firstly, based on the relative output information among neighboring agents, we propose an asymptotic sliding-mode based consensus control scheme, under which, the output consensus error can converge to zero by removing the disturbances from output channels. Secondly, in order to reach the consensus goal, we design a novel high-order unknown input observer for each agent. It can estimate not only each agent's states and disturbances, but also the disturbances' high-order derivatives, which are required in the control scheme aforementioned above. The observer-based consensus control laws and the convergence analysis of the consensus error dynamics are given. Finally, a simulation example is provided to verify the validity of our methods.

  1. UAV Swarm Tactics: An Agent-Based Simulation and Markov Process Analysis

    DTIC Science & Technology

    2013-06-01

    CRN Common Random Numbers CSV Comma Separated Values DoE Design of Experiment GLM Generalized Linear Model HVT High Value Target JAR Java ARchive JMF... Java Media Framework JRE Java runtime environment Mason Multi-Agent Simulator Of Networks MOE Measure Of Effectiveness MOP Measures Of Performance...with every set several times, and to write a CSV file with the results. Rather than scripting the agent behavior deterministically, the agents should

  2. A practical approach for active camera coordination based on a fusion-driven multi-agent system

    NASA Astrophysics Data System (ADS)

    Bustamante, Alvaro Luis; Molina, José M.; Patricio, Miguel A.

    2014-04-01

    In this paper, we propose a multi-agent system architecture to manage spatially distributed active (or pan-tilt-zoom) cameras. Traditional video surveillance algorithms are of no use for active cameras, and we have to look at different approaches. Such multi-sensor surveillance systems have to be designed to solve two related problems: data fusion and coordinated sensor-task management. Generally, architectures proposed for the coordinated operation of multiple cameras are based on the centralisation of management decisions at the fusion centre. However, the existence of intelligent sensors capable of decision making brings with it the possibility of conceiving alternative decentralised architectures. This problem is approached by means of a MAS, integrating data fusion as an integral part of the architecture for distributed coordination purposes. This paper presents the MAS architecture and system agents.

  3. Adjustably Autonomous Multi-agent Plan Execution with an Internal Spacecraft Free-Flying Robot Prototype

    NASA Technical Reports Server (NTRS)

    Dorais, Gregory A.; Nicewarner, Keith

    2006-01-01

    We present an multi-agent model-based autonomy architecture with monitoring, planning, diagnosis, and execution elements. We discuss an internal spacecraft free-flying robot prototype controlled by an implementation of this architecture and a ground test facility used for development. In addition, we discuss a simplified environment control life support system for the spacecraft domain also controlled by an implementation of this architecture. We discuss adjustable autonomy and how it applies to this architecture. We describe an interface that provides the user situation awareness of both autonomous systems and enables the user to dynamically edit the plans prior to and during execution as well as control these agents at various levels of autonomy. This interface also permits the agents to query the user or request the user to perform tasks to help achieve the commanded goals. We conclude by describing a scenario where these two agents and a human interact to cooperatively detect, diagnose and recover from a simulated spacecraft fault.

  4. A multi-agent system for monitoring patient flow.

    PubMed

    Rosati, Samanta; Tralli, Augusta; Balestra, Gabriella

    2013-01-01

    Patient flow within a healthcare facility may follow different and, sometimes, complicated paths. Each path phase is associated with the documentation of the activities carried out during it and may require the consultation of clinical guidelines, medical literature and the use of specific software and decision aid systems. In this study we present the design of a Patient Flow Management System (PFMS) based on Multi Agent Systems (MAS) methodology. System requirements were identified by means of process modeling tools and a MAS consisting of six agents was designed and is under construction. Its main goal is to support both the medical staff during the health care process and the hospital managers in assuring that all the required documentation is completed and available. Moreover, such a tool can be used for the assessment and comparison of different clinical pathways, in order to identify possible improvementsand the optimum patient flow.

  5. A Biologically Inspired Cooperative Multi-Robot Control Architecture

    NASA Technical Reports Server (NTRS)

    Howsman, Tom; Craft, Mike; ONeil, Daniel; Howell, Joe T. (Technical Monitor)

    2002-01-01

    A prototype cooperative multi-robot control architecture suitable for the eventual construction of large space structures has been developed. In nature, there are numerous examples of complex architectures constructed by relatively simple insects, such as termites and wasps, which cooperatively assemble their nests. The prototype control architecture emulates this biological model. Actions of each of the autonomous robotic construction agents are only indirectly coordinated, thus mimicking the distributed construction processes of various social insects. The robotic construction agents perform their primary duties stigmergically i.e., without direct inter-agent communication and without a preprogrammed global blueprint of the final design. Communication and coordination between individual agents occurs indirectly through the sensed modifications that each agent makes to the structure. The global stigmergic building algorithm prototyped during the initial research assumes that the robotic builders only perceive the current state of the structure under construction. Simulation studies have established that an idealized form of the proposed architecture was indeed capable of producing representative large space structures with autonomous robots. This paper will explore the construction simulations in order to illustrate the multi-robot control architecture.

  6. A Stigmergic Cooperative Multi-Robot Control Architecture

    NASA Technical Reports Server (NTRS)

    Howsman, Thomas G.; O'Neil, Daniel; Craft, Michael A.

    2004-01-01

    In nature, there are numerous examples of complex architectures constructed by relatively simple insects, such as termites and wasps, which cooperatively assemble their nests. A prototype cooperative multi-robot control architecture which may be suitable for the eventual construction of large space structures has been developed which emulates this biological model. Actions of each of the autonomous robotic construction agents are only indirectly coordinated, thus mimicking the distributed construction processes of various social insects. The robotic construction agents perform their primary duties stigmergically, i.e., without direct inter-agent communication and without a preprogrammed global blueprint of the final design. Communication and coordination between individual agents occurs indirectly through the sensed modifications that each agent makes to the structure. The global stigmergic building algorithm prototyped during the initial research assumes that the robotic builders only perceive the current state of the structure under construction. Simulation studies have established that an idealized form of the proposed architecture was indeed capable of producing representative large space structures with autonomous robots. This paper will explore the construction simulations in order to illustrate the multi-robot control architecture.

  7. Tutoring and Multi-Agent Systems: Modeling from Experiences

    ERIC Educational Resources Information Center

    Bennane, Abdellah

    2010-01-01

    Tutoring systems become complex and are offering varieties of pedagogical software as course modules, exercises, simulators, systems online or offline, for single user or multi-user. This complexity motivates new forms and approaches to the design and the modelling. Studies and research in this field introduce emergent concepts that allow the…

  8. A multi-agent intelligent environment for medical knowledge.

    PubMed

    Vicari, Rosa M; Flores, Cecilia D; Silvestre, André M; Seixas, Louise J; Ladeira, Marcelo; Coelho, Helder

    2003-03-01

    AMPLIA is a multi-agent intelligent learning environment designed to support training of diagnostic reasoning and modelling of domains with complex and uncertain knowledge. AMPLIA focuses on the medical area. It is a system that deals with uncertainty under the Bayesian network approach, where learner-modelling tasks will consist of creating a Bayesian network for a problem the system will present. The construction of a network involves qualitative and quantitative aspects. The qualitative part concerns the network topology, that is, causal relations among the domain variables. After it is ready, the quantitative part is specified. It is composed of the distribution of conditional probability of the variables represented. A negotiation process (managed by an intelligent MediatorAgent) will treat the differences of topology and probability distribution between the model the learner built and the one built-in in the system. That negotiation process occurs between the agents that represent the expert knowledge domain (DomainAgent) and the agent that represents the learner knowledge (LearnerAgent).

  9. Group consensus control for networked multi-agent systems with communication delays.

    PubMed

    An, Bao-Ran; Liu, Guo-Ping; Tan, Chong

    2018-05-01

    This paper investigates group consensus problems in networked multi-agent systems (NMAS) with communication delays. Based on the sed state prediction scheme, the group consensus control protocol is designed to compensate the communication delay actively. In light of algebraic graph theories and matrix theories, necessary and(or) sufficient conditions of group consensus with respect to a given admissible control set are obtained for the NMAS with communication delays under mild assumptions. Finally, simulations are performed to demonstrate the effectiveness of the theoretical results. Copyright © 2018 ISA. All rights reserved.

  10. Towards a conceptual multi-agent-based framework to simulate the spatial group decision-making process

    NASA Astrophysics Data System (ADS)

    Ghavami, Seyed Morsal; Taleai, Mohammad

    2017-04-01

    Most spatial problems are multi-actor, multi-issue and multi-phase in nature. In addition to their intrinsic complexity, spatial problems usually involve groups of actors from different organizational and cognitive backgrounds, all of whom participate in a social structure to resolve or reduce the complexity of a given problem. Hence, it is important to study and evaluate what different aspects influence the spatial problem resolution process. Recently, multi-agent systems consisting of groups of separate agent entities all interacting with each other have been put forward as appropriate tools to use to study and resolve such problems. In this study, then in order to generate a better level of understanding regarding the spatial problem group decision-making process, a conceptual multi-agent-based framework is used that represents and specifies all the necessary concepts and entities needed to aid group decision making, based on a simulation of the group decision-making process as well as the relationships that exist among the different concepts involved. The study uses five main influencing entities as concepts in the simulation process: spatial influence, individual-level influence, group-level influence, negotiation influence and group performance measures. Further, it explains the relationship among different concepts in a descriptive rather than explanatory manner. To illustrate the proposed framework, the approval process for an urban land use master plan in Zanjan—a provincial capital in Iran—is simulated using MAS, the results highlighting the effectiveness of applying an MAS-based framework when wishing to study the group decision-making process used to resolve spatial problems.

  11. An agent-based hydroeconomic model to evaluate water policies in Jordan

    NASA Astrophysics Data System (ADS)

    Yoon, J.; Gorelick, S.

    2014-12-01

    Modern water systems can be characterized by a complex network of institutional and private actors that represent competing sectors and interests. Identifying solutions to enhance water security in such systems calls for analysis that can adequately account for this level of complexity and interaction. Our work focuses on the development of a hierarchical, multi-agent, hydroeconomic model that attempts to realistically represent complex interactions between hydrologic and multi-faceted human systems. The model is applied to Jordan, one of the most water-poor countries in the world. In recent years, the water crisis in Jordan has escalated due to an ongoing drought and influx of refugees from regional conflicts. We adopt a modular approach in which biophysical modules simulate natural and engineering phenomena, and human modules represent behavior at multiple scales of decision making. The human modules employ agent-based modeling, in which agents act as autonomous decision makers at the transboundary, state, organizational, and user levels. A systematic nomenclature and conceptual framework is used to characterize model agents and modules. Concepts from the Unified Modeling Language (UML) are adopted to promote clear conceptualization of model classes and process sequencing, establishing a foundation for full deployment of the integrated model in a scalable object-oriented programming environment. Although the framework is applied to the Jordanian water context, it is generalizable to other regional human-natural freshwater supply systems.

  12. Intelligent microchip networks: an agent-on-chip synthesis framework for the design of smart and robust sensor networks

    NASA Astrophysics Data System (ADS)

    Bosse, Stefan

    2013-05-01

    Sensorial materials consisting of high-density, miniaturized, and embedded sensor networks require new robust and reliable data processing and communication approaches. Structural health monitoring is one major field of application for sensorial materials. Each sensor node provides some kind of sensor, electronics, data processing, and communication with a strong focus on microchip-level implementation to meet the goals of miniaturization and low-power energy environments, a prerequisite for autonomous behaviour and operation. Reliability requires robustness of the entire system in the presence of node, link, data processing, and communication failures. Interaction between nodes is required to manage and distribute information. One common interaction model is the mobile agent. An agent approach provides stronger autonomy than a traditional object or remote-procedure-call based approach. Agents can decide for themselves, which actions are performed, and they are capable of flexible behaviour, reacting on the environment and other agents, providing some degree of robustness. Traditionally multi-agent systems are abstract programming models which are implemented in software and executed on program controlled computer architectures. This approach does not well scale to micro-chip level and requires full equipped computers and communication structures, and the hardware architecture does not consider and reflect the requirements for agent processing and interaction. We propose and demonstrate a novel design paradigm for reliable distributed data processing systems and a synthesis methodology and framework for multi-agent systems implementable entirely on microchip-level with resource and power constrained digital logic supporting Agent-On-Chip architectures (AoC). The agent behaviour and mobility is fully integrated on the micro-chip using pipelined communicating processes implemented with finite-state machines and register-transfer logic. The agent behaviour, interaction (communication), and mobility features are modelled and specified on a machine-independent abstract programming level using a state-based agent behaviour language (APL). With this APL a high-level agent compiler is able to synthesize a hardware model (RTL, VHDL), a software model (C, ML), or a simulation model (XML) suitable to simulate a multi-agent system using the SeSAm simulator framework. Agent communication is provided by a simple tuple-space database implemented on node level providing fault tolerant access of global data. A novel synthesis development kit (SynDK) based on a graph-structured database approach is introduced to support the rapid development of compilers and synthesis tools, used for example for the design and implementation of the APL compiler.

  13. A Demand-Driven Approach for a Multi-Agent System in Supply Chain Management

    NASA Astrophysics Data System (ADS)

    Kovalchuk, Yevgeniya; Fasli, Maria

    This paper presents the architecture of a multi-agent decision support system for Supply Chain Management (SCM) which has been designed to compete in the TAC SCM game. The behaviour of the system is demand-driven and the agents plan, predict, and react dynamically to changes in the market. The main strength of the system lies in the ability of the Demand agent to predict customer winning bid prices - the highest prices the agent can offer customers and still obtain their orders. This paper investigates the effect of the ability to predict customer order prices on the overall performance of the system. Four strategies are proposed and compared for predicting such prices. The experimental results reveal which strategies are better and show that there is a correlation between the accuracy of the models' predictions and the overall system performance: the more accurate the prediction of customer order prices, the higher the profit.

  14. Application of multi-agent coordination methods to the design of space debris mitigation tours

    NASA Astrophysics Data System (ADS)

    Stuart, Jeffrey; Howell, Kathleen; Wilson, Roby

    2016-04-01

    The growth in the number of defunct and fragmented objects near to the Earth poses a growing hazard to launch operations as well as existing on-orbit assets. Numerous studies have demonstrated the positive impact of active debris mitigation campaigns upon the growth of debris populations, but comparatively fewer investigations incorporate specific mission scenarios. Furthermore, while many active mitigation methods have been proposed, certain classes of debris objects are amenable to mitigation campaigns employing chaser spacecraft with existing chemical and low-thrust propulsive technologies. This investigation incorporates an ant colony optimization routing algorithm and multi-agent coordination via auctions into a debris mitigation tour scheme suitable for preliminary mission design and analysis as well as spacecraft flight operations.

  15. Design and Engineering of a Multi-Target (Multiplex) DNA Simulant to Evaluate Nulceic Acid Based Assays for Detection of Biological Threat Agents

    DTIC Science & Technology

    2006-11-01

    mallei , Burkholderia pseudomallei and Variola virus (smallpox virus). A chimera of 2040 bp was engineered to produce PCR amplicons of different sizes...potential bio-warfare use have been completely sequenced, B. mallei , the etiologic agent of glanders , and B. pseudomallei, causative agent of... Burkholderia mallei Nierman et al, 2004 Burkholderia pseudomallei Holden et al, 2004 Burkholderia thailandensis

  16. Design of a multi-agent hydroeconomic model to simulate a complex human-water system: Early insights from the Jordan Water Project

    NASA Astrophysics Data System (ADS)

    Yoon, J.; Klassert, C. J. A.; Lachaut, T.; Selby, P. D.; Knox, S.; Gorelick, S.; Rajsekhar, D.; Tilmant, A.; Avisse, N.; Harou, J. J.; Gawel, E.; Klauer, B.; Mustafa, D.; Talozi, S.; Sigel, K.

    2015-12-01

    Our work focuses on development of a multi-agent, hydroeconomic model for purposes of water policy evaluation in Jordan. The model adopts a modular approach, integrating biophysical modules that simulate natural and engineered phenomena with human modules that represent behavior at multiple levels of decision making. The hydrologic modules are developed using spatially-distributed groundwater and surface water models, which are translated into compact simulators for efficient integration into the multi-agent model. For the groundwater model, we adopt a response matrix method approach in which a 3-dimensional MODFLOW model of a complex regional groundwater system is converted into a linear simulator of groundwater response by pre-processing drawdown results from several hundred numerical simulation runs. Surface water models for each major surface water basin in the country are developed in SWAT and similarly translated into simple rainfall-runoff functions for integration with the multi-agent model. The approach balances physically-based, spatially-explicit representation of hydrologic systems with the efficiency required for integration into a complex multi-agent model that is computationally amenable to robust scenario analysis. For the multi-agent model, we explicitly represent human agency at multiple levels of decision making, with agents representing riparian, management, supplier, and water user groups. The agents' decision making models incorporate both rule-based heuristics as well as economic optimization. The model is programmed in Python using Pynsim, a generalizable, open-source object-oriented code framework for modeling network-based water resource systems. The Jordan model is one of the first applications of Pynsim to a real-world water management case study. Preliminary results from a tanker market scenario run through year 2050 are presented in which several salient features of the water system are investigated: competition between urban and private farmer agents, the emergence of a private tanker market, disparities in economic wellbeing to different user groups caused by unique supply conditions, and response of the complex system to various policy interventions.

  17. Can Moral Hazard Be Resolved by Common-Knowledge in S4n-Knowledge?

    NASA Astrophysics Data System (ADS)

    Matsuhisa, Takashi

    This article investigates the relationship between common-knowledge and agreement in multi-agent system, and to apply the agreement result by common-knowledge to the principal-agent model under non-partition information. We treat the two problems: (1) how we capture the fact that the agents agree on an event or they get consensus on it from epistemic point of view, and (2) how the agreement theorem will be able to make progress to settle a moral hazard problem in the principal-agents model under non-partition information. We shall propose a solution program for the moral hazard in the principal-agents model under non-partition information by common-knowledge. Let us start that the agents have the knowledge structure induced from a reflexive and transitive relation associated with the multi-modal logic S4n. Each agent obtains the membership value of an event under his/her private information, so he/she considers the event as fuzzy set. Specifically consider the situation that the agents commonly know all membership values of the other agents. In this circumstance we shall show the agreement theorem that consensus on the membership values among all agents can still be guaranteed. Furthermore, under certain assumptions we shall show that the moral hazard can be resolved in the principal-agent model when all the expected marginal costs are common-knowledge among the principal and agents.

  18. The multi-queue model applied to random access protocol

    NASA Astrophysics Data System (ADS)

    Fan, Xinlong

    2013-03-01

    The connection of everything in a sensory and an intelligent way is a pursuit in smart environment. This paper introduces the engineered cell-sensors into the multi-agent systems to realize the smart environment. The seamless interface with the natural environment and strong information-processing ability of cell with the achievements of synthetic biology make the construction of engineered cell-sensors possible. However, the engineered cell-sensors are only simple-functional and unreliable computational entities. Therefore how to combine engineered cell-sensors with digital device is a key problem in order to realize the smart environment. We give the abstract structure and interaction modes of the engineered cell-sensors in order to introduce engineered cell-sensors into multi-agent systems. We believe that the introduction of engineered cell-sensors will push forward the development of the smart environment.

  19. Chronic Heart Failure Follow-up Management Based on Agent Technology.

    PubMed

    Mohammadzadeh, Niloofar; Safdari, Reza

    2015-10-01

    Monitoring heart failure patients through continues assessment of sign and symptoms by information technology tools lead to large reduction in re-hospitalization. Agent technology is one of the strongest artificial intelligence areas; therefore, it can be expected to facilitate, accelerate, and improve health services especially in home care and telemedicine. The aim of this article is to provide an agent-based model for chronic heart failure (CHF) follow-up management. This research was performed in 2013-2014 to determine appropriate scenarios and the data required to monitor and follow-up CHF patients, and then an agent-based model was designed. Agents in the proposed model perform the following tasks: medical data access, communication with other agents of the framework and intelligent data analysis, including medical data processing, reasoning, negotiation for decision-making, and learning capabilities. The proposed multi-agent system has ability to learn and thus improve itself. Implementation of this model with more and various interval times at a broader level could achieve better results. The proposed multi-agent system is no substitute for cardiologists, but it could assist them in decision-making.

  20. MIDAS: a practical Bayesian design for platform trials with molecularly targeted agents.

    PubMed

    Yuan, Ying; Guo, Beibei; Munsell, Mark; Lu, Karen; Jazaeri, Amir

    2016-09-30

    Recent success of immunotherapy and other targeted therapies in cancer treatment has led to an unprecedented surge in the number of novel therapeutic agents that need to be evaluated in clinical trials. Traditional phase II clinical trial designs were developed for evaluating one candidate treatment at a time and thus not efficient for this task. We propose a Bayesian phase II platform design, the multi-candidate iterative design with adaptive selection (MIDAS), which allows investigators to continuously screen a large number of candidate agents in an efficient and seamless fashion. MIDAS consists of one control arm, which contains a standard therapy as the control, and several experimental arms, which contain the experimental agents. Patients are adaptively randomized to the control and experimental agents based on their estimated efficacy. During the trial, we adaptively drop inefficacious or overly toxic agents and 'graduate' the promising agents from the trial to the next stage of development. Whenever an experimental agent graduates or is dropped, the corresponding arm opens immediately for testing the next available new agent. Simulation studies show that MIDAS substantially outperforms the conventional approach. The proposed design yields a significantly higher probability for identifying the promising agents and dropping the futile agents. In addition, MIDAS requires only one master protocol, which streamlines trial conduct and substantially decreases the overhead burden. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. MIDAS: A Practical Bayesian Design for Platform Trials with Molecularly Targeted Agents

    PubMed Central

    Yuan, Ying; Guo, Beibei; Munsell, Mark; Lu, Karen; Jazaeri, Amir

    2016-01-01

    Recent success of immunotherapy and other targeted therapies in cancer treatment has led to an unprecedented surge in the number of novel therapeutic agents that need to be evaluated in clinical trials. Traditional phase II clinical trial designs were developed for evaluating one candidate treatment at a time, and thus not efficient for this task. We propose a Bayesian phase II platform design, the Multi-candidate Iterative Design with Adaptive Selection (MIDAS), which allows investigators to continuously screen a large number of candidate agents in an efficient and seamless fashion. MIDAS consists of one control arm, which contains a standard therapy as the control, and several experimental arms, which contain the experimental agents. Patients are adaptively randomized to the control and experimental agents based on their estimated efficacy. During the trial, we adaptively drop inefficacious or overly toxic agents and “graduate” the promising agents from the trial to the next stage of development. Whenever an experimental agent graduates or is dropped, the corresponding arm opens immediately for testing the next available new agent. Simulation studies show that MIDAS substantially outperforms the conventional approach. The proposed design yields a significantly higher probability for identifying the promising agents and dropping the futile agents. In addition, MIDAS requires only one master protocol, which streamlines trial conduct and substantially decreases the overhead burden. PMID:27112322

  2. Implementation of a Web-Based Collaborative Process Planning System

    NASA Astrophysics Data System (ADS)

    Wang, Huifen; Liu, Tingting; Qiao, Li; Huang, Shuangxi

    Under the networked manufacturing environment, all phases of product manufacturing involving design, process planning, machining and assembling may be accomplished collaboratively by different enterprises, even different manufacturing stages of the same part may be finished collaboratively by different enterprises. Based on the self-developed networked manufacturing platform eCWS(e-Cooperative Work System), a multi-agent-based system framework for collaborative process planning is proposed. In accordance with requirements of collaborative process planning, share resources provided by cooperative enterprises in the course of collaboration are classified into seven classes. Then a reconfigurable and extendable resource object model is built. Decision-making strategy is also studied in this paper. Finally a collaborative process planning system e-CAPP is developed and applied. It provides strong support for distributed designers to collaboratively plan and optimize product process though network.

  3. Formalizing Knowledge in Multi-Scale Agent-Based Simulations

    PubMed Central

    Somogyi, Endre; Sluka, James P.; Glazier, James A.

    2017-01-01

    Multi-scale, agent-based simulations of cellular and tissue biology are increasingly common. These simulations combine and integrate a range of components from different domains. Simulations continuously create, destroy and reorganize constituent elements causing their interactions to dynamically change. For example, the multi-cellular tissue development process coordinates molecular, cellular and tissue scale objects with biochemical, biomechanical, spatial and behavioral processes to form a dynamic network. Different domain specific languages can describe these components in isolation, but cannot describe their interactions. No current programming language is designed to represent in human readable and reusable form the domain specific knowledge contained in these components and interactions. We present a new hybrid programming language paradigm that naturally expresses the complex multi-scale objects and dynamic interactions in a unified way and allows domain knowledge to be captured, searched, formalized, extracted and reused. PMID:29338063

  4. Formalizing Knowledge in Multi-Scale Agent-Based Simulations.

    PubMed

    Somogyi, Endre; Sluka, James P; Glazier, James A

    2016-10-01

    Multi-scale, agent-based simulations of cellular and tissue biology are increasingly common. These simulations combine and integrate a range of components from different domains. Simulations continuously create, destroy and reorganize constituent elements causing their interactions to dynamically change. For example, the multi-cellular tissue development process coordinates molecular, cellular and tissue scale objects with biochemical, biomechanical, spatial and behavioral processes to form a dynamic network. Different domain specific languages can describe these components in isolation, but cannot describe their interactions. No current programming language is designed to represent in human readable and reusable form the domain specific knowledge contained in these components and interactions. We present a new hybrid programming language paradigm that naturally expresses the complex multi-scale objects and dynamic interactions in a unified way and allows domain knowledge to be captured, searched, formalized, extracted and reused.

  5. A Software Framework for Remote Patient Monitoring by Using Multi-Agent Systems Support

    PubMed Central

    2017-01-01

    Background Although there have been significant advances in network, hardware, and software technologies, the health care environment has not taken advantage of these developments to solve many of its inherent problems. Research activities in these 3 areas make it possible to apply advanced technologies to address many of these issues such as real-time monitoring of a large number of patients, particularly where a timely response is critical. Objective The objective of this research was to design and develop innovative technological solutions to offer a more proactive and reliable medical care environment. The short-term and primary goal was to construct IoT4Health, a flexible software framework to generate a range of Internet of things (IoT) applications, containing components such as multi-agent systems that are designed to perform Remote Patient Monitoring (RPM) activities autonomously. An investigation into its full potential to conduct such patient monitoring activities in a more proactive way is an expected future step. Methods A framework methodology was selected to evaluate whether the RPM domain had the potential to generate customized applications that could achieve the stated goal of being responsive and flexible within the RPM domain. As a proof of concept of the software framework’s flexibility, 3 applications were developed with different implementations for each framework hot spot to demonstrate potential. Agents4Health was selected to illustrate the instantiation process and IoT4Health’s operation. To develop more concrete indicators of the responsiveness of the simulated care environment, an experiment was conducted while Agents4Health was operating, to measure the number of delays incurred in monitoring the tasks performed by agents. Results IoT4Health’s construction can be highlighted as our contribution to the development of eHealth solutions. As a software framework, IoT4Health offers extensibility points for the generation of applications. Applications can extend the framework in the following ways: identification, collection, storage, recovery, visualization, monitoring, anomalies detection, resource notification, and dynamic reconfiguration. Based on other outcomes involving observation of the resulting applications, it was noted that its design contributed toward more proactive patient monitoring. Through these experimental systems, anomalies were detected in real time, with agents sending notifications instantly to the health providers. Conclusions We conclude that the cost-benefit of the construction of a more generic and complex system instead of a custom-made software system demonstrated the worth of the approach, making it possible to generate applications in this domain in a more timely fashion. PMID:28347973

  6. Peptide-based protein capture agents with high affinity, selectivity, and stability as antibody replacements in biodetection assays

    NASA Astrophysics Data System (ADS)

    Coppock, Matthew B.; Farrow, Blake; Warner, Candice; Finch, Amethist S.; Lai, Bert; Sarkes, Deborah A.; Heath, James R.; Stratis-Cullum, Dimitra

    2014-05-01

    Current biodetection assays that employ monoclonal antibodies as primary capture agents exhibit limited fieldability, shelf life, and performance due to batch-to-batch production variability and restricted thermal stability. In order to improve upon the detection of biological threats in fieldable assays and systems for the Army, we are investigating protein catalyzed capture (PCC) agents as drop-in replacements for the existing antibody technology through iterative in situ click chemistry. The PCC agent oligopeptides are developed against known protein epitopes and can be mass produced using robotic methods. In this work, a PCC agent under development will be discussed. The performance, including affinity, selectivity, and stability of the capture agent technology, is analyzed by immunoprecipitation, western blotting, and ELISA experiments. The oligopeptide demonstrates superb selectivity coupled with high affinity through multi-ligand design, and improved thermal, chemical, and biochemical stability due to non-natural amino acid PCC agent design.

  7. Time-Extended Policies in Mult-Agent Reinforcement Learning

    NASA Technical Reports Server (NTRS)

    Tumer, Kagan; Agogino, Adrian K.

    2004-01-01

    Reinforcement learning methods perform well in many domains where a single agent needs to take a sequence of actions to perform a task. These methods use sequences of single-time-step rewards to create a policy that tries to maximize a time-extended utility, which is a (possibly discounted) sum of these rewards. In this paper we build on our previous work showing how these methods can be extended to a multi-agent environment where each agent creates its own policy that works towards maximizing a time-extended global utility over all agents actions. We show improved methods for creating time-extended utilities for the agents that are both "aligned" with the global utility and "learnable." We then show how to crate single-time-step rewards while avoiding the pi fall of having rewards aligned with the global reward leading to utilities not aligned with the global utility. Finally, we apply these reward functions to the multi-agent Gridworld problem. We explicitly quantify a utility's learnability and alignment, and show that reinforcement learning agents using the prescribed reward functions successfully tradeoff learnability and alignment. As a result they outperform both global (e.g., team games ) and local (e.g., "perfectly learnable" ) reinforcement learning solutions by as much as an order of magnitude.

  8. Distributed adaptive neural network control for a class of heterogeneous nonlinear multi-agent systems subject to actuation failures

    NASA Astrophysics Data System (ADS)

    Cui, Bing; Zhao, Chunhui; Ma, Tiedong; Feng, Chi

    2017-02-01

    In this paper, the cooperative adaptive consensus tracking problem for heterogeneous nonlinear multi-agent systems on directed graph is addressed. Each follower is modelled as a general nonlinear system with the unknown and nonidentical nonlinear dynamics, disturbances and actuator failures. Cooperative fault tolerant neural network tracking controllers with online adaptive learning features are proposed to guarantee that all agents synchronise to the trajectory of one leader with bounded adjustable synchronisation errors. With the help of linear quadratic regulator-based optimal design, a graph-dependent Lyapunov proof provides error bounds that depend on the graph topology, one virtual matrix and some design parameters. Of particular interest is that if the control gain is selected appropriately, the proposed control scheme can be implemented in a unified framework no matter whether there are faults or not. Furthermore, the fault detection and isolation are not needed to implement. Finally, a simulation is given to verify the effectiveness of the proposed method.

  9. Applications of Multi-Agent Technology to Power Systems

    NASA Astrophysics Data System (ADS)

    Nagata, Takeshi

    Currently, agents are focus of intense on many sub-fields of computer science and artificial intelligence. Agents are being used in an increasingly wide variety of applications. Many important computing applications such as planning, process control, communication networks and concurrent systems will benefit from using multi-agent system approach. A multi-agent system is a structure given by an environment together with a set of artificial agents capable to act on this environment. Multi-agent models are oriented towards interactions, collaborative phenomena, and autonomy. This article presents the applications of multi-agent technology to the power systems.

  10. Robust consensus algorithm for multi-agent systems with exogenous disturbances under convergence conditions

    NASA Astrophysics Data System (ADS)

    Jiang, Yulian; Liu, Jianchang; Tan, Shubin; Ming, Pingsong

    2014-09-01

    In this paper, a robust consensus algorithm is developed and sufficient conditions for convergence to consensus are proposed for a multi-agent system (MAS) with exogenous disturbances subject to partial information. By utilizing H∞ robust control, differential game theory and a design-based approach, the consensus problem of the MAS with exogenous bounded interference is resolved and the disturbances are restrained, simultaneously. Attention is focused on designing an H∞ robust controller (the robust consensus algorithm) based on minimisation of our proposed rational and individual cost functions according to goals of the MAS. Furthermore, sufficient conditions for convergence of the robust consensus algorithm are given. An example is employed to demonstrate that our results are effective and more capable to restrain exogenous disturbances than the existing literature.

  11. Facilitating the Specification Capture and Transformation Process in the Development of Multi-Agent Systems

    NASA Technical Reports Server (NTRS)

    Filho, Aluzio Haendehen; Caminada, Numo; Haeusler, Edward Hermann; vonStaa, Arndt

    2004-01-01

    To support the development of flexible and reusable MAS, we have built a framework designated MAS-CF. MAS-CF is a component framework that implements a layered architecture based on contextual composition. Interaction rules, controlled by architecture mechanisms, ensure very low coupling, making possible the sharing of distributed services in a transparent, dynamic and independent way. These properties propitiate large-scale reuse, since organizational abstractions can be reused and propagated to all instances created from a framework. The objective is to reduce complexity and development time of multi-agent systems through the reuse of generic organizational abstractions.

  12. Construction of Multi-Mode Affective Learning System: Taking Affective Design as an Example

    ERIC Educational Resources Information Center

    Lin, Hao-Chiang Koong; Su, Sheng-Hsiung; Chao, Ching-Ju; Hsieh, Cheng-Yen; Tsai, Shang-Chin

    2016-01-01

    This study aims to design a non-simultaneous distance instruction system with affective computing, which integrates interactive agent technology with the curricular instruction of affective design. The research subjects were 78 students, and prototype assessment and final assessment were adopted to assess the interface and usability of the system.…

  13. Using Ant Colony Optimization for Routing in VLSI Chips

    NASA Astrophysics Data System (ADS)

    Arora, Tamanna; Moses, Melanie

    2009-04-01

    Rapid advances in VLSI technology have increased the number of transistors that fit on a single chip to about two billion. A frequent problem in the design of such high performance and high density VLSI layouts is that of routing wires that connect such large numbers of components. Most wire-routing problems are computationally hard. The quality of any routing algorithm is judged by the extent to which it satisfies routing constraints and design objectives. Some of the broader design objectives include minimizing total routed wire length, and minimizing total capacitance induced in the chip, both of which serve to minimize power consumed by the chip. Ant Colony Optimization algorithms (ACO) provide a multi-agent framework for combinatorial optimization by combining memory, stochastic decision and strategies of collective and distributed learning by ant-like agents. This paper applies ACO to the NP-hard problem of finding optimal routes for interconnect routing on VLSI chips. The constraints on interconnect routing are used by ants as heuristics which guide their search process. We found that ACO algorithms were able to successfully incorporate multiple constraints and route interconnects on suite of benchmark chips. On an average, the algorithm routed with total wire length 5.5% less than other established routing algorithms.

  14. Modeling plug-in electric vehicle charging demand with BEAM: the framework for behavior energy autonomy mobility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheppard, Colin; Waraich, Rashid; Campbell, Andrew

    This report summarizes the BEAM modeling framework (Behavior, Energy, Mobility, and Autonomy) and its application to simulating plug-in electric vehicle (PEV) mobility, energy consumption, and spatiotemporal charging demand. BEAM is an agent-based model of PEV mobility and charging behavior designed as an extension to MATSim (the Multi-Agent Transportation Simulation model). We apply BEAM to the San Francisco Bay Area and conduct a preliminary calibration and validation of its prediction of charging load based on observed charging infrastructure utilization for the region in 2016. We then explore the impact of a variety of common modeling assumptions in the literature regarding chargingmore » infrastructure availability and driver behavior. We find that accurately reproducing observed charging patterns requires an explicit representation of spatially disaggregated charging infrastructure as well as a more nuanced model of the decision to charge that balances tradeoffs people make with regards to time, cost, convenience, and range anxiety.« less

  15. Direct visualization of gastrointestinal tract with lanthanide-doped BaYbF5 upconversion nanoprobes.

    PubMed

    Liu, Zhen; Ju, Enguo; Liu, Jianhua; Du, Yingda; Li, Zhengqiang; Yuan, Qinghai; Ren, Jinsong; Qu, Xiaogang

    2013-10-01

    Nanoparticulate contrast agents have attracted a great deal of attention along with the rapid development of modern medicine. Here, a binary contrast agent based on PAA modified BaYbF5:Tm nanoparticles for direct visualization of gastrointestinal (GI) tract has been designed and developed via a one-pot solvothermal route. By taking advantages of excellent colloidal stability, low cytotoxicity, and neglectable hemolysis of these well-designed nanoparticles, their feasibility as a multi-modal contrast agent for GI tract was intensively investigated. Significant enhancement of contrast efficacy relative to clinical barium meal and iodine-based contrast agent was evaluated via X-ray imaging and CT imaging in vivo. By doping Tm(3+) ions into these nanoprobes, in vivo NIR-NIR imaging was then demonstrated. Unlike some invasive imaging modalities, non-invasive imaging strategy including X-ray imaging, CT imaging, and UCL imaging for GI tract could extremely reduce the painlessness to patients, effectively facilitate imaging procedure, as well as rationality economize diagnostic time. Critical to clinical applications, long-term toxicity of our contrast agent was additionally investigated in detail, indicating their overall safety. Based on our results, PAA-BaYbF5:Tm nanoparticles were the excellent multi-modal contrast agent to integrate X-ray imaging, CT imaging, and UCL imaging for direct visualization of GI tract with low systemic toxicity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Using an object-based grid system to evaluate a newly developed EP approach to formulate SVMs as applied to the classification of organophosphate nerve agents

    NASA Astrophysics Data System (ADS)

    Land, Walker H., Jr.; Lewis, Michael; Sadik, Omowunmi; Wong, Lut; Wanekaya, Adam; Gonzalez, Richard J.; Balan, Arun

    2004-04-01

    This paper extends the classification approaches described in reference [1] in the following way: (1.) developing and evaluating a new method for evolving organophosphate nerve agent Support Vector Machine (SVM) classifiers using Evolutionary Programming, (2.) conducting research experiments using a larger database of organophosphate nerve agents, and (3.) upgrading the architecture to an object-based grid system for evaluating the classification of EP derived SVMs. Due to the increased threats of chemical and biological weapons of mass destruction (WMD) by international terrorist organizations, a significant effort is underway to develop tools that can be used to detect and effectively combat biochemical warfare. This paper reports the integration of multi-array sensors with Support Vector Machines (SVMs) for the detection of organophosphates nerve agents using a grid computing system called Legion. Grid computing is the use of large collections of heterogeneous, distributed resources (including machines, databases, devices, and users) to support large-scale computations and wide-area data access. Finally, preliminary results using EP derived support vector machines designed to operate on distributed systems have provided accurate classification results. In addition, distributed training time architectures are 50 times faster when compared to standard iterative training time methods.

  17. Using Ontologies to Formalize Services Specifications in Multi-Agent Systems

    NASA Technical Reports Server (NTRS)

    Breitman, Karin Koogan; Filho, Aluizio Haendchen; Haeusler, Edward Hermann

    2004-01-01

    One key issue in multi-agent systems (MAS) is their ability to interact and exchange information autonomously across applications. To secure agent interoperability, designers must rely on a communication protocol that allows software agents to exchange meaningful information. In this paper we propose using ontologies as such communication protocol. Ontologies capture the semantics of the operations and services provided by agents, allowing interoperability and information exchange in a MAS. Ontologies are a formal, machine processable, representation that allows to capture the semantics of a domain and, to derive meaningful information by way of logical inference. In our proposal we use a formal knowledge representation language (OWL) that translates into Description Logics (a subset of first order logic), thus eliminating ambiguities and providing a solid base for machine based inference. The main contribution of this approach is to make the requirements explicit, centralize the specification in a single document (the ontology itself), at the same that it provides a formal, unambiguous representation that can be processed by automated inference machines.

  18. Effect of luting agents on the tensile bond strength of glass fiber posts: An in vitro study.

    PubMed

    Aleisa, Khalil; Al-Dwairi, Ziad N; Alghabban, Rawda; Goodacre, Charles J

    2013-09-01

    Fiber posts can fail because of loss of retention; and it is unknown which luting agent provides the highest bond strength. The purpose of this study was to investigate the tensile bond strength of glass fiber posts luted to premolar teeth with 6 resin composite luting agents. Ninety-six single-rooted extracted human mandibular premolars were sectioned 2 mm coronal to the most incisal point of the cementoenamel junction. Root canals were instrumented and obturated with laterally condensed gutta percha and root canal sealer (AH26). Gutta percha was removed from the canals to a depth of 8 mm and diameter post spaces with a 1.5 mm were prepared. The specimens were divided into the following 6 groups according to the luting agent used (n=16): Group V, Variolink II; Group A, RelyX ARC; Group N, Multilink N; Group U, RelyX Unicem; Group P, ParaCore; Group F, MultiCore Flow. Each specimen was secured in a universal testing machine and a separating load was applied at a rate of 0.5 mm/min. The forces required to dislodge the posts were recorded. A 1-way analysis of variance (ANOVA) was applied to the mean retentive strengths of various cement materials (α=.05). Significant differences were recorded among the 6 cement types (P<.001). Three materials provided statistically equivalent mean bond strengths (RelyX Unicem, Paracore, and MultiCore Flow) that were significantly greater than for the other 3 materials. Fiber posts luted with RelyX Unicem, Paracore, and MultiCore Flow demonstrated significantly higher bond strengths. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  19. Chronic Heart Failure Follow-up Management Based on Agent Technology

    PubMed Central

    Safdari, Reza

    2015-01-01

    Objectives Monitoring heart failure patients through continues assessment of sign and symptoms by information technology tools lead to large reduction in re-hospitalization. Agent technology is one of the strongest artificial intelligence areas; therefore, it can be expected to facilitate, accelerate, and improve health services especially in home care and telemedicine. The aim of this article is to provide an agent-based model for chronic heart failure (CHF) follow-up management. Methods This research was performed in 2013-2014 to determine appropriate scenarios and the data required to monitor and follow-up CHF patients, and then an agent-based model was designed. Results Agents in the proposed model perform the following tasks: medical data access, communication with other agents of the framework and intelligent data analysis, including medical data processing, reasoning, negotiation for decision-making, and learning capabilities. Conclusions The proposed multi-agent system has ability to learn and thus improve itself. Implementation of this model with more and various interval times at a broader level could achieve better results. The proposed multi-agent system is no substitute for cardiologists, but it could assist them in decision-making. PMID:26618038

  20. Adaptive fuzzy wavelet network control of second order multi-agent systems with unknown nonlinear dynamics.

    PubMed

    Taheri, Mehdi; Sheikholeslam, Farid; Najafi, Majddedin; Zekri, Maryam

    2017-07-01

    In this paper, consensus problem is considered for second order multi-agent systems with unknown nonlinear dynamics under undirected graphs. A novel distributed control strategy is suggested for leaderless systems based on adaptive fuzzy wavelet networks. Adaptive fuzzy wavelet networks are employed to compensate for the effect of unknown nonlinear dynamics. Moreover, the proposed method is developed for leader following systems and leader following systems with state time delays. Lyapunov functions are applied to prove uniformly ultimately bounded stability of closed loop systems and to obtain adaptive laws. Three simulation examples are presented to illustrate the effectiveness of the proposed control algorithms. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Cooperative learning neural network output feedback control of uncertain nonlinear multi-agent systems under directed topologies

    NASA Astrophysics Data System (ADS)

    Wang, W.; Wang, D.; Peng, Z. H.

    2017-09-01

    Without assuming that the communication topologies among the neural network (NN) weights are to be undirected and the states of each agent are measurable, the cooperative learning NN output feedback control is addressed for uncertain nonlinear multi-agent systems with identical structures in strict-feedback form. By establishing directed communication topologies among NN weights to share their learned knowledge, NNs with cooperative learning laws are employed to identify the uncertainties. By designing NN-based κ-filter observers to estimate the unmeasurable states, a new cooperative learning output feedback control scheme is proposed to guarantee that the system outputs can track nonidentical reference signals with bounded tracking errors. A simulation example is given to demonstrate the effectiveness of the theoretical results.

  2. Hybrid Compounds as Anti-infective Agents.

    PubMed

    Sbaraglini, María Laura; Talevi, Alan

    2017-01-01

    Hybrid drugs are multi-target chimeric chemicals combining two or more drugs or pharmacophores covalently linked in a single molecule. In the field of anti-infective agents, they have been proposed as a possible solution to drug resistance issues, presumably having a broader spectrum of activity and less probability of eliciting high level resistance linked to single gene product. Although less frequently explored, they could also be useful in the treatment of frequently occurring co-infections. Here, we overview recent advances in the field of hybrid antimicrobials. Furthermore, we discuss some cutting-edge approaches to face the development of designed multi-target agents in the era of omics and big data, namely analysis of gene signatures and multitask QSAR models. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Distributed robust adaptive control of high order nonlinear multi agent systems.

    PubMed

    Hashemi, Mahnaz; Shahgholian, Ghazanfar

    2018-03-01

    In this paper, a robust adaptive neural network based controller is presented for multi agent high order nonlinear systems with unknown nonlinear functions, unknown control gains and unknown actuator failures. At first, Neural Network (NN) is used to approximate the nonlinear uncertainty terms derived from the controller design procedure for the followers. Then, a novel distributed robust adaptive controller is developed by combining the backstepping method and the Dynamic Surface Control (DSC) approach. The proposed controllers are distributed in the sense that the designed controller for each follower agent only requires relative state information between itself and its neighbors. By using the Young's inequality, only few parameters need to be tuned regardless of NN nodes number. Accordingly, the problems of dimensionality curse and explosion of complexity are counteracted, simultaneously. New adaptive laws are designed by choosing the appropriate Lyapunov-Krasovskii functionals. The proposed approach proves the boundedness of all the closed-loop signals in addition to the convergence of the distributed tracking errors to a small neighborhood of the origin. Simulation results indicate that the proposed controller is effective and robust. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Nondestructive Intervention to Multi-Agent Systems through an Intelligent Agent

    PubMed Central

    Han, Jing; Wang, Lin

    2013-01-01

    For a given multi-agent system where the local interaction rule of the existing agents can not be re-designed, one way to intervene the collective behavior of the system is to add one or a few special agents into the group which are still treated as normal agents by the existing ones. We study how to lead a Vicsek-like flocking model to reach synchronization by adding special agents. A popular method is to add some simple leaders (fixed-headings agents). However, we add one intelligent agent, called ‘shill’, which uses online feedback information of the group to decide the shill's moving direction at each step. A novel strategy for the shill to coordinate the group is proposed. It is strictly proved that a shill with this strategy and a limited speed can synchronize every agent in the group. The computer simulations show the effectiveness of this strategy in different scenarios, including different group sizes, shill speed, and with or without noise. Compared to the method of adding some fixed-heading leaders, our method can guarantee synchronization for any initial configuration in the deterministic scenario and improve the synchronization level significantly in low density groups, or model with noise. This suggests the advantage and power of feedback information in intervention of collective behavior. PMID:23658695

  5. Three-dimensional structures in the design of therapeutics targeting parasitic protozoa: reflections on the past, present and future.

    PubMed

    Hol, Wim G J

    2015-05-01

    Parasitic protozoa cause a range of diseases which threaten billions of human beings. They are responsible for tremendous mortality and morbidity in the least-developed areas of the world. Presented here is an overview of the evolution over the last three to four decades of structure-guided design of inhibitors, leads and drug candidates aiming at targets from parasitic protozoa. Target selection is a crucial and multi-faceted aspect of structure-guided drug design. The major impact of advances in molecular biology, genome sequencing and high-throughput screening is touched upon. The most advanced crystallographic techniques, including XFEL, have already been applied to structure determinations of drug targets from parasitic protozoa. Even cryo-electron microscopy is contributing to our understanding of the mode of binding of inhibitors to parasite ribosomes. A number of projects have been selected to illustrate how structural information has assisted in arriving at promising compounds that are currently being evaluated by pharmacological, pharmacodynamic and safety tests to assess their suitability as pharmaceutical agents. Structure-guided approaches are also applied to incorporate properties into compounds such that they are less likely to become the victim of resistance mechanisms. A great increase in the number of novel antiparasitic compounds will be needed in the future. These should then be combined into various multi-compound therapeutics to circumvent the diverse resistance mechanisms that render single-compound, or even multi-compound, drugs ineffective. The future should also see (i) an increase in the number of projects with a tight integration of structural biology, medicinal chemistry, parasitology and pharmaceutical sciences; (ii) the education of more `medicinal structural biologists' who are familiar with the properties that compounds need to have for a high probability of success in the later steps of the drug-development process; and (iii) the expansion of drug-development capabilities in middle- and low-income countries.

  6. Three-dimensional structures in the design of therapeutics targeting parasitic protozoa: reflections on the past, present and future

    PubMed Central

    Hol, Wim G. J.

    2015-01-01

    Parasitic protozoa cause a range of diseases which threaten billions of human beings. They are responsible for tremendous mortality and morbidity in the least-developed areas of the world. Presented here is an overview of the evolution over the last three to four decades of structure-guided design of inhibitors, leads and drug candidates aiming at targets from parasitic protozoa. Target selection is a crucial and multi-faceted aspect of structure-guided drug design. The major impact of advances in molecular biology, genome sequencing and high-throughput screening is touched upon. The most advanced crystallographic techniques, including XFEL, have already been applied to structure determinations of drug targets from parasitic protozoa. Even cryo-electron microscopy is contributing to our understanding of the mode of binding of inhibitors to parasite ribosomes. A number of projects have been selected to illustrate how structural information has assisted in arriving at promising compounds that are currently being evaluated by pharmacological, pharmacodynamic and safety tests to assess their suitability as pharmaceutical agents. Structure-guided approaches are also applied to incorporate properties into compounds such that they are less likely to become the victim of resistance mechanisms. A great increase in the number of novel antiparasitic compounds will be needed in the future. These should then be combined into various multi-compound therapeutics to circumvent the diverse resistance mechanisms that render single-compound, or even multi-compound, drugs ineffective. The future should also see (i) an increase in the number of projects with a tight integration of structural biology, medicinal chemistry, parasitology and pharmaceutical sciences; (ii) the education of more ‘medicinal structural biologists’ who are familiar with the properties that compounds need to have for a high probability of success in the later steps of the drug-development process; and (iii) the expansion of drug-development capabilities in middle- and low-income countries. PMID:25945701

  7. QUICR-learning for Multi-Agent Coordination

    NASA Technical Reports Server (NTRS)

    Agogino, Adrian K.; Tumer, Kagan

    2006-01-01

    Coordinating multiple agents that need to perform a sequence of actions to maximize a system level reward requires solving two distinct credit assignment problems. First, credit must be assigned for an action taken at time step t that results in a reward at time step t > t. Second, credit must be assigned for the contribution of agent i to the overall system performance. The first credit assignment problem is typically addressed with temporal difference methods such as Q-learning. The second credit assignment problem is typically addressed by creating custom reward functions. To address both credit assignment problems simultaneously, we propose the "Q Updates with Immediate Counterfactual Rewards-learning" (QUICR-learning) designed to improve both the convergence properties and performance of Q-learning in large multi-agent problems. QUICR-learning is based on previous work on single-time-step counterfactual rewards described by the collectives framework. Results on a traffic congestion problem shows that QUICR-learning is significantly better than a Q-learner using collectives-based (single-time-step counterfactual) rewards. In addition QUICR-learning provides significant gains over conventional and local Q-learning. Additional results on a multi-agent grid-world problem show that the improvements due to QUICR-learning are not domain specific and can provide up to a ten fold increase in performance over existing methods.

  8. ALADDIN: Research into Multi-Agent Solutions for Decentralised Information Systems

    DTIC Science & Technology

    2009-10-01

    estimate of trustworthiness. Of course, such an approach can lead to the problem of data incest in which because the provenance of each individual...which avoids data incest issues. These algorithms and others developed with Aladdin have subsequently been applied to the areas of: Sensor

  9. Exploration of Force Transition in Stability Operations Using Multi-Agent Simulation

    DTIC Science & Technology

    2006-09-01

    risk, mission failure risk, and time in the context of the operational threat environment. The Pythagoras Multi-Agent Simulation and Data Farming...NUMBER OF PAGES 173 14. SUBJECT TERMS Stability Operations, Peace Operations, Data Farming, Pythagoras , Agent- Based Model, Multi-Agent Simulation...the operational threat environment. The Pythagoras Multi-Agent Simulation and Data Farming techniques are used to investigate force-level

  10. Unifying Temporal and Structural Credit Assignment Problems

    NASA Technical Reports Server (NTRS)

    Agogino, Adrian K.; Tumer, Kagan

    2004-01-01

    Single-agent reinforcement learners in time-extended domains and multi-agent systems share a common dilemma known as the credit assignment problem. Multi-agent systems have the structural credit assignment problem of determining the contributions of a particular agent to a common task. Instead, time-extended single-agent systems have the temporal credit assignment problem of determining the contribution of a particular action to the quality of the full sequence of actions. Traditionally these two problems are considered different and are handled in separate ways. In this article we show how these two forms of the credit assignment problem are equivalent. In this unified frame-work, a single-agent Markov decision process can be broken down into a single-time-step multi-agent process. Furthermore we show that Monte-Carlo estimation or Q-learning (depending on whether the values of resulting actions in the episode are known at the time of learning) are equivalent to different agent utility functions in a multi-agent system. This equivalence shows how an often neglected issue in multi-agent systems is equivalent to a well-known deficiency in multi-time-step learning and lays the basis for solving time-extended multi-agent problems, where both credit assignment problems are present.

  11. Economic reasoning and artificial intelligence.

    PubMed

    Parkes, David C; Wellman, Michael P

    2015-07-17

    The field of artificial intelligence (AI) strives to build rational agents capable of perceiving the world around them and taking actions to advance specified goals. Put another way, AI researchers aim to construct a synthetic homo economicus, the mythical perfectly rational agent of neoclassical economics. We review progress toward creating this new species of machine, machina economicus, and discuss some challenges in designing AIs that can reason effectively in economic contexts. Supposing that AI succeeds in this quest, or at least comes close enough that it is useful to think about AIs in rationalistic terms, we ask how to design the rules of interaction in multi-agent systems that come to represent an economy of AIs. Theories of normative design from economics may prove more relevant for artificial agents than human agents, with AIs that better respect idealized assumptions of rationality than people, interacting through novel rules and incentive systems quite distinct from those tailored for people. Copyright © 2015, American Association for the Advancement of Science.

  12. The California Central Coast Research Partnership: Building Relationships, Partnerships and Paradigms for University-Industry Research Collaboration

    DTIC Science & Technology

    2005-10-14

    of the decision-support systems that underlie and are key to these strategies. Cal Poly’s Collaborative Agent Design (CAD) Research Center is the...architect and lead developer of one of the first such systems: IMMACCS (Integrated Marine Multi- Agent Command and Control System), with JPL, SPAWAR...presented later in this document. An overview of accomplishments to date on the project follows: " Research carried out by the CADRC (Cooperative Agent

  13. The effect of air thinning on dentin adhesive bond strength.

    PubMed

    Hilton, T J; Schwartz, R S

    1995-01-01

    The purpose of this study was to determine if air thinning three dentin adhesives would affect bond strength to dentin. Ninety human molars were mounted in acrylic and the occlusal surfaces ground to expose a flat dentin surface. Thirty teeth were randomly assigned to one of the following dentin bonding agent/composite combinations: A) Universal Bond 3/TPH (Caulk), B) All-Bond 2/Bis-Fil-P (Bisco), and C) Scotchbond Multi-Purpose/Z-100 (3m). The primers were applied following the manufacturers' instructions. The adhesives were applied by two methods. A thin layer of adhesive was applied with a brush to 15 specimens in each group and light cured. Adhesive was brushed on to the remaining 15 teeth in the group, air thinned for 3 seconds, and then polymerized. The appropriate composite was applied in 2 mm increments and light cured utilizing a 5 mm-in-diameter split Teflon mold. Following 3 months of water storage, all groups were shear tested to failure on an Instron Universal Testing Machine. Bond strength was significantly higher in all groups when the dentin bonding agent was painted on without being air thinned. Scotchbond Multi-Purpose had significantly higher bond strength than All-Bond 2, which had significantly higher bond strength than Universal Bond 3.

  14. A Goal Oriented Approach for Modeling and Analyzing Security Trade-Offs

    NASA Astrophysics Data System (ADS)

    Elahi, Golnaz; Yu, Eric

    In designing software systems, security is typically only one design objective among many. It may compete with other objectives such as functionality, usability, and performance. Too often, security mechanisms such as firewalls, access control, or encryption are adopted without explicit recognition of competing design objectives and their origins in stakeholder interests. Recently, there is increasing acknowledgement that security is ultimately about trade-offs. One can only aim for "good enough" security, given the competing demands from many parties. In this paper, we examine how conceptual modeling can provide explicit and systematic support for analyzing security trade-offs. After considering the desirable criteria for conceptual modeling methods, we examine several existing approaches for dealing with security trade-offs. From analyzing the limitations of existing methods, we propose an extension to the i* framework for security trade-off analysis, taking advantage of its multi-agent and goal orientation. The method was applied to several case studies used to exemplify existing approaches.

  15. Dose-finding design for multi-drug combinations

    PubMed Central

    Wages, Nolan A; Conaway, Mark R; O'Quigley, John

    2012-01-01

    Background Most of the current designs used for Phase I dose finding trials in oncology will either involve only a single cytotoxic agent or will impose some implicit ordering among the doses. The goal of the studies is to estimate the maximum tolerated dose (MTD), the highest dose that can be administered with an acceptable level of toxicity. A key working assumption of these methods is the monotonicity of the dose–toxicity curve. Purpose Here we consider situations in which the monotonicity assumption may fail. These studies are becoming increasingly common in practice, most notably, in phase I trials that involve combinations of agents. Our focus is on studies where there exist pairs of treatment combinations for which the ordering of the probabilities of a dose-limiting toxicity cannot be known a priori. Methods We describe a new dose-finding design which can be used for multiple-drug trials and can be applied to this kind of problem. Our methods proceed by laying out all possible orderings of toxicity probabilities that are consistent with the known orderings among treatment combinations and allowing the continual reassessment method (CRM) to provide efficient estimates of the MTD within these orders. The design can be seen to simplify to the CRM when the full ordering is known. Results We study the properties of the design via simulations that provide comparisons to the Bayesian approach to partial orders (POCRM) of Wages, Conaway, and O'Quigley. The POCRM was shown to perform well when compared to other suggested methods for partial orders. Therefore, we comapre our approach to it in order to assess the performance of the new design. Limitations A limitation concerns the number of possible orders. There are dose-finding studies with combinations of agents that can lead to a large number of possible orders. In this case, it may not be feasible to work with all possible orders. Conclusions The proposed design demonstrates the ability to effectively estimate MTD combinations in partially ordered dosefinding studies. Because it relaxes the monotonicity assumption, it can be considered a multivariate generalization of the CRM. Hence, it can serve as a link between single and multiple-agent dosefinding trials. PMID:21652689

  16. Sampled-Data Consensus of Linear Multi-agent Systems With Packet Losses.

    PubMed

    Zhang, Wenbing; Tang, Yang; Huang, Tingwen; Kurths, Jurgen

    In this paper, the consensus problem is studied for a class of multi-agent systems with sampled data and packet losses, where random and deterministic packet losses are considered, respectively. For random packet losses, a Bernoulli-distributed white sequence is used to describe packet dropouts among agents in a stochastic way. For deterministic packet losses, a switched system with stable and unstable subsystems is employed to model packet dropouts in a deterministic way. The purpose of this paper is to derive consensus criteria, such that linear multi-agent systems with sampled-data and packet losses can reach consensus. By means of the Lyapunov function approach and the decomposition method, the design problem of a distributed controller is solved in terms of convex optimization. The interplay among the allowable bound of the sampling interval, the probability of random packet losses, and the rate of deterministic packet losses are explicitly derived to characterize consensus conditions. The obtained criteria are closely related to the maximum eigenvalue of the Laplacian matrix versus the second minimum eigenvalue of the Laplacian matrix, which reveals the intrinsic effect of communication topologies on consensus performance. Finally, simulations are given to show the effectiveness of the proposed results.In this paper, the consensus problem is studied for a class of multi-agent systems with sampled data and packet losses, where random and deterministic packet losses are considered, respectively. For random packet losses, a Bernoulli-distributed white sequence is used to describe packet dropouts among agents in a stochastic way. For deterministic packet losses, a switched system with stable and unstable subsystems is employed to model packet dropouts in a deterministic way. The purpose of this paper is to derive consensus criteria, such that linear multi-agent systems with sampled-data and packet losses can reach consensus. By means of the Lyapunov function approach and the decomposition method, the design problem of a distributed controller is solved in terms of convex optimization. The interplay among the allowable bound of the sampling interval, the probability of random packet losses, and the rate of deterministic packet losses are explicitly derived to characterize consensus conditions. The obtained criteria are closely related to the maximum eigenvalue of the Laplacian matrix versus the second minimum eigenvalue of the Laplacian matrix, which reveals the intrinsic effect of communication topologies on consensus performance. Finally, simulations are given to show the effectiveness of the proposed results.

  17. HEURISTIC OPTIMIZATION AND ALGORITHM TUNING APPLIED TO SORPTIVE BARRIER DESIGN

    EPA Science Inventory

    While heuristic optimization is applied in environmental applications, ad-hoc algorithm configuration is typical. We use a multi-layer sorptive barrier design problem as a benchmark for an algorithm-tuning procedure, as applied to three heuristics (genetic algorithms, simulated ...

  18. A Distributed Ambient Intelligence Based Multi-Agent System for Alzheimer Health Care

    NASA Astrophysics Data System (ADS)

    Tapia, Dante I.; RodríGuez, Sara; Corchado, Juan M.

    This chapter presents ALZ-MAS (Alzheimer multi-agent system), an ambient intelligence (AmI)-based multi-agent system aimed at enhancing the assistance and health care for Alzheimer patients. The system makes use of several context-aware technologies that allow it to automatically obtain information from users and the environment in an evenly distributed way, focusing on the characteristics of ubiquity, awareness, intelligence, mobility, etc., all of which are concepts defined by AmI. ALZ-MAS makes use of a services oriented multi-agent architecture, called flexible user and services oriented multi-agent architecture, to distribute resources and enhance its performance. It is demonstrated that a SOA approach is adequate to build distributed and highly dynamic AmI-based multi-agent systems.

  19. 46 CFR 162.161-1 - Scope.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... APPROVAL ENGINEERING EQUIPMENT Fixed Clean Agent Fire Extinguishing Systems § 162.161-1 Scope. (a) This subpart applies to each engineered fixed fire extinguishing system using a halocarbon or an inert gas as an agent. It does not apply to pre-engineered systems. (b) Each system must be designed for...

  20. 46 CFR 162.161-1 - Scope.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... APPROVAL ENGINEERING EQUIPMENT Fixed Clean Agent Fire Extinguishing Systems § 162.161-1 Scope. (a) This subpart applies to each engineered fixed fire extinguishing system using a halocarbon or an inert gas as an agent. It does not apply to pre-engineered systems. (b) Each system must be designed for...

  1. 46 CFR 162.161-1 - Scope.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... APPROVAL ENGINEERING EQUIPMENT Fixed Clean Agent Fire Extinguishing Systems § 162.161-1 Scope. (a) This subpart applies to each engineered fixed fire extinguishing system using a halocarbon or an inert gas as an agent. It does not apply to pre-engineered systems. (b) Each system must be designed for...

  2. A multi-agent architecture for geosimulation of moving agents

    NASA Astrophysics Data System (ADS)

    Vahidnia, Mohammad H.; Alesheikh, Ali A.; Alavipanah, Seyed Kazem

    2015-10-01

    In this paper, a novel architecture is proposed in which an axiomatic derivation system in the form of first-order logic facilitates declarative explanation and spatial reasoning. Simulation of environmental perception and interaction between autonomous agents is designed with a geographic belief-desire-intention and a request-inform-query model. The architecture has a complementary quantitative component that supports collaborative planning based on the concept of equilibrium and game theory. This new architecture presents a departure from current best practices geographic agent-based modelling. Implementation tasks are discussed in some detail, as well as scenarios for fleet management and disaster management.

  3. Exploring complex dynamics in multi agent-based intelligent systems: Theoretical and experimental approaches using the Multi Agent-based Behavioral Economic Landscape (MABEL) model

    NASA Astrophysics Data System (ADS)

    Alexandridis, Konstantinos T.

    This dissertation adopts a holistic and detailed approach to modeling spatially explicit agent-based artificial intelligent systems, using the Multi Agent-based Behavioral Economic Landscape (MABEL) model. The research questions that addresses stem from the need to understand and analyze the real-world patterns and dynamics of land use change from a coupled human-environmental systems perspective. Describes the systemic, mathematical, statistical, socio-economic and spatial dynamics of the MABEL modeling framework, and provides a wide array of cross-disciplinary modeling applications within the research, decision-making and policy domains. Establishes the symbolic properties of the MABEL model as a Markov decision process, analyzes the decision-theoretic utility and optimization attributes of agents towards comprising statistically and spatially optimal policies and actions, and explores the probabilogic character of the agents' decision-making and inference mechanisms via the use of Bayesian belief and decision networks. Develops and describes a Monte Carlo methodology for experimental replications of agent's decisions regarding complex spatial parcel acquisition and learning. Recognizes the gap on spatially-explicit accuracy assessment techniques for complex spatial models, and proposes an ensemble of statistical tools designed to address this problem. Advanced information assessment techniques such as the Receiver-Operator Characteristic curve, the impurity entropy and Gini functions, and the Bayesian classification functions are proposed. The theoretical foundation for modular Bayesian inference in spatially-explicit multi-agent artificial intelligent systems, and the ensembles of cognitive and scenario assessment modular tools build for the MABEL model are provided. Emphasizes the modularity and robustness as valuable qualitative modeling attributes, and examines the role of robust intelligent modeling as a tool for improving policy-decisions related to land use change. Finally, the major contributions to the science are presented along with valuable directions for future research.

  4. FRIEND: a brain-monitoring agent for adaptive and assistive systems.

    PubMed

    Morris, Alexis; Ulieru, Mihaela

    2012-01-01

    This paper presents an architectural design for adaptive-systems agents (FRIEND) that use brain state information to make more effective decisions on behalf of a user; measuring brain context versus situational demands. These systems could be useful for alerting users to cognitive workload levels or fatigue, and could attempt to compensate for higher cognitive activity by filtering noise information. In some cases such systems could also share control of devices, such as pulling over in an automated vehicle. These aim to assist people in everyday systems to perform tasks better and be more aware of internal states. Achieving a functioning system of this sort is a challenge, involving a unification of brain- computer-interfaces, human-computer-interaction, soft-computin deliberative multi-agent systems disciplines. Until recently, these were not able to be combined into a usable platform due largely to technological limitations (e.g., size, cost, and processing speed), insufficient research on extracting behavioral states from EEG signals, and lack of low-cost wireless sensing headsets. We aim to surpass these limitations and develop control architectures for making sense of brain state in applications by realizing an agent architecture for adaptive (human-aware) technology. In this paper we present an early, high-level design towards implementing a multi-purpose brain-monitoring agent system to improve user quality of life through the assistive applications of psycho-physiological monitoring, noise-filtering, and shared system control.

  5. Self-adaptive multi-objective harmony search for optimal design of water distribution networks

    NASA Astrophysics Data System (ADS)

    Choi, Young Hwan; Lee, Ho Min; Yoo, Do Guen; Kim, Joong Hoon

    2017-11-01

    In multi-objective optimization computing, it is important to assign suitable parameters to each optimization problem to obtain better solutions. In this study, a self-adaptive multi-objective harmony search (SaMOHS) algorithm is developed to apply the parameter-setting-free technique, which is an example of a self-adaptive methodology. The SaMOHS algorithm attempts to remove some of the inconvenience from parameter setting and selects the most adaptive parameters during the iterative solution search process. To verify the proposed algorithm, an optimal least cost water distribution network design problem is applied to three different target networks. The results are compared with other well-known algorithms such as multi-objective harmony search and the non-dominated sorting genetic algorithm-II. The efficiency of the proposed algorithm is quantified by suitable performance indices. The results indicate that SaMOHS can be efficiently applied to the search for Pareto-optimal solutions in a multi-objective solution space.

  6. A Software Framework for Remote Patient Monitoring by Using Multi-Agent Systems Support.

    PubMed

    Fernandes, Chrystinne Oliveira; Lucena, Carlos José Pereira De

    2017-03-27

    Although there have been significant advances in network, hardware, and software technologies, the health care environment has not taken advantage of these developments to solve many of its inherent problems. Research activities in these 3 areas make it possible to apply advanced technologies to address many of these issues such as real-time monitoring of a large number of patients, particularly where a timely response is critical. The objective of this research was to design and develop innovative technological solutions to offer a more proactive and reliable medical care environment. The short-term and primary goal was to construct IoT4Health, a flexible software framework to generate a range of Internet of things (IoT) applications, containing components such as multi-agent systems that are designed to perform Remote Patient Monitoring (RPM) activities autonomously. An investigation into its full potential to conduct such patient monitoring activities in a more proactive way is an expected future step. A framework methodology was selected to evaluate whether the RPM domain had the potential to generate customized applications that could achieve the stated goal of being responsive and flexible within the RPM domain. As a proof of concept of the software framework's flexibility, 3 applications were developed with different implementations for each framework hot spot to demonstrate potential. Agents4Health was selected to illustrate the instantiation process and IoT4Health's operation. To develop more concrete indicators of the responsiveness of the simulated care environment, an experiment was conducted while Agents4Health was operating, to measure the number of delays incurred in monitoring the tasks performed by agents. IoT4Health's construction can be highlighted as our contribution to the development of eHealth solutions. As a software framework, IoT4Health offers extensibility points for the generation of applications. Applications can extend the framework in the following ways: identification, collection, storage, recovery, visualization, monitoring, anomalies detection, resource notification, and dynamic reconfiguration. Based on other outcomes involving observation of the resulting applications, it was noted that its design contributed toward more proactive patient monitoring. Through these experimental systems, anomalies were detected in real time, with agents sending notifications instantly to the health providers. We conclude that the cost-benefit of the construction of a more generic and complex system instead of a custom-made software system demonstrated the worth of the approach, making it possible to generate applications in this domain in a more timely fashion. ©Chrystinne Oliveira Fernandes, Carlos José Pereira De Lucena. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 27.03.2017.

  7. Selection of a turbine cooling system applying multi-disciplinary design considerations.

    PubMed

    Glezer, B

    2001-05-01

    The presented paper describes a multi-disciplinary cooling selection approach applied to major gas turbine engine hot section components, including turbine nozzles, blades, discs, combustors and support structures, which maintain blade tip clearances. The paper demonstrates benefits of close interaction between participating disciplines starting from early phases of the hot section development. The approach targets advancements in engine performance and cost by optimizing the design process, often requiring compromises within individual disciplines.

  8. Efficacy Comparison of Six Chemotherapeutic Combinations for Osteosarcoma and Ewing's Sarcoma Treatment: A Network Meta-Analysis.

    PubMed

    Zhang, Tao; Zhang, Song; Yang, Feifei; Wang, Lili; Zhu, Sigang; Qiu, Bing; Li, Shunhua; Deng, Zhongliang

    2018-01-01

    This study aimed to address the insufficiency of traditional meta-analysis and provide improved guidelines for the clinical practice of osteosarcoma treatment. The heterogeneity of the fixed-effect model was calculated, and when necessary, a random-effect model was adopted. Furthermore, the direct and indirect evidence was pooled together and exhibited in the forest plot and slash table. The surface under the cumulative ranking curve (SUCRA) value was also measured to rank each intervention. Finally, heat plot was introduced to demonstrate the contribution of each intervention and the inconsistency between direct and indirect comparisons. This network meta-analysis included 32 trials, involving a total of 5,626 subjects reported by 28 articles. All the treatments were classified into six chemotherapeutic combinations: dual agent with or without ifosfamide (IFO), multi-agent with or without IFO, and dual agent or multi-agent with IFO and etoposide. For the primary outcomes, both overall survival (OS) and event-free survival (EFS) rates were considered. The multi-agent integrated with IFO and etoposide showed an optimal performance for 5-year OS, 10-year OS, 3-year EFS, 5-year EFS, and 10-year EFS when compared with placebo. The SUCRA value of this treatment was also the highest of these six interventions. However, multi-drug with IFO alone had the highest SUCRA value of 0.652 and 0.516 when it came to relapse and lung-metastasis. It was efficient to some extent, but no significant difference was observed in both outcomes. Chemotherapy, applied as induction or adjuvant treatment with radiation therapy or surgery, is able to increase the survival rate of patients, especially by combining multi-drug with IFO and etoposide, which demonstrated the best performance in both OS and EFS. As for relapse and the lung-metastasis, multiple agents with IFO alone seemed to have the optimal efficiency, although no significant difference was observed here. J. Cell. Biochem. 119: 250-259, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Multi-Level Cultural Models

    DTIC Science & Technology

    2014-11-05

    usable simulations. This procedure was to be tested using real-world data collected from open-source venues. The final system would support rapid...assess social change. Construct is an agent-based dynamic-network simulation system design to allow the user to assess the spread of information and...protest or violence. Technical Challenges Addressed  Re‐use:    Most agent-based simulation ( ABM ) in use today are one-off. In contrast, we

  10. Statistical mechanics of competitive resource allocation using agent-based models

    NASA Astrophysics Data System (ADS)

    Chakraborti, Anirban; Challet, Damien; Chatterjee, Arnab; Marsili, Matteo; Zhang, Yi-Cheng; Chakrabarti, Bikas K.

    2015-01-01

    Demand outstrips available resources in most situations, which gives rise to competition, interaction and learning. In this article, we review a broad spectrum of multi-agent models of competition (El Farol Bar problem, Minority Game, Kolkata Paise Restaurant problem, Stable marriage problem, Parking space problem and others) and the methods used to understand them analytically. We emphasize the power of concepts and tools from statistical mechanics to understand and explain fully collective phenomena such as phase transitions and long memory, and the mapping between agent heterogeneity and physical disorder. As these methods can be applied to any large-scale model of competitive resource allocation made up of heterogeneous adaptive agent with non-linear interaction, they provide a prospective unifying paradigm for many scientific disciplines.

  11. Metareasoning and Social Evaluations in Cognitive Agents

    NASA Astrophysics Data System (ADS)

    Pinyol, Isaac; Sabater-Mir, Jordi

    Reputation mechanisms have been recognized one of the key technologies when designing multi-agent systems. They are specially relevant in complex open environments, becoming a non-centralized mechanism to control interactions among agents. Cognitive agents tackling such complex societies must use reputation information not only for selecting partners to interact with, but also in metareasoning processes to change reasoning rules. This is the focus of this paper. We argue about the necessity to allow, as a cognitive systems designers, certain degree of freedom in the reasoning rules of the agents. We also describes cognitive approaches of agency that support this idea. Furthermore, taking as a base the computational reputation model Repage, and its integration in a BDI architecture, we use the previous ideas to specify metarules and processes to modify at run-time the reasoning paths of the agent. In concrete we propose a metarule to update the link between Repage and the belief base, and a metarule and a process to update an axiom incorporated in the belief logic of the agent. Regarding this last issue we also provide empirical results that show the evolution of agents that use it.

  12. Content modification attacks on consensus seeking multi-agent system with double-integrator dynamics.

    PubMed

    Dong, Yimeng; Gupta, Nirupam; Chopra, Nikhil

    2016-11-01

    In this paper, vulnerability of a distributed consensus seeking multi-agent system (MAS) with double-integrator dynamics against edge-bound content modification cyber attacks is studied. In particular, we define a specific edge-bound content modification cyber attack called malignant content modification attack (MCoMA), which results in unbounded growth of an appropriately defined group disagreement vector. Properties of MCoMA are utilized to design detection and mitigation algorithms so as to impart resilience in the considered MAS against MCoMA. Additionally, the proposed detection mechanism is extended to detect the general edge-bound content modification attacks (not just MCoMA). Finally, the efficacies of the proposed results are illustrated through numerical simulations.

  13. Content modification attacks on consensus seeking multi-agent system with double-integrator dynamics

    NASA Astrophysics Data System (ADS)

    Dong, Yimeng; Gupta, Nirupam; Chopra, Nikhil

    2016-11-01

    In this paper, vulnerability of a distributed consensus seeking multi-agent system (MAS) with double-integrator dynamics against edge-bound content modification cyber attacks is studied. In particular, we define a specific edge-bound content modification cyber attack called malignant content modification attack (MCoMA), which results in unbounded growth of an appropriately defined group disagreement vector. Properties of MCoMA are utilized to design detection and mitigation algorithms so as to impart resilience in the considered MAS against MCoMA. Additionally, the proposed detection mechanism is extended to detect the general edge-bound content modification attacks (not just MCoMA). Finally, the efficacies of the proposed results are illustrated through numerical simulations.

  14. Multi-agent simulation of generation expansion in electricity markets.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Botterud, A; Mahalik, M. R.; Veselka, T. D.

    2007-06-01

    We present a new multi-agent model of generation expansion in electricity markets. The model simulates generation investment decisions of decentralized generating companies (GenCos) interacting in a complex, multidimensional environment. A probabilistic dispatch algorithm calculates prices and profits for new candidate units in different future states of the system. Uncertainties in future load, hydropower conditions, and competitors actions are represented in a scenario tree, and decision analysis is used to identify the optimal expansion decision for each individual GenCo. We test the model using real data for the Korea power system under different assumptions about market design, market concentration, and GenCo'smore » assumed expectations about their competitors investment decisions.« less

  15. Use of Model-Based Design Methods for Enhancing Resiliency Analysis of Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Knox, Lenora A.

    The most common traditional non-functional requirement analysis is reliability. With systems becoming more complex, networked, and adaptive to environmental uncertainties, system resiliency has recently become the non-functional requirement analysis of choice. Analysis of system resiliency has challenges; which include, defining resilience for domain areas, identifying resilience metrics, determining resilience modeling strategies, and understanding how to best integrate the concepts of risk and reliability into resiliency. Formal methods that integrate all of these concepts do not currently exist in specific domain areas. Leveraging RAMSoS, a model-based reliability analysis methodology for Systems of Systems (SoS), we propose an extension that accounts for resiliency analysis through evaluation of mission performance, risk, and cost using multi-criteria decision-making (MCDM) modeling and design trade study variability modeling evaluation techniques. This proposed methodology, coined RAMSoS-RESIL, is applied to a case study in the multi-agent unmanned aerial vehicle (UAV) domain to investigate the potential benefits of a mission architecture where functionality to complete a mission is disseminated across multiple UAVs (distributed) opposed to being contained in a single UAV (monolithic). The case study based research demonstrates proof of concept for the proposed model-based technique and provides sufficient preliminary evidence to conclude which architectural design (distributed vs. monolithic) is most resilient based on insight into mission resilience performance, risk, and cost in addition to the traditional analysis of reliability.

  16. Low Energy Technology. A Unit of Instruction in Housing and Home Environment. Single Family Homes--Multi-Family Homes--Mobile Homes.

    ERIC Educational Resources Information Center

    Beaulieu, Barbara; And Others

    This unit of instruction on selection and living styles for energy conservation in single-family and multi-family housing and mobile homes was designed for use by home economics teachers in Florida high schools and by home economics extension agents as they work with their clientele. It is one of a series of 11 instructional units (see note)…

  17. Modelling of Robotized Manufacturing Systems Using MultiAgent Formalism

    NASA Astrophysics Data System (ADS)

    Foit, K.; Gwiazda, A.; Banaś, W.

    2016-08-01

    The evolution of manufacturing systems has greatly accelerated due to development of sophisticated control systems. On top of determined, one way production flow the need of decision making has arisen as a result of growing product range that are manufactured simultaneously, using the same resources. On the other hand, the intelligent flow control could address the “bottleneck” problem caused by the machine failure. This sort of manufacturing systems uses advanced control algorithms that are introduced by the use of logic controllers. The complex algorithms used in the control systems requires to employ appropriate methods during the modelling process, like the agent-based one, which is the subject of this paper. The concept of an agent is derived from the object-based methodology of modelling, so it meets the requirements of representing the physical properties of the machines as well as the logical form of control systems. Each agent has a high level of autonomy and could be considered separately. The multi-agent system consists of minimum two agents that can interact and modify the environment, where they act. This may lead to the creation of self-organizing structure, what could be interesting feature during design and test of manufacturing system.

  18. Multi-agent based control of large-scale complex systems employing distributed dynamic inference engine

    NASA Astrophysics Data System (ADS)

    Zhang, Daili

    Increasing societal demand for automation has led to considerable efforts to control large-scale complex systems, especially in the area of autonomous intelligent control methods. The control system of a large-scale complex system needs to satisfy four system level requirements: robustness, flexibility, reusability, and scalability. Corresponding to the four system level requirements, there arise four major challenges. First, it is difficult to get accurate and complete information. Second, the system may be physically highly distributed. Third, the system evolves very quickly. Fourth, emergent global behaviors of the system can be caused by small disturbances at the component level. The Multi-Agent Based Control (MABC) method as an implementation of distributed intelligent control has been the focus of research since the 1970s, in an effort to solve the above-mentioned problems in controlling large-scale complex systems. However, to the author's best knowledge, all MABC systems for large-scale complex systems with significant uncertainties are problem-specific and thus difficult to extend to other domains or larger systems. This situation is partly due to the control architecture of multiple agents being determined by agent to agent coupling and interaction mechanisms. Therefore, the research objective of this dissertation is to develop a comprehensive, generalized framework for the control system design of general large-scale complex systems with significant uncertainties, with the focus on distributed control architecture design and distributed inference engine design. A Hybrid Multi-Agent Based Control (HyMABC) architecture is proposed by combining hierarchical control architecture and module control architecture with logical replication rings. First, it decomposes a complex system hierarchically; second, it combines the components in the same level as a module, and then designs common interfaces for all of the components in the same module; third, replications are made for critical agents and are organized into logical rings. This architecture maintains clear guidelines for complexity decomposition and also increases the robustness of the whole system. Multiple Sectioned Dynamic Bayesian Networks (MSDBNs) as a distributed dynamic probabilistic inference engine, can be embedded into the control architecture to handle uncertainties of general large-scale complex systems. MSDBNs decomposes a large knowledge-based system into many agents. Each agent holds its partial perspective of a large problem domain by representing its knowledge as a Dynamic Bayesian Network (DBN). Each agent accesses local evidence from its corresponding local sensors and communicates with other agents through finite message passing. If the distributed agents can be organized into a tree structure, satisfying the running intersection property and d-sep set requirements, globally consistent inferences are achievable in a distributed way. By using different frequencies for local DBN agent belief updating and global system belief updating, it balances the communication cost with the global consistency of inferences. In this dissertation, a fully factorized Boyen-Koller (BK) approximation algorithm is used for local DBN agent belief updating, and the static Junction Forest Linkage Tree (JFLT) algorithm is used for global system belief updating. MSDBNs assume a static structure and a stable communication network for the whole system. However, for a real system, sub-Bayesian networks as nodes could be lost, and the communication network could be shut down due to partial damage in the system. Therefore, on-line and automatic MSDBNs structure formation is necessary for making robust state estimations and increasing survivability of the whole system. A Distributed Spanning Tree Optimization (DSTO) algorithm, a Distributed D-Sep Set Satisfaction (DDSSS) algorithm, and a Distributed Running Intersection Satisfaction (DRIS) algorithm are proposed in this dissertation. Combining these three distributed algorithms and a Distributed Belief Propagation (DBP) algorithm in MSDBNs makes state estimations robust to partial damage in the whole system. Combining the distributed control architecture design and the distributed inference engine design leads to a process of control system design for a general large-scale complex system. As applications of the proposed methodology, the control system design of a simplified ship chilled water system and a notional ship chilled water system have been demonstrated step by step. Simulation results not only show that the proposed methodology gives a clear guideline for control system design for general large-scale complex systems with dynamic and uncertain environment, but also indicate that the combination of MSDBNs and HyMABC can provide excellent performance for controlling general large-scale complex systems.

  19. Design, synthesis, and biological evaluation of a novel series of quercetin diacylglucosides as potent anti-MRSA and anti-VRE agents.

    PubMed

    Hossion, Abugafar M L; Otsuka, Nao; Kandahary, Rafiya K; Tsuchiya, Tomofusa; Ogawa, Wakano; Iwado, Akimasa; Zamami, Yoshito; Sasaki, Kenji

    2010-09-01

    A series of novel quercetin diacylglucosides were designed and first synthesized by Steglich esterification on the basis of MRSA strains inhibiting natural compound A. The in vitro inhibition of different multi-drug resistant bacterial strains and Escherichia coli DNA gyrase B was investigated. In the series, compound 10h was up to 128-fold more potent against vancomycin-resistant enterococci and more effective than A, which represents a promising new candidate as a potent anti-MRSA and anti-VRE agent. Copyright 2010. Published by Elsevier Ltd.

  20. Agent 2003 Conference on Challenges in Social Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Margaret Clemmons, ed.

    Welcome to the Proceedings of the fourth in a series of agent simulation conferences cosponsored by Argonne National Laboratory and The University of Chicago. Agent 2003 is the second conference in which three Special Interest Groups from the North American Association for Computational Social and Organizational Science (NAACSOS) have been involved in planning the program--Computational Social Theory; Simulation Applications; and Methods, Toolkits and Techniques. The theme of Agent 2003, Challenges in Social Simulation, is especially relevant, as there seems to be no shortage of such challenges. Agent simulation has been applied with increasing frequency to social domains for several decades,more » and its promise is clear and increasingly visible. Like any nascent scientific methodology, however, it faces a number of problems or issues that must be addressed in order to progress. These challenges include: (1) Validating models relative to the social settings they are designed to represent; (2) Developing agents and interactions simple enough to understand but sufficiently complex to do justice to the social processes of interest; (3) Bridging the gap between empirically spare artificial societies and naturally occurring social phenomena; (4) Building multi-level models that span processes across domains; (5) Promoting a dialog among theoretical, qualitative, and empirical social scientists and area experts, on the one hand, and mathematical and computational modelers and engineers, on the other; (6) Using that dialog to facilitate substantive progress in the social sciences; and (7) Fulfilling the aspirations of users in business, government, and other application areas, while recognizing and addressing the preceding challenges. Although this list hardly exhausts the challenges the field faces, it does identify topics addressed throughout the presentations of Agent 2003. Agent 2003 is part of a much larger process in which new methods and techniques are applied to difficult social issues. Among the resources that give us the prospect of success is the innovative and transdisciplinary research community being built. We believe that Agent 2003 contributes to further progress in computational modeling of social processes, and we hope that you find these Proceedings to be stimulating and rewarding. As the horizons of this transdiscipline continue to emerge and converge, we hope to provide similar forums that will promote development of agent simulation modeling in the years to come.« less

  1. Design for interaction between humans and intelligent systems during real-time fault management

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Schreckenghost, Debra L.; Thronesbery, Carroll G.

    1992-01-01

    Initial results are reported to provide guidance and assistance for designers of intelligent systems and their human interfaces. The objective is to achieve more effective human-computer interaction (HCI) for real time fault management support systems. Studies of the development of intelligent fault management systems within NASA have resulted in a new perspective of the user. If the user is viewed as one of the subsystems in a heterogeneous, distributed system, system design becomes the design of a flexible architecture for accomplishing system tasks with both human and computer agents. HCI requirements and design should be distinguished from user interface (displays and controls) requirements and design. Effective HCI design for multi-agent systems requires explicit identification of activities and information that support coordination and communication between agents. The effects are characterized of HCI design on overall system design and approaches are identified to addressing HCI requirements in system design. The results include definition of (1) guidance based on information level requirements analysis of HCI, (2) high level requirements for a design methodology that integrates the HCI perspective into system design, and (3) requirements for embedding HCI design tools into intelligent system development environments.

  2. Model of interaction in Smart Grid on the basis of multi-agent system

    NASA Astrophysics Data System (ADS)

    Engel, E. A.; Kovalev, I. V.; Engel, N. E.

    2016-11-01

    This paper presents model of interaction in Smart Grid on the basis of multi-agent system. The use of travelling waves in the multi-agent system describes the behavior of the Smart Grid from the local point, which is being the complement of the conventional approach. The simulation results show that the absorption of the wave in the distributed multi-agent systems is effectively simulated the interaction in Smart Grid.

  3. Parallel Agent-Based Simulations on Clusters of GPUs and Multi-Core Processors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaby, Brandon G; Perumalla, Kalyan S; Seal, Sudip K

    2010-01-01

    An effective latency-hiding mechanism is presented in the parallelization of agent-based model simulations (ABMS) with millions of agents. The mechanism is designed to accommodate the hierarchical organization as well as heterogeneity of current state-of-the-art parallel computing platforms. We use it to explore the computation vs. communication trade-off continuum available with the deep computational and memory hierarchies of extant platforms and present a novel analytical model of the tradeoff. We describe our implementation and report preliminary performance results on two distinct parallel platforms suitable for ABMS: CUDA threads on multiple, networked graphical processing units (GPUs), and pthreads on multi-core processors. Messagemore » Passing Interface (MPI) is used for inter-GPU as well as inter-socket communication on a cluster of multiple GPUs and multi-core processors. Results indicate the benefits of our latency-hiding scheme, delivering as much as over 100-fold improvement in runtime for certain benchmark ABMS application scenarios with several million agents. This speed improvement is obtained on our system that is already two to three orders of magnitude faster on one GPU than an equivalent CPU-based execution in a popular simulator in Java. Thus, the overall execution of our current work is over four orders of magnitude faster when executed on multiple GPUs.« less

  4. SPARK: A Framework for Multi-Scale Agent-Based Biomedical Modeling.

    PubMed

    Solovyev, Alexey; Mikheev, Maxim; Zhou, Leming; Dutta-Moscato, Joyeeta; Ziraldo, Cordelia; An, Gary; Vodovotz, Yoram; Mi, Qi

    2010-01-01

    Multi-scale modeling of complex biological systems remains a central challenge in the systems biology community. A method of dynamic knowledge representation known as agent-based modeling enables the study of higher level behavior emerging from discrete events performed by individual components. With the advancement of computer technology, agent-based modeling has emerged as an innovative technique to model the complexities of systems biology. In this work, the authors describe SPARK (Simple Platform for Agent-based Representation of Knowledge), a framework for agent-based modeling specifically designed for systems-level biomedical model development. SPARK is a stand-alone application written in Java. It provides a user-friendly interface, and a simple programming language for developing Agent-Based Models (ABMs). SPARK has the following features specialized for modeling biomedical systems: 1) continuous space that can simulate real physical space; 2) flexible agent size and shape that can represent the relative proportions of various cell types; 3) multiple spaces that can concurrently simulate and visualize multiple scales in biomedical models; 4) a convenient graphical user interface. Existing ABMs of diabetic foot ulcers and acute inflammation were implemented in SPARK. Models of identical complexity were run in both NetLogo and SPARK; the SPARK-based models ran two to three times faster.

  5. Heterogeneous Multi-Robot Cooperation

    DTIC Science & Technology

    1994-02-01

    1992a) Maja Mataric. Designing emergent behaviors: From local interac- tions to collective intelligence. In J. Meyer, H. Roitblat , and S. Wilson, editors...1992] Lynne E. Parker. Adaptive action selection for cooperative agent teams. In Jean-Arcady Meyer, Herbert Roitblat . and Stewart Wilson. editors

  6. Changing drug users' risk environments: peer health advocates as multi-level community change agents.

    PubMed

    Weeks, Margaret R; Convey, Mark; Dickson-Gomez, Julia; Li, Jianghong; Radda, Kim; Martinez, Maria; Robles, Eduardo

    2009-06-01

    Peer delivered, social oriented HIV prevention intervention designs are increasingly popular for addressing broader contexts of health risk beyond a focus on individual factors. Such interventions have the potential to affect multiple social levels of risk and change, including at the individual, network, and community levels, and reflect social ecological principles of interaction across social levels over time. The iterative and feedback dynamic generated by this multi-level effect increases the likelihood for sustained health improvement initiated by those trained to deliver the peer intervention. The Risk Avoidance Partnership (RAP), conducted with heroin and cocaine/crack users in Hartford, Connecticut, exemplified this intervention design and illustrated the multi-level effect on drug users' risk and harm reduction at the individual level, the social network level, and the larger community level. Implications of the RAP program for designing effective prevention programs and for analyzing long-term change to reduce HIV transmission among high-risk groups are discussed from this ecological and multi-level intervention perspective.

  7. Schizophrenia: multi-attribute utility theory approach to selection of atypical antipsychotics.

    PubMed

    Bettinger, Tawny L; Shuler, Garyn; Jones, Donnamaria R; Wilson, James P

    2007-02-01

    Current guidelines/algorithms recommend atypical antipsychotics as first-line agents for the treatment of schizophrenia. Because there are extensive healthcare costs associated with the treatment of schizophrenia, many institutions and health systems are faced with making restrictive formulary decisions regarding the use of atypical antipsychotics. Often, medication acquisition costs are the driving force behind formulary decisions, while other treatment factors are not considered. To apply a multi-attribute utility theory (MAUT) analysis to aid in the selection of a preferred agent among the atypical antipsychotics for the treatment of schizophrenia. Five atypical antipsychotics (risperidone, olanzapine, quetiapine, ziprasidone, aripiprazole) were selected as the alternative agents to be included in the MAUT analysis. The attributes identified for inclusion in the analysis were efficacy, adverse effects, cost, and adherence, with relative weights of 35%, 35%, 20%, and 10%, respectively. For each agent, attribute scores were calculated, weighted, and then summed to generate a total utility score. The agent with the highest total utility score was considered the preferred agent. Aripiprazole, with a total utility score of 75.8, was the alternative agent with the highest total utility score in this model. This was followed by ziprasidone, risperidone, and quetiapine, with total utility scores of 71.8, 69.0, and 65.9, respectively. Olanzapine received the lowest total utility score. A sensitivity analysis was performed and failed to displace aripiprazole as the agent with the highest total utility score. This model suggests that aripiprazole should be considered a preferred agent for the treatment of schizophrenia unless found to be otherwise inappropriate.

  8. Agent Collaborative Target Localization and Classification in Wireless Sensor Networks

    PubMed Central

    Wang, Xue; Bi, Dao-wei; Ding, Liang; Wang, Sheng

    2007-01-01

    Wireless sensor networks (WSNs) are autonomous networks that have been frequently deployed to collaboratively perform target localization and classification tasks. Their autonomous and collaborative features resemble the characteristics of agents. Such similarities inspire the development of heterogeneous agent architecture for WSN in this paper. The proposed agent architecture views WSN as multi-agent systems and mobile agents are employed to reduce in-network communication. According to the architecture, an energy based acoustic localization algorithm is proposed. In localization, estimate of target location is obtained by steepest descent search. The search algorithm adapts to measurement environments by dynamically adjusting its termination condition. With the agent architecture, target classification is accomplished by distributed support vector machine (SVM). Mobile agents are employed for feature extraction and distributed SVM learning to reduce communication load. Desirable learning performance is guaranteed by combining support vectors and convex hull vectors. Fusion algorithms are designed to merge SVM classification decisions made from various modalities. Real world experiments with MICAz sensor nodes are conducted for vehicle localization and classification. Experimental results show the proposed agent architecture remarkably facilitates WSN designs and algorithm implementation. The localization and classification algorithms also prove to be accurate and energy efficient.

  9. Adaptivity in Agent-Based Routing for Data Networks

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.; Kirshner, Sergey; Merz, Chris J.; Turner, Kagan

    2000-01-01

    Adaptivity, both of the individual agents and of the interaction structure among the agents, seems indispensable for scaling up multi-agent systems (MAS s) in noisy environments. One important consideration in designing adaptive agents is choosing their action spaces to be as amenable as possible to machine learning techniques, especially to reinforcement learning (RL) techniques. One important way to have the interaction structure connecting agents itself be adaptive is to have the intentions and/or actions of the agents be in the input spaces of the other agents, much as in Stackelberg games. We consider both kinds of adaptivity in the design of a MAS to control network packet routing. We demonstrate on the OPNET event-driven network simulator the perhaps surprising fact that simply changing the action space of the agents to be better suited to RL can result in very large improvements in their potential performance: at their best settings, our learning-amenable router agents achieve throughputs up to three and one half times better than that of the standard Bellman-Ford routing algorithm, even when the Bellman-Ford protocol traffic is maintained. We then demonstrate that much of that potential improvement can be realized by having the agents learn their settings when the agent interaction structure is itself adaptive.

  10. Multi-Agent Modeling and Simulation Approach for Design and Analysis of MER Mission Operations

    NASA Technical Reports Server (NTRS)

    Seah, Chin; Sierhuis, Maarten; Clancey, William J.

    2005-01-01

    A space mission operations system is a complex network of human organizations, information and deep-space network systems and spacecraft hardware. As in other organizations, one of the problems in mission operations is managing the relationship of the mission information systems related to how people actually work (practices). Brahms, a multi-agent modeling and simulation tool, was used to model and simulate NASA's Mars Exploration Rover (MER) mission work practice. The objective was to investigate the value of work practice modeling for mission operations design. From spring 2002 until winter 2003, a Brahms modeler participated in mission systems design sessions and operations testing for the MER mission held at Jet Propulsion Laboratory (JPL). He observed how designers interacted with the Brahms tool. This paper discussed mission system designers' reactions to the simulation output during model validation and the presentation of generated work procedures. This project spurred JPL's interest in the Brahms model, but it was never included as part of the formal mission design process. We discuss why this occurred. Subsequently, we used the MER model to develop a future mission operations concept. Team members were reluctant to use the MER model, even though it appeared to be highly relevant to their effort. We describe some of the tool issues we encountered.

  11. Multi-Agent Patrolling under Uncertainty and Threats.

    PubMed

    Chen, Shaofei; Wu, Feng; Shen, Lincheng; Chen, Jing; Ramchurn, Sarvapali D

    2015-01-01

    We investigate a multi-agent patrolling problem where information is distributed alongside threats in environments with uncertainties. Specifically, the information and threat at each location are independently modelled as multi-state Markov chains, whose states are not observed until the location is visited by an agent. While agents will obtain information at a location, they may also suffer damage from the threat at that location. Therefore, the goal of the agents is to gather as much information as possible while mitigating the damage incurred. To address this challenge, we formulate the single-agent patrolling problem as a Partially Observable Markov Decision Process (POMDP) and propose a computationally efficient algorithm to solve this model. Building upon this, to compute patrols for multiple agents, the single-agent algorithm is extended for each agent with the aim of maximising its marginal contribution to the team. We empirically evaluate our algorithm on problems of multi-agent patrolling and show that it outperforms a baseline algorithm up to 44% for 10 agents and by 21% for 15 agents in large domains.

  12. Multi-Agent Information Classification Using Dynamic Acquaintance Lists.

    ERIC Educational Resources Information Center

    Mukhopadhyay, Snehasis; Peng, Shengquan; Raje, Rajeev; Palakal, Mathew; Mostafa, Javed

    2003-01-01

    Discussion of automated information services focuses on information classification and collaborative agents, i.e. intelligent computer programs. Highlights include multi-agent systems; distributed artificial intelligence; thesauri; document representation and classification; agent modeling; acquaintances, or remote agents discovered through…

  13. A Mission Planning Approach for Precision Farming Systems Based on Multi-Objective Optimization.

    PubMed

    Zhai, Zhaoyu; Martínez Ortega, José-Fernán; Lucas Martínez, Néstor; Rodríguez-Molina, Jesús

    2018-06-02

    As the demand for food grows continuously, intelligent agriculture has drawn much attention due to its capability of producing great quantities of food efficiently. The main purpose of intelligent agriculture is to plan agricultural missions properly and use limited resources reasonably with minor human intervention. This paper proposes a Precision Farming System (PFS) as a Multi-Agent System (MAS). Components of PFS are treated as agents with different functionalities. These agents could form several coalitions to complete the complex agricultural missions cooperatively. In PFS, mission planning should consider several criteria, like expected benefit, energy consumption or equipment loss. Hence, mission planning could be treated as a Multi-objective Optimization Problem (MOP). In order to solve MOP, an improved algorithm, MP-PSOGA, is proposed, taking advantages of the Genetic Algorithms and Particle Swarm Optimization. A simulation, called precise pesticide spraying mission, is performed to verify the feasibility of the proposed approach. Simulation results illustrate that the proposed approach works properly. This approach enables the PFS to plan missions and allocate scarce resources efficiently. The theoretical analysis and simulation is a good foundation for the future study. Once the proposed approach is applied to a real scenario, it is expected to bring significant economic improvement.

  14. Genetic Algorithm Based Multi-Agent System Applied to Test Generation

    ERIC Educational Resources Information Center

    Meng, Anbo; Ye, Luqing; Roy, Daniel; Padilla, Pierre

    2007-01-01

    Automatic test generating system in distributed computing context is one of the most important links in on-line evaluation system. Although the issue has been argued long since, there is not a perfect solution to it so far. This paper proposed an innovative approach to successfully addressing such issue by the seamless integration of genetic…

  15. Technology Review of Multi-Agent Systems and Tools

    DTIC Science & Technology

    2005-06-01

    over a network, including the Internet. A web services architecture is the logical evolution of object-oriented analysis and design coupled with...the logical evolution of components geared towards the architecture, design, implementation, and deployment of e-business solutions. As in object...querying. The Web Services architecture describes the principles behind the next generation of e- business architectures, presenting a logical evolution

  16. Multi-agent cooperation rescue algorithm based on influence degree and state prediction

    NASA Astrophysics Data System (ADS)

    Zheng, Yanbin; Ma, Guangfu; Wang, Linlin; Xi, Pengxue

    2018-04-01

    Aiming at the multi-agent cooperative rescue in disaster, a multi-agent cooperative rescue algorithm based on impact degree and state prediction is proposed. Firstly, based on the influence of the information in the scene on the collaborative task, the influence degree function is used to filter the information. Secondly, using the selected information to predict the state of the system and Agent behavior. Finally, according to the result of the forecast, the cooperative behavior of Agent is guided and improved the efficiency of individual collaboration. The simulation results show that this algorithm can effectively solve the cooperative rescue problem of multi-agent and ensure the efficient completion of the task.

  17. A cognitive information processing framework for distributed sensor networks

    NASA Astrophysics Data System (ADS)

    Wang, Feiyi; Qi, Hairong

    2004-09-01

    In this paper, we present a cognitive agent framework (CAF) based on swarm intelligence and self-organization principles, and demonstrate it through collaborative processing for target classification in sensor networks. The framework involves integrated designs to provide both cognitive behavior at the organization level to conquer complexity and reactive behavior at the individual agent level to retain simplicity. The design tackles various problems in the current information processing systems, including overly complex systems, maintenance difficulties, increasing vulnerability to attack, lack of capability to tolerate faults, and inability to identify and cope with low-frequency patterns. An important and distinguishing point of the presented work from classical AI research is that the acquired intelligence does not pertain to distinct individuals but to groups. It also deviates from multi-agent systems (MAS) due to sheer quantity of extremely simple agents we are able to accommodate, to the degree that some loss of coordination messages and behavior of faulty/compromised agents will not affect the collective decision made by the group.

  18. Dynamic Task Assignment of Autonomous Distributed AGV in an Intelligent FMS Environment

    NASA Astrophysics Data System (ADS)

    Fauadi, Muhammad Hafidz Fazli Bin Md; Lin, Hao Wen; Murata, Tomohiro

    The need of implementing distributed system is growing significantly as it is proven to be effective for organization to be flexible against a highly demanding market. Nevertheless, there are still large technical gaps need to be addressed to gain significant achievement. We propose a distributed architecture to control Automated Guided Vehicle (AGV) operation based on multi-agent architecture. System architectures and agents' functions have been designed to support distributed control of AGV. Furthermore, enhanced agent communication protocol has been configured to accommodate dynamic attributes of AGV task assignment procedure. Result proved that the technique successfully provides a better solution.

  19. An approach for aerodynamic optimization of transonic fan blades

    NASA Astrophysics Data System (ADS)

    Khelghatibana, Maryam

    Aerodynamic design optimization of transonic fan blades is a highly challenging problem due to the complexity of flow field inside the fan, the conflicting design requirements and the high-dimensional design space. In order to address all these challenges, an aerodynamic design optimization method is developed in this study. This method automates the design process by integrating a geometrical parameterization method, a CFD solver and numerical optimization methods that can be applied to both single and multi-point optimization design problems. A multi-level blade parameterization is employed to modify the blade geometry. Numerical analyses are performed by solving 3D RANS equations combined with SST turbulence model. Genetic algorithms and hybrid optimization methods are applied to solve the optimization problem. In order to verify the effectiveness and feasibility of the optimization method, a singlepoint optimization problem aiming to maximize design efficiency is formulated and applied to redesign a test case. However, transonic fan blade design is inherently a multi-faceted problem that deals with several objectives such as efficiency, stall margin, and choke margin. The proposed multi-point optimization method in the current study is formulated as a bi-objective problem to maximize design and near-stall efficiencies while maintaining the required design pressure ratio. Enhancing these objectives significantly deteriorate the choke margin, specifically at high rotational speeds. Therefore, another constraint is embedded in the optimization problem in order to prevent the reduction of choke margin at high speeds. Since capturing stall inception is numerically very expensive, stall margin has not been considered as an objective in the problem statement. However, improving near-stall efficiency results in a better performance at stall condition, which could enhance the stall margin. An investigation is therefore performed on the Pareto-optimal solutions to demonstrate the relation between near-stall efficiency and stall margin. The proposed method is applied to redesign NASA rotor 67 for single and multiple operating conditions. The single-point design optimization showed +0.28 points improvement of isentropic efficiency at design point, while the design pressure ratio and mass flow are, respectively, within 0.12% and 0.11% of the reference blade. Two cases of multi-point optimization are performed: First, the proposed multi-point optimization problem is relaxed by removing the choke margin constraint in order to demonstrate the relation between near-stall efficiency and stall margin. An investigation on the Pareto-optimal solutions of this optimization shows that the stall margin has been increased with improving near-stall efficiency. The second multi-point optimization case is performed with considering all the objectives and constraints. One selected optimized design on the Pareto front presents +0.41, +0.56 and +0.9 points improvement in near-peak efficiency, near-stall efficiency and stall margin, respectively. The design pressure ratio and mass flow are, respectively, within 0.3% and 0.26% of the reference blade. Moreover the optimized design maintains the required choking margin. Detailed aerodynamic analyses are performed to investigate the effect of shape optimization on shock occurrence, secondary flows, tip leakage and shock/tip-leakage interactions in both single and multi-point optimizations.

  20. Multi-Agent Many-Objective Robust Decision Making: Supporting Cooperative Regional Water Portfolio Planning in the Eastern United States

    NASA Astrophysics Data System (ADS)

    Herman, J. D.; Zeff, H. B.; Reed, P. M.; Characklis, G. W.

    2013-12-01

    In the Eastern United States, water infrastructure and institutional frameworks have evolved in a historically water-rich environment. However, large regional droughts over the past decade combined with continuing population growth have marked a transition to a state of water scarcity, for which current planning paradigms are ill-suited. Significant opportunities exist to improve the efficiency of water infrastructure via regional coordination, namely, regional 'portfolios' of water-related assets such as reservoirs, conveyance, conservation measures, and transfer agreements. Regional coordination offers the potential to improve reliability, cost, and environmental impact in the expected future state of the world, and, with informed planning, to improve robustness to future uncertainty. In support of this challenge, this study advances a multi-agent many-objective robust decision making (multi-agent MORDM) framework that blends novel computational search and uncertainty analysis tools to discover flexible, robust regional portfolios. Our multi-agent MORDM framework is demonstrated for four water utilities in the Research Triangle region of North Carolina, USA. The utilities supply nearly two million customers and have the ability to interact with one another via transfer agreements and shared infrastructure. We show that strategies for this region which are Pareto-optimal in the expected future state of the world remain vulnerable to performance degradation under alternative scenarios of deeply uncertain hydrologic and economic factors. We then apply the Patient Rule Induction Method (PRIM) to identify which of these uncertain factors drives the individual and collective vulnerabilities for the four cooperating utilities. Our results indicate that clear multi-agent tradeoffs emerge for attaining robustness across the utilities. Furthermore, the key factor identified for improving the robustness of the region's water supply is cooperative demand reduction. This type of approach is critically important given the risks and challenges posed by rising supply development costs, limits on new infrastructure, growing water demands and the underlying uncertainties associated with climate change. The proposed framework serves as a planning template for other historically water-rich regions which must now confront the reality of impending water scarcity.

  1. Distributed Processing System for Restoration of Electric Power Distribution Network Using Two-Layered Contract Net Protocol

    NASA Astrophysics Data System (ADS)

    Kodama, Yu; Hamagami, Tomoki

    Distributed processing system for restoration of electric power distribution network using two-layered CNP is proposed. The goal of this study is to develop the restoration system which adjusts to the future power network with distributed generators. The state of the art of this study is that the two-layered CNP is applied for the distributed computing environment in practical use. The two-layered CNP has two classes of agents, named field agent and operating agent in the network. In order to avoid conflicts of tasks, operating agent controls privilege for managers to send the task announcement messages in CNP. This technique realizes the coordination between agents which work asynchronously in parallel with others. Moreover, this study implements the distributed processing system using a de-fact standard multi-agent framework, JADE(Java Agent DEvelopment framework). This study conducts the simulation experiments of power distribution network restoration and compares the proposed system with the previous system. We confirmed the results show effectiveness of the proposed system.

  2. In Vivo Microdialysis and Electroencephalographic Activity in Freely Moving Guinea Pigs Exposed to Organophosphorus Nerve Agents Sarin and VX: Analysis of Acetylcholine and Glutamate

    DTIC Science & Technology

    2011-01-01

    3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE In vivo microdialysis and electroencephalographic activity in freely moving guinea pigs 5a...microdialysis and electroencephalographic activity in freely moving guinea pigs exposed to organophosphorus nerve agents sarin and VX: analysis of...brain seizure activity . This robust double multi- variate design provides greater fidelity when comparing data while also reducing the required number

  3. Autonomous Agents and Intelligent Assistants for Exploration Operations

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.

    2000-01-01

    Human exploration of space will involve remote autonomous crew and systems in long missions. Data to earth will be delayed and limited. Earth control centers will not receive continuous real-time telemetry data, and there will be communication round trips of up to one hour. There will be reduced human monitoring on the planet and earth. When crews are present on the planet, they will be occupied with other activities, and system management will be a low priority task. Earth control centers will use multi-tasking "night shift" and on-call specialists. A new project at Johnson Space Center is developing software to support teamwork between distributed human and software agents in future interplanetary work environments. The Engineering and Mission Operations Directorates at Johnson Space Center (JSC) are combining laboratories and expertise to carry out this project, by establishing a testbed for hWl1an centered design, development and evaluation of intelligent autonomous and assistant systems. Intelligent autonomous systems for managing systems on planetary bases will commuicate their knowledge to support distributed multi-agent mixed-initiative operations. Intelligent assistant agents will respond to events by developing briefings and responses according to instructions from human agents on earth and in space.

  4. Learning in engineered multi-agent systems

    NASA Astrophysics Data System (ADS)

    Menon, Anup

    Consider the problem of maximizing the total power produced by a wind farm. Due to aerodynamic interactions between wind turbines, each turbine maximizing its individual power---as is the case in present-day wind farms---does not lead to optimal farm-level power capture. Further, there are no good models to capture the said aerodynamic interactions, rendering model based optimization techniques ineffective. Thus, model-free distributed algorithms are needed that help turbines adapt their power production on-line so as to maximize farm-level power capture. Motivated by such problems, the main focus of this dissertation is a distributed model-free optimization problem in the context of multi-agent systems. The set-up comprises of a fixed number of agents, each of which can pick an action and observe the value of its individual utility function. An individual's utility function may depend on the collective action taken by all agents. The exact functional form (or model) of the agent utility functions, however, are unknown; an agent can only measure the numeric value of its utility. The objective of the multi-agent system is to optimize the welfare function (i.e. sum of the individual utility functions). Such a collaborative task requires communications between agents and we allow for the possibility of such inter-agent communications. We also pay attention to the role played by the pattern of such information exchange on certain aspects of performance. We develop two algorithms to solve this problem. The first one, engineered Interactive Trial and Error Learning (eITEL) algorithm, is based on a line of work in the Learning in Games literature and applies when agent actions are drawn from finite sets. While in a model-free setting, we introduce a novel qualitative graph-theoretic framework to encode known directed interactions of the form "which agents' action affect which others' payoff" (interaction graph). We encode explicit inter-agent communications in a directed graph (communication graph) and, under certain conditions, prove convergence of agent joint action (under eITEL) to the welfare optimizing set. The main condition requires that the union of interaction and communication graphs be strongly connected; thus the algorithm combines an implicit form of communication (via interactions through utility functions) with explicit inter-agent communications to achieve the given collaborative goal. This work has kinship with certain evolutionary computation techniques such as Simulated Annealing; the algorithm steps are carefully designed such that it describes an ergodic Markov chain with a stationary distribution that has support over states where agent joint actions optimize the welfare function. The main analysis tool is perturbed Markov chains and results of broader interest regarding these are derived as well. The other algorithm, Collaborative Extremum Seeking (CES), uses techniques from extremum seeking control to solve the problem when agent actions are drawn from the set of real numbers. In this case, under the assumption of existence of a local minimizer for the welfare function and a connected undirected communication graph between agents, a result regarding convergence of joint action to a small neighborhood of a local optimizer of the welfare function is proved. Since extremum seeking control uses a simultaneous gradient estimation-descent scheme, gradient information available in the continuous action space formulation is exploited by the CES algorithm to yield improved convergence speeds. The effectiveness of this algorithm for the wind farm power maximization problem is evaluated via simulations. Lastly, we turn to a different question regarding role of the information exchange pattern on performance of distributed control systems by means of a case study for the vehicle platooning problem. In the vehicle platoon control problem, the objective is to design distributed control laws for individual vehicles in a platoon (or a road-train) that regulate inter-vehicle distances at a specified safe value while the entire platoon follows a leader-vehicle. While most of the literature on the problem deals with some inadequacy in control performance when the information exchange is of the nearest neighbor-type, we consider an arbitrary graph serving as information exchange pattern and derive a relationship between how a certain indicator of control performance is related to the information pattern. Such analysis helps in understanding qualitative features of the `right' information pattern for this problem.

  5. Human computer interactions in next-generation of aircraft smart navigation management systems: task analysis and architecture under an agent-oriented methodological approach.

    PubMed

    Canino-Rodríguez, José M; García-Herrero, Jesús; Besada-Portas, Juan; Ravelo-García, Antonio G; Travieso-González, Carlos; Alonso-Hernández, Jesús B

    2015-03-04

    The limited efficiency of current air traffic systems will require a next-generation of Smart Air Traffic System (SATS) that relies on current technological advances. This challenge means a transition toward a new navigation and air-traffic procedures paradigm, where pilots and air traffic controllers perform and coordinate their activities according to new roles and technological supports. The design of new Human-Computer Interactions (HCI) for performing these activities is a key element of SATS. However efforts for developing such tools need to be inspired on a parallel characterization of hypothetical air traffic scenarios compatible with current ones. This paper is focused on airborne HCI into SATS where cockpit inputs came from aircraft navigation systems, surrounding traffic situation, controllers' indications, etc. So the HCI is intended to enhance situation awareness and decision-making through pilot cockpit. This work approach considers SATS as a system distributed on a large-scale with uncertainty in a dynamic environment. Therefore, a multi-agent systems based approach is well suited for modeling such an environment. We demonstrate that current methodologies for designing multi-agent systems are a useful tool to characterize HCI. We specifically illustrate how the selected methodological approach provides enough guidelines to obtain a cockpit HCI design that complies with future SATS specifications.

  6. Human Computer Interactions in Next-Generation of Aircraft Smart Navigation Management Systems: Task Analysis and Architecture under an Agent-Oriented Methodological Approach

    PubMed Central

    Canino-Rodríguez, José M.; García-Herrero, Jesús; Besada-Portas, Juan; Ravelo-García, Antonio G.; Travieso-González, Carlos; Alonso-Hernández, Jesús B.

    2015-01-01

    The limited efficiency of current air traffic systems will require a next-generation of Smart Air Traffic System (SATS) that relies on current technological advances. This challenge means a transition toward a new navigation and air-traffic procedures paradigm, where pilots and air traffic controllers perform and coordinate their activities according to new roles and technological supports. The design of new Human-Computer Interactions (HCI) for performing these activities is a key element of SATS. However efforts for developing such tools need to be inspired on a parallel characterization of hypothetical air traffic scenarios compatible with current ones. This paper is focused on airborne HCI into SATS where cockpit inputs came from aircraft navigation systems, surrounding traffic situation, controllers’ indications, etc. So the HCI is intended to enhance situation awareness and decision-making through pilot cockpit. This work approach considers SATS as a system distributed on a large-scale with uncertainty in a dynamic environment. Therefore, a multi-agent systems based approach is well suited for modeling such an environment. We demonstrate that current methodologies for designing multi-agent systems are a useful tool to characterize HCI. We specifically illustrate how the selected methodological approach provides enough guidelines to obtain a cockpit HCI design that complies with future SATS specifications. PMID:25746092

  7. A Bayesian multi-stage cost-effectiveness design for animal studies in stroke research

    PubMed Central

    Cai, Chunyan; Ning, Jing; Huang, Xuelin

    2017-01-01

    Much progress has been made in the area of adaptive designs for clinical trials. However, little has been done regarding adaptive designs to identify optimal treatment strategies in animal studies. Motivated by an animal study of a novel strategy for treating strokes, we propose a Bayesian multi-stage cost-effectiveness design to simultaneously identify the optimal dose and determine the therapeutic treatment window for administrating the experimental agent. We consider a non-monotonic pattern for the dose-schedule-efficacy relationship and develop an adaptive shrinkage algorithm to assign more cohorts to admissible strategies. We conduct simulation studies to evaluate the performance of the proposed design by comparing it with two standard designs. These simulation studies show that the proposed design yields a significantly higher probability of selecting the optimal strategy, while it is generally more efficient and practical in terms of resource usage. PMID:27405325

  8. Magnetic Nanoparticles for Multi-Imaging and Drug Delivery

    PubMed Central

    Lee, Jae-Hyun; Kim, Ji-wook; Cheon, Jinwoo

    2013-01-01

    Various bio-medical applications of magnetic nanoparticles have been explored during the past few decades. As tools that hold great potential for advancing biological sciences, magnetic nanoparticles have been used as platform materials for enhanced magnetic resonance imaging (MRI) agents, biological separation and magnetic drug delivery systems, and magnetic hyperthermia treatment. Furthermore, approaches that integrate various imaging and bioactive moieties have been used in the design of multi-modality systems, which possess synergistically enhanced properties such as better imaging resolution and sensitivity, molecular recognition capabilities, stimulus responsive drug delivery with on-demand control, and spatio-temporally controlled cell signal activation. Below, recent studies that focus on the design and synthesis of multi-mode magnetic nanoparticles will be briefly reviewed and their potential applications in the imaging and therapy areas will be also discussed. PMID:23579479

  9. Concurrent Learning of Control in Multi agent Sequential Decision Tasks

    DTIC Science & Technology

    2018-04-17

    Concurrent Learning of Control in Multi-agent Sequential Decision Tasks The overall objective of this project was to develop multi-agent reinforcement...learning (MARL) approaches for intelligent agents to autonomously learn distributed control policies in decentral- ized partially observable...shall be subject to any oenalty for failing to comply with a collection of information if it does not display a currently valid OMB control number

  10. Modelling and multi-parametric control for delivery of anaesthetic agents.

    PubMed

    Dua, Pinky; Dua, Vivek; Pistikopoulos, Efstratios N

    2010-06-01

    This article presents model predictive controllers (MPCs) and multi-parametric model-based controllers for delivery of anaesthetic agents. The MPC can take into account constraints on drug delivery rates and state of the patient but requires solving an optimization problem at regular time intervals. The multi-parametric controller has all the advantages of the MPC and does not require repetitive solution of optimization problem for its implementation. This is achieved by obtaining the optimal drug delivery rates as a set of explicit functions of the state of the patient. The derivation of the controllers relies on using detailed models of the system. A compartmental model for the delivery of three drugs for anaesthesia is developed. The key feature of this model is that mean arterial pressure, cardiac output and unconsciousness of the patient can be simultaneously regulated. This is achieved by using three drugs: dopamine (DP), sodium nitroprusside (SNP) and isoflurane. A number of dynamic simulation experiments are carried out for the validation of the model. The model is then used for the design of model predictive and multi-parametric controllers, and the performance of the controllers is analyzed.

  11. Multi-Wavelength Photomagnetic Imaging for Oral Cancer

    NASA Astrophysics Data System (ADS)

    Marks, Michael

    In this study, a multi-wavelength Photomagnetic Imaging (PMI) system is developed and evaluated with experimental studies.. PMI measures temperature increases in samples illuminated by near-infrared light sources using magnetic resonance thermometry. A multiphysics solver combining light and heat transfer models the spatiotemporal distribution of the temperature change. The PMI system develop in this work uses three lasers of varying wavelength (785 nm, 808 nm, 860 nm) to heat the sample. By using multiple wavelengths, we enable the PMI system to quantify the relative concentrations of optical contrast in turbid media and monitor their distribution, at a higher resolution than conventional diffuse optical imaging. The data collected from agarose phantoms with multiple embedded contrast agents designed to simulate the optical properties of oxy- and deoxy-hemoglobin is presented. The reconstructed images demonstrate that multi-wavelength PMI can resolve this complex inclusion structure with high resolution and recover the concentration of each contrast agent with high quantitative accuracy. The modified multi-wavelength PMI system operates under the maximum skin exposure limits defined by the American National Standards Institute, to enable future clinical applications.

  12. L1 Adaptive Control Augmentation System with Application to the X-29 Lateral/Directional Dynamics: A Multi-Input Multi-Output Approach

    NASA Technical Reports Server (NTRS)

    Griffin, Brian Joseph; Burken, John J.; Xargay, Enric

    2010-01-01

    This paper presents an L(sub 1) adaptive control augmentation system design for multi-input multi-output nonlinear systems in the presence of unmatched uncertainties which may exhibit significant cross-coupling effects. A piecewise continuous adaptive law is adopted and extended for applicability to multi-input multi-output systems that explicitly compensates for dynamic cross-coupling. In addition, explicit use of high-fidelity actuator models are added to the L1 architecture to reduce uncertainties in the system. The L(sub 1) multi-input multi-output adaptive control architecture is applied to the X-29 lateral/directional dynamics and results are evaluated against a similar single-input single-output design approach.

  13. Modeling Emergence in Neuroprotective Regulatory Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanfilippo, Antonio P.; Haack, Jereme N.; McDermott, Jason E.

    2013-01-05

    The use of predictive modeling in the analysis of gene expression data can greatly accelerate the pace of scientific discovery in biomedical research by enabling in silico experimentation to test disease triggers and potential drug therapies. Techniques that focus on modeling emergence, such as agent-based modeling and multi-agent simulations, are of particular interest as they support the discovery of pathways that may have never been observed in the past. Thus far, these techniques have been primarily applied at the multi-cellular level, or have focused on signaling and metabolic networks. We present an approach where emergence modeling is extended to regulatorymore » networks and demonstrate its application to the discovery of neuroprotective pathways. An initial evaluation of the approach indicates that emergence modeling provides novel insights for the analysis of regulatory networks that can advance the discovery of acute treatments for stroke and other diseases.« less

  14. Computational Model for Ethnographically Informed Systems Design

    NASA Astrophysics Data System (ADS)

    Iqbal, Rahat; James, Anne; Shah, Nazaraf; Terken, Jacuqes

    This paper presents a computational model for ethnographically informed systems design that can support complex and distributed cooperative activities. This model is based on an ethnographic framework consisting of three important dimensions (e.g., distributed coordination, awareness of work and plans and procedure), and the BDI (Belief, Desire and Intention) model of intelligent agents. The ethnographic framework is used to conduct ethnographic analysis and to organise ethnographically driven information into three dimensions, whereas the BDI model allows such information to be mapped upon the underlying concepts of multi-agent systems. The advantage of this model is that it is built upon an adaptation of existing mature and well-understood techniques. By the use of this model, we also address the cognitive aspects of systems design.

  15. Fly ash-TiO2 nanocomposite material for multi-pollutants wastewater treatment.

    PubMed

    Visa, Maria; Andronic, Luminita; Duta, Anca

    2015-03-01

    This paper reports on the synthesis, characterization and adsorption properties of a novel nano-composite obtained using the hydrothermal method applied to a fly ash-TiO2 slurry and hexadecyltrimethyl-ammonium bromide, as surface controlling agent. The new adsorbent was investigated in terms of crystallinity (XRD), surface properties (AFM, SEM, and porosity and BET surface) and surface chemistry (EDX, FTIR). The nanocomposite's properties were sequentially tested in adsorption and photocatalysis processes applied to multi-pollutant synthetic wastewaters loaded with copper cations and two industrial dyes: the acid dye Bemacid Blau and the reactive dye Bemacid Rot; the nano-composite substrate allowed reaching high removal efficiencies, above 90%, both in adsorption and in photodegradation experiments, in optimised conditions. Copyright © 2014. Published by Elsevier Ltd.

  16. Organic solar cells with graded absorber layers processed from nanoparticle dispersions.

    PubMed

    Gärtner, Stefan; Reich, Stefan; Bruns, Michael; Czolk, Jens; Colsmann, Alexander

    2016-03-28

    The fabrication of organic solar cells with advanced multi-layer architectures from solution is often limited by the choice of solvents since most organic semiconductors dissolve in the same aromatic agents. In this work, we investigate multi-pass deposition of organic semiconductors from eco-friendly ethanol dispersion. Once applied, the nanoparticles are insoluble in the deposition agent, allowing for the application of further nanoparticulate layers and hence for building poly(3-hexylthiophene-2,5-diyl):indene-C60 bisadduct absorber layers with vertically graded polymer and conversely graded fullerene concentration. Upon thermal annealing, we observe some degrees of polymer/fullerene interdiffusion by means of X-ray photoelectron spectroscopy and Kelvin probe force microscopy. Replacing the common bulk-heterojunction by such a graded photo-active layer yields an enhanced fill factor of the solar cell due to an improved charge carrier extraction, and consequently an overall power conversion efficiency beyond 4%. Wet processing of such advanced device architectures paves the way for a versatile, eco-friendly and industrially feasible future fabrication of organic solar cells with advanced multi-layer architectures.

  17. Multi-functional liposomes showing radiofrequency-triggered release and magnetic resonance imaging for tumor multi-mechanism therapy.

    PubMed

    Du, Bin; Han, Shuping; Li, Hongyan; Zhao, Feifei; Su, Xiangjie; Cao, Xiaohui; Zhang, Zhenzhong

    2015-03-12

    Recently, nanoplatforms with multiple functions, such as tumor-targeting drug carriers, MRI, optical imaging, thermal therapy etc., have become popular in the field of cancer research. The present study reports a novel multi-functional liposome for cancer theranostics. A dual targeted drug delivery with radiofrequency-triggered drug release and imaging based on the magnetic field influence was used advantageously for tumor multi-mechanism therapy. In this system, the surface of fullerene (C60) was decorated with iron oxide nanoparticles, and PEGylation formed a hybrid nanosystem (C60-Fe3O4-PEG2000). Thermosensitive liposomes (dipalmitoylphosphatidylcholine, DPPC) with DSPE-PEG2000-folate wrapped up the hybrid nanosystem and docetaxel (DTX), which were designed to combine features of biological and physical (magnetic) drug targeting for fullerene radiofrequency-triggered drug release. The magnetic liposomes not only served as powerful tumor diagnostic magnetic resonance imaging (MRI) contrast agents, but also as powerful agents for photothermal ablation of tumors. Furthermore, a remarkable thermal therapy combined chemotherapy multi-functional liposome nanoplatform converted radiofrequency energy into thermal energy to release drugs from thermosensitive liposomes, which was also observed during both in vitro and in vivo treatment. The multi-functional liposomes also could selectively kill cancer cells in highly localized regions via their excellent active tumor targeting and magnetic targeted abilities.

  18. Effects of etching time on enamel bond strengths.

    PubMed

    Triolo, P T; Swift, E J; Mudgil, A; Levine, A

    1993-12-01

    This study evaluated the effects of etching time on bond strengths of composite to enamel. Proximal surfaces of extracted molars were etched with either a conventional etchant (35% phosphoric acid) or one of two dentin/enamel conditioners, 10% maleic acid (Scotchbond Multi-Purpose Etchant), or a solution of oxalic acid, aluminum nitrate, and glycine (Gluma 1 & 2 Conditioner). Each agent was applied for 15, 30, or 60 seconds. Specimens etched with 35% phosphoric acid had the highest mean bond strengths at each etching time. At the manufacturer's recommended application times, the other two agents gave significantly lower shear bond strengths than phosphoric acid.

  19. A Multi-Scale, Multi-Physics Optimization Framework for Additively Manufactured Structural Components

    NASA Astrophysics Data System (ADS)

    El-Wardany, Tahany; Lynch, Mathew; Gu, Wenjiong; Hsu, Arthur; Klecka, Michael; Nardi, Aaron; Viens, Daniel

    This paper proposes an optimization framework enabling the integration of multi-scale / multi-physics simulation codes to perform structural optimization design for additively manufactured components. Cold spray was selected as the additive manufacturing (AM) process and its constraints were identified and included in the optimization scheme. The developed framework first utilizes topology optimization to maximize stiffness for conceptual design. The subsequent step applies shape optimization to refine the design for stress-life fatigue. The component weight was reduced by 20% while stresses were reduced by 75% and the rigidity was improved by 37%. The framework and analysis codes were implemented using Altair software as well as an in-house loading code. The optimized design was subsequently produced by the cold spray process.

  20. Dynamic Educational e-Content Selection Using Multiple Criteria in Web-Based Personalized Learning Environments.

    ERIC Educational Resources Information Center

    Manouselis, Nikos; Sampson, Demetrios

    This paper focuses on the way a multi-criteria decision making methodology is applied in the case of agent-based selection of offered learning objects. The problem of selection is modeled as a decision making one, with the decision variables being the learner model and the learning objects' educational description. In this way, selection of…

  1. Almost human: Anthropomorphism increases trust resilience in cognitive agents.

    PubMed

    de Visser, Ewart J; Monfort, Samuel S; McKendrick, Ryan; Smith, Melissa A B; McKnight, Patrick E; Krueger, Frank; Parasuraman, Raja

    2016-09-01

    We interact daily with computers that appear and behave like humans. Some researchers propose that people apply the same social norms to computers as they do to humans, suggesting that social psychological knowledge can be applied to our interactions with computers. In contrast, theories of human–automation interaction postulate that humans respond to machines in unique and specific ways. We believe that anthropomorphism—the degree to which an agent exhibits human characteristics—is the critical variable that may resolve this apparent contradiction across the formation, violation, and repair stages of trust. Three experiments were designed to examine these opposing viewpoints by varying the appearance and behavior of automated agents. Participants received advice that deteriorated gradually in reliability from a computer, avatar, or human agent. Our results showed (a) that anthropomorphic agents were associated with greater trust resilience , a higher resistance to breakdowns in trust; (b) that these effects were magnified by greater uncertainty; and c) that incorporating human-like trust repair behavior largely erased differences between the agents. Automation anthropomorphism is therefore a critical variable that should be carefully incorporated into any general theory of human–agent trust as well as novel automation design. PsycINFO Database Record (c) 2016 APA, all rights reserved

  2. Study on the E-commerce platform based on the agent

    NASA Astrophysics Data System (ADS)

    Fu, Ruixue; Qin, Lishuan; Gao, Yinmin

    2011-10-01

    To solve problem of dynamic integration in e-commerce, the Multi-Agent architecture of electronic commerce platform system based on Agent and Ontology has been introduced, which includes three major types of agent, Ontology and rule collection. In this architecture, service agent and rule are used to realize the business process reengineering, the reuse of software component, and agility of the electronic commerce platform. To illustrate the architecture, a simulation work has been done and the results imply that the architecture provides a very efficient method to design and implement the flexible, distributed, open and intelligent electronic commerce platform system to solve problem of dynamic integration in ecommerce. The objective of this paper is to illustrate the architecture of electronic commerce platform system, and the approach how Agent and Ontology support the electronic commerce platform system.

  3. Modelling the B2C Marketplace: Evaluation of a Reputation Metric for e-Commerce

    NASA Astrophysics Data System (ADS)

    Gutowska, Anna; Sloane, Andrew

    This paper evaluates recently developed novel and comprehensive reputation metric designed for the distributed multi-agent reputation system for the Business-to-Consumer (B2C) E-commerce applications. To do that an agent-based simulation framework was implemented which models different types of behaviours in the marketplace. The trustworthiness of different types of providers is investigated to establish whether the simulation models behaviour of B2C e-Commerce systems as they are expected to behave in real life.

  4. A multi-stage drop-the-losers design for multi-arm clinical trials.

    PubMed

    Wason, James; Stallard, Nigel; Bowden, Jack; Jennison, Christopher

    2017-02-01

    Multi-arm multi-stage trials can improve the efficiency of the drug development process when multiple new treatments are available for testing. A group-sequential approach can be used in order to design multi-arm multi-stage trials, using an extension to Dunnett's multiple-testing procedure. The actual sample size used in such a trial is a random variable that has high variability. This can cause problems when applying for funding as the cost will also be generally highly variable. This motivates a type of design that provides the efficiency advantages of a group-sequential multi-arm multi-stage design, but has a fixed sample size. One such design is the two-stage drop-the-losers design, in which a number of experimental treatments, and a control treatment, are assessed at a prescheduled interim analysis. The best-performing experimental treatment and the control treatment then continue to a second stage. In this paper, we discuss extending this design to have more than two stages, which is shown to considerably reduce the sample size required. We also compare the resulting sample size requirements to the sample size distribution of analogous group-sequential multi-arm multi-stage designs. The sample size required for a multi-stage drop-the-losers design is usually higher than, but close to, the median sample size of a group-sequential multi-arm multi-stage trial. In many practical scenarios, the disadvantage of a slight loss in average efficiency would be overcome by the huge advantage of a fixed sample size. We assess the impact of delay between recruitment and assessment as well as unknown variance on the drop-the-losers designs.

  5. Learning Natural Selection in 4th Grade with Multi-Agent-Based Computational Models

    ERIC Educational Resources Information Center

    Dickes, Amanda Catherine; Sengupta, Pratim

    2013-01-01

    In this paper, we investigate how elementary school students develop multi-level explanations of population dynamics in a simple predator-prey ecosystem, through scaffolded interactions with a multi-agent-based computational model (MABM). The term "agent" in an MABM indicates individual computational objects or actors (e.g., cars), and these…

  6. Collective Machine Learning: Team Learning and Classification in Multi-Agent Systems

    ERIC Educational Resources Information Center

    Gifford, Christopher M.

    2009-01-01

    This dissertation focuses on the collaboration of multiple heterogeneous, intelligent agents (hardware or software) which collaborate to learn a task and are capable of sharing knowledge. The concept of collaborative learning in multi-agent and multi-robot systems is largely under studied, and represents an area where further research is needed to…

  7. A hybrid fuzzy logic/constraint satisfaction problem approach to automatic decision making in simulation game models.

    PubMed

    Braathen, Sverre; Sendstad, Ole Jakob

    2004-08-01

    Possible techniques for representing automatic decision-making behavior approximating human experts in complex simulation model experiments are of interest. Here, fuzzy logic (FL) and constraint satisfaction problem (CSP) methods are applied in a hybrid design of automatic decision making in simulation game models. The decision processes of a military headquarters are used as a model for the FL/CSP decision agents choice of variables and rulebases. The hybrid decision agent design is applied in two different types of simulation games to test the general applicability of the design. The first application is a two-sided zero-sum sequential resource allocation game with imperfect information interpreted as an air campaign game. The second example is a network flow stochastic board game designed to capture important aspects of land manoeuvre operations. The proposed design is shown to perform well also in this complex game with a very large (billionsize) action set. Training of the automatic FL/CSP decision agents against selected performance measures is also shown and results are presented together with directions for future research.

  8. Nanoparticle imaging probes for molecular imaging with computed tomography and application to cancer imaging

    NASA Astrophysics Data System (ADS)

    Roeder, Ryan K.; Curtis, Tyler E.; Nallathamby, Prakash D.; Irimata, Lisa E.; McGinnity, Tracie L.; Cole, Lisa E.; Vargo-Gogola, Tracy; Cowden Dahl, Karen D.

    2017-03-01

    Precision imaging is needed to realize precision medicine in cancer detection and treatment. Molecular imaging offers the ability to target and identify tumors, associated abnormalities, and specific cell populations with overexpressed receptors. Nuclear imaging and radionuclide probes provide high sensitivity but subject the patient to a high radiation dose and provide limited spatiotemporal information, requiring combined computed tomography (CT) for anatomic imaging. Therefore, nanoparticle contrast agents have been designed to enable molecular imaging and improve detection in CT alone. Core-shell nanoparticles provide a powerful platform for designing tailored imaging probes. The composition of the core is chosen for enabling strong X-ray contrast, multi-agent imaging with photon-counting spectral CT, and multimodal imaging. A silica shell is used for protective, biocompatible encapsulation of the core composition, volume-loading fluorophores or radionuclides for multimodal imaging, and facile surface functionalization with antibodies or small molecules for targeted delivery. Multi-agent (k-edge) imaging and quantitative molecular imaging with spectral CT was demonstrated using current clinical agents (iodine and BaSO4) and a proposed spectral library of contrast agents (Gd2O3, HfO2, and Au). Bisphosphonate-functionalized Au nanoparticles were demonstrated to enhance sensitivity and specificity for the detection of breast microcalcifications by conventional radiography and CT in both normal and dense mammary tissue using murine models. Moreover, photon-counting spectral CT enabled quantitative material decomposition of the Au and calcium signals. Immunoconjugated Au@SiO2 nanoparticles enabled highly-specific targeting of CD133+ ovarian cancer stem cells for contrast-enhanced detection in model tumors.

  9. Faithful teleportation of multi-particle states involving multi spatially remote agents via probabilistic channels

    NASA Astrophysics Data System (ADS)

    Jiang, Min; Li, Hui; Zhang, Zeng-ke; Zeng, Jia

    2011-02-01

    We present an approach to faithfully teleport an unknown quantum state of entangled particles in a multi-particle system involving multi spatially remote agents via probabilistic channels. In our scheme, the integrity of an entangled multi-particle state can be maintained even when the construction of a faithful channel fails. Furthermore, in a quantum teleportation network, there are generally multi spatially remote agents which play the role of relay nodes between a sender and a distant receiver. Hence, we propose two schemes for directly and indirectly constructing a faithful channel between the sender and the distant receiver with the assistance of relay agents, respectively. Our results show that the required auxiliary particle resources, local operations and classical communications are considerably reduced for the present purpose.

  10. Multi-Agent Methods for the Configuration of Random Nanocomputers

    NASA Technical Reports Server (NTRS)

    Lawson, John W.

    2004-01-01

    As computational devices continue to shrink, the cost of manufacturing such devices is expected to grow exponentially. One alternative to the costly, detailed design and assembly of conventional computers is to place the nano-electronic components randomly on a chip. The price for such a trivial assembly process is that the resulting chip would not be programmable by conventional means. In this work, we show that such random nanocomputers can be adaptively programmed using multi-agent methods. This is accomplished through the optimization of an associated high dimensional error function. By representing each of the independent variables as a reinforcement learning agent, we are able to achieve convergence must faster than with other methods, including simulated annealing. Standard combinational logic circuits such as adders and multipliers are implemented in a straightforward manner. In addition, we show that the intrinsic flexibility of these adaptive methods allows the random computers to be reconfigured easily, making them reusable. Recovery from faults is also demonstrated.

  11. A Multi-Agent System for Intelligent Online Education.

    ERIC Educational Resources Information Center

    O'Riordan, Colm; Griffith, Josephine

    1999-01-01

    Describes the system architecture of an intelligent Web-based education system that includes user modeling agents, information filtering agents for automatic information gathering, and the multi-agent interaction. Discusses information management; user interaction; support for collaborative peer-peer learning; implementation; testing; and future…

  12. Modeling the Dynamics of Task Allocation and Specialization in Honeybee Societies

    NASA Astrophysics Data System (ADS)

    Hoogendoorn, Mark; Schut, Martijn C.; Treur, Jan

    The concept of organization has been studied in sciences such as social science and economics, but recently also in artificial intelligence [Furtado 2005, Giorgini 2004, and McCallum 2005]. With the desire to analyze and design more complex systems consisting of larger numbers of agents (e.g., in nature, society, or software), the need arises for a concept of higher abstraction than the concept agent. To this end, organizational modeling is becoming a practiced stage in the analysis and design of multi-agent systems, hereby taking into consideration the environment of the organization. An environment can have a high degree of variability which might require organizations to adapt to the environment's dynamics, to ensure a continuous proper functioning of the organization. Hence, such change processes are a crucial function of the organization and should be part of the organizational model.

  13. Consensus pursuit of heterogeneous multi-agent systems under a directed acyclic graph

    NASA Astrophysics Data System (ADS)

    Yan, Jing; Guan, Xin-Ping; Luo, Xiao-Yuan

    2011-04-01

    This paper is concerned with the cooperative target pursuit problem by multiple agents based on directed acyclic graph. The target appears at a random location and moves only when sensed by the agents, and agents will pursue the target once they detect its existence. Since the ability of each agent may be different, we consider the heterogeneous multi-agent systems. According to the topology of the multi-agent systems, a novel consensus-based control law is proposed, where the target and agents are modeled as a leader and followers, respectively. Based on Mason's rule and signal flow graph analysis, the convergence conditions are provided to show that the agents can catch the target in a finite time. Finally, simulation studies are provided to verify the effectiveness of the proposed approach.

  14. Designing across Ages: Multi-Agent-Based Models and Learning Electricity

    ERIC Educational Resources Information Center

    Sengupta, Pratim

    2009-01-01

    Electricity is regarded as one of the most challenging topics for students at all levels--middle school--college (Cohen, Eylon, & Ganiel, 1983; Belcher & Olbert, 2003; Eylon & Ganiel, 1990; Steinberg et al., 1985). Several researchers have suggested that naive misconceptions about electricity stem from a deep incommensurability (Slotta & Chi,…

  15. The Multi-Agent Tactical Sentry: Designing and Delivering Robots to the CF

    DTIC Science & Technology

    2008-08-01

    believed that there is no substitute for having the man in the loop during military operations. After the World Trade Center and Tokyo subway attacks...and vibration isolation for the more sensitive components. Additional space was left to account for possible future changes to the primary sensors

  16. Multi-Agent Framework for Virtual Learning Spaces.

    ERIC Educational Resources Information Center

    Sheremetov, Leonid; Nunez, Gustavo

    1999-01-01

    Discussion of computer-supported collaborative learning, distributed artificial intelligence, and intelligent tutoring systems focuses on the concept of agents, and describes a virtual learning environment that has a multi-agent system. Describes a model of interactions in collaborative learning and discusses agents for Web-based virtual…

  17. A variable-gain output feedback control design approach

    NASA Technical Reports Server (NTRS)

    Haylo, Nesim

    1989-01-01

    A multi-model design technique to find a variable-gain control law defined over the whole operating range is proposed. The design is formulated as an optimal control problem which minimizes a cost function weighing the performance at many operating points. The solution is obtained by embedding into the Multi-Configuration Control (MCC) problem, a multi-model robust control design technique. In contrast to conventional gain scheduling which uses a curve fit of single model designs, the optimal variable-gain control law stabilizes the plant at every operating point included in the design. An iterative algorithm to compute the optimal control gains is presented. The methodology has been successfully applied to reconfigurable aircraft flight control and to nonlinear flight control systems.

  18. Collaborative simulation method with spatiotemporal synchronization process control

    NASA Astrophysics Data System (ADS)

    Zou, Yisheng; Ding, Guofu; Zhang, Weihua; Zhang, Jian; Qin, Shengfeng; Tan, John Kian

    2016-10-01

    When designing a complex mechatronics system, such as high speed trains, it is relatively difficult to effectively simulate the entire system's dynamic behaviors because it involves multi-disciplinary subsystems. Currently,a most practical approach for multi-disciplinary simulation is interface based coupling simulation method, but it faces a twofold challenge: spatial and time unsynchronizations among multi-directional coupling simulation of subsystems. A new collaborative simulation method with spatiotemporal synchronization process control is proposed for coupling simulating a given complex mechatronics system across multiple subsystems on different platforms. The method consists of 1) a coupler-based coupling mechanisms to define the interfacing and interaction mechanisms among subsystems, and 2) a simulation process control algorithm to realize the coupling simulation in a spatiotemporal synchronized manner. The test results from a case study show that the proposed method 1) can certainly be used to simulate the sub-systems interactions under different simulation conditions in an engineering system, and 2) effectively supports multi-directional coupling simulation among multi-disciplinary subsystems. This method has been successfully applied in China high speed train design and development processes, demonstrating that it can be applied in a wide range of engineering systems design and simulation with improved efficiency and effectiveness.

  19. Predicting the impact of combined therapies on myeloma cell growth using a hybrid multi-scale agent-based model.

    PubMed

    Ji, Zhiwei; Su, Jing; Wu, Dan; Peng, Huiming; Zhao, Weiling; Nlong Zhao, Brian; Zhou, Xiaobo

    2017-01-31

    Multiple myeloma is a malignant still incurable plasma cell disorder. This is due to refractory disease relapse, immune impairment, and development of multi-drug resistance. The growth of malignant plasma cells is dependent on the bone marrow (BM) microenvironment and evasion of the host's anti-tumor immune response. Hence, we hypothesized that targeting tumor-stromal cell interaction and endogenous immune system in BM will potentially improve the response of multiple myeloma (MM). Therefore, we proposed a computational simulation of the myeloma development in the complicated microenvironment which includes immune cell components and bone marrow stromal cells and predicted the effects of combined treatment with multi-drugs on myeloma cell growth. We constructed a hybrid multi-scale agent-based model (HABM) that combines an ODE system and Agent-based model (ABM). The ODEs was used for modeling the dynamic changes of intracellular signal transductions and ABM for modeling the cell-cell interactions between stromal cells, tumor, and immune components in the BM. This model simulated myeloma growth in the bone marrow microenvironment and revealed the important role of immune system in this process. The predicted outcomes were consistent with the experimental observations from previous studies. Moreover, we applied this model to predict the treatment effects of three key therapeutic drugs used for MM, and found that the combination of these three drugs potentially suppress the growth of myeloma cells and reactivate the immune response. In summary, the proposed model may serve as a novel computational platform for simulating the formation of MM and evaluating the treatment response of MM to multiple drugs.

  20. Massive Multi-Agent Systems Control

    NASA Technical Reports Server (NTRS)

    Campagne, Jean-Charles; Gardon, Alain; Collomb, Etienne; Nishida, Toyoaki

    2004-01-01

    In order to build massive multi-agent systems, considered as complex and dynamic systems, one needs a method to analyze and control the system. We suggest an approach using morphology to represent and control the state of large organizations composed of a great number of light software agents. Morphology is understood as representing the state of the multi-agent system as shapes in an abstract geometrical space, this notion is close to the notion of phase space in physics.

  1. Designing a Successful Bidding Strategy Using Fuzzy Sets and Agent Attitudes

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Goyal, Madhu Lata

    To be successful in a multi-attribute auction, agents must be capable of adapting to continuously changing bidding price. This chapter presents a novel fuzzy attitude-based bidding strategy (FA-Bid), which employs dual assessment technique, i.e., assessment of multiple attributes of the goods as well as assessment of agents' attitude (eagerness) to procure an item in automated auction. The assessment of attributes adapts the fuzzy sets technique to handle uncertainty of the bidding process as well use heuristic rules to determine the attitude of bidding agents in simulated auctions to procure goods. The overall assessment is used to determine a price range based on current bid, which finally selects the best one as the new bid.

  2. Use of caries-preventive agents in children: findings from the dental practice-based research network.

    PubMed

    Riley, J L; Richman, Joshua S; Rindal, D Brad; Fellows, Jeffrey L; Qvist, Vibeke; Gilbert, Gregg H; Gordan, Valeria V

    2010-01-01

    Scientific evidence supports the application of caries-preventive agents in children and adolescents, and this knowledge must be applied to the practice of dentistry. There are few multi-region data that allow for comparisons of practice patterns between types of dental practices and geographical regions. The objective of the present study was to characterise the use of specific caries-preventive agents for paediatric patients in a large multi-region sample of practising clinicians. The present study surveyed clinicians from the Dental Practice-based Research Network who perform restorative dentistry in their practices. The survey consisted of a questionnaire that presented a range of questions about caries risk assessment and the use of preventive techniques in children aged 6 to 18 years. Dental sealants (69%) or in-office fluoride (82%) were the most commonly used caries-preventive agents of the caries preventive regimens. The recommendation of at-home caries-preventive agents ranged from 36% to 7%,with the most commonly used agent being non-prescription fluoride rinse. Clinicians who practised in a large group practice model and clinicians who come from the Scandinavian region use caries risk assessment more frequently compared to clinicians who come from regions that had, predominantly, clinicians in private practice. Whether or not clinicians used caries risk assessment with their paediatric patients was poorly correlated with the likelihood of actually using caries-preventive treatments on patients. Although clinicians reported the use of some form of in-office caries-preventive agent, there was considerable variability across practices. These differences could represent a lack of consensus across practising clinicians about the benefits of caries-preventive agents, or a function of differing financial incentives, or patient pools with differing levels of overall caries risk.

  3. Rational drug design for anti-cancer chemotherapy: multi-target QSAR models for the in silico discovery of anti-colorectal cancer agents.

    PubMed

    Speck-Planche, Alejandro; Kleandrova, Valeria V; Luan, Feng; Cordeiro, M Natália D S

    2012-08-01

    The discovery of new and more potent anti-cancer agents constitutes one of the most active fields of research in chemotherapy. Colorectal cancer (CRC) is one of the most studied cancers because of its high prevalence and number of deaths. In the current pharmaceutical design of more efficient anti-CRC drugs, the use of methodologies based on Chemoinformatics has played a decisive role, including Quantitative-Structure-Activity Relationship (QSAR) techniques. However, until now, there is no methodology able to predict anti-CRC activity of compounds against more than one CRC cell line, which should constitute the principal goal. In an attempt to overcome this problem we develop here the first multi-target (mt) approach for the virtual screening and rational in silico discovery of anti-CRC agents against ten cell lines. Here, two mt-QSAR classification models were constructed using a large and heterogeneous database of compounds. The first model was based on linear discriminant analysis (mt-QSAR-LDA) employing fragment-based descriptors while the second model was obtained using artificial neural networks (mt-QSAR-ANN) with global 2D descriptors. Both models correctly classified more than 90% of active and inactive compounds in training and prediction sets. Some fragments were extracted from the molecules and their contributions to anti-CRC activity were calculated using mt-QSAR-LDA model. Several fragments were identified as potential substructural features responsible for the anti-CRC activity and new molecules designed from those fragments with positive contributions were suggested and correctly predicted by the two models as possible potent and versatile anti-CRC agents. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Kinetic exchange models: From molecular physics to social science

    NASA Astrophysics Data System (ADS)

    Patriarca, Marco; Chakraborti, Anirban

    2013-08-01

    We discuss several multi-agent models that have their origin in the kinetic exchange theory of statistical mechanics and have been recently applied to a variety of problems in the social sciences. This class of models can be easily adapted for simulations in areas other than physics, such as the modeling of income and wealth distributions in economics and opinion dynamics in sociology.

  5. 75 FR 23223 - Multi-Agency Informational Meeting Concerning Compliance With the Federal Select Agent Program...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-03

    ...] Multi-Agency Informational Meeting Concerning Compliance With the Federal Select Agent Program; Public... Select Agent Program established under the Public Health Security and Bioterrorism Preparedness and... Roberson, Veterinary Permit Examiner, APHIS Select Agent Program, VS, ASAP, APHIS, 4700 River Road Unit 2...

  6. 76 FR 14896 - Multi-Agency Informational Meeting Concerning Compliance With the Federal Select Agent Program...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-18

    ...] Multi-Agency Informational Meeting Concerning Compliance With the Federal Select Agent Program; Public... specific regulatory guidance related to the Federal Select Agent Program established under the Public.... Sarah Kwiatkowski, Veterinary Program Assistant, APHIS Select Agent Program, APHIS, 4700 River Road Unit...

  7. 76 FR 17617 - Multi-Agency Informational Meeting Concerning Compliance With the Federal Select Agent Program...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-30

    ...] Multi-Agency Informational Meeting Concerning Compliance With the Federal Select Agent Program; Public... specific regulatory guidance related to the Federal Select Agent Program established under the Public.... Sarah Kwiatkowski, Veterinary Program Assistant, APHIS Select Agent Program, APHIS, 4700 River Road Unit...

  8. A Distributed Multi-Agent System for Collaborative Information Management and Learning

    NASA Technical Reports Server (NTRS)

    Chen, James R.; Wolfe, Shawn R.; Wragg, Stephen D.; Koga, Dennis (Technical Monitor)

    2000-01-01

    In this paper, we present DIAMS, a system of distributed, collaborative agents to help users access, manage, share and exchange information. A DIAMS personal agent helps its owner find information most relevant to current needs. It provides tools and utilities for users to manage their information repositories with dynamic organization and virtual views. Flexible hierarchical display is integrated with indexed query search-to support effective information access. Automatic indexing methods are employed to support user queries and communication between agents. Contents of a repository are kept in object-oriented storage to facilitate information sharing. Collaboration between users is aided by easy sharing utilities as well as automated information exchange. Matchmaker agents are designed to establish connections between users with similar interests and expertise. DIAMS agents provide needed services for users to share and learn information from one another on the World Wide Web.

  9. Research and Implementation of Key Technologies in Multi-Agent System to Support Distributed Workflow

    NASA Astrophysics Data System (ADS)

    Pan, Tianheng

    2018-01-01

    In recent years, the combination of workflow management system and Multi-agent technology is a hot research field. The problem of lack of flexibility in workflow management system can be improved by introducing multi-agent collaborative management. The workflow management system adopts distributed structure. It solves the problem that the traditional centralized workflow structure is fragile. In this paper, the agent of Distributed workflow management system is divided according to its function. The execution process of each type of agent is analyzed. The key technologies such as process execution and resource management are analyzed.

  10. ‘Multi-Epitope-Targeted’ Immune-Specific Therapy for a Multiple Sclerosis-Like Disease via Engineered Multi-Epitope Protein Is Superior to Peptides

    PubMed Central

    Zilkha-Falb, Rina; Yosef-Hemo, Reut; Cohen, Lydia; Ben-Nun, Avraham

    2011-01-01

    Antigen-induced peripheral tolerance is potentially one of the most efficient and specific therapeutic approaches for autoimmune diseases. Although highly effective in animal models, antigen-based strategies have not yet been translated into practicable human therapy, and several clinical trials using a single antigen or peptidic-epitope in multiple sclerosis (MS) yielded disappointing results. In these clinical trials, however, the apparent complexity and dynamics of the pathogenic autoimmunity associated with MS, which result from the multiplicity of potential target antigens and “epitope spread”, have not been sufficiently considered. Thus, targeting pathogenic T-cells reactive against a single antigen/epitope is unlikely to be sufficient; to be effective, immunospecific therapy to MS should logically neutralize concomitantly T-cells reactive against as many major target antigens/epitopes as possible. We investigated such “multi-epitope-targeting” approach in murine experimental autoimmune encephalomyelitis (EAE) associated with a single (“classical”) or multiple (“complex”) anti-myelin autoreactivities, using cocktail of different encephalitogenic peptides vis-a-vis artificial multi-epitope-protein (designated Y-MSPc) encompassing rationally selected MS-relevant epitopes of five major myelin antigens, as “multi-epitope-targeting” agents. Y-MSPc was superior to peptide(s) in concomitantly downregulating pathogenic T-cells reactive against multiple myelin antigens/epitopes, via inducing more effective, longer lasting peripheral regulatory mechanisms (cytokine shift, anergy, and Foxp3+ CTLA4+ regulatory T-cells). Y-MSPc was also consistently more effective than the disease-inducing single peptide or peptide cocktail, not only in suppressing the development of “classical” or “complex EAE” or ameliorating ongoing disease, but most importantly, in reversing chronic EAE. Overall, our data emphasize that a “multi-epitope-targeting” strategy is required for effective immune-specific therapy of organ-specific autoimmune diseases associated with complex and dynamic pathogenic autoimmunity, such as MS; our data further demonstrate that the “multi-epitope-targeting” approach to therapy is optimized through specifically designed multi-epitope-proteins, rather than myelin peptide cocktails, as “multi-epitope-targeting” agents. Such artificial multi-epitope proteins can be tailored to other organ-specific autoimmune diseases. PMID:22140475

  11. Modeling and simulation of dynamic ant colony's labor division for task allocation of UAV swarm

    NASA Astrophysics Data System (ADS)

    Wu, Husheng; Li, Hao; Xiao, Renbin; Liu, Jie

    2018-02-01

    The problem of unmanned aerial vehicle (UAV) task allocation not only has the intrinsic attribute of complexity, such as highly nonlinear, dynamic, highly adversarial and multi-modal, but also has a better practicability in various multi-agent systems, which makes it more and more attractive recently. In this paper, based on the classic fixed response threshold model (FRTM), under the idea of "problem centered + evolutionary solution" and by a bottom-up way, the new dynamic environmental stimulus, response threshold and transition probability are designed, and a dynamic ant colony's labor division (DACLD) model is proposed. DACLD allows a swarm of agents with a relatively low-level of intelligence to perform complex tasks, and has the characteristic of distributed framework, multi-tasks with execution order, multi-state, adaptive response threshold and multi-individual response. With the proposed model, numerical simulations are performed to illustrate the effectiveness of the distributed task allocation scheme in two situations of UAV swarm combat (dynamic task allocation with a certain number of enemy targets and task re-allocation due to unexpected threats). Results show that our model can get both the heterogeneous UAVs' real-time positions and states at the same time, and has high degree of self-organization, flexibility and real-time response to dynamic environments.

  12. Cells, Agents, and Support Vectors in Interaction - Modeling Urban Sprawl based on Machine Learning and Artificial Intelligence Techniques in a Post-Industrial Region

    NASA Astrophysics Data System (ADS)

    Rienow, A.; Menz, G.

    2015-12-01

    Since the beginning of the millennium, artificial intelligence techniques as cellular automata (CA) and multi-agent systems (MAS) have been incorporated into land-system simulations to address the complex challenges of transitions in urban areas as open, dynamic systems. The study presents a hybrid modeling approach for modeling the two antagonistic processes of urban sprawl and urban decline at once. The simulation power of support vector machines (SVM), cellular automata (CA) and multi-agent systems (MAS) are integrated into one modeling framework and applied to the largest agglomeration of Central Europe: the Ruhr. A modified version of SLEUTH (short for Slope, Land-use, Exclusion, Urban, Transport, and Hillshade) functions as the CA component. SLEUTH makes use of historic urban land-use data sets and growth coefficients for the purpose of modeling physical urban expansion. The machine learning algorithm of SVM is applied in order to enhance SLEUTH. Thus, the stochastic variability of the CA is reduced and information about the human and ecological forces driving the local suitability of urban sprawl is incorporated. Subsequently, the supported CA is coupled with the MAS ReHoSh (Residential Mobility and the Housing Market of Shrinking City Systems). The MAS models population patterns, housing prices, and housing demand in shrinking regions based on interactions between household and city agents. Semi-explicit urban weights are introduced as a possibility of modeling from and to the pixel simultaneously. Three scenarios of changing housing preferences reveal the urban development of the region in terms of quantity and location. They reflect the dissemination of sustainable thinking among stakeholders versus the steady dream of owning a house in sub- and exurban areas. Additionally, the outcomes are transferred into a digital petri dish reflecting a synthetic environment with perfect conditions of growth. Hence, the generic growth elements affecting the future face of post-industrial cities are revealed. Finally, the advantages and limitations of linking pixels and people by combining AI and machine learning techniques in a multi-scale geosimulation approach are to be discussed.

  13. Conflict resolution in multi-agent hybrid systems

    DOT National Transportation Integrated Search

    1996-12-01

    A conflict resolution architecture for multi-agent hybrid systems with emphasis on Air Traffic Management Systems (ATMS) is presented. In such systems, conflicts arise in the form of potential collisions which are resolved locally by inter-agent coor...

  14. Analysis multi-agent with precense of the leader

    NASA Astrophysics Data System (ADS)

    Achmadi, Sentot; Marjono, Miswanto

    2017-12-01

    The phenomenon of swarm is a natural phenomenon that is often done by a collection of living things in the form of motion from one place to another. By clustering, a group of animals can increase their effectiveness in food search and avoid predators. A group of geese also performs a swarm phenomenon when flying and forms an inverted V-formation with one of the geese acting as a leader. Each flying track of members of the geese group always follows the leader's path at a certain distance. This article discusses the mathematical modeling of the swarm phenomenon, which is the optimal tracking control for multi-agent model with the influence of the leader in the 2-dimensional space. The leader in this model is intended to track the specified path. Firstly, the leader's motion control is to follow the predetermined path using the Tracking Error Dynamic method. Then, the path from the leader is used to design the motion control of each agent to track the leader's path at a certain distance. The result of numerical simulation shows that the leader trajectory can track the specified path. Similarly, the motion of each agent can trace and follow the leader's path.

  15. Development of design technique for vacuum insulation in large size multi-aperture multi-grid accelerator for nuclear fusion.

    PubMed

    Kojima, A; Hanada, M; Tobari, H; Nishikiori, R; Hiratsuka, J; Kashiwagi, M; Umeda, N; Yoshida, M; Ichikawa, M; Watanabe, K; Yamano, Y; Grisham, L R

    2016-02-01

    Design techniques for the vacuum insulation have been developed in order to realize a reliable voltage holding capability of multi-aperture multi-grid (MAMuG) accelerators for fusion application. In this method, the nested multi-stage configuration of the MAMuG accelerator can be uniquely designed to satisfy the target voltage within given boundary conditions. The evaluation of the voltage holding capabilities of each acceleration stages was based on the previous experimental results about the area effect and the multi-aperture effect. Since the multi-grid effect was found to be the extension of the area effect by the total facing area this time, the total voltage holding capability of the multi-stage can be estimated from that per single stage by assuming the stage with the highest electric field, the total facing area, and the total apertures. By applying these consideration, the analysis on the 3-stage MAMuG accelerator for JT-60SA agreed well with the past gap-scan experiments with an accuracy of less than 10% variation, which demonstrated the high reliability to design MAMuG accelerators and also multi-stage high voltage bushings.

  16. Development of design technique for vacuum insulation in large size multi-aperture multi-grid accelerator for nuclear fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kojima, A., E-mail: kojima.atsushi@jaea.go.jp; Hanada, M.; Tobari, H.

    Design techniques for the vacuum insulation have been developed in order to realize a reliable voltage holding capability of multi-aperture multi-grid (MAMuG) accelerators for fusion application. In this method, the nested multi-stage configuration of the MAMuG accelerator can be uniquely designed to satisfy the target voltage within given boundary conditions. The evaluation of the voltage holding capabilities of each acceleration stages was based on the previous experimental results about the area effect and the multi-aperture effect. Since the multi-grid effect was found to be the extension of the area effect by the total facing area this time, the total voltagemore » holding capability of the multi-stage can be estimated from that per single stage by assuming the stage with the highest electric field, the total facing area, and the total apertures. By applying these consideration, the analysis on the 3-stage MAMuG accelerator for JT-60SA agreed well with the past gap-scan experiments with an accuracy of less than 10% variation, which demonstrated the high reliability to design MAMuG accelerators and also multi-stage high voltage bushings.« less

  17. Multi-agent robotic systems and applications for satellite missions

    NASA Astrophysics Data System (ADS)

    Nunes, Miguel A.

    A revolution in the space sector is happening. It is expected that in the next decade there will be more satellites launched than in the previous sixty years of space exploration. Major challenges are associated with this growth of space assets such as the autonomy and management of large groups of satellites, in particular with small satellites. There are two main objectives for this work. First, a flexible and distributed software architecture is presented to expand the possibilities of spacecraft autonomy and in particular autonomous motion in attitude and position. The approach taken is based on the concept of distributed software agents, also referred to as multi-agent robotic system. Agents are defined as software programs that are social, reactive and proactive to autonomously maximize the chances of achieving the set goals. Part of the work is to demonstrate that a multi-agent robotic system is a feasible approach for different problems of autonomy such as satellite attitude determination and control and autonomous rendezvous and docking. The second main objective is to develop a method to optimize multi-satellite configurations in space, also known as satellite constellations. This automated method generates new optimal mega-constellations designs for Earth observations and fast revisit times on large ground areas. The optimal satellite constellation can be used by researchers as the baseline for new missions. The first contribution of this work is the development of a new multi-agent robotic system for distributing the attitude determination and control subsystem for HiakaSat. The multi-agent robotic system is implemented and tested on the satellite hardware-in-the-loop testbed that simulates a representative space environment. The results show that the newly proposed system for this particular case achieves an equivalent control performance when compared to the monolithic implementation. In terms on computational efficiency it is found that the multi-agent robotic system has a consistent lower CPU load of 0.29 +/- 0.03 compared to 0.35 +/- 0.04 for the monolithic implementation, a 17.1 % reduction. The second contribution of this work is the development of a multi-agent robotic system for the autonomous rendezvous and docking of multiple spacecraft. To compute the maneuvers guidance, navigation and control algorithms are implemented as part of the multi-agent robotic system. The navigation and control functions are implemented using existing algorithms, but one important contribution of this section is the introduction of a new six degrees of freedom guidance method which is part of the guidance, navigation and control architecture. This new method is an explicit solution to the guidance problem, and is particularly useful for real time guidance for attitude and position, as opposed to typical guidance methods which are based on numerical solutions, and therefore are computationally intensive. A simulation scenario is run for docking four CubeSats deployed radially from a launch vehicle. Considering fully actuated CubeSats, the simulations show docking maneuvers that are successfully completed within 25 minutes which is approximately 30% of a full orbital period in low earth orbit. The final section investigates the problem of optimization of satellite constellations for fast revisit time, and introduces a new method to generate different constellation configurations that are evaluated with a genetic algorithm. Two case studies are presented. The first is the optimization of a constellation for rapid coverage of the oceans of the globe in 24 hours or less. Results show that for an 80 km sensor swath width 50 satellites are required to cover the oceans with a 24 hour revisit time. The second constellation configuration study focuses on the optimization for the rapid coverage of the North Atlantic Tracks for air traffic monitoring in 3 hours or less. The results show that for a fixed swath width of 160 km and for a 3 hour revisit time 52 satellites are required.

  18. Trivalent galactosyl-functionalized mesoporous silica nanoparticles as a target-specific delivery system for boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Lai, Chian-Hui; Lai, Nien-Chu; Chuang, Yung-Jen; Chou, Fong-In; Yang, Chia-Min; Lin, Chun-Cheng

    2013-09-01

    A multi-functional mesoporous silica nanoparticle (MSN)-based boron neutron capture therapy (BNCT) agent, designated as T-Gal-B-Cy3@MSN, was synthesized with hydrophobic mesopores for incorporating a large amount of o-carborane (almost 60% (w/w) boron atoms per MSN), and the amines on the external surface were conjugated with trivalent galactosyl ligands and fluorescent dyes for cell targeting and imaging, respectively. The polar and hydrophilic galactosyl ligands enhance the water dispersibility of the BNCT agent and inhibit the possible leakage of o-carborane loaded in the MSN. Confocal microscopic images showed that T-Gal-B-Cy3@MSNs were endocytosed by cells and were then released from lysosomes into the cytoplasm of cells. Moreover, in comparison with the commonly used clinical BNCT agent, sodium borocaptate (BSH), T-Gal-B-Cy3@MSN provides a higher delivery efficiency (over 40-50 fold) of boron atoms and a better effect of BNCT in neutron irradiation experiments. MTT assays show a very low cytotoxicity for T-Gal-B-Cy3@MSN over a 2 h incubation time. The results are promising for the design of multifunctional MSNs as potential BNCT agents for clinical use.A multi-functional mesoporous silica nanoparticle (MSN)-based boron neutron capture therapy (BNCT) agent, designated as T-Gal-B-Cy3@MSN, was synthesized with hydrophobic mesopores for incorporating a large amount of o-carborane (almost 60% (w/w) boron atoms per MSN), and the amines on the external surface were conjugated with trivalent galactosyl ligands and fluorescent dyes for cell targeting and imaging, respectively. The polar and hydrophilic galactosyl ligands enhance the water dispersibility of the BNCT agent and inhibit the possible leakage of o-carborane loaded in the MSN. Confocal microscopic images showed that T-Gal-B-Cy3@MSNs were endocytosed by cells and were then released from lysosomes into the cytoplasm of cells. Moreover, in comparison with the commonly used clinical BNCT agent, sodium borocaptate (BSH), T-Gal-B-Cy3@MSN provides a higher delivery efficiency (over 40-50 fold) of boron atoms and a better effect of BNCT in neutron irradiation experiments. MTT assays show a very low cytotoxicity for T-Gal-B-Cy3@MSN over a 2 h incubation time. The results are promising for the design of multifunctional MSNs as potential BNCT agents for clinical use. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr02594b

  19. Finite-time and fixed-time leader-following consensus for multi-agent systems with discontinuous inherent dynamics

    NASA Astrophysics Data System (ADS)

    Ning, Boda; Jin, Jiong; Zheng, Jinchuan; Man, Zhihong

    2018-06-01

    This paper is concerned with finite-time and fixed-time consensus of multi-agent systems in a leader-following framework. Different from conventional leader-following tracking approaches where inherent dynamics satisfying the Lipschitz continuous condition is required, a more generalised case is investigated: discontinuous inherent dynamics. By nonsmooth techniques, a nonlinear protocol is first proposed to achieve the finite-time leader-following consensus. Then, based on fixed-time stability strategies, the fixed-time leader-following consensus problem is solved. An upper bound of settling time is obtained by using a new protocol, and such a bound is independent of initial states, thereby providing additional options for designers in practical scenarios where initial conditions are unavailable. Finally, numerical simulations are provided to demonstrate the effectiveness of the theoretical results.

  20. Proposed Methodology for Application of Human-like gradual Multi-Agent Q-Learning (HuMAQ) for Multi-robot Exploration

    NASA Astrophysics Data System (ADS)

    Narayan Ray, Dip; Majumder, Somajyoti

    2014-07-01

    Several attempts have been made by the researchers around the world to develop a number of autonomous exploration techniques for robots. But it has been always an important issue for developing the algorithm for unstructured and unknown environments. Human-like gradual Multi-agent Q-leaming (HuMAQ) is a technique developed for autonomous robotic exploration in unknown (and even unimaginable) environments. It has been successfully implemented in multi-agent single robotic system. HuMAQ uses the concept of Subsumption architecture, a well-known Behaviour-based architecture for prioritizing the agents of the multi-agent system and executes only the most common action out of all the different actions recommended by different agents. Instead of using new state-action table (Q-table) each time, HuMAQ uses the immediate past table for efficient and faster exploration. The proof of learning has also been established both theoretically and practically. HuMAQ has the potential to be used in different and difficult situations as well as applications. The same architecture has been modified to use for multi-robot exploration in an environment. Apart from all other existing agents used in the single robotic system, agents for inter-robot communication and coordination/ co-operation with the other similar robots have been introduced in the present research. Current work uses a series of indigenously developed identical autonomous robotic systems, communicating with each other through ZigBee protocol.

  1. Distributed Market-Based Algorithms for Multi-Agent Planning with Shared Resources

    DTIC Science & Technology

    2013-02-01

    1 Introduction 1 2 Distributed Market-Based Multi-Agent Planning 5 2.1 Problem Formulation...over the deterministic planner, on the “test set” of scenarios with changing economies. . . 50 xi xii Chapter 1 Introduction Multi-agent planning is...representation of the objective (4.2.1). For example, for the supply chain mangement problem, we assumed a sequence of Bernoulli coin flips, which seems

  2. Research of negotiation in network trade system based on multi-agent

    NASA Astrophysics Data System (ADS)

    Cai, Jun; Wang, Guozheng; Wu, Haiyan

    2009-07-01

    A construction and implementation technology of network trade based on multi-agent is described in this paper. First, we researched the technology of multi-agent, then we discussed the consumer's behaviors and the negotiation between purchaser and bargainer which emerges in the traditional business mode and analysed the key technology to implement the network trade system. Finally, we implement the system.

  3. Agents Control in Intelligent Learning Systems: The Case of Reactive Characteristics

    ERIC Educational Resources Information Center

    Laureano-Cruces, Ana Lilia; Ramirez-Rodriguez, Javier; de Arriaga, Fernando; Escarela-Perez, Rafael

    2006-01-01

    Intelligent learning systems (ILSs) have evolved in the last few years basically because of influences received from multi-agent architectures (MAs). Conflict resolution among agents has been a very important problem for multi-agent systems, with specific features in the case of ILSs. The literature shows that ILSs with cognitive or pedagogical…

  4. Controller design for wind turbine load reduction via multiobjective parameter synthesis

    NASA Astrophysics Data System (ADS)

    Hoffmann, A. F.; Weiβ, F. A.

    2016-09-01

    During the design process for a wind turbine load reduction controller many different, sometimes conflicting requirements must be fulfilled simultaneously. If the requirements can be expressed as mathematical criteria, such a design problem can be solved by a criterion-vector and multi-objective design optimization. The software environment MOPS (Multi-Objective Parameter Synthesis) supports the engineer for such a design optimization. In this paper MOPS is applied to design a multi-objective load reduction controller for the well-known DTU 10 MW reference wind turbine. A significant reduction in the fatigue criteria especially the blade damage can be reached by the use of an additional Individual Pitch Controller (IPC) and an additional tower damper. This reduction is reached as a trade-off with an increase of actuator load.

  5. Designing Realistic Human Behavior into Multi-Agent Systems

    DTIC Science & Technology

    2001-09-01

    different results based on some sort of randomness built into it, a trend can be looked at over time and a success or failure rate can be...simulation remains in that state, very different results can be achieved each simulation run. An analyst can look at success and failure over a long

  6. Flexibility Support for Homecare Applications Based on Models and Multi-Agent Technology

    PubMed Central

    Armentia, Aintzane; Gangoiti, Unai; Priego, Rafael; Estévez, Elisabet; Marcos, Marga

    2015-01-01

    In developed countries, public health systems are under pressure due to the increasing percentage of population over 65. In this context, homecare based on ambient intelligence technology seems to be a suitable solution to allow elderly people to continue to enjoy the comforts of home and help optimize medical resources. Thus, current technological developments make it possible to build complex homecare applications that demand, among others, flexibility mechanisms for being able to evolve as context does (adaptability), as well as avoiding service disruptions in the case of node failure (availability). The solution proposed in this paper copes with these flexibility requirements through the whole life-cycle of the target applications: from design phase to runtime. The proposed domain modeling approach allows medical staff to design customized applications, taking into account the adaptability needs. It also guides software developers during system implementation. The application execution is managed by a multi-agent based middleware, making it possible to meet adaptation requirements, assuring at the same time the availability of the system even for stateful applications. PMID:26694416

  7. Robust Multi-unit Auction Protocol against False-name Bids

    NASA Astrophysics Data System (ADS)

    Yokoo, Makoto; Sakurai, Yuko; Matsubara, Shigeo

    This paper presents a new multi-unit auction protocol (IR protocol) that is robust against false-name bids. Internet auctions have become an integral part of Electronic Commerce and a promising field for applying agent and Artificial Intelligence technologies. Although the Internet provides an excellent infrastructure for executing auctions, the possibility of a new type of cheating called false-name bids has been pointed out. A false-name bid is a bid submitted under a fictitious name. A protocol called LDS has been developed for combinatorial auctions of multiple different items and has proven to be robust against false-name bids. Although we can modify the LDS protocol to handle multi-unit auctions, in which multiple units of an identical item are auctioned, the protocol is complicated and requires the auctioneer to carefully pre-determine the combination of bundles to obtain a high social surplus or revenue. For the auctioneer, our newly developed IR protocol is easier to use than the LDS, since the combination of bundles is automatically determined in a flexible manner according to the declared evaluation values of agents. The evaluation results show that the IR protocol can obtain a better social surplus than that obtained by the LDS protocol.

  8. Consensus-based distributed estimation in multi-agent systems with time delay

    NASA Astrophysics Data System (ADS)

    Abdelmawgoud, Ahmed

    During the last years, research in the field of cooperative control of swarm of robots, especially Unmanned Aerial Vehicles (UAV); have been improved due to the increase of UAV applications. The ability to track targets using UAVs has a wide range of applications not only civilian but also military as well. For civilian applications, UAVs can perform tasks including, but not limited to: map an unknown area, weather forecasting, land survey, and search and rescue missions. On the other hand, for military personnel, UAV can track and locate a variety of objects, including the movement of enemy vehicles. Consensus problems arise in a number of applications including coordination of UAVs, information processing in wireless sensor networks, and distributed multi-agent optimization. We consider a widely studied consensus algorithms for processing sensed data by different sensors in wireless sensor networks of dynamic agents. Every agent involved in the network forms a weighted average of its own estimated value of some state with the values received from its neighboring agents. We introduced a novelty of consensus-based distributed estimation algorithms. We propose a new algorithm to reach a consensus given time delay constraints. The proposed algorithm performance was observed in a scenario where a swarm of UAVs measuring the location of a ground maneuvering target. We assume that each UAV computes its state prediction and shares it with its neighbors only. However, the shared information applied to different agents with variant time delays. The entire group of UAVs must reach a consensus on target state. Different scenarios were also simulated to examine the effectiveness and performance in terms of overall estimation error, disagreement between delayed and non-delayed agents, and time to reach a consensus for each parameter contributing on the proposed algorithm.

  9. Application of free energy minimization to the design of adaptive multi-agent teams

    NASA Astrophysics Data System (ADS)

    Levchuk, Georgiy; Pattipati, Krishna; Fouse, Adam; Serfaty, Daniel

    2017-05-01

    Many novel DoD missions, from disaster relief to cyber reconnaissance, require teams of humans and machines with diverse capabilities. Current solutions do not account for heterogeneity of agent capabilities, uncertainty of team knowledge, and dynamics of and dependencies between tasks and agent roles, resulting in brittle teams. Most importantly, the state-of-the-art team design solutions are either centralized, imposing role and relation assignment onto agents, or completely distributed, suitable for only homogeneous organizations such as swarms. Centralized design models can't provide insights for team's self-organization, i.e. adapting team structure over time in distributed collaborative manner by team members with diverse expertise and responsibilities. In this paper we present an information-theoretic formalization of team composition and structure adaptation using a minimization of variational free energy. The structure adaptation is obtained in an iterative distributed and collaborative manner without the need for centralized control. We show that our model is lightweight, predictive, and produces team structures that theoretically approximate an optimal policy for team adaptation. Our model also provides a unique coupling between the structure and action policy, and captures three essential processes of learning, perception, and control.

  10. On the engineering design for systematic integration of agent-orientation in industrial automation.

    PubMed

    Yu, Liyong; Schüller, Andreas; Epple, Ulrich

    2014-09-01

    In today's automation industry, agent-oriented development of system functionalities appears to have a great potential for increasing autonomy and flexibility of complex operations, while lowering the workload of users. In this paper, we present a reference model for the harmonious and systematical integration of agent-orientation in industrial automation. Considering compatibility with existing automation systems and best practice, this model combines advantages of function block technology, service orientation and native description methods from the automation standard IEC 61131-3. This approach can be applied as a guideline for the engineering design of future agent-oriented automation systems. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Implementation of Multi-Agent Object Attention System Based on Biologically Inspired Attractor Selection

    NASA Astrophysics Data System (ADS)

    Hashimoto, Ryoji; Matsumura, Tomoya; Nozato, Yoshihiro; Watanabe, Kenji; Onoye, Takao

    A multi-agent object attention system is proposed, which is based on biologically inspired attractor selection model. Object attention is facilitated by using a video sequence and a depth map obtained through a compound-eye image sensor TOMBO. Robustness of the multi-agent system over environmental changes is enhanced by utilizing the biological model of adaptive response by attractor selection. To implement the proposed system, an efficient VLSI architecture is employed with reducing enormous computational costs and memory accesses required for depth map processing and multi-agent attractor selection process. According to the FPGA implementation result of the proposed object attention system, which is accomplished by using 7,063 slices, 640×512 pixel input images can be processed in real-time with three agents at a rate of 9fps in 48MHz operation.

  12. A Quantum Approach to Multi-Agent Systems (MAS), Organizations, and Control

    DTIC Science & Technology

    2003-06-01

    interdependent interactions between individuals represented approximately as vocal harmonic I resonators. Then the growth rate of an organization fits ...A quantum approach to multi-agent systems (MAS), organizations , and control W.F. Lawless Paine College 1235 15th Street Augusta, GA 30901...AND SUBTITLE A quantum approach to multi-agent systems (MAS), organizations , and control 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  13. PADF RF localization experiments with multi-agent caged-MAV platforms

    NASA Astrophysics Data System (ADS)

    Barber, Christopher; Gates, Miguel; Selmic, Rastko; Al-Issa, Huthaifa; Ordonez, Raul; Mitra, Atindra

    2011-06-01

    This paper provides a summary of preliminary RF direction finding results generated within an AFOSR funded testbed facility recently developed at Louisiana Tech University. This facility, denoted as the Louisiana Tech University Micro- Aerial Vehicle/Wireless Sensor Network (MAVSeN) Laboratory, has recently acquired a number of state-of-the-art MAV platforms that enable us to analyze, design, and test some of our recent results in the area of multiplatform position-adaptive direction finding (PADF) [1] [2] for localization of RF emitters in challenging embedded multipath environments. Discussions within the segmented sections of this paper include a description of the MAVSeN Laboratory and the preliminary results from the implementation of mobile platforms with the PADF algorithm. This novel approach to multi-platform RF direction finding is based on the investigation of iterative path-loss based (i.e. path loss exponent) metrics estimates that are measured across multiple platforms in order to develop a control law that robotically/intelligently positionally adapt (i.e. self-adjust) the location of each distributed/cooperative platform. The body of this paper provides a summary of our recent results on PADF and includes a discussion on state-of-the-art Sensor Mote Technologies as applied towards the development of sensor-integrated caged-MAV platform for PADF applications. Also, a discussion of recent experimental results that incorporate sample approaches to real-time singleplatform data pruning is included as part of a discussion on potential approaches to refining a basic PADF technique in order to integrate and perform distributed self-sensitivity and self-consistency analysis as part of a PADF technique with distributed robotic/intelligent features. These techniques are extracted in analytical form from a parallel study denoted as "PADF RF Localization Criteria for Multi-Model Scattering Environments". The focus here is on developing and reporting specific approaches to self-sensitivity and self-consistency within this experimental PADF framework via the exploitation of specific single-agent caged-MAV trajectories that are unique to this experiment set.

  14. Grounding language in action and perception: From cognitive agents to humanoid robots

    NASA Astrophysics Data System (ADS)

    Cangelosi, Angelo

    2010-06-01

    In this review we concentrate on a grounded approach to the modeling of cognition through the methodologies of cognitive agents and developmental robotics. This work will focus on the modeling of the evolutionary and developmental acquisition of linguistic capabilities based on the principles of symbol grounding. We review cognitive agent and developmental robotics models of the grounding of language to demonstrate their consistency with the empirical and theoretical evidence on language grounding and embodiment, and to reveal the benefits of such an approach in the design of linguistic capabilities in cognitive robotic agents. In particular, three different models will be discussed, where the complexity of the agent's sensorimotor and cognitive system gradually increases: from a multi-agent simulation of language evolution, to a simulated robotic agent model for symbol grounding transfer, to a model of language comprehension in the humanoid robot iCub. The review also discusses the benefits of the use of humanoid robotic platform, and specifically of the open source iCub platform, for the study of embodied cognition.

  15. A game theory-reinforcement learning (GT-RL) method to develop optimal operation policies for multi-operator reservoir systems

    NASA Astrophysics Data System (ADS)

    Madani, Kaveh; Hooshyar, Milad

    2014-11-01

    Reservoir systems with multiple operators can benefit from coordination of operation policies. To maximize the total benefit of these systems the literature has normally used the social planner's approach. Based on this approach operation decisions are optimized using a multi-objective optimization model with a compound system's objective. While the utility of the system can be increased this way, fair allocation of benefits among the operators remains challenging for the social planner who has to assign controversial weights to the system's beneficiaries and their objectives. Cooperative game theory provides an alternative framework for fair and efficient allocation of the incremental benefits of cooperation. To determine the fair and efficient utility shares of the beneficiaries, cooperative game theory solution methods consider the gains of each party in the status quo (non-cooperation) as well as what can be gained through the grand coalition (social planner's solution or full cooperation) and partial coalitions. Nevertheless, estimation of the benefits of different coalitions can be challenging in complex multi-beneficiary systems. Reinforcement learning can be used to address this challenge and determine the gains of the beneficiaries for different levels of cooperation, i.e., non-cooperation, partial cooperation, and full cooperation, providing the essential input for allocation based on cooperative game theory. This paper develops a game theory-reinforcement learning (GT-RL) method for determining the optimal operation policies in multi-operator multi-reservoir systems with respect to fairness and efficiency criteria. As the first step to underline the utility of the GT-RL method in solving complex multi-agent multi-reservoir problems without a need for developing compound objectives and weight assignment, the proposed method is applied to a hypothetical three-agent three-reservoir system.

  16. Applying the methodology of Design of Experiments to stability studies: a Partial Least Squares approach for evaluation of drug stability.

    PubMed

    Jordan, Nika; Zakrajšek, Jure; Bohanec, Simona; Roškar, Robert; Grabnar, Iztok

    2018-05-01

    The aim of the present research is to show that the methodology of Design of Experiments can be applied to stability data evaluation, as they can be seen as multi-factor and multi-level experimental designs. Linear regression analysis is usually an approach for analyzing stability data, but multivariate statistical methods could also be used to assess drug stability during the development phase. Data from a stability study for a pharmaceutical product with hydrochlorothiazide (HCTZ) as an unstable drug substance was used as a case example in this paper. The design space of the stability study was modeled using Umetrics MODDE 10.1 software. We showed that a Partial Least Squares model could be used for a multi-dimensional presentation of all data generated in a stability study and for determination of the relationship among factors that influence drug stability. It might also be used for stability predictions and potentially for the optimization of the extent of stability testing needed to determine shelf life and storage conditions, which would be time and cost-effective for the pharmaceutical industry.

  17. Evolutionary Agent-based Models to design distributed water management strategies

    NASA Astrophysics Data System (ADS)

    Giuliani, M.; Castelletti, A.; Reed, P. M.

    2012-12-01

    There is growing awareness in the scientific community that the traditional centralized approach to water resources management, as described in much of the water resources literature, provides an ideal optimal solution, which is certainly useful to quantify the best physically achievable performance, but is generally inapplicable. Most real world water resources management problems are indeed characterized by the presence of multiple, distributed and institutionally-independent decision-makers. Multi-Agent Systems provide a potentially more realistic alternative framework to model multiple and self-interested decision-makers in a credible context. Each decision-maker can be represented by an agent who, being self-interested, acts according to local objective functions and produces negative externalities on system level objectives. Different levels of coordination can potentially be included in the framework by designing coordination mechanisms to drive the current decision-making structure toward the global system efficiency. Yet, the identification of effective coordination strategies can be particularly complex in modern institutional contexts and current practice is dependent on largely ad-hoc coordination strategies. In this work we propose a novel Evolutionary Agent-based Modeling (EAM) framework that enables a mapping of fully uncoordinated and centrally coordinated solutions into their relative "many-objective" tradeoffs using multiobjective evolutionary algorithms. Then, by analysing the conflicts between local individual agent and global system level objectives it is possible to more fully understand the causes, consequences, and potential solution strategies for coordination failures. Game-theoretic criteria have value for identifying the most interesting alternatives from a policy making point of view as well as the coordination mechanisms that can be applied to obtain these interesting solutions. The proposed approach is numerically tested on a synthetic case study, representing a Y-shaped system composed by two regulated lakes, whose releases merge just upstream of a city. Each reservoir is operated by an agent in order to prevent floods along the lake shores (local objective). However, the optimal operation of the reservoirs with respect to the local objectives is conflicting with the minimization of floods in the city (global objective). The evolution of the Agent-based Model from individualistic management strategies of the reservoirs toward a global compromise that reduces the costs for the city is analysed.

  18. Using Semantic Components to Represent Dynamics of an Interdisciplinary Healthcare Team in a Multi-Agent Decision Support System.

    PubMed

    Wilk, Szymon; Kezadri-Hamiaz, Mounira; Rosu, Daniela; Kuziemsky, Craig; Michalowski, Wojtek; Amyot, Daniel; Carrier, Marc

    2016-02-01

    In healthcare organizations, clinical workflows are executed by interdisciplinary healthcare teams (IHTs) that operate in ways that are difficult to manage. Responding to a need to support such teams, we designed and developed the MET4 multi-agent system that allows IHTs to manage patients according to presentation-specific clinical workflows. In this paper, we describe a significant extension of the MET4 system that allows for supporting rich team dynamics (understood as team formation, management and task-practitioner allocation), including selection and maintenance of the most responsible physician and more complex rules of selecting practitioners for the workflow tasks. In order to develop this extension, we introduced three semantic components: (1) a revised ontology describing concepts and relations pertinent to IHTs, workflows, and managed patients, (2) a set of behavioral rules describing the team dynamics, and (3) an instance base that stores facts corresponding to instances of concepts from the ontology and to relations between these instances. The semantic components are represented in first-order logic and they can be automatically processed using theorem proving and model finding techniques. We employ these techniques to find models that correspond to specific decisions controlling the dynamics of IHT. In the paper, we present the design of extended MET4 with a special focus on the new semantic components. We then describe its proof-of-concept implementation using the WADE multi-agent platform and the Z3 solver (theorem prover/model finder). We illustrate the main ideas discussed in the paper with a clinical scenario of an IHT managing a patient with chronic kidney disease.

  19. Organization of the secure distributed computing based on multi-agent system

    NASA Astrophysics Data System (ADS)

    Khovanskov, Sergey; Rumyantsev, Konstantin; Khovanskova, Vera

    2018-04-01

    Nowadays developing methods for distributed computing is received much attention. One of the methods of distributed computing is using of multi-agent systems. The organization of distributed computing based on the conventional network computers can experience security threats performed by computational processes. Authors have developed the unified agent algorithm of control system of computing network nodes operation. Network PCs is used as computing nodes. The proposed multi-agent control system for the implementation of distributed computing allows in a short time to organize using of the processing power of computers any existing network to solve large-task by creating a distributed computing. Agents based on a computer network can: configure a distributed computing system; to distribute the computational load among computers operated agents; perform optimization distributed computing system according to the computing power of computers on the network. The number of computers connected to the network can be increased by connecting computers to the new computer system, which leads to an increase in overall processing power. Adding multi-agent system in the central agent increases the security of distributed computing. This organization of the distributed computing system reduces the problem solving time and increase fault tolerance (vitality) of computing processes in a changing computing environment (dynamic change of the number of computers on the network). Developed a multi-agent system detects cases of falsification of the results of a distributed system, which may lead to wrong decisions. In addition, the system checks and corrects wrong results.

  20. Discovery of 1-(4-((3-(4-methylpiperazin-1-yl)propyl)amino)benzyl)-5-(trifluoromethyl)pyridin-2(1H)-one, an orally active multi-target agent for the treatment of diabetic nephropathy.

    PubMed

    Chen, Jun; Peng, Zhangzhe; Lu, Miaomiao; Xiong, Xuan; Chen, Zhuo; Li, Qianbin; Cheng, Zeneng; Jiang, Dejian; Tao, Lijian; Hu, Gaoyun

    2018-01-15

    Oxidative stress, inflammation and fibrosis can cause irreversible damage on cell structure and function of kidney and are key pathological factors in Diabetic Nephropathy (DN). Therefore, multi-target agents are urgently need for the clinical treatment of DN. Using Pirfenidone as a lead compound and based on the previous research, two novel series (5-trifluoromethyl)-2(1H)-pyridone analogs were designed and synthesized. SAR of (5-trifluoromethyl)-2(1H)-pyridone derivatives containing nitrogen heterocyclic ring have been established for in vitro potency. In addition, compound 8, a novel agent that act on multiple targets of anti-DN with IC 50 of 90μM in NIH3T3 cell lines, t 1/2 of 4.89±1.33h in male rats and LD 50 >2000mg/kg in mice, has been advanced to preclinical studies as an oral treatment for DN. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Multi-Agent Strategic Modeling in a Specific Environment

    NASA Astrophysics Data System (ADS)

    Gams, Matjaz; Bezek, Andraz

    Multi-agent modeling in ambient intelligence (AmI) is concerned with the following task [19]: How can external observations of multi-agent systems in the ambient be used to analyze, model, and direct agent behavior? The main purpose is to obtain knowledge about acts in the environment thus enabling proper actions of the AmI systems [1]. Analysis of such systems must thus capture complex world state representation and asynchronous agent activities. Instead of studying basic numerical data, researchers often use more complex data structures, such as rules and decision trees. Some methods are extremely useful when characterizing state space, but lack the ability to clearly represent temporal state changes occurred by agent actions. To comprehend simultaneous agent actions and complex changes of state space, most often a combination of graphical and symbolical representation performs better in terms of human understanding and performance.

  2. Emerging medical informatics with case-based reasoning for aiding clinical decision in multi-agent system.

    PubMed

    Shen, Ying; Colloc, Joël; Jacquet-Andrieu, Armelle; Lei, Kai

    2015-08-01

    This research aims to depict the methodological steps and tools about the combined operation of case-based reasoning (CBR) and multi-agent system (MAS) to expose the ontological application in the field of clinical decision support. The multi-agent architecture works for the consideration of the whole cycle of clinical decision-making adaptable to many medical aspects such as the diagnosis, prognosis, treatment, therapeutic monitoring of gastric cancer. In the multi-agent architecture, the ontological agent type employs the domain knowledge to ease the extraction of similar clinical cases and provide treatment suggestions to patients and physicians. Ontological agent is used for the extension of domain hierarchy and the interpretation of input requests. Case-based reasoning memorizes and restores experience data for solving similar problems, with the help of matching approach and defined interfaces of ontologies. A typical case is developed to illustrate the implementation of the knowledge acquisition and restitution of medical experts. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Attitude coordination of multi-HUG formation based on multibody system theory

    NASA Astrophysics Data System (ADS)

    Xue, Dong-yang; Wu, Zhi-liang; Qi, Er-mai; Wang, Yan-hui; Wang, Shu-xin

    2017-04-01

    Application of multiple hybrid underwater gliders (HUGs) is a promising method for large scale, long-term ocean survey. Attitude coordination has become a requisite for task execution of multi-HUG formation. In this paper, a multibody model is presented for attitude coordination among agents in the HUG formation. The HUG formation is regarded as a multi-rigid body system. The interaction between agents in the formation is described by artificial potential field (APF) approach. Attitude control torque is composed of a conservative torque generated by orientation potential field and a dissipative term related with angular velocity. Dynamic modeling of the multibody system is presented to analyze the dynamic process of the HUG formation. Numerical calculation is carried out to simulate attitude synchronization with two kinds of formation topologies. Results show that attitude synchronization can be fulfilled based on the multibody method described in this paper. It is also indicated that different topologies affect attitude control quality with respect to energy consumption and adjusting time. Low level topology should be adopted during formation control scheme design to achieve a better control effect.

  4. A Two-Stage Multi-Agent Based Assessment Approach to Enhance Students' Learning Motivation through Negotiated Skills Assessment

    ERIC Educational Resources Information Center

    Chadli, Abdelhafid; Bendella, Fatima; Tranvouez, Erwan

    2015-01-01

    In this paper we present an Agent-based evaluation approach in a context of Multi-agent simulation learning systems. Our evaluation model is based on a two stage assessment approach: (1) a Distributed skill evaluation combining agents and fuzzy sets theory; and (2) a Negotiation based evaluation of students' performance during a training…

  5. Controllability of multi-agent systems with time-delay in state and switching topology

    NASA Astrophysics Data System (ADS)

    Ji, Zhijian; Wang, Zidong; Lin, Hai; Wang, Zhen

    2010-02-01

    In this article, the controllability issue is addressed for an interconnected system of multiple agents. The network associated with the system is of the leader-follower structure with some agents taking leader role and others being followers interconnected via the neighbour-based rule. Sufficient conditions are derived for the controllability of multi-agent systems with time-delay in state, as well as a graph-based uncontrollability topology structure is revealed. Both single and double integrator dynamics are considered. For switching topology, two algebraic necessary and sufficient conditions are derived for the controllability of multi-agent systems. Several examples are also presented to illustrate how to control the system to shape into the desired configurations.

  6. Using Work Action Analysis to Identify Web-Portal Requirements for a Professional Development Program

    ERIC Educational Resources Information Center

    Nickles, George

    2007-01-01

    This article describes using Work Action Analysis (WAA) as a method for identifying requirements for a web-based portal that supports a professional development program. WAA is a cognitive systems engineering method for modeling multi-agent systems to support design and evaluation. A WAA model of the professional development program of the…

  7. Note-Taking within MetaTutor: Interactions between an Intelligent Tutoring System and Prior Knowledge on Note-Taking and Learning

    ERIC Educational Resources Information Center

    Trevors, Gregory; Duffy, Melissa; Azevedo, Roger

    2014-01-01

    Hypermedia learning environments (HLE) unevenly present new challenges and opportunities to learning processes and outcomes depending on learner characteristics and instructional supports. In this experimental study, we examined how one such HLE--MetaTutor, an intelligent, multi-agent tutoring system designed to scaffold cognitive and…

  8. Argumentation Based Joint Learning: A Novel Ensemble Learning Approach

    PubMed Central

    Xu, Junyi; Yao, Li; Li, Le

    2015-01-01

    Recently, ensemble learning methods have been widely used to improve classification performance in machine learning. In this paper, we present a novel ensemble learning method: argumentation based multi-agent joint learning (AMAJL), which integrates ideas from multi-agent argumentation, ensemble learning, and association rule mining. In AMAJL, argumentation technology is introduced as an ensemble strategy to integrate multiple base classifiers and generate a high performance ensemble classifier. We design an argumentation framework named Arena as a communication platform for knowledge integration. Through argumentation based joint learning, high quality individual knowledge can be extracted, and thus a refined global knowledge base can be generated and used independently for classification. We perform numerous experiments on multiple public datasets using AMAJL and other benchmark methods. The results demonstrate that our method can effectively extract high quality knowledge for ensemble classifier and improve the performance of classification. PMID:25966359

  9. Multi-Agent simulation of generation capacity expansion decisions.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Botterud, A.; Mahalik, M.; Conzelmann, G.

    2008-01-01

    In this paper, we use a multi-agent simulation model, EMCAS, to analyze generation expansion in the Iberian electricity market. The expansion model simulates generation investment decisions of decentralized generating companies (GenCos) interacting in a complex, multidimensional environment. A probabilistic dispatch algorithm calculates prices and profits for new candidate units in different future states of the system. Uncertainties in future load, hydropower conditions, and competitorspsila actions are represented in a scenario tree, and decision analysis is used to identify the optimal expansion decision for each individual GenCo. We run the model using detailed data for the Iberian market. In a scenariomore » analysis, we look at the impact of market design variables, such as the energy price cap and carbon emission prices. We also analyze how market concentration and GenCospsila risk preferences influence the timing and choice of new generating capacity.« less

  10. Autonomous Decentralized Voltage Profile Control of Super Distributed Energy System using Multi-agent Technology

    NASA Astrophysics Data System (ADS)

    Tsuji, Takao; Hara, Ryoichi; Oyama, Tsutomu; Yasuda, Keiichiro

    A super distributed energy system is a future energy system in which the large part of its demand is fed by a huge number of distributed generators. At one time some nodes in the super distributed energy system behave as load, however, at other times they behave as generator - the characteristic of each node depends on the customers' decision. In such situation, it is very difficult to regulate voltage profile over the system due to the complexity of power flows. This paper proposes a novel control method of distributed generators that can achieve the autonomous decentralized voltage profile regulation by using multi-agent technology. The proposed multi-agent system employs two types of agent; a control agent and a mobile agent. Control agents generate or consume reactive power to regulate the voltage profile of neighboring nodes and mobile agents transmit the information necessary for VQ-control among the control agents. The proposed control method is tested through numerical simulations.

  11. Simultaneous multispectral framing infrared camera using an embedded diffractive optical lenslet array

    NASA Astrophysics Data System (ADS)

    Hinnrichs, Michele

    2011-06-01

    Recent advances in micro-optical element fabrication using gray scale technology have opened up the opportunity to create simultaneous multi-spectral imaging with fine structure diffractive lenses. This paper will discuss an approach that uses diffractive optical lenses configured in an array (lenslet array) and placed in close proximity to the focal plane array which enables a small compact simultaneous multispectral imaging camera [1]. The lenslet array is designed so that all lenslets have a common focal length with each lenslet tuned for a different wavelength. The number of simultaneous spectral images is determined by the number of individually configured lenslets in the array. The number of spectral images can be increased by a factor of 2 when using it with a dual-band focal plane array (MWIR/LWIR) by exploiting multiple diffraction orders. In addition, modulation of the focal length of the lenslet array with piezoelectric actuation will enable spectral bin fill-in allowing additional spectral coverage while giving up simultaneity. Different lenslet array spectral imaging concept designs are presented in this paper along with a unique concept for prefiltering the radiation focused on the detector. This approach to spectral imaging has applications in the detection of chemical agents in both aerosolized form and as a liquid on a surface. It also can be applied to the detection of weaponized biological agent and IED detection in various forms from manufacturing to deployment and post detection during forensic analysis.

  12. Optimal Reward Functions in Distributed Reinforcement Learning

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.; Tumer, Kagan

    2000-01-01

    We consider the design of multi-agent systems so as to optimize an overall world utility function when (1) those systems lack centralized communication and control, and (2) each agents runs a distinct Reinforcement Learning (RL) algorithm. A crucial issue in such design problems is to initialize/update each agent's private utility function, so as to induce best possible world utility. Traditional 'team game' solutions to this problem sidestep this issue and simply assign to each agent the world utility as its private utility function. In previous work we used the 'Collective Intelligence' framework to derive a better choice of private utility functions, one that results in world utility performance up to orders of magnitude superior to that ensuing from use of the team game utility. In this paper we extend these results. We derive the general class of private utility functions that both are easy for the individual agents to learn and that, if learned well, result in high world utility. We demonstrate experimentally that using these new utility functions can result in significantly improved performance over that of our previously proposed utility, over and above that previous utility's superiority to the conventional team game utility.

  13. Multi-scale analysis of a household level agent-based model of landcover change.

    PubMed

    Evans, Tom P; Kelley, Hugh

    2004-08-01

    Scale issues have significant implications for the analysis of social and biophysical processes in complex systems. These same scale implications are likewise considerations for the design and application of models of landcover change. Scale issues have wide-ranging effects from the representativeness of data used to validate models to aggregation errors introduced in the model structure. This paper presents an analysis of how scale issues affect an agent-based model (ABM) of landcover change developed for a research area in the Midwest, USA. The research presented here explores how scale factors affect the design and application of agent-based landcover change models. The ABM is composed of a series of heterogeneous agents who make landuse decisions on a portfolio of cells in a raster-based programming environment. The model is calibrated using measures of fit derived from both spatial composition and spatial pattern metrics from multi-temporal landcover data interpreted from historical aerial photography. A model calibration process is used to find a best-fit set of parameter weights assigned to agents' preferences for different landuses (agriculture, pasture, timber production, and non-harvested forest). Previous research using this model has shown how a heterogeneous set of agents with differing preferences for a portfolio of landuses produces the best fit to landcover changes observed in the study area. The scale dependence of the model is explored by varying the resolution of the input data used to calibrate the model (observed landcover), ancillary datasets that affect land suitability (topography), and the resolution of the model landscape on which agents make decisions. To explore the impact of these scale relationships the model is run with input datasets constructed at the following spatial resolutions: 60, 90, 120, 150, 240, 300 and 480 m. The results show that the distribution of landuse-preference weights differs as a function of scale. In addition, with the gradient descent model fitting method used in this analysis the model was not able to converge to an acceptable fit at the 300 and 480 m spatial resolutions. This is a product of the ratio of the input cell resolution to the average parcel size in the landscape. This paper uses these findings to identify scale considerations in the design, development, validation and application of ABMs of landcover change.

  14. Coordination of fractional-order nonlinear multi-agent systems via distributed impulsive control

    NASA Astrophysics Data System (ADS)

    Ma, Tiedong; Li, Teng; Cui, Bing

    2018-01-01

    The coordination of fractional-order nonlinear multi-agent systems via distributed impulsive control method is studied in this paper. Based on the theory of impulsive differential equations, algebraic graph theory, Lyapunov stability theory and Mittag-Leffler function, two novel sufficient conditions for achieving the cooperative control of a class of fractional-order nonlinear multi-agent systems are derived. Finally, two numerical simulations are verified to illustrate the effectiveness and feasibility of the proposed method.

  15. Model-free learning on robot kinematic chains using a nested multi-agent topology

    NASA Astrophysics Data System (ADS)

    Karigiannis, John N.; Tzafestas, Costas S.

    2016-11-01

    This paper proposes a model-free learning scheme for the developmental acquisition of robot kinematic control and dexterous manipulation skills. The approach is based on a nested-hierarchical multi-agent architecture that intuitively encapsulates the topology of robot kinematic chains, where the activity of each independent degree-of-freedom (DOF) is finally mapped onto a distinct agent. Each one of those agents progressively evolves a local kinematic control strategy in a game-theoretic sense, that is, based on a partial (local) view of the whole system topology, which is incrementally updated through a recursive communication process according to the nested-hierarchical topology. Learning is thus approached not through demonstration and training but through an autonomous self-exploration process. A fuzzy reinforcement learning scheme is employed within each agent to enable efficient exploration in a continuous state-action domain. This paper constitutes in fact a proof of concept, demonstrating that global dexterous manipulation skills can indeed evolve through such a distributed iterative learning of local agent sensorimotor mappings. The main motivation behind the development of such an incremental multi-agent topology is to enhance system modularity, to facilitate extensibility to more complex problem domains and to improve robustness with respect to structural variations including unpredictable internal failures. These attributes of the proposed system are assessed in this paper through numerical experiments in different robot manipulation task scenarios, involving both single and multi-robot kinematic chains. The generalisation capacity of the learning scheme is experimentally assessed and robustness properties of the multi-agent system are also evaluated with respect to unpredictable variations in the kinematic topology. Furthermore, these numerical experiments demonstrate the scalability properties of the proposed nested-hierarchical architecture, where new agents can be recursively added in the hierarchy to encapsulate individual active DOFs. The results presented in this paper demonstrate the feasibility of such a distributed multi-agent control framework, showing that the solutions which emerge are plausible and near-optimal. Numerical efficiency and computational cost issues are also discussed.

  16. Examining multi-component DNA-templated nanostructures as imaging agents

    NASA Astrophysics Data System (ADS)

    Jaganathan, Hamsa

    2011-12-01

    Magnetic resonance imaging (MRI) is the leading non-invasive tool for disease imaging and diagnosis. Although MRI exhibits high spatial resolution for anatomical features, the contrast resolution is low. Imaging agents serve as an aid to distinguish different types of tissues within images. Gadolinium chelates, which are considered first generation designs, can be toxic to health, while ultra-small, superparamagnetic nanoparticles (NPs) have low tissue-targeting efficiency and rapid bio-distribution, resulting to an inadequate detection of the MRI signal and enhancement of image contrast. In order to improve the utility of MRI agents, the challenge in composition and structure needs to be addressed. One-dimensional (1D), superparamagnetic nanostructures have been reported to enhance magnetic and in vivo properties and therefore has a potential to improve contrast enhancement in MRI images. In this dissertation, the structure of 1D, multi-component NP chains, scaffolded on DNA, were pre-clinically examined as potential MRI agents. First, research was focused on characterizing and understanding the mechanism of proton relaxation for DNA-templated NP chains using nuclear magnetic resonance (NMR) spectrometry. Proton relaxation and transverse relaxivity were higher in multi-component NP chains compared to disperse NPs, indicating the arrangement of NPs on a 1D structure improved proton relaxation sensitivity. Second, in vitro evaluation for potential issues in toxicity and contrast efficiency in tissue environments using a 3 Tesla clinical MRI scanner was performed. Cell uptake of DNA-templated NP chains was enhanced after encapsulating the nanostructure with layers of polyelectrolytes and targeting ligands. Compared to dispersed NPs, DNA-templated NP chains improved MRI contrast in both the epithelial basement membrane and colon cancer tumors scaffolds. The last part of the project was focused on developing a novel MRI agent that detects changes in DNA methylation levels. The findings from this dissertation suggest that the structural arrangement of NPs on DNA significantly influenced their function and utility as MRI agents.

  17. Synergistic combinations of antifungals and anti-virulence agents to fight against Candida albicans.

    PubMed

    Cui, Jinhui; Ren, Biao; Tong, Yaojun; Dai, Huanqin; Zhang, Lixin

    2015-01-01

    Candida albicans, one of the pathogenic Candida species, causes high mortality rate in immunocompromised and high-risk surgical patients. In the last decade, only one new class of antifungal drug echinocandin was applied. The increased therapy failures, such as the one caused by multi-drug resistance, demand innovative strategies for new effective antifungal drugs. Synergistic combinations of antifungals and anti-virulence agents highlight the pragmatic strategy to reduce the development of drug resistant and potentially repurpose known antifungals, which bypass the costly and time-consuming pipeline of new drug development. Anti-virulence and synergistic combination provide new options for antifungal drug discovery by counteracting the difficulty or failure of traditional therapy for fungal infections.

  18. Novel 3-phenylcoumarin-lipoic acid conjugates as multi-functional agents for potential treatment of Alzheimer's disease.

    PubMed

    Jalili-Baleh, Leili; Nadri, Hamid; Forootanfar, Hamid; Samzadeh-Kermani, Alireza; Küçükkılınç, Tuba Tüylü; Ayazgok, Beyza; Rahimifard, Mahban; Baeeri, Maryam; Doostmohammadi, Mohsen; Firoozpour, Loghman; Bukhari, Syed Nasir Abbas; Abdollahi, Mohammad; Ganjali, Mohammad Reza; Emami, Saeed; Khoobi, Mehdi; Foroumadi, Alireza

    2018-05-02

    New series of triazole-containing 3-phenylcoumarin-lipoic acid conjugates were designed as multi-functional agents for treatment of Alzheimer's disease. The target compounds 4a-o were synthesized via the azide-alkyne cycloaddition reaction and their biological activities were primarily evaluated in terms of neuroprotection against H 2 O 2 -induced cell death in PC12 cells and AChE/BuChE inhibition. The promising compounds 4j and 4i containing four carbons spacer were selected for further biological evaluations. Based on the obtained results, the benzocoumarin derivative 4j with IC 50 value of 7.3 µM was the most potent AChE inhibitor and displayed good inhibition toward intracellular reactive oxygen species (ROS). This compound with antioxidant and metal chelating ability showed also protective effect on cell injury induced by Aβ 1-42 in SH-SY5Y cells. Although the 8-methoxycoumarin analog 4i was slightly less active than 4j against AChE, but displayed higher protection ability against H 2 O 2 -induced cell death in PC12 and could significantly block Aβ-aggregation. The results suggested that the prototype compounds 4i and 4j might be promising multi-functional agents for the further development of the disease-modifying treatments of Alzheimer's disease. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. A Multi-Agent System Architecture for Sensor Networks

    PubMed Central

    Fuentes-Fernández, Rubén; Guijarro, María; Pajares, Gonzalo

    2009-01-01

    The design of the control systems for sensor networks presents important challenges. Besides the traditional problems about how to process the sensor data to obtain the target information, engineers need to consider additional aspects such as the heterogeneity and high number of sensors, and the flexibility of these networks regarding topologies and the sensors in them. Although there are partial approaches for resolving these issues, their integration relies on ad hoc solutions requiring important development efforts. In order to provide an effective approach for this integration, this paper proposes an architecture based on the multi-agent system paradigm with a clear separation of concerns. The architecture considers sensors as devices used by an upper layer of manager agents. These agents are able to communicate and negotiate services to achieve the required functionality. Activities are organized according to roles related with the different aspects to integrate, mainly sensor management, data processing, communication and adaptation to changes in the available devices and their capabilities. This organization largely isolates and decouples the data management from the changing network, while encouraging reuse of solutions. The use of the architecture is facilitated by a specific modelling language developed through metamodelling. A case study concerning a generic distributed system for fire fighting illustrates the approach and the comparison with related work. PMID:22303172

  20. A multi-agent system architecture for sensor networks.

    PubMed

    Fuentes-Fernández, Rubén; Guijarro, María; Pajares, Gonzalo

    2009-01-01

    The design of the control systems for sensor networks presents important challenges. Besides the traditional problems about how to process the sensor data to obtain the target information, engineers need to consider additional aspects such as the heterogeneity and high number of sensors, and the flexibility of these networks regarding topologies and the sensors in them. Although there are partial approaches for resolving these issues, their integration relies on ad hoc solutions requiring important development efforts. In order to provide an effective approach for this integration, this paper proposes an architecture based on the multi-agent system paradigm with a clear separation of concerns. The architecture considers sensors as devices used by an upper layer of manager agents. These agents are able to communicate and negotiate services to achieve the required functionality. Activities are organized according to roles related with the different aspects to integrate, mainly sensor management, data processing, communication and adaptation to changes in the available devices and their capabilities. This organization largely isolates and decouples the data management from the changing network, while encouraging reuse of solutions. The use of the architecture is facilitated by a specific modelling language developed through metamodelling. A case study concerning a generic distributed system for fire fighting illustrates the approach and the comparison with related work.

  1. Anti-Obesity Agents and the US Food and Drug Administration.

    PubMed

    Casey, Martin F; Mechanick, Jeffrey I

    2014-09-01

    Despite the growing market for obesity care, the US Food and Drug Administration (FDA) has approved only two new pharmaceutical agents-lorcaserin and combination phentermine/topiramate-for weight reduction since 2000, while removing three agents from the market in the same time period. This article explores the FDA's history and role in the approval of anti-obesity medications within the context of a public health model of obesity. Through the review of obesity literature and FDA approval documents, we identified two major barriers preventing fair evaluation of anti-obesity agents including: (1) methodological pitfalls in clinical trials and (2) misaligned values in the assessment of anti-obesity agents. Specific recommendations include the use of adaptive (Bayesian) design protocols, value-based analyses of risks and benefits, and regulatory guidance based on a comprehensive, multi-platform obesity disease model. Positively addressing barriers in the FDA approval process of anti-obesity agents may have many beneficial effects within an obesity disease model.

  2. A flocking algorithm for multi-agent systems with connectivity preservation under hybrid metric-topological interactions.

    PubMed

    He, Chenlong; Feng, Zuren; Ren, Zhigang

    2018-01-01

    In this paper, we propose a connectivity-preserving flocking algorithm for multi-agent systems in which the neighbor set of each agent is determined by the hybrid metric-topological distance so that the interaction topology can be represented as the range-limited Delaunay graph, which combines the properties of the commonly used disk graph and Delaunay graph. As a result, the proposed flocking algorithm has the following advantages over the existing ones. First, range-limited Delaunay graph is sparser than the disk graph so that the information exchange among agents is reduced significantly. Second, some links irrelevant to the connectivity can be dynamically deleted during the evolution of the system. Thus, the proposed flocking algorithm is more flexible than existing algorithms, where links are not allowed to be disconnected once they are created. Finally, the multi-agent system spontaneously generates a regular quasi-lattice formation without imposing the constraint on the ratio of the sensing range of the agent to the desired distance between two adjacent agents. With the interaction topology induced by the hybrid distance, the proposed flocking algorithm can still be implemented in a distributed manner. We prove that the proposed flocking algorithm can steer the multi-agent system to a stable flocking motion, provided the initial interaction topology of multi-agent systems is connected and the hysteresis in link addition is smaller than a derived upper bound. The correctness and effectiveness of the proposed algorithm are verified by extensive numerical simulations, where the flocking algorithms based on the disk and Delaunay graph are compared.

  3. A flocking algorithm for multi-agent systems with connectivity preservation under hybrid metric-topological interactions

    PubMed Central

    Feng, Zuren; Ren, Zhigang

    2018-01-01

    In this paper, we propose a connectivity-preserving flocking algorithm for multi-agent systems in which the neighbor set of each agent is determined by the hybrid metric-topological distance so that the interaction topology can be represented as the range-limited Delaunay graph, which combines the properties of the commonly used disk graph and Delaunay graph. As a result, the proposed flocking algorithm has the following advantages over the existing ones. First, range-limited Delaunay graph is sparser than the disk graph so that the information exchange among agents is reduced significantly. Second, some links irrelevant to the connectivity can be dynamically deleted during the evolution of the system. Thus, the proposed flocking algorithm is more flexible than existing algorithms, where links are not allowed to be disconnected once they are created. Finally, the multi-agent system spontaneously generates a regular quasi-lattice formation without imposing the constraint on the ratio of the sensing range of the agent to the desired distance between two adjacent agents. With the interaction topology induced by the hybrid distance, the proposed flocking algorithm can still be implemented in a distributed manner. We prove that the proposed flocking algorithm can steer the multi-agent system to a stable flocking motion, provided the initial interaction topology of multi-agent systems is connected and the hysteresis in link addition is smaller than a derived upper bound. The correctness and effectiveness of the proposed algorithm are verified by extensive numerical simulations, where the flocking algorithms based on the disk and Delaunay graph are compared. PMID:29462217

  4. A two-dimensional biased coin design for dual-agent dose-finding trials.

    PubMed

    Sun, Zhichao; Braun, Thomas M

    2015-12-01

    Given the limited efficacy observed with single agents, there is growing interest in Phase I clinical trial designs that allow for identification of the maximum tolerated combination of two agents. Existing parametric designs may suffer from over- or under-parameterization. Thus, we have designed a nonparametric approach that can be easily understood and implemented for combination trials. We propose a two-stage adaptive biased coin design that extends existing methods for single-agent trials to dual-agent dose-finding trials. The basic idea of our design is to divide the entire trial into two stages and apply the biased coin design, with modification, in each stage. We compare the operating characteristics of our design to four competing parametric approaches via simulation in several numerical examples. Under all simulation scenarios we have examined, our method performs well in terms of identification of the maximum tolerated combination and allocation of patients relative to the performance of its competitors. In our design, stopping rule criteria and the distribution of the total sample size among the two stages are context-dependent, and both need careful consideration before adopting our design in practice. Efficacy is not a part of the dose-assignment algorithm, nor used to define the maximum tolerated combination. Our design inherits the favorable statistical properties of the biased coin design, is competitive with existing designs, and promotes patient safety by limiting patient exposure to toxic combinations whenever possible. © The Author(s) 2015.

  5. Distributed Evaluation Functions for Fault Tolerant Multi-Rover Systems

    NASA Technical Reports Server (NTRS)

    Agogino, Adrian; Turner, Kagan

    2005-01-01

    The ability to evolve fault tolerant control strategies for large collections of agents is critical to the successful application of evolutionary strategies to domains where failures are common. Furthermore, while evolutionary algorithms have been highly successful in discovering single-agent control strategies, extending such algorithms to multiagent domains has proven to be difficult. In this paper we present a method for shaping evaluation functions for agents that provide control strategies that both are tolerant to different types of failures and lead to coordinated behavior in a multi-agent setting. This method neither relies of a centralized strategy (susceptible to single point of failures) nor a distributed strategy where each agent uses a system wide evaluation function (severe credit assignment problem). In a multi-rover problem, we show that agents using our agent-specific evaluation perform up to 500% better than agents using the system evaluation. In addition we show that agents are still able to maintain a high level of performance when up to 60% of the agents fail due to actuator, communication or controller faults.

  6. Multi-issue Agent Negotiation Based on Fairness

    NASA Astrophysics Data System (ADS)

    Zuo, Baohe; Zheng, Sue; Wu, Hong

    Agent-based e-commerce service has become a hotspot now. How to make the agent negotiation process quickly and high-efficiently is the main research direction of this area. In the multi-issue model, MAUT(Multi-attribute Utility Theory) or its derived theory usually consider little about the fairness of both negotiators. This work presents a general model of agent negotiation which considered the satisfaction of both negotiators via autonomous learning. The model can evaluate offers from the opponent agent based on the satisfaction degree, learn online to get the opponent's knowledge from interactive instances of history and negotiation of this time, make concessions dynamically based on fair object. Through building the optimal negotiation model, the bilateral negotiation achieved a higher efficiency and fairer deal.

  7. Experimental Design for Multi-drug Combination Studies Using Signaling Networks

    PubMed Central

    Huang, Hengzhen; Fang, Hong-Bin; Tan, Ming T.

    2017-01-01

    Summary Combinations of multiple drugs are an important approach to maximize the chance for therapeutic success by inhibiting multiple pathways/targets. Analytic methods for studying drug combinations have received increasing attention because major advances in biomedical research have made available large number of potential agents for testing. The preclinical experiment on multi-drug combinations plays a key role in (especially cancer) drug development because of the complex nature of the disease, the need to reduce development time and costs. Despite recent progresses in statistical methods for assessing drug interaction, there is an acute lack of methods for designing experiments on multi-drug combinations. The number of combinations grows exponentially with the number of drugs and dose-levels and it quickly precludes laboratory testing. Utilizing experimental dose-response data of single drugs and a few combinations along with pathway/network information to obtain an estimate of the functional structure of the dose-response relationship in silico, we propose an optimal design that allows exploration of the dose-effect surface with the smallest possible sample size in this paper. The simulation studies show our proposed methods perform well. PMID:28960231

  8. Consensus positive position feedback control for vibration attenuation of smart structures

    NASA Astrophysics Data System (ADS)

    Omidi, Ehsan; Nima Mahmoodi, S.

    2015-04-01

    This paper presents a new network-based approach for active vibration control in smart structures. In this approach, a network with known topology connects collocated actuator/sensor elements of the smart structure to one another. Each of these actuators/sensors, i.e., agent or node, is enhanced by a separate multi-mode positive position feedback (PPF) controller. The decentralized PPF controlled agents collaborate with each other in the designed network, under a certain consensus dynamics. The consensus constraint forces neighboring agents to cooperate with each other such that the disagreement between the time-domain actuation of the agents is driven to zero. The controller output of each agent is calculated using state-space variables; hence, optimal state estimators are designed first for the proposed observer-based consensus PPF control. The consensus controller is numerically investigated for a flexible smart structure, i.e., a thin aluminum beam that is clamped at its both ends. Results demonstrate that the consensus law successfully imposes synchronization between the independently controlled agents, as the disagreements between the decentralized PPF controller variables converge to zero in a short time. The new consensus PPF controller brings extra robustness to vibration suppression in smart structures, where malfunctions of an agent can be compensated for by referencing the neighboring agents’ performance. This is demonstrated in the results by comparing the new controller with former centralized PPF approach.

  9. Deterministic Teleportation of Multi-qudit States in a Network via Various Probabilistic Channels

    NASA Astrophysics Data System (ADS)

    Zhang, Ti-Hang; Jiang, Min; Huang, Xu; Wan, Min

    2014-04-01

    In this paper, we present a generalized approach to faithfully teleport an unknown state of a multi-qudit system involving multi spatially remote agents via various probabilistic channels. In a quantum teleportation network, there are generally multi spatially remote relay agents between a sender and a distant receiver. With the assistance of the relay agents, it is possible to directly construct a deterministic channel between the sender and the distant receiver. In our scheme, different from previous probabilistic teleportation protocols, the integrity of the unknown multi-qudit state could be maintained even when the construction of faithful channel fails. Our results also show that the required auxiliary particle resources, local operations and classical communications are considerably reduced for the present purpose.

  10. Modelling Temporal Schedule of Urban Trains Using Agent-Based Simulation and NSGA2-BASED Multiobjective Optimization Approaches

    NASA Astrophysics Data System (ADS)

    Sahelgozin, M.; Alimohammadi, A.

    2015-12-01

    Increasing distances between locations of residence and services leads to a large number of daily commutes in urban areas. Developing subway systems has been taken into consideration of transportation managers as a response to this huge amount of travel demands. In developments of subway infrastructures, representing a temporal schedule for trains is an important task; because an appropriately designed timetable decreases Total passenger travel times, Total Operation Costs and Energy Consumption of trains. Since these variables are not positively correlated, subway scheduling is considered as a multi-criteria optimization problem. Therefore, proposing a proper solution for subway scheduling has been always a controversial issue. On the other hand, research on a phenomenon requires a summarized representation of the real world that is known as Model. In this study, it is attempted to model temporal schedule of urban trains that can be applied in Multi-Criteria Subway Schedule Optimization (MCSSO) problems. At first, a conceptual framework is represented for MCSSO. Then, an agent-based simulation environment is implemented to perform Sensitivity Analysis (SA) that is used to extract the interrelations between the framework components. These interrelations is then taken into account in order to construct the proposed model. In order to evaluate performance of the model in MCSSO problems, Tehran subway line no. 1 is considered as the case study. Results of the study show that the model was able to generate an acceptable distribution of Pareto-optimal solutions which are applicable in the real situations while solving a MCSSO is the goal. Also, the accuracy of the model in representing the operation of subway systems was significant.

  11. Cultural Geography Modeling and Analysis in Helmand Province

    DTIC Science & Technology

    2010-10-01

    the application of an agent-based model called “Cultural Geography” to represent the civilian populace. This project uses a multi-agent system ...represent the civilian populace. This project uses a multi-agent system consisting of an environment, agents, objects (things), operations that can be...environments[1]. The model is patterned after the conflict eco- system described by Kilcullen[2] in an attempt to capture the complexities of irregular

  12. Multi-agent planning and scheduling, execution monitoring and incremental rescheduling: Application to motorway traffic

    NASA Technical Reports Server (NTRS)

    Mourou, Pascal; Fade, Bernard

    1992-01-01

    This article describes a planning method applicable to agents with great perception and decision-making capabilities and the ability to communicate with other agents. Each agent has a task to fulfill allowing for the actions of other agents in its vicinity. Certain simultaneous actions may cause conflicts because they require the same resource. The agent plans each of its actions and simultaneously transmits these to its neighbors. In a similar way, it receives plans from the other agents and must take account of these plans. The planning method allows us to build a distributed scheduling system. Here, these agents are robot vehicles on a highway communicating by radio. In this environment, conflicts between agents concern the allocation of space in time and are connected with the inertia of the vehicles. Each vehicle made a temporal, spatial, and situated reasoning in order to drive without collision. The flexibility and reactivity of the method presented here allows the agent to generate its plan based on assumptions concerning the other agents and then check these assumptions progressively as plans are received from the other agents. A multi-agent execution monitoring of these plans can be done, using data generated during planning and the multi-agent decision-making algorithm described here. A selective backtrack allows us to perform incremental rescheduling.

  13. Construction of a Learning Agent Handling Its Rewards According to Environmental Situations

    NASA Astrophysics Data System (ADS)

    Moriyama, Koichi; Numao, Masayuki

    The authors aim at constructing an agent which learns appropriate actions in a Multi-Agent environment with and without social dilemmas. For this aim, the agent must have nonrationality that makes it give up its own profit when it should do that. Since there are many studies on rational learning that brings more and more profit, it is desirable to utilize them for constructing the agent. Therefore, we use a reward-handling manner that makes internal evaluation from the agent's rewards, and then the agent learns actions by a rational learning method with the internal evaluation. If the agent has only a fixed manner, however, it does not act well in the environment with and without dilemmas. Thus, the authors equip the agent with several reward-handling manners and criteria for selecting an effective one for the environmental situation. In the case of humans, what generates the internal evaluation is usually called emotion. Hence, this study also aims at throwing light on emotional activities of humans from a constructive view. In this paper, we divide a Multi-Agent environment into three situations and construct an agent having the reward-handling manners and the criteria. We observe that the agent acts well in all the three Multi-Agent situations composed of homogeneous agents.

  14. Who acquires infection from whom and how? Disentangling multi-host and multi-mode transmission dynamics in the ‘elimination’ era

    PubMed Central

    Borlase, Anna; Rudge, James W.

    2017-01-01

    Multi-host infectious agents challenge our abilities to understand, predict and manage disease dynamics. Within this, many infectious agents are also able to use, simultaneously or sequentially, multiple modes of transmission. Furthermore, the relative importance of different host species and modes can itself be dynamic, with potential for switches and shifts in host range and/or transmission mode in response to changing selective pressures, such as those imposed by disease control interventions. The epidemiology of such multi-host, multi-mode infectious agents thereby can involve a multi-faceted community of definitive and intermediate/secondary hosts or vectors, often together with infectious stages in the environment, all of which may represent potential targets, as well as specific challenges, particularly where disease elimination is proposed. Here, we explore, focusing on examples from both human and animal pathogen systems, why and how we should aim to disentangle and quantify the relative importance of multi-host multi-mode infectious agent transmission dynamics under contrasting conditions, and ultimately, how this can be used to help achieve efficient and effective disease control. This article is part of the themed issue ‘Opening the black box: re-examining the ecology and evolution of parasite transmission’. PMID:28289259

  15. Dynamic Routing and Coordination in Multi-Agent Networks

    DTIC Science & Technology

    2016-06-10

    SECURITY CLASSIFICATION OF: Supported by this project, we designed innovative routing, planning and coordination strategies for robotic networks and...tasks partitioned among robots , in what order are they to be performed, and along which deterministic routes or according to which stochastic rules do...individual robots move. The fundamental novelties and our recent breakthroughs supported by this project are manifold: (1) the application 1

  16. UPM: unified policy-based network management

    NASA Astrophysics Data System (ADS)

    Law, Eddie; Saxena, Achint

    2001-07-01

    Besides providing network management to the Internet, it has become essential to offer different Quality of Service (QoS) to users. Policy-based management provides control on network routers to achieve this goal. The Internet Engineering Task Force (IETF) has proposed a two-tier architecture whose implementation is based on the Common Open Policy Service (COPS) protocol and Lightweight Directory Access Protocol (LDAP). However, there are several limitations to this design such as scalability and cross-vendor hardware compatibility. To address these issues, we present a functionally enhanced multi-tier policy management architecture design in this paper. Several extensions are introduced thereby adding flexibility and scalability. In particular, an intermediate entity between the policy server and policy rule database called the Policy Enforcement Agent (PEA) is introduced. By keeping internal data in a common format, using a standard protocol, and by interpreting and translating request and decision messages from multi-vendor hardware, this agent allows a dynamic Unified Information Model throughout the architecture. We have tailor-made this unique information system to save policy rules in the directory server and allow executions of policy rules with dynamic addition of new equipment during run-time.

  17. Analysis of the Pricing Process in Electricity Market using Multi-Agent Model

    NASA Astrophysics Data System (ADS)

    Shimomura, Takahiro; Saisho, Yuichi; Fujii, Yasumasa; Yamaji, Kenji

    Many electric utilities world-wide have been forced to change their ways of doing business, from vertically integrated mechanisms to open market systems. We are facing urgent issues about how we design the structures of power market systems. In order to settle down these issues, many studies have been made with market models of various characteristics and regulations. The goal of modeling analysis is to enrich our understanding of fundamental process that may appear. However, there are many kinds of modeling methods. Each has drawback and advantage about validity and versatility. This paper presents two kinds of methods to construct multi-agent market models. One is based on game theory and another is based on reinforcement learning. By comparing the results of the two methods, they can advance in validity and help us figure out potential problems in electricity markets which have oligopolistic generators, demand fluctuation and inelastic demand. Moreover, this model based on reinforcement learning enables us to consider characteristics peculiar to electricity markets which have plant unit characteristics, seasonable and hourly demand fluctuation, real-time regulation market and operating reserve market. This model figures out importance of the share of peak-load-plants and the way of designing operating reserve market.

  18. Evaluation of oil-leakage of multi-layered resin-hose clamped with metal nipple and sleeve

    NASA Astrophysics Data System (ADS)

    Matsuoka, Kenta; Okubo, Kazuya; Fujii, Toru; Nakamura, Chihiro; Fujishita, Yushi; Kusu, Fuko; Matsushita, Masato; Yoshihara, Ryota

    2018-03-01

    The purpose of this study is to investigate the path of occurred oil-leakage of multi-layered resin-hose as one of multifunctional materials around the caulked joint with a metal nipple and sleeve when excessive cyclic internal pressure was applied onto the hose. Equivalent cyclic axial tensile force was substitutively applied to the hose, where same degree of normal stress was produced in longitudinal direction. Excessive 3 and 5 times of the standard load was applied to the hose. Cyclic loading was paused at every 1000 and 10000 cycles and then designed internal pressure was applied to the hose by a hand-operated pump with water in order to check whether the leakage was occurred around the joint and surface of the hose for safety evaluation. Cyclic fatigue life was defined as the number of loading cycles in which the leakage and the initial damage which was the passage of the ultrasonic wave was observed on the cyclic test. Test results showed the fatigue life at which leakage of water was observed was increased 20 times in case of K=3 compared to that in case of K=5. The cycles of initial damage detected by the ultrasonic wave were passed was increased 3.3 times in case of K=3 compared to that in case of K=5. The fluorescent agent penetrated from the core layer of resin hose to the reinforcement layer in which a half cross section along longitudinal direction in failed specimens was observed after the leak test. The original specimens had the gap between the resin-hose and the nipple and then the gap extended and connected during fatigue cyclic. In this study, it was observed that oil was leaked through narrow gap between the nipple and core layer of resin hose.

  19. Micro-optics for simultaneous multi-spectral imaging applied to chemical/biological and IED detection

    NASA Astrophysics Data System (ADS)

    Hinnrichs, Michele

    2012-06-01

    Using diffractive micro-lenses configured in an array and placed in close proximity to the focal plane array will enable a small compact simultaneous multispectral imaging camera. This approach can be applied to spectral regions from the ultraviolet (UV) to the long-wave infrared (LWIR). The number of simultaneously imaged spectral bands is determined by the number of individually configured diffractive optical micro-lenses (lenslet) in the array. Each lenslet images at a different wavelength determined by the blaze and set at the time of manufacturing based on application. In addition, modulation of the focal length of the lenslet array with piezoelectric or electro-static actuation will enable spectral band fill-in allowing hyperspectral imaging. Using the lenslet array with dual-band detectors will increase the number of simultaneous spectral images by a factor of two when utilizing multiple diffraction orders. Configurations and concept designs will be presented for detection application for biological/chemical agents, buried IED's and reconnaissance. The simultaneous detection of multiple spectral images in a single frame of data enhances the image processing capability by eliminating temporal differences between colors and enabling a handheld instrument that is insensitive to motion.

  20. A Survey of Collective Intelligence

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.; Tumer, Kagan

    1999-01-01

    This chapter presents the science of "COllective INtelligence" (COIN). A COIN is a large multi-agent systems where: i) the agents each run reinforcement learning (RL) algorithms; ii) there is little to no centralized communication or control; iii) there is a provided world utility function that, rates the possible histories of tile full system. Tile conventional approach to designing large distributed systems to optimize a world utility does not use agents running RL algorithms. Rather that approach begins with explicit modeling of the overall system's dynamics, followed by detailed hand-tuning of the interactions between the components to ensure that they "cooperate" as far as the world utility is concerned. This approach is labor-intensive, often results in highly non-robust systems, and usually results in design techniques that, have limited applicability. In contrast, with COINs we wish to solve the system design problems implicitly, via the 'adaptive' character of the RL algorithms of each of the agents. This COIN approach introduces an entirely new, profound design problem: Assuming the RL algorithms are able to achieve high rewards, what reward functions for the individual agents will, when pursued by those agents, result in high world utility? In other words, what reward functions will best ensure that we do not have phenomena like the tragedy of the commons, or Braess's paradox? Although still very young, the science of COINs has already resulted in successes in artificial domains, in particular in packet-routing, the leader-follower problem, and in variants of Arthur's "El Farol bar problem". It is expected that as it matures not only will COIN science expand greatly the range of tasks addressable by human engineers, but it will also provide much insight into already established scientific fields, such as economics, game theory, or population biology.

  1. The Feasibility of Applying AC Driven Low-Temperature Plasma for Multi-Cycle Detonation Initiation

    NASA Astrophysics Data System (ADS)

    Zheng, Dianfeng

    2016-11-01

    Ignition is a key system in pulse detonation engines (PDE). As advanced ignition methods, nanosecond pulse discharge low-temperature plasma ignition is used in some combustion systems, and continuous alternating current (AC) driven low-temperature plasma using dielectric barrier discharge (DBD) is used for the combustion assistant. However, continuous AC driven plasmas cannot be used for ignition in pulse detonation engines. In this paper, experimental and numerical studies of pneumatic valve PDE using an AC driven low-temperature plasma igniter were described. The pneumatic valve was jointly designed with the low-temperature plasma igniter, and the numerical simulation of the cold-state flow field in the pneumatic valve showed that a complex flow in the discharge area, along with low speed, was beneficial for successful ignition. In the experiments ethylene was used as the fuel and air as oxidizing agent, ignition by an AC driven low-temperature plasma achieved multi-cycle intermittent detonation combustion on a PDE, the working frequency of the PDE reached 15 Hz and the peak pressure of the detonation wave was approximately 2.0 MPa. The experimental verifications of the feasibility in PDE ignition expanded the application field of AC driven low-temperature plasma. supported by National Natural Science Foundation of China (No. 51176001)

  2. Design and prototyping of a chip-based multi-micro-organoid culture system for substance testing, predictive to human (substance) exposure.

    PubMed

    Sonntag, Frank; Schilling, Niels; Mader, Katja; Gruchow, Mathias; Klotzbach, Udo; Lindner, Gerd; Horland, Reyk; Wagner, Ilka; Lauster, Roland; Howitz, Steffen; Hoffmann, Silke; Marx, Uwe

    2010-07-01

    Dynamic miniaturized human multi-micro-organ bioreactor systems are envisaged as a possible solution for the embarrassing gap of predictive substance testing prior to human exposure. A rational approach was applied to simulate and design dynamic long-term cultures of the smallest possible functional human organ units, human "micro-organoids", on a chip the shape of a microscope slide. Each chip contains six identical dynamic micro-bioreactors with three different micro-organoid culture segments each, a feed supply and waste reservoirs. A liver, a brain cortex and a bone marrow micro-organoid segment were designed into each bioreactor. This design was translated into a multi-layer chip prototype and a routine manufacturing procedure was established. The first series of microscopable, chemically resistant and sterilizable chip prototypes was tested for matrix compatibility and primary cell culture suitability. Sterility and long-term human cell survival could be shown. Optimizing the applied design approach and prototyping tools resulted in a time period of only 3 months for a single design and prototyping cycle. This rapid prototyping scheme now allows for fast adjustment or redesign of inaccurate architectures. The designed chip platform is thus ready to be evaluated for the establishment and maintenance of the human liver, brain cortex and bone marrow micro-organoids in a systemic microenvironment. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  3. An Approach to Quantify Workload in a System of Agents

    NASA Technical Reports Server (NTRS)

    Stocker, Richard; Rungta, Neha; Mercer, Eric; Raimondi, Franco; Holbrook, Jon; Cardoza, Colleen; Goodrich, Michael

    2015-01-01

    The role of humans in aviation and other domains continues to shift from manual control to automation monitoring. Studies have found that humans are often poorly suited for monitoring roles, and workload can easily spike in off-nominal situations. Current workload measurement tools, like NASA TLX, use human operators to assess their own workload after using a prototype system. Such measures are used late in the design process and can result in ex- pensive alterations when problems are discovered. Our goal in this work is to provide a quantitative workload measure for use early in the design process. We leverage research in human cognition to de ne metrics that can measure workload on belief-desire-intentions based multi-agent systems. These measures can alert designers to potential workload issues early in design. We demonstrate the utility of our approach by characterizing quantitative differences in the workload for a single pilot operations model compared to a traditional two pilot model.

  4. A Study on the Application of the Extended Matrices Based on TRIZ in Constructing a Collaborative Model of Enterprise Network

    NASA Astrophysics Data System (ADS)

    Yang, Yan; Shao, Yunfei; Tang, Xiaowo

    Based on mass related literature on enterprise network, the key influence factors are reduced to Trust, Control, Relationship and Interaction. Meanwhile, the specific contradiction matrices, judgment matrices and strategy collections based on TRIZ are constructed which make the connotation of contradiction matrices in TRIZ extended. Finally they are applied to the construction of the collaborative model on enterprise network based on Multi Agent System (MAS).

  5. Grounding language in action and perception: from cognitive agents to humanoid robots.

    PubMed

    Cangelosi, Angelo

    2010-06-01

    In this review we concentrate on a grounded approach to the modeling of cognition through the methodologies of cognitive agents and developmental robotics. This work will focus on the modeling of the evolutionary and developmental acquisition of linguistic capabilities based on the principles of symbol grounding. We review cognitive agent and developmental robotics models of the grounding of language to demonstrate their consistency with the empirical and theoretical evidence on language grounding and embodiment, and to reveal the benefits of such an approach in the design of linguistic capabilities in cognitive robotic agents. In particular, three different models will be discussed, where the complexity of the agent's sensorimotor and cognitive system gradually increases: from a multi-agent simulation of language evolution, to a simulated robotic agent model for symbol grounding transfer, to a model of language comprehension in the humanoid robot iCub. The review also discusses the benefits of the use of humanoid robotic platform, and specifically of the open source iCub platform, for the study of embodied cognition. Copyright 2010 Elsevier B.V. All rights reserved.

  6. Coordination between Generation and Transmission Maintenance Scheduling by Means of Multi-agent Technique

    NASA Astrophysics Data System (ADS)

    Nagata, Takeshi; Tao, Yasuhiro; Utatani, Masahiro; Sasaki, Hiroshi; Fujita, Hideki

    This paper proposes a multi-agent approach to maintenance scheduling in restructured power systems. The restructuring of electric power industry has resulted in market-based approaches for unbundling a multitude of service provided by self-interested entities such as power generating companies (GENCOs), transmission providers (TRANSCOs) and distribution companies (DISCOs). The Independent System Operator (ISO) is responsible for the security of the system operation. The schedule submitted to ISO by GENCOs and TRANSCOs should satisfy security and reliability constraints. The proposed method consists of several GENCO Agents (GAGs), TARNSCO Agents (TAGs) and a ISO Agent(IAG). The IAG’s role in maintenance scheduling is limited to ensuring that the submitted schedules do not cause transmission congestion or endanger the system reliability. From the simulation results, it can be seen the proposed multi-agent approach could coordinate between generation and transmission maintenance schedules.

  7. Endogenous Price Bubbles in a Multi-Agent System of the Housing Market

    PubMed Central

    2015-01-01

    Economic history shows a large number of boom-bust cycles, with the U.S. real estate market as one of the latest examples. Classical economic models have not been able to provide a full explanation for this type of market dynamics. Therefore, we analyze home prices in the U.S. using an alternative approach, a multi-agent complex system. Instead of the classical assumptions of agent rationality and market efficiency, agents in the model are heterogeneous, adaptive, and boundedly rational. We estimate the multi-agent system with historical house prices for the U.S. market. The model fits the data well and a deterministic version of the model can endogenously produce boom-and-bust cycles on the basis of the estimated coefficients. This implies that trading between agents themselves can create major price swings in absence of fundamental news. PMID:26107740

  8. On the Improvement of Convergence Performance for Integrated Design of Wind Turbine Blade Using a Vector Dominating Multi-objective Evolution Algorithm

    NASA Astrophysics Data System (ADS)

    Wang, L.; Wang, T. G.; Wu, J. H.; Cheng, G. P.

    2016-09-01

    A novel multi-objective optimization algorithm incorporating evolution strategies and vector mechanisms, referred as VD-MOEA, is proposed and applied in aerodynamic- structural integrated design of wind turbine blade. In the algorithm, a set of uniformly distributed vectors is constructed to guide population in moving forward to the Pareto front rapidly and maintain population diversity with high efficiency. For example, two- and three- objective designs of 1.5MW wind turbine blade are subsequently carried out for the optimization objectives of maximum annual energy production, minimum blade mass, and minimum extreme root thrust. The results show that the Pareto optimal solutions can be obtained in one single simulation run and uniformly distributed in the objective space, maximally maintaining the population diversity. In comparison to conventional evolution algorithms, VD-MOEA displays dramatic improvement of algorithm performance in both convergence and diversity preservation for handling complex problems of multi-variables, multi-objectives and multi-constraints. This provides a reliable high-performance optimization approach for the aerodynamic-structural integrated design of wind turbine blade.

  9. Stereo Sound Field Controller Design Using Partial Model Matching on the Frequency Domain

    NASA Astrophysics Data System (ADS)

    Kumon, Makoto; Miike, Katsuhiro; Eguchi, Kazuki; Mizumoto, Ikuro; Iwai, Zenta

    The objective of sound field control is to make the acoustic characteristics of a listening room close to those of the desired system. Conventional methods apply feedforward controllers, such as digital filters, to achieve this objective. However, feedback controllers are also necessary in order to attenuate noise or to compensate the uncertainty of the acoustic characteristics of the listening room. Since acoustic characteristics are well modeled on the frequency domain, it is efficient to design controllers with respect to frequency responses, but it is difficult to design a multi input multi output (MIMO) control system on a wide frequency domain. In the present study, a partial model matching method on the frequency domain was adopted because this method requires only sampled data, rather than complex mathematical models of the plant, in order to design controllers for MIMO systems. The partial model matching method was applied to design two-degree-of-freedom controllers for acoustic equalization and noise reduction. Experiments demonstrated effectiveness of the proposed method.

  10. Knowledge Management in Role Based Agents

    NASA Astrophysics Data System (ADS)

    Kır, Hüseyin; Ekinci, Erdem Eser; Dikenelli, Oguz

    In multi-agent system literature, the role concept is getting increasingly researched to provide an abstraction to scope beliefs, norms, goals of agents and to shape relationships of the agents in the organization. In this research, we propose a knowledgebase architecture to increase applicability of roles in MAS domain by drawing inspiration from the self concept in the role theory of sociology. The proposed knowledgebase architecture has granulated structure that is dynamically organized according to the agent's identification in a social environment. Thanks to this dynamic structure, agents are enabled to work on consistent knowledge in spite of inevitable conflicts between roles and the agent. The knowledgebase architecture is also implemented and incorporated into the SEAGENT multi-agent system development framework.

  11. Modeling and Evaluating Emotions Impact on Cognition

    DTIC Science & Technology

    2013-07-01

    Causality and Responsibility Judgment in Multi-Agent Interactions: Extended abstract. 23rd International Joint Conference on Artificial Inteligence ...responsibility judgment in multi-agent interactions." Journal of Artificial Intelligence Research v44(1), 223- 273. • Morteza Dehghani, Jonathan Gratch... Artificial Intelligence (AAAI’11). Grant related invited talks: • Keynote speaker, Workshop on Empathic and Emotional Agents at the International

  12. Tracking dynamic team activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tambe, M.

    1996-12-31

    AI researchers are striving to build complex multi-agent worlds with intended applications ranging from the RoboCup robotic soccer tournaments, to interactive virtual theatre, to large-scale real-world battlefield simulations. Agent tracking - monitoring other agent`s actions and inferring their higher-level goals and intentions - is a central requirement in such worlds. While previous work has mostly focused on tracking individual agents, this paper goes beyond by focusing on agent teams. Team tracking poses the challenge of tracking a team`s joint goals and plans. Dynamic, real-time environments add to the challenge, as ambiguities have to be resolved in real-time. The central hypothesismore » underlying the present work is that an explicit team-oriented perspective enables effective team tracking. This hypothesis is instantiated using the model tracing technology employed in tracking individual agents. Thus, to track team activities, team models are put to service. Team models are a concrete application of the joint intentions framework and enable an agent to track team activities, regardless of the agent`s being a collaborative participant or a non-participant in the team. To facilitate real-time ambiguity resolution with team models: (i) aspects of tracking are cast as constraint satisfaction problems to exploit constraint propagation techniques; and (ii) a cost minimality criterion is applied to constrain tracking search. Empirical results from two separate tasks in real-world, dynamic environments one collaborative and one competitive - are provided.« less

  13. A new hybrid meta-heuristic algorithm for optimal design of large-scale dome structures

    NASA Astrophysics Data System (ADS)

    Kaveh, A.; Ilchi Ghazaan, M.

    2018-02-01

    In this article a hybrid algorithm based on a vibrating particles system (VPS) algorithm, multi-design variable configuration (Multi-DVC) cascade optimization, and an upper bound strategy (UBS) is presented for global optimization of large-scale dome truss structures. The new algorithm is called MDVC-UVPS in which the VPS algorithm acts as the main engine of the algorithm. The VPS algorithm is one of the most recent multi-agent meta-heuristic algorithms mimicking the mechanisms of damped free vibration of single degree of freedom systems. In order to handle a large number of variables, cascade sizing optimization utilizing a series of DVCs is used. Moreover, the UBS is utilized to reduce the computational time. Various dome truss examples are studied to demonstrate the effectiveness and robustness of the proposed method, as compared to some existing structural optimization techniques. The results indicate that the MDVC-UVPS technique is a powerful search and optimization method for optimizing structural engineering problems.

  14. Distributed Cooperation Solution Method of Complex System Based on MAS

    NASA Astrophysics Data System (ADS)

    Weijin, Jiang; Yuhui, Xu

    To adapt the model in reconfiguring fault diagnosing to dynamic environment and the needs of solving the tasks of complex system fully, the paper introduced multi-Agent and related technology to the complicated fault diagnosis, an integrated intelligent control system is studied in this paper. Based on the thought of the structure of diagnostic decision and hierarchy in modeling, based on multi-layer decomposition strategy of diagnosis task, a multi-agent synchronous diagnosis federation integrated different knowledge expression modes and inference mechanisms are presented, the functions of management agent, diagnosis agent and decision agent are analyzed, the organization and evolution of agents in the system are proposed, and the corresponding conflict resolution algorithm in given, Layered structure of abstract agent with public attributes is build. System architecture is realized based on MAS distributed layered blackboard. The real world application shows that the proposed control structure successfully solves the fault diagnose problem of the complex plant, and the special advantage in the distributed domain.

  15. Adaptive behaviors in multi-agent source localization using passive sensing.

    PubMed

    Shaukat, Mansoor; Chitre, Mandar

    2016-12-01

    In this paper, the role of adaptive group cohesion in a cooperative multi-agent source localization problem is investigated. A distributed source localization algorithm is presented for a homogeneous team of simple agents. An agent uses a single sensor to sense the gradient and two sensors to sense its neighbors. The algorithm is a set of individualistic and social behaviors where the individualistic behavior is as simple as an agent keeping its previous heading and is not self-sufficient in localizing the source. Source localization is achieved as an emergent property through agent's adaptive interactions with the neighbors and the environment. Given a single agent is incapable of localizing the source, maintaining team connectivity at all times is crucial. Two simple temporal sampling behaviors, intensity-based-adaptation and connectivity-based-adaptation, ensure an efficient localization strategy with minimal agent breakaways. The agent behaviors are simultaneously optimized using a two phase evolutionary optimization process. The optimized behaviors are estimated with analytical models and the resulting collective behavior is validated against the agent's sensor and actuator noise, strong multi-path interference due to environment variability, initialization distance sensitivity and loss of source signal.

  16. A Scalable and Robust Multi-Agent Approach to Distributed Optimization

    NASA Technical Reports Server (NTRS)

    Tumer, Kagan

    2005-01-01

    Modularizing a large optimization problem so that the solutions to the subproblems provide a good overall solution is a challenging problem. In this paper we present a multi-agent approach to this problem based on aligning the agent objectives with the system objectives, obviating the need to impose external mechanisms to achieve collaboration among the agents. This approach naturally addresses scaling and robustness issues by ensuring that the agents do not rely on the reliable operation of other agents We test this approach in the difficult distributed optimization problem of imperfect device subset selection [Challet and Johnson, 2002]. In this problem, there are n devices, each of which has a "distortion", and the task is to find the subset of those n devices that minimizes the average distortion. Our results show that in large systems (1000 agents) the proposed approach provides improvements of over an order of magnitude over both traditional optimization methods and traditional multi-agent methods. Furthermore, the results show that even in extreme cases of agent failures (i.e., half the agents fail midway through the simulation) the system remains coordinated and still outperforms a failure-free and centralized optimization algorithm.

  17. Negotiating designs of multi-purpose reservoir systems in international basins

    NASA Astrophysics Data System (ADS)

    Geressu, Robel; Harou, Julien

    2016-04-01

    Given increasing agricultural and energy demands, coordinated management of multi-reservoir systems could help increase production without further stressing available water resources. However, regional or international disputes about water-use rights pose a challenge to efficient expansion and management of many large reservoir systems. Even when projects are likely to benefit all stakeholders, agreeing on the design, operation, financing, and benefit sharing can be challenging. This is due to the difficulty of considering multiple stakeholder interests in the design of projects and understanding the benefit trade-offs that designs imply. Incommensurate performance metrics, incomplete knowledge on system requirements, lack of objectivity in managing conflict and difficulty to communicate complex issue exacerbate the problem. This work proposes a multi-step hybrid multi-objective optimization and multi-criteria ranking approach for supporting negotiation in water resource systems. The approach uses many-objective optimization to generate alternative efficient designs and reveal the trade-offs between conflicting objectives. This enables informed elicitation of criteria weights for further multi-criteria ranking of alternatives. An ideal design would be ranked as best by all stakeholders. Resource-sharing mechanisms such as power-trade and/or cost sharing may help competing stakeholders arrive at designs acceptable to all. Many-objective optimization helps suggests efficient designs (reservoir site, its storage size and operating rule) and coordination levels considering the perspectives of multiple stakeholders simultaneously. We apply the proposed approach to a proof-of-concept study of the expansion of the Blue Nile transboundary reservoir system.

  18. Fundamental Design based on Current Distribution in Coaxial Multi-Layer Cable-in-Conduit Conductor

    NASA Astrophysics Data System (ADS)

    Hamajima, Takataro; Tsuda, Makoto; Yagai, Tsuyoshi; Takahata, Kazuya; Imagawa, Shinsaku

    An imbalanced current distribution is often observed in cable-in-conduit (CIC) superconductors which are composed of multi-staged, triplet type sub-cables, and hence deteriorates the performance of the coils. Therefore, since it is very important to obtain a homogeneous current distribution in the superconducting strands, we propose a coaxial multi-layer type CIC conductor. We use a circuit model for all layers in the coaxial multi-layer CIC conductor, and derive a generalized formula governing the current distribution as explicit functions of the superconductor construction parameters, such as twist pitch, twist direction, radius of each layer, and number of superconducting (SC) strands and copper (Cu) strands. We apply the formula to design the coaxial multi-layer CIC which has the same number of SC strands and Cu strands of the CIC for Central Solenoid of ITER. We can design three kinds of the coaxial multi-layer CIC depending on distribution of SC and Cu strands on all layers. It is shown that the SC strand volume should be optimized as a function of SC and Cu strand distribution on the layers.

  19. A New Time-varying Concept of Risk in a Changing Climate.

    PubMed

    Sarhadi, Ali; Ausín, María Concepción; Wiper, Michael P

    2016-10-20

    In a changing climate arising from anthropogenic global warming, the nature of extreme climatic events is changing over time. Existing analytical stationary-based risk methods, however, assume multi-dimensional extreme climate phenomena will not significantly vary over time. To strengthen the reliability of infrastructure designs and the management of water systems in the changing environment, multidimensional stationary risk studies should be replaced with a new adaptive perspective. The results of a comparison indicate that current multi-dimensional stationary risk frameworks are no longer applicable to projecting the changing behaviour of multi-dimensional extreme climate processes. Using static stationary-based multivariate risk methods may lead to undesirable consequences in designing water system infrastructures. The static stationary concept should be replaced with a flexible multi-dimensional time-varying risk framework. The present study introduces a new multi-dimensional time-varying risk concept to be incorporated in updating infrastructure design strategies under changing environments arising from human-induced climate change. The proposed generalized time-varying risk concept can be applied for all stochastic multi-dimensional systems that are under the influence of changing environments.

  20. Multi-GPU parallel algorithm design and analysis for improved inversion of probability tomography with gravity gradiometry data

    NASA Astrophysics Data System (ADS)

    Hou, Zhenlong; Huang, Danian

    2017-09-01

    In this paper, we make a study on the inversion of probability tomography (IPT) with gravity gradiometry data at first. The space resolution of the results is improved by multi-tensor joint inversion, depth weighting matrix and the other methods. Aiming at solving the problems brought by the big data in the exploration, we present the parallel algorithm and the performance analysis combining Compute Unified Device Architecture (CUDA) with Open Multi-Processing (OpenMP) based on Graphics Processing Unit (GPU) accelerating. In the test of the synthetic model and real data from Vinton Dome, we get the improved results. It is also proved that the improved inversion algorithm is effective and feasible. The performance of parallel algorithm we designed is better than the other ones with CUDA. The maximum speedup could be more than 200. In the performance analysis, multi-GPU speedup and multi-GPU efficiency are applied to analyze the scalability of the multi-GPU programs. The designed parallel algorithm is demonstrated to be able to process larger scale of data and the new analysis method is practical.

  1. Designing multi-reservoir system designs via efficient water-energy-food nexus trade-offs - Selecting new hydropower dams for the Blue Nile and Nepal's Koshi Basin

    NASA Astrophysics Data System (ADS)

    Harou, J. J.; Hurford, A.; Geressu, R. T.

    2015-12-01

    Many of the world's multi-reservoir water resource systems are being considered for further development of hydropower and irrigation aiming to meet economic, political and ecological goals. Complex river basins serve many needs so how should the different proposed groupings of reservoirs and their operations be evaluated? How should uncertainty about future supply and demand conditions be factored in? What reservoir designs can meet multiple goals and perform robustly in a context of global change? We propose an optimized multi-criteria screening approach to identify best performing designs, i.e., the selection, size and operating rules of new reservoirs within multi-reservoir systems in a context of deeply uncertain change. Reservoir release operating rules and storage sizes are optimized concurrently for each separate infrastructure design under consideration across many scenarios representing plausible future conditions. Outputs reveal system trade-offs using multi-dimensional scatter plots where each point represents an approximately Pareto-optimal design. The method is applied to proposed Blue Nile River reservoirs in Ethiopia, where trade-offs between capital costs, total and firm energy output, aggregate storage and downstream irrigation and energy provision for the best performing designs are evaluated. The impact of filling period for large reservoirs is considered in a context of hydrological uncertainty. The approach is also applied to the Koshi basin in Nepal where combinations of hydropower storage and run-of-river dams are being considered for investment. We show searching for investment portfolios that meet multiple objectives provides stakeholders with a rich view on the trade-offs inherent in the nexus and how different investment bundles perform differently under plausible futures. Both case-studies show how the proposed approach helps explore and understand the implications of investing in new dams in a global change context.

  2. Multi-slice computed tomography 5-minute delayed scan is superior to immediate scan after contrast media application in characterization of intracranial tuberculosis.

    PubMed

    Hou, Dailun; Qu, Huifang; Zhang, Xu; Li, Ning; Liu, Cheng; Ma, Xiangxing

    2014-09-02

    The aim of this study was to determine whether the diagnosis of intracranial tuberculosis (TB) can be improved when multi-slice computed tomography (MSCT) scans are taken with a 5-min delay after contrast media application. Pre- and post-contrast CT scans of the head were obtained from 30 patients using a 16-slice spiral CT. Dual-phase acquisition was performed immediately and 5 min after contrast agent injection. Diagnostic values of different images were compared using a scoring system applied by 2 experienced radiologists. We found 526 lesions in 30 patients, including 22 meningeal thickenings, 235 meningeal tuberculomas/tubercles, and 269 parenchymal tuberculomas/tubercles. Images obtained with 5-min delayed scan time were superior in terms of lesion size and meningeal thickening outlining in all disease types (P<0.01). The ability to distinguish between vascular sections from the cerebral sulcus and tubercle was also improved (P<0.01). Image acquisition with 5-min delay after contrast agent injection should be performed as a standard scanning protocol to diagnose intracranial TB.

  3. An optimal control model approach to the design of compensators for simulator delay

    NASA Technical Reports Server (NTRS)

    Baron, S.; Lancraft, R.; Caglayan, A.

    1982-01-01

    The effects of display delay on pilot performance and workload and of the design of the filters to ameliorate these effects were investigated. The optimal control model for pilot/vehicle analysis was used both to determine the potential delay effects and to design the compensators. The model was applied to a simple roll tracking task and to a complex hover task. The results confirm that even small delays can degrade performance and impose a workload penalty. A time-domain compensator designed by using the optimal control model directly appears capable of providing extensive compensation for these effects even in multi-input, multi-output problems.

  4. Synergistic combinations of antifungals and anti-virulence agents to fight against Candida albicans

    PubMed Central

    Cui, Jinhui; Ren, Biao; Tong, Yaojun; Dai, Huanqin; Zhang, Lixin

    2015-01-01

    Candida albicans, one of the pathogenic Candida species, causes high mortality rate in immunocompromised and high-risk surgical patients. In the last decade, only one new class of antifungal drug echinocandin was applied. The increased therapy failures, such as the one caused by multi-drug resistance, demand innovative strategies for new effective antifungal drugs. Synergistic combinations of antifungals and anti-virulence agents highlight the pragmatic strategy to reduce the development of drug resistant and potentially repurpose known antifungals, which bypass the costly and time-consuming pipeline of new drug development. Anti-virulence and synergistic combination provide new options for antifungal drug discovery by counteracting the difficulty or failure of traditional therapy for fungal infections. PMID:26048362

  5. Adhesives and method for making the same

    DOEpatents

    Dorsey, George F.

    1991-01-01

    A thermosetting mixture for use as an adhesive, as well as other applications, that is substantially nonmutagenic. This mixture is based upon a thermosetting resin selected from polyurethane and epoxy resins, using an improved curing agent that does not contain mutagenic components. Specifically, the curing agent is a multi-mixture of substituted alkylanilines produced by an improved process. These alkylanilines are formed by condensation of at least two 2,6-dialkylanilines with a formaldehyde in an acid solution. Upon purification, at least three aromatic diamines are formed that are used for the curing agent with the polyurethane and epoxy resisn. Pot life, green strength and ultimate strength are comparable to adhesives of the prior art that contain mutagenic constituents. Although several dianilines are described, the preferred curing agents are formed using 2,6-diethylaniline (DEA) and 2,6-diisopropylaniline (DIPA), where the mole % of DEA and DIPA is 38-48 and 62-52, respectively. Curing agents within the preferred range have been designated as "Asilamine 4852" and "Asilamine 4555".

  6. Opportunistic Behavior in Motivated Learning Agents.

    PubMed

    Graham, James; Starzyk, Janusz A; Jachyra, Daniel

    2015-08-01

    This paper focuses on the novel motivated learning (ML) scheme and opportunistic behavior of an intelligent agent. It extends previously developed ML to opportunistic behavior in a multitask situation. Our paper describes the virtual world implementation of autonomous opportunistic agents learning in a dynamically changing environment, creating abstract goals, and taking advantage of arising opportunities to improve their performance. An opportunistic agent achieves better results than an agent based on ML only. It does so by minimizing the average value of all need signals rather than a dominating need. This paper applies to the design of autonomous embodied systems (robots) learning in real-time how to operate in a complex environment.

  7. Consensus for linear multi-agent system with intermittent information transmissions using the time-scale theory

    NASA Astrophysics Data System (ADS)

    Taousser, Fatima; Defoort, Michael; Djemai, Mohamed

    2016-01-01

    This paper investigates the consensus problem for linear multi-agent system with fixed communication topology in the presence of intermittent communication using the time-scale theory. Since each agent can only obtain relative local information intermittently, the proposed consensus algorithm is based on a discontinuous local interaction rule. The interaction among agents happens at a disjoint set of continuous-time intervals. The closed-loop multi-agent system can be represented using mixed linear continuous-time and linear discrete-time models due to intermittent information transmissions. The time-scale theory provides a powerful tool to combine continuous-time and discrete-time cases and study the consensus protocol under a unified framework. Using this theory, some conditions are derived to achieve exponential consensus under intermittent information transmissions. Simulations are performed to validate the theoretical results.

  8. Application of systems thinking in health: opportunities for translating theory into practice Comment on "Constraints to applying systems thinking concepts in health systems: a regional perspective from surveying stakeholders in Eastern Mediterranean countries".

    PubMed

    Malik, Asmat Ullah

    2015-03-19

    Systems thinking is not a new concept to health system strengthening; however, one question remains unanswered: How policy-makers, system designers and consultants with a system thinking philosophy should act (have acted) as potential change agents in actually gaining opportunities to introduce systems thinking? Development of Comprehensive Multi-Year Plans (cMYPs) for Immunization System is one such opportunity because almost all Low- and Middle-Income Countries (LMICs) develop and implement cMYPs every five years. Without building upon examples and showing practical application, the discussions and deliberations on systems thinking may fade away with passage of time. There are opportunities that exist around us in our existing health systems that we can benefit from starting with an incremental approach and generating evidence for longer lasting system-wide changes. © 2015 by Kerman University of Medical Sciences.

  9. Multi-Stage Hybrid Rocket Conceptual Design for Micro-Satellites Launch using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Kitagawa, Yosuke; Kitagawa, Koki; Nakamiya, Masaki; Kanazaki, Masahiro; Shimada, Toru

    The multi-objective genetic algorithm (MOGA) is applied to the multi-disciplinary conceptual design problem for a three-stage launch vehicle (LV) with a hybrid rocket engine (HRE). MOGA is an optimization tool used for multi-objective problems. The parallel coordinate plot (PCP), which is a data mining method, is employed in the post-process in MOGA for design knowledge discovery. A rocket that can deliver observing micro-satellites to the sun-synchronous orbit (SSO) is designed. It consists of an oxidizer tank containing liquid oxidizer, a combustion chamber containing solid fuel, a pressurizing tank and a nozzle. The objective functions considered in this study are to minimize the total mass of the rocket and to maximize the ratio of the payload mass to the total mass. To calculate the thrust and the engine size, the regression rate is estimated based on an empirical model for a paraffin (FT-0070) propellant. Several non-dominated solutions are obtained using MOGA, and design knowledge is discovered for the present hybrid rocket design problem using a PCP analysis. As a result, substantial knowledge on the design of an LV with an HRE is obtained for use in space transportation.

  10. A Novel Network Attack Audit System based on Multi-Agent Technology

    NASA Astrophysics Data System (ADS)

    Jianping, Wang; Min, Chen; Xianwen, Wu

    A network attack audit system which includes network attack audit Agent, host audit Agent and management control center audit Agent is proposed. And the improved multi-agent technology is carried out in the network attack audit Agent which has achieved satisfactory audit results. The audit system in terms of network attack is just in-depth, and with the function improvement of network attack audit Agent, different attack will be better analyzed and audit. In addition, the management control center Agent should manage and analyze audit results from AA (or HA) and audit data on time. And the history files of network packets and host log data should also be audit to find deeper violations that cannot be found in real time.

  11. Discovery of novel rivastigmine-hydroxycinnamic acid hybrids as multi-targeted agents for Alzheimer's disease.

    PubMed

    Chen, Ziwei; Digiacomo, Maria; Tu, Yalin; Gu, Qiong; Wang, Shengnan; Yang, Xiaohong; Chu, Jiaqi; Chen, Qiuhe; Han, Yifan; Chen, Jingkao; Nesi, Giulia; Sestito, Simona; Macchia, Marco; Rapposelli, Simona; Pi, Rongbiao

    2017-01-05

    A series of rivastigmine-caffeic acid and rivastigmine-ferulic acid hybrids were designed, synthesized, and evaluated as multifunctional agents for Alzheimer's disease (AD) in vitro. The new compounds exerted antioxidant neuroprotective properties and good cholinesterases (ChE) inhibitory activities. Some of them also inhibited amyloid protein (Aβ) aggregation. In particular, compound 5 emerged as promising drug candidates endowed with neuroprotective potential, ChE inhibitory, Aβ self-aggregation inhibitory and copper chelation properties. These data suggest that compound 5 offers an attractive starting point for further lead optimization in the drug-discovery process against AD. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. A Control Law Design Method Facilitating Control Power, Robustness, Agility, and Flying Qualities Tradeoffs: CRAFT

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.; Davidson, John B.

    1998-01-01

    A multi-input, multi-output control law design methodology, named "CRAFT", is presented. CRAFT stands for the design objectives addressed, namely, Control power, Robustness, Agility, and Flying Qualities Tradeoffs. The methodology makes use of control law design metrics from each of the four design objective areas. It combines eigenspace assignment, which allows for direct specification of eigenvalues and eigenvectors, with a graphical approach for representing the metrics that captures numerous design goals in one composite illustration. Sensitivity of the metrics to eigenspace choice is clearly displayed, enabling the designer to assess the cost of design tradeoffs. This approach enhances the designer's ability to make informed design tradeoffs and to reach effective final designs. An example of the CRAFT methodology applied to an advanced experimental fighter and discussion of associated design issues are provided.

  13. Capturing multi-stage fuzzy uncertainties in hybrid system dynamics and agent-based models for enhancing policy implementation in health systems research.

    PubMed

    Liu, Shiyong; Triantis, Konstantinos P; Zhao, Li; Wang, Youfa

    2018-01-01

    In practical research, it was found that most people made health-related decisions not based on numerical data but on perceptions. Examples include the perceptions and their corresponding linguistic values of health risks such as, smoking, syringe sharing, eating energy-dense food, drinking sugar-sweetened beverages etc. For the sake of understanding the mechanisms that affect the implementations of health-related interventions, we employ fuzzy variables to quantify linguistic variable in healthcare modeling where we employ an integrated system dynamics and agent-based model. In a nonlinear causal-driven simulation environment driven by feedback loops, we mathematically demonstrate how interventions at an aggregate level affect the dynamics of linguistic variables that are captured by fuzzy agents and how interactions among fuzzy agents, at the same time, affect the formation of different clusters(groups) that are targeted by specific interventions. In this paper, we provide an innovative framework to capture multi-stage fuzzy uncertainties manifested among interacting heterogeneous agents (individuals) and intervention decisions that affect homogeneous agents (groups of individuals) in a hybrid model that combines an agent-based simulation model (ABM) and a system dynamics models (SDM). Having built the platform to incorporate high-dimension data in a hybrid ABM/SDM model, this paper demonstrates how one can obtain the state variable behaviors in the SDM and the corresponding values of linguistic variables in the ABM. This research provides a way to incorporate high-dimension data in a hybrid ABM/SDM model. This research not only enriches the application of fuzzy set theory by capturing the dynamics of variables associated with interacting fuzzy agents that lead to aggregate behaviors but also informs implementation research by enabling the incorporation of linguistic variables at both individual and institutional levels, which makes unstructured linguistic data meaningful and quantifiable in a simulation environment. This research can help practitioners and decision makers to gain better understanding on the dynamics and complexities of precision intervention in healthcare. It can aid the improvement of the optimal allocation of resources for targeted group (s) and the achievement of maximum utility. As this technology becomes more mature, one can design policy flight simulators by which policy/intervention designers can test a variety of assumptions when they evaluate different alternatives interventions.

  14. Designing an architectural style for dynamic medical Cross-Organizational Workflow management system: an approach based on agents and web services.

    PubMed

    Bouzguenda, Lotfi; Turki, Manel

    2014-04-01

    This paper shows how the combined use of agent and web services technologies can help to design an architectural style for dynamic medical Cross-Organizational Workflow (COW) management system. Medical COW aims at supporting the collaboration between several autonomous and possibly heterogeneous medical processes, distributed over different organizations (Hospitals, Clinic or laboratories). Dynamic medical COW refers to occasional cooperation between these health organizations, free of structural constraints, where the medical partners involved and their number are not pre-defined. More precisely, this paper proposes a new architecture style based on agents and web services technologies to deal with two key coordination issues of dynamic COW: medical partners finding and negotiation between them. It also proposes how the proposed architecture for dynamic medical COW management system can connect to a multi-agent system coupling the Clinical Decision Support System (CDSS) with Computerized Prescriber Order Entry (CPOE). The idea is to assist the health professionals such as doctors, nurses and pharmacists with decision making tasks, as determining diagnosis or patient data analysis without stopping their clinical processes in order to act in a coherent way and to give care to the patient.

  15. A modified multi-objective particle swarm optimization approach and its application to the design of a deepwater composite riser

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Chen, J.

    2017-09-01

    A modified multi-objective particle swarm optimization method is proposed for obtaining Pareto-optimal solutions effectively. Different from traditional multi-objective particle swarm optimization methods, Kriging meta-models and the trapezoid index are introduced and integrated with the traditional one. Kriging meta-models are built to match expensive or black-box functions. By applying Kriging meta-models, function evaluation numbers are decreased and the boundary Pareto-optimal solutions are identified rapidly. For bi-objective optimization problems, the trapezoid index is calculated as the sum of the trapezoid's area formed by the Pareto-optimal solutions and one objective axis. It can serve as a measure whether the Pareto-optimal solutions converge to the Pareto front. Illustrative examples indicate that to obtain Pareto-optimal solutions, the method proposed needs fewer function evaluations than the traditional multi-objective particle swarm optimization method and the non-dominated sorting genetic algorithm II method, and both the accuracy and the computational efficiency are improved. The proposed method is also applied to the design of a deepwater composite riser example in which the structural performances are calculated by numerical analysis. The design aim was to enhance the tension strength and minimize the cost. Under the buckling constraint, the optimal trade-off of tensile strength and material volume is obtained. The results demonstrated that the proposed method can effectively deal with multi-objective optimizations with black-box functions.

  16. Flocking with connectivity preservation for disturbed nonlinear multi-agent systems by output feedback

    NASA Astrophysics Data System (ADS)

    Li, Ping; Zhang, Baoyong; Ma, Qian; Xu, Shengyuan; Chen, Weimin; Zhang, Zhengqiang

    2018-05-01

    This paper considers the problem of flocking with connectivity preservation for a class of disturbed nonlinear multi-agent systems. In order to deal with the nonlinearities in the dynamic of all agents, some auxiliary variables are introduced into the state observer for stability analysis. By proposing a bounded potential function and using adaptive theory, a novel output feedback consensus algorithm is developed to guarantee that the states of all agents achieve flocking with connectivity preservation.

  17. On-lattice agent-based simulation of populations of cells within the open-source Chaste framework.

    PubMed

    Figueredo, Grazziela P; Joshi, Tanvi V; Osborne, James M; Byrne, Helen M; Owen, Markus R

    2013-04-06

    Over the years, agent-based models have been developed that combine cell division and reinforced random walks of cells on a regular lattice, reaction-diffusion equations for nutrients and growth factors; and ordinary differential equations for the subcellular networks regulating the cell cycle. When linked to a vascular layer, this multiple scale model framework has been applied to tumour growth and therapy. Here, we report on the creation of an agent-based multi-scale environment amalgamating the characteristics of these models within a Virtual Physiological Human (VPH) Exemplar Project. This project enables reuse, integration, expansion and sharing of the model and relevant data. The agent-based and reaction-diffusion parts of the multi-scale model have been implemented and are available for download as part of the latest public release of Chaste (Cancer, Heart and Soft Tissue Environment; http://www.cs.ox.ac.uk/chaste/), part of the VPH Toolkit (http://toolkit.vph-noe.eu/). The environment functionalities are verified against the original models, in addition to extra validation of all aspects of the code. In this work, we present the details of the implementation of the agent-based environment, including the system description, the conceptual model, the development of the simulation model and the processes of verification and validation of the simulation results. We explore the potential use of the environment by presenting exemplar applications of the 'what if' scenarios that can easily be studied in the environment. These examples relate to tumour growth, cellular competition for resources and tumour responses to hypoxia (low oxygen levels). We conclude our work by summarizing the future steps for the expansion of the current system.

  18. Consensus seeking in a network of discrete-time linear agents with communication noises

    NASA Astrophysics Data System (ADS)

    Wang, Yunpeng; Cheng, Long; Hou, Zeng-Guang; Tan, Min; Zhou, Chao; Wang, Ming

    2015-07-01

    This paper studies the mean square consensus of discrete-time linear time-invariant multi-agent systems with communication noises. A distributed consensus protocol, which is composed of the agent's own state feedback and the relative states between the agent and its neighbours, is proposed. A time-varying consensus gain a[k] is applied to attenuate the effect of noises which inherits in the inaccurate measurement of relative states with neighbours. A polynomial, namely 'parameter polynomial', is constructed. And its coefficients are the parameters in the feedback gain vector of the proposed protocol. It turns out that the parameter polynomial plays an important role in guaranteeing the consensus of linear multi-agent systems. By the proposed protocol, necessary and sufficient conditions for mean square consensus are presented under different topology conditions: (1) if the communication topology graph has a spanning tree and every node in the graph has at least one parent node, then the mean square consensus can be achieved if and only if ∑∞k = 0a[k] = ∞, ∑∞k = 0a2[k] < ∞ and all roots of the parameter polynomial are in the unit circle; (2) if the communication topology graph has a spanning tree and there exits one node without any parent node (the leader-follower case), then the mean square consensus can be achieved if and only if ∑∞k = 0a[k] = ∞, limk → ∞a[k] = 0 and all roots of the parameter polynomial are in the unit circle; (3) if the communication topology graph does not have a spanning tree, then the mean square consensus can never be achieved. Finally, one simulation example on the multiple aircrafts system is provided to validate the theoretical analysis.

  19. Multi-agent systems and their applications

    DOE PAGES

    Xie, Jing; Liu, Chen-Ching

    2017-07-14

    The number of distributed energy components and devices continues to increase globally. As a result, distributed control schemes are desirable for managing and utilizing these devices, together with the large amount of data. In recent years, agent-based technology becomes a powerful tool for engineering applications. As a computational paradigm, multi agent systems (MASs) provide a good solution for distributed control. Here in this paper, MASs and applications are discussed. A state-of-the-art literature survey is conducted on the system architecture, consensus algorithm, and multi-agent platform, framework, and simulator. In addition, a distributed under-frequency load shedding (UFLS) scheme is proposed using themore » MAS. Simulation results for a case study are presented. The future of MASs is discussed in the conclusion.« less

  20. Multi-agent systems and their applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Jing; Liu, Chen-Ching

    The number of distributed energy components and devices continues to increase globally. As a result, distributed control schemes are desirable for managing and utilizing these devices, together with the large amount of data. In recent years, agent-based technology becomes a powerful tool for engineering applications. As a computational paradigm, multi agent systems (MASs) provide a good solution for distributed control. Here in this paper, MASs and applications are discussed. A state-of-the-art literature survey is conducted on the system architecture, consensus algorithm, and multi-agent platform, framework, and simulator. In addition, a distributed under-frequency load shedding (UFLS) scheme is proposed using themore » MAS. Simulation results for a case study are presented. The future of MASs is discussed in the conclusion.« less

  1. Research on monitoring system of water resources in Shiyang River Basin based on Multi-agent

    NASA Astrophysics Data System (ADS)

    Zhao, T. H.; Yin, Z.; Song, Y. Z.

    2012-11-01

    The Shiyang River Basin is the most populous, economy relatively develop, the highest degree of development and utilization of water resources, water conflicts the most prominent, ecological environment problems of the worst hit areas in Hexi inland river basin in Gansu province. the contradiction between people and water is aggravated constantly in the basin. This text combines multi-Agent technology with monitoring system of water resource, the establishment of a management center, telemetry Agent Federation, as well as the communication network between the composition of the Shiyang River Basin water resources monitoring system. By taking advantage of multi-agent system intelligence and communications coordination to improve the timeliness of the basin water resources monitoring.

  2. Policy design and performance of emissions trading markets: an adaptive agent-based analysis.

    PubMed

    Bing, Zhang; Qinqin, Yu; Jun, Bi

    2010-08-01

    Emissions trading is considered to be a cost-effective environmental economic instrument for pollution control. However, the pilot emissions trading programs in China have failed to bring remarkable success in the campaign for pollution control. The policy design of an emissions trading program is found to have a decisive impact on its performance. In this study, an artificial market for sulfur dioxide (SO2) emissions trading applying the agent-based model was constructed. The performance of the Jiangsu SO2 emissions trading market under different policy design scenario was also examined. Results show that the market efficiency of emissions trading is significantly affected by policy design and existing policies. China's coal-electricity price system is the principal factor influencing the performance of the SO2 emissions trading market. Transaction costs would also reduce market efficiency. In addition, current-level emissions discharge fee/tax and banking mechanisms do not distinctly affect policy performance. Thus, applying emissions trading in emission control in China should consider policy design and interaction with other existing policies.

  3. Hardware accelerated high performance neutron transport computation based on AGENT methodology

    NASA Astrophysics Data System (ADS)

    Xiao, Shanjie

    The spatial heterogeneity of the next generation Gen-IV nuclear reactor core designs brings challenges to the neutron transport analysis. The Arbitrary Geometry Neutron Transport (AGENT) AGENT code is a three-dimensional neutron transport analysis code being developed at the Laboratory for Neutronics and Geometry Computation (NEGE) at Purdue University. It can accurately describe the spatial heterogeneity in a hierarchical structure through the R-function solid modeler. The previous version of AGENT coupled the 2D transport MOC solver and the 1D diffusion NEM solver to solve the three dimensional Boltzmann transport equation. In this research, the 2D/1D coupling methodology was expanded to couple two transport solvers, the radial 2D MOC solver and the axial 1D MOC solver, for better accuracy. The expansion was benchmarked with the widely applied C5G7 benchmark models and two fast breeder reactor models, and showed good agreement with the reference Monte Carlo results. In practice, the accurate neutron transport analysis for a full reactor core is still time-consuming and thus limits its application. Therefore, another content of my research is focused on designing a specific hardware based on the reconfigurable computing technique in order to accelerate AGENT computations. It is the first time that the application of this type is used to the reactor physics and neutron transport for reactor design. The most time consuming part of the AGENT algorithm was identified. Moreover, the architecture of the AGENT acceleration system was designed based on the analysis. Through the parallel computation on the specially designed, highly efficient architecture, the acceleration design on FPGA acquires high performance at the much lower working frequency than CPUs. The whole design simulations show that the acceleration design would be able to speedup large scale AGENT computations about 20 times. The high performance AGENT acceleration system will drastically shortening the computation time for 3D full-core neutron transport analysis, making the AGENT methodology unique and advantageous, and thus supplies the possibility to extend the application range of neutron transport analysis in either industry engineering or academic research.

  4. Scientific and industrial challenges of developing nanoparticle-based theranostics and multiple-modality contrast agents for clinical application

    NASA Astrophysics Data System (ADS)

    Wáng, Yì Xiáng J.; Idée, Jean-Marc; Corot, Claire

    2015-10-01

    Designing of theranostics and dual or multi-modality contrast agents are currently two of the hottest topics in biotechnology and biomaterials science. However, for single entity theranostics, a right ratio of their diagnostic component and their therapeutic component may not always be realized in a composite suitable for clinical application. For dual/multiple modality molecular imaging agents, after in vivo administration, there is an optimal time window for imaging, when an agent is imaged by one modality, the pharmacokinetics of this agent may not allow imaging by another modality. Due to reticuloendothelial system clearance, efficient in vivo delivery of nanoparticles to the lesion site is sometimes difficult. The toxicity of these entities also remains poorly understood. While the medical need of theranostics is admitted, the business model remains to be established. There is an urgent need for a global and internationally harmonized re-evaluation of the approval and marketing processes of theranostics. However, a reasonable expectation exists that, in the near future, the current obstacles will be removed, thus allowing the wide use of these very promising agents.

  5. A stochastic multi-agent optimization model for energy infrastructure planning under uncertainty and competition.

    DOT National Transportation Integrated Search

    2017-07-04

    This paper presents a stochastic multi-agent optimization model that supports energy infrastruc- : ture planning under uncertainty. The interdependence between dierent decision entities in the : system is captured in an energy supply chain network, w...

  6. Coordination of heterogeneous nonlinear multi-agent systems with prescribed behaviours

    NASA Astrophysics Data System (ADS)

    Tang, Yutao

    2017-10-01

    In this paper, we consider a coordination problem for a class of heterogeneous nonlinear multi-agent systems with a prescribed input-output behaviour which was represented by another input-driven system. In contrast to most existing multi-agent coordination results with an autonomous (virtual) leader, this formulation takes possible control inputs of the leader into consideration. First, the coordination was achieved by utilising a group of distributed observers based on conventional assumptions of model matching problem. Then, a fully distributed adaptive extension was proposed without using the input of this input-output behaviour. An example was given to verify their effectiveness.

  7. MULTI-OBJECTIVE OPTIMAL DESIGN OF GROUNDWATER REMEDIATION SYSTEMS: APPLICATION OF THE NICHED PARETO GENETIC ALGORITHM (NPGA). (R826614)

    EPA Science Inventory

    A multiobjective optimization algorithm is applied to a groundwater quality management problem involving remediation by pump-and-treat (PAT). The multiobjective optimization framework uses the niched Pareto genetic algorithm (NPGA) and is applied to simultaneously minimize the...

  8. System design in an evolving system-of-systems architecture and concept of operations

    NASA Astrophysics Data System (ADS)

    Rovekamp, Roger N., Jr.

    Proposals for space exploration architectures have increased in complexity and scope. Constituent systems (e.g., rovers, habitats, in-situ resource utilization facilities, transfer vehicles, etc) must meet the needs of these architectures by performing in multiple operational environments and across multiple phases of the architecture's evolution. This thesis proposes an approach for using system-of-systems engineering principles in conjunction with system design methods (e.g., Multi-objective optimization, genetic algorithms, etc) to create system design options that perform effectively at both the system and system-of-systems levels, across multiple concepts of operations, and over multiple architectural phases. The framework is presented by way of an application problem that investigates the design of power systems within a power sharing architecture for use in a human Lunar Surface Exploration Campaign. A computer model has been developed that uses candidate power grid distribution solutions for a notional lunar base. The agent-based model utilizes virtual control agents to manage the interactions of various exploration and infrastructure agents. The philosophy behind the model is based both on lunar power supply strategies proposed in literature, as well as on the author's own approaches for power distribution strategies of future lunar bases. In addition to proposing a framework for system design, further implications of system-of-systems engineering principles are briefly explored, specifically as they relate to producing more robust cross-cultural system-of-systems architecture solutions.

  9. A nonlinear merging protocol for consensus in multi-agent systems on signed and weighted graphs

    NASA Astrophysics Data System (ADS)

    Feng, Shasha; Wang, Li; Li, Yijia; Sun, Shiwen; Xia, Chengyi

    2018-01-01

    In this paper, we investigate the multi-agent consensus for networks with undirected graphs which are not connected, especially for the signed graph in which some edge weights are positive and some edges have negative weights, and the negative-weight graph whose edge weights are negative. We propose a novel nonlinear merging consensus protocol to drive the states of all agents to converge to the same state zero which is not dependent upon the initial states of agents. If the undirected graph whose edge weights are positive is connected, then the states of all agents converge to the same state more quickly when compared to most other protocols. While the undirected graph whose edge weights might be positive or negative is unconnected, the states of all agents can still converge to the same state zero under the premise that the undirected graph can be divided into several connected subgraphs with more than one node. Furthermore, we also discuss the impact of parameter r presented in our protocol. Current results can further deepen the understanding of consensus processes for multi-agent systems.

  10. Optimized Sensor Network and Multi-Agent Decision Support for Smart Traffic Light Management.

    PubMed

    Cruz-Piris, Luis; Rivera, Diego; Fernandez, Susel; Marsa-Maestre, Ivan

    2018-02-02

    One of the biggest challenges in modern societies is to solve vehicular traffic problems. Sensor networks in traffic environments have contributed to improving the decision-making process of Intelligent Transportation Systems. However, one of the limiting factors for the effectiveness of these systems is in the deployment of sensors to provide accurate information about the traffic. Our proposal is using the centrality measurement of a graph as a base to locate the best locations for sensor installation in a traffic network. After integrating these sensors in a simulation scenario, we define a Multi-Agent Systems composed of three types of agents: traffic light management agents, traffic jam detection agents, and agents that control the traffic lights at an intersection. The ultimate goal of these Multi-Agent Systems is to improve the trip duration for vehicles in the network. To validate our solution, we have developed the needed elements for modelling the sensors and agents in the simulation environment. We have carried out experiments using the Simulation of Urban MObility (SUMO) traffic simulator and the Travel and Activity PAtterns Simulation (TAPAS) Cologne traffic scenario. The obtained results show that our proposal allows to reduce the sensor network while still obtaining relevant information to have a global view of the environment. Finally, regarding the Multi-Agent Systems, we have carried out experiments that show that our proposal is able to improve other existing solutions such as conventional traffic light management systems (static or dynamic) in terms of reduction of vehicle trip duration and reduction of the message exchange overhead in the sensor network.

  11. Optimized Sensor Network and Multi-Agent Decision Support for Smart Traffic Light Management

    PubMed Central

    2018-01-01

    One of the biggest challenges in modern societies is to solve vehicular traffic problems. Sensor networks in traffic environments have contributed to improving the decision-making process of Intelligent Transportation Systems. However, one of the limiting factors for the effectiveness of these systems is in the deployment of sensors to provide accurate information about the traffic. Our proposal is using the centrality measurement of a graph as a base to locate the best locations for sensor installation in a traffic network. After integrating these sensors in a simulation scenario, we define a Multi-Agent Systems composed of three types of agents: traffic light management agents, traffic jam detection agents, and agents that control the traffic lights at an intersection. The ultimate goal of these Multi-Agent Systems is to improve the trip duration for vehicles in the network. To validate our solution, we have developed the needed elements for modelling the sensors and agents in the simulation environment. We have carried out experiments using the Simulation of Urban MObility (SUMO) traffic simulator and the Travel and Activity PAtterns Simulation (TAPAS) Cologne traffic scenario. The obtained results show that our proposal allows to reduce the sensor network while still obtaining relevant information to have a global view of the environment. Finally, regarding the Multi-Agent Systems, we have carried out experiments that show that our proposal is able to improve other existing solutions such as conventional traffic light management systems (static or dynamic) in terms of reduction of vehicle trip duration and reduction of the message exchange overhead in the sensor network. PMID:29393884

  12. A New Automated Design Method Based on Machine Learning for CMOS Analog Circuits

    NASA Astrophysics Data System (ADS)

    Moradi, Behzad; Mirzaei, Abdolreza

    2016-11-01

    A new simulation based automated CMOS analog circuit design method which applies a multi-objective non-Darwinian-type evolutionary algorithm based on Learnable Evolution Model (LEM) is proposed in this article. The multi-objective property of this automated design of CMOS analog circuits is governed by a modified Strength Pareto Evolutionary Algorithm (SPEA) incorporated in the LEM algorithm presented here. LEM includes a machine learning method such as the decision trees that makes a distinction between high- and low-fitness areas in the design space. The learning process can detect the right directions of the evolution and lead to high steps in the evolution of the individuals. The learning phase shortens the evolution process and makes remarkable reduction in the number of individual evaluations. The expert designer's knowledge on circuit is applied in the design process in order to reduce the design space as well as the design time. The circuit evaluation is made by HSPICE simulator. In order to improve the design accuracy, bsim3v3 CMOS transistor model is adopted in this proposed design method. This proposed design method is tested on three different operational amplifier circuits. The performance of this proposed design method is verified by comparing it with the evolutionary strategy algorithm and other similar methods.

  13. Multi-agent systems: effective approach for cancer care information management.

    PubMed

    Mohammadzadeh, Niloofar; Safdari, Reza; Rahimi, Azin

    2013-01-01

    Physicians, in order to study the causes of cancer, detect cancer earlier, prevent or determine the effectiveness of treatment, and specify the reasons for the treatment ineffectiveness, need to access accurate, comprehensive, and timely cancer data. The cancer care environment has become more complex because of the need for coordination and communication among health care professionals with different skills in a variety of roles and the existence of large amounts of data with various formats. The goals of health care systems in such a complex environment are correct health data management, providing appropriate information needs of users to enhance the integrity and quality of health care, timely access to accurate information and reducing medical errors. These roles in new systems with use of agents efficiently perform well. Because of the potential capability of agent systems to solve complex and dynamic health problems, health care system, in order to gain full advantage of E- health, steps must be taken to make use of this technology. Multi-agent systems have effective roles in health service quality improvement especially in telemedicine, emergency situations and management of chronic diseases such as cancer. In the design and implementation of agent based systems, planning items such as information confidentiality and privacy, architecture, communication standards, ethical and legal aspects, identification opportunities and barriers should be considered. It should be noted that usage of agent systems only with a technical view is associated with many problems such as lack of user acceptance. The aim of this commentary is to survey applications, opportunities and barriers of this new artificial intelligence tool for cancer care information as an approach to improve cancer care management.

  14. Multi Agent Reward Analysis for Learning in Noisy Domains

    NASA Technical Reports Server (NTRS)

    Tumer, Kagan; Agogino, Adrian K.

    2005-01-01

    In many multi agent learning problems, it is difficult to determine, a priori, the agent reward structure that will lead to good performance. This problem is particularly pronounced in continuous, noisy domains ill-suited to simple table backup schemes commonly used in TD(lambda)/Q-learning. In this paper, we present a new reward evaluation method that allows the tradeoff between coordination among the agents and the difficulty of the learning problem each agent faces to be visualized. This method is independent of the learning algorithm and is only a function of the problem domain and the agents reward structure. We then use this reward efficiency visualization method to determine an effective reward without performing extensive simulations. We test this method in both a static and a dynamic multi-rover learning domain where the agents have continuous state spaces and where their actions are noisy (e.g., the agents movement decisions are not always carried out properly). Our results show that in the more difficult dynamic domain, the reward efficiency visualization method provides a two order of magnitude speedup in selecting a good reward. Most importantly it allows one to quickly create and verify rewards tailored to the observational limitations of the domain.

  15. A Multi Agent-Based Framework for Simulating Household PHEV Distribution and Electric Distribution Network Impact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Xiaohui; Liu, Cheng; Kim, Hoe Kyoung

    2011-01-01

    The variation of household attributes such as income, travel distance, age, household member, and education for different residential areas may generate different market penetration rates for plug-in hybrid electric vehicle (PHEV). Residential areas with higher PHEV ownership could increase peak electric demand locally and require utilities to upgrade the electric distribution infrastructure even though the capacity of the regional power grid is under-utilized. Estimating the future PHEV ownership distribution at the residential household level can help us understand the impact of PHEV fleet on power line congestion, transformer overload and other unforeseen problems at the local residential distribution network level.more » It can also help utilities manage the timing of recharging demand to maximize load factors and utilization of existing distribution resources. This paper presents a multi agent-based simulation framework for 1) modeling spatial distribution of PHEV ownership at local residential household level, 2) discovering PHEV hot zones where PHEV ownership may quickly increase in the near future, and 3) estimating the impacts of the increasing PHEV ownership on the local electric distribution network with different charging strategies. In this paper, we use Knox County, TN as a case study to show the simulation results of the agent-based model (ABM) framework. However, the framework can be easily applied to other local areas in the US.« less

  16. JIGSAW: Preference-directed, co-operative scheduling

    NASA Technical Reports Server (NTRS)

    Linden, Theodore A.; Gaw, David

    1992-01-01

    Techniques that enable humans and machines to cooperate in the solution of complex scheduling problems have evolved out of work on the daily allocation and scheduling of Tactical Air Force resources. A generalized, formal model of these applied techniques is being developed. It is called JIGSAW by analogy with the multi-agent, constructive process used when solving jigsaw puzzles. JIGSAW begins from this analogy and extends it by propagating local preferences into global statistics that dynamically influence the value and variable ordering decisions. The statistical projections also apply to abstract resources and time periods--allowing more opportunities to find a successful variable ordering by reserving abstract resources and deferring the choice of a specific resource or time period.

  17. Agent-based modeling of porous scaffold degradation and vascularization: Optimal scaffold design based on architecture and degradation dynamics.

    PubMed

    Mehdizadeh, Hamidreza; Bayrak, Elif S; Lu, Chenlin; Somo, Sami I; Akar, Banu; Brey, Eric M; Cinar, Ali

    2015-11-01

    A multi-layer agent-based model (ABM) of biomaterial scaffold vascularization is extended to consider the effects of scaffold degradation kinetics on blood vessel formation. A degradation model describing the bulk disintegration of porous hydrogels is incorporated into the ABM. The combined degradation-angiogenesis model is used to investigate growing blood vessel networks in the presence of a degradable scaffold structure. Simulation results indicate that higher porosity, larger mean pore size, and rapid degradation allow faster vascularization when not considering the structural support of the scaffold. However, premature loss of structural support results in failure for the material. A strategy using multi-layer scaffold with different degradation rates in each layer was investigated as a way to address this issue. Vascularization was improved with the multi-layered scaffold model compared to the single-layer model. The ABM developed provides insight into the characteristics that influence the selection of optimal geometric parameters and degradation behavior of scaffolds, and enables easy refinement of the model as new knowledge about the underlying biological phenomena becomes available. This paper proposes a multi-layer agent-based model (ABM) of biomaterial scaffold vascularization integrated with a structural-kinetic model describing bulk degradation of porous hydrogels to consider the effects of scaffold degradation kinetics on blood vessel formation. This enables the assessment of scaffold characteristics and in particular the disintegration characteristics of the scaffold on angiogenesis. Simulation results indicate that higher porosity, larger mean pore size, and rapid degradation allow faster vascularization when not considering the structural support of the scaffold. However, premature loss of structural support by scaffold disintegration results in failure of the material and disruption of angiogenesis. A strategy using multi-layer scaffold with different degradation rates in each layer was investigated as away to address this issue. Vascularization was improved with the multi-layered scaffold model compared to the single-layer model. The ABM developed provides insight into the characteristics that influence the selection of optimal geometric and degradation characteristics of tissue engineering scaffolds. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Comparison of Evolutionary (Genetic) Algorithm and Adjoint Methods for Multi-Objective Viscous Airfoil Optimizations

    NASA Technical Reports Server (NTRS)

    Pulliam, T. H.; Nemec, M.; Holst, T.; Zingg, D. W.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    A comparison between an Evolutionary Algorithm (EA) and an Adjoint-Gradient (AG) Method applied to a two-dimensional Navier-Stokes code for airfoil design is presented. Both approaches use a common function evaluation code, the steady-state explicit part of the code,ARC2D. The parameterization of the design space is a common B-spline approach for an airfoil surface, which together with a common griding approach, restricts the AG and EA to the same design space. Results are presented for a class of viscous transonic airfoils in which the optimization tradeoff between drag minimization as one objective and lift maximization as another, produces the multi-objective design space. Comparisons are made for efficiency, accuracy and design consistency.

  19. A Multi-Modal Digital Game-Based Learning Environment for Hospitalized Children with Chronic Illnesses.

    ERIC Educational Resources Information Center

    Chin, Jui-Chih; Tsuei, Mengping

    2014-01-01

    The aim of this study was to explore the digital game-based learning for children with chronic illnesses in the hospital settings. The design-based research and qualitative methods were applied. Three eight-year-old children with leukemia participated in this study. In the first phase, the multi-user game-based learning system was developed and…

  20. Optimal harvesting for a predator-prey agent-based model using difference equations.

    PubMed

    Oremland, Matthew; Laubenbacher, Reinhard

    2015-03-01

    In this paper, a method known as Pareto optimization is applied in the solution of a multi-objective optimization problem. The system in question is an agent-based model (ABM) wherein global dynamics emerge from local interactions. A system of discrete mathematical equations is formulated in order to capture the dynamics of the ABM; while the original model is built up analytically from the rules of the model, the paper shows how minor changes to the ABM rule set can have a substantial effect on model dynamics. To address this issue, we introduce parameters into the equation model that track such changes. The equation model is amenable to mathematical theory—we show how stability analysis can be performed and validated using ABM data. We then reduce the equation model to a simpler version and implement changes to allow controls from the ABM to be tested using the equations. Cohen's weighted κ is proposed as a measure of similarity between the equation model and the ABM, particularly with respect to the optimization problem. The reduced equation model is used to solve a multi-objective optimization problem via a technique known as Pareto optimization, a heuristic evolutionary algorithm. Results show that the equation model is a good fit for ABM data; Pareto optimization provides a suite of solutions to the multi-objective optimization problem that can be implemented directly in the ABM.

  1. A bio-inspired swarm robot coordination algorithm for multiple target searching

    NASA Astrophysics Data System (ADS)

    Meng, Yan; Gan, Jing; Desai, Sachi

    2008-04-01

    The coordination of a multi-robot system searching for multi targets is challenging under dynamic environment since the multi-robot system demands group coherence (agents need to have the incentive to work together faithfully) and group competence (agents need to know how to work together well). In our previous proposed bio-inspired coordination method, Local Interaction through Virtual Stigmergy (LIVS), one problem is the considerable randomness of the robot movement during coordination, which may lead to more power consumption and longer searching time. To address these issues, an adaptive LIVS (ALIVS) method is proposed in this paper, which not only considers the travel cost and target weight, but also predicting the target/robot ratio and potential robot redundancy with respect to the detected targets. Furthermore, a dynamic weight adjustment is also applied to improve the searching performance. This new method a truly distributed method where each robot makes its own decision based on its local sensing information and the information from its neighbors. Basically, each robot only communicates with its neighbors through a virtual stigmergy mechanism and makes its local movement decision based on a Particle Swarm Optimization (PSO) algorithm. The proposed ALIVS algorithm has been implemented on the embodied robot simulator, Player/Stage, in a searching target. The simulation results demonstrate the efficiency and robustness in a power-efficient manner with the real-world constraints.

  2. Robust Feedback Control of Reconfigurable Multi-Agent Systems in Uncertain Adversarial Environments

    DTIC Science & Technology

    2015-07-09

    R. G., Optimal Lunar Landing and Retargeting using a Hybrid Control Strategy. Proceedings of the 2013 AAS/AIAA Space Flight Mechanics Meeting (AAS...Furfaro, R. & Sanfelice, R. G., Switching System Model for Pinpoint Lunar Landing Guidance Using a Hybrid Control Strategy. Proceedings of the AIAA...methods in distributed settings and the design of numerical methods to properly compute their trajectories . We have generate results showing that

  3. US Army Research Laboratory Visualization Framework Design Document

    DTIC Science & Technology

    2016-01-01

    This section highlights each module in the ARL-VF and subsequent sections provide details on how each module interacts . Fig. 2 ARL-VF with the...ConfigAgent MultiTouch VizDatabase VizController TUIO VizDatabase User VizDaemon VizDaemon VizDaemon VizDaemon VizDaemon TestPoint...received by the destination. The sequence diagram in Fig. 4 shows this interaction . Approved for public release; distribution unlimited. 13 Fig. 4

  4. Distinct profiling of antimicrobial peptide families

    PubMed Central

    Khamis, Abdullah M.; Essack, Magbubah; Gao, Xin; Bajic, Vladimir B.

    2015-01-01

    Motivation: The increased prevalence of multi-drug resistant (MDR) pathogens heightens the need to design new antimicrobial agents. Antimicrobial peptides (AMPs) exhibit broad-spectrum potent activity against MDR pathogens and kills rapidly, thus giving rise to AMPs being recognized as a potential substitute for conventional antibiotics. Designing new AMPs using current in-silico approaches is, however, challenging due to the absence of suitable models, large number of design parameters, testing cycles, production time and cost. To date, AMPs have merely been categorized into families according to their primary sequences, structures and functions. The ability to computationally determine the properties that discriminate AMP families from each other could help in exploring the key characteristics of these families and facilitate the in-silico design of synthetic AMPs. Results: Here we studied 14 AMP families and sub-families. We selected a specific description of AMP amino acid sequence and identified compositional and physicochemical properties of amino acids that accurately distinguish each AMP family from all other AMPs with an average sensitivity, specificity and precision of 92.88%, 99.86% and 95.96%, respectively. Many of our identified discriminative properties have been shown to be compositional or functional characteristics of the corresponding AMP family in literature. We suggest that these properties could serve as guides for in-silico methods in design of novel synthetic AMPs. The methodology we developed is generic and has a potential to be applied for characterization of any protein family. Contact: vladimir.bajic@kaust.edu.sa Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25388148

  5. Coupled thermal, electrical, and fluid flow analyses of AMTEC converters, with illustrative application to OSC`s cell design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schock, A.; Noravian, H.; Or, C.

    1997-12-31

    This paper presents the background and introduction to the OSC AMTEC (Alkali Metal Thermal-to-Electrical Conversion) studies, which were conducted for the Department of energy (DOE) and NASA`s jet Propulsion Laboratory (JPL). After describing the basic principle of AMTEC, the paper describes and explains the operation of multi-tube vapor/vapor cells, which have been under development by AMPS (Advance Modular Power Systems, Inc.) for the Air Force Phillips Laboratory (AFPL) and JPL for possible application to the Europa Orbiter, Pluto Express, and other space missions. It then describes a novel OSC-generated methodology for analyzing the performance of such cells. This methodology consistsmore » of an iterative procedure for the coupled solution of the interdependent thermal, electrical, and fluid flow differential and integral equations governing the performance of AMTEC cells and generators, taking proper account of the non-linear axial variations of temperature, pressure, open-circuit voltage, inter-electrode voltages, current density, axial current, sodium mass flow rate, and power density. The paper illustrates that analytical procedure by applying it to OSC`s latest cell design and by presenting detailed analytical results for that design. The OSC-developed analytic methodology constitutes a unique and powerful tool for accurate parametric analyses and design optimizations of the multi-tube AMTEC cells and of radioisotope power systems. This is illustrated in two companion papers in these proceedings. The first of those papers applies the OSC-derived program to determine the effect of various design parameters on the performance of single AMTEC cells with adiabatic side walls, culminating in an OSC-recommended revised cell design. And the second describes a number of OSC-generated AMTEC generator designs consisting of 2 and 3 GPHS heat source modules, 16 multi-tube converter cells, and a hybrid insulation design, and presents the results of applying the above analysis program to determine the applicability of those generators to possible future missions under consideration by NASA.« less

  6. Design Principles of Nanoparticles as Contrast Agents for Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Shan, Liang; Gu, Xinbin; Wang, Paul

    2013-09-01

    Molecular imaging is an emerging field that introduces molecular agents into traditional imaging techniques, enabling visualization, characterization and measurement of biological processes at the molecular and cellular levels in humans and other living systems. The promise of molecular imaging lies in its potential for selective potency by targeting biomarkers or molecular targets and the imaging agents serve as reporters for the selectivity of targeting. Development of an efficient molecular imaging agent depends on well-controlled high-quality experiment design involving target selection, agent synthesis, in vitro characterization, and in vivo animal characterization before it is applied in humans. According to the analysis from the Molecular Imaging and Contrast Agent Database (MICAD, ), more than 6000 molecular imaging agents with sufficient preclinical evaluation have been reported to date in the literature and this number increases by 250-300 novel agents each year. The majority of these agents are radionuclides, which are developed for positron emission tomography (PET) and single photon emission computed tomography (SPECT). Contrast agents for magnetic resonance imaging (MRI) account for only a small part. This is largely due to the fact that MRI is currently not a fully quantitative imaging technique and is less sensitive than PET and SPECT. However, because of the superior ability to simultaneously extract molecular and anatomic information, molecular MRI is attracting significant interest and various targeted nanoparticle contrast agents have been synthesized for MRI. The first and one of the most critical steps in developing a targeted nanoparticle contrast agent is target selection, which plays the central role and forms the basis for success of molecular imaging. This chapter discusses the design principles of targeted contrast agents in the emerging frontiers of molecular MRI.

  7. Distributed event-triggered consensus tracking of second-order multi-agent systems with a virtual leader

    NASA Astrophysics Data System (ADS)

    Jie, Cao; Zhi-Hai, Wu; Li, Peng

    2016-05-01

    This paper investigates the consensus tracking problems of second-order multi-agent systems with a virtual leader via event-triggered control. A novel distributed event-triggered transmission scheme is proposed, which is intermittently examined at constant sampling instants. Only partial neighbor information and local measurements are required for event detection. Then the corresponding event-triggered consensus tracking protocol is presented to guarantee second-order multi-agent systems to achieve consensus tracking. Numerical simulations are given to illustrate the effectiveness of the proposed strategy. Project supported by the National Natural Science Foundation of China (Grant Nos. 61203147, 61374047, and 61403168).

  8. Human-Robot Teaming in a Multi-Agent Space Assembly Task

    NASA Technical Reports Server (NTRS)

    Rehnmark, Fredrik; Currie, Nancy; Ambrose, Robert O.; Culbert, Christopher

    2004-01-01

    NASA's Human Space Flight program depends heavily on spacewalks performed by pairs of suited human astronauts. These Extra-Vehicular Activities (EVAs) are severely restricted in both duration and scope by consumables and available manpower. An expanded multi-agent EVA team combining the information-gathering and problem-solving skills of humans with the survivability and physical capabilities of robots is proposed and illustrated by example. Such teams are useful for large-scale, complex missions requiring dispersed manipulation, locomotion and sensing capabilities. To study collaboration modalities within a multi-agent EVA team, a 1-g test is conducted with humans and robots working together in various supporting roles.

  9. Distributed-observer-based cooperative control for synchronization of linear discrete-time multi-agent systems.

    PubMed

    Liang, Hongjing; Zhang, Huaguang; Wang, Zhanshan

    2015-11-01

    This paper considers output synchronization of discrete-time multi-agent systems with directed communication topologies. The directed communication graph contains a spanning tree and the exosystem as its root. Distributed observer-based consensus protocols are proposed, based on the relative outputs of neighboring agents. A multi-step algorithm is presented to construct the observer-based protocols. In light of the discrete-time algebraic Riccati equation and internal model principle, synchronization problem is completed. At last, numerical simulation is provided to verify the effectiveness of the theoretical results. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Agent-Based Framework for Personalized Service Provisioning in Converged IP Networks

    NASA Astrophysics Data System (ADS)

    Podobnik, Vedran; Matijasevic, Maja; Lovrek, Ignac; Skorin-Kapov, Lea; Desic, Sasa

    In a global multi-service and multi-provider market, the Internet Service Providers will increasingly need to differentiate in the service quality they offer and base their operation on new, consumer-centric business models. In this paper, we propose an agent-based framework for the Business-to-Consumer (B2C) electronic market, comprising the Consumer Agents, Broker Agents and Content Agents, which enable Internet consumers to select a content provider in an automated manner. We also discuss how to dynamically allocate network resources to provide end-to-end Quality of Service (QoS) for a given consumer and content provider.

  11. TSI-Enhanced Pedagogical Agents to Engage Learners in Virtual Worlds

    ERIC Educational Resources Information Center

    Leung, Steve; Virwaney, Sandeep; Lin, Fuhua; Armstrong, AJ; Dubbelboer, Adien

    2013-01-01

    Building pedagogical applications in virtual worlds is a multi-disciplinary endeavor that involves learning theories, application development framework, and mediated communication theories. This paper presents a project that integrates game-based learning, multi-agent system architecture (MAS), and the theory of Transformed Social Interaction…

  12. CAMELOT: Computational-Analytical Multi-fidElity Low-thrust Optimisation Toolbox

    NASA Astrophysics Data System (ADS)

    Di Carlo, Marilena; Romero Martin, Juan Manuel; Vasile, Massimiliano

    2018-03-01

    Computational-Analytical Multi-fidElity Low-thrust Optimisation Toolbox (CAMELOT) is a toolbox for the fast preliminary design and optimisation of low-thrust trajectories. It solves highly complex combinatorial problems to plan multi-target missions characterised by long spirals including different perturbations. To do so, CAMELOT implements a novel multi-fidelity approach combining analytical surrogate modelling and accurate computational estimations of the mission cost. Decisions are then made using two optimisation engines included in the toolbox, a single-objective global optimiser, and a combinatorial optimisation algorithm. CAMELOT has been applied to a variety of case studies: from the design of interplanetary trajectories to the optimal de-orbiting of space debris and from the deployment of constellations to on-orbit servicing. In this paper, the main elements of CAMELOT are described and two examples, solved using the toolbox, are presented.

  13. Design optimization of axial flow hydraulic turbine runner: Part II - multi-objective constrained optimization method

    NASA Astrophysics Data System (ADS)

    Peng, Guoyi; Cao, Shuliang; Ishizuka, Masaru; Hayama, Shinji

    2002-06-01

    This paper is concerned with the design optimization of axial flow hydraulic turbine runner blade geometry. In order to obtain a better design plan with good performance, a new comprehensive performance optimization procedure has been presented by combining a multi-variable multi-objective constrained optimization model with a Q3D inverse computation and a performance prediction procedure. With careful analysis of the inverse design of axial hydraulic turbine runner, the total hydraulic loss and the cavitation coefficient are taken as optimization objectives and a comprehensive objective function is defined using the weight factors. Parameters of a newly proposed blade bound circulation distribution function and parameters describing positions of blade leading and training edges in the meridional flow passage are taken as optimization variables.The optimization procedure has been applied to the design optimization of a Kaplan runner with specific speed of 440 kW. Numerical results show that the performance of designed runner is successfully improved through optimization computation. The optimization model is found to be validated and it has the feature of good convergence. With the multi-objective optimization model, it is possible to control the performance of designed runner by adjusting the value of weight factors defining the comprehensive objective function. Copyright

  14. Unlocking Hospitality Managers Career Transitions through Applying Schein's Career Anchors Theory

    ERIC Educational Resources Information Center

    McGuire, David; Polla, Giovana; Heidl, Britta

    2017-01-01

    Purpose: This paper seeks to unlock the career transitions of hospitality managers through applying Schein's career anchors theory. It seeks to understand how Schein's Career Anchors help explain the career transitions of managers in the Scottish hospitality industry. Design/methodology/approach: The paper adopts a non-sequential multi-method…

  15. ABM and GIS-based multi-scenarios volcanic evacuation modelling of Merapi

    NASA Astrophysics Data System (ADS)

    Jumadi, Carver, Steve; Quincey, Duncan

    2016-05-01

    Conducting effective evacuation is one of the successful keys to deal with such crisis. Therefore, a plan that considers the probability of the spatial extent of the hazard occurrences is needed. Likewise, the evacuation plan in Merapi is already prepared before the eruption on 2010. However, the plan could not be performed because the eruption magnitude was bigger than it was predicted. In this condition, the extent of the hazardous area was increased larger than the prepared hazard model. Managing such unpredicted situation need adequate information that flexible and adaptable to the current situation. Therefore, we applied an Agent-based Model (ABM) and Geographic Information System (GIS) using multi-scenarios hazard model to support the evacuation management. The methodology and the case study in Merapi is provided.

  16. An integrated decision-making framework for transportation architectures: Application to aviation systems design

    NASA Astrophysics Data System (ADS)

    Lewe, Jung-Ho

    The National Transportation System (NTS) is undoubtedly a complex system-of-systems---a collection of diverse 'things' that evolve over time, organized at multiple levels, to achieve a range of possibly conflicting objectives, and never quite behaving as planned. The purpose of this research is to develop a virtual transportation architecture for the ultimate goal of formulating an integrated decision-making framework. The foundational endeavor begins with creating an abstraction of the NTS with the belief that a holistic frame of reference is required to properly study such a multi-disciplinary, trans-domain system. The culmination of the effort produces the Transportation Architecture Field (TAF) as a mental model of the NTS, in which the relationships between four basic entity groups are identified and articulated. This entity-centric abstraction framework underpins the construction of a virtual NTS couched in the form of an agent-based model. The transportation consumers and the service providers are identified as adaptive agents that apply a set of preprogrammed behavioral rules to achieve their respective goals. The transportation infrastructure and multitude of exogenous entities (disruptors and drivers) in the whole system can also be represented without resorting to an extremely complicated structure. The outcome is a flexible, scalable, computational model that allows for examination of numerous scenarios which involve the cascade of interrelated effects of aviation technology, infrastructure, and socioeconomic changes throughout the entire system.

  17. Silicon Micro- and Nanofabrication for Medicine

    PubMed Central

    Fine, Daniel; Goodall, Randy; Bansal, Shyam S.; Chiappini, Ciro; Hosali, Sharath; van de Ven, Anne L.; Srinivasan, Srimeenkashi; Liu, Xuewu; Godin, Biana; Brousseau, Louis; Yazdi, Iman K.; Fernandez-Moure, Joseph; Tasciotti, Ennio; Wu, Hung-Jen; Hu, Ye; Klemm, Steve; Ferrari, Mauro

    2013-01-01

    This manuscript constitutes a review of several innovative biomedical technologies fabricated using the precision and accuracy of silicon micro- and nanofabrication. The technologies to be reviewed are subcutaneous nanochannel drug delivery implants for the continuous tunable zero-order release of therapeutics, multi-stage logic embedded vectors for the targeted systemic distribution of both therapeutic and imaging contrast agents, silicon and porous silicon nanowires for investigating cellular interactions and processes as well as for molecular and drug delivery applications, porous silicon (pSi) as inclusions into biocomposites for tissue engineering, especially as it applies to bone repair and regrowth, and porous silica chips for proteomic profiling. In the case of the biocomposites, the specifically designed pSi inclusions not only add to the structural robustness, but can also promote tissue and bone regrowth, fight infection, and reduce pain by releasing stimulating factors and other therapeutic agents stored within their porous network. The common material thread throughout all of these constructs, silicon and its associated dielectrics (silicon dioxide, silicon nitride, etc.), can be precisely and accurately machined using the same scalable micro- and nanofabrication protocols that are ubiquitous within the semiconductor industry. These techniques lend themselves to the high throughput production of exquisitely defined and monodispersed nanoscale features that should eliminate architectural randomness as a source of experimental variation thereby potentially leading to more rapid clinical translation. PMID:23584841

  18. Distributed optimisation problem with communication delay and external disturbance

    NASA Astrophysics Data System (ADS)

    Tran, Ngoc-Tu; Xiao, Jiang-Wen; Wang, Yan-Wu; Yang, Wu

    2017-12-01

    This paper investigates the distributed optimisation problem for the multi-agent systems (MASs) with the simultaneous presence of external disturbance and the communication delay. To solve this problem, a two-step design scheme is introduced. In the first step, based on the internal model principle, the internal model term is constructed to compensate the disturbance asymptotically. In the second step, a distributed optimisation algorithm is designed to solve the distributed optimisation problem based on the MASs with the simultaneous presence of disturbance and communication delay. Moreover, in the proposed algorithm, each agent interacts with its neighbours through the connected topology and the delay occurs during the information exchange. By utilising Lyapunov-Krasovskii functional, the delay-dependent conditions are derived for both slowly and fast time-varying delay, respectively, to ensure the convergence of the algorithm to the optimal solution of the optimisation problem. Several numerical simulation examples are provided to illustrate the effectiveness of the theoretical results.

  19. Introduction of an agent-based multi-scale modular architecture for dynamic knowledge representation of acute inflammation.

    PubMed

    An, Gary

    2008-05-27

    One of the greatest challenges facing biomedical research is the integration and sharing of vast amounts of information, not only for individual researchers, but also for the community at large. Agent Based Modeling (ABM) can provide a means of addressing this challenge via a unifying translational architecture for dynamic knowledge representation. This paper presents a series of linked ABMs representing multiple levels of biological organization. They are intended to translate the knowledge derived from in vitro models of acute inflammation to clinically relevant phenomenon such as multiple organ failure. ABM development followed a sequence starting with relatively direct translation from in-vitro derived rules into a cell-as-agent level ABM, leading on to concatenated ABMs into multi-tissue models, eventually resulting in topologically linked aggregate multi-tissue ABMs modeling organ-organ crosstalk. As an underlying design principle organs were considered to be functionally composed of an epithelial surface, which determined organ integrity, and an endothelial/blood interface, representing the reaction surface for the initiation and propagation of inflammation. The development of the epithelial ABM derived from an in-vitro model of gut epithelial permeability is described. Next, the epithelial ABM was concatenated with the endothelial/inflammatory cell ABM to produce an organ model of the gut. This model was validated against in-vivo models of the inflammatory response of the gut to ischemia. Finally, the gut ABM was linked to a similarly constructed pulmonary ABM to simulate the gut-pulmonary axis in the pathogenesis of multiple organ failure. The behavior of this model was validated against in-vivo and clinical observations on the cross-talk between these two organ systems. A series of ABMs are presented extending from the level of intracellular mechanism to clinically observed behavior in the intensive care setting. The ABMs all utilize cell-level agents that encapsulate specific mechanistic knowledge extracted from in vitro experiments. The execution of the ABMs results in a dynamic representation of the multi-scale conceptual models derived from those experiments. These models represent a qualitative means of integrating basic scientific information on acute inflammation in a multi-scale, modular architecture as a means of conceptual model verification that can potentially be used to concatenate, communicate and advance community-wide knowledge.

  20. A task-based support architecture for developing point-of-care clinical decision support systems for the emergency department.

    PubMed

    Wilk, S; Michalowski, W; O'Sullivan, D; Farion, K; Sayyad-Shirabad, J; Kuziemsky, C; Kukawka, B

    2013-01-01

    The purpose of this study was to create a task-based support architecture for developing clinical decision support systems (CDSSs) that assist physicians in making decisions at the point-of-care in the emergency department (ED). The backbone of the proposed architecture was established by a task-based emergency workflow model for a patient-physician encounter. The architecture was designed according to an agent-oriented paradigm. Specifically, we used the O-MaSE (Organization-based Multi-agent System Engineering) method that allows for iterative translation of functional requirements into architectural components (e.g., agents). The agent-oriented paradigm was extended with ontology-driven design to implement ontological models representing knowledge required by specific agents to operate. The task-based architecture allows for the creation of a CDSS that is aligned with the task-based emergency workflow model. It facilitates decoupling of executable components (agents) from embedded domain knowledge (ontological models), thus supporting their interoperability, sharing, and reuse. The generic architecture was implemented as a pilot system, MET3-AE--a CDSS to help with the management of pediatric asthma exacerbation in the ED. The system was evaluated in a hospital ED. The architecture allows for the creation of a CDSS that integrates support for all tasks from the task-based emergency workflow model, and interacts with hospital information systems. Proposed architecture also allows for reusing and sharing system components and knowledge across disease-specific CDSSs.

  1. Planning and Execution: The Spirit of Opportunity for Robust Autonomous Systems

    NASA Technical Reports Server (NTRS)

    Muscettola, Nicola

    2004-01-01

    One of the most exciting endeavors pursued by human kind is the search for life in the Solar System and the Universe at large. NASA is leading this effort by designing, deploying and operating robotic systems that will reach planets, planet moons, asteroids and comets searching for water, organic building blocks and signs of past or present microbial life. None of these missions will be achievable without substantial advances in.the design, implementation and validation of autonomous control agents. These agents must be capable of robustly controlling a robotic explorer in a hostile environment with very limited or no communication with Earth. The talk focuses on work pursued at the NASA Ames Research center ranging from basic research on algorithm to deployed mission support systems. We will start by discussing how planning and scheduling technology derived from the Remote Agent experiment is being used daily in the operations of the Spirit and Opportunity rovers. Planning and scheduling is also used as the fundamental paradigm at the core of our research in real-time autonomous agents. In particular, we will describe our efforts in the Intelligent Distributed Execution Architecture (IDEA), a multi-agent real-time architecture that exploits artificial intelligence planning as the core reasoning engine of an autonomous agent. We will also describe how the issue of plan robustness at execution can be addressed by novel constraint propagation algorithms capable of giving the tightest exact bounds on resource consumption or all possible executions of a flexible plan.

  2. Improved glucose-neopentyl glycol (GNG) amphiphiles for membrane protein solubilization and stabilization.

    PubMed

    Cho, Kyung Ho; Bae, Hyoung Eun; Das, Manabendra; Gellman, Samuel H; Chae, Pil Seok

    2014-02-01

    Membrane proteins are inherently amphipathic and undergo dynamic conformational changes for proper function within native membranes. Maintaining the functional structures of these biomacromolecules in aqueous media is necessary for structural studies but difficult to achieve with currently available tools, thus necessitating the development of novel agents with favorable properties. This study introduces several new glucose-neopentyl glycol (GNG) amphiphiles and reveals some agents that display favorable behaviors for the solubilization and stabilization of a large, multi-subunit membrane protein assembly. Furthermore, a detergent structure-property relationship that could serve as a useful guideline for the design of novel amphiphiles is discussed. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Bipartite consensus for multi-agent systems with antagonistic interactions and communication delays

    NASA Astrophysics Data System (ADS)

    Guo, Xing; Lu, Jianquan; Alsaedi, Ahmed; Alsaadi, Fuad E.

    2018-04-01

    This paper studies the consensus problems over signed digraphs with arbitrary finite communication delays. For the considered system, the information flow is directed and only locally delayed information can be used for each node. We derive that bipartite consensus of this system can be realized when the associated signed digraph is strongly connected. Furthermore, for structurally balanced networks, this paper studies the pinning partite consensus for the considered system. we design a pinning scheme to pin any one agent in the signed network, and obtain that the network achieves pinning bipartite consensus with any initial conditions. Finally, two examples are provided to demonstrate the effectiveness of our main results.

  4. Solving "Smart City" Transport Problems by Designing Carpooling Gamification Schemes with Multi-Agent Systems: The Case of the So-Called "Mordor of Warsaw".

    PubMed

    Olszewski, Robert; Pałka, Piotr; Turek, Agnieszka

    2018-01-06

    To reduce energy consumption and improve residents' quality of life, "smart cities" should use not only modern technologies, but also the social innovations of the "Internet of Things" (IoT) era. This article attempts to solve transport problems in a smart city's office district by utilizing gamification that incentivizes the carpooling system. The goal of the devised system is to significantly reduce the number of cars, and, consequently, to alleviate traffic jams, as well as to curb pollution and energy consumption. A representative sample of the statistical population of people working in one of the biggest office hubs in Poland (the so-called "Mordor of Warsaw") was surveyed. The collected data were processed using spatial data mining methods, and the results were a set of parameters for the multi-agent system. This approach made it possible to run a series of simulations on a set of 100,000 agents and to select an effective gamification methodology that supports the carpooling process. The implementation of the proposed solutions (a "serious game" variation of urban games) would help to reduce the number of cars by several dozen percent, significantly reduce energy consumption, eliminate traffic jams, and increase the activity of the smart city residents.

  5. Erythropoietin as a novel brain and kidney protective agent.

    PubMed

    Moore, E M; Bellomo, R; Nichol, A D

    2011-05-01

    Erythropoietin is a 30.4 kDa glycoprotein produced by the kidney, which is mostly known for its physiological function in regulating red blood cell production in the bone marrow Accumulating evidence, however suggests that erythropoietin has additional organ protective effects, which may specifically be useful in protecting the brain and kidneys from injury. Experimental evidence suggests that these protective mechanisms are multi-factorial in nature and may include inhibition of apoptotic cell death, stimulation of cellular regeneration, inhibition of deleterious pathways and promotion of recovery. In this article we review the physiology of erythropoietin, assess previous work that supports the role of erythropoietin as a general tissue protective agent and explain the mechanisms by which it may achieve this tissue protective effect. We then focus on specific laboratory and clinical data that suggest that erythropoietin has a strong brain protective and kidney protective effect. In addition, we comment on the implications of these studies for clinicians at the bedside and for researchers designing controlled trials to further elucidate the true clinical utility of erythropoietin as a neuroprotective and nephroprotective agent. Finally, we describe EPO-TBI, a double-blinded multi-centre randomised controlled trial involving the authors that is being conducted to investigate the organ protective effects of erythropoietin on the brain, and also assesses its effect on the kidneys.

  6. Distributed Information Fusion through Advanced Multi-Agent Control

    DTIC Science & Technology

    2016-10-17

    AFRL-AFOSR-JP-TR-2016-0080 Distributed Information Fusion through Advanced Multi-Agent Control Adrian Bishop NATIONAL ICT AUSTRALIA LIMITED Final...TASK NUMBER 5f.  WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) NATIONAL ICT AUSTRALIA LIMITED L 5 13 GARDEN ST EVELEIGH, 2015

  7. Distributed Information Fusion through Advanced Multi-Agent Control

    DTIC Science & Technology

    2016-09-09

    AFRL-AFOSR-JP-TR-2016-0080 Distributed Information Fusion through Advanced Multi-Agent Control Adrian Bishop NATIONAL ICT AUSTRALIA LIMITED Final...TASK NUMBER 5f.  WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) NATIONAL ICT AUSTRALIA LIMITED L 5 13 GARDEN ST EVELEIGH, 2015

  8. Developing High-Affinity Protein Capture Agents and Nanotechnology-Based Platforms for In Vitro Diagnostics

    NASA Astrophysics Data System (ADS)

    Rohde, Rosemary Dyane

    In this thesis, I describe projects that were aimed at improving ways to capture proteins for clinical diagnostics. Nanoelectronic sensors, such as silicon nanowires (SiNWs), can provide label-free quantitative measurements of protein biomarkers in real time. One technical challenge for SiNWs is to develop chemistry that can be applied for selectively encoding the nanowire surfaces with capture agents, thus making them sensors that have selectivity for specific proteins. Furthermore, because of the nature of how the sensor works, it is desirable to achieve this spatially selective chemical functionalization without having the silicon undergo oxidation. This method is described here and provides a general platform that can incorporate organic and biological molecules on Si (111) with minimal oxidation of the silicon surface. The development of these devices is, in part, driven by early diagnosis, treatment, monitoring, and personalized medicine---all of which are increasingly requiring quantitative, rapid, and multiparameter measurements. To begin achieving this goal, a large number of protein biomarkers need to be captured and quantitatively measured to create a diagnostic panel. One of the greatest challenges towards making protein-biomarker-based in vitro diagnostics inexpensive involves developing capture agents to detect the proteins. A major thrust of this thesis is to develop multi-valent, high-affinity and high-selectivity protein capture agents using in situ click chemistry. In situ click chemistry is a tool that utilizes the protein itself to catalyze the formation of a biligand from individual azide and alkyne ligands that are co-localized. Large one-bead one-compound (OBOC) libraries of peptides are used to form the body of these ligands, also providing high chemical diversity with minimal synthetic effort. This process can be repeated to identify a triligand, tetraligand, and so forth. Moreover, the resulting multiligand protein capture agents can be produced in gram-scale quantities with designed control over chemical and biochemical stability and water solubility. This is a general and robust method for inexpensive, high-throughput capture agent discovery that can be utilized to capture the relevant biomarker proteins for blood protein diagnostics.

  9. Multi-Agent Simulation of Allocating and Routing Ambulances Under Condition of Street Blockage after Natural Disaster

    NASA Astrophysics Data System (ADS)

    Azimi, S.; Delavar, M. R.; Rajabifard, A.

    2017-09-01

    In response to natural disasters, efficient planning for optimum allocation of the medical assistance to wounded as fast as possible and wayfinding of first responders immediately to minimize the risk of natural disasters are of prime importance. This paper aims to propose a multi-agent based modeling for optimum allocation of space to emergency centers according to the population, street network and number of ambulances in emergency centers by constraint network Voronoi diagrams, wayfinding of ambulances from emergency centers to the wounded locations and return based on the minimum ambulances travel time and path length implemented by NSGA and the use of smart city facilities to accelerate the rescue operation. Simulated annealing algorithm has been used for minimizing the difference between demands and supplies of the constrained network Voronoi diagrams. In the proposed multi-agent system, after delivering the location of the wounded and their symptoms, the constraint network Voronoi diagram for each emergency center is determined. This process was performed simultaneously for the multi-injuries in different Voronoi diagrams. In the proposed multi-agent system, the priority of the injuries for receiving medical assistance and facilities of the smart city for reporting the blocked streets was considered. Tehran Municipality District 5 was considered as the study area and during 3 minutes intervals, the volunteers reported the blocked street. The difference between the supply and the demand divided to the supply in each Voronoi diagram decreased to 0.1601. In the proposed multi-agent system, the response time of the ambulances is decreased about 36.7%.

  10. Longitudinal evaluation of the microleakage of dentin bonding agents used to seal resected root apices.

    PubMed

    Vignaroli, P A; Anderson, R W; Pashley, D H

    1995-10-01

    A material that bonds to dentin and seals both the root canal and exposed dentinal tubules would be desirable following root resection. The purpose of this study was to measure the sealing ability of four dentin bonding agents on the resected root end. The bonding systems evaluated were Amalgambond (AMB), Scotchbond Multi-Purpose (SMP), Prisma Universal Bond 3 (PUB 3), and All-Bond 2 (AB2). All materials were applied directly to the resected root end without a class I preparation. One-half of the roots in each group were contaminated with human blood before bonding. Microleakage was measured using fluid filtration at various time intervals from 1 to 24 wk. Results indicated that all dentin bonding agents significantly reduced apical microleakage compared with prebonded controls at all time intervals. Blood contamination did not adversely affect the sealing ability of AMB, PUB 3, or SMP. The blood-contaminated AB2 group displayed significantly greater microleakage after 12 and 24 wk than the uncontaminated roots.

  11. Polymeric micelles for multi-drug delivery in cancer.

    PubMed

    Cho, Hyunah; Lai, Tsz Chung; Tomoda, Keishiro; Kwon, Glen S

    2015-02-01

    Drug combinations are common in cancer treatment and are rapidly evolving, moving beyond chemotherapy combinations to combinations of signal transduction inhibitors. For the delivery of drug combinations, i.e., multi-drug delivery, major considerations are synergy, dose regimen (concurrent versus sequential), pharmacokinetics, toxicity, and safety. In this contribution, we review recent research on polymeric micelles for multi-drug delivery in cancer. In concurrent drug delivery, polymeric micelles deliver multi-poorly water-soluble anticancer agents, satisfying strict requirements in solubility, stability, and safety. In sequential drug delivery, polymeric micelles participate in pretreatment strategies that "prime" solid tumors and enhance the penetration of secondarily administered anticancer agent or nanocarrier. The improved delivery of multiple poorly water-soluble anticancer agents by polymeric micelles via concurrent or sequential regimens offers novel and interesting strategies for drug combinations in cancer treatment.

  12. Simple D-A-D Structural Bisbithiophenyl Diketopyrrolopyrrole (TDPP) as Efficient Bioimaging and Photothermal Agents.

    PubMed

    Zong, Shan; Wang, Xin; Lin, Wenhai; Liu, Shi; Zhang, Wei

    2018-06-20

    Design and synthesis of biocompatible and multi-functional photothermal agents is crucial for effective cancer phototherapy. In order to achieve this ambition, simple D-A-D structural bisbithiophenyl diketopyrrolopyrrole (TDPP) was fabricated. In this molecule, the donor, 2-thiophenylboric acid, was conjugated via Suzuki coupling reaction, which could expand the emission wavelength to the red region of the spectrum. TDPP could self-assemble into stable and uniform nanoparticles (TDPP NPs) in the assistant of amphiphilic Pluronic F-127 polymer. Exposing the TDPP NPs (100 µg/mL) aqueous dispersion to 638 nm (0.61 W/cm2) laser irradiation resulted in a temperature elevation of approximately 30 oC within 5 min, which is high enough for inducing the cytotoxicity and tumor inhibition. Because of the bathochromic shift absorption of TDPP NPs in water, TDPP NPs could also act as a contrast agent for near-infrared fluorescence imaging (NIRF) to visualize the drug distribution in vivo. Coupled with the infrared thermal imaging properties of the photothermal agent, TDPP NPs were proved to be a multifunctional theranostic agent for dual-modal imaging-guided phototherapy.

  13. Model of load balancing using reliable algorithm with multi-agent system

    NASA Astrophysics Data System (ADS)

    Afriansyah, M. F.; Somantri, M.; Riyadi, M. A.

    2017-04-01

    Massive technology development is linear with the growth of internet users which increase network traffic activity. It also increases load of the system. The usage of reliable algorithm and mobile agent in distributed load balancing is a viable solution to handle the load issue on a large-scale system. Mobile agent works to collect resource information and can migrate according to given task. We propose reliable load balancing algorithm using least time first byte (LFB) combined with information from the mobile agent. In system overview, the methodology consisted of defining identification system, specification requirements, network topology and design system infrastructure. The simulation method for simulated system was using 1800 request for 10 s from the user to the server and taking the data for analysis. Software simulation was based on Apache Jmeter by observing response time and reliability of each server and then compared it with existing method. Results of performed simulation show that the LFB method with mobile agent can perform load balancing with efficient systems to all backend server without bottleneck, low risk of server overload, and reliable.

  14. Multi-Agent Architecture with Support to Quality of Service and Quality of Control

    NASA Astrophysics Data System (ADS)

    Poza-Luján, Jose-Luis; Posadas-Yagüe, Juan-Luis; Simó-Ten, Jose-Enrique

    Multi Agent Systems (MAS) are one of the most suitable frameworks for the implementation of intelligent distributed control system. Agents provide suitable flexibility to give support to implied heterogeneity in cyber-physical systems. Quality of Service (QoS) and Quality of Control (QoC) parameters are commonly utilized to evaluate the efficiency of the communications and the control loop. Agents can use the quality measures to take a wide range of decisions, like suitable placement on the control node or to change the workload to save energy. This article describes the architecture of a multi agent system that provides support to QoS and QoC parameters to optimize de system. The architecture uses a Publish-Subscriber model, based on Data Distribution Service (DDS) to send the control messages. Due to the nature of the Publish-Subscribe model, the architecture is suitable to implement event-based control (EBC) systems. The architecture has been called FSACtrl.

  15. One-step production of multilayered microparticles by tri-axial electro-flow focusing

    NASA Astrophysics Data System (ADS)

    Si, Ting; Feng, Hanxin; Li, Yang; Luo, Xisheng; Xu, Ronald

    2014-03-01

    Microencapsulation of drugs and imaging agents in the same carrier is of great significance for simultaneous detection and treatment of diseases. In this work, we have developed a tri-axial electro-flow focusing (TEFF) device using three needles with a novel concentric arrangement to one-step form multilayered microparticles. The TEFF process can be characterized as a multi-fluidic compound cone-jet configuration in the core of a high-speed coflowing gas stream under an axial electric field. The tri-axial liquid jet eventually breaks up into multilayered droplets. To validate the method, the effect of main process parameters on characteristics of the cone and the jet has been studied experimentally. The applied electric field can dramatically promote the stability of the compound cone and enhance the atomization of compound liquid jets. Microparticles with both three-layer, double-layer and single-layer structures have been obtained. The results show that the TEFF technique has great benefits in fabricating multilayered microparticles at smaller scales. This method will be able to one-step encapsulate multiple therapeutic and imaging agents for biomedical applications such as multi-modal imaging, drug delivery and biomedicine.

  16. Mission Profiles and Evidential Reasoning for Estimating Information Relevancy in Multi-Agent Supervisory Control Applications

    DTIC Science & Technology

    2010-06-01

    artificial agents, their limited scope and singular purpose lead us to believe that human-machine trust will be very portable. That is, if one operator... Artificial Intelligence Review 2(2), 1988. [E88] M.R. Endsley. Situation awareness global assessment technique (SAGAT). In Proceedings of the National...1995. [F98] J. Ferber, Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence, Addison- Wesley, 1998. [NP01] I. Niles and A

  17. Multi-agent Negotiation Mechanisms for Statistical Target Classification in Wireless Multimedia Sensor Networks

    PubMed Central

    Wang, Xue; Bi, Dao-wei; Ding, Liang; Wang, Sheng

    2007-01-01

    The recent availability of low cost and miniaturized hardware has allowed wireless sensor networks (WSNs) to retrieve audio and video data in real world applications, which has fostered the development of wireless multimedia sensor networks (WMSNs). Resource constraints and challenging multimedia data volume make development of efficient algorithms to perform in-network processing of multimedia contents imperative. This paper proposes solving problems in the domain of WMSNs from the perspective of multi-agent systems. The multi-agent framework enables flexible network configuration and efficient collaborative in-network processing. The focus is placed on target classification in WMSNs where audio information is retrieved by microphones. To deal with the uncertainties related to audio information retrieval, the statistical approaches of power spectral density estimates, principal component analysis and Gaussian process classification are employed. A multi-agent negotiation mechanism is specially developed to efficiently utilize limited resources and simultaneously enhance classification accuracy and reliability. The negotiation is composed of two phases, where an auction based approach is first exploited to allocate the classification task among the agents and then individual agent decisions are combined by the committee decision mechanism. Simulation experiments with real world data are conducted and the results show that the proposed statistical approaches and negotiation mechanism not only reduce memory and computation requirements in WMSNs but also significantly enhance classification accuracy and reliability. PMID:28903223

  18. Multi-band transmission color filters for multi-color white LEDs based visible light communication

    NASA Astrophysics Data System (ADS)

    Wang, Qixia; Zhu, Zhendong; Gu, Huarong; Chen, Mengzhu; Tan, Qiaofeng

    2017-11-01

    Light-emitting diodes (LEDs) based visible light communication (VLC) can provide license-free bands, high data rates, and high security levels, which is a promising technique that will be extensively applied in future. Multi-band transmission color filters with enough peak transmittance and suitable bandwidth play a pivotal role for boosting signal-noise-ratio in VLC systems. In this paper, multi-band transmission color filters with bandwidth of dozens nanometers are designed by a simple analytical method. Experiment results of one-dimensional (1D) and two-dimensional (2D) tri-band color filters demonstrate the effectiveness of the multi-band transmission color filters and the corresponding analytical method.

  19. Lossed in translation: an off-the-shelf method to recover probabilistic beliefs from loss-averse agents.

    PubMed

    Offerman, Theo; Palley, Asa B

    2016-01-01

    Strictly proper scoring rules are designed to truthfully elicit subjective probabilistic beliefs from risk neutral agents. Previous experimental studies have identified two problems with this method: (i) risk aversion causes agents to bias their reports toward the probability of [Formula: see text], and (ii) for moderate beliefs agents simply report [Formula: see text]. Applying a prospect theory model of risk preferences, we show that loss aversion can explain both of these behavioral phenomena. Using the insights of this model, we develop a simple off-the-shelf probability assessment mechanism that encourages loss-averse agents to report true beliefs. In an experiment, we demonstrate the effectiveness of this modification in both eliminating uninformative reports and eliciting true probabilistic beliefs.

  20. Impact of immigrants on a multi-agent economical system

    PubMed Central

    Razakanirina, Ranaivo; Groen, Derek

    2018-01-01

    We consider a multi-agent model of a simple economical system and study the impacts of a wave of immigrants on the stability of the system. Our model couples a labor market with a goods market. We first create a stable economy with N agents and study the impact of adding n new workers in the system. The time to reach a new equilibrium market is found to obey a power law in n. The new wages and market prices are observed to decrease as 1/n, whereas the wealth of agents remains unchanged. PMID:29795633

  1. Optimization of Land Use Suitability for Agriculture Using Integrated Geospatial Model and Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Mansor, S. B.; Pormanafi, S.; Mahmud, A. R. B.; Pirasteh, S.

    2012-08-01

    In this study, a geospatial model for land use allocation was developed from the view of simulating the biological autonomous adaptability to environment and the infrastructural preference. The model was developed based on multi-agent genetic algorithm. The model was customized to accommodate the constraint set for the study area, namely the resource saving and environmental-friendly. The model was then applied to solve the practical multi-objective spatial optimization allocation problems of land use in the core region of Menderjan Basin in Iran. The first task was to study the dominant crops and economic suitability evaluation of land. Second task was to determine the fitness function for the genetic algorithms. The third objective was to optimize the land use map using economical benefits. The results has indicated that the proposed model has much better performance for solving complex multi-objective spatial optimization allocation problems and it is a promising method for generating land use alternatives for further consideration in spatial decision-making.

  2. Design and Implementation of an Interface Editor for the Amadeus Multi- Relational Database Front-end System

    DTIC Science & Technology

    1993-03-25

    application of Object-Oriented Programming (OOP) and Human-Computer Interface (HCI) design principles. Knowledge gained from each topic has been incorporated...through the ap- plication of Object-Oriented Programming (OOP) and Human-Computer Interface (HCI) design principles. Knowledge gained from each topic has...programming and Human-Computer Interface (HCI) design. Knowledge gained from each is applied to the design of a Form-based interface for database data

  3. Agent autonomy approach to probabilistic physics-of-failure modeling of complex dynamic systems with interacting failure mechanisms

    NASA Astrophysics Data System (ADS)

    Gromek, Katherine Emily

    A novel computational and inference framework of the physics-of-failure (PoF) reliability modeling for complex dynamic systems has been established in this research. The PoF-based reliability models are used to perform a real time simulation of system failure processes, so that the system level reliability modeling would constitute inferences from checking the status of component level reliability at any given time. The "agent autonomy" concept is applied as a solution method for the system-level probabilistic PoF-based (i.e. PPoF-based) modeling. This concept originated from artificial intelligence (AI) as a leading intelligent computational inference in modeling of multi agents systems (MAS). The concept of agent autonomy in the context of reliability modeling was first proposed by M. Azarkhail [1], where a fundamentally new idea of system representation by autonomous intelligent agents for the purpose of reliability modeling was introduced. Contribution of the current work lies in the further development of the agent anatomy concept, particularly the refined agent classification within the scope of the PoF-based system reliability modeling, new approaches to the learning and the autonomy properties of the intelligent agents, and modeling interacting failure mechanisms within the dynamic engineering system. The autonomous property of intelligent agents is defined as agent's ability to self-activate, deactivate or completely redefine their role in the analysis. This property of agents and the ability to model interacting failure mechanisms of the system elements makes the agent autonomy fundamentally different from all existing methods of probabilistic PoF-based reliability modeling. 1. Azarkhail, M., "Agent Autonomy Approach to Physics-Based Reliability Modeling of Structures and Mechanical Systems", PhD thesis, University of Maryland, College Park, 2007.

  4. Towards Cooperative Predictive Data Mining in Competitive Environments

    NASA Astrophysics Data System (ADS)

    Lisý, Viliam; Jakob, Michal; Benda, Petr; Urban, Štěpán; Pěchouček, Michal

    We study the problem of predictive data mining in a competitive multi-agent setting, in which each agent is assumed to have some partial knowledge required for correctly classifying a set of unlabelled examples. The agents are self-interested and therefore need to reason about the trade-offs between increasing their classification accuracy by collaborating with other agents and disclosing their private classification knowledge to other agents through such collaboration. We analyze the problem and propose a set of components which can enable cooperation in this otherwise competitive task. These components include measures for quantifying private knowledge disclosure, data-mining models suitable for multi-agent predictive data mining, and a set of strategies by which agents can improve their classification accuracy through collaboration. The overall framework and its individual components are validated on a synthetic experimental domain.

  5. Research on Production Scheduling System with Bottleneck Based on Multi-agent

    NASA Astrophysics Data System (ADS)

    Zhenqiang, Bao; Weiye, Wang; Peng, Wang; Pan, Quanke

    Aimed at the imbalance problem of resource capacity in Production Scheduling System, this paper uses Production Scheduling System based on multi-agent which has been constructed, and combines the dynamic and autonomous of Agent; the bottleneck problem in the scheduling is solved dynamically. Firstly, this paper uses Bottleneck Resource Agent to find out the bottleneck resource in the production line, analyses the inherent mechanism of bottleneck, and describes the production scheduling process based on bottleneck resource. Bottleneck Decomposition Agent harmonizes the relationship of job's arrival time and transfer time in Bottleneck Resource Agent and Non-Bottleneck Resource Agents, therefore, the dynamic scheduling problem is simplified as the single machine scheduling of each resource which takes part in the scheduling. Finally, the dynamic real-time scheduling problem is effectively solved in Production Scheduling System.

  6. Dramatic Expression in Opera, and Its Implications for Conversational Agents. Chapter 7

    NASA Technical Reports Server (NTRS)

    Johnson, W. Lewis

    2007-01-01

    This article has discussed principles, techniques, and methods of dramatic portrayal in opera, and their application to the development of embodied conversational agents. Investigations such as this complement studies of natural human behavior, and offer insights as to how to make such behavior understandable and interesting when adapted for use by embodied conversational agents. However, one should use caution in applying such lessons. The unique characteristics of computer-based media are still being identified and explored. In any case, one must always be careful about applying principles blindly to any artistic form. Such principles are post-hoc analysis of the intuitive skill of great artists; this was as true in Aristotle's day as it is today. We should not let structural principles stand in the way of injecting creativity into the design of ECAs. Opera at its best possesses an element of magic that is difficult to describe, much less analytically reconstruct. We can only hope to achieve a similar result with conversational agents.

  7. Hybrid surrogate-model-based multi-fidelity efficient global optimization applied to helicopter blade design

    NASA Astrophysics Data System (ADS)

    Ariyarit, Atthaphon; Sugiura, Masahiko; Tanabe, Yasutada; Kanazaki, Masahiro

    2018-06-01

    A multi-fidelity optimization technique by an efficient global optimization process using a hybrid surrogate model is investigated for solving real-world design problems. The model constructs the local deviation using the kriging method and the global model using a radial basis function. The expected improvement is computed to decide additional samples that can improve the model. The approach was first investigated by solving mathematical test problems. The results were compared with optimization results from an ordinary kriging method and a co-kriging method, and the proposed method produced the best solution. The proposed method was also applied to aerodynamic design optimization of helicopter blades to obtain the maximum blade efficiency. The optimal shape obtained by the proposed method achieved performance almost equivalent to that obtained using the high-fidelity, evaluation-based single-fidelity optimization. Comparing all three methods, the proposed method required the lowest total number of high-fidelity evaluation runs to obtain a converged solution.

  8. Submicron multi-bunch BPM for CLIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmickler, H.; Soby, L.; /CERN

    2010-08-01

    A common-mode free cavity BPM is currently under development at Fermilab within the ILC-CLIC collaboration. This monitor will be operated in a CLIC Main Linac multi-bunch regime, and needs to provide both, high spatial and time resolution. We present the design concept, numerical analysis, investigation on tolerances and error effects, as well as simulations on the signal response applying a multi-bunch stimulus. The proposed CERN linear collider (CLIC) requires a very precise measurement of beam trajectory to preserve the low emittance when transporting the beam through the Main Linac. An energy chirp within the bunch train will be applied tomore » measure and minimize the dispersion effects, which require high resolution (in both, time and space) beam position monitors (BPM) along the beam-line. We propose a low-Q waveguide loaded TM{sub 110} dipole mode cavity as BPM, which is complemented by a TM{sub 010} monopole mode resonator of same resonant frequency for reference signal purposes. The design is based on a well known TM{sub 110} selective mode coupling idea.« less

  9. A Distributed Intelligent E-Learning System

    ERIC Educational Resources Information Center

    Kristensen, Terje

    2016-01-01

    An E-learning system based on a multi-agent (MAS) architecture combined with the Dynamic Content Manager (DCM) model of E-learning, is presented. We discuss the benefits of using such a multi-agent architecture. Finally, the MAS architecture is compared with a pure service-oriented architecture (SOA). This MAS architecture may also be used within…

  10. The design and implementation of signal decomposition system of CL multi-wavelet transform based on DSP builder

    NASA Astrophysics Data System (ADS)

    Huang, Yan; Wang, Zhihui

    2015-12-01

    With the development of FPGA, DSP Builder is widely applied to design system-level algorithms. The algorithm of CL multi-wavelet is more advanced and effective than scalar wavelets in processing signal decomposition. Thus, a system of CL multi-wavelet based on DSP Builder is designed for the first time in this paper. The system mainly contains three parts: a pre-filtering subsystem, a one-level decomposition subsystem and a two-level decomposition subsystem. It can be converted into hardware language VHDL by the Signal Complier block that can be used in Quartus II. After analyzing the energy indicator, it shows that this system outperforms Daubenchies wavelet in signal decomposition. Furthermore, it has proved to be suitable for the implementation of signal fusion based on SoPC hardware, and it will become a solid foundation in this new field.

  11. The necessary burden of involving stakeholders in agent-based modelling for education and decision-making

    NASA Astrophysics Data System (ADS)

    Bommel, P.; Bautista Solís, P.; Leclerc, G.

    2016-12-01

    We implemented a participatory process with water stakeholders for improving resilience to drought at watershed scale, and for reducing water pollution disputes in drought prone Northwestern Costa Rica. The purpose is to facilitate co-management in a rural watershed impacted by recurrent droughts related to ENSO. The process involved designing "ContaMiCuenca", a hybrid agent-based model where users can specify the decisions of their agents. We followed a Companion Modeling approach (www.commod.org) and organized 10 workshops that included research techniques such as participatory diagnostics, actor-resources-interaction and UML diagrams, multi-agents model design, and interactive simulation sessions. We collectively assessed the main water issues in the watershed, prioritized their importance, defined the objectives of the process, and pilot-tested ContaMiCuenca for environmental education with adults and children. Simulation sessions resulted in debates about the need to improve the model accuracy, arguably more relevant for decision-making. This helped identify sensible knowledge gaps in the groundwater pollution and aquifer dynamics that need to be addressed in order to improve our collective learning. Significant mismatches among participants expectations, objectives, and agendas considerably slowed down the participatory process. The main issue may originate in participants expecting technical solutions from a positivist science, as constantly promoted in the region by dole-out initiatives, which is incompatible with the constructivist stance of participatory modellers. This requires much closer interaction of community members with modellers, which may be hard to attain in the current research practice and institutional context. Nevertheless, overcoming these constraints is necessary for a true involvement of water stakeholders to achieve community-based decisions that facilitate integrated water management. Our findings provide significant guidance for improving the trans-generational engagement of stakeholders in participatory modeling processes in a context of limited technical skills and information, research expectative mismatches, and poor multi-stakeholder interaction for decision-making.

  12. Space/ground systems as cooperating agents

    NASA Technical Reports Server (NTRS)

    Grant, T. J.

    1994-01-01

    Within NASA and the European Space Agency (ESA) it is agreed that autonomy is an important goal for the design of future spacecraft and that this requires on-board artificial intelligence. NASA emphasizes deep space and planetary rover missions, while ESA considers on-board autonomy as an enabling technology for missions that must cope with imperfect communications. ESA's attention is on the space/ground system. A major issue is the optimal distribution of intelligent functions within the space/ground system. This paper describes the multi-agent architecture for space/ground systems (MAASGS) which would enable this issue to be investigated. A MAASGS agent may model a complete spacecraft, a spacecraft subsystem or payload, a ground segment, a spacecraft control system, a human operator, or an environment. The MAASGS architecture has evolved through a series of prototypes. The paper recommends that the MAASGS architecture should be implemented in the operational Dutch Utilization Center.

  13. A systematic review of methodology applied during preclinical anesthetic neurotoxicity studies: important issues and lessons relevant to the design of future clinical research.

    PubMed

    Disma, Nicola; Mondardini, Maria C; Terrando, Niccolò; Absalom, Anthony R; Bilotta, Federico

    2016-01-01

    Preclinical evidence suggests that anesthetic agents harm the developing brain thereby causing long-term neurocognitive impairments. It is not clear if these findings apply to humans, and retrospective epidemiological studies thus far have failed to show definitive evidence that anesthetic agents are harmful to the developing human brain. The aim of this systematic review was to summarize the preclinical studies published over the past decade, with a focus on methodological issues, to facilitate the comparison between different preclinical studies and inform better design of future trials. The literature search identified 941 articles related to the topic of neurotoxicity. As the primary aim of this systematic review was to compare methodologies applied in animal studies to inform future trials, we excluded a priori all articles focused on putative mechanism of neurotoxicity and the neuroprotective agents. Forty-seven preclinical studies were finally included in this review. Methods used in these studies were highly heterogeneous-animals were exposed to anesthetic agents at different developmental stages, in various doses and in various combinations with other drugs, and overall showed diverse toxicity profiles. Physiological monitoring and maintenance of physiological homeostasis was variable and the use of cognitive tests was generally limited to assessment of specific brain areas, with restricted translational relevance to humans. Comparison between studies is thus complicated by this heterogeneous methodology and the relevance of the combined body of literature to humans remains uncertain. Future preclinical studies should use better standardized methodologies to facilitate transferability of findings from preclinical into clinical science. © 2015 John Wiley & Sons Ltd.

  14. Novel technique for fabrication of multi-layered microcoils in microelectromechanical systems (MEMS) applications

    NASA Astrophysics Data System (ADS)

    Chang, Hung-Pin; Qian, Jiangyuan; Bachman, Mark; Congdon, Philip; Li, Guann-pyng

    2002-07-01

    A novel planarization technique, compressive molding planarization (CMP) is developed for implementation of a multi-layered micro coil device. Applying CMP and other micromachining techniques, a multi-layered micro coil device has been designed and fabricated, and its use in the magnetic micro actuators for hard disk drive applications has been demonstrated, showing that it can produce milli-Newton of magnetic force suitable for driving a micro actuator. The novel CMP technique can be equally applicable in other MEMS devices fabrication to ease the process integration for the complicated structure.

  15. A multi-criteria decision aid methodology to design electric vehicles public charging networks

    NASA Astrophysics Data System (ADS)

    Raposo, João; Rodrigues, Ana; Silva, Carlos; Dentinho, Tomaz

    2015-05-01

    This article presents a new multi-criteria decision aid methodology, dynamic-PROMETHEE, here used to design electric vehicle charging networks. In applying this methodology to a Portuguese city, results suggest that it is effective in designing electric vehicle charging networks, generating time and policy based scenarios, considering offer and demand and the city's urban structure. Dynamic-PROMETHE adds to the already known PROMETHEE's characteristics other useful features, such as decision memory over time, versatility and adaptability. The case study, used here to present the dynamic-PROMETHEE, served as inspiration and base to create this new methodology. It can be used to model different problems and scenarios that may present similar requirement characteristics.

  16. Scare Tactics: Evaluating Problem Decompositions Using Failure Scenarios

    NASA Technical Reports Server (NTRS)

    Helm, B. Robert; Fickas, Stephen

    1992-01-01

    Our interest is in the design of multi-agent problem-solving systems, which we refer to as composite systems. We have proposed an approach to composite system design by decomposition of problem statements. An automated assistant called Critter provides a library of reusable design transformations which allow a human analyst to search the space of decompositions for a problem. In this paper we describe a method for evaluating and critiquing problem decompositions generated by this search process. The method uses knowledge stored in the form of failure decompositions attached to design transformations. We suggest the benefits of our critiquing method by showing how it could re-derive steps of a published development example. We then identify several open issues for the method.

  17. Electrophoretic deposition of multi-walled carbon nanotubes on porous anodic aluminum oxide using ionic liquid as a dispersing agent

    NASA Astrophysics Data System (ADS)

    Hekmat, F.; Sohrabi, B.; Rahmanifar, M. S.; Jalali, A.

    2015-06-01

    Multi-wall carbon nanotubes (MW-CNTs) have been arranged in nanochannels of anodic aluminum oxide template (AAO) by electrophoretic deposition (EPD) to make a vertically-aligned carbon nanotube (VA-CNT) based electrode. Well ordered AAO templates were prepared by a two-step anodizing process by applying a constant voltage of 45 V in oxalic acid solution. The stabilized CNTs in a water-soluble room temperature ionic liquid (1-methyl-3-octadecylimidazolium bromide), were deposited in the pores of AAO templates which were conductive by deposition of Ni nanoparticles in the bottom of pores. In order to obtain ideal results, different EPD parameters, such as concentration of MWCNTs and ionic liquid on stability of MWCNT suspensions, deposition time and voltage which are applied in EPD process and also optimal conditions for anodizing of template were investigated. The capacitive performance of prepared electrodes was analyzed by measuring the specific capacitance from cyclic voltammograms and the charge-discharge curves. A maximum value of 50 Fg-1 at the scan rate of 20 mV s-1was achieved for the specific capacitance.

  18. A capacitive CMOS-MEMS sensor designed by multi-physics simulation for integrated CMOS-MEMS technology

    NASA Astrophysics Data System (ADS)

    Konishi, Toshifumi; Yamane, Daisuke; Matsushima, Takaaki; Masu, Kazuya; Machida, Katsuyuki; Toshiyoshi, Hiroshi

    2014-01-01

    This paper reports the design and evaluation results of a capacitive CMOS-MEMS sensor that consists of the proposed sensor circuit and a capacitive MEMS device implemented on the circuit. To design a capacitive CMOS-MEMS sensor, a multi-physics simulation of the electromechanical behavior of both the MEMS structure and the sensing LSI was carried out simultaneously. In order to verify the validity of the design, we applied the capacitive CMOS-MEMS sensor to a MEMS accelerometer implemented by the post-CMOS process onto a 0.35-µm CMOS circuit. The experimental results of the CMOS-MEMS accelerometer exhibited good agreement with the simulation results within the input acceleration range between 0.5 and 6 G (1 G = 9.8 m/s2), corresponding to the output voltages between 908.6 and 915.4 mV, respectively. Therefore, we have confirmed that our capacitive CMOS-MEMS sensor and the multi-physics simulation will be beneficial method to realize integrated CMOS-MEMS technology.

  19. Knowledge Discovery for Transonic Regional-Jet Wing through Multidisciplinary Design Exploration

    NASA Astrophysics Data System (ADS)

    Chiba, Kazuhisa; Obayashi, Shigeru; Morino, Hiroyuki

    Data mining is an important facet of solving multi-objective optimization problem. Because it is one of the effective manner to discover the design knowledge in the multi-objective optimization problem which obtains large data. In the present study, data mining has been performed for a large-scale and real-world multidisciplinary design optimization (MDO) to provide knowledge regarding the design space. The MDO among aerodynamics, structures, and aeroelasticity of the regional-jet wing was carried out using high-fidelity evaluation models on the adaptive range multi-objective genetic algorithm. As a result, nine non-dominated solutions were generated and used for tradeoff analysis among three objectives. All solutions evaluated during the evolution were analyzed for the tradeoffs and influence of design variables using a self-organizing map to extract key features of the design space. Although the MDO results showed the inverted gull-wings as non-dominated solutions, one of the key features found by data mining was the non-gull wing geometry. When this knowledge was applied to one optimum solution, the resulting design was found to have better performance compared with the original geometry designed in the conventional manner.

  20. Observer-based distributed adaptive fault-tolerant containment control of multi-agent systems with general linear dynamics.

    PubMed

    Ye, Dan; Chen, Mengmeng; Li, Kui

    2017-11-01

    In this paper, we consider the distributed containment control problem of multi-agent systems with actuator bias faults based on observer method. The objective is to drive the followers into the convex hull spanned by the dynamic leaders, where the input is unknown but bounded. By constructing an observer to estimate the states and bias faults, an effective distributed adaptive fault-tolerant controller is developed. Different from the traditional method, an auxiliary controller gain is designed to deal with the unknown inputs and bias faults together. Moreover, the coupling gain can be adjusted online through the adaptive mechanism without using the global information. Furthermore, the proposed control protocol can guarantee that all the signals of the closed-loop systems are bounded and all the followers converge to the convex hull with bounded residual errors formed by the dynamic leaders. Finally, a decoupled linearized longitudinal motion model of the F-18 aircraft is used to demonstrate the effectiveness. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  1. A multi-agent quantum Monte Carlo model for charge transport: Application to organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Bauer, Thilo; Jäger, Christof M.; Jordan, Meredith J. T.; Clark, Timothy

    2015-07-01

    We have developed a multi-agent quantum Monte Carlo model to describe the spatial dynamics of multiple majority charge carriers during conduction of electric current in the channel of organic field-effect transistors. The charge carriers are treated by a neglect of diatomic differential overlap Hamiltonian using a lattice of hydrogen-like basis functions. The local ionization energy and local electron affinity defined previously map the bulk structure of the transistor channel to external potentials for the simulations of electron- and hole-conduction, respectively. The model is designed without a specific charge-transport mechanism like hopping- or band-transport in mind and does not arbitrarily localize charge. An electrode model allows dynamic injection and depletion of charge carriers according to source-drain voltage. The field-effect is modeled by using the source-gate voltage in a Metropolis-like acceptance criterion. Although the current cannot be calculated because the simulations have no time axis, using the number of Monte Carlo moves as pseudo-time gives results that resemble experimental I/V curves.

  2. A multi-agent quantum Monte Carlo model for charge transport: Application to organic field-effect transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Thilo; Jäger, Christof M.; Jordan, Meredith J. T.

    2015-07-28

    We have developed a multi-agent quantum Monte Carlo model to describe the spatial dynamics of multiple majority charge carriers during conduction of electric current in the channel of organic field-effect transistors. The charge carriers are treated by a neglect of diatomic differential overlap Hamiltonian using a lattice of hydrogen-like basis functions. The local ionization energy and local electron affinity defined previously map the bulk structure of the transistor channel to external potentials for the simulations of electron- and hole-conduction, respectively. The model is designed without a specific charge-transport mechanism like hopping- or band-transport in mind and does not arbitrarily localizemore » charge. An electrode model allows dynamic injection and depletion of charge carriers according to source-drain voltage. The field-effect is modeled by using the source-gate voltage in a Metropolis-like acceptance criterion. Although the current cannot be calculated because the simulations have no time axis, using the number of Monte Carlo moves as pseudo-time gives results that resemble experimental I/V curves.« less

  3. A Multi-Paradigm Modeling Framework to Simulate Dynamic Reciprocity in a Bioreactor

    PubMed Central

    Kaul, Himanshu; Cui, Zhanfeng; Ventikos, Yiannis

    2013-01-01

    Despite numerous technology advances, bioreactors are still mostly utilized as functional black-boxes where trial and error eventually leads to the desirable cellular outcome. Investigators have applied various computational approaches to understand the impact the internal dynamics of such devices has on overall cell growth, but such models cannot provide a comprehensive perspective regarding the system dynamics, due to limitations inherent to the underlying approaches. In this study, a novel multi-paradigm modeling platform capable of simulating the dynamic bidirectional relationship between cells and their microenvironment is presented. Designing the modeling platform entailed combining and coupling fully an agent-based modeling platform with a transport phenomena computational modeling framework. To demonstrate capability, the platform was used to study the impact of bioreactor parameters on the overall cell population behavior and vice versa. In order to achieve this, virtual bioreactors were constructed and seeded. The virtual cells, guided by a set of rules involving the simulated mass transport inside the bioreactor, as well as cell-related probabilistic parameters, were capable of displaying an array of behaviors such as proliferation, migration, chemotaxis and apoptosis. In this way the platform was shown to capture not only the impact of bioreactor transport processes on cellular behavior but also the influence that cellular activity wields on that very same local mass transport, thereby influencing overall cell growth. The platform was validated by simulating cellular chemotaxis in a virtual direct visualization chamber and comparing the simulation with its experimental analogue. The results presented in this paper are in agreement with published models of similar flavor. The modeling platform can be used as a concept selection tool to optimize bioreactor design specifications. PMID:23555740

  4. Application of multi-factorial design of experiments to successfully optimize immunoassays for robust measurements of therapeutic proteins.

    PubMed

    Ray, Chad A; Patel, Vimal; Shih, Judy; Macaraeg, Chris; Wu, Yuling; Thway, Theingi; Ma, Mark; Lee, Jean W; Desilva, Binodh

    2009-02-20

    Developing a process that generates robust immunoassays that can be used to support studies with tight timelines is a common challenge for bioanalytical laboratories. Design of experiments (DOEs) is a tool that has been used by many industries for the purpose of optimizing processes. The approach is capable of identifying critical factors and their interactions with a minimal number of experiments. The challenge for implementing this tool in the bioanalytical laboratory is to develop a user-friendly approach that scientists can understand and apply. We have successfully addressed these challenges by eliminating the screening design, introducing automation, and applying a simple mathematical approach for the output parameter. A modified central composite design (CCD) was applied to three ligand binding assays. The intra-plate factors selected were coating, detection antibody concentration, and streptavidin-HRP concentrations. The inter-plate factors included incubation times for each step. The objective was to maximize the logS/B (S/B) of the low standard to the blank. The maximum desirable conditions were determined using JMP 7.0. To verify the validity of the predictions, the logS/B prediction was compared against the observed logS/B during pre-study validation experiments. The three assays were optimized using the multi-factorial DOE. The total error for all three methods was less than 20% which indicated method robustness. DOE identified interactions in one of the methods. The model predictions for logS/B were within 25% of the observed pre-study validation values for all methods tested. The comparison between the CCD and hybrid screening design yielded comparable parameter estimates. The user-friendly design enables effective application of multi-factorial DOE to optimize ligand binding assays for therapeutic proteins. The approach allows for identification of interactions between factors, consistency in optimal parameter determination, and reduced method development time.

  5. A Multi-agent Based Cooperative Voltage and Reactive Power Control

    NASA Astrophysics Data System (ADS)

    Ishida, Masato; Nagata, Takeshi; Saiki, Hiroshi; Shimada, Ikuhiko; Hatano, Ryousuke

    In order to maintain system voltage within the optimal range and prevent voltage instability phenomena before they occur, a variety of phase modifying equipment is installed in optimal locations throughout the power system network and a variety of methods of voltage reactive control are employed. The proposed system divided the traditional method to control voltage and reactive power into two sub problems; “voltage control” to adjust the secondary bus voltage of substations, and “reactive power control” to adjust the primary bus voltage. In this system, two types of agents are installed in substations in order to cooperate “voltage control” and “reactive power control”. In order to verify the performance of the proposed method, it has been applied to the model network system. The results confirm that our proposed method is able to control violent fluctuations in load.

  6. The Extraction of One-Dimensional Flow Properties from Multi-Dimensional Data Sets

    NASA Technical Reports Server (NTRS)

    Baurle, Robert A.; Gaffney, Richard L., Jr.

    2007-01-01

    The engineering design and analysis of air-breathing propulsion systems relies heavily on zero- or one-dimensional properties (e.g. thrust, total pressure recovery, mixing and combustion efficiency, etc.) for figures of merit. The extraction of these parameters from experimental data sets and/or multi-dimensional computational data sets is therefore an important aspect of the design process. A variety of methods exist for extracting performance measures from multi-dimensional data sets. Some of the information contained in the multi-dimensional flow is inevitably lost when any one-dimensionalization technique is applied. Hence, the unique assumptions associated with a given approach may result in one-dimensional properties that are significantly different than those extracted using alternative approaches. The purpose of this effort is to examine some of the more popular methods used for the extraction of performance measures from multi-dimensional data sets, reveal the strengths and weaknesses of each approach, and highlight various numerical issues that result when mapping data from a multi-dimensional space to a space of one dimension.

  7. The Art of Extracting One-Dimensional Flow Properties from Multi-Dimensional Data Sets

    NASA Technical Reports Server (NTRS)

    Baurle, R. A.; Gaffney, R. L.

    2007-01-01

    The engineering design and analysis of air-breathing propulsion systems relies heavily on zero- or one-dimensional properties (e:g: thrust, total pressure recovery, mixing and combustion efficiency, etc.) for figures of merit. The extraction of these parameters from experimental data sets and/or multi-dimensional computational data sets is therefore an important aspect of the design process. A variety of methods exist for extracting performance measures from multi-dimensional data sets. Some of the information contained in the multi-dimensional flow is inevitably lost when any one-dimensionalization technique is applied. Hence, the unique assumptions associated with a given approach may result in one-dimensional properties that are significantly different than those extracted using alternative approaches. The purpose of this effort is to examine some of the more popular methods used for the extraction of performance measures from multi-dimensional data sets, reveal the strengths and weaknesses of each approach, and highlight various numerical issues that result when mapping data from a multi-dimensional space to a space of one dimension.

  8. Multiagent pursuit-evasion games: Algorithms and experiments

    NASA Astrophysics Data System (ADS)

    Kim, Hyounjin

    Deployment of intelligent agents has been made possible through advances in control software, microprocessors, sensor/actuator technology, communication technology, and artificial intelligence. Intelligent agents now play important roles in many applications where human operation is too dangerous or inefficient. There is little doubt that the world of the future will be filled with intelligent robotic agents employed to autonomously perform tasks, or embedded in systems all around us, extending our capabilities to perceive, reason and act, and replacing human efforts. There are numerous real-world applications in which a single autonomous agent is not suitable and multiple agents are required. However, after years of active research in multi-agent systems, current technology is still far from achieving many of these real-world applications. Here, we consider the problem of deploying a team of unmanned ground vehicles (UGV) and unmanned aerial vehicles (UAV) to pursue a second team of UGV evaders while concurrently building a map in an unknown environment. This pursuit-evasion game encompasses many of the challenging issues that arise in operations using intelligent multi-agent systems. We cast the problem in a probabilistic game theoretic framework and consider two computationally feasible pursuit policies: greedy and global-max. We also formulate this probabilistic pursuit-evasion game as a partially observable Markov decision process and employ a policy search algorithm to obtain a good pursuit policy from a restricted class of policies. The estimated value of this policy is guaranteed to be uniformly close to the optimal value in the given policy class under mild conditions. To implement this scenario on real UAVs and UGVs, we propose a distributed hierarchical hybrid system architecture which emphasizes the autonomy of each agent yet allows for coordinated team efforts. We then describe our implementation on a fleet of UGVs and UAVs, detailing components such as high level pursuit policy computation, inter-agent communication, navigation, sensing, and regulation. We present both simulation and experimental results on real pursuit-evasion games between our fleet of UAVs and UGVs and evaluate the pursuit policies, relating expected capture times to the speed and intelligence of the evaders and the sensing capabilities of the pursuers. The architecture and algorithmsis described in this dissertation are general enough to be applied to many real-world applications.

  9. Dissipative particle dynamics simulation on the self-assembly and disassembly of pH-sensitive polymeric micelle with coating repair agent

    NASA Astrophysics Data System (ADS)

    Wang, Xiumin; Gao, Jianbang; Wang, Zhikun; Xu, Jianchang; Li, Chunling; Sun, Shuangqing; Hu, Songqing

    2017-10-01

    Dissipative particle dynamics (DPD) simulations were applied to investigate the coating repair agent dicyclopentadience (DCPD) in pH-sensitive micelles. The results show micelles self-assembled from triblock copolymers with strong hydrophobic interaction are not conducive to loading DCPD, and only micelles with weak interaction parameter can encapsulate DCPD well. After protonation, the structure of micelle was disassembled and DCPD beads have a stronger ability to shrink polymer chains and exposed to water. This work provides mesoscopic insight into self-assembly and disassembly of desired agent-loaded micelle, and might be useful for the design of new materials for agent delivery.

  10. Multi-Targeted Agents in Cancer Cell Chemosensitization: What We Learnt from Curcumin Thus Far.

    PubMed

    Bordoloi, Devivasha; Roy, Nand K; Monisha, Javadi; Padmavathi, Ganesan; Kunnumakkara, Ajaikumar B

    2016-01-01

    Research over the past several years has developed many mono-targeted therapies for the prevention and treatment of cancer, but it still remains one of the fatal diseases in the world killing 8.2 million people annually. It has been well-established that development of chemoresistance in cancer cells against mono-targeted chemotherapeutic agents by modulation of multiple survival pathways is the major cause of failure of cancer chemotherapy. Therefore, inhibition of these pathways by non-toxic multi-targeted agents may have profoundly high potential in preventing drug resistance and sensitizing cancer cells to chemotherapeutic agents. To study the potential of curcumin, a multi-targeted natural compound, obtained from the plant Turmeric (Curcuma longa) in combination with standard chemotherapeutic agents to inhibit drug resistance and sensitize cancer cells to these agents based on available literature and patents. An extensive literature survey was performed in PubMed and Google for the chemosensitizing potential of curcumin in different cancers published so far and the patents published during 2014-2015. Our search resulted in many in vitro, in vivo and clinical reports signifying the chemosensitizing potential of curcumin in diverse cancers. There were 160 in vitro studies, 62 in vivo studies and 5 clinical studies. Moreover, 11 studies reported on hybrid curcumin: the next generation of curcumin based therapeutics. Also, 34 patents on curcumin's biological activity have been retrieved. Altogether, the present study reveals the enormous potential of curcumin, a natural, non-toxic, multi-targeted agent in overcoming drug resistance in cancer cells and sensitizing them to chemotherapeutic drugs.

  11. Method and Tool for Design Process Navigation and Automatic Generation of Simulation Models for Manufacturing Systems

    NASA Astrophysics Data System (ADS)

    Nakano, Masaru; Kubota, Fumiko; Inamori, Yutaka; Mitsuyuki, Keiji

    Manufacturing system designers should concentrate on designing and planning manufacturing systems instead of spending their efforts on creating the simulation models to verify the design. This paper proposes a method and its tool to navigate the designers through the engineering process and generate the simulation model automatically from the design results. The design agent also supports collaborative design projects among different companies or divisions with distributed engineering and distributed simulation techniques. The idea was implemented and applied to a factory planning process.

  12. Full-Scale Accelerated Testing of Multi-axial Geogrid Stabilized Flexible Pavements

    DTIC Science & Technology

    2017-06-01

    costs and reduced budgets, transportation officials are often tasked with applying innovative solutions to pavement design and construction projects... pavement designers . 1.2 Objective The objective of this effort was to construct and traffic full-scale flexible pavement sections to provide...Development Center (ERDC) constructed the full-scale test section as designed by Tensar under shelter in its Hangar 2 Pavement Test Facility. During

  13. Educating change agents: a qualitative descriptive study of graduates of a Master's program in evidence-based practice.

    PubMed

    Hole, Grete Oline; Brenna, Sissel Johansson; Graverholt, Birgitte; Ciliska, Donna; Nortvedt, Monica Wammen

    2016-02-25

    Health care professionals are expected to build decisions upon evidence. This implies decisions based on the best available, current, valid and relevant evidence, informed by clinical expertise and patient values. A multi-professional master's program in evidence-based practice was developed and offered. The aims of this study were to explore how students in this program viewed their ability to apply evidence-based practice and their perceptions of what constitute necessary conditions to implement evidence-based practice in health care organizations, one year after graduation. A qualitative descriptive design was chosen to examine the graduates' experiences. All students in the first two cohorts of the program were invited to participate. Six focus-group interviews, with a total of 21 participants, and a telephone interview of one participant were conducted. The data was analyzed thematically, using the themes from the interview guide as the starting point. The graduates reported that an overall necessary condition for evidence-based practice to occur is the existence of a "readiness for change" both at an individual level and at the organizational level. They described that they gained personal knowledge and skills to be "change-agents" with "self-efficacy, "analytic competence" and "tools" to implement evidence based practice in clinical care. An organizational culture of a "learning organization" was also required, where leaders have an "awareness of evidence- based practice", and see the need for creating "evidence-based networks". One year after graduation the participants saw themselves as "change agents" prepared to improve clinical care within a learning organization. The results of this study provides useful information for facilitating the implementation of EBP both from educational and health care organizational perspectives.

  14. Multi-modal magnetic resonance imaging and histology of vascular function in xenografts using macromolecular contrast agent hyperbranched polyglycerol (HPG-GdF).

    PubMed

    Baker, Jennifer H E; McPhee, Kelly C; Moosvi, Firas; Saatchi, Katayoun; Häfeli, Urs O; Minchinton, Andrew I; Reinsberg, Stefan A

    2016-01-01

    Macromolecular gadolinium (Gd)-based contrast agents are in development as blood pool markers for MRI. HPG-GdF is a 583 kDa hyperbranched polyglycerol doubly tagged with Gd and Alexa 647 nm dye, making it both MR and histologically visible. In this study we examined the location of HPG-GdF in whole-tumor xenograft sections matched to in vivo DCE-MR images of both HPG-GdF and Gadovist. Despite its large size, we have shown that HPG-GdF extravasates from some tumor vessels and accumulates over time, but does not distribute beyond a few cell diameters from vessels. Fractional plasma volume (fPV) and apparent permeability-surface area product (aPS) parameters were derived from the MR concentration-time curves of HPG-GdF. Non-viable necrotic tumor tissue was excluded from the analysis by applying a novel bolus arrival time (BAT) algorithm to all voxels. aPS derived from HPG-GdF was the only MR parameter to identify a difference in vascular function between HCT116 and HT29 colorectal tumors. This study is the first to relate low and high molecular weight contrast agents with matched whole-tumor histological sections. These detailed comparisons identified tumor regions that appear distinct from each other using the HPG-GdF biomarkers related to perfusion and vessel leakiness, while Gadovist-imaged parameter measures in the same regions were unable to detect variation in vascular function. We have established HPG-GdF as a biocompatible multi-modal high molecular weight contrast agent with application for examining vascular function in both MR and histological modalities. Copyright © 2015 John Wiley & Sons, Ltd.

  15. The application of statistical mechanics on the study of glassy behaviors in transportation networks and dynamics in models of financial markets

    NASA Astrophysics Data System (ADS)

    Yeung, Chi Ho

    In this thesis, we study two interdisciplinary problems in the framework of statistical physics, which show the broad applicability of physics on problems with various origins. The first problem corresponds to an optimization problem in allocating resources on random regular networks. Frustrations arise from competition for resources. When the initial resources are uniform, different regimes with discrete fractions of satisfied nodes are observed, resembling the Devil's staircase. We apply the spin glass theory in analyses and demonstrate how functional recursions are converted to simple recursions of probabilities. Equilibrium properties such as the average energy and the fraction of free nodes are derived. When the initial resources are bimodally distributed, increases in the fraction of rich nodes induce a glassy transition, entering a glassy phase described by the existence of multiple metastable states, in which we employ the replica symmetry breaking ansatz for analysis. The second problem corresponds to the study of multi-agent systems modeling financial markets. Agents in the system trade among themselves, and self-organize to produce macroscopic trading behaviors resembling the real financial markets. These behaviors include the arbitraging activities, the setting up and the following of price trends. A phase diagram of these behaviors is obtained, as a function of the sensitivity of price and the market impact factor. We finally test the applicability of the models with real financial data including the Hang Seng Index, the Nasdaq Composite and the Dow Jones Industrial Average. A substantial fraction of agents gains faster than the inflation rate of the indices, suggesting the possibility of using multi-agent systems as a tool for real trading.

  16. High-Performance Agent-Based Modeling Applied to Vocal Fold Inflammation and Repair.

    PubMed

    Seekhao, Nuttiiya; Shung, Caroline; JaJa, Joseph; Mongeau, Luc; Li-Jessen, Nicole Y K

    2018-01-01

    Fast and accurate computational biology models offer the prospect of accelerating the development of personalized medicine. A tool capable of estimating treatment success can help prevent unnecessary and costly treatments and potential harmful side effects. A novel high-performance Agent-Based Model (ABM) was adopted to simulate and visualize multi-scale complex biological processes arising in vocal fold inflammation and repair. The computational scheme was designed to organize the 3D ABM sub-tasks to fully utilize the resources available on current heterogeneous platforms consisting of multi-core CPUs and many-core GPUs. Subtasks are further parallelized and convolution-based diffusion is used to enhance the performance of the ABM simulation. The scheme was implemented using a client-server protocol allowing the results of each iteration to be analyzed and visualized on the server (i.e., in-situ ) while the simulation is running on the same server. The resulting simulation and visualization software enables users to interact with and steer the course of the simulation in real-time as needed. This high-resolution 3D ABM framework was used for a case study of surgical vocal fold injury and repair. The new framework is capable of completing the simulation, visualization and remote result delivery in under 7 s per iteration, where each iteration of the simulation represents 30 min in the real world. The case study model was simulated at the physiological scale of a human vocal fold. This simulation tracks 17 million biological cells as well as a total of 1.7 billion signaling chemical and structural protein data points. The visualization component processes and renders all simulated biological cells and 154 million signaling chemical data points. The proposed high-performance 3D ABM was verified through comparisons with empirical vocal fold data. Representative trends of biomarker predictions in surgically injured vocal folds were observed.

  17. High-Performance Agent-Based Modeling Applied to Vocal Fold Inflammation and Repair

    PubMed Central

    Seekhao, Nuttiiya; Shung, Caroline; JaJa, Joseph; Mongeau, Luc; Li-Jessen, Nicole Y. K.

    2018-01-01

    Fast and accurate computational biology models offer the prospect of accelerating the development of personalized medicine. A tool capable of estimating treatment success can help prevent unnecessary and costly treatments and potential harmful side effects. A novel high-performance Agent-Based Model (ABM) was adopted to simulate and visualize multi-scale complex biological processes arising in vocal fold inflammation and repair. The computational scheme was designed to organize the 3D ABM sub-tasks to fully utilize the resources available on current heterogeneous platforms consisting of multi-core CPUs and many-core GPUs. Subtasks are further parallelized and convolution-based diffusion is used to enhance the performance of the ABM simulation. The scheme was implemented using a client-server protocol allowing the results of each iteration to be analyzed and visualized on the server (i.e., in-situ) while the simulation is running on the same server. The resulting simulation and visualization software enables users to interact with and steer the course of the simulation in real-time as needed. This high-resolution 3D ABM framework was used for a case study of surgical vocal fold injury and repair. The new framework is capable of completing the simulation, visualization and remote result delivery in under 7 s per iteration, where each iteration of the simulation represents 30 min in the real world. The case study model was simulated at the physiological scale of a human vocal fold. This simulation tracks 17 million biological cells as well as a total of 1.7 billion signaling chemical and structural protein data points. The visualization component processes and renders all simulated biological cells and 154 million signaling chemical data points. The proposed high-performance 3D ABM was verified through comparisons with empirical vocal fold data. Representative trends of biomarker predictions in surgically injured vocal folds were observed. PMID:29706894

  18. The evolution of gadolinium based contrast agents: from single-modality to multi-modality

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Liu, Ruiqing; Peng, Hui; Li, Penghui; Xu, Zushun; Whittaker, Andrew K.

    2016-05-01

    Gadolinium-based contrast agents are extensively used as magnetic resonance imaging (MRI) contrast agents due to their outstanding signal enhancement and ease of chemical modification. However, it is increasingly recognized that information obtained from single modal molecular imaging cannot satisfy the higher requirements on the efficiency and accuracy for clinical diagnosis and medical research, due to its limitation and default rooted in single molecular imaging technique itself. To compensate for the deficiencies of single function magnetic resonance imaging contrast agents, the combination of multi-modality imaging has turned to be the research hotpot in recent years. This review presents an overview on the recent developments of the functionalization of gadolinium-based contrast agents, and their application in biomedicine applications.

  19. A Multi Agent System for Flow-Based Intrusion Detection Using Reputation and Evolutionary Computation

    DTIC Science & Technology

    2011-03-01

    the actions of malicious and benign users of the Internet, as well as the engi- neering decisions giving rise to observed network topologies. Say and...with resilience, which is particularly important in the domain of quickly-evolving cyber threats. “Self-organization,” says Meadows, “is basically the...system design paradigm is to leverage the advantages of a distributed approach? What is meant by saying the witness conceptually rates the target

  20. Future applications of artificial intelligence to Mission Control Centers

    NASA Technical Reports Server (NTRS)

    Friedland, Peter

    1991-01-01

    Future applications of artificial intelligence to Mission Control Centers are presented in the form of the viewgraphs. The following subject areas are covered: basic objectives of the NASA-wide AI program; inhouse research program; constraint-based scheduling; learning and performance improvement for scheduling; GEMPLAN multi-agent planner; planning, scheduling, and control; Bayesian learning; efficient learning algorithms; ICARUS (an integrated architecture for learning); design knowledge acquisition and retention; computer-integrated documentation; and some speculation on future applications.

  1. Prescribed performance distributed consensus control for nonlinear multi-agent systems with unknown dead-zone input

    NASA Astrophysics Data System (ADS)

    Cui, Guozeng; Xu, Shengyuan; Ma, Qian; Li, Yongmin; Zhang, Zhengqiang

    2018-05-01

    In this paper, the problem of prescribed performance distributed output consensus for higher-order non-affine nonlinear multi-agent systems with unknown dead-zone input is investigated. Fuzzy logical systems are utilised to identify the unknown nonlinearities. By introducing prescribed performance, the transient and steady performance of synchronisation errors are guaranteed. Based on Lyapunov stability theory and the dynamic surface control technique, a new distributed consensus algorithm for non-affine nonlinear multi-agent systems is proposed, which ensures cooperatively uniformly ultimately boundedness of all signals in the closed-loop systems and enables the output of each follower to synchronise with the leader within predefined bounded error. Finally, simulation examples are provided to demonstrate the effectiveness of the proposed control scheme.

  2. Research on e-commerce transaction networks using multi-agent modelling and open application programming interface

    NASA Astrophysics Data System (ADS)

    Piao, Chunhui; Han, Xufang; Wu, Harris

    2010-08-01

    We provide a formal definition of an e-commerce transaction network. Agent-based modelling is used to simulate e-commerce transaction networks. For real-world analysis, we studied the open application programming interfaces (APIs) from eBay and Taobao e-commerce websites and captured real transaction data. Pajek is used to visualise the agent relationships in the transaction network. We derived one-mode networks from the transaction network and analysed them using degree and betweenness centrality. Integrating multi-agent modelling, open APIs and social network analysis, we propose a new way to study large-scale e-commerce systems.

  3. Algorithms of walking and stability for an anthropomorphic robot

    NASA Astrophysics Data System (ADS)

    Sirazetdinov, R. T.; Devaev, V. M.; Nikitina, D. V.; Fadeev, A. Y.; Kamalov, A. R.

    2017-09-01

    Autonomous movement of an anthropomorphic robot is considered as a superposition of a set of typical elements of movement - so-called patterns, each of which can be considered as an agent of some multi-agent system [ 1 ]. To control the AP-601 robot, an information and communication infrastructure has been created that represents some multi-agent system that allows the development of algorithms for individual patterns of moving and run them in the system as a set of independently executed and interacting agents. The algorithms of lateral movement of the anthropomorphic robot AP-601 series with active stability due to the stability pattern are presented.

  4. High-Fidelity Multidisciplinary Design Using an Integrated Design Environment

    DTIC Science & Technology

    2007-08-14

    Leovirivakit and A. .Jamneson, -- Case Studies ini Aero-St ruc(t ural NWing Planiforiii aiid Section Op- tifiization". 22`1~ AIAA Applied Aerodynamaiics...design of complete aircraft configurations. The work was focused on four main areas: (1) Flow solution algorithms for unstructured meshes, (2) Aero...Multi-Fidelity Design Optimization Studies for Supersonic lIets" . 13"’" AIAA Aerospace Sciences Meeting kc E’xhibit, AIAA Paper 2005- (0531, Reno. NV

  5. Intelligent Agent Transparency in Human-Agent Teaming for Multi-UxV Management.

    PubMed

    Mercado, Joseph E; Rupp, Michael A; Chen, Jessie Y C; Barnes, Michael J; Barber, Daniel; Procci, Katelyn

    2016-05-01

    We investigated the effects of level of agent transparency on operator performance, trust, and workload in a context of human-agent teaming for multirobot management. Participants played the role of a heterogeneous unmanned vehicle (UxV) operator and were instructed to complete various missions by giving orders to UxVs through a computer interface. An intelligent agent (IA) assisted the participant by recommending two plans-a top recommendation and a secondary recommendation-for every mission. A within-subjects design with three levels of agent transparency was employed in the present experiment. There were eight missions in each of three experimental blocks, grouped by level of transparency. During each experimental block, the IA was incorrect three out of eight times due to external information (e.g., commander's intent and intelligence). Operator performance, trust, workload, and usability data were collected. Results indicate that operator performance, trust, and perceived usability increased as a function of transparency level. Subjective and objective workload data indicate that participants' workload did not increase as a function of transparency. Furthermore, response time did not increase as a function of transparency. Unlike previous research, which showed that increased transparency resulted in increased performance and trust calibration at the cost of greater workload and longer response time, our results support the benefits of transparency for performance effectiveness without additional costs. The current results will facilitate the implementation of IAs in military settings and will provide useful data to the design of heterogeneous UxV teams. © 2016, Human Factors and Ergonomics Society.

  6. Quantum state sharing against the controller's cheating

    NASA Astrophysics Data System (ADS)

    Shi, Run-hua; Zhong, Hong; Huang, Liu-sheng

    2013-08-01

    Most existing QSTS schemes are equivalent to the controlled teleportation, in which a designated agent (i.e., the recoverer) can recover the teleported state with the help of the controllers. However, the controller may attempt to cheat the recoverer during the phase of recovering the secret state. How can we detect this cheating? In this paper, we considered the problem of detecting the controller's cheating in Quantum State Sharing, and further proposed an effective Quantum State Sharing scheme against the controller's cheating. We cleverly use Quantum Secret Sharing, Multiple Quantum States Sharing and decoy-particle techniques. In our scheme, via a previously shared entanglement state Alice can teleport multiple arbitrary multi-qubit states to Bob with the help of Charlie. Furthermore, by the classical information shared previously, Alice and Bob can check whether there is any cheating of Charlie. In addition, our scheme only needs to perform Bell-state and single-particle measurements, and to apply C-NOT gate and other single-particle unitary operations. With the present techniques, it is feasible to implement these necessary measurements and operations.

  7. Strain Sensitivity in Single Walled Carbon Nanotubes for Multifunctional Materials

    NASA Technical Reports Server (NTRS)

    Heath, D. M. (Technical Monitor); Smits, Jan M., VI

    2005-01-01

    Single walled carbon nanotubes represent the future of structural aerospace vehicle systems due to their unparalleled strength characteristics and demonstrated multifunctionality. This multifunctionality rises from the CNT's unique capabilities for both metallic and semiconducting electron transport, electron spin polarizability, and band gap modulation under strain. By incorporating the use of electric field alignment and various lithography techniques, a single wall carbon nanotube (SWNT) test bed for measurement of conductivity/strain relationships has been developed. Nanotubes are deposited at specified locations through dielectrophoresis. The circuit is designed such that the central, current carrying section of the nanotube is exposed to enable atomic force microscopy and manipulation in situ while the transport properties of the junction are monitored. By applying this methodology to sensor development a flexible single wall carbon nanotube (SWNT) based strain sensitive device has been developed. Studies of tensile testing of the flexible SWNT device vs conductivity are also presented, demonstrating the feasibility of using single walled HiPCO (high-pressure carbon monoxide) carbon nanotubes as strain sensing agents in a multi-functional materials system.

  8. Optimal consensus algorithm integrated with obstacle avoidance

    NASA Astrophysics Data System (ADS)

    Wang, Jianan; Xin, Ming

    2013-01-01

    This article proposes a new consensus algorithm for the networked single-integrator systems in an obstacle-laden environment. A novel optimal control approach is utilised to achieve not only multi-agent consensus but also obstacle avoidance capability with minimised control efforts. Three cost functional components are defined to fulfil the respective tasks. In particular, an innovative nonquadratic obstacle avoidance cost function is constructed from an inverse optimal control perspective. The other two components are designed to ensure consensus and constrain the control effort. The asymptotic stability and optimality are proven. In addition, the distributed and analytical optimal control law only requires local information based on the communication topology to guarantee the proposed behaviours, rather than all agents' information. The consensus and obstacle avoidance are validated through simulations.

  9. Learning Activity Models for Multiple Agents in a Smart Space

    NASA Astrophysics Data System (ADS)

    Crandall, Aaron; Cook, Diane J.

    With the introduction of more complex intelligent environment systems, the possibilities for customizing system behavior have increased dramatically. Significant headway has been made in tracking individuals through spaces using wireless devices [1, 18, 26] and in recognizing activities within the space based on video data (see chapter by Brubaker et al. and [6, 8, 23]), motion sensor data [9, 25], wearable sensors [13] or other sources of information [14, 15, 22]. However, much of the theory and most of the algorithms are designed to handle one individual in the space at a time. Resident tracking, activity recognition, event prediction, and behavior automation becomes significantly more difficult for multi-agent situations, when there are multiple residents in the environment.

  10. A calibration rig for multi-component internal strain gauge balance using the new design-of-experiment (DOE) approach

    NASA Astrophysics Data System (ADS)

    Nouri, N. M.; Mostafapour, K.; Kamran, M.

    2018-02-01

    In a closed water-tunnel circuit, the multi-component strain gauge force and moment sensor (also known as balance) are generally used to measure hydrodynamic forces and moments acting on scaled models. These balances are periodically calibrated by static loading. Their performance and accuracy depend significantly on the rig and the method of calibration. In this research, a new calibration rig was designed and constructed to calibrate multi-component internal strain gauge balances. The calibration rig has six degrees of freedom and six different component-loading structures that can be applied separately and synchronously. The system was designed based on the applicability of formal experimental design techniques, using gravity for balance loading and balance positioning and alignment relative to gravity. To evaluate the calibration rig, a six-component internal balance developed by Iran University of Science and Technology was calibrated using response surface methodology. According to the results, calibration rig met all design criteria. This rig provides the means by which various methods of formal experimental design techniques can be implemented. The simplicity of the rig saves time and money in the design of experiments and in balance calibration while simultaneously increasing the accuracy of these activities.

  11. The Design of Collectives of Agents to Control Non-Markovian Systems

    NASA Technical Reports Server (NTRS)

    Lawson, John W.; Wolpert, David H.

    2004-01-01

    The Collective Intelligence (COIN) framework concerns the design of collectives of reinforcement-learning agents such that their interaction causes a provided "world" utility function concerning the entire collective to be maximized. Previously, we applied that framework to scenarios involving Markovian dynamics where no re-evolution of the system from counter-factual initial conditions (an often expensive calculation) is permitted. This approach sets the individual utility function of each agent to be both aligned with the world utility, and at the same time, easy for the associated agents to optimize. Here we extend that approach to systems involving non-Markovian dynamics. In computer simulations, we compare our techniques with each other and with conventional "team games". We show whereas in team games performance often degrades badly with time, it steadily improves when our techniques are used. We also investigate situations where the system's dimensionality is effectively reduced. We show that this leads to difficulties in the agents ability to learn. The implication is that learning is a property only of high-enough dimensional systems.

  12. The Design of Collectives of Agents to Control Non-Markovian Systems

    NASA Technical Reports Server (NTRS)

    Lawson, John W.; Wolpert, David H.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    The 'Collective Intelligence' (COIN) framework concerns the design of collectives of reinforcement-learning agents such that their interaction causes a provided 'world' utility function concerning the entire collective to be maximized. Previously, we applied that framework to scenarios involving Markovian dynamics where no re-evolution of the system from counter-factual initial conditions (an often expensive calculation) is permitted. This approach sets the individual utility function of each agent to be both aligned with the world utility, and at the same time, easy for the associated agents to optimize. Here we extend that approach to systems involving non-Markovian dynamics. In computer simulations, we compare our techniques with each other and with conventional-'team games'. We show whereas in team games performance often degrades badly with time, it steadily improves when our techniques are used. We also investigate situations where the system's dimensionality is effectively reduced. We show that this leads to difficulties in the agents' ability to learn. The implication is that 'learning' is a property only of high-enough dimensional systems.

  13. Multidisciplinary design optimization of vehicle instrument panel based on multi-objective genetic algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Wu, Guangqiang

    2013-03-01

    Typical multidisciplinary design optimization(MDO) has gradually been proposed to balance performances of lightweight, noise, vibration and harshness(NVH) and safety for instrument panel(IP) structure in the automotive development. Nevertheless, plastic constitutive relation of Polypropylene(PP) under different strain rates, has not been taken into consideration in current reliability-based and collaborative IP MDO design. In this paper, based on tensile test under different strain rates, the constitutive relation of Polypropylene material is studied. Impact simulation tests for head and knee bolster are carried out to meet the regulation of FMVSS 201 and FMVSS 208, respectively. NVH analysis is performed to obtain mainly the natural frequencies and corresponding mode shapes, while the crashworthiness analysis is employed to examine the crash behavior of IP structure. With the consideration of lightweight, NVH, head and knee bolster impact performance, design of experiment(DOE), response surface model(RSM), and collaborative optimization(CO) are applied to realize the determined and reliability-based optimizations, respectively. Furthermore, based on multi-objective genetic algorithm(MOGA), the optimal Pareto sets are completed to solve the multi-objective optimization(MOO) problem. The proposed research ensures the smoothness of Pareto set, enhances the ability of engineers to make a comprehensive decision about multi-objectives and choose the optimal design, and improves the quality and efficiency of MDO.

  14. A decentralised multi-agent approach to enhance the stability of smart microgrids with renewable energy

    NASA Astrophysics Data System (ADS)

    Rahman, M. S.; Pota, H. R.; Mahmud, M. A.; Hossain, M. J.

    2016-05-01

    This paper presents the impact of large penetration of wind power on the transient stability through a dynamic evaluation of the critical clearing times (CCTs) by using intelligent agent-based approach. A decentralised multi-agent-based framework is developed, where agents represent a number of physical device models to form a complex infrastructure for computation and communication. They enable the dynamic flow of information and energy for the interaction between the physical processes and their activities. These agents dynamically adapt online measurements and use the CCT information for relay coordination to improve the transient stability of power systems. Simulations are carried out on a smart microgrid system for faults at increasing wind power penetration levels and the improvement in transient stability using the proposed agent-based framework is demonstrated.

  15. Stationary average consensus protocol for a class of heterogeneous high-order multi-agent systems with application for aircraft

    NASA Astrophysics Data System (ADS)

    Rezaei, Mohammad Hadi; Menhaj, Mohammad Bagher

    2018-01-01

    This paper investigates the stationary average consensus problem for a class of heterogeneous-order multi-agent systems. The goal is to bring the positions of agents to the average of their initial positions while letting the other states converge to zero. To this end, three different consensus protocols are proposed. First, based on the auxiliary variables information among the agents under switching directed networks and state-feedback control, a protocol is proposed whereby all the agents achieve stationary average consensus. In the second and third protocols, by resorting to only measurements of relative positions of neighbouring agents under fixed balanced directed networks, two control frameworks are presented with two strategies based on state-feedback and output-feedback control. Finally, simulation results are given to illustrate the effectiveness of the proposed protocols.

  16. Computation of the target state and feedback controls for time optimal consensus in multi-agent systems

    NASA Astrophysics Data System (ADS)

    Mulla, Ameer K.; Patil, Deepak U.; Chakraborty, Debraj

    2018-02-01

    N identical agents with bounded inputs aim to reach a common target state (consensus) in the minimum possible time. Algorithms for computing this time-optimal consensus point, the control law to be used by each agent and the time taken for the consensus to occur, are proposed. Two types of multi-agent systems are considered, namely (1) coupled single-integrator agents on a plane and, (2) double-integrator agents on a line. At the initial time instant, each agent is assumed to have access to the state information of all the other agents. An algorithm, using convexity of attainable sets and Helly's theorem, is proposed, to compute the final consensus target state and the minimum time to achieve this consensus. Further, parts of the computation are parallelised amongst the agents such that each agent has to perform computations of O(N2) run time complexity. Finally, local feedback time-optimal control laws are synthesised to drive each agent to the target point in minimum time. During this part of the operation, the controller for each agent uses measurements of only its own states and does not need to communicate with any neighbouring agents.

  17. An Approach to Model Based Testing of Multiagent Systems

    PubMed Central

    Nadeem, Aamer

    2015-01-01

    Autonomous agents perform on behalf of the user to achieve defined goals or objectives. They are situated in dynamic environment and are able to operate autonomously to achieve their goals. In a multiagent system, agents cooperate with each other to achieve a common goal. Testing of multiagent systems is a challenging task due to the autonomous and proactive behavior of agents. However, testing is required to build confidence into the working of a multiagent system. Prometheus methodology is a commonly used approach to design multiagents systems. Systematic and thorough testing of each interaction is necessary. This paper proposes a novel approach to testing of multiagent systems based on Prometheus design artifacts. In the proposed approach, different interactions between the agent and actors are considered to test the multiagent system. These interactions include percepts and actions along with messages between the agents which can be modeled in a protocol diagram. The protocol diagram is converted into a protocol graph, on which different coverage criteria are applied to generate test paths that cover interactions between the agents. A prototype tool has been developed to generate test paths from protocol graph according to the specified coverage criterion. PMID:25874263

  18. Revisiting a Cognitive Framework for Test Design: Applications for a Computerized Perceptual Speed Test.

    ERIC Educational Resources Information Center

    Alderton, David L.

    This paper highlights the need for a systematic, content aware, and theoretically-based approach to test design. The cognitive components approach is endorsed, and is applied to the development of a computerized perceptual speed test. Psychometric literature is reviewed and shows that: every major multi-factor theory includes a clerical/perceptual…

  19. Reliability- and performance-based robust design optimization of MEMS structures considering technological uncertainties

    NASA Astrophysics Data System (ADS)

    Martowicz, Adam; Uhl, Tadeusz

    2012-10-01

    The paper discusses the applicability of a reliability- and performance-based multi-criteria robust design optimization technique for micro-electromechanical systems, considering their technological uncertainties. Nowadays, micro-devices are commonly applied systems, especially in the automotive industry, taking advantage of utilizing both the mechanical structure and electronic control circuit on one board. Their frequent use motivates the elaboration of virtual prototyping tools that can be applied in design optimization with the introduction of technological uncertainties and reliability. The authors present a procedure for the optimization of micro-devices, which is based on the theory of reliability-based robust design optimization. This takes into consideration the performance of a micro-device and its reliability assessed by means of uncertainty analysis. The procedure assumes that, for each checked design configuration, the assessment of uncertainty propagation is performed with the meta-modeling technique. The described procedure is illustrated with an example of the optimization carried out for a finite element model of a micro-mirror. The multi-physics approach allowed the introduction of several physical phenomena to correctly model the electrostatic actuation and the squeezing effect present between electrodes. The optimization was preceded by sensitivity analysis to establish the design and uncertain domains. The genetic algorithms fulfilled the defined optimization task effectively. The best discovered individuals are characterized by a minimized value of the multi-criteria objective function, simultaneously satisfying the constraint on material strength. The restriction of the maximum equivalent stresses was introduced with the conditionally formulated objective function with a penalty component. The yielded results were successfully verified with a global uniform search through the input design domain.

  20. Controllers, observers, and applications thereof

    NASA Technical Reports Server (NTRS)

    Gao, Zhiqiang (Inventor); Zhou, Wankun (Inventor); Miklosovic, Robert (Inventor); Radke, Aaron (Inventor); Zheng, Qing (Inventor)

    2011-01-01

    Controller scaling and parameterization are described. Techniques that can be improved by employing the scaling and parameterization include, but are not limited to, controller design, tuning and optimization. The scaling and parameterization methods described here apply to transfer function based controllers, including PID controllers. The parameterization methods also apply to state feedback and state observer based controllers, as well as linear active disturbance rejection (ADRC) controllers. Parameterization simplifies the use of ADRC. A discrete extended state observer (DESO) and a generalized extended state observer (GESO) are described. They improve the performance of the ESO and therefore ADRC. A tracking control algorithm is also described that improves the performance of the ADRC controller. A general algorithm is described for applying ADRC to multi-input multi-output systems. Several specific applications of the control systems and processes are disclosed.

  1. An Agent-Based Model for the Role of Short-Term Memory Enhancement in the Emergence of Grammatical Agreement.

    PubMed

    Vera, Javier

    2018-01-01

    What is the influence of short-term memory enhancement on the emergence of grammatical agreement systems in multi-agent language games? Agreement systems suppose that at least two words share some features with each other, such as gender, number, or case. Previous work, within the multi-agent language-game framework, has recently proposed models stressing the hypothesis that the emergence of a grammatical agreement system arises from the minimization of semantic ambiguity. On the other hand, neurobiological evidence argues for the hypothesis that language evolution has mainly related to an increasing of short-term memory capacity, which has allowed the online manipulation of words and meanings participating particularly in grammatical agreement systems. Here, the main aim is to propose a multi-agent language game for the emergence of a grammatical agreement system, under measurable long-range relations depending on the short-term memory capacity. Computer simulations, based on a parameter that measures the amount of short-term memory capacity, suggest that agreement marker systems arise in a population of agents equipped at least with a critical short-term memory capacity.

  2. Multi-country health surveys: are the analyses misleading?

    PubMed

    Masood, Mohd; Reidpath, Daniel D

    2014-05-01

    The aim of this paper was to review the types of approaches currently utilized in the analysis of multi-country survey data, specifically focusing on design and modeling issues with a focus on analyses of significant multi-country surveys published in 2010. A systematic search strategy was used to identify the 10 multi-country surveys and the articles published from them in 2010. The surveys were selected to reflect diverse topics and foci; and provide an insight into analytic approaches across research themes. The search identified 159 articles appropriate for full text review and data extraction. The analyses adopted in the multi-country surveys can be broadly classified as: univariate/bivariate analyses, and multivariate/multivariable analyses. Multivariate/multivariable analyses may be further divided into design- and model-based analyses. Of the 159 articles reviewed, 129 articles used model-based analysis, 30 articles used design-based analyses. Similar patterns could be seen in all the individual surveys. While there is general agreement among survey statisticians that complex surveys are most appropriately analyzed using design-based analyses, most researchers continued to use the more common model-based approaches. Recent developments in design-based multi-level analysis may be one approach to include all the survey design characteristics. This is a relatively new area, however, and there remains statistical, as well as applied analytic research required. An important limitation of this study relates to the selection of the surveys used and the choice of year for the analysis, i.e., year 2010 only. There is, however, no strong reason to believe that analytic strategies have changed radically in the past few years, and 2010 provides a credible snapshot of current practice.

  3. Hybrid antibiotics - clinical progress and novel designs.

    PubMed

    Parkes, Alastair L; Yule, Ian A

    2016-07-01

    There is a growing need for new antibacterial agents, but success in development of antibiotics in recent years has been limited. This has led researchers to investigate novel approaches to finding compounds that are effective against multi-drug resistant bacteria, and that delay onset of resistance. One such strategy has been to link antibiotics to produce hybrids designed to overcome resistance mechanisms. The concept of dual-acting hybrid antibiotics was introduced and reviewed in this journal in 2010. In the present review the authors sought to discover how clinical candidates described had progressed, and to examine how the field has developed. In three sections the authors cover the clinical progress of hybrid antibiotics, novel agents produced from hybridisation of two or more small-molecule antibiotics, and novel agents produced from hybridisation of antibiotics with small-molecules that have complementary activity. Many key questions regarding dual-acting hybrid antibiotics remain to be answered, and the proposed benefits of this approach are yet to be demonstrated. While Cadazolid in particular continues to progress in the clinic, suggesting that there is promise in hybridisation through covalent linkage, it may be that properties other than antibacterial activity are key when choosing a partner molecule.

  4. pH-Sensitive stimulus-responsive nanocarriers for targeted delivery of therapeutic agents

    PubMed Central

    Karimi, Mahdi; Eslami, Masoud; Sahandi-Zangabad, Parham; Mirab, Fereshteh; Farajisafiloo, Negar; Shafaei, Zahra; Ghosh, Deepanjan; Bozorgomid, Mahnaz; Dashkhaneh, Fariba; Hamblin, Michael R.

    2016-01-01

    In recent years miscellaneous smart micro/nanosystems that respond to various exogenous/endogenous stimuli including temperature, magnetic/electric field, mechanical force, ultrasound/light irradiation, redox potentials, and biomolecule concentration have been developed for targeted delivery and release of encapsulated therapeutic agents such as drugs, genes, proteins, and metal ions specifically at their required site of action. Owing to physiological differences between malignant and normal cells, or between tumors and normal tissues, pH-sensitive nanosystems represent promising smart delivery vehicles for transport and delivery of anticancer agents. Furthermore, pH-sensitive systems possess applications in delivery of metal ions and biomolecules such as proteins, insulin, etc., as well as co-delivery of cargos, dual pH-sensitive nanocarriers, dual/multi stimuli-responsive nanosystems, and even in the search for new solutions for therapy of diseases such as Alzheimer’s. In order to design an optimized system, it is necessary to understand the various pH-responsive micro/nanoparticles and the different mechanisms of pH-sensitive drug release. This should be accompanied by an assessment of the theoretical and practical challenges in the design and use of these carriers. PMID:26762467

  5. Design and Analysis of a Data Fusion Scheme in Mobile Wireless Sensor Networks Based on Multi-Protocol Mobile Agents

    PubMed Central

    Wu, Chunxue; Wu, Wenliang; Wan, Caihua

    2017-01-01

    Sensors are increasingly used in mobile environments with wireless network connections. Multiple sensor types measure distinct aspects of the same event. Their measurements are then combined to produce integrated, reliable results. As the number of sensors in networks increases, low energy requirements and changing network connections complicate event detection and measurement. We present a data fusion scheme for use in mobile wireless sensor networks with high energy efficiency and low network delays, that still produces reliable results. In the first phase, we used a network simulation where mobile agents dynamically select the next hop migration node based on the stability parameter of the link, and perform the data fusion at the migration node. Agents use the fusion results to decide if it should return the fusion results to the processing center or continue to collect more data. In the second phase. The feasibility of data fusion at the node level is confirmed by an experimental design where fused data from color sensors show near-identical results to actual physical temperatures. These results are potentially important for new large-scale sensor network applications. PMID:29099793

  6. The Lunar IceCube Mission Design: Construction of Feasible Transfer Trajectories with a Constrained Departure

    NASA Technical Reports Server (NTRS)

    Folta, David C.; Bosanac, Natasha; Cox, Andrew; Howell, Kathleen C.

    2016-01-01

    Lunar IceCube, a 6U CubeSat, will prospect for water and other volatiles from a low-periapsis, highly inclined elliptical lunar orbit. Injected from Exploration Mission-1, a lunar gravity assisted multi-body transfer trajectory will capture into a lunar science orbit. The constrained departure asymptote and value of trans-lunar energy limit transfer trajectory types that re-encounter the Moon with the necessary energy and flight duration. Purdue University and Goddard Space Flight Center's Adaptive Trajectory Design tool and dynamical system research is applied to uncover cislunar spatial regions permitting viable transfer arcs. Numerically integrated transfer designs applying low-thrust and a design framework are described.

  7. Decentralized Opportunistic Spectrum Resources Access Model and Algorithm toward Cooperative Ad-Hoc Networks.

    PubMed

    Liu, Ming; Xu, Yang; Mohammed, Abdul-Wahid

    2016-01-01

    Limited communication resources have gradually become a critical factor toward efficiency of decentralized large scale multi-agent coordination when both system scales up and tasks become more complex. In current researches, due to the agent's limited communication and observational capability, an agent in a decentralized setting can only choose a part of channels to access, but cannot perceive or share global information. Each agent's cooperative decision is based on the partial observation of the system state, and as such, uncertainty in the communication network is unavoidable. In this situation, it is a major challenge working out cooperative decision-making under uncertainty with only a partial observation of the environment. In this paper, we propose a decentralized approach that allows agents cooperatively search and independently choose channels. The key to our design is to build an up-to-date observation for each agent's view so that a local decision model is achievable in a large scale team coordination. We simplify the Dec-POMDP model problem, and each agent can jointly work out its communication policy in order to improve its local decision utilities for the choice of communication resources. Finally, we discuss an implicate resource competition game, and show that, there exists an approximate resources access tradeoff balance between agents. Based on this discovery, the tradeoff between real-time decision-making and the efficiency of cooperation using these channels can be well improved.

  8. Complementary dynamic BH3 profiles predict co-operativity between the multi-kinase inhibitor TG02 and the BH3 mimetic ABT-199 in acute myeloid leukaemia cells.

    PubMed

    Pallis, Monica; Burrows, Francis; Ryan, Jeremy; Grundy, Martin; Seedhouse, Claire; Abdul-Aziz, Amina; Montero, Joan; Letai, Anthony; Russell, Nigel

    2017-03-07

    Direct co-operation between sensitiser molecules BAD and NOXA in mediating apoptosis suggests that therapeutic agents which sensitise to BAD may complement agents which sensitise to NOXA. Dynamic BH3 profiling is a novel methodology that we have applied to the measurement of complementarity between sensitiser BH3 peptide mimetics and therapeutic agents. Using dynamic BH3 profiling, we show that the agent TG02, which downregulates MCL-1, sensitises to the BCL-2-inhibitory BAD-BH3 peptide, whereas the BCL-2 antagonist ABT-199 sensitises to MCL-1 inhibitory NOXA-BH3 peptide in acute myeloid leukaemia (AML) cells. At the concentrations used, the peptides did not trigger mitochondrial outer membrane permeabilisation in their own right, but primed cells to release Cytochrome C in the presence of an appropriate trigger of a complementary pathway. In KG-1a cells TG02 and ABT-199 synergised to induce apoptosis. In heterogeneous AML patient samples we noted a range of sensitivities to the two agents. Although some individual samples markedly favoured one agent or the other, in the group as a whole the combination of TG02 + ABT-199 was significantly more cytotoxic than either agent individually. We conclude that dynamic NOXA and BAD BH3 profiling is a sensitive methodology for investigating molecular pathways of drug action and complementary mechanisms of chemoresponsiveness.

  9. Solving “Smart City” Transport Problems by Designing Carpooling Gamification Schemes with Multi-Agent Systems: The Case of the So-Called “Mordor of Warsaw”

    PubMed Central

    Turek, Agnieszka

    2018-01-01

    To reduce energy consumption and improve residents’ quality of life, “smart cities” should use not only modern technologies, but also the social innovations of the “Internet of Things” (IoT) era. This article attempts to solve transport problems in a smart city’s office district by utilizing gamification that incentivizes the carpooling system. The goal of the devised system is to significantly reduce the number of cars, and, consequently, to alleviate traffic jams, as well as to curb pollution and energy consumption. A representative sample of the statistical population of people working in one of the biggest office hubs in Poland (the so-called “Mordor of Warsaw”) was surveyed. The collected data were processed using spatial data mining methods, and the results were a set of parameters for the multi-agent system. This approach made it possible to run a series of simulations on a set of 100,000 agents and to select an effective gamification methodology that supports the carpooling process. The implementation of the proposed solutions (a “serious game” variation of urban games) would help to reduce the number of cars by several dozen percent, significantly reduce energy consumption, eliminate traffic jams, and increase the activity of the smart city residents. PMID:29316643

  10. A methodology based on openEHR archetypes and software agents for developing e-health applications reusing legacy systems.

    PubMed

    Cardoso de Moraes, João Luís; de Souza, Wanderley Lopes; Pires, Luís Ferreira; do Prado, Antonio Francisco

    2016-10-01

    In Pervasive Healthcare, novel information and communication technologies are applied to support the provision of health services anywhere, at anytime and to anyone. Since health systems may offer their health records in different electronic formats, the openEHR Foundation prescribes the use of archetypes for describing clinical knowledge in order to achieve semantic interoperability between these systems. Software agents have been applied to simulate human skills in some healthcare procedures. This paper presents a methodology, based on the use of openEHR archetypes and agent technology, which aims to overcome the weaknesses typically found in legacy healthcare systems, thereby adding value to the systems. This methodology was applied in the design of an agent-based system, which was used in a realistic healthcare scenario in which a medical staff meeting to prepare a cardiac surgery has been supported. We conducted experiments with this system in a distributed environment composed by three cardiology clinics and a center of cardiac surgery, all located in the city of Marília (São Paulo, Brazil). We evaluated this system according to the Technology Acceptance Model. The case study confirmed the acceptance of our agent-based system by healthcare professionals and patients, who reacted positively with respect to the usefulness of this system in particular, and with respect to task delegation to software agents in general. The case study also showed that a software agent-based interface and a tools-based alternative must be provided to the end users, which should allow them to perform the tasks themselves or to delegate these tasks to other people. A Pervasive Healthcare model requires efficient and secure information exchange between healthcare providers. The proposed methodology allows designers to build communication systems for the message exchange among heterogeneous healthcare systems, and to shift from systems that rely on informal communication of actors to a more automated and less error-prone agent-based system. Our methodology preserves significant investment of many years in the legacy systems and allows developers to extend them adding new features to these systems, by providing proactive assistance to the end-users and increasing the user mobility with an appropriate support. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Application of a Genetic Algorithm and Multi Agent System to Explore Emergent Patterns of Social Rationality and a Distress-Based Model for Deceit in the Workplace

    DTIC Science & Technology

    2008-06-01

    postponed the fulfillment of her own Masters Degree by at least 18 months so that I would have the opportunity to earn mine. She is smart , lovely...GENETIC ALGORITHM AND MULTI AGENT SYSTEM TO EXPLORE EMERGENT PATTERNS OF SOCIAL RATIONALITY AND A DISTRESS-BASED MODEL FOR DECEIT IN THE WORKPLACE...of a Genetic Algorithm and Mutli Agent System to Explore Emergent Patterns of Social Rationality and a Distress-Based Model for Deceit in the

  12. Finite-time consensus for multi-agent systems with globally bounded convergence time under directed communication graphs

    NASA Astrophysics Data System (ADS)

    Fu, Junjie; Wang, Jin-zhi

    2017-09-01

    In this paper, we study the finite-time consensus problems with globally bounded convergence time also known as fixed-time consensus problems for multi-agent systems subject to directed communication graphs. Two new distributed control strategies are proposed such that leaderless and leader-follower consensus are achieved with convergence time independent on the initial conditions of the agents. Fixed-time formation generation and formation tracking problems are also solved as the generalizations. Simulation examples are provided to demonstrate the performance of the new controllers.

  13. Conserving analyst attention units: use of multi-agent software and CEP methods to assist information analysis

    NASA Astrophysics Data System (ADS)

    Rimland, Jeffrey; McNeese, Michael; Hall, David

    2013-05-01

    Although the capability of computer-based artificial intelligence techniques for decision-making and situational awareness has seen notable improvement over the last several decades, the current state-of-the-art still falls short of creating computer systems capable of autonomously making complex decisions and judgments in many domains where data is nuanced and accountability is high. However, there is a great deal of potential for hybrid systems in which software applications augment human capabilities by focusing the analyst's attention to relevant information elements based on both a priori knowledge of the analyst's goals and the processing/correlation of a series of data streams too numerous and heterogeneous for the analyst to digest without assistance. Researchers at Penn State University are exploring ways in which an information framework influenced by Klein's (Recognition Primed Decision) RPD model, Endsley's model of situational awareness, and the Joint Directors of Laboratories (JDL) data fusion process model can be implemented through a novel combination of Complex Event Processing (CEP) and Multi-Agent Software (MAS). Though originally designed for stock market and financial applications, the high performance data-driven nature of CEP techniques provide a natural compliment to the proven capabilities of MAS systems for modeling naturalistic decision-making, performing process adjudication, and optimizing networked processing and cognition via the use of "mobile agents." This paper addresses the challenges and opportunities of such a framework for augmenting human observational capability as well as enabling the ability to perform collaborative context-aware reasoning in both human teams and hybrid human / software agent teams.

  14. Cultural Geography Model Validation

    DTIC Science & Technology

    2010-03-01

    the Cultural Geography Model (CGM), a government owned, open source multi - agent system utilizing Bayesian networks, queuing systems, the Theory of...referent determined either from theory or SME opinion. 4. CGM Overview The CGM is a government-owned, open source, data driven multi - agent social...HSCB, validation, social network analysis ABSTRACT: In the current warfighting environment , the military needs robust modeling and simulation (M&S

  15. Automation of multi-agent control for complex dynamic systems in heterogeneous computational network

    NASA Astrophysics Data System (ADS)

    Oparin, Gennady; Feoktistov, Alexander; Bogdanova, Vera; Sidorov, Ivan

    2017-01-01

    The rapid progress of high-performance computing entails new challenges related to solving large scientific problems for various subject domains in a heterogeneous distributed computing environment (e.g., a network, Grid system, or Cloud infrastructure). The specialists in the field of parallel and distributed computing give the special attention to a scalability of applications for problem solving. An effective management of the scalable application in the heterogeneous distributed computing environment is still a non-trivial issue. Control systems that operate in networks, especially relate to this issue. We propose a new approach to the multi-agent management for the scalable applications in the heterogeneous computational network. The fundamentals of our approach are the integrated use of conceptual programming, simulation modeling, network monitoring, multi-agent management, and service-oriented programming. We developed a special framework for an automation of the problem solving. Advantages of the proposed approach are demonstrated on the parametric synthesis example of the static linear regulator for complex dynamic systems. Benefits of the scalable application for solving this problem include automation of the multi-agent control for the systems in a parallel mode with various degrees of its detailed elaboration.

  16. A multi-agent safety response model in the construction industry.

    PubMed

    Meliá, José L

    2015-01-01

    The construction industry is one of the sectors with the highest accident rates and the most serious accidents. A multi-agent safety response approach allows a useful diagnostic tool in order to understand factors affecting risk and accidents. The special features of the construction sector can influence the relationships among safety responses along the model of safety influences. The purpose of this paper is to test a model explaining risk and work-related accidents in the construction industry as a result of the safety responses of the organization, the supervisors, the co-workers and the worker. 374 construction employees belonging to 64 small Spanish construction companies working for two main companies participated in the study. Safety responses were measured using a 45-item Likert-type questionnaire. The structure of the measure was analyzed using factor analysis and the model of effects was tested using a structural equation model. Factor analysis clearly identifies the multi-agent safety dimensions hypothesized. The proposed safety response model of work-related accidents, involving construction specific results, showed a good fit. The multi-agent safety response approach to safety climate is a useful framework for the assessment of organizational and behavioral risks in construction.

  17. Multi-Targeted Antithrombotic Therapy for Total Artificial Heart Device Patients.

    PubMed

    Ramirez, Angeleah; Riley, Jeffrey B; Joyce, Lyle D

    2016-03-01

    To prevent thrombotic or bleeding events in patients receiving a total artificial heart (TAH), agents have been used to avoid adverse events. The purpose of this article is to outline the adoption and results of a multi-targeted antithrombotic clinical procedure guideline (CPG) for TAH patients. Based on literature review of TAH anticoagulation and multiple case series, a CPG was designed to prescribe the use of multiple pharmacological agents. Total blood loss, Thromboelastograph(®) (TEG), and platelet light-transmission aggregometry (LTA) measurements were conducted on 13 TAH patients during the first 2 weeks of support in our institution. Target values and actual medians for postimplant days 1, 3, 7, and 14 were calculated for kaolinheparinase TEG, kaolin TEG, LTA, and estimated blood loss. Protocol guidelines were followed and anticoagulation management reduced bleeding and prevented thrombus formation as well as thromboembolic events in TAH patients postimplantation. The patients in this study were susceptible to a variety of possible complications such as mechanical device issues, thrombotic events, infection, and bleeding. Among them all it was clear that patients were at most risk for bleeding, particularly on postoperative days 1 through 3. However, bleeding was reduced into postoperative days 3 and 7, indicating that acceptable hemostasis was achieved with the anticoagulation protocol. The multidisciplinary, multi-targeted anticoagulation clinical procedure guideline was successful to maintain adequate antithrombotic therapy for TAH patients.

  18. MIMO Sliding Mode Control for a Tailless Fighter Aircraft, An Alternative to Reconfigurable Architectures

    NASA Technical Reports Server (NTRS)

    Wells, S. R.; Hess, R. A.

    2002-01-01

    A frequency-domain procedure for the design of sliding mode controllers for multi-input, multi-output (MIMO) systems is presented. The methodology accommodates the effects of parasitic dynamics such as those introduced by unmodeled actuators through the introduction of multiple asymptotic observers and model reference hedging. The design procedure includes a frequency domain approach to specify the sliding manifold, the observer eigenvalues, and the hedge model. The procedure is applied to the development of a flight control system for a linear model of the Innovative Control Effector (ICE) fighter aircraft. The stability and performance robustness of the resulting design is demonstrated through the introduction of significant degradation in the control effector actuators and variation in vehicle dynamics.

  19. Measurement of the edge plasma rotation on J-TEXT tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Z. F.; Luo, J.; Wang, Z. J.

    2013-07-15

    A multi-channel high resolution spectrometer was developed for the measurement of the edge plasma rotation on J-TEXT tokamak. With the design of two opposite viewing directions, the poloidal and toroidal rotations can be measured simultaneously, and velocity accuracy is up to 1 km/s. The photon flux was enhanced by utilizing combined optical fiber. With this design, the time resolution reaches 3 ms. An assistant software “Spectra Assist” was developed for implementing the spectrometer control and data analysis automatically. A multi-channel monochromatic analyzer is designed to get the location of chosen ions simultaneously through the inversion analysis. Some preliminary experimental resultsmore » about influence of plasma density, different magnetohydrodynamics behaviors, and applying of biased electrode are presented.« less

  20. Design of a Two-level Adaptive Multi-Agent System for Malaria Vectors driven by an ontology

    PubMed Central

    Koum, Guillaume; Yekel, Augustin; Ndifon, Bengyella; Etang, Josiane; Simard, Frédéric

    2007-01-01

    Background The understanding of heterogeneities in disease transmission dynamics as far as malaria vectors are concerned is a big challenge. Many studies while tackling this problem don't find exact models to explain the malaria vectors propagation. Methods To solve the problem we define an Adaptive Multi-Agent System (AMAS) which has the property to be elastic and is a two-level system as well. This AMAS is a dynamic system where the two levels are linked by an Ontology which allows it to function as a reduced system and as an extended system. In a primary level, the AMAS comprises organization agents and in a secondary level, it is constituted of analysis agents. Its entry point, a User Interface Agent, can reproduce itself because it is given a minimum of background knowledge and it learns appropriate "behavior" from the user in the presence of ambiguous queries and from other agents of the AMAS in other situations. Results Some of the outputs of our system present a series of tables, diagrams showing some factors like Entomological parameters of malaria transmission, Percentages of malaria transmission per malaria vectors, Entomological inoculation rate. Many others parameters can be produced by the system depending on the inputted data. Conclusion Our approach is an intelligent one which differs from statistical approaches that are sometimes used in the field. This intelligent approach aligns itself with the distributed artificial intelligence. In terms of fight against malaria disease our system offers opportunities of reducing efforts of human resources who are not obliged to cover the entire territory while conducting surveys. Secondly the AMAS can determine the presence or the absence of malaria vectors even when specific data have not been collected in the geographical area. In the difference of a statistical technique, in our case the projection of the results in the field can sometimes appeared to be more general. PMID:17605778

Top