Quantifying the impact of between-study heterogeneity in multivariate meta-analyses
Jackson, Dan; White, Ian R; Riley, Richard D
2012-01-01
Measures that quantify the impact of heterogeneity in univariate meta-analysis, including the very popular I2 statistic, are now well established. Multivariate meta-analysis, where studies provide multiple outcomes that are pooled in a single analysis, is also becoming more commonly used. The question of how to quantify heterogeneity in the multivariate setting is therefore raised. It is the univariate R2 statistic, the ratio of the variance of the estimated treatment effect under the random and fixed effects models, that generalises most naturally, so this statistic provides our basis. This statistic is then used to derive a multivariate analogue of I2, which we call . We also provide a multivariate H2 statistic, the ratio of a generalisation of Cochran's heterogeneity statistic and its associated degrees of freedom, with an accompanying generalisation of the usual I2 statistic, . Our proposed heterogeneity statistics can be used alongside all the usual estimates and inferential procedures used in multivariate meta-analysis. We apply our methods to some real datasets and show how our statistics are equally appropriate in the context of multivariate meta-regression, where study level covariate effects are included in the model. Our heterogeneity statistics may be used when applying any procedure for fitting the multivariate random effects model. Copyright © 2012 John Wiley & Sons, Ltd. PMID:22763950
Applied Statistics: From Bivariate through Multivariate Techniques [with CD-ROM
ERIC Educational Resources Information Center
Warner, Rebecca M.
2007-01-01
This book provides a clear introduction to widely used topics in bivariate and multivariate statistics, including multiple regression, discriminant analysis, MANOVA, factor analysis, and binary logistic regression. The approach is applied and does not require formal mathematics; equations are accompanied by verbal explanations. Students are asked…
J. Grabinsky; A. Aldama; A. Chacalo; H. J. Vazquez
2000-01-01
Inventory data of Mexico City's street trees were studied using classical statistical arboricultural and ecological statistical approaches. Multivariate techniques were applied to both. Results did not differ substantially and were complementary. It was possible to reduce inventory data and to group species, boroughs, blocks, and variables.
Application of multivariable statistical techniques in plant-wide WWTP control strategies analysis.
Flores, X; Comas, J; Roda, I R; Jiménez, L; Gernaey, K V
2007-01-01
The main objective of this paper is to present the application of selected multivariable statistical techniques in plant-wide wastewater treatment plant (WWTP) control strategies analysis. In this study, cluster analysis (CA), principal component analysis/factor analysis (PCA/FA) and discriminant analysis (DA) are applied to the evaluation matrix data set obtained by simulation of several control strategies applied to the plant-wide IWA Benchmark Simulation Model No 2 (BSM2). These techniques allow i) to determine natural groups or clusters of control strategies with a similar behaviour, ii) to find and interpret hidden, complex and casual relation features in the data set and iii) to identify important discriminant variables within the groups found by the cluster analysis. This study illustrates the usefulness of multivariable statistical techniques for both analysis and interpretation of the complex multicriteria data sets and allows an improved use of information for effective evaluation of control strategies.
Applying the multivariate time-rescaling theorem to neural population models
Gerhard, Felipe; Haslinger, Robert; Pipa, Gordon
2011-01-01
Statistical models of neural activity are integral to modern neuroscience. Recently, interest has grown in modeling the spiking activity of populations of simultaneously recorded neurons to study the effects of correlations and functional connectivity on neural information processing. However any statistical model must be validated by an appropriate goodness-of-fit test. Kolmogorov-Smirnov tests based upon the time-rescaling theorem have proven to be useful for evaluating point-process-based statistical models of single-neuron spike trains. Here we discuss the extension of the time-rescaling theorem to the multivariate (neural population) case. We show that even in the presence of strong correlations between spike trains, models which neglect couplings between neurons can be erroneously passed by the univariate time-rescaling test. We present the multivariate version of the time-rescaling theorem, and provide a practical step-by-step procedure for applying it towards testing the sufficiency of neural population models. Using several simple analytically tractable models and also more complex simulated and real data sets, we demonstrate that important features of the population activity can only be detected using the multivariate extension of the test. PMID:21395436
Applying Sociocultural Theory to Teaching Statistics for Doctoral Social Work Students
ERIC Educational Resources Information Center
Mogro-Wilson, Cristina; Reeves, Michael G.; Charter, Mollie Lazar
2015-01-01
This article describes the development of two doctoral-level multivariate statistics courses utilizing sociocultural theory, an integrative pedagogical framework. In the first course, the implementation of sociocultural theory helps to support the students through a rigorous introduction to statistics. The second course involves students…
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-09-14
This package contains statistical routines for extracting features from multivariate time-series data which can then be used for subsequent multivariate statistical analysis to identify patterns and anomalous behavior. It calculates local linear or quadratic regression model fits to moving windows for each series and then summarizes the model coefficients across user-defined time intervals for each series. These methods are domain agnostic-but they have been successfully applied to a variety of domains, including commercial aviation and electric power grid data.
A new test of multivariate nonlinear causality
Bai, Zhidong; Jiang, Dandan; Lv, Zhihui; Wong, Wing-Keung; Zheng, Shurong
2018-01-01
The multivariate nonlinear Granger causality developed by Bai et al. (2010) (Mathematics and Computers in simulation. 2010; 81: 5-17) plays an important role in detecting the dynamic interrelationships between two groups of variables. Following the idea of Hiemstra-Jones (HJ) test proposed by Hiemstra and Jones (1994) (Journal of Finance. 1994; 49(5): 1639-1664), they attempt to establish a central limit theorem (CLT) of their test statistic by applying the asymptotical property of multivariate U-statistic. However, Bai et al. (2016) (2016; arXiv: 1701.03992) revisit the HJ test and find that the test statistic given by HJ is NOT a function of U-statistics which implies that the CLT neither proposed by Hiemstra and Jones (1994) nor the one extended by Bai et al. (2010) is valid for statistical inference. In this paper, we re-estimate the probabilities and reestablish the CLT of the new test statistic. Numerical simulation shows that our new estimates are consistent and our new test performs decent size and power. PMID:29304085
A new test of multivariate nonlinear causality.
Bai, Zhidong; Hui, Yongchang; Jiang, Dandan; Lv, Zhihui; Wong, Wing-Keung; Zheng, Shurong
2018-01-01
The multivariate nonlinear Granger causality developed by Bai et al. (2010) (Mathematics and Computers in simulation. 2010; 81: 5-17) plays an important role in detecting the dynamic interrelationships between two groups of variables. Following the idea of Hiemstra-Jones (HJ) test proposed by Hiemstra and Jones (1994) (Journal of Finance. 1994; 49(5): 1639-1664), they attempt to establish a central limit theorem (CLT) of their test statistic by applying the asymptotical property of multivariate U-statistic. However, Bai et al. (2016) (2016; arXiv: 1701.03992) revisit the HJ test and find that the test statistic given by HJ is NOT a function of U-statistics which implies that the CLT neither proposed by Hiemstra and Jones (1994) nor the one extended by Bai et al. (2010) is valid for statistical inference. In this paper, we re-estimate the probabilities and reestablish the CLT of the new test statistic. Numerical simulation shows that our new estimates are consistent and our new test performs decent size and power.
Jiang, Xuejun; Guo, Xu; Zhang, Ning; Wang, Bo
2018-01-01
This article presents and investigates performance of a series of robust multivariate nonparametric tests for detection of location shift between two multivariate samples in randomized controlled trials. The tests are built upon robust estimators of distribution locations (medians, Hodges-Lehmann estimators, and an extended U statistic) with both unscaled and scaled versions. The nonparametric tests are robust to outliers and do not assume that the two samples are drawn from multivariate normal distributions. Bootstrap and permutation approaches are introduced for determining the p-values of the proposed test statistics. Simulation studies are conducted and numerical results are reported to examine performance of the proposed statistical tests. The numerical results demonstrate that the robust multivariate nonparametric tests constructed from the Hodges-Lehmann estimators are more efficient than those based on medians and the extended U statistic. The permutation approach can provide a more stringent control of Type I error and is generally more powerful than the bootstrap procedure. The proposed robust nonparametric tests are applied to detect multivariate distributional difference between the intervention and control groups in the Thai Healthy Choices study and examine the intervention effect of a four-session motivational interviewing-based intervention developed in the study to reduce risk behaviors among youth living with HIV. PMID:29672555
NASA Astrophysics Data System (ADS)
Valder, J.; Kenner, S.; Long, A.
2008-12-01
Portions of the Cheyenne River are characterized as impaired by the U.S. Environmental Protection Agency because of water-quality exceedences. The Cheyenne River watershed includes the Black Hills National Forest and part of the Badlands National Park. Preliminary analysis indicates that the Badlands National Park is a major contributor to the exceedances of the water-quality constituents for total dissolved solids and total suspended solids. Water-quality data have been collected continuously since 2007, and in the second year of collection (2008), monthly grab and passive sediment samplers are being used to collect total suspended sediment and total dissolved solids in both base-flow and runoff-event conditions. In addition, sediment samples from the river channel, including bed, bank, and floodplain, have been collected. These samples are being analyzed at the South Dakota School of Mines and Technology's X-Ray Diffraction Lab to quantify the mineralogy of the sediments. A multivariate statistical approach (including principal components, least squares, and maximum likelihood techniques) is applied to the mineral percentages that were characterized for each site to identify the contributing source areas that are causing exceedances of sediment transport in the Cheyenne River watershed. Results of the multivariate analysis demonstrate the likely sources of solids found in the Cheyenne River samples. A further refinement of the methods is in progress that utilizes a conceptual model which, when applied with the multivariate statistical approach, provides a better estimate for sediment sources.
Multivariate assessment of event-related potentials with the t-CWT method.
Bostanov, Vladimir
2015-11-05
Event-related brain potentials (ERPs) are usually assessed with univariate statistical tests although they are essentially multivariate objects. Brain-computer interface applications are a notable exception to this practice, because they are based on multivariate classification of single-trial ERPs. Multivariate ERP assessment can be facilitated by feature extraction methods. One such method is t-CWT, a mathematical-statistical algorithm based on the continuous wavelet transform (CWT) and Student's t-test. This article begins with a geometric primer on some basic concepts of multivariate statistics as applied to ERP assessment in general and to the t-CWT method in particular. Further, it presents for the first time a detailed, step-by-step, formal mathematical description of the t-CWT algorithm. A new multivariate outlier rejection procedure based on principal component analysis in the frequency domain is presented as an important pre-processing step. The MATLAB and GNU Octave implementation of t-CWT is also made publicly available for the first time as free and open source code. The method is demonstrated on some example ERP data obtained in a passive oddball paradigm. Finally, some conceptually novel applications of the multivariate approach in general and of the t-CWT method in particular are suggested and discussed. Hopefully, the publication of both the t-CWT source code and its underlying mathematical algorithm along with a didactic geometric introduction to some basic concepts of multivariate statistics would make t-CWT more accessible to both users and developers in the field of neuroscience research.
Applied statistics in agricultural, biological, and environmental sciences.
USDA-ARS?s Scientific Manuscript database
Agronomic research often involves measurement and collection of multiple response variables in an effort to understand the more complex nature of the system being studied. Multivariate statistical methods encompass the simultaneous analysis of all random variables measured on each experimental or s...
NASA Astrophysics Data System (ADS)
Schwartz, Craig R.; Thelen, Brian J.; Kenton, Arthur C.
1995-06-01
A statistical parametric multispectral sensor performance model was developed by ERIM to support mine field detection studies, multispectral sensor design/performance trade-off studies, and target detection algorithm development. The model assumes target detection algorithms and their performance models which are based on data assumed to obey multivariate Gaussian probability distribution functions (PDFs). The applicability of these algorithms and performance models can be generalized to data having non-Gaussian PDFs through the use of transforms which convert non-Gaussian data to Gaussian (or near-Gaussian) data. An example of one such transform is the Box-Cox power law transform. In practice, such a transform can be applied to non-Gaussian data prior to the introduction of a detection algorithm that is formally based on the assumption of multivariate Gaussian data. This paper presents an extension of these techniques to the case where the joint multivariate probability density function of the non-Gaussian input data is known, and where the joint estimate of the multivariate Gaussian statistics, under the Box-Cox transform, is desired. The jointly estimated multivariate Gaussian statistics can then be used to predict the performance of a target detection algorithm which has an associated Gaussian performance model.
Application of multivariate statistical techniques in microbial ecology
Paliy, O.; Shankar, V.
2016-01-01
Recent advances in high-throughput methods of molecular analyses have led to an explosion of studies generating large scale ecological datasets. Especially noticeable effect has been attained in the field of microbial ecology, where new experimental approaches provided in-depth assessments of the composition, functions, and dynamic changes of complex microbial communities. Because even a single high-throughput experiment produces large amounts of data, powerful statistical techniques of multivariate analysis are well suited to analyze and interpret these datasets. Many different multivariate techniques are available, and often it is not clear which method should be applied to a particular dataset. In this review we describe and compare the most widely used multivariate statistical techniques including exploratory, interpretive, and discriminatory procedures. We consider several important limitations and assumptions of these methods, and we present examples of how these approaches have been utilized in recent studies to provide insight into the ecology of the microbial world. Finally, we offer suggestions for the selection of appropriate methods based on the research question and dataset structure. PMID:26786791
Multivariate meta-analysis: potential and promise.
Jackson, Dan; Riley, Richard; White, Ian R
2011-09-10
The multivariate random effects model is a generalization of the standard univariate model. Multivariate meta-analysis is becoming more commonly used and the techniques and related computer software, although continually under development, are now in place. In order to raise awareness of the multivariate methods, and discuss their advantages and disadvantages, we organized a one day 'Multivariate meta-analysis' event at the Royal Statistical Society. In addition to disseminating the most recent developments, we also received an abundance of comments, concerns, insights, critiques and encouragement. This article provides a balanced account of the day's discourse. By giving others the opportunity to respond to our assessment, we hope to ensure that the various view points and opinions are aired before multivariate meta-analysis simply becomes another widely used de facto method without any proper consideration of it by the medical statistics community. We describe the areas of application that multivariate meta-analysis has found, the methods available, the difficulties typically encountered and the arguments for and against the multivariate methods, using four representative but contrasting examples. We conclude that the multivariate methods can be useful, and in particular can provide estimates with better statistical properties, but also that these benefits come at the price of making more assumptions which do not result in better inference in every case. Although there is evidence that multivariate meta-analysis has considerable potential, it must be even more carefully applied than its univariate counterpart in practice. Copyright © 2011 John Wiley & Sons, Ltd.
Multivariate meta-analysis: Potential and promise
Jackson, Dan; Riley, Richard; White, Ian R
2011-01-01
The multivariate random effects model is a generalization of the standard univariate model. Multivariate meta-analysis is becoming more commonly used and the techniques and related computer software, although continually under development, are now in place. In order to raise awareness of the multivariate methods, and discuss their advantages and disadvantages, we organized a one day ‘Multivariate meta-analysis’ event at the Royal Statistical Society. In addition to disseminating the most recent developments, we also received an abundance of comments, concerns, insights, critiques and encouragement. This article provides a balanced account of the day's discourse. By giving others the opportunity to respond to our assessment, we hope to ensure that the various view points and opinions are aired before multivariate meta-analysis simply becomes another widely used de facto method without any proper consideration of it by the medical statistics community. We describe the areas of application that multivariate meta-analysis has found, the methods available, the difficulties typically encountered and the arguments for and against the multivariate methods, using four representative but contrasting examples. We conclude that the multivariate methods can be useful, and in particular can provide estimates with better statistical properties, but also that these benefits come at the price of making more assumptions which do not result in better inference in every case. Although there is evidence that multivariate meta-analysis has considerable potential, it must be even more carefully applied than its univariate counterpart in practice. Copyright © 2011 John Wiley & Sons, Ltd. PMID:21268052
Velasco-Tapia, Fernando
2014-01-01
Magmatic processes have usually been identified and evaluated using qualitative or semiquantitative geochemical or isotopic tools based on a restricted number of variables. However, a more complete and quantitative view could be reached applying multivariate analysis, mass balance techniques, and statistical tests. As an example, in this work a statistical and quantitative scheme is applied to analyze the geochemical features for the Sierra de las Cruces (SC) volcanic range (Mexican Volcanic Belt). In this locality, the volcanic activity (3.7 to 0.5 Ma) was dominantly dacitic, but the presence of spheroidal andesitic enclaves and/or diverse disequilibrium features in majority of lavas confirms the operation of magma mixing/mingling. New discriminant-function-based multidimensional diagrams were used to discriminate tectonic setting. Statistical tests of discordancy and significance were applied to evaluate the influence of the subducting Cocos plate, which seems to be rather negligible for the SC magmas in relation to several major and trace elements. A cluster analysis following Ward's linkage rule was carried out to classify the SC volcanic rocks geochemical groups. Finally, two mass-balance schemes were applied for the quantitative evaluation of the proportion of the end-member components (dacitic and andesitic magmas) in the comingled lavas (binary mixtures).
Facilitating the Transition from Bright to Dim Environments
2016-03-04
For the parametric data, a multivariate ANOVA was used in determining the systematic presence of any statistically significant performance differences...performed. All significance levels were p < 0.05, and statistical analyses were performed with the Statistical Package for Social Sciences ( SPSS ...1950. Age changes in rate and level of visual dark adaptation. Journal of Applied Physiology, 2, 407–411. Field, A. 2009. Discovering statistics
Heidema, A Geert; Thissen, Uwe; Boer, Jolanda M A; Bouwman, Freek G; Feskens, Edith J M; Mariman, Edwin C M
2009-06-01
In this study, we applied the multivariate statistical tool Partial Least Squares (PLS) to analyze the relative importance of 83 plasma proteins in relation to coronary heart disease (CHD) mortality and the intermediate end points body mass index, HDL-cholesterol and total cholesterol. From a Dutch monitoring project for cardiovascular disease risk factors, men who died of CHD between initial participation (1987-1991) and end of follow-up (January 1, 2000) (N = 44) and matched controls (N = 44) were selected. Baseline plasma concentrations of proteins were measured by a multiplex immunoassay. With the use of PLS, we identified 15 proteins with prognostic value for CHD mortality and sets of proteins associated with the intermediate end points. Subsequently, sets of proteins and intermediate end points were analyzed together by Principal Components Analysis, indicating that proteins involved in inflammation explained most of the variance, followed by proteins involved in metabolism and proteins associated with total-C. This study is one of the first in which the association of a large number of plasma proteins with CHD mortality and intermediate end points is investigated by applying multivariate statistics, providing insight in the relationships among proteins, intermediate end points and CHD mortality, and a set of proteins with prognostic value.
Multiple Hypothesis Testing for Experimental Gingivitis Based on Wilcoxon Signed Rank Statistics
Preisser, John S.; Sen, Pranab K.; Offenbacher, Steven
2011-01-01
Dental research often involves repeated multivariate outcomes on a small number of subjects for which there is interest in identifying outcomes that exhibit change in their levels over time as well as to characterize the nature of that change. In particular, periodontal research often involves the analysis of molecular mediators of inflammation for which multivariate parametric methods are highly sensitive to outliers and deviations from Gaussian assumptions. In such settings, nonparametric methods may be favored over parametric ones. Additionally, there is a need for statistical methods that control an overall error rate for multiple hypothesis testing. We review univariate and multivariate nonparametric hypothesis tests and apply them to longitudinal data to assess changes over time in 31 biomarkers measured from the gingival crevicular fluid in 22 subjects whereby gingivitis was induced by temporarily withholding tooth brushing. To identify biomarkers that can be induced to change, multivariate Wilcoxon signed rank tests for a set of four summary measures based upon area under the curve are applied for each biomarker and compared to their univariate counterparts. Multiple hypothesis testing methods with choice of control of the false discovery rate or strong control of the family-wise error rate are examined. PMID:21984957
Optimal moment determination in POME-copula based hydrometeorological dependence modelling
NASA Astrophysics Data System (ADS)
Liu, Dengfeng; Wang, Dong; Singh, Vijay P.; Wang, Yuankun; Wu, Jichun; Wang, Lachun; Zou, Xinqing; Chen, Yuanfang; Chen, Xi
2017-07-01
Copula has been commonly applied in multivariate modelling in various fields where marginal distribution inference is a key element. To develop a flexible, unbiased mathematical inference framework in hydrometeorological multivariate applications, the principle of maximum entropy (POME) is being increasingly coupled with copula. However, in previous POME-based studies, determination of optimal moment constraints has generally not been considered. The main contribution of this study is the determination of optimal moments for POME for developing a coupled optimal moment-POME-copula framework to model hydrometeorological multivariate events. In this framework, margins (marginals, or marginal distributions) are derived with the use of POME, subject to optimal moment constraints. Then, various candidate copulas are constructed according to the derived margins, and finally the most probable one is determined, based on goodness-of-fit statistics. This optimal moment-POME-copula framework is applied to model the dependence patterns of three types of hydrometeorological events: (i) single-site streamflow-water level; (ii) multi-site streamflow; and (iii) multi-site precipitation, with data collected from Yichang and Hankou in the Yangtze River basin, China. Results indicate that the optimal-moment POME is more accurate in margin fitting and the corresponding copulas reflect a good statistical performance in correlation simulation. Also, the derived copulas, capturing more patterns which traditional correlation coefficients cannot reflect, provide an efficient way in other applied scenarios concerning hydrometeorological multivariate modelling.
A refined method for multivariate meta-analysis and meta-regression
Jackson, Daniel; Riley, Richard D
2014-01-01
Making inferences about the average treatment effect using the random effects model for meta-analysis is problematic in the common situation where there is a small number of studies. This is because estimates of the between-study variance are not precise enough to accurately apply the conventional methods for testing and deriving a confidence interval for the average effect. We have found that a refined method for univariate meta-analysis, which applies a scaling factor to the estimated effects’ standard error, provides more accurate inference. We explain how to extend this method to the multivariate scenario and show that our proposal for refined multivariate meta-analysis and meta-regression can provide more accurate inferences than the more conventional approach. We explain how our proposed approach can be implemented using standard output from multivariate meta-analysis software packages and apply our methodology to two real examples. © 2013 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. PMID:23996351
Velasco-Tapia, Fernando
2014-01-01
Magmatic processes have usually been identified and evaluated using qualitative or semiquantitative geochemical or isotopic tools based on a restricted number of variables. However, a more complete and quantitative view could be reached applying multivariate analysis, mass balance techniques, and statistical tests. As an example, in this work a statistical and quantitative scheme is applied to analyze the geochemical features for the Sierra de las Cruces (SC) volcanic range (Mexican Volcanic Belt). In this locality, the volcanic activity (3.7 to 0.5 Ma) was dominantly dacitic, but the presence of spheroidal andesitic enclaves and/or diverse disequilibrium features in majority of lavas confirms the operation of magma mixing/mingling. New discriminant-function-based multidimensional diagrams were used to discriminate tectonic setting. Statistical tests of discordancy and significance were applied to evaluate the influence of the subducting Cocos plate, which seems to be rather negligible for the SC magmas in relation to several major and trace elements. A cluster analysis following Ward's linkage rule was carried out to classify the SC volcanic rocks geochemical groups. Finally, two mass-balance schemes were applied for the quantitative evaluation of the proportion of the end-member components (dacitic and andesitic magmas) in the comingled lavas (binary mixtures). PMID:24737994
Application of multivariate statistical techniques in microbial ecology.
Paliy, O; Shankar, V
2016-03-01
Recent advances in high-throughput methods of molecular analyses have led to an explosion of studies generating large-scale ecological data sets. In particular, noticeable effect has been attained in the field of microbial ecology, where new experimental approaches provided in-depth assessments of the composition, functions and dynamic changes of complex microbial communities. Because even a single high-throughput experiment produces large amount of data, powerful statistical techniques of multivariate analysis are well suited to analyse and interpret these data sets. Many different multivariate techniques are available, and often it is not clear which method should be applied to a particular data set. In this review, we describe and compare the most widely used multivariate statistical techniques including exploratory, interpretive and discriminatory procedures. We consider several important limitations and assumptions of these methods, and we present examples of how these approaches have been utilized in recent studies to provide insight into the ecology of the microbial world. Finally, we offer suggestions for the selection of appropriate methods based on the research question and data set structure. © 2016 John Wiley & Sons Ltd.
Kim, Wonkuk; Londono, Douglas; Zhou, Lisheng; Xing, Jinchuan; Nato, Alejandro Q; Musolf, Anthony; Matise, Tara C; Finch, Stephen J; Gordon, Derek
2012-01-01
As with any new technology, next-generation sequencing (NGS) has potential advantages and potential challenges. One advantage is the identification of multiple causal variants for disease that might otherwise be missed by SNP-chip technology. One potential challenge is misclassification error (as with any emerging technology) and the issue of power loss due to multiple testing. Here, we develop an extension of the linear trend test for association that incorporates differential misclassification error and may be applied to any number of SNPs. We call the statistic the linear trend test allowing for error, applied to NGS, or LTTae,NGS. This statistic allows for differential misclassification. The observed data are phenotypes for unrelated cases and controls, coverage, and the number of putative causal variants for every individual at all SNPs. We simulate data considering multiple factors (disease mode of inheritance, genotype relative risk, causal variant frequency, sequence error rate in cases, sequence error rate in controls, number of loci, and others) and evaluate type I error rate and power for each vector of factor settings. We compare our results with two recently published NGS statistics. Also, we create a fictitious disease model based on downloaded 1000 Genomes data for 5 SNPs and 388 individuals, and apply our statistic to those data. We find that the LTTae,NGS maintains the correct type I error rate in all simulations (differential and non-differential error), while the other statistics show large inflation in type I error for lower coverage. Power for all three methods is approximately the same for all three statistics in the presence of non-differential error. Application of our statistic to the 1000 Genomes data suggests that, for the data downloaded, there is a 1.5% sequence misclassification rate over all SNPs. Finally, application of the multi-variant form of LTTae,NGS shows high power for a number of simulation settings, although it can have lower power than the corresponding single-variant simulation results, most probably due to our specification of multi-variant SNP correlation values. In conclusion, our LTTae,NGS addresses two key challenges with NGS disease studies; first, it allows for differential misclassification when computing the statistic; and second, it addresses the multiple-testing issue in that there is a multi-variant form of the statistic that has only one degree of freedom, and provides a single p value, no matter how many loci. Copyright © 2013 S. Karger AG, Basel.
Kim, Wonkuk; Londono, Douglas; Zhou, Lisheng; Xing, Jinchuan; Nato, Andrew; Musolf, Anthony; Matise, Tara C.; Finch, Stephen J.; Gordon, Derek
2013-01-01
As with any new technology, next generation sequencing (NGS) has potential advantages and potential challenges. One advantage is the identification of multiple causal variants for disease that might otherwise be missed by SNP-chip technology. One potential challenge is misclassification error (as with any emerging technology) and the issue of power loss due to multiple testing. Here, we develop an extension of the linear trend test for association that incorporates differential misclassification error and may be applied to any number of SNPs. We call the statistic the linear trend test allowing for error, applied to NGS, or LTTae,NGS. This statistic allows for differential misclassification. The observed data are phenotypes for unrelated cases and controls, coverage, and the number of putative causal variants for every individual at all SNPs. We simulate data considering multiple factors (disease mode of inheritance, genotype relative risk, causal variant frequency, sequence error rate in cases, sequence error rate in controls, number of loci, and others) and evaluate type I error rate and power for each vector of factor settings. We compare our results with two recently published NGS statistics. Also, we create a fictitious disease model, based on downloaded 1000 Genomes data for 5 SNPs and 388 individuals, and apply our statistic to that data. We find that the LTTae,NGS maintains the correct type I error rate in all simulations (differential and non-differential error), while the other statistics show large inflation in type I error for lower coverage. Power for all three methods is approximately the same for all three statistics in the presence of non-differential error. Application of our statistic to the 1000 Genomes data suggests that, for the data downloaded, there is a 1.5% sequence misclassification rate over all SNPs. Finally, application of the multi-variant form of LTTae,NGS shows high power for a number of simulation settings, although it can have lower power than the corresponding single variant simulation results, most probably due to our specification of multi-variant SNP correlation values. In conclusion, our LTTae,NGS addresses two key challenges with NGS disease studies; first, it allows for differential misclassification when computing the statistic; and second, it addresses the multiple-testing issue in that there is a multi-variant form of the statistic that has only one degree of freedom, and provides a single p-value, no matter how many loci. PMID:23594495
Multivariate statistical model for 3D image segmentation with application to medical images.
John, Nigel M; Kabuka, Mansur R; Ibrahim, Mohamed O
2003-12-01
In this article we describe a statistical model that was developed to segment brain magnetic resonance images. The statistical segmentation algorithm was applied after a pre-processing stage involving the use of a 3D anisotropic filter along with histogram equalization techniques. The segmentation algorithm makes use of prior knowledge and a probability-based multivariate model designed to semi-automate the process of segmentation. The algorithm was applied to images obtained from the Center for Morphometric Analysis at Massachusetts General Hospital as part of the Internet Brain Segmentation Repository (IBSR). The developed algorithm showed improved accuracy over the k-means, adaptive Maximum Apriori Probability (MAP), biased MAP, and other algorithms. Experimental results showing the segmentation and the results of comparisons with other algorithms are provided. Results are based on an overlap criterion against expertly segmented images from the IBSR. The algorithm produced average results of approximately 80% overlap with the expertly segmented images (compared with 85% for manual segmentation and 55% for other algorithms).
NASA Astrophysics Data System (ADS)
Guimarães Nobre, Gabriela; Arnbjerg-Nielsen, Karsten; Rosbjerg, Dan; Madsen, Henrik
2016-04-01
Traditionally, flood risk assessment studies have been carried out from a univariate frequency analysis perspective. However, statistical dependence between hydrological variables, such as extreme rainfall and extreme sea surge, is plausible to exist, since both variables to some extent are driven by common meteorological conditions. Aiming to overcome this limitation, multivariate statistical techniques has the potential to combine different sources of flooding in the investigation. The aim of this study was to apply a range of statistical methodologies for analyzing combined extreme hydrological variables that can lead to coastal and urban flooding. The study area is the Elwood Catchment, which is a highly urbanized catchment located in the city of Port Phillip, Melbourne, Australia. The first part of the investigation dealt with the marginal extreme value distributions. Two approaches to extract extreme value series were applied (Annual Maximum and Partial Duration Series), and different probability distribution functions were fit to the observed sample. Results obtained by using the Generalized Pareto distribution demonstrate the ability of the Pareto family to model the extreme events. Advancing into multivariate extreme value analysis, first an investigation regarding the asymptotic properties of extremal dependence was carried out. As a weak positive asymptotic dependence between the bivariate extreme pairs was found, the Conditional method proposed by Heffernan and Tawn (2004) was chosen. This approach is suitable to model bivariate extreme values, which are relatively unlikely to occur together. The results show that the probability of an extreme sea surge occurring during a one-hour intensity extreme precipitation event (or vice versa) can be twice as great as what would occur when assuming independent events. Therefore, presuming independence between these two variables would result in severe underestimation of the flooding risk in the study area.
Simultaneous calibration of ensemble river flow predictions over an entire range of lead times
NASA Astrophysics Data System (ADS)
Hemri, S.; Fundel, F.; Zappa, M.
2013-10-01
Probabilistic estimates of future water levels and river discharge are usually simulated with hydrologic models using ensemble weather forecasts as main inputs. As hydrologic models are imperfect and the meteorological ensembles tend to be biased and underdispersed, the ensemble forecasts for river runoff typically are biased and underdispersed, too. Thus, in order to achieve both reliable and sharp predictions statistical postprocessing is required. In this work Bayesian model averaging (BMA) is applied to statistically postprocess ensemble runoff raw forecasts for a catchment in Switzerland, at lead times ranging from 1 to 240 h. The raw forecasts have been obtained using deterministic and ensemble forcing meteorological models with different forecast lead time ranges. First, BMA is applied based on mixtures of univariate normal distributions, subject to the assumption of independence between distinct lead times. Then, the independence assumption is relaxed in order to estimate multivariate runoff forecasts over the entire range of lead times simultaneously, based on a BMA version that uses multivariate normal distributions. Since river runoff is a highly skewed variable, Box-Cox transformations are applied in order to achieve approximate normality. Both univariate and multivariate BMA approaches are able to generate well calibrated probabilistic forecasts that are considerably sharper than climatological forecasts. Additionally, multivariate BMA provides a promising approach for incorporating temporal dependencies into the postprocessed forecasts. Its major advantage against univariate BMA is an increase in reliability when the forecast system is changing due to model availability.
Characterizations of linear sufficient statistics
NASA Technical Reports Server (NTRS)
Peters, B. C., Jr.; Reoner, R.; Decell, H. P., Jr.
1977-01-01
A surjective bounded linear operator T from a Banach space X to a Banach space Y must be a sufficient statistic for a dominated family of probability measures defined on the Borel sets of X. These results were applied, so that they characterize linear sufficient statistics for families of the exponential type, including as special cases the Wishart and multivariate normal distributions. The latter result was used to establish precisely which procedures for sampling from a normal population had the property that the sample mean was a sufficient statistic.
Multivariate pattern dependence
Saxe, Rebecca
2017-01-01
When we perform a cognitive task, multiple brain regions are engaged. Understanding how these regions interact is a fundamental step to uncover the neural bases of behavior. Most research on the interactions between brain regions has focused on the univariate responses in the regions. However, fine grained patterns of response encode important information, as shown by multivariate pattern analysis. In the present article, we introduce and apply multivariate pattern dependence (MVPD): a technique to study the statistical dependence between brain regions in humans in terms of the multivariate relations between their patterns of responses. MVPD characterizes the responses in each brain region as trajectories in region-specific multidimensional spaces, and models the multivariate relationship between these trajectories. We applied MVPD to the posterior superior temporal sulcus (pSTS) and to the fusiform face area (FFA), using a searchlight approach to reveal interactions between these seed regions and the rest of the brain. Across two different experiments, MVPD identified significant statistical dependence not detected by standard functional connectivity. Additionally, MVPD outperformed univariate connectivity in its ability to explain independent variance in the responses of individual voxels. In the end, MVPD uncovered different connectivity profiles associated with different representational subspaces of FFA: the first principal component of FFA shows differential connectivity with occipital and parietal regions implicated in the processing of low-level properties of faces, while the second and third components show differential connectivity with anterior temporal regions implicated in the processing of invariant representations of face identity. PMID:29155809
Multiple Versus Single Set Validation of Multivariate Models to Avoid Mistakes.
Harrington, Peter de Boves
2018-01-02
Validation of multivariate models is of current importance for a wide range of chemical applications. Although important, it is neglected. The common practice is to use a single external validation set for evaluation. This approach is deficient and may mislead investigators with results that are specific to the single validation set of data. In addition, no statistics are available regarding the precision of a derived figure of merit (FOM). A statistical approach using bootstrapped Latin partitions is advocated. This validation method makes an efficient use of the data because each object is used once for validation. It was reviewed a decade earlier but primarily for the optimization of chemometric models this review presents the reasons it should be used for generalized statistical validation. Average FOMs with confidence intervals are reported and powerful, matched-sample statistics may be applied for comparing models and methods. Examples demonstrate the problems with single validation sets.
Putting engineering back into protein engineering: bioinformatic approaches to catalyst design.
Gustafsson, Claes; Govindarajan, Sridhar; Minshull, Jeremy
2003-08-01
Complex multivariate engineering problems are commonplace and not unique to protein engineering. Mathematical and data-mining tools developed in other fields of engineering have now been applied to analyze sequence-activity relationships of peptides and proteins and to assist in the design of proteins and peptides with specified properties. Decreasing costs of DNA sequencing in conjunction with methods to quickly synthesize statistically representative sets of proteins allow modern heuristic statistics to be applied to protein engineering. This provides an alternative approach to expensive assays or unreliable high-throughput surrogate screens.
Data exploration systems for databases
NASA Technical Reports Server (NTRS)
Greene, Richard J.; Hield, Christopher
1992-01-01
Data exploration systems apply machine learning techniques, multivariate statistical methods, information theory, and database theory to databases to identify significant relationships among the data and summarize information. The result of applying data exploration systems should be a better understanding of the structure of the data and a perspective of the data enabling an analyst to form hypotheses for interpreting the data. This paper argues that data exploration systems need a minimum amount of domain knowledge to guide both the statistical strategy and the interpretation of the resulting patterns discovered by these systems.
Kernel canonical-correlation Granger causality for multiple time series
NASA Astrophysics Data System (ADS)
Wu, Guorong; Duan, Xujun; Liao, Wei; Gao, Qing; Chen, Huafu
2011-04-01
Canonical-correlation analysis as a multivariate statistical technique has been applied to multivariate Granger causality analysis to infer information flow in complex systems. It shows unique appeal and great superiority over the traditional vector autoregressive method, due to the simplified procedure that detects causal interaction between multiple time series, and the avoidance of potential model estimation problems. However, it is limited to the linear case. Here, we extend the framework of canonical correlation to include the estimation of multivariate nonlinear Granger causality for drawing inference about directed interaction. Its feasibility and effectiveness are verified on simulated data.
NASA Astrophysics Data System (ADS)
Ye, M.; Pacheco Castro, R. B.; Pacheco Avila, J.; Cabrera Sansores, A.
2014-12-01
The karstic aquifer of Yucatan is a vulnerable and complex system. The first fifteen meters of this aquifer have been polluted, due to this the protection of this resource is important because is the only source of potable water of the entire State. Through the assessment of groundwater quality we can gain some knowledge about the main processes governing water chemistry as well as spatial patterns which are important to establish protection zones. In this work multivariate statistical techniques are used to assess the groundwater quality of the supply wells (30 to 40 meters deep) in the hidrogeologic region of the Ring of Cenotes, located in Yucatan, Mexico. Cluster analysis and principal component analysis are applied in groundwater chemistry data of the study area. Results of principal component analysis show that the main sources of variation in the data are due sea water intrusion and the interaction of the water with the carbonate rocks of the system and some pollution processes. The cluster analysis shows that the data can be divided in four clusters. The spatial distribution of the clusters seems to be random, but is consistent with sea water intrusion and pollution with nitrates. The overall results show that multivariate statistical analysis can be successfully applied in the groundwater quality assessment of this karstic aquifer.
NASA Astrophysics Data System (ADS)
O'Shea, Bethany; Jankowski, Jerzy
2006-12-01
The major ion composition of Great Artesian Basin groundwater in the lower Namoi River valley is relatively homogeneous in chemical composition. Traditional graphical techniques have been combined with multivariate statistical methods to determine whether subtle differences in the chemical composition of these waters can be delineated. Hierarchical cluster analysis and principal components analysis were successful in delineating minor variations within the groundwaters of the study area that were not visually identified in the graphical techniques applied. Hydrochemical interpretation allowed geochemical processes to be identified in each statistically defined water type and illustrated how these groundwaters differ from one another. Three main geochemical processes were identified in the groundwaters: ion exchange, precipitation, and mixing between waters from different sources. Both statistical methods delineated an anomalous sample suspected of being influenced by magmatic CO2 input. The use of statistical methods to complement traditional graphical techniques for waters appearing homogeneous is emphasized for all investigations of this type. Copyright
A model-based approach to wildland fire reconstruction using sediment charcoal records
Itter, Malcolm S.; Finley, Andrew O.; Hooten, Mevin B.; Higuera, Philip E.; Marlon, Jennifer R.; Kelly, Ryan; McLachlan, Jason S.
2017-01-01
Lake sediment charcoal records are used in paleoecological analyses to reconstruct fire history, including the identification of past wildland fires. One challenge of applying sediment charcoal records to infer fire history is the separation of charcoal associated with local fire occurrence and charcoal originating from regional fire activity. Despite a variety of methods to identify local fires from sediment charcoal records, an integrated statistical framework for fire reconstruction is lacking. We develop a Bayesian point process model to estimate the probability of fire associated with charcoal counts from individual-lake sediments and estimate mean fire return intervals. A multivariate extension of the model combines records from multiple lakes to reduce uncertainty in local fire identification and estimate a regional mean fire return interval. The univariate and multivariate models are applied to 13 lakes in the Yukon Flats region of Alaska. Both models resulted in similar mean fire return intervals (100–350 years) with reduced uncertainty under the multivariate model due to improved estimation of regional charcoal deposition. The point process model offers an integrated statistical framework for paleofire reconstruction and extends existing methods to infer regional fire history from multiple lake records with uncertainty following directly from posterior distributions.
Wang, Yalin; Zhang, Jie; Gutman, Boris; Chan, Tony F.; Becker, James T.; Aizenstein, Howard J.; Lopez, Oscar L.; Tamburo, Robert J.; Toga, Arthur W.; Thompson, Paul M.
2010-01-01
Here we developed a new method, called multivariate tensor-based surface morphometry (TBM), and applied it to study lateral ventricular surface differences associated with HIV/AIDS. Using concepts from differential geometry and the theory of differential forms, we created mathematical structures known as holomorphic one-forms, to obtain an efficient and accurate conformal parameterization of the lateral ventricular surfaces in the brain. The new meshing approach also provides a natural way to register anatomical surfaces across subjects, and improves on prior methods as it handles surfaces that branch and join at complex 3D junctions. To analyze anatomical differences, we computed new statistics from the Riemannian surface metrics - these retain multivariate information on local surface geometry. We applied this framework to analyze lateral ventricular surface morphometry in 3D MRI data from 11 subjects with HIV/AIDS and 8 healthy controls. Our method detected a 3D profile of surface abnormalities even in this small sample. Multivariate statistics on the local tensors gave better effect sizes for detecting group differences, relative to other TBM-based methods including analysis of the Jacobian determinant, the largest and smallest eigenvalues of the surface metric, and the pair of eigenvalues of the Jacobian matrix. The resulting analysis pipeline may improve the power of surface-based morphometry studies of the brain. PMID:19900560
Multivariate Analysis and Prediction of Dioxin-Furan ...
Peer Review Draft of Regional Methods Initiative Final Report Dioxins, which are bioaccumulative and environmentally persistent, pose an ongoing risk to human and ecosystem health. Fish constitute a significant source of dioxin exposure for humans and fish-eating wildlife. Current dioxin analytical methods are costly, time-consuming, and produce hazardous by-products. A Danish team developed a novel, multivariate statistical methodology based on the covariance of dioxin-furan congener Toxic Equivalences (TEQs) and fatty acid methyl esters (FAMEs) and applied it to North Atlantic Ocean fishmeal samples. The goal of the current study was to attempt to extend this Danish methodology to 77 whole and composite fish samples from three trophic groups: predator (whole largemouth bass), benthic (whole flathead and channel catfish) and forage fish (composite bluegill, pumpkinseed and green sunfish) from two dioxin contaminated rivers (Pocatalico R. and Kanawha R.) in West Virginia, USA. Multivariate statistical analyses, including, Principal Components Analysis (PCA), Hierarchical Clustering, and Partial Least Squares Regression (PLS), were used to assess the relationship between the FAMEs and TEQs in these dioxin contaminated freshwater fish from the Kanawha and Pocatalico Rivers. These three multivariate statistical methods all confirm that the pattern of Fatty Acid Methyl Esters (FAMEs) in these freshwater fish covaries with and is predictive of the WHO TE
Mujica Ascencio, Saul; Choe, ChunSik; Meinke, Martina C; Müller, Rainer H; Maksimov, George V; Wigger-Alberti, Walter; Lademann, Juergen; Darvin, Maxim E
2016-07-01
Propylene glycol is one of the known substances added in cosmetic formulations as a penetration enhancer. Recently, nanocrystals have been employed also to increase the skin penetration of active components. Caffeine is a component with many applications and its penetration into the epidermis is controversially discussed in the literature. In the present study, the penetration ability of two components - caffeine nanocrystals and propylene glycol, applied topically on porcine ear skin in the form of a gel, was investigated ex vivo using two confocal Raman microscopes operated at different excitation wavelengths (785nm and 633nm). Several depth profiles were acquired in the fingerprint region and different spectral ranges, i.e., 526-600cm(-1) and 810-880cm(-1) were chosen for independent analysis of caffeine and propylene glycol penetration into the skin, respectively. Multivariate statistical methods such as principal component analysis (PCA) and linear discriminant analysis (LDA) combined with Student's t-test were employed to calculate the maximum penetration depths of each substance (caffeine and propylene glycol). The results show that propylene glycol penetrates significantly deeper than caffeine (20.7-22.0μm versus 12.3-13.0μm) without any penetration enhancement effect on caffeine. The results confirm that different substances, even if applied onto the skin as a mixture, can penetrate differently. The penetration depths of caffeine and propylene glycol obtained using two different confocal Raman microscopes are comparable showing that both types of microscopes are well suited for such investigations and that multivariate statistical PCA-LDA methods combined with Student's t-test are very useful for analyzing the penetration of different substances into the skin. Copyright © 2016 Elsevier B.V. All rights reserved.
Multivariate Statistical Analysis of Water Quality data in Indian River Lagoon, Florida
NASA Astrophysics Data System (ADS)
Sayemuzzaman, M.; Ye, M.
2015-12-01
The Indian River Lagoon, is part of the longest barrier island complex in the United States, is a region of particular concern to the environmental scientist because of the rapid rate of human development throughout the region and the geographical position in between the colder temperate zone and warmer sub-tropical zone. Thus, the surface water quality analysis in this region always brings the newer information. In this present study, multivariate statistical procedures were applied to analyze the spatial and temporal water quality in the Indian River Lagoon over the period 1998-2013. Twelve parameters have been analyzed on twelve key water monitoring stations in and beside the lagoon on monthly datasets (total of 27,648 observations). The dataset was treated using cluster analysis (CA), principle component analysis (PCA) and non-parametric trend analysis. The CA was used to cluster twelve monitoring stations into four groups, with stations on the similar surrounding characteristics being in the same group. The PCA was then applied to the similar groups to find the important water quality parameters. The principal components (PCs), PC1 to PC5 was considered based on the explained cumulative variances 75% to 85% in each cluster groups. Nutrient species (phosphorus and nitrogen), salinity, specific conductivity and erosion factors (TSS, Turbidity) were major variables involved in the construction of the PCs. Statistical significant positive or negative trends and the abrupt trend shift were detected applying Mann-Kendall trend test and Sequential Mann-Kendall (SQMK), for each individual stations for the important water quality parameters. Land use land cover change pattern, local anthropogenic activities and extreme climate such as drought might be associated with these trends. This study presents the multivariate statistical assessment in order to get better information about the quality of surface water. Thus, effective pollution control/management of the surface waters can be undertaken.
Statistical polarization in greenhouse gas emissions: Theory and evidence.
Remuzgo, Lorena; Trueba, Carmen
2017-11-01
The current debate on climate change is over whether global warming can be limited in order to lessen its impacts. In this sense, evidence of a decrease in the statistical polarization in greenhouse gas (GHG) emissions could encourage countries to establish a stronger multilateral climate change agreement. Based on the interregional and intraregional components of the multivariate generalised entropy measures (Maasoumi, 1986), Gigliarano and Mosler (2009) proposed to study the statistical polarization concept from a multivariate view. In this paper, we apply this approach to study the evolution of such phenomenon in the global distribution of the main GHGs. The empirical analysis has been carried out for the time period 1990-2011, considering an endogenous grouping of countries (Aghevli and Mehran, 1981; Davies and Shorrocks, 1989). Most of the statistical polarization indices showed a slightly increasing pattern that was similar regardless of the number of groups considered. Finally, some policy implications are commented. Copyright © 2017 Elsevier Ltd. All rights reserved.
Elevation, rootstock, and soil depth affect the nutritional quality of mandarin oranges
USDA-ARS?s Scientific Manuscript database
The effects of elevation, rootstock, and soil depth on the nutritional quality of mandarin oranges from 11 groves in California were investigated by nuclear magnetic resonance (NMR) spectroscopy by quantifying 29 compounds and applying multivariate statistical data analysis. A comparison of the juic...
1H NMR-based metabolic profiling for evaluating poppy seed rancidity and brewing.
Jawień, Ewa; Ząbek, Adam; Deja, Stanisław; Łukaszewicz, Marcin; Młynarz, Piotr
2015-12-01
Poppy seeds are widely used in household and commercial confectionery. The aim of this study was to demonstrate the application of metabolic profiling for industrial monitoring of the molecular changes which occur during minced poppy seed rancidity and brewing processes performed on raw seeds. Both forms of poppy seeds were obtained from a confectionery company. Proton nuclear magnetic resonance (1H NMR) was applied as the analytical method of choice together with multivariate statistical data analysis. Metabolic fingerprinting was applied as a bioprocess control tool to monitor rancidity with the trajectory of change and brewing progressions. Low molecular weight compounds were found to be statistically significant biomarkers of these bioprocesses. Changes in concentrations of chemical compounds were explained relative to the biochemical processes and external conditions. The obtained results provide valuable and comprehensive information to gain a better understanding of the biology of rancidity and brewing processes, while demonstrating the potential for applying NMR spectroscopy combined with multivariate data analysis tools for quality control in food industries involved in the processing of oilseeds. This precious and versatile information gives a better understanding of the biology of these processes.
NASA Astrophysics Data System (ADS)
Lee, An-Sheng; Lu, Wei-Li; Huang, Jyh-Jaan; Chang, Queenie; Wei, Kuo-Yen; Lin, Chin-Jung; Liou, Sofia Ya Hsuan
2016-04-01
Through the geology and climate characteristic in Taiwan, generally rivers carry a lot of suspended particles. After these particles settled, they become sediments which are good sorbent for heavy metals in river system. Consequently, sediments can be found recording contamination footprint at low flow energy region, such as estuary. Seven sediment cores were collected along Nankan River, northern Taiwan, which is seriously contaminated by factory, household and agriculture input. Physico-chemical properties of these cores were derived from Itrax-XRF Core Scanner and grain size analysis. In order to interpret these complex data matrices, the multivariate statistical techniques (cluster analysis, factor analysis and discriminant analysis) were introduced to this study. Through the statistical determination, the result indicates four types of sediment. One of them represents contamination event which shows high concentration of Cu, Zn, Pb, Ni and Fe, and low concentration of Si and Zr. Furthermore, three possible contamination sources of this type of sediment were revealed by Factor Analysis. The combination of sediment analysis and multivariate statistical techniques used provides new insights into the contamination depositional history of Nankan River and could be similarly applied to other river systems to determine the scale of anthropogenic contamination.
Water quality analysis of the Rapur area, Andhra Pradesh, South India using multivariate techniques
NASA Astrophysics Data System (ADS)
Nagaraju, A.; Sreedhar, Y.; Thejaswi, A.; Sayadi, Mohammad Hossein
2017-10-01
The groundwater samples from Rapur area were collected from different sites to evaluate the major ion chemistry. The large number of data can lead to difficulties in the integration, interpretation, and representation of the results. Two multivariate statistical methods, hierarchical cluster analysis (HCA) and factor analysis (FA), were applied to evaluate their usefulness to classify and identify geochemical processes controlling groundwater geochemistry. Four statistically significant clusters were obtained from 30 sampling stations. This has resulted two important clusters viz., cluster 1 (pH, Si, CO3, Mg, SO4, Ca, K, HCO3, alkalinity, Na, Na + K, Cl, and hardness) and cluster 2 (EC and TDS) which are released to the study area from different sources. The application of different multivariate statistical techniques, such as principal component analysis (PCA), assists in the interpretation of complex data matrices for a better understanding of water quality of a study area. From PCA, it is clear that the first factor (factor 1), accounted for 36.2% of the total variance, was high positive loading in EC, Mg, Cl, TDS, and hardness. Based on the PCA scores, four significant cluster groups of sampling locations were detected on the basis of similarity of their water quality.
A new multivariate zero-adjusted Poisson model with applications to biomedicine.
Liu, Yin; Tian, Guo-Liang; Tang, Man-Lai; Yuen, Kam Chuen
2018-05-25
Recently, although advances were made on modeling multivariate count data, existing models really has several limitations: (i) The multivariate Poisson log-normal model (Aitchison and Ho, ) cannot be used to fit multivariate count data with excess zero-vectors; (ii) The multivariate zero-inflated Poisson (ZIP) distribution (Li et al., 1999) cannot be used to model zero-truncated/deflated count data and it is difficult to apply to high-dimensional cases; (iii) The Type I multivariate zero-adjusted Poisson (ZAP) distribution (Tian et al., 2017) could only model multivariate count data with a special correlation structure for random components that are all positive or negative. In this paper, we first introduce a new multivariate ZAP distribution, based on a multivariate Poisson distribution, which allows the correlations between components with a more flexible dependency structure, that is some of the correlation coefficients could be positive while others could be negative. We then develop its important distributional properties, and provide efficient statistical inference methods for multivariate ZAP model with or without covariates. Two real data examples in biomedicine are used to illustrate the proposed methods. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Testing for significance of phase synchronisation dynamics in the EEG.
Daly, Ian; Sweeney-Reed, Catherine M; Nasuto, Slawomir J
2013-06-01
A number of tests exist to check for statistical significance of phase synchronisation within the Electroencephalogram (EEG); however, the majority suffer from a lack of generality and applicability. They may also fail to account for temporal dynamics in the phase synchronisation, regarding synchronisation as a constant state instead of a dynamical process. Therefore, a novel test is developed for identifying the statistical significance of phase synchronisation based upon a combination of work characterising temporal dynamics of multivariate time-series and Markov modelling. We show how this method is better able to assess the significance of phase synchronisation than a range of commonly used significance tests. We also show how the method may be applied to identify and classify significantly different phase synchronisation dynamics in both univariate and multivariate datasets.
Materials Approach to Dissecting Surface Responses in the Attachment Stages of Biofouling Organisms
2016-04-25
their settlement behavior in regards to the coating surfaces. 5) Multivariate statistical analysis was used to examine the effect (if any) of the...applied to glass rods and were deployed in the field to evaluate settlement preferences. Canonical Analysis of Principal Coordinates were applied to...the influence of coating surface properties on the patterns in settlement observed in the field in the extension of this work over the coming year
Yang, James J; Williams, L Keoki; Buu, Anne
2017-08-24
A multivariate genome-wide association test is proposed for analyzing data on multivariate quantitative phenotypes collected from related subjects. The proposed method is a two-step approach. The first step models the association between the genotype and marginal phenotype using a linear mixed model. The second step uses the correlation between residuals of the linear mixed model to estimate the null distribution of the Fisher combination test statistic. The simulation results show that the proposed method controls the type I error rate and is more powerful than the marginal tests across different population structures (admixed or non-admixed) and relatedness (related or independent). The statistical analysis on the database of the Study of Addiction: Genetics and Environment (SAGE) demonstrates that applying the multivariate association test may facilitate identification of the pleiotropic genes contributing to the risk for alcohol dependence commonly expressed by four correlated phenotypes. This study proposes a multivariate method for identifying pleiotropic genes while adjusting for cryptic relatedness and population structure between subjects. The two-step approach is not only powerful but also computationally efficient even when the number of subjects and the number of phenotypes are both very large.
Keenan, Michael R; Smentkowski, Vincent S; Ulfig, Robert M; Oltman, Edward; Larson, David J; Kelly, Thomas F
2011-06-01
We demonstrate for the first time that multivariate statistical analysis techniques can be applied to atom probe tomography data to estimate the chemical composition of a sample at the full spatial resolution of the atom probe in three dimensions. Whereas the raw atom probe data provide the specific identity of an atom at a precise location, the multivariate results can be interpreted in terms of the probabilities that an atom representing a particular chemical phase is situated there. When aggregated to the size scale of a single atom (∼0.2 nm), atom probe spectral-image datasets are huge and extremely sparse. In fact, the average spectrum will have somewhat less than one total count per spectrum due to imperfect detection efficiency. These conditions, under which the variance in the data is completely dominated by counting noise, test the limits of multivariate analysis, and an extensive discussion of how to extract the chemical information is presented. Efficient numerical approaches to performing principal component analysis (PCA) on these datasets, which may number hundreds of millions of individual spectra, are put forward, and it is shown that PCA can be computed in a few seconds on a typical laptop computer.
ERIC Educational Resources Information Center
Baker, Bruce D.; Richards, Craig E.
1999-01-01
Applies neural network methods for forecasting 1991-95 per-pupil expenditures in U.S. public elementary and secondary schools. Forecasting models included the National Center for Education Statistics' multivariate regression model and three neural architectures. Regarding prediction accuracy, neural network results were comparable or superior to…
Introducing Undergraduate Students to Metabolomics Using a NMR-Based Analysis of Coffee Beans
ERIC Educational Resources Information Center
Sandusky, Peter Olaf
2017-01-01
Metabolomics applies multivariate statistical analysis to sets of high-resolution spectra taken over a population of biologically derived samples. The objective is to distinguish subpopulations within the overall sample population, and possibly also to identify biomarkers. While metabolomics has become part of the standard analytical toolbox in…
Motegi, Hiromi; Tsuboi, Yuuri; Saga, Ayako; Kagami, Tomoko; Inoue, Maki; Toki, Hideaki; Minowa, Osamu; Noda, Tetsuo; Kikuchi, Jun
2015-11-04
There is an increasing need to use multivariate statistical methods for understanding biological functions, identifying the mechanisms of diseases, and exploring biomarkers. In addition to classical analyses such as hierarchical cluster analysis, principal component analysis, and partial least squares discriminant analysis, various multivariate strategies, including independent component analysis, non-negative matrix factorization, and multivariate curve resolution, have recently been proposed. However, determining the number of components is problematic. Despite the proposal of several different methods, no satisfactory approach has yet been reported. To resolve this problem, we implemented a new idea: classifying a component as "reliable" or "unreliable" based on the reproducibility of its appearance, regardless of the number of components in the calculation. Using the clustering method for classification, we applied this idea to multivariate curve resolution-alternating least squares (MCR-ALS). Comparisons between conventional and modified methods applied to proton nuclear magnetic resonance ((1)H-NMR) spectral datasets derived from known standard mixtures and biological mixtures (urine and feces of mice) revealed that more plausible results are obtained by the modified method. In particular, clusters containing little information were detected with reliability. This strategy, named "cluster-aided MCR-ALS," will facilitate the attainment of more reliable results in the metabolomics datasets.
Steingass, Christof Björn; Jutzi, Manfred; Müller, Jenny; Carle, Reinhold; Schmarr, Hans-Georg
2015-03-01
Ripening-dependent changes of pineapple volatiles were studied in a nontargeted profiling analysis. Volatiles were isolated via headspace solid phase microextraction and analyzed by comprehensive 2D gas chromatography and mass spectrometry (HS-SPME-GC×GC-qMS). Profile patterns presented in the contour plots were evaluated applying image processing techniques and subsequent multivariate statistical data analysis. Statistical methods comprised unsupervised hierarchical cluster analysis (HCA) and principal component analysis (PCA) to classify the samples. Supervised partial least squares discriminant analysis (PLS-DA) and partial least squares (PLS) regression were applied to discriminate different ripening stages and describe the development of volatiles during postharvest storage, respectively. Hereby, substantial chemical markers allowing for class separation were revealed. The workflow permitted the rapid distinction between premature green-ripe pineapples and postharvest-ripened sea-freighted fruits. Volatile profiles of fully ripe air-freighted pineapples were similar to those of green-ripe fruits postharvest ripened for 6 days after simulated sea freight export, after PCA with only two principal components. However, PCA considering also the third principal component allowed differentiation between air-freighted fruits and the four progressing postharvest maturity stages of sea-freighted pineapples.
Can multivariate models based on MOAKS predict OA knee pain? Data from the Osteoarthritis Initiative
NASA Astrophysics Data System (ADS)
Luna-Gómez, Carlos D.; Zanella-Calzada, Laura A.; Galván-Tejada, Jorge I.; Galván-Tejada, Carlos E.; Celaya-Padilla, José M.
2017-03-01
Osteoarthritis is the most common rheumatic disease in the world. Knee pain is the most disabling symptom in the disease, the prediction of pain is one of the targets in preventive medicine, this can be applied to new therapies or treatments. Using the magnetic resonance imaging and the grading scales, a multivariate model based on genetic algorithms is presented. Using a predictive model can be useful to associate minor structure changes in the joint with the future knee pain. Results suggest that multivariate models can be predictive with future knee chronic pain. All models; T0, T1 and T2, were statistically significant, all p values were < 0.05 and all AUC > 0.60.
Chiu, Chi-yang; Jung, Jeesun; Chen, Wei; Weeks, Daniel E; Ren, Haobo; Boehnke, Michael; Amos, Christopher I; Liu, Aiyi; Mills, James L; Ting Lee, Mei-ling; Xiong, Momiao; Fan, Ruzong
2017-01-01
To analyze next-generation sequencing data, multivariate functional linear models are developed for a meta-analysis of multiple studies to connect genetic variant data to multiple quantitative traits adjusting for covariates. The goal is to take the advantage of both meta-analysis and pleiotropic analysis in order to improve power and to carry out a unified association analysis of multiple studies and multiple traits of complex disorders. Three types of approximate F -distributions based on Pillai–Bartlett trace, Hotelling–Lawley trace, and Wilks's Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants. Simulation analysis is performed to evaluate false-positive rates and power of the proposed tests. The proposed methods are applied to analyze lipid traits in eight European cohorts. It is shown that it is more advantageous to perform multivariate analysis than univariate analysis in general, and it is more advantageous to perform meta-analysis of multiple studies instead of analyzing the individual studies separately. The proposed models require individual observations. The value of the current paper can be seen at least for two reasons: (a) the proposed methods can be applied to studies that have individual genotype data; (b) the proposed methods can be used as a criterion for future work that uses summary statistics to build test statistics to meta-analyze the data. PMID:28000696
Chiu, Chi-Yang; Jung, Jeesun; Chen, Wei; Weeks, Daniel E; Ren, Haobo; Boehnke, Michael; Amos, Christopher I; Liu, Aiyi; Mills, James L; Ting Lee, Mei-Ling; Xiong, Momiao; Fan, Ruzong
2017-02-01
To analyze next-generation sequencing data, multivariate functional linear models are developed for a meta-analysis of multiple studies to connect genetic variant data to multiple quantitative traits adjusting for covariates. The goal is to take the advantage of both meta-analysis and pleiotropic analysis in order to improve power and to carry out a unified association analysis of multiple studies and multiple traits of complex disorders. Three types of approximate F -distributions based on Pillai-Bartlett trace, Hotelling-Lawley trace, and Wilks's Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants. Simulation analysis is performed to evaluate false-positive rates and power of the proposed tests. The proposed methods are applied to analyze lipid traits in eight European cohorts. It is shown that it is more advantageous to perform multivariate analysis than univariate analysis in general, and it is more advantageous to perform meta-analysis of multiple studies instead of analyzing the individual studies separately. The proposed models require individual observations. The value of the current paper can be seen at least for two reasons: (a) the proposed methods can be applied to studies that have individual genotype data; (b) the proposed methods can be used as a criterion for future work that uses summary statistics to build test statistics to meta-analyze the data.
Extracting chemical information from high-resolution Kβ X-ray emission spectroscopy
NASA Astrophysics Data System (ADS)
Limandri, S.; Robledo, J.; Tirao, G.
2018-06-01
High-resolution X-ray emission spectroscopy allows studying the chemical environment of a wide variety of materials. Chemical information can be obtained by fitting the X-ray spectra and observing the behavior of some spectral features. Spectral changes can also be quantified by means of statistical parameters calculated by considering the spectrum as a probability distribution. Another possibility is to perform statistical multivariate analysis, such as principal component analysis. In this work the performance of these procedures for extracting chemical information in X-ray emission spectroscopy spectra for mixtures of Mn2+ and Mn4+ oxides are studied. A detail analysis of the parameters obtained, as well as the associated uncertainties is shown. The methodologies are also applied for Mn oxidation state characterization of double perovskite oxides Ba1+xLa1-xMnSbO6 (with 0 ≤ x ≤ 0.7). The results show that statistical parameters and multivariate analysis are the most suitable for the analysis of this kind of spectra.
Bayesian transformation cure frailty models with multivariate failure time data.
Yin, Guosheng
2008-12-10
We propose a class of transformation cure frailty models to accommodate a survival fraction in multivariate failure time data. Established through a general power transformation, this family of cure frailty models includes the proportional hazards and the proportional odds modeling structures as two special cases. Within the Bayesian paradigm, we obtain the joint posterior distribution and the corresponding full conditional distributions of the model parameters for the implementation of Gibbs sampling. Model selection is based on the conditional predictive ordinate statistic and deviance information criterion. As an illustration, we apply the proposed method to a real data set from dentistry.
Demanuele, Charmaine; Bähner, Florian; Plichta, Michael M; Kirsch, Peter; Tost, Heike; Meyer-Lindenberg, Andreas; Durstewitz, Daniel
2015-01-01
Multivariate pattern analysis can reveal new information from neuroimaging data to illuminate human cognition and its disturbances. Here, we develop a methodological approach, based on multivariate statistical/machine learning and time series analysis, to discern cognitive processing stages from functional magnetic resonance imaging (fMRI) blood oxygenation level dependent (BOLD) time series. We apply this method to data recorded from a group of healthy adults whilst performing a virtual reality version of the delayed win-shift radial arm maze (RAM) task. This task has been frequently used to study working memory and decision making in rodents. Using linear classifiers and multivariate test statistics in conjunction with time series bootstraps, we show that different cognitive stages of the task, as defined by the experimenter, namely, the encoding/retrieval, choice, reward and delay stages, can be statistically discriminated from the BOLD time series in brain areas relevant for decision making and working memory. Discrimination of these task stages was significantly reduced during poor behavioral performance in dorsolateral prefrontal cortex (DLPFC), but not in the primary visual cortex (V1). Experimenter-defined dissection of time series into class labels based on task structure was confirmed by an unsupervised, bottom-up approach based on Hidden Markov Models. Furthermore, we show that different groupings of recorded time points into cognitive event classes can be used to test hypotheses about the specific cognitive role of a given brain region during task execution. We found that whilst the DLPFC strongly differentiated between task stages associated with different memory loads, but not between different visual-spatial aspects, the reverse was true for V1. Our methodology illustrates how different aspects of cognitive information processing during one and the same task can be separated and attributed to specific brain regions based on information contained in multivariate patterns of voxel activity.
Effect of sexual steroids on boar kinematic sperm subpopulations.
Ayala, E M E; Aragón, M A
2017-11-01
Here, we show the effects of sexual steroids, progesterone, testosterone, or estradiol on motility parameters of boar sperm. Sixteen commercial seminal doses, four each of four adult boars, were analyzed using computer assisted sperm analysis (CASA). Mean values of motility parameters were analyzed by bivariate and multivariate statistics. Principal component analysis (PCA), followed by hierarchical clustering, was applied on data of motility parameters, provided automatically as intervals by the CASA system. Effects of sexual steroids were described in the kinematic subpopulations identified from multivariate statistics. Mean values of motility parameters were not significantly changed after addition of sexual steroids. Multivariate graphics showed that sperm subpopulations were not sensitive to the addition of either testosterone or estradiol, but sperm subpopulations responsive to progesterone were found. Distribution of motility parameters were wide in controls but sharpened at distinct concentrations of progesterone. We conclude that kinematic sperm subpopulations responsive to progesterone are present in boar semen, and these subpopulations are masked in evaluations of mean values of motility parameters. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.
Implementing Restricted Maximum Likelihood Estimation in Structural Equation Models
ERIC Educational Resources Information Center
Cheung, Mike W.-L.
2013-01-01
Structural equation modeling (SEM) is now a generic modeling framework for many multivariate techniques applied in the social and behavioral sciences. Many statistical models can be considered either as special cases of SEM or as part of the latent variable modeling framework. One popular extension is the use of SEM to conduct linear mixed-effects…
NASA Astrophysics Data System (ADS)
Ngan Nguyen, Thi To; Liu, Cheng-Chien
2013-04-01
How landslides occurred and which factors triggered and sped up landslide occurrences were usually asked by researchers in the past decades. Many investigations carried out in many places in the world to finding out methods that predict and prevent damages from landslides phenomena. Chen-Yu-Lan River watershed is reputed as a 'hot pot' of landslide researches in Taiwan by its complicated geological structures with the significant tectonic fault systems and steeply mountainous terrain. Beside annual high precipitation concentration and the abrupt slopes, some natural disaster, as typhoons (Sinlaku-2008, Kalmaegi-2008, and Marakot-2009) and earthquake (Chi-Chi earthquake-1999) are also the triggered factors cause landslides with serious damages in this place. This research expresses the quantitative approaches to generate landslide susceptible map for Chen-Yu-Lan watershed, a mountainous area in the central Taiwan. Landslide inventories data, which were detected from the Formosat-2 imageries for eight years from 2004 to 2011, were applied to carry out landslide susceptibility mapping. Bivariate statistics analysis and multivariate statistics analysis would be applied to calculate susceptible index of landslides. The weights of parameters were computed based on landslide data for eight years from 2004 to 2011. To validate effective levels of factors to landslide occurrences, this method built some multivariate algorithms and compared these results with real landslide occurrences. Besides this method, the historical data of landslides were also used to assess and classify landslide susceptibility levels. From long-term landslide data, relation between landslide susceptibility levels and landslide repetition was assigned. The results demonstrated differently effective levels of potential factors, such as, slope gradient, drainage density, lithology and land use to landslide phenomena. The results also showed logical relationship between weights and characteristics of factors' classes. Depending on these results be able to help planning managers localize the high risk areas of landslide or safely areas by building and human activities.
The intervals method: a new approach to analyse finite element outputs using multivariate statistics
De Esteban-Trivigno, Soledad; Püschel, Thomas A.; Fortuny, Josep
2017-01-01
Background In this paper, we propose a new method, named the intervals’ method, to analyse data from finite element models in a comparative multivariate framework. As a case study, several armadillo mandibles are analysed, showing that the proposed method is useful to distinguish and characterise biomechanical differences related to diet/ecomorphology. Methods The intervals’ method consists of generating a set of variables, each one defined by an interval of stress values. Each variable is expressed as a percentage of the area of the mandible occupied by those stress values. Afterwards these newly generated variables can be analysed using multivariate methods. Results Applying this novel method to the biological case study of whether armadillo mandibles differ according to dietary groups, we show that the intervals’ method is a powerful tool to characterize biomechanical performance and how this relates to different diets. This allows us to positively discriminate between specialist and generalist species. Discussion We show that the proposed approach is a useful methodology not affected by the characteristics of the finite element mesh. Additionally, the positive discriminating results obtained when analysing a difficult case study suggest that the proposed method could be a very useful tool for comparative studies in finite element analysis using multivariate statistical approaches. PMID:29043107
Ferreira, Fábio S; Pereira, João M S; Duarte, João V; Castelo-Branco, Miguel
2017-01-01
Although voxel based morphometry studies are still the standard for analyzing brain structure, their dependence on massive univariate inferential methods is a limiting factor. A better understanding of brain pathologies can be achieved by applying inferential multivariate methods, which allow the study of multiple dependent variables, e.g. different imaging modalities of the same subject. Given the widespread use of SPM software in the brain imaging community, the main aim of this work is the implementation of massive multivariate inferential analysis as a toolbox in this software package. applied to the use of T1 and T2 structural data from diabetic patients and controls. This implementation was compared with the traditional ANCOVA in SPM and a similar multivariate GLM toolbox (MRM). We implemented the new toolbox and tested it by investigating brain alterations on a cohort of twenty-eight type 2 diabetes patients and twenty-six matched healthy controls, using information from both T1 and T2 weighted structural MRI scans, both separately - using standard univariate VBM - and simultaneously, with multivariate analyses. Univariate VBM replicated predominantly bilateral changes in basal ganglia and insular regions in type 2 diabetes patients. On the other hand, multivariate analyses replicated key findings of univariate results, while also revealing the thalami as additional foci of pathology. While the presented algorithm must be further optimized, the proposed toolbox is the first implementation of multivariate statistics in SPM8 as a user-friendly toolbox, which shows great potential and is ready to be validated in other clinical cohorts and modalities.
Ferreira, Fábio S.; Pereira, João M.S.; Duarte, João V.; Castelo-Branco, Miguel
2017-01-01
Background: Although voxel based morphometry studies are still the standard for analyzing brain structure, their dependence on massive univariate inferential methods is a limiting factor. A better understanding of brain pathologies can be achieved by applying inferential multivariate methods, which allow the study of multiple dependent variables, e.g. different imaging modalities of the same subject. Objective: Given the widespread use of SPM software in the brain imaging community, the main aim of this work is the implementation of massive multivariate inferential analysis as a toolbox in this software package. applied to the use of T1 and T2 structural data from diabetic patients and controls. This implementation was compared with the traditional ANCOVA in SPM and a similar multivariate GLM toolbox (MRM). Method: We implemented the new toolbox and tested it by investigating brain alterations on a cohort of twenty-eight type 2 diabetes patients and twenty-six matched healthy controls, using information from both T1 and T2 weighted structural MRI scans, both separately – using standard univariate VBM - and simultaneously, with multivariate analyses. Results: Univariate VBM replicated predominantly bilateral changes in basal ganglia and insular regions in type 2 diabetes patients. On the other hand, multivariate analyses replicated key findings of univariate results, while also revealing the thalami as additional foci of pathology. Conclusion: While the presented algorithm must be further optimized, the proposed toolbox is the first implementation of multivariate statistics in SPM8 as a user-friendly toolbox, which shows great potential and is ready to be validated in other clinical cohorts and modalities. PMID:28761571
ERIC Educational Resources Information Center
Deserno, Marie K.; Borsboom, Denny; Begeer, Sander; Geurts, Hilde M.
2017-01-01
Given the heterogeneity of autism spectrum disorder, an important limitation of much autism spectrum disorder research is that outcome measures are statistically modeled as separate dependent variables. Often, their multivariate structure is either ignored or treated as a nuisance. This study aims to lift this limitation by applying network…
Constructing networks from a dynamical system perspective for multivariate nonlinear time series.
Nakamura, Tomomichi; Tanizawa, Toshihiro; Small, Michael
2016-03-01
We describe a method for constructing networks for multivariate nonlinear time series. We approach the interaction between the various scalar time series from a deterministic dynamical system perspective and provide a generic and algorithmic test for whether the interaction between two measured time series is statistically significant. The method can be applied even when the data exhibit no obvious qualitative similarity: a situation in which the naive method utilizing the cross correlation function directly cannot correctly identify connectivity. To establish the connectivity between nodes we apply the previously proposed small-shuffle surrogate (SSS) method, which can investigate whether there are correlation structures in short-term variabilities (irregular fluctuations) between two data sets from the viewpoint of deterministic dynamical systems. The procedure to construct networks based on this idea is composed of three steps: (i) each time series is considered as a basic node of a network, (ii) the SSS method is applied to verify the connectivity between each pair of time series taken from the whole multivariate time series, and (iii) the pair of nodes is connected with an undirected edge when the null hypothesis cannot be rejected. The network constructed by the proposed method indicates the intrinsic (essential) connectivity of the elements included in the system or the underlying (assumed) system. The method is demonstrated for numerical data sets generated by known systems and applied to several experimental time series.
Ielpo, Pierina; Leardi, Riccardo; Pappagallo, Giuseppe; Uricchio, Vito Felice
2017-06-01
In this paper, the results obtained from multivariate statistical techniques such as PCA (Principal component analysis) and LDA (Linear discriminant analysis) applied to a wide soil data set are presented. The results have been compared with those obtained on a groundwater data set, whose samples were collected together with soil ones, within the project "Improvement of the Regional Agro-meteorological Monitoring Network (2004-2007)". LDA, applied to soil data, has allowed to distinguish the geographical origin of the sample from either one of the two macroaeras: Bari and Foggia provinces vs Brindisi, Lecce e Taranto provinces, with a percentage of correct prediction in cross validation of 87%. In the case of the groundwater data set, the best classification was obtained when the samples were grouped into three macroareas: Foggia province, Bari province and Brindisi, Lecce and Taranto provinces, by reaching a percentage of correct predictions in cross validation of 84%. The obtained information can be very useful in supporting soil and water resource management, such as the reduction of water consumption and the reduction of energy and chemical (nutrients and pesticides) inputs in agriculture.
Roy, Kevin; Undey, Cenk; Mistretta, Thomas; Naugle, Gregory; Sodhi, Manbir
2014-01-01
Multivariate statistical process monitoring (MSPM) is becoming increasingly utilized to further enhance process monitoring in the biopharmaceutical industry. MSPM can play a critical role when there are many measurements and these measurements are highly correlated, as is typical for many biopharmaceutical operations. Specifically, for processes such as cleaning-in-place (CIP) and steaming-in-place (SIP, also known as sterilization-in-place), control systems typically oversee the execution of the cycles, and verification of the outcome is based on offline assays. These offline assays add to delays and corrective actions may require additional setup times. Moreover, this conventional approach does not take interactive effects of process variables into account and cycle optimization opportunities as well as salient trends in the process may be missed. Therefore, more proactive and holistic online continued verification approaches are desirable. This article demonstrates the application of real-time MSPM to processes such as CIP and SIP with industrial examples. The proposed approach has significant potential for facilitating enhanced continuous verification, improved process understanding, abnormal situation detection, and predictive monitoring, as applied to CIP and SIP operations. © 2014 American Institute of Chemical Engineers.
Rathi, Monika; Ahrenkiel, S P; Carapella, J J; Wanlass, M W
2013-02-01
Given an unknown multicomponent alloy, and a set of standard compounds or alloys of known composition, can one improve upon popular standards-based methods for energy dispersive X-ray (EDX) spectrometry to quantify the elemental composition of the unknown specimen? A method is presented here for determining elemental composition of alloys using transmission electron microscopy-based EDX with appropriate standards. The method begins with a discrete set of related reference standards of known composition, applies multivariate statistical analysis to those spectra, and evaluates the compositions with a linear matrix algebra method to relate the spectra to elemental composition. By using associated standards, only limited assumptions about the physical origins of the EDX spectra are needed. Spectral absorption corrections can be performed by providing an estimate of the foil thickness of one or more reference standards. The technique was applied to III-V multicomponent alloy thin films: composition and foil thickness were determined for various III-V alloys. The results were then validated by comparing with X-ray diffraction and photoluminescence analysis, demonstrating accuracy of approximately 1% in atomic fraction.
NASA Astrophysics Data System (ADS)
Panagopoulos, George P.
2014-10-01
The multivariate statistical techniques conducted on quarterly water consumption data in Mytilene reveal valuable tools that could help the local authorities in assigning strategies aimed at the sustainable development of urban water resources. The proposed methodology is an innovative approach, applied for the first time in the international literature, to handling urban water consumption data in order to analyze statistically the interrelationships among the determinants of urban water use. Factor analysis of demographic, socio-economic and hydrological variables shows that total water consumption in Mytilene is the combined result of increases in (a) income, (b) population, (c) connections and (d) climate parameters. On the other hand, the per connection water demand is influenced by variations in water prices but with different consequences in each consumption class. Increases in water prices are faced by large consumers; they then reduce their consumption rates and transfer to lower consumption blocks. These shifts are responsible for the increase in the average consumption values in the lower blocks despite the increase in the marginal prices.
Multivariate frequency domain analysis of protein dynamics
NASA Astrophysics Data System (ADS)
Matsunaga, Yasuhiro; Fuchigami, Sotaro; Kidera, Akinori
2009-03-01
Multivariate frequency domain analysis (MFDA) is proposed to characterize collective vibrational dynamics of protein obtained by a molecular dynamics (MD) simulation. MFDA performs principal component analysis (PCA) for a bandpass filtered multivariate time series using the multitaper method of spectral estimation. By applying MFDA to MD trajectories of bovine pancreatic trypsin inhibitor, we determined the collective vibrational modes in the frequency domain, which were identified by their vibrational frequencies and eigenvectors. At near zero temperature, the vibrational modes determined by MFDA agreed well with those calculated by normal mode analysis. At 300 K, the vibrational modes exhibited characteristic features that were considerably different from the principal modes of the static distribution given by the standard PCA. The influences of aqueous environments were discussed based on two different sets of vibrational modes, one derived from a MD simulation in water and the other from a simulation in vacuum. Using the varimax rotation, an algorithm of the multivariate statistical analysis, the representative orthogonal set of eigenmodes was determined at each vibrational frequency.
A method of using cluster analysis to study statistical dependence in multivariate data
NASA Technical Reports Server (NTRS)
Borucki, W. J.; Card, D. H.; Lyle, G. C.
1975-01-01
A technique is presented that uses both cluster analysis and a Monte Carlo significance test of clusters to discover associations between variables in multidimensional data. The method is applied to an example of a noisy function in three-dimensional space, to a sample from a mixture of three bivariate normal distributions, and to the well-known Fisher's Iris data.
ERIC Educational Resources Information Center
Wilson, Mark
This study investigates the accuracy of the Woodruff-Causey technique for estimating sampling errors for complex statistics. The technique may be applied when data are collected by using multistage clustered samples. The technique was chosen for study because of its relevance to the correct use of multivariate analyses in educational survey…
Multivariate postprocessing techniques for probabilistic hydrological forecasting
NASA Astrophysics Data System (ADS)
Hemri, Stephan; Lisniak, Dmytro; Klein, Bastian
2016-04-01
Hydrologic ensemble forecasts driven by atmospheric ensemble prediction systems need statistical postprocessing in order to account for systematic errors in terms of both mean and spread. Runoff is an inherently multivariate process with typical events lasting from hours in case of floods to weeks or even months in case of droughts. This calls for multivariate postprocessing techniques that yield well calibrated forecasts in univariate terms and ensure a realistic temporal dependence structure at the same time. To this end, the univariate ensemble model output statistics (EMOS; Gneiting et al., 2005) postprocessing method is combined with two different copula approaches that ensure multivariate calibration throughout the entire forecast horizon. These approaches comprise ensemble copula coupling (ECC; Schefzik et al., 2013), which preserves the dependence structure of the raw ensemble, and a Gaussian copula approach (GCA; Pinson and Girard, 2012), which estimates the temporal correlations from training observations. Both methods are tested in a case study covering three subcatchments of the river Rhine that represent different sizes and hydrological regimes: the Upper Rhine up to the gauge Maxau, the river Moselle up to the gauge Trier, and the river Lahn up to the gauge Kalkofen. The results indicate that both ECC and GCA are suitable for modelling the temporal dependences of probabilistic hydrologic forecasts (Hemri et al., 2015). References Gneiting, T., A. E. Raftery, A. H. Westveld, and T. Goldman (2005), Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation, Monthly Weather Review, 133(5), 1098-1118, DOI: 10.1175/MWR2904.1. Hemri, S., D. Lisniak, and B. Klein, Multivariate postprocessing techniques for probabilistic hydrological forecasting, Water Resources Research, 51(9), 7436-7451, DOI: 10.1002/2014WR016473. Pinson, P., and R. Girard (2012), Evaluating the quality of scenarios of short-term wind power generation, Applied Energy, 96, 12-20, DOI: 10.1016/j.apenergy.2011.11.004. Schefzik, R., T. L. Thorarinsdottir, and T. Gneiting (2013), Uncertainty quantification in complex simulation models using ensemble copula coupling, Statistical Science, 28, 616-640, DOI: 10.1214/13-STS443.
Statistical issues in quality control of proteomic analyses: good experimental design and planning.
Cairns, David A
2011-03-01
Quality control is becoming increasingly important in proteomic investigations as experiments become more multivariate and quantitative. Quality control applies to all stages of an investigation and statistics can play a key role. In this review, the role of statistical ideas in the design and planning of an investigation is described. This involves the design of unbiased experiments using key concepts from statistical experimental design, the understanding of the biological and analytical variation in a system using variance components analysis and the determination of a required sample size to perform a statistically powerful investigation. These concepts are described through simple examples and an example data set from a 2-D DIGE pilot experiment. Each of these concepts can prove useful in producing better and more reproducible data. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ladd-Lively, Jennifer L
2014-01-01
The objective of this work was to determine the feasibility of using on-line multivariate statistical process control (MSPC) for safeguards applications in natural uranium conversion plants. Multivariate statistical process control is commonly used throughout industry for the detection of faults. For safeguards applications in uranium conversion plants, faults could include the diversion of intermediate products such as uranium dioxide, uranium tetrafluoride, and uranium hexafluoride. This study was limited to a 100 metric ton of uranium (MTU) per year natural uranium conversion plant (NUCP) using the wet solvent extraction method for the purification of uranium ore concentrate. A key component inmore » the multivariate statistical methodology is the Principal Component Analysis (PCA) approach for the analysis of data, development of the base case model, and evaluation of future operations. The PCA approach was implemented through the use of singular value decomposition of the data matrix where the data matrix represents normal operation of the plant. Component mole balances were used to model each of the process units in the NUCP. However, this approach could be applied to any data set. The monitoring framework developed in this research could be used to determine whether or not a diversion of material has occurred at an NUCP as part of an International Atomic Energy Agency (IAEA) safeguards system. This approach can be used to identify the key monitoring locations, as well as locations where monitoring is unimportant. Detection limits at the key monitoring locations can also be established using this technique. Several faulty scenarios were developed to test the monitoring framework after the base case or normal operating conditions of the PCA model were established. In all of the scenarios, the monitoring framework was able to detect the fault. Overall this study was successful at meeting the stated objective.« less
Papageorgiou, Spyridon N; Kloukos, Dimitrios; Petridis, Haralampos; Pandis, Nikolaos
2015-10-01
To assess the hypothesis that there is excessive reporting of statistically significant studies published in prosthodontic and implantology journals, which could indicate selective publication. The last 30 issues of 9 journals in prosthodontics and implant dentistry were hand-searched for articles with statistical analyses. The percentages of significant and non-significant results were tabulated by parameter of interest. Univariable/multivariable logistic regression analyses were applied to identify possible predictors of reporting statistically significance findings. The results of this study were compared with similar studies in dentistry with random-effects meta-analyses. From the 2323 included studies 71% of them reported statistically significant results, with the significant results ranging from 47% to 86%. Multivariable modeling identified that geographical area and involvement of statistician were predictors of statistically significant results. Compared to interventional studies, the odds that in vitro and observational studies would report statistically significant results was increased by 1.20 times (OR: 2.20, 95% CI: 1.66-2.92) and 0.35 times (OR: 1.35, 95% CI: 1.05-1.73), respectively. The probability of statistically significant results from randomized controlled trials was significantly lower compared to various study designs (difference: 30%, 95% CI: 11-49%). Likewise the probability of statistically significant results in prosthodontics and implant dentistry was lower compared to other dental specialties, but this result did not reach statistical significant (P>0.05). The majority of studies identified in the fields of prosthodontics and implant dentistry presented statistically significant results. The same trend existed in publications of other specialties in dentistry. Copyright © 2015 Elsevier Ltd. All rights reserved.
General Multivariate Linear Modeling of Surface Shapes Using SurfStat
Chung, Moo K.; Worsley, Keith J.; Nacewicz, Brendon, M.; Dalton, Kim M.; Davidson, Richard J.
2010-01-01
Although there are many imaging studies on traditional ROI-based amygdala volumetry, there are very few studies on modeling amygdala shape variations. This paper present a unified computational and statistical framework for modeling amygdala shape variations in a clinical population. The weighted spherical harmonic representation is used as to parameterize, to smooth out, and to normalize amygdala surfaces. The representation is subsequently used as an input for multivariate linear models accounting for nuisance covariates such as age and brain size difference using SurfStat package that completely avoids the complexity of specifying design matrices. The methodology has been applied for quantifying abnormal local amygdala shape variations in 22 high functioning autistic subjects. PMID:20620211
The extension of total gain (TG) statistic in survival models: properties and applications.
Choodari-Oskooei, Babak; Royston, Patrick; Parmar, Mahesh K B
2015-07-01
The results of multivariable regression models are usually summarized in the form of parameter estimates for the covariates, goodness-of-fit statistics, and the relevant p-values. These statistics do not inform us about whether covariate information will lead to any substantial improvement in prediction. Predictive ability measures can be used for this purpose since they provide important information about the practical significance of prognostic factors. R (2)-type indices are the most familiar forms of such measures in survival models, but they all have limitations and none is widely used. In this paper, we extend the total gain (TG) measure, proposed for a logistic regression model, to survival models and explore its properties using simulations and real data. TG is based on the binary regression quantile plot, otherwise known as the predictiveness curve. Standardised TG ranges from 0 (no explanatory power) to 1 ('perfect' explanatory power). The results of our simulations show that unlike many of the other R (2)-type predictive ability measures, TG is independent of random censoring. It increases as the effect of a covariate increases and can be applied to different types of survival models, including models with time-dependent covariate effects. We also apply TG to quantify the predictive ability of multivariable prognostic models developed in several disease areas. Overall, TG performs well in our simulation studies and can be recommended as a measure to quantify the predictive ability in survival models.
Merello, Paloma; García-Diego, Fernando-Juan; Zarzo, Manuel
2014-08-01
Chemometrics has been applied successfully since the 1990s for the multivariate statistical control of industrial processes. A new area of interest for these tools is the microclimatic monitoring of cultural heritage. Sensors record climatic parameters over time and statistical data analysis is performed to obtain valuable information for preventive conservation. A case study of an open-air archaeological site is presented here. A set of 26 temperature and relative humidity data-loggers was installed in four rooms of Ariadne's house (Pompeii). If climatic values are recorded versus time at different positions, the resulting data structure is equivalent to records of physical parameters registered at several points of a continuous chemical process. However, there is an important difference in this case: continuous processes are controlled to reach a steady state, whilst open-air sites undergo tremendous fluctuations. Although data from continuous processes are usually column-centred prior to applying principal components analysis, it turned out that another pre-treatment (row-centred data) was more convenient for the interpretation of components and to identify abnormal patterns. The detection of typical trajectories was more straightforward by dividing the whole monitored period into several sub-periods, because the marked climatic fluctuations throughout the year affect the correlation structures. The proposed statistical methodology is of interest for the microclimatic monitoring of cultural heritage, particularly in the case of open-air or semi-confined archaeological sites. Copyright © 2014 Elsevier B.V. All rights reserved.
Fu, Zhibiao; Baker, Daniel; Cheng, Aili; Leighton, Julie; Appelbaum, Edward; Aon, Juan
2016-05-01
The principle of quality by design (QbD) has been widely applied to biopharmaceutical manufacturing processes. Process characterization is an essential step to implement the QbD concept to establish the design space and to define the proven acceptable ranges (PAR) for critical process parameters (CPPs). In this study, we present characterization of a Saccharomyces cerevisiae fermentation process using risk assessment analysis, statistical design of experiments (DoE), and the multivariate Bayesian predictive approach. The critical quality attributes (CQAs) and CPPs were identified with a risk assessment. The statistical model for each attribute was established using the results from the DoE study with consideration given to interactions between CPPs. Both the conventional overlapping contour plot and the multivariate Bayesian predictive approaches were used to establish the region of process operating conditions where all attributes met their specifications simultaneously. The quantitative Bayesian predictive approach was chosen to define the PARs for the CPPs, which apply to the manufacturing control strategy. Experience from the 10,000 L manufacturing scale process validation, including 64 continued process verification batches, indicates that the CPPs remain under a state of control and within the established PARs. The end product quality attributes were within their drug substance specifications. The probability generated with the Bayesian approach was also used as a tool to assess CPP deviations. This approach can be extended to develop other production process characterization and quantify a reliable operating region. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:799-812, 2016. © 2016 American Institute of Chemical Engineers.
Cavalcante, Y L; Hauser-Davis, R A; Saraiva, A C F; Brandão, I L S; Oliveira, T F; Silveira, A M
2013-01-01
This paper compared and evaluated seasonal variations in physico-chemical parameters and metals at a hydroelectric power station reservoir by applying Multivariate Analyses and Artificial Neural Networks (ANN) statistical techniques. A Factor Analysis was used to reduce the number of variables: the first factor was composed of elements Ca, K, Mg and Na, and the second by Chemical Oxygen Demand. The ANN showed 100% correct classifications in training and validation samples. Physico-chemical analyses showed that water pH values were not statistically different between the dry and rainy seasons, while temperature, conductivity, alkalinity, ammonia and DO were higher in the dry period. TSS, hardness and COD, on the other hand, were higher during the rainy season. The statistical analyses showed that Ca, K, Mg and Na are directly connected to the Chemical Oxygen Demand, which indicates a possibility of their input into the reservoir system by domestic sewage and agricultural run-offs. These statistical applications, thus, are also relevant in cases of environmental management and policy decision-making processes, to identify which factors should be further studied and/or modified to recover degraded or contaminated water bodies. Copyright © 2012 Elsevier B.V. All rights reserved.
Hamchevici, Carmen; Udrea, Ion
2013-11-01
The concept of basin-wide Joint Danube Survey (JDS) was launched by the International Commission for the Protection of the Danube River (ICPDR) as a tool for investigative monitoring under the Water Framework Directive (WFD), with a frequency of 6 years. The first JDS was carried out in 2001 and its success in providing key information for characterisation of the Danube River Basin District as required by WFD lead to the organisation of the second JDS in 2007, which was the world's biggest river research expedition in that year. The present paper presents an approach for improving the survey strategy for the next planned survey JDS3 (2013) by means of several multivariate statistical techniques. In order to design the optimum structure in terms of parameters and sampling sites, principal component analysis (PCA), factor analysis (FA) and cluster analysis were applied on JDS2 data for 13 selected physico-chemical and one biological element measured in 78 sampling sites located on the main course of the Danube. Results from PCA/FA showed that most of the dataset variance (above 75%) was explained by five varifactors loaded with 8 out of 14 variables: physical (transparency and total suspended solids), relevant nutrients (N-nitrates and P-orthophosphates), feedback effects of primary production (pH, alkalinity and dissolved oxygen) and algal biomass. Taking into account the representation of the factor scores given by FA versus sampling sites and the major groups generated by the clustering procedure, the spatial network of the next survey could be carefully tailored, leading to a decreasing of sampling sites by more than 30%. The approach of target oriented sampling strategy based on the selected multivariate statistics can provide a strong reduction in dimensionality of the original data and corresponding costs as well, without any loss of information.
2012-01-01
Background The metals bioavailability in soils is commonly assessed by chemical extractions; however a generally accepted method is not yet established. In this study, the effectiveness of Diffusive Gradients in Thin-films (DGT) technique and single extractions in the assessment of metals bioaccumulation in vegetables, and the influence of soil parameters on phytoavailability were evaluated using multivariate statistics. Soil and plants grown in vegetable gardens from mining-affected rural areas, NW Romania, were collected and analysed. Results Pseudo-total metal content of Cu, Zn and Cd in soil ranged between 17.3-146 mg kg-1, 141–833 mg kg-1 and 0.15-2.05 mg kg-1, respectively, showing enriched contents of these elements. High degrees of metals extractability in 1M HCl and even in 1M NH4Cl were observed. Despite the relatively high total metal concentrations in soil, those found in vegetables were comparable to values typically reported for agricultural crops, probably due to the low concentrations of metals in soil solution (Csoln) and low effective concentrations (CE), assessed by DGT technique. Among the analysed vegetables, the highest metal concentrations were found in carrots roots. By applying multivariate statistics, it was found that CE, Csoln and extraction in 1M NH4Cl, were better predictors for metals bioavailability than the acid extractions applied in this study. Copper transfer to vegetables was strongly influenced by soil organic carbon (OC) and cation exchange capacity (CEC), while pH had a higher influence on Cd transfer from soil to plants. Conclusions The results showed that DGT can be used for general evaluation of the risks associated to soil contamination with Cu, Zn and Cd in field conditions. Although quantitative information on metals transfer from soil to vegetables was not observed. PMID:23079133
Han, Sheng-Nan
2014-07-01
Chemometrics is a new branch of chemistry which is widely applied to various fields of analytical chemistry. Chemometrics can use theories and methods of mathematics, statistics, computer science and other related disciplines to optimize the chemical measurement process and maximize access to acquire chemical information and other information on material systems by analyzing chemical measurement data. In recent years, traditional Chinese medicine has attracted widespread attention. In the research of traditional Chinese medicine, it has been a key problem that how to interpret the relationship between various chemical components and its efficacy, which seriously restricts the modernization of Chinese medicine. As chemometrics brings the multivariate analysis methods into the chemical research, it has been applied as an effective research tool in the composition-activity relationship research of Chinese medicine. This article reviews the applications of chemometrics methods in the composition-activity relationship research in recent years. The applications of multivariate statistical analysis methods (such as regression analysis, correlation analysis, principal component analysis, etc. ) and artificial neural network (such as back propagation artificial neural network, radical basis function neural network, support vector machine, etc. ) are summarized, including the brief fundamental principles, the research contents and the advantages and disadvantages. Finally, the existing main problems and prospects of its future researches are proposed.
Sindik, Joško; Miljanović, Maja
2017-03-01
The article deals with the issue of research methodology, illustrating the use of known research methods for new purposes. Questionnaires that originally do not have metric characteristics can be called »handy questionnaires«. In this article, the author is trying to consider the possibilities of their improved scientific usability, which can be primarily ensured by improving their metric characteristics, consequently using multivariate instead of univariate statistical methods. In order to establish the base for the application of multivariate statistical procedures, the main idea is to develop strategies to design measurement instruments from parts of the handy questionnaires. This can be accomplished in two ways: before deciding upon the methods for data collection (redesigning the handy questionnaires) and before the collection of the data (a priori) or after the data has been collected, without modifying the questionnaire (a posteriori). The basic principles of applying these two strategies of the metrical adaptation of handy questionnaires are described.
Effect of environment and genotype on commercial maize hybrids using LC/MS-based metabolomics.
Baniasadi, Hamid; Vlahakis, Chris; Hazebroek, Jan; Zhong, Cathy; Asiago, Vincent
2014-02-12
We recently applied gas chromatography coupled to time-of-flight mass spectrometry (GC/TOF-MS) and multivariate statistical analysis to measure biological variation of many metabolites due to environment and genotype in forage and grain samples collected from 50 genetically diverse nongenetically modified (non-GM) DuPont Pioneer commercial maize hybrids grown at six North American locations. In the present study, the metabolome coverage was extended using a core subset of these grain and forage samples employing ultra high pressure liquid chromatography (uHPLC) mass spectrometry (LC/MS). A total of 286 and 857 metabolites were detected in grain and forage samples, respectively, using LC/MS. Multivariate statistical analysis was utilized to compare and correlate the metabolite profiles. Environment had a greater effect on the metabolome than genetic background. The results of this study support and extend previously published insights into the environmental and genetic associated perturbations to the metabolome that are not associated with transgenic modification.
A Primer on Multivariate Analysis of Variance (MANOVA) for Behavioral Scientists
ERIC Educational Resources Information Center
Warne, Russell T.
2014-01-01
Reviews of statistical procedures (e.g., Bangert & Baumberger, 2005; Kieffer, Reese, & Thompson, 2001; Warne, Lazo, Ramos, & Ritter, 2012) show that one of the most common multivariate statistical methods in psychological research is multivariate analysis of variance (MANOVA). However, MANOVA and its associated procedures are often not…
NASA Technical Reports Server (NTRS)
Wolf, S. F.; Lipschutz, M. E.
1993-01-01
Multivariate statistical analysis techniques (linear discriminant analysis and logistic regression) can provide powerful discrimination tools which are generally unfamiliar to the planetary science community. Fall parameters were used to identify a group of 17 H chondrites (Cluster 1) that were part of a coorbital stream which intersected Earth's orbit in May, from 1855 - 1895, and can be distinguished from all other H chondrite falls. Using multivariate statistical techniques, it was demonstrated that a totally different criterion, labile trace element contents - hence thermal histories - or 13 Cluster 1 meteorites are distinguishable from those of 45 non-Cluster 1 H chondrites. Here, we focus upon the principles of multivariate statistical techniques and illustrate their application using non-meteoritic and meteoritic examples.
NASA Technical Reports Server (NTRS)
Tripp, John S.; Tcheng, Ping
1999-01-01
Statistical tools, previously developed for nonlinear least-squares estimation of multivariate sensor calibration parameters and the associated calibration uncertainty analysis, have been applied to single- and multiple-axis inertial model attitude sensors used in wind tunnel testing to measure angle of attack and roll angle. The analysis provides confidence and prediction intervals of calibrated sensor measurement uncertainty as functions of applied input pitch and roll angles. A comparative performance study of various experimental designs for inertial sensor calibration is presented along with corroborating experimental data. The importance of replicated calibrations over extended time periods has been emphasized; replication provides independent estimates of calibration precision and bias uncertainties, statistical tests for calibration or modeling bias uncertainty, and statistical tests for sensor parameter drift over time. A set of recommendations for a new standardized model attitude sensor calibration method and usage procedures is included. The statistical information provided by these procedures is necessary for the uncertainty analysis of aerospace test results now required by users of industrial wind tunnel test facilities.
Santos, L N S; Cabral, P D S; Neves, G A R; Alves, F R; Teixeira, M B; Cunha, F N; Silva, N F
2017-03-16
The availability of common bean cultivars tolerant to Meloidogyne javanica is limited in Brazil. Thus, the present study aimed to evaluate the reactions of 33 common bean genotypes (23 landrace, 8 commercial, 1 susceptible standard and 1 resistant standard) to M. javanica, employing multivariate statistics to discriminate the reaction of the genotypes. The experiment was conducted in a greenhouse using a completely randomized design with seven replicates. The seeds were sown in 1-L pots containing autoclaved soil and sand in a 1:1 ratio (v:v). On day 19, after emergence of the seedlings, the plants were treated with inoculum containing 4000 eggs + second-stage juveniles (J2). At 60 days after inoculation, the seedlings were evaluated based on biometric and parasitism-related traits, such as number of galls, final nematode population per root system, reproduction factor, and percent reduction in the reproduction factor of the nematode (%RRF). The data were subjected to analysis of variance using the F-test. The Mahalanobis generalized distance was used to obtain the dissimilarity matrix, and the average linkage between groups was used for clustering. The use of multivariate statistics allowed groups to be separated according to the resistance levels of genotypes, as observed in the %RRF. The landrace genotypes FORT-09, FORT-17, FORT-31, FORT-32, FORT-34 and FORT-36 presented resistance to M. javanica; thus, these genotypes can be considered potential sources of resistance.
Basic principles of Hasse diagram technique in chemistry.
Brüggemann, Rainer; Voigt, Kristina
2008-11-01
Principles of partial order applied to ranking are explained. The Hasse diagram technique (HDT) is the application of partial order theory based on a data matrix. In this paper, HDT is introduced in a stepwise procedure, and some elementary theorems are exemplified. The focus is to show how the multivariate character of a data matrix is realized by HDT and in which cases one should apply other mathematical or statistical methods. Many simple examples illustrate the basic theoretical ideas. Finally, it is shown that HDT is a useful alternative for the evaluation of antifouling agents, which was originally performed by amoeba diagrams.
Gauging Skills of Hospital Security Personnel: a Statistically-driven, Questionnaire-based Approach.
Rinkoo, Arvind Vashishta; Mishra, Shubhra; Rahesuddin; Nabi, Tauqeer; Chandra, Vidha; Chandra, Hem
2013-01-01
This study aims to gauge the technical and soft skills of the hospital security personnel so as to enable prioritization of their training needs. A cross sectional questionnaire based study was conducted in December 2011. Two separate predesigned and pretested questionnaires were used for gauging soft skills and technical skills of the security personnel. Extensive statistical analysis, including Multivariate Analysis (Pillai-Bartlett trace along with Multi-factorial ANOVA) and Post-hoc Tests (Bonferroni Test) was applied. The 143 participants performed better on the soft skills front with an average score of 6.43 and standard deviation of 1.40. The average technical skills score was 5.09 with a standard deviation of 1.44. The study avowed a need for formal hands on training with greater emphasis on technical skills. Multivariate analysis of the available data further helped in identifying 20 security personnel who should be prioritized for soft skills training and a group of 36 security personnel who should receive maximum attention during technical skills training. This statistically driven approach can be used as a prototype by healthcare delivery institutions worldwide, after situation specific customizations, to identify the training needs of any category of healthcare staff.
Gauging Skills of Hospital Security Personnel: a Statistically-driven, Questionnaire-based Approach
Rinkoo, Arvind Vashishta; Mishra, Shubhra; Rahesuddin; Nabi, Tauqeer; Chandra, Vidha; Chandra, Hem
2013-01-01
Objectives This study aims to gauge the technical and soft skills of the hospital security personnel so as to enable prioritization of their training needs. Methodology A cross sectional questionnaire based study was conducted in December 2011. Two separate predesigned and pretested questionnaires were used for gauging soft skills and technical skills of the security personnel. Extensive statistical analysis, including Multivariate Analysis (Pillai-Bartlett trace along with Multi-factorial ANOVA) and Post-hoc Tests (Bonferroni Test) was applied. Results The 143 participants performed better on the soft skills front with an average score of 6.43 and standard deviation of 1.40. The average technical skills score was 5.09 with a standard deviation of 1.44. The study avowed a need for formal hands on training with greater emphasis on technical skills. Multivariate analysis of the available data further helped in identifying 20 security personnel who should be prioritized for soft skills training and a group of 36 security personnel who should receive maximum attention during technical skills training. Conclusion This statistically driven approach can be used as a prototype by healthcare delivery institutions worldwide, after situation specific customizations, to identify the training needs of any category of healthcare staff. PMID:23559904
NASA Technical Reports Server (NTRS)
Crutcher, H. L.; Falls, L. W.
1976-01-01
Sets of experimentally determined or routinely observed data provide information about the past, present and, hopefully, future sets of similarly produced data. An infinite set of statistical models exists which may be used to describe the data sets. The normal distribution is one model. If it serves at all, it serves well. If a data set, or a transformation of the set, representative of a larger population can be described by the normal distribution, then valid statistical inferences can be drawn. There are several tests which may be applied to a data set to determine whether the univariate normal model adequately describes the set. The chi-square test based on Pearson's work in the late nineteenth and early twentieth centuries is often used. Like all tests, it has some weaknesses which are discussed in elementary texts. Extension of the chi-square test to the multivariate normal model is provided. Tables and graphs permit easier application of the test in the higher dimensions. Several examples, using recorded data, illustrate the procedures. Tests of maximum absolute differences, mean sum of squares of residuals, runs and changes of sign are included in these tests. Dimensions one through five with selected sample sizes 11 to 101 are used to illustrate the statistical tests developed.
Silva, A F; Sarraguça, M C; Fonteyne, M; Vercruysse, J; De Leersnyder, F; Vanhoorne, V; Bostijn, N; Verstraeten, M; Vervaet, C; Remon, J P; De Beer, T; Lopes, J A
2017-08-07
A multivariate statistical process control (MSPC) strategy was developed for the monitoring of the ConsiGma™-25 continuous tablet manufacturing line. Thirty-five logged variables encompassing three major units, being a twin screw high shear granulator, a fluid bed dryer and a product control unit, were used to monitor the process. The MSPC strategy was based on principal component analysis of data acquired under normal operating conditions using a series of four process runs. Runs with imposed disturbances in the dryer air flow and temperature, in the granulator barrel temperature, speed and liquid mass flow and in the powder dosing unit mass flow were utilized to evaluate the model's monitoring performance. The impact of the imposed deviations to the process continuity was also evaluated using Hotelling's T 2 and Q residuals statistics control charts. The influence of the individual process variables was assessed by analyzing contribution plots at specific time points. Results show that the imposed disturbances were all detected in both control charts. Overall, the MSPC strategy was successfully developed and applied. Additionally, deviations not associated with the imposed changes were detected, mainly in the granulator barrel temperature control. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Roy, P. K.; Pal, S.; Banerjee, G.; Biswas Roy, M.; Ray, D.; Majumder, A.
2014-12-01
River is considered as one of the main sources of freshwater all over the world. Hence analysis and maintenance of this water resource is globally considered a matter of major concern. This paper deals with the assessment of surface water quality of the Ichamati river using multivariate statistical techniques. Eight distinct surface water quality observation stations were located and samples were collected. For the samples collected statistical techniques were applied to the physico-chemical parameters and depth of siltation. In this paper cluster analysis is done to determine the relations between surface water quality and siltation depth of river Ichamati. Multiple regressions and mathematical equation modeling have been done to characterize surface water quality of Ichamati river on the basis of physico-chemical parameters. It was found that surface water quality of the downstream river was different from the water quality of the upstream. The analysis of the water quality parameters of the Ichamati river clearly indicate high pollution load on the river water which can be accounted to agricultural discharge, tidal effect and soil erosion. The results further reveal that with the increase in depth of siltation, water quality degraded.
NASA Astrophysics Data System (ADS)
Kerr, Laura T.; Adams, Aine; O'Dea, Shirley; Domijan, Katarina; Cullen, Ivor; Hennelly, Bryan M.
2014-05-01
Raman microspectroscopy can be applied to the urinary bladder for highly accurate classification and diagnosis of bladder cancer. This technique can be applied in vitro to bladder epithelial cells obtained from urine cytology or in vivo as an optical biopsy" to provide results in real-time with higher sensitivity and specificity than current clinical methods. However, there exists a high degree of variability across experimental parameters which need to be standardised before this technique can be utilized in an everyday clinical environment. In this study, we investigate different laser wavelengths (473 nm and 532 nm), sample substrates (glass, fused silica and calcium fluoride) and multivariate statistical methods in order to gain insight into how these various experimental parameters impact on the sensitivity and specificity of Raman cytology.
NASA Astrophysics Data System (ADS)
Jogesh Babu, G.
2017-01-01
A year-long research (Aug 2016- May 2017) program on `Statistical, Mathematical and Computational Methods for Astronomy (ASTRO)’ is well under way at Statistical and Applied Mathematical Sciences Institute (SAMSI), a National Science Foundation research institute in Research Triangle Park, NC. This program has brought together astronomers, computer scientists, applied mathematicians and statisticians. The main aims of this program are: to foster cross-disciplinary activities; to accelerate the adoption of modern statistical and mathematical tools into modern astronomy; and to develop new tools needed for important astronomical research problems. The program provides multiple avenues for cross-disciplinary interactions, including several workshops, long-term visitors, and regular teleconferences, so participants can continue collaborations, even if they can only spend limited time in residence at SAMSI. The main program is organized around five working groups:i) Uncertainty Quantification and Astrophysical Emulationii) Synoptic Time Domain Surveysiii) Multivariate and Irregularly Sampled Time Seriesiv) Astrophysical Populationsv) Statistics, computation, and modeling in cosmology.A brief description of each of the work under way by these groups will be given. Overlaps among various working groups will also be highlighted. How the wider astronomy community can both participate and benefit from the activities, will be briefly mentioned.
Multivariate analysis of longitudinal rates of change.
Bryan, Matthew; Heagerty, Patrick J
2016-12-10
Longitudinal data allow direct comparison of the change in patient outcomes associated with treatment or exposure. Frequently, several longitudinal measures are collected that either reflect a common underlying health status, or characterize processes that are influenced in a similar way by covariates such as exposure or demographic characteristics. Statistical methods that can combine multivariate response variables into common measures of covariate effects have been proposed in the literature. Current methods for characterizing the relationship between covariates and the rate of change in multivariate outcomes are limited to select models. For example, 'accelerated time' methods have been developed which assume that covariates rescale time in longitudinal models for disease progression. In this manuscript, we detail an alternative multivariate model formulation that directly structures longitudinal rates of change and that permits a common covariate effect across multiple outcomes. We detail maximum likelihood estimation for a multivariate longitudinal mixed model. We show via asymptotic calculations the potential gain in power that may be achieved with a common analysis of multiple outcomes. We apply the proposed methods to the analysis of a trivariate outcome for infant growth and compare rates of change for HIV infected and uninfected infants. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Brandmeier, M.; Wörner, G.
2016-10-01
Multivariate statistical and geospatial analyses based on a compilation of 890 geochemical and 1200 geochronological data for 194 mapped ignimbrites from the Central Andes document the compositional and temporal patterns of large-volume ignimbrites (so-called "ignimbrite flare-ups") during Neogene times. Rapid advances in computational science during the past decade led to a growing pool of algorithms for multivariate statistics for large datasets with many predictor variables. This study applies cluster analysis (CA) and linear discriminant analysis (LDA) on log-ratio transformed data with the aim of (1) testing a tool for ignimbrite correlation and (2) distinguishing compositional groups that reflect different processes and sources of ignimbrite magmatism during the geodynamic evolution of the Central Andes. CA on major and trace elements allows grouping of ignimbrites according to their geochemical characteristics into rhyolitic and dacitic "end-members" and to differentiate characteristic trace element signatures with respect to Eu anomaly, depletions in middle and heavy rare earth elements (REE) and variable enrichments in light REE. To highlight these distinct compositional signatures, we applied LDA to selected ignimbrites for which comprehensive datasets were available. In comparison to traditional geochemical parameters we found that the advantage of multivariate statistics is their capability of dealing with large datasets and many variables (elements) and to take advantage of this n-dimensional space to detect subtle compositional differences contained in the data. The most important predictors for discriminating ignimbrites are La, Yb, Eu, Al2O3, K2O, P2O5, MgO, FeOt, and TiO2. However, other REE such as Gd, Pr, Tm, Sm, Dy and Er also contribute to the discrimination functions. Significant compositional differences were found between (1) the older (> 13 Ma) large-volume plateau-forming ignimbrites in northernmost Chile and southern Peru and (2) the younger (< 10 Ma) Altiplano-Puna-Volcanic-Complex (APVC) ignimbrites that are of similar volumes. Older ignimbrites are less depleted in HREE and less radiogenic in Sr isotopes, indicating smaller crustal contributions during evolution in a thinner and thermally less evolved crust. These compositional variations indicate a relation to crustal thickening with a "transition" from plagioclase to amphibole and garnet residual mineralogy between 13 and 9 Ma. Compositional and volumetric variations correlate to the N-S passage of the Juan-Fernandéz-Ridge, crustal shortening and thickening, and increased average crustal temperatures during the past 26 Ma. Table DR2 Mapped ignimbrite sheets.
Gordon, Derek; Londono, Douglas; Patel, Payal; Kim, Wonkuk; Finch, Stephen J; Heiman, Gary A
2016-01-01
Our motivation here is to calculate the power of 3 statistical tests used when there are genetic traits that operate under a pleiotropic mode of inheritance and when qualitative phenotypes are defined by use of thresholds for the multiple quantitative phenotypes. Specifically, we formulate a multivariate function that provides the probability that an individual has a vector of specific quantitative trait values conditional on having a risk locus genotype, and we apply thresholds to define qualitative phenotypes (affected, unaffected) and compute penetrances and conditional genotype frequencies based on the multivariate function. We extend the analytic power and minimum-sample-size-necessary (MSSN) formulas for 2 categorical data-based tests (genotype, linear trend test [LTT]) of genetic association to the pleiotropic model. We further compare the MSSN of the genotype test and the LTT with that of a multivariate ANOVA (Pillai). We approximate the MSSN for statistics by linear models using a factorial design and ANOVA. With ANOVA decomposition, we determine which factors most significantly change the power/MSSN for all statistics. Finally, we determine which test statistics have the smallest MSSN. In this work, MSSN calculations are for 2 traits (bivariate distributions) only (for illustrative purposes). We note that the calculations may be extended to address any number of traits. Our key findings are that the genotype test usually has lower MSSN requirements than the LTT. More inclusive thresholds (top/bottom 25% vs. top/bottom 10%) have higher sample size requirements. The Pillai test has a much larger MSSN than both the genotype test and the LTT, as a result of sample selection. With these formulas, researchers can specify how many subjects they must collect to localize genes for pleiotropic phenotypes. © 2017 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Bressan, Lucas P.; do Nascimento, Paulo Cícero; Schmidt, Marcella E. P.; Faccin, Henrique; de Machado, Leandro Carvalho; Bohrer, Denise
2017-02-01
A novel method was developed to determine low molecular weight polycyclic aromatic hydrocarbons in aqueous leachates from soils and sediments using a salting-out assisted liquid-liquid extraction, synchronous fluorescence spectrometry and a multivariate calibration technique. Several experimental parameters were controlled and the optimum conditions were: sodium carbonate as the salting-out agent at concentration of 2 mol L- 1, 3 mL of acetonitrile as extraction solvent, 6 mL of aqueous leachate, vortexing for 5 min and centrifuging at 4000 rpm for 5 min. The partial least squares calibration was optimized to the lowest values of root mean squared error and five latent variables were chosen for each of the targeted compounds. The regression coefficients for the true versus predicted concentrations were higher than 0.99. Figures of merit for the multivariate method were calculated, namely sensitivity, multivariate detection limit and multivariate quantification limit. The selectivity was also evaluated and other polycyclic aromatic hydrocarbons did not interfere in the analysis. Likewise, high performance liquid chromatography was used as a comparative methodology, and the regression analysis between the methods showed no statistical difference (t-test). The proposed methodology was applied to soils and sediments of a Brazilian river and the recoveries ranged from 74.3% to 105.8%. Overall, the proposed methodology was suitable for the targeted compounds, showing that the extraction method can be applied to spectrofluorometric analysis and that the multivariate calibration is also suitable for these compounds in leachates from real samples.
FGWAS: Functional genome wide association analysis.
Huang, Chao; Thompson, Paul; Wang, Yalin; Yu, Yang; Zhang, Jingwen; Kong, Dehan; Colen, Rivka R; Knickmeyer, Rebecca C; Zhu, Hongtu
2017-10-01
Functional phenotypes (e.g., subcortical surface representation), which commonly arise in imaging genetic studies, have been used to detect putative genes for complexly inherited neuropsychiatric and neurodegenerative disorders. However, existing statistical methods largely ignore the functional features (e.g., functional smoothness and correlation). The aim of this paper is to develop a functional genome-wide association analysis (FGWAS) framework to efficiently carry out whole-genome analyses of functional phenotypes. FGWAS consists of three components: a multivariate varying coefficient model, a global sure independence screening procedure, and a test procedure. Compared with the standard multivariate regression model, the multivariate varying coefficient model explicitly models the functional features of functional phenotypes through the integration of smooth coefficient functions and functional principal component analysis. Statistically, compared with existing methods for genome-wide association studies (GWAS), FGWAS can substantially boost the detection power for discovering important genetic variants influencing brain structure and function. Simulation studies show that FGWAS outperforms existing GWAS methods for searching sparse signals in an extremely large search space, while controlling for the family-wise error rate. We have successfully applied FGWAS to large-scale analysis of data from the Alzheimer's Disease Neuroimaging Initiative for 708 subjects, 30,000 vertices on the left and right hippocampal surfaces, and 501,584 SNPs. Copyright © 2017 Elsevier Inc. All rights reserved.
Problems with Multivariate Normality: Can the Multivariate Bootstrap Help?
ERIC Educational Resources Information Center
Thompson, Bruce
Multivariate normality is required for some statistical tests. This paper explores the implications of violating the assumption of multivariate normality and illustrates a graphical procedure for evaluating multivariate normality. The logic for using the multivariate bootstrap is presented. The multivariate bootstrap can be used when distribution…
Analyzing Faculty Salaries When Statistics Fail.
ERIC Educational Resources Information Center
Simpson, William A.
The role played by nonstatistical procedures, in contrast to multivariant statistical approaches, in analyzing faculty salaries is discussed. Multivariant statistical methods are usually used to establish or defend against prima facia cases of gender and ethnic discrimination with respect to faculty salaries. These techniques are not applicable,…
Liu, Ya-Juan; André, Silvère; Saint Cristau, Lydia; Lagresle, Sylvain; Hannas, Zahia; Calvosa, Éric; Devos, Olivier; Duponchel, Ludovic
2017-02-01
Multivariate statistical process control (MSPC) is increasingly popular as the challenge provided by large multivariate datasets from analytical instruments such as Raman spectroscopy for the monitoring of complex cell cultures in the biopharmaceutical industry. However, Raman spectroscopy for in-line monitoring often produces unsynchronized data sets, resulting in time-varying batches. Moreover, unsynchronized data sets are common for cell culture monitoring because spectroscopic measurements are generally recorded in an alternate way, with more than one optical probe parallelly connecting to the same spectrometer. Synchronized batches are prerequisite for the application of multivariate analysis such as multi-way principal component analysis (MPCA) for the MSPC monitoring. Correlation optimized warping (COW) is a popular method for data alignment with satisfactory performance; however, it has never been applied to synchronize acquisition time of spectroscopic datasets in MSPC application before. In this paper we propose, for the first time, to use the method of COW to synchronize batches with varying durations analyzed with Raman spectroscopy. In a second step, we developed MPCA models at different time intervals based on the normal operation condition (NOC) batches synchronized by COW. New batches are finally projected considering the corresponding MPCA model. We monitored the evolution of the batches using two multivariate control charts based on Hotelling's T 2 and Q. As illustrated with results, the MSPC model was able to identify abnormal operation condition including contaminated batches which is of prime importance in cell culture monitoring We proved that Raman-based MSPC monitoring can be used to diagnose batches deviating from the normal condition, with higher efficacy than traditional diagnosis, which would save time and money in the biopharmaceutical industry. Copyright © 2016 Elsevier B.V. All rights reserved.
Amidžić Klarić, Daniela; Klarić, Ilija; Mornar, Ana; Velić, Darko; Velić, Natalija
2015-08-01
This study brings out the data on the content of 21 mineral and heavy metal in 15 blackberry wines made of conventionally and organically grown blackberries. The objective of this study was to classify the blackberry wine samples based on their mineral composition and the applied cultivation method of the starting raw material by using chemometric analysis. The metal content of Croatian blackberry wine samples was determined by AAS after dry ashing. The comparison between an organic and conventional group of investigated blackberry wines showed statistically significant difference in concentrations of Si and Li, where the organic group contained higher concentrations of these compounds. According to multivariate data analysis, the model based on the original metal content data set finally included seven original variables (K, Fe, Mn, Cu, Ba, Cd and Cr) and gave a satisfactory separation of two applied cultivation methods of the starting raw material.
Multivariate Relationships between Statistics Anxiety and Motivational Beliefs
ERIC Educational Resources Information Center
Baloglu, Mustafa; Abbassi, Amir; Kesici, Sahin
2017-01-01
In general, anxiety has been found to be associated with motivational beliefs and the current study investigated multivariate relationships between statistics anxiety and motivational beliefs among 305 college students (60.0% women). The Statistical Anxiety Rating Scale, the Motivated Strategies for Learning Questionnaire, and a set of demographic…
MIDAS: Regionally linear multivariate discriminative statistical mapping.
Varol, Erdem; Sotiras, Aristeidis; Davatzikos, Christos
2018-07-01
Statistical parametric maps formed via voxel-wise mass-univariate tests, such as the general linear model, are commonly used to test hypotheses about regionally specific effects in neuroimaging cross-sectional studies where each subject is represented by a single image. Despite being informative, these techniques remain limited as they ignore multivariate relationships in the data. Most importantly, the commonly employed local Gaussian smoothing, which is important for accounting for registration errors and making the data follow Gaussian distributions, is usually chosen in an ad hoc fashion. Thus, it is often suboptimal for the task of detecting group differences and correlations with non-imaging variables. Information mapping techniques, such as searchlight, which use pattern classifiers to exploit multivariate information and obtain more powerful statistical maps, have become increasingly popular in recent years. However, existing methods may lead to important interpretation errors in practice (i.e., misidentifying a cluster as informative, or failing to detect truly informative voxels), while often being computationally expensive. To address these issues, we introduce a novel efficient multivariate statistical framework for cross-sectional studies, termed MIDAS, seeking highly sensitive and specific voxel-wise brain maps, while leveraging the power of regional discriminant analysis. In MIDAS, locally linear discriminative learning is applied to estimate the pattern that best discriminates between two groups, or predicts a variable of interest. This pattern is equivalent to local filtering by an optimal kernel whose coefficients are the weights of the linear discriminant. By composing information from all neighborhoods that contain a given voxel, MIDAS produces a statistic that collectively reflects the contribution of the voxel to the regional classifiers as well as the discriminative power of the classifiers. Critically, MIDAS efficiently assesses the statistical significance of the derived statistic by analytically approximating its null distribution without the need for computationally expensive permutation tests. The proposed framework was extensively validated using simulated atrophy in structural magnetic resonance imaging (MRI) and further tested using data from a task-based functional MRI study as well as a structural MRI study of cognitive performance. The performance of the proposed framework was evaluated against standard voxel-wise general linear models and other information mapping methods. The experimental results showed that MIDAS achieves relatively higher sensitivity and specificity in detecting group differences. Together, our results demonstrate the potential of the proposed approach to efficiently map effects of interest in both structural and functional data. Copyright © 2018. Published by Elsevier Inc.
Biostatistics Series Module 10: Brief Overview of Multivariate Methods.
Hazra, Avijit; Gogtay, Nithya
2017-01-01
Multivariate analysis refers to statistical techniques that simultaneously look at three or more variables in relation to the subjects under investigation with the aim of identifying or clarifying the relationships between them. These techniques have been broadly classified as dependence techniques, which explore the relationship between one or more dependent variables and their independent predictors, and interdependence techniques, that make no such distinction but treat all variables equally in a search for underlying relationships. Multiple linear regression models a situation where a single numerical dependent variable is to be predicted from multiple numerical independent variables. Logistic regression is used when the outcome variable is dichotomous in nature. The log-linear technique models count type of data and can be used to analyze cross-tabulations where more than two variables are included. Analysis of covariance is an extension of analysis of variance (ANOVA), in which an additional independent variable of interest, the covariate, is brought into the analysis. It tries to examine whether a difference persists after "controlling" for the effect of the covariate that can impact the numerical dependent variable of interest. Multivariate analysis of variance (MANOVA) is a multivariate extension of ANOVA used when multiple numerical dependent variables have to be incorporated in the analysis. Interdependence techniques are more commonly applied to psychometrics, social sciences and market research. Exploratory factor analysis and principal component analysis are related techniques that seek to extract from a larger number of metric variables, a smaller number of composite factors or components, which are linearly related to the original variables. Cluster analysis aims to identify, in a large number of cases, relatively homogeneous groups called clusters, without prior information about the groups. The calculation intensive nature of multivariate analysis has so far precluded most researchers from using these techniques routinely. The situation is now changing with wider availability, and increasing sophistication of statistical software and researchers should no longer shy away from exploring the applications of multivariate methods to real-life data sets.
Time management in acute vertebrobasilar occlusion.
Kamper, Lars; Rybacki, Konrad; Mansour, Michael; Winkler, Sven B; Kempkes, Udo; Haage, Patrick
2009-03-01
Acute vertebrobasilar occlusion (VBO) is associated with a high risk of stroke and death. Although local thrombolysis may achieve recanalization and improve outcome, mortality is still between 35% and 75%. However, without recanalization the chance of a good outcome is extremely poor, with mortality rates of 80-90%. Early treatment is a fundamental factor, but detailed studies of the exact time management of the diagnostic and interventional workflow are still lacking. Data on 18 patients were retrospectively evaluated. Time periods between symptom onset, admission to hospital, time of diagnosis, and beginning of intervention were correlated with postinterventional neurological status. The Glasgow Coma Scale and National Institute of Health Stroke Scale (NIHSS) were used to examine patients before and after local thrombolysis. Additionally, multivariate statistics were applied to reveal similarities between patients with neurological improvement. Primary recanalization was achieved in 77% of patients. The overall mortality was 55%. Major complications were intracranial hemorrhage and peripheral embolism. The time period from symptom onset to intervention showed a strong correlation with the postinterventional NIHSS as well as the patient's age, with the best results in a 4-h interval. Multivariate statistics revealed similarities among the patients. Evaluation of time management in acute VBO by multivariate statistics is a helpful tool for definition of similarities in this patient group. Similarly to the door-to-balloon time for acute coronary interventions, the chances for a good outcome depend on a short time interval between symptom onset and intervention. While the only manipulable time period starts with hospital admission, our results emphasize the necessity of efficient intrahospital workflow.
Yoshida, Hiroyuki; Shibata, Hiroko; Izutsu, Ken-Ichi; Goda, Yukihiro
2017-01-01
The current Japanese Ministry of Health Labour and Welfare (MHLW)'s Guideline for Bioequivalence Studies of Generic Products uses averaged dissolution rates for the assessment of dissolution similarity between test and reference formulations. This study clarifies how the application of model-independent multivariate confidence region procedure (Method B), described in the European Medical Agency and U.S. Food and Drug Administration guidelines, affects similarity outcomes obtained empirically from dissolution profiles with large variations in individual dissolution rates. Sixty-one datasets of dissolution profiles for immediate release, oral generic, and corresponding innovator products that showed large variation in individual dissolution rates in generic products were assessed on their similarity by using the f 2 statistics defined in the MHLW guidelines (MHLW f 2 method) and two different Method B procedures, including a bootstrap method applied with f 2 statistics (BS method) and a multivariate analysis method using the Mahalanobis distance (MV method). The MHLW f 2 and BS methods provided similar dissolution similarities between reference and generic products. Although a small difference in the similarity assessment may be due to the decrease in the lower confidence interval for expected f 2 values derived from the large variation in individual dissolution rates, the MV method provided results different from those obtained through MHLW f 2 and BS methods. Analysis of actual dissolution data for products with large individual variations would provide valuable information towards an enhanced understanding of these methods and their possible incorporation in the MHLW guidelines.
Cichonska, Anna; Rousu, Juho; Marttinen, Pekka; Kangas, Antti J; Soininen, Pasi; Lehtimäki, Terho; Raitakari, Olli T; Järvelin, Marjo-Riitta; Salomaa, Veikko; Ala-Korpela, Mika; Ripatti, Samuli; Pirinen, Matti
2016-07-01
A dominant approach to genetic association studies is to perform univariate tests between genotype-phenotype pairs. However, analyzing related traits together increases statistical power, and certain complex associations become detectable only when several variants are tested jointly. Currently, modest sample sizes of individual cohorts, and restricted availability of individual-level genotype-phenotype data across the cohorts limit conducting multivariate tests. We introduce metaCCA, a computational framework for summary statistics-based analysis of a single or multiple studies that allows multivariate representation of both genotype and phenotype. It extends the statistical technique of canonical correlation analysis to the setting where original individual-level records are not available, and employs a covariance shrinkage algorithm to achieve robustness.Multivariate meta-analysis of two Finnish studies of nuclear magnetic resonance metabolomics by metaCCA, using standard univariate output from the program SNPTEST, shows an excellent agreement with the pooled individual-level analysis of original data. Motivated by strong multivariate signals in the lipid genes tested, we envision that multivariate association testing using metaCCA has a great potential to provide novel insights from already published summary statistics from high-throughput phenotyping technologies. Code is available at https://github.com/aalto-ics-kepaco anna.cichonska@helsinki.fi or matti.pirinen@helsinki.fi Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Cichonska, Anna; Rousu, Juho; Marttinen, Pekka; Kangas, Antti J.; Soininen, Pasi; Lehtimäki, Terho; Raitakari, Olli T.; Järvelin, Marjo-Riitta; Salomaa, Veikko; Ala-Korpela, Mika; Ripatti, Samuli; Pirinen, Matti
2016-01-01
Motivation: A dominant approach to genetic association studies is to perform univariate tests between genotype-phenotype pairs. However, analyzing related traits together increases statistical power, and certain complex associations become detectable only when several variants are tested jointly. Currently, modest sample sizes of individual cohorts, and restricted availability of individual-level genotype-phenotype data across the cohorts limit conducting multivariate tests. Results: We introduce metaCCA, a computational framework for summary statistics-based analysis of a single or multiple studies that allows multivariate representation of both genotype and phenotype. It extends the statistical technique of canonical correlation analysis to the setting where original individual-level records are not available, and employs a covariance shrinkage algorithm to achieve robustness. Multivariate meta-analysis of two Finnish studies of nuclear magnetic resonance metabolomics by metaCCA, using standard univariate output from the program SNPTEST, shows an excellent agreement with the pooled individual-level analysis of original data. Motivated by strong multivariate signals in the lipid genes tested, we envision that multivariate association testing using metaCCA has a great potential to provide novel insights from already published summary statistics from high-throughput phenotyping technologies. Availability and implementation: Code is available at https://github.com/aalto-ics-kepaco Contacts: anna.cichonska@helsinki.fi or matti.pirinen@helsinki.fi Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153689
Perturbative Gaussianizing transforms for cosmological fields
NASA Astrophysics Data System (ADS)
Hall, Alex; Mead, Alexander
2018-01-01
Constraints on cosmological parameters from large-scale structure have traditionally been obtained from two-point statistics. However, non-linear structure formation renders these statistics insufficient in capturing the full information content available, necessitating the measurement of higher order moments to recover information which would otherwise be lost. We construct quantities based on non-linear and non-local transformations of weakly non-Gaussian fields that Gaussianize the full multivariate distribution at a given order in perturbation theory. Our approach does not require a model of the fields themselves and takes as input only the first few polyspectra, which could be modelled or measured from simulations or data, making our method particularly suited to observables lacking a robust perturbative description such as the weak-lensing shear. We apply our method to simulated density fields, finding a significantly reduced bispectrum and an enhanced correlation with the initial field. We demonstrate that our method reconstructs a large proportion of the linear baryon acoustic oscillations, improving the information content over the raw field by 35 per cent. We apply the transform to toy 21 cm intensity maps, showing that our method still performs well in the presence of complications such as redshift-space distortions, beam smoothing, pixel noise and foreground subtraction. We discuss how this method might provide a route to constructing a perturbative model of the fully non-Gaussian multivariate likelihood function.
NASA Astrophysics Data System (ADS)
Zhou, Chao; Yin, Kunlong; Cao, Ying; Ahmed, Bayes; Li, Yuanyao; Catani, Filippo; Pourghasemi, Hamid Reza
2018-03-01
Landslide is a common natural hazard and responsible for extensive damage and losses in mountainous areas. In this study, Longju in the Three Gorges Reservoir area in China was taken as a case study for landslide susceptibility assessment in order to develop effective risk prevention and mitigation strategies. To begin, 202 landslides were identified, including 95 colluvial landslides and 107 rockfalls. Twelve landslide causal factor maps were prepared initially, and the relationship between these factors and each landslide type was analyzed using the information value model. Later, the unimportant factors were selected and eliminated using the information gain ratio technique. The landslide locations were randomly divided into two groups: 70% for training and 30% for verifying. Two machine learning models: the support vector machine (SVM) and artificial neural network (ANN), and a multivariate statistical model: the logistic regression (LR), were applied for landslide susceptibility modeling (LSM) for each type. The LSM index maps, obtained from combining the assessment results of the two landslide types, were classified into five levels. The performance of the LSMs was evaluated using the receiver operating characteristics curve and Friedman test. Results show that the elimination of noise-generating factors and the separated modeling of each landslide type have significantly increased the prediction accuracy. The machine learning models outperformed the multivariate statistical model and SVM model was found ideal for the case study area.
Liu, Yingchun; Sun, Guoxiang; Wang, Yan; Yang, Lanping; Yang, Fangliang
2015-06-01
Micellar electrokinetic chromatography fingerprinting combined with quantification was successfully developed and applied to monitor the quality consistency of Weibizhi tablets, which is a classical compound preparation used to treat gastric ulcers. A background electrolyte composed of 57 mmol/L sodium borate, 21 mmol/L sodium dodecylsulfate and 100 mmol/L sodium hydroxide was used to separate compounds. To optimize capillary electrophoresis conditions, multivariate statistical analyses were applied. First, the most important factors influencing sample electrophoretic behavior were identified as background electrolyte concentrations. Then, a Box-Benhnken design response surface strategy using resolution index RF as an integrated response was set up to correlate factors with response. RF reflects the effective signal amount, resolution, and signal homogenization in an electropherogram, thus, it was regarded as an excellent indicator. In fingerprint assessments, simple quantified ratio fingerprint method was established for comprehensive quality discrimination of traditional Chinese medicines/herbal medicines from qualitative and quantitative perspectives, by which the quality of 27 samples from the same manufacturer were well differentiated. In addition, the fingerprint-efficacy relationship between fingerprints and antioxidant activities was established using partial least squares regression, which provided important medicinal efficacy information for quality control. The present study offered an efficient means for monitoring Weibizhi tablet quality consistency. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Instrumental Neutron Activation Analysis and Multivariate Statistics for Pottery Provenance
NASA Astrophysics Data System (ADS)
Glascock, M. D.; Neff, H.; Vaughn, K. J.
2004-06-01
The application of instrumental neutron activation analysis and multivariate statistics to archaeological studies of ceramics and clays is described. A small pottery data set from the Nasca culture in southern Peru is presented for illustration.
Multivariate methods to visualise colour-space and colour discrimination data.
Hastings, Gareth D; Rubin, Alan
2015-01-01
Despite most modern colour spaces treating colour as three-dimensional (3-D), colour data is usually not visualised in 3-D (and two-dimensional (2-D) projection-plane segments and multiple 2-D perspective views are used instead). The objectives of this article are firstly, to introduce a truly 3-D percept of colour space using stereo-pairs, secondly to view colour discrimination data using that platform, and thirdly to apply formal statistics and multivariate methods to analyse the data in 3-D. This is the first demonstration of the software that generated stereo-pairs of RGB colour space, as well as of a new computerised procedure that investigated colour discrimination by measuring colour just noticeable differences (JND). An initial pilot study and thorough investigation of instrument repeatability were performed. Thereafter, to demonstrate the capabilities of the software, five colour-normal and one colour-deficient subject were examined using the JND procedure and multivariate methods of data analysis. Scatter plots of responses were meaningfully examined in 3-D and were useful in evaluating multivariate normality as well as identifying outliers. The extent and direction of the difference between each JND response and the stimulus colour point was calculated and appreciated in 3-D. Ellipsoidal surfaces of constant probability density (distribution ellipsoids) were fitted to response data; the volumes of these ellipsoids appeared useful in differentiating the colour-deficient subject from the colour-normals. Hypothesis tests of variances and covariances showed many statistically significant differences between the results of the colour-deficient subject and those of the colour-normals, while far fewer differences were found when comparing within colour-normals. The 3-D visualisation of colour data using stereo-pairs, as well as the statistics and multivariate methods of analysis employed, were found to be unique and useful tools in the representation and study of colour. Many additional studies using these methods along with the JND and other procedures have been identified and will be reported in future publications. © 2014 The Authors Ophthalmic & Physiological Optics © 2014 The College of Optometrists.
Applications of modern statistical methods to analysis of data in physical science
NASA Astrophysics Data System (ADS)
Wicker, James Eric
Modern methods of statistical and computational analysis offer solutions to dilemmas confronting researchers in physical science. Although the ideas behind modern statistical and computational analysis methods were originally introduced in the 1970's, most scientists still rely on methods written during the early era of computing. These researchers, who analyze increasingly voluminous and multivariate data sets, need modern analysis methods to extract the best results from their studies. The first section of this work showcases applications of modern linear regression. Since the 1960's, many researchers in spectroscopy have used classical stepwise regression techniques to derive molecular constants. However, problems with thresholds of entry and exit for model variables plagues this analysis method. Other criticisms of this kind of stepwise procedure include its inefficient searching method, the order in which variables enter or leave the model and problems with overfitting data. We implement an information scoring technique that overcomes the assumptions inherent in the stepwise regression process to calculate molecular model parameters. We believe that this kind of information based model evaluation can be applied to more general analysis situations in physical science. The second section proposes new methods of multivariate cluster analysis. The K-means algorithm and the EM algorithm, introduced in the 1960's and 1970's respectively, formed the basis of multivariate cluster analysis methodology for many years. However, several shortcomings of these methods include strong dependence on initial seed values and inaccurate results when the data seriously depart from hypersphericity. We propose new cluster analysis methods based on genetic algorithms that overcomes the strong dependence on initial seed values. In addition, we propose a generalization of the Genetic K-means algorithm which can accurately identify clusters with complex hyperellipsoidal covariance structures. We then use this new algorithm in a genetic algorithm based Expectation-Maximization process that can accurately calculate parameters describing complex clusters in a mixture model routine. Using the accuracy of this GEM algorithm, we assign information scores to cluster calculations in order to best identify the number of mixture components in a multivariate data set. We will showcase how these algorithms can be used to process multivariate data from astronomical observations.
Real, Jordi; Forné, Carles; Roso-Llorach, Albert; Martínez-Sánchez, Jose M
2016-05-01
Controlling for confounders is a crucial step in analytical observational studies, and multivariable models are widely used as statistical adjustment techniques. However, the validation of the assumptions of the multivariable regression models (MRMs) should be made clear in scientific reporting. The objective of this study is to review the quality of statistical reporting of the most commonly used MRMs (logistic, linear, and Cox regression) that were applied in analytical observational studies published between 2003 and 2014 by journals indexed in MEDLINE.Review of a representative sample of articles indexed in MEDLINE (n = 428) with observational design and use of MRMs (logistic, linear, and Cox regression). We assessed the quality of reporting about: model assumptions and goodness-of-fit, interactions, sensitivity analysis, crude and adjusted effect estimate, and specification of more than 1 adjusted model.The tests of underlying assumptions or goodness-of-fit of the MRMs used were described in 26.2% (95% CI: 22.0-30.3) of the articles and 18.5% (95% CI: 14.8-22.1) reported the interaction analysis. Reporting of all items assessed was higher in articles published in journals with a higher impact factor.A low percentage of articles indexed in MEDLINE that used multivariable techniques provided information demonstrating rigorous application of the model selected as an adjustment method. Given the importance of these methods to the final results and conclusions of observational studies, greater rigor is required in reporting the use of MRMs in the scientific literature.
Application of Multivariate Statistical Analysis to Biomarkers in Se-Turkey Crude Oils
NASA Astrophysics Data System (ADS)
Gürgey, K.; Canbolat, S.
2017-11-01
Twenty-four crude oil samples were collected from the 24 oil fields distributed in different districts of SE-Turkey. API and Sulphur content (%), Stable Carbon Isotope, Gas Chromatography (GC), and Gas Chromatography-Mass Spectrometry (GC-MS) data were used to construct a geochemical data matrix. The aim of this study is to examine the genetic grouping or correlations in the crude oil samples, hence the number of source rocks present in the SE-Turkey. To achieve these aims, two of the multivariate statistical analysis techniques (Principle Component Analysis [PCA] and Cluster Analysis were applied to data matrix of 24 samples and 8 source specific biomarker variables/parameters. The results showed that there are 3 genetically different oil groups: Batman-Nusaybin Oils, Adıyaman-Kozluk Oils and Diyarbakir Oils, in addition to a one mixed group. These groupings imply that at least, three different source rocks are present in South-Eastern (SE) Turkey. Grouping of the crude oil samples appears to be consistent with the geographic locations of the oils fields, subsurface stratigraphy as well as geology of the area.
Multivariate Analysis of Longitudinal Rates of Change
Bryan, Matthew; Heagerty, Patrick J.
2016-01-01
Longitudinal data allow direct comparison of the change in patient outcomes associated with treatment or exposure. Frequently, several longitudinal measures are collected that either reflect a common underlying health status, or characterize processes that are influenced in a similar way by covariates such as exposure or demographic characteristics. Statistical methods that can combine multivariate response variables into common measures of covariate effects have been proposed by Roy and Lin [1]; Proust-Lima, Letenneur and Jacqmin-Gadda [2]; and Gray and Brookmeyer [3] among others. Current methods for characterizing the relationship between covariates and the rate of change in multivariate outcomes are limited to select models. For example, Gray and Brookmeyer [3] introduce an “accelerated time” method which assumes that covariates rescale time in longitudinal models for disease progression. In this manuscript we detail an alternative multivariate model formulation that directly structures longitudinal rates of change, and that permits a common covariate effect across multiple outcomes. We detail maximum likelihood estimation for a multivariate longitudinal mixed model. We show via asymptotic calculations the potential gain in power that may be achieved with a common analysis of multiple outcomes. We apply the proposed methods to the analysis of a trivariate outcome for infant growth and compare rates of change for HIV infected and uninfected infants. PMID:27417129
A climate-based multivariate extreme emulator of met-ocean-hydrological events for coastal flooding
NASA Astrophysics Data System (ADS)
Camus, Paula; Rueda, Ana; Mendez, Fernando J.; Tomas, Antonio; Del Jesus, Manuel; Losada, Iñigo J.
2015-04-01
Atmosphere-ocean general circulation models (AOGCMs) are useful to analyze large-scale climate variability (long-term historical periods, future climate projections). However, applications such as coastal flood modeling require climate information at finer scale. Besides, flooding events depend on multiple climate conditions: waves, surge levels from the open-ocean and river discharge caused by precipitation. Therefore, a multivariate statistical downscaling approach is adopted to reproduce relationships between variables and due to its low computational cost. The proposed method can be considered as a hybrid approach which combines a probabilistic weather type downscaling model with a stochastic weather generator component. Predictand distributions are reproduced modeling the relationship with AOGCM predictors based on a physical division in weather types (Camus et al., 2012). The multivariate dependence structure of the predictand (extreme events) is introduced linking the independent marginal distributions of the variables by a probabilistic copula regression (Ben Ayala et al., 2014). This hybrid approach is applied for the downscaling of AOGCM data to daily precipitation and maximum significant wave height and storm-surge in different locations along the Spanish coast. Reanalysis data is used to assess the proposed method. A commonly predictor for the three variables involved is classified using a regression-guided clustering algorithm. The most appropriate statistical model (general extreme value distribution, pareto distribution) for daily conditions is fitted. Stochastic simulation of the present climate is performed obtaining the set of hydraulic boundary conditions needed for high resolution coastal flood modeling. References: Camus, P., Menéndez, M., Méndez, F.J., Izaguirre, C., Espejo, A., Cánovas, V., Pérez, J., Rueda, A., Losada, I.J., Medina, R. (2014b). A weather-type statistical downscaling framework for ocean wave climate. Journal of Geophysical Research, doi: 10.1002/2014JC010141. Ben Ayala, M.A., Chebana, F., Ouarda, T.B.M.J. (2014). Probabilistic Gaussian Copula Regression Model for Multisite and Multivariable Downscaling, Journal of Climate, 27, 3331-3347.
NASA Astrophysics Data System (ADS)
Mfumu Kihumba, Antoine; Ndembo Longo, Jean; Vanclooster, Marnik
2016-03-01
A multivariate statistical modelling approach was applied to explain the anthropogenic pressure of nitrate pollution on the Kinshasa groundwater body (Democratic Republic of Congo). Multiple regression and regression tree models were compared and used to identify major environmental factors that control the groundwater nitrate concentration in this region. The analyses were made in terms of physical attributes related to the topography, land use, geology and hydrogeology in the capture zone of different groundwater sampling stations. For the nitrate data, groundwater datasets from two different surveys were used. The statistical models identified the topography, the residential area, the service land (cemetery), and the surface-water land-use classes as major factors explaining nitrate occurrence in the groundwater. Also, groundwater nitrate pollution depends not on one single factor but on the combined influence of factors representing nitrogen loading sources and aquifer susceptibility characteristics. The groundwater nitrate pressure was better predicted with the regression tree model than with the multiple regression model. Furthermore, the results elucidated the sensitivity of the model performance towards the method of delineation of the capture zones. For pollution modelling at the monitoring points, therefore, it is better to identify capture-zone shapes based on a conceptual hydrogeological model rather than to adopt arbitrary circular capture zones.
Felix, Leonardo Bonato; Miranda de Sá, Antonio Mauricio Ferreira Leite; Infantosi, Antonio Fernando Catelli; Yehia, Hani Camille
2007-03-01
The presence of cerebral evoked responses can be tested by using objective response detectors. They are statistical tests that provide a threshold above which responses can be assumed to have occurred. The detection power depends on the signal-to-noise ratio (SNR) of the response and the amount of data available. However, the correlation within the background noise could also affect the power of such detectors. For a fixed SNR, the detection can only be improved at the expense of using a longer stretch of signal. This can constitute a limitation, for instance, in monitored surgeries. Alternatively, multivariate objective response detection (MORD) could be used. This work applies two MORD techniques (multiple coherence and multiple component synchrony measure) to EEG data collected during intermittent photic stimulation. They were evaluated throughout Monte Carlo simulations, which also allowed verifying that correlation in the background reduces the detection rate. Considering the N EEG derivations as close as possible to the primary visual cortex, if N = 4, 6 or 8, multiple coherence leads to a statistically significant higher detection rate in comparison with multiple component synchrony measure. With the former, the best performance was obtained with six signals (O1, O2, T5, T6, P3 and P4).
Multivariate statistical approach to estimate mixing proportions for unknown end members
Valder, Joshua F.; Long, Andrew J.; Davis, Arden D.; Kenner, Scott J.
2012-01-01
A multivariate statistical method is presented, which includes principal components analysis (PCA) and an end-member mixing model to estimate unknown end-member hydrochemical compositions and the relative mixing proportions of those end members in mixed waters. PCA, together with the Hotelling T2 statistic and a conceptual model of groundwater flow and mixing, was used in selecting samples that best approximate end members, which then were used as initial values in optimization of the end-member mixing model. This method was tested on controlled datasets (i.e., true values of estimates were known a priori) and found effective in estimating these end members and mixing proportions. The controlled datasets included synthetically generated hydrochemical data, synthetically generated mixing proportions, and laboratory analyses of sample mixtures, which were used in an evaluation of the effectiveness of this method for potential use in actual hydrological settings. For three different scenarios tested, correlation coefficients (R2) for linear regression between the estimated and known values ranged from 0.968 to 0.993 for mixing proportions and from 0.839 to 0.998 for end-member compositions. The method also was applied to field data from a study of end-member mixing in groundwater as a field example and partial method validation.
Chandrasekaran, A; Ravisankar, R; Harikrishnan, N; Satapathy, K K; Prasad, M V R; Kanagasabapathy, K V
2015-02-25
Anthropogenic activities increase the accumulation of heavy metals in the soil environment. Soil pollution significantly reduces environmental quality and affects the human health. In the present study soil samples were collected at different locations of Yelagiri Hills, Tamilnadu, India for heavy metal analysis. The samples were analyzed for twelve selected heavy metals (Mg, Al, K, Ca, Ti, Fe, V, Cr, Mn, Co, Ni and Zn) using energy dispersive X-ray fluorescence (EDXRF) spectroscopy. Heavy metals concentration in soil were investigated using enrichment factor (EF), geo-accumulation index (Igeo), contamination factor (CF) and pollution load index (PLI) to determine metal accumulation, distribution and its pollution status. Heavy metal toxicity risk was assessed using soil quality guidelines (SQGs) given by target and intervention values of Dutch soil standards. The concentration of Ni, Co, Zn, Cr, Mn, Fe, Ti, K, Al, Mg were mainly controlled by natural sources. Multivariate statistical methods such as correlation matrix, principal component analysis and cluster analysis were applied for the identification of heavy metal sources (anthropogenic/natural origin). Geo-statistical methods such as kirging identified hot spots of metal contamination in road areas influenced mainly by presence of natural rocks. Copyright © 2014 Elsevier B.V. All rights reserved.
Space-time patterns in ignimbrite compositions revealed by GIS and R based statistical analysis
NASA Astrophysics Data System (ADS)
Brandmeier, Melanie; Wörner, Gerhard
2017-04-01
GIS-based multivariate statistical and geospatial analysis of a compilation of 890 geochemical and ca. 1,200 geochronological data for 194 mapped ignimbrites from Central Andes documents the compositional and temporal pattern of large volume ignimbrites (so-called "ignimbrite flare-ups") during Neogene times. Rapid advances in computational sciences during the past decade lead to a growing pool of algorithms for multivariate statistics on big datasets with many predictor variables. This study uses the potential of R and ArcGIS and applies cluster (CA) and linear discriminant analysis (LDA) on log-ratio transformed spatial data. CA on major and trace element data allows to group ignimbrites according to their geochemical characteristics into rhyolitic and a dacitic "end-members" and differentiates characteristic trace element signatures with respect to Eu anomaly, depletion of MREEs and variable enrichment in LREE. To highlight these distinct compositional signatures, we applied LDA to selected ignimbrites for which comprehensive data sets were available. The most important predictors for discriminating ignimbrites are La (LREE), Yb (HREE), Eu, Al2O3, K2O, P2O5, MgO, FeOt and TiO2. However, other REEs such as Gd, Pr, Tm, Sm and Er also contribute to the discrimination functions. Significant compositional differences were found between the older (>14 Ma) large-volume plateau-forming ignimbrites in northernmost Chile and southern Peru and the younger (< 10 Ma) Altiplano-Puna-Volcanic-Complex ignimbrites that are of similar volumes. Older ignimbrites are less depleted in HREEs and less radiogenic in Sr isotopes, indicating smaller crustal contributions during evolution in thinner and thermally less evolved crust. These compositional variations indicate a relation to crustal thickening with a "transition" from plagioclase to amphibole and garnet residual mineralogy between 13 to 9 Ma. We correlate compositional and volumetric variations to the N-S passage of the Juan-Fernandéz ridge and crustal shortening and thickening during the past 26 Ma. The value of GIS and multivariate statistics in comparison to traditional geochemical parameters are highlighted working with large datasets with many predictors in a spatial and temporal context. Algorithms implemented in R allow taking advantage of an n-dimensional space and, thus, of subtle compositional differences contained in the data, while space-time patterns can be analyzed easily in GIS.
AASC Recommendations for the Education of an Applied Climatologist
NASA Astrophysics Data System (ADS)
Nielsen-Gammon, J. W.; Stooksbury, D.; Akyuz, A.; Dupigny-Giroux, L.; Hubbard, K. G.; Timofeyeva, M. M.
2011-12-01
The American Association of State Climatologists (AASC) has developed curricular recommendations for the education of future applied and service climatologists. The AASC was founded in 1976. Membership of the AASC includes state climatologists and others who work in state climate offices; climate researchers in academia and educators; applied climatologists in NOAA and other federal agencies; and the private sector. The AASC is the only professional organization dedicated solely to the growth and development of applied and service climatology. The purpose of the recommendations is to offer a framework for existing and developing academic climatology programs. These recommendations are intended to serve as a road map and to help distinguish the educational needs for future applied climatologists from those of operational meteorologists or other scientists and practitioners. While the home department of climatology students may differ from one program to the next, the most essential factor is that students can demonstrate a breadth and depth of understanding in the knowledge and tools needed to be an applied climatologist. Because the training of an applied climatologist requires significant depth and breadth, the Masters degree is recommended as the minimum level of education needed. This presentation will highlight the AASC recommendations. These include a strong foundation in: - climatology (instrumentation and data collection, climate dynamics, physical climatology, synoptic and regional climatology, applied climatology, climate models, etc.) - basic natural sciences and mathematics including calculus, physics, chemistry, and biology/ecology - fundamental atmospheric sciences (atmospheric dynamics, atmospheric thermodynamics, atmospheric radiation, and weather analysis/synoptic meteorology) and - data analysis and spatial analysis (descriptive statistics, statistical methods, multivariate statistics, geostatistics, GIS, etc.). The recommendations also include a secondary area of concentration (agriculture, economics, geography, hydrology, marine sciences, natural resources, policy, etc.) and a major applied climate research component.
Taylor, Sandra L; Ruhaak, L Renee; Weiss, Robert H; Kelly, Karen; Kim, Kyoungmi
2017-01-01
High through-put mass spectrometry (MS) is now being used to profile small molecular compounds across multiple biological sample types from the same subjects with the goal of leveraging information across biospecimens. Multivariate statistical methods that combine information from all biospecimens could be more powerful than the usual univariate analyses. However, missing values are common in MS data and imputation can impact between-biospecimen correlation and multivariate analysis results. We propose two multivariate two-part statistics that accommodate missing values and combine data from all biospecimens to identify differentially regulated compounds. Statistical significance is determined using a multivariate permutation null distribution. Relative to univariate tests, the multivariate procedures detected more significant compounds in three biological datasets. In a simulation study, we showed that multi-biospecimen testing procedures were more powerful than single-biospecimen methods when compounds are differentially regulated in multiple biospecimens but univariate methods can be more powerful if compounds are differentially regulated in only one biospecimen. We provide R functions to implement and illustrate our method as supplementary information CONTACT: sltaylor@ucdavis.eduSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
2017-09-01
efficacy of statistical post-processing methods downstream of these dynamical model components with a hierarchical multivariate Bayesian approach to...Bayesian hierarchical modeling, Markov chain Monte Carlo methods , Metropolis algorithm, machine learning, atmospheric prediction 15. NUMBER OF PAGES...scale processes. However, this dissertation explores the efficacy of statistical post-processing methods downstream of these dynamical model components
Bayesian statistics and Monte Carlo methods
NASA Astrophysics Data System (ADS)
Koch, K. R.
2018-03-01
The Bayesian approach allows an intuitive way to derive the methods of statistics. Probability is defined as a measure of the plausibility of statements or propositions. Three rules are sufficient to obtain the laws of probability. If the statements refer to the numerical values of variables, the so-called random variables, univariate and multivariate distributions follow. They lead to the point estimation by which unknown quantities, i.e. unknown parameters, are computed from measurements. The unknown parameters are random variables, they are fixed quantities in traditional statistics which is not founded on Bayes' theorem. Bayesian statistics therefore recommends itself for Monte Carlo methods, which generate random variates from given distributions. Monte Carlo methods, of course, can also be applied in traditional statistics. The unknown parameters, are introduced as functions of the measurements, and the Monte Carlo methods give the covariance matrix and the expectation of these functions. A confidence region is derived where the unknown parameters are situated with a given probability. Following a method of traditional statistics, hypotheses are tested by determining whether a value for an unknown parameter lies inside or outside the confidence region. The error propagation of a random vector by the Monte Carlo methods is presented as an application. If the random vector results from a nonlinearly transformed vector, its covariance matrix and its expectation follow from the Monte Carlo estimate. This saves a considerable amount of derivatives to be computed, and errors of the linearization are avoided. The Monte Carlo method is therefore efficient. If the functions of the measurements are given by a sum of two or more random vectors with different multivariate distributions, the resulting distribution is generally not known. TheMonte Carlo methods are then needed to obtain the covariance matrix and the expectation of the sum.
USDA-ARS?s Scientific Manuscript database
Characterizing population genetic structure across geographic space is a fundamental challenge in population genetics. Multivariate statistical analyses are powerful tools for summarizing genetic variability, but geographic information and accompanying metadata is not always easily integrated into t...
Kamal, Ghulam Mustafa; Wang, Xiaohua; Bin Yuan; Wang, Jie; Sun, Peng; Zhang, Xu; Liu, Maili
2016-09-01
Soy sauce a well known seasoning all over the world, especially in Asia, is available in global market in a wide range of types based on its purpose and the processing methods. Its composition varies with respect to the fermentation processes and addition of additives, preservatives and flavor enhancers. A comprehensive (1)H NMR based study regarding the metabonomic variations of soy sauce to differentiate among different types of soy sauce available on the global market has been limited due to the complexity of the mixture. In present study, (13)C NMR spectroscopy coupled with multivariate statistical data analysis like principle component analysis (PCA), and orthogonal partial least square-discriminant analysis (OPLS-DA) was applied to investigate metabonomic variations among different types of soy sauce, namely super light, super dark, red cooking and mushroom soy sauce. The main additives in soy sauce like glutamate, sucrose and glucose were easily distinguished and quantified using (13)C NMR spectroscopy which were otherwise difficult to be assigned and quantified due to serious signal overlaps in (1)H NMR spectra. The significantly higher concentration of sucrose in dark, red cooking and mushroom flavored soy sauce can directly be linked to the addition of caramel in soy sauce. Similarly, significantly higher level of glutamate in super light as compared to super dark and mushroom flavored soy sauce may come from the addition of monosodium glutamate. The study highlights the potentiality of (13)C NMR based metabonomics coupled with multivariate statistical data analysis in differentiating between the types of soy sauce on the basis of level of additives, raw materials and fermentation procedures. Copyright © 2016 Elsevier B.V. All rights reserved.
Numminen, Olivia; Leino-Kilpi, Helena; Isoaho, Hannu; Meretoja, Riitta
2015-09-01
To study the relationships between newly graduated nurses' (NGNs') perceptions of their professional competence, and individual and organizational work-related factors. A multivariate, quantitative, descriptive, correlation design was applied. Data collection took place in November 2012 with a national convenience sample of 318 NGNs representing all main healthcare settings in Finland. Five instruments measured NGNs' perceptions of their professional competence, occupational commitment, empowerment, practice environment, and its ethical climate, with additional questions on turnover intentions, job satisfaction, and demographics. Descriptive statistics summarized the demographic data, and inferential statistics multivariate path analysis modeling estimated the relationships between the variables. The strongest relationship was found between professional competence and empowerment, competence explaining 20% of the variance of empowerment. The explanatory power of competence regarding practice environment, ethical climate of the work unit, and occupational commitment, and competence's associations with turnover intentions, job satisfaction, and age, were statistically significant but considerably weaker. Higher competence and satisfaction with quality of care were associated with more positive perceptions of practice environment and its ethical climate as well as higher empowerment and occupational commitment. Apart from its association with empowerment, competence seems to be a rather independent factor in relation to the measured work-related factors. Further exploration would deepen the knowledge of this relationship, providing support for planning educational and developmental programs. Research on other individual and organizational factors is warranted to shed light on factors associated with professional competence in providing high-quality and safe care as well as retaining new nurses in the workforce. The study sheds light on the strength and direction of the significantly associated work-related factors. Nursing professional bodies, managers, and supervisors can use the findings in planning orientation programs and other occupational interventions for NGNs. © 2015 Sigma Theta Tau International.
NASA Astrophysics Data System (ADS)
Burns, R. G.; Meyer, R. W.; Cornwell, K.
2003-12-01
In-basin statistical relations allow for development of regional flood frequency and magnitude equations in the Cosumnes River and Mokelumne River drainage basins. Current equations were derived from data collected through 1975, and do not reflect newer data with some significant flooding. Physical basin characteristics (area, mean basin elevation, slope of longest reach, and mean annual precipitation) were correlated against predicted flood discharges for each of the 5, 10, 25, 50, 100, 200, and 500-year recurrence intervals in a multivariate analysis. Predicted maximum instantaneous flood discharges were determined using the PEAKFQ program with default settings, for 24 stream gages within the study area presumed not affected by flow management practices. For numerical comparisons, GIS-based methods using Spatial Analyst and the Arc Hydro Tools extension were applied to derive physical basin characteristics as predictor variables from a 30m digital elevation model (DEM) and a mean annual precipitation raster (PRISM). In a bivariate analysis, examination of Pearson correlation coefficients, F-statistic, and t & p thresholds show good correlation between area and flood discharges. Similar analyses show poor correlation for mean basin elevation, slope and precipitation, with flood discharge. Bivariate analysis suggests slope may not be an appropriate predictor term for use in the multivariate analysis. Precipitation and elevation correlate very well, demonstrating possible orographic effects. From the multivariate analysis, less than 6% of the variability in the correlation is not explained for flood recurrences up to 25 years. Longer term predictions up to 500 years accrue greater uncertainty with as much as 15% of the variability in the correlation left unexplained.
Quantification of proportions of different water sources in a mining operation.
Scheiber, Laura; Ayora, Carlos; Vázquez-Suñé, Enric
2018-04-01
The water drained in mining operations (galleries, shafts, open pits) usually comes from different sources. Evaluating the contribution of these sources is very often necessary for water management. To determine mixing ratios, a conventional mass balance is often used. However, the presence of more than two sources creates uncertainties in mass balance applications. Moreover, the composition of the end-members is not commonly known with certainty and/or can vary in space and time. In this paper, we propose a powerful tool for solving such problems and managing groundwater in mining sites based on multivariate statistical analysis. This approach was applied to the Cobre Las Cruces mining complex, the largest copper mine in Europe. There, the open pit water is a mixture of three end-members: runoff (RO), basal Miocene (Mb) and Paleozoic (PZ) groundwater. The volume of water drained from the Miocene base aquifer must be determined and compensated via artificial recharging to comply with current regulations. Through multivariate statistical analysis of samples from a regional field campaign, the compositions of PZ and Mb end-members were firstly estimated, and then used for mixing calculations at the open pit scale. The runoff end-member was directly determined from samples collected in interception trenches inside the open pit. The application of multivariate statistical methods allowed the estimation of mixing ratios for the hydrological years 2014-2015 and 2015-2016. Open pit water proportions have changed from 15% to 7%, 41% to 36%, and 44% to 57% for runoff, Mb and PZ end-members, respectively. An independent estimation of runoff based on the curve method yielded comparable results. Copyright © 2017 Elsevier B.V. All rights reserved.
Giménez-Forcada, Elena; Vega-Alegre, Marisol; Timón-Sánchez, Susana
2017-09-01
Naturally occurring arsenic in groundwater exceeding the limit for potability has been reported along the southern edge of the Cenozoic Duero Basin (CDB) near its contact with the Spanish Central System (SCS). In this area, spatial variability of arsenic is high, peaking at 241μg/L. Forty-seven percent of samples collected contained arsenic above the maximum allowable concentration for drinking water (10μg/L). Correlations of As with other hydrochemical variables were investigated using multivariate statistical analysis (Hierarchical Cluster Analysis, HCA and Principal Component Analysis, PCA). It was found that As, V, Cr and pH are closely related and that there were also close correlations with temperature and Na + . The highest concentrations of arsenic and other associated Potentially Toxic Geogenic Trace Elements (PTGTE) are linked to alkaline NaHCO 3 waters (pH≈9), moderate oxic conditions and temperatures of around 18°C-19°C. The most plausible hypothesis to explain the high arsenic concentrations is the contribution of deeper regional flows with a significant hydrothermal component (cold-hydrothermal waters), flowing through faults in the basement rock. Water mixing and water-rock interactions occur both in the fissured aquifer media (igneous and metasedimentary bedrock) and in the sedimentary environment of the CDB, where agricultural pollution phenomena are also active. A combination of multivariate statistical tools and hydrochemical analysis enabled the distribution pattern of dissolved As and other PTGTE in groundwaters in the study area to be interpreted, and their most likely origin to be established. This methodology could be applied to other sedimentary areas with similar characteristics and problems. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Moustafa, Azza Aziz; Salem, Hesham; Hegazy, Maha; Ali, Omnia
2015-02-01
Simple, accurate, and selective methods have been developed and validated for simultaneous determination of a ternary mixture of Chlorpheniramine maleate (CPM), Pseudoephedrine HCl (PSE) and Ibuprofen (IBF), in tablet dosage form. Four univariate methods manipulating ratio spectra were applied, method A is the double divisor-ratio difference spectrophotometric method (DD-RD). Method B is double divisor-derivative ratio spectrophotometric method (DD-RD). Method C is derivative ratio spectrum-zero crossing method (DRZC), while method D is mean centering of ratio spectra (MCR). Two multivariate methods were also developed and validated, methods E and F are Principal Component Regression (PCR) and Partial Least Squares (PLSs). The proposed methods have the advantage of simultaneous determination of the mentioned drugs without prior separation steps. They were successfully applied to laboratory-prepared mixtures and to commercial pharmaceutical preparation without any interference from additives. The proposed methods were validated according to the ICH guidelines. The obtained results were statistically compared with the official methods where no significant difference was observed regarding both accuracy and precision.
NASA Astrophysics Data System (ADS)
von Larcher, Thomas; Harlander, Uwe; Alexandrov, Kiril; Wang, Yongtai
2010-05-01
Experiments on baroclinic wave instabilities in a rotating cylindrical gap have been long performed, e.g., to unhide regular waves of different zonal wave number, to better understand the transition to the quasi-chaotic regime, and to reveal the underlying dynamical processes of complex wave flows. We present the application of appropriate multivariate data analysis methods on time series data sets acquired by the use of non-intrusive measurement techniques of a quite different nature. While the high accurate Laser-Doppler-Velocimetry (LDV ) is used for measurements of the radial velocity component at equidistant azimuthal positions, a high sensitive thermographic camera measures the surface temperature field. The measurements are performed at particular parameter points, where our former studies show that kinds of complex wave patterns occur [1, 2]. Obviously, the temperature data set has much more information content as the velocity data set due to the particular measurement techniques. Both sets of time series data are analyzed by using multivariate statistical techniques. While the LDV data sets are studied by applying the Multi-Channel Singular Spectrum Analysis (M - SSA), the temperature data sets are analyzed by applying the Empirical Orthogonal Functions (EOF ). Our goal is (a) to verify the results yielded with the analysis of the velocity data and (b) to compare the data analysis methods. Therefor, the temperature data are processed in a way to become comparable to the LDV data, i.e. reducing the size of the data set in such a manner that the temperature measurements would imaginary be performed at equidistant azimuthal positions only. This approach initially results in a great loss of information. But applying the M - SSA to the reduced temperature data sets enable us to compare the methods. [1] Th. von Larcher and C. Egbers, Experiments on transitions of baroclinic waves in a differentially heated rotating annulus, Nonlinear Processes in Geophysics, 2005, 12, 1033-1041, NPG Print: ISSN 1023-5809, NPG Online: ISSN 1607-7946 [2] U. Harlander, Th. von Larcher, Y. Wang and C. Egbers, PIV- and LDV-measurements of baroclinic wave interactions in a thermally driven rotating annulus, Experiments in Fluids, 2009, DOI: 10.1007/s00348-009-0792-5
Alves, Darlan Daniel; Riegel, Roberta Plangg; de Quevedo, Daniela Müller; Osório, Daniela Montanari Migliavacca; da Costa, Gustavo Marques; do Nascimento, Carlos Augusto; Telöken, Franko
2018-06-08
Assessment of surface water quality is an issue of currently high importance, especially in polluted rivers which provide water for treatment and distribution as drinking water, as is the case of the Sinos River, southern Brazil. Multivariate statistical techniques allow a better understanding of the seasonal variations in water quality, as well as the source identification and source apportionment of water pollution. In this study, the multivariate statistical techniques of cluster analysis (CA), principal component analysis (PCA), and positive matrix factorization (PMF) were used, along with the Kruskal-Wallis test and Spearman's correlation analysis in order to interpret a water quality data set resulting from a monitoring program conducted over a period of almost two years (May 2013 to April 2015). The water samples were collected from the raw water inlet of the municipal water treatment plant (WTP) operated by the Water and Sewage Services of Novo Hamburgo (COMUSA). CA allowed the data to be grouped into three periods (autumn and summer (AUT-SUM); winter (WIN); spring (SPR)). Through the PCA, it was possible to identify that the most important parameters in contribution to water quality variations are total coliforms (TCOLI) in SUM-AUT, water level (WL), water temperature (WT), and electrical conductivity (EC) in WIN and color (COLOR) and turbidity (TURB) in SPR. PMF was applied to the complete data set and enabled the source apportionment water pollution through three factors, which are related to anthropogenic sources, such as the discharge of domestic sewage (mostly represented by Escherichia coli (ECOLI)), industrial wastewaters, and agriculture runoff. The results provided by this study demonstrate the contribution provided by the use of integrated statistical techniques in the interpretation and understanding of large data sets of water quality, showing also that this approach can be used as an efficient methodology to optimize indicators for water quality assessment.
Suchard, Marc A; Zorych, Ivan; Simpson, Shawn E; Schuemie, Martijn J; Ryan, Patrick B; Madigan, David
2013-10-01
The self-controlled case series (SCCS) offers potential as an statistical method for risk identification involving medical products from large-scale observational healthcare data. However, analytic design choices remain in encoding the longitudinal health records into the SCCS framework and its risk identification performance across real-world databases is unknown. To evaluate the performance of SCCS and its design choices as a tool for risk identification in observational healthcare data. We examined the risk identification performance of SCCS across five design choices using 399 drug-health outcome pairs in five real observational databases (four administrative claims and one electronic health records). In these databases, the pairs involve 165 positive controls and 234 negative controls. We also consider several synthetic databases with known relative risks between drug-outcome pairs. We evaluate risk identification performance through estimating the area under the receiver-operator characteristics curve (AUC) and bias and coverage probability in the synthetic examples. The SCCS achieves strong predictive performance. Twelve of the twenty health outcome-database scenarios return AUCs >0.75 across all drugs. Including all adverse events instead of just the first per patient and applying a multivariate adjustment for concomitant drug use are the most important design choices. However, the SCCS as applied here returns relative risk point-estimates biased towards the null value of 1 with low coverage probability. The SCCS recently extended to apply a multivariate adjustment for concomitant drug use offers promise as a statistical tool for risk identification in large-scale observational healthcare databases. Poor estimator calibration dampens enthusiasm, but on-going work should correct this short-coming.
Groundwater quality assessment of urban Bengaluru using multivariate statistical techniques
NASA Astrophysics Data System (ADS)
Gulgundi, Mohammad Shahid; Shetty, Amba
2018-03-01
Groundwater quality deterioration due to anthropogenic activities has become a subject of prime concern. The objective of the study was to assess the spatial and temporal variations in groundwater quality and to identify the sources in the western half of the Bengaluru city using multivariate statistical techniques. Water quality index rating was calculated for pre and post monsoon seasons to quantify overall water quality for human consumption. The post-monsoon samples show signs of poor quality in drinking purpose compared to pre-monsoon. Cluster analysis (CA), principal component analysis (PCA) and discriminant analysis (DA) were applied to the groundwater quality data measured on 14 parameters from 67 sites distributed across the city. Hierarchical cluster analysis (CA) grouped the 67 sampling stations into two groups, cluster 1 having high pollution and cluster 2 having lesser pollution. Discriminant analysis (DA) was applied to delineate the most meaningful parameters accounting for temporal and spatial variations in groundwater quality of the study area. Temporal DA identified pH as the most important parameter, which discriminates between water quality in the pre-monsoon and post-monsoon seasons and accounts for 72% seasonal assignation of cases. Spatial DA identified Mg, Cl and NO3 as the three most important parameters discriminating between two clusters and accounting for 89% spatial assignation of cases. Principal component analysis was applied to the dataset obtained from the two clusters, which evolved three factors in each cluster, explaining 85.4 and 84% of the total variance, respectively. Varifactors obtained from principal component analysis showed that groundwater quality variation is mainly explained by dissolution of minerals from rock water interactions in the aquifer, effect of anthropogenic activities and ion exchange processes in water.
Multivariate Strategies in Functional Magnetic Resonance Imaging
ERIC Educational Resources Information Center
Hansen, Lars Kai
2007-01-01
We discuss aspects of multivariate fMRI modeling, including the statistical evaluation of multivariate models and means for dimensional reduction. In a case study we analyze linear and non-linear dimensional reduction tools in the context of a "mind reading" predictive multivariate fMRI model.
Dinov, Ivo D.; Kamino, Scott; Bhakhrani, Bilal; Christou, Nicolas
2014-01-01
Summary Data analysis requires subtle probability reasoning to answer questions like What is the chance of event A occurring, given that event B was observed? This generic question arises in discussions of many intriguing scientific questions such as What is the probability that an adolescent weighs between 120 and 140 pounds given that they are of average height? and What is the probability of (monetary) inflation exceeding 4% and housing price index below 110? To address such problems, learning some applied, theoretical or cross-disciplinary probability concepts is necessary. Teaching such courses can be improved by utilizing modern information technology resources. Students’ understanding of multivariate distributions, conditional probabilities, correlation and causation can be significantly strengthened by employing interactive web-based science educational resources. Independent of the type of a probability course (e.g. majors, minors or service probability course, rigorous measure-theoretic, applied or statistics course) student motivation, learning experiences and knowledge retention may be enhanced by blending modern technological tools within the classical conceptual pedagogical models. We have designed, implemented and disseminated a portable open-source web-application for teaching multivariate distributions, marginal, joint and conditional probabilities using the special case of bivariate Normal distribution. A real adolescent height and weight dataset is used to demonstrate the classroom utilization of the new web-application to address problems of parameter estimation, univariate and multivariate inference. PMID:25419016
Dinov, Ivo D; Kamino, Scott; Bhakhrani, Bilal; Christou, Nicolas
2013-01-01
Data analysis requires subtle probability reasoning to answer questions like What is the chance of event A occurring, given that event B was observed? This generic question arises in discussions of many intriguing scientific questions such as What is the probability that an adolescent weighs between 120 and 140 pounds given that they are of average height? and What is the probability of (monetary) inflation exceeding 4% and housing price index below 110? To address such problems, learning some applied, theoretical or cross-disciplinary probability concepts is necessary. Teaching such courses can be improved by utilizing modern information technology resources. Students' understanding of multivariate distributions, conditional probabilities, correlation and causation can be significantly strengthened by employing interactive web-based science educational resources. Independent of the type of a probability course (e.g. majors, minors or service probability course, rigorous measure-theoretic, applied or statistics course) student motivation, learning experiences and knowledge retention may be enhanced by blending modern technological tools within the classical conceptual pedagogical models. We have designed, implemented and disseminated a portable open-source web-application for teaching multivariate distributions, marginal, joint and conditional probabilities using the special case of bivariate Normal distribution. A real adolescent height and weight dataset is used to demonstrate the classroom utilization of the new web-application to address problems of parameter estimation, univariate and multivariate inference.
Analyzing developmental processes on an individual level using nonstationary time series modeling.
Molenaar, Peter C M; Sinclair, Katerina O; Rovine, Michael J; Ram, Nilam; Corneal, Sherry E
2009-01-01
Individuals change over time, often in complex ways. Generally, studies of change over time have combined individuals into groups for analysis, which is inappropriate in most, if not all, studies of development. The authors explain how to identify appropriate levels of analysis (individual vs. group) and demonstrate how to estimate changes in developmental processes over time using a multivariate nonstationary time series model. They apply this model to describe the changing relationships between a biological son and father and a stepson and stepfather at the individual level. The authors also explain how to use an extended Kalman filter with iteration and smoothing estimator to capture how dynamics change over time. Finally, they suggest further applications of the multivariate nonstationary time series model and detail the next steps in the development of statistical models used to analyze individual-level data.
[Academic performance in first year medical students: an explanatory multivariate model].
Urrutia Aguilar, María Esther; Ortiz León, Silvia; Fouilloux Morales, Claudia; Ponce Rosas, Efrén Raúl; Guevara Guzmán, Rosalinda
2014-12-01
Current education is focused in intellectual, affective, and ethical aspects, thus acknowledging their significance in students´ metacognition. Nowadays, it is known that an adequate and motivating environment together with a positive attitude towards studies is fundamental to induce learning. Medical students are under multiple stressful, academic, personal, and vocational situations. To identify psychosocial, vocational, and academic variables of 2010-2011 first year medical students at UNAM that may help predict their academic performance. Academic surveys of psychological and vocational factors were applied; an academic follow-up was carried out to obtain a multivariate model. The data were analyzed considering descriptive, comparative, correlative, and predictive statistics. The main variables that affect students´ academic performance are related to previous knowledge and to psychological variables. The results show the significance of implementing institutional programs to support students throughout their college adaptation.
Rate, Andrew W
2018-06-15
Urban environments are dynamic and highly heterogeneous, and multiple additions of potential contaminants are likely on timescales which are short relative to natural processes. The likely sources and location of soil or sediment contamination in urban environment should therefore be detectable using multielement geochemical composition combined with rigorously applied multivariate statistical techniques. Soil, wetland sediment, and street dust was sampled along intersecting transects in Robertson Park in metropolitan Perth, Western Australia. Samples were analysed for near-total concentrations of multiple elements (including Cd, Ce, Co, Cr, Cu, Fe, Gd, La, Mn, Nd, Ni, Pb, Y, and Zn), as well as pH, and electrical conductivity. Samples at some locations within Robertson Park had high concentrations of potentially toxic elements (Pb above Health Investigation Limits; As, Ba, Cu, Mn, Ni, Pb, V, and Zn above Ecological Investigation Limits). However, these concentrations carry low risk due to the main land use as recreational open space, the low proportion of samples exceeding guideline values, and a tendency for the highest concentrations to be located within the less accessible wetland basin. The different spatial distributions of different groups of contaminants was consistent with different inputs of contaminants related to changes in land use and technology over the history of the site. Multivariate statistical analyses reinforced the spatial information, with principal component analysis identifying geochemical associations of elements which were also spatially related. A multivariate linear discriminant model was able to discriminate samples into a-priori types, and could predict sample type with 84% accuracy based on multielement composition. The findings suggest substantial advantages of characterising a site using multielement and multivariate analyses, an approach which could benefit investigations of other sites of concern. Copyright © 2018 Elsevier B.V. All rights reserved.
Multivariate stochastic analysis for Monthly hydrological time series at Cuyahoga River Basin
NASA Astrophysics Data System (ADS)
zhang, L.
2011-12-01
Copula has become a very powerful statistic and stochastic methodology in case of the multivariate analysis in Environmental and Water resources Engineering. In recent years, the popular one-parameter Archimedean copulas, e.g. Gumbel-Houggard copula, Cook-Johnson copula, Frank copula, the meta-elliptical copula, e.g. Gaussian Copula, Student-T copula, etc. have been applied in multivariate hydrological analyses, e.g. multivariate rainfall (rainfall intensity, duration and depth), flood (peak discharge, duration and volume), and drought analyses (drought length, mean and minimum SPI values, and drought mean areal extent). Copula has also been applied in the flood frequency analysis at the confluences of river systems by taking into account the dependence among upstream gauge stations rather than by using the hydrological routing technique. In most of the studies above, the annual time series have been considered as stationary signal which the time series have been assumed as independent identically distributed (i.i.d.) random variables. But in reality, hydrological time series, especially the daily and monthly hydrological time series, cannot be considered as i.i.d. random variables due to the periodicity existed in the data structure. Also, the stationary assumption is also under question due to the Climate Change and Land Use and Land Cover (LULC) change in the fast years. To this end, it is necessary to revaluate the classic approach for the study of hydrological time series by relaxing the stationary assumption by the use of nonstationary approach. Also as to the study of the dependence structure for the hydrological time series, the assumption of same type of univariate distribution also needs to be relaxed by adopting the copula theory. In this paper, the univariate monthly hydrological time series will be studied through the nonstationary time series analysis approach. The dependence structure of the multivariate monthly hydrological time series will be studied through the copula theory. As to the parameter estimation, the maximum likelihood estimation (MLE) will be applied. To illustrate the method, the univariate time series model and the dependence structure will be determined and tested using the monthly discharge time series of Cuyahoga River Basin.
A Civilian/Military Trauma Institute: National Trauma Coordinating Center
2015-12-01
zip codes was used in “proximity to violence” analysis. Data were analyzed using SPSS (version 20.0, SPSS Inc., Chicago, IL). Multivariable linear...number of adverse events and serious events was not statistically higher in one group, the incidence of deep venous thrombosis (DVT) was statistically ...subjects the lack of statistical difference on multivariate analysis may be related to an underpowered sample size. It was recommended that the
NASA Astrophysics Data System (ADS)
Flach, Milan; Mahecha, Miguel; Gans, Fabian; Rodner, Erik; Bodesheim, Paul; Guanche-Garcia, Yanira; Brenning, Alexander; Denzler, Joachim; Reichstein, Markus
2016-04-01
The number of available Earth observations (EOs) is currently substantially increasing. Detecting anomalous patterns in these multivariate time series is an important step in identifying changes in the underlying dynamical system. Likewise, data quality issues might result in anomalous multivariate data constellations and have to be identified before corrupting subsequent analyses. In industrial application a common strategy is to monitor production chains with several sensors coupled to some statistical process control (SPC) algorithm. The basic idea is to raise an alarm when these sensor data depict some anomalous pattern according to the SPC, i.e. the production chain is considered 'out of control'. In fact, the industrial applications are conceptually similar to the on-line monitoring of EOs. However, algorithms used in the context of SPC or process monitoring are rarely considered for supervising multivariate spatio-temporal Earth observations. The objective of this study is to exploit the potential and transferability of SPC concepts to Earth system applications. We compare a range of different algorithms typically applied by SPC systems and evaluate their capability to detect e.g. known extreme events in land surface processes. Specifically two main issues are addressed: (1) identifying the most suitable combination of data pre-processing and detection algorithm for a specific type of event and (2) analyzing the limits of the individual approaches with respect to the magnitude, spatio-temporal size of the event as well as the data's signal to noise ratio. Extensive artificial data sets that represent the typical properties of Earth observations are used in this study. Our results show that the majority of the algorithms used can be considered for the detection of multivariate spatiotemporal events and directly transferred to real Earth observation data as currently assembled in different projects at the European scale, e.g. http://baci-h2020.eu/index.php/ and http://earthsystemdatacube.net/. Known anomalies such as the Russian heatwave are detected as well as anomalies which are not detectable with univariate methods.
An issue of literacy on pediatric arterial hypertension
NASA Astrophysics Data System (ADS)
Teodoro, M. Filomena; Romana, Andreia; Simão, Carla
2017-11-01
Arterial hypertension in pediatric age is a public health problem, whose prevalence has increased significantly over time. Pediatric arterial hypertension (PAH) is under-diagnosed in most cases, a highly prevalent disease, appears without notice with multiple consequences on the children's health and future adults. Children caregivers and close family must know the PAH existence, the negative consequences associated with it, the risk factors and, finally, must do prevention. In [12, 13] can be found a statistical data analysis using a simpler questionnaire introduced in [4] under the aim of a preliminary study about PAH caregivers acquaintance. A continuation of such analysis is detailed in [14]. An extension of such questionnaire was built and applied to a distinct population and it was filled online. The statistical approach is partially reproduced in the present work. Some statistical models were estimated using several approaches, namely multivariate analysis (factorial analysis), also adequate methods to analyze the kind of data in study.
Groundwater flow and hydrogeochemical evolution in the Jianghan Plain, central China
NASA Astrophysics Data System (ADS)
Gan, Yiqun; Zhao, Ke; Deng, Yamin; Liang, Xing; Ma, Teng; Wang, Yanxin
2018-05-01
Hydrogeochemical analysis and multivariate statistics were applied to identify flow patterns and major processes controlling the hydrogeochemistry of groundwater in the Jianghan Plain, which is located in central Yangtze River Basin (central China) and characterized by intensive surface-water/groundwater interaction. Although HCO3-Ca-(Mg) type water predominated in the study area, the 457 (21 surface water and 436 groundwater) samples were effectively classified into five clusters by hierarchical cluster analysis. The hydrochemical variations among these clusters were governed by three factors from factor analysis. Major components (e.g., Ca, Mg and HCO3) in surface water and groundwater originated from carbonate and silicate weathering (factor 1). Redox conditions (factor 2) influenced the geogenic Fe and As contamination in shallow confined groundwater. Anthropogenic activities (factor 3) primarily caused high levels of Cl and SO4 in surface water and phreatic groundwater. Furthermore, the factor score 1 of samples in the shallow confined aquifer gradually increased along the flow paths. This study demonstrates that enhanced information on hydrochemistry in complex groundwater flow systems, by multivariate statistical methods, improves the understanding of groundwater flow and hydrogeochemical evolution due to natural and anthropogenic impacts.
Whist, A C; Liland, K H; Jonsson, M E; Sæbø, S; Sviland, S; Østerås, O; Norström, M; Hopp, P
2014-11-01
Surveillance programs for animal diseases are critical to early disease detection and risk estimation and to documenting a population's disease status at a given time. The aim of this study was to describe a risk-based surveillance program for detecting Mycobacterium avium ssp. paratuberculosis (MAP) infection in Norwegian dairy cattle. The included risk factors for detecting MAP were purchase of cattle, combined cattle and goat farming, and location of the cattle farm in counties containing goats with MAP. The risk indicators included production data [culling of animals >3 yr of age, carcass conformation of animals >3 yr of age, milk production decrease in older lactating cows (lactations 3, 4, and 5)], and clinical data (diarrhea, enteritis, or both, in animals >3 yr of age). Except for combined cattle and goat farming and cattle farm location, all data were collected at the cow level and summarized at the herd level. Predefined risk factors and risk indicators were extracted from different national databases and combined in a multivariate statistical process control to obtain a risk assessment for each herd. The ordinary Hotelling's T(2) statistic was applied as a multivariate, standardized measure of difference between the current observed state and the average state of the risk factors for a given herd. To make the analysis more robust and adapt it to the slowly developing nature of MAP, monthly risk calculations were based on data accumulated during a 24-mo period. Monitoring of these variables was performed to identify outliers that may indicate deviance in one or more of the underlying processes. The highest-ranked herds were scattered all over Norway and clustered in high-density dairy cattle farm areas. The resulting rankings of herds are being used in the national surveillance program for MAP in 2014 to increase the sensitivity of the ongoing surveillance program in which 5 fecal samples for bacteriological examination are collected from 25 dairy herds. The use of multivariate statistical process control for selection of herds will be beneficial when a diagnostic test suitable for mass screening is available and validated on the Norwegian cattle population, thus making it possible to increase the number of sampled herds. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Park, Steve
1990-01-01
A large and diverse number of computational techniques are routinely used to process and analyze remotely sensed data. These techniques include: univariate statistics; multivariate statistics; principal component analysis; pattern recognition and classification; other multivariate techniques; geometric correction; registration and resampling; radiometric correction; enhancement; restoration; Fourier analysis; and filtering. Each of these techniques will be considered, in order.
Analytical aspects of plant metabolite profiling platforms: current standings and future aims.
Seger, Christoph; Sturm, Sonja
2007-02-01
Over the past years, metabolic profiling has been established as a comprehensive systems biology tool. Mass spectrometry or NMR spectroscopy-based technology platforms combined with unsupervised or supervised multivariate statistical methodologies allow a deep insight into the complex metabolite patterns of plant-derived samples. Within this review, we provide a thorough introduction to the analytical hard- and software requirements of metabolic profiling platforms. Methodological limitations are addressed, and the metabolic profiling workflow is exemplified by summarizing recent applications ranging from model systems to more applied topics.
Linear Least Squares for Correlated Data
NASA Technical Reports Server (NTRS)
Dean, Edwin B.
1988-01-01
Throughout the literature authors have consistently discussed the suspicion that regression results were less than satisfactory when the independent variables were correlated. Camm, Gulledge, and Womer, and Womer and Marcotte provide excellent applied examples of these concerns. Many authors have obtained partial solutions for this problem as discussed by Womer and Marcotte and Wonnacott and Wonnacott, which result in generalized least squares algorithms to solve restrictive cases. This paper presents a simple but relatively general multivariate method for obtaining linear least squares coefficients which are free of the statistical distortion created by correlated independent variables.
The Effect of the Multivariate Box-Cox Transformation on the Power of MANOVA.
ERIC Educational Resources Information Center
Kirisci, Levent; Hsu, Tse-Chi
Most of the multivariate statistical techniques rely on the assumption of multivariate normality. The effects of non-normality on multivariate tests are assumed to be negligible when variance-covariance matrices and sample sizes are equal. Therefore, in practice, investigators do not usually attempt to remove non-normality. In this simulation…
Zhang, Tan; Li, Fangxuan; Mu, Jiali; Liu, Juntian; Zhang, Sheng
2017-06-01
To explore the significance of ultrasonic features in differential diagnosis of thyroid nodules via combining the thyroid imaging reporting and data system (TI-RADS) and multivariate statistical analysis. Patients who received surgical treatment and was diagnosed with single thyroid nodule by postoperative pathology and preoperative ultrasound were enrolled in this study. Multivariate analysis was applied to assess the significant ultrasonic features which correlated with identifying benign or malignance and grading the TI-RADS classification of thyroid nodule. There were significant differences in the nodule size, aspect ratio, internal, echogenicity, boundary, presence or absence of calcifications, calcification type and CDFI between benign and malignant thyroid nodules. Multivariate analysis showed clear-cut distinction both between benign and malignance and among different TI-RADS categories of malignancy nodules. The shape and calcification of the nodule were important factors for distinguish the benign and malignance. Height of the nodule, aspect and calcification was important factors for grading TI-RADS categories of malignancy thyroid nodules. Ill-defined boundary, irregular shape and presence of calcification related with highly malignant risk for thyroid nodule. The larger height and aspect and presence of calcification related with higher TI-RADS classification of malignancy thyroid nodule.
Brouckaert, D; Uyttersprot, J-S; Broeckx, W; De Beer, T
2018-03-01
Calibration transfer or standardisation aims at creating a uniform spectral response on different spectroscopic instruments or under varying conditions, without requiring a full recalibration for each situation. In the current study, this strategy is applied to construct at-line multivariate calibration models and consequently employ them in-line in a continuous industrial production line, using the same spectrometer. Firstly, quantitative multivariate models are constructed at-line at laboratory scale for predicting the concentration of two main ingredients in hard surface cleaners. By regressing the Raman spectra of a set of small-scale calibration samples against their reference concentration values, partial least squares (PLS) models are developed to quantify the surfactant levels in the liquid detergent compositions under investigation. After evaluating the models performance with a set of independent validation samples, a univariate slope/bias correction is applied in view of transporting these at-line calibration models to an in-line manufacturing set-up. This standardisation technique allows a fast and easy transfer of the PLS regression models, by simply correcting the model predictions on the in-line set-up, without adjusting anything to the original multivariate calibration models. An extensive statistical analysis is performed in order to assess the predictive quality of the transferred regression models. Before and after transfer, the R 2 and RMSEP of both models is compared for evaluating if their magnitude is similar. T-tests are then performed to investigate whether the slope and intercept of the transferred regression line are not statistically different from 1 and 0, respectively. Furthermore, it is inspected whether no significant bias can be noted. F-tests are executed as well, for assessing the linearity of the transfer regression line and for investigating the statistical coincidence of the transfer and validation regression line. Finally, a paired t-test is performed to compare the original at-line model to the slope/bias corrected in-line model, using interval hypotheses. It is shown that the calibration models of Surfactant 1 and Surfactant 2 yield satisfactory in-line predictions after slope/bias correction. While Surfactant 1 passes seven out of eight statistical tests, the recommended validation parameters are 100% successful for Surfactant 2. It is hence concluded that the proposed strategy for transferring at-line calibration models to an in-line industrial environment via a univariate slope/bias correction of the predicted values offers a successful standardisation approach. Copyright © 2017 Elsevier B.V. All rights reserved.
A comparison of ensemble post-processing approaches that preserve correlation structures
NASA Astrophysics Data System (ADS)
Schefzik, Roman; Van Schaeybroeck, Bert; Vannitsem, Stéphane
2016-04-01
Despite the fact that ensemble forecasts address the major sources of uncertainty, they exhibit biases and dispersion errors and therefore are known to improve by calibration or statistical post-processing. For instance the ensemble model output statistics (EMOS) method, also known as non-homogeneous regression approach (Gneiting et al., 2005) is known to strongly improve forecast skill. EMOS is based on fitting and adjusting a parametric probability density function (PDF). However, EMOS and other common post-processing approaches apply to a single weather quantity at a single location for a single look-ahead time. They are therefore unable of taking into account spatial, inter-variable and temporal dependence structures. Recently many research efforts have been invested in designing post-processing methods that resolve this drawback but also in verification methods that enable the detection of dependence structures. New verification methods are applied on two classes of post-processing methods, both generating physically coherent ensembles. A first class uses the ensemble copula coupling (ECC) that starts from EMOS but adjusts the rank structure (Schefzik et al., 2013). The second class is a member-by-member post-processing (MBM) approach that maps each raw ensemble member to a corrected one (Van Schaeybroeck and Vannitsem, 2015). We compare variants of the EMOS-ECC and MBM classes and highlight a specific theoretical connection between them. All post-processing variants are applied in the context of the ensemble system of the European Centre of Weather Forecasts (ECMWF) and compared using multivariate verification tools including the energy score, the variogram score (Scheuerer and Hamill, 2015) and the band depth rank histogram (Thorarinsdottir et al., 2015). Gneiting, Raftery, Westveld, and Goldman, 2005: Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mon. Wea. Rev., {133}, 1098-1118. Scheuerer and Hamill, 2015. Variogram-based proper scoring rules for probabilistic forecasts of multivariate quantities. Mon. Wea. Rev. {143},1321-1334. Schefzik, Thorarinsdottir, Gneiting. Uncertainty quantification in complex simulation models using ensemble copula coupling. Statistical Science {28},616-640, 2013. Thorarinsdottir, M. Scheuerer, and C. Heinz, 2015. Assessing the calibration of high-dimensional ensemble forecasts using rank histograms, arXiv:1310.0236. Van Schaeybroeck and Vannitsem, 2015: Ensemble post-processing using member-by-member approaches: theoretical aspects. Q.J.R. Meteorol. Soc., 141: 807-818.
Multivariate Regression Analysis and Slaughter Livestock,
AGRICULTURE, *ECONOMICS), (*MEAT, PRODUCTION), MULTIVARIATE ANALYSIS, REGRESSION ANALYSIS , ANIMALS, WEIGHT, COSTS, PREDICTIONS, STABILITY, MATHEMATICAL MODELS, STORAGE, BEEF, PORK, FOOD, STATISTICAL DATA, ACCURACY
Toppi, J; Petti, M; Vecchiato, G; Cincotti, F; Salinari, S; Mattia, D; Babiloni, F; Astolfi, L
2013-01-01
Partial Directed Coherence (PDC) is a spectral multivariate estimator for effective connectivity, relying on the concept of Granger causality. Even if its original definition derived directly from information theory, two modifies were introduced in order to provide better physiological interpretations of the estimated networks: i) normalization of the estimator according to rows, ii) squared transformation. In the present paper we investigated the effect of PDC normalization on the performances achieved by applying the statistical validation process on investigated connectivity patterns under different conditions of Signal to Noise ratio (SNR) and amount of data available for the analysis. Results of the statistical analysis revealed an effect of PDC normalization only on the percentages of type I and type II errors occurred by using Shuffling procedure for the assessment of connectivity patterns. No effects of the PDC formulation resulted on the performances achieved during the validation process executed instead by means of Asymptotic Statistic approach. Moreover, the percentages of both false positives and false negatives committed by Asymptotic Statistic are always lower than those achieved by Shuffling procedure for each type of normalization.
NASA Astrophysics Data System (ADS)
Gourdol, L.; Hissler, C.; Pfister, L.
2012-04-01
The Luxembourg sandstone aquifer is of major relevance for the national supply of drinking water in Luxembourg. The city of Luxembourg (20% of the country's population) gets almost 2/3 of its drinking water from this aquifer. As a consequence, the study of both the groundwater hydrochemistry, as well as its spatial and temporal variations, are considered as of highest priority. Since 2005, a monitoring network has been implemented by the Water Department of Luxembourg City, with a view to a more sustainable management of this strategic water resource. The data collected to date forms a large and complex dataset, describing spatial and temporal variations of many hydrochemical parameters. The data treatment issue is tightly connected to this kind of water monitoring programs and complex databases. Standard multivariate statistical techniques, such as principal components analysis and hierarchical cluster analysis, have been widely used as unbiased methods for extracting meaningful information from groundwater quality data and are now classically used in many hydrogeological studies, in particular to characterize temporal or spatial hydrochemical variations induced by natural and anthropogenic factors. But these classical multivariate methods deal with two-way matrices, usually parameters/sites or parameters/time, while often the dataset resulting from qualitative water monitoring programs should be seen as a datacube parameters/sites/time. Three-way matrices, such as the one we propose here, are difficult to handle and to analyse by classical multivariate statistical tools and thus should be treated with approaches dealing with three-way data structures. One possible analysis approach consists in the use of partial triadic analysis (PTA). The PTA was previously used with success in many ecological studies but never to date in the domain of hydrogeology. Applied to the dataset of the Luxembourg Sandstone aquifer, the PTA appears as a new promising statistical instrument for hydrogeologists, in particular to characterize temporal and spatial hydrochemical variations induced by natural and anthropogenic factors. This new approach for groundwater management offers potential for 1) identifying a common multivariate spatial structure, 2) untapping the different hydrochemical patterns and explaining their controlling factors and 3) analysing the temporal variability of this structure and grasping hydrochemical changes.
Identifying environmental features for land management decisions
NASA Technical Reports Server (NTRS)
1984-01-01
Multivariate statistical analysis and imaging processing techniques are being applied to the study of arid/semiarid environments, with emphasis on desertification. Field level indicators of land-soil biota degradation are being sifted out with staging up to the low aircraft reconnaissance level, to LANDSAT TM & MSS, and even to the AVHRR level. Three completed projects are reviewed: riparian habitat on the Humboldt River floodplain, Salt Lake County Urban expansion detection, and salinization/desertification detection in the delta area. Beginning projects summarized include: comparative condition of rangeland in Rush Valley; modeling a GIS/remote sensing data base for Cache County; universal soil loss equation applied to Pinyon-Juniper; relating MSS to ground radiometry near Battle Mountain; and riparian habitat mapping on Mary's River, Nevada.
Multivariate statistical analysis of stream-sediment geochemistry in the Grazer Paläozoikum, Austria
Weber, L.; Davis, J.C.
1990-01-01
The Austrian reconnaissance study of stream-sediment composition — more than 30000 clay-fraction samples collected over an area of 40000 km2 — is summarized in an atlas of regional maps that show the distributions of 35 elements. These maps, rich in information, reveal complicated patterns of element abundance that are difficult to compare on more than a small number of maps at one time. In such a study, multivariate procedures such as simultaneous R-Q mode components analysis may be helpful. They can compress a large number of variables into a much smaller number of independent linear combinations. These composite variables may be mapped and relationships sought between them and geological properties. As an example, R-Q mode components analysis is applied here to the Grazer Paläozoikum, a tectonic unit northeast of the city of Graz, which is composed of diverse lithologies and contains many mineral deposits.
Drop coating deposition Raman spectroscopy of blood plasma for the detection of colorectal cancer
NASA Astrophysics Data System (ADS)
Li, Pengpeng; Chen, Changshui; Deng, Xiaoyuan; Mao, Hua; Jin, Shaoqin
2015-03-01
We have recently applied the technique of drop coating deposition Raman (DCDR) spectroscopy for colorectal cancer (CRC) detection using blood plasma. The aim of this study was to develop a more convenient and stable method based on blood plasma for noninvasive CRC detection. Significant differences are observed in DCDR spectra between healthy (n=105) and cancer (n=75) plasma from 15 CRC patients and 21 volunteers, particularly in the spectra that are related to proteins, nucleic acids, and β-carotene. The multivariate analysis principal components analysis and the linear discriminate analysis, together with leave-one-out, cross validation were used on DCDR spectra and yielded a sensitivity of 100% (75/75) and specificity of 98.1% (103/105) for detection of CRC. This study demonstrates that DCDR spectroscopy of blood plasma associated with multivariate statistical algorithms has the potential for the noninvasive detection of CRC.
Giacomo, Della Riccia; Stefania, Del Zotto
2013-12-15
Fumonisins are mycotoxins produced by Fusarium species that commonly live in maize. Whereas fungi damage plants, fumonisins cause disease both to cattle breedings and human beings. Law limits set fumonisins tolerable daily intake with respect to several maize based feed and food. Chemical techniques assure the most reliable and accurate measurements, but they are expensive and time consuming. A method based on Near Infrared spectroscopy and multivariate statistical regression is described as a simpler, cheaper and faster alternative. We apply Partial Least Squares with full cross validation. Two models are described, having high correlation of calibration (0.995, 0.998) and of validation (0.908, 0.909), respectively. Description of observed phenomenon is accurate and overfitting is avoided. Screening of contaminated maize with respect to European legal limit of 4 mg kg(-1) should be assured. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Singh, Veena D.; Daharwal, Sanjay J.
2017-01-01
Three multivariate calibration spectrophotometric methods were developed for simultaneous estimation of Paracetamol (PARA), Enalapril maleate (ENM) and Hydrochlorothiazide (HCTZ) in tablet dosage form; namely multi-linear regression calibration (MLRC), trilinear regression calibration method (TLRC) and classical least square (CLS) method. The selectivity of the proposed methods were studied by analyzing the laboratory prepared ternary mixture and successfully applied in their combined dosage form. The proposed methods were validated as per ICH guidelines and good accuracy; precision and specificity were confirmed within the concentration range of 5-35 μg mL- 1, 5-40 μg mL- 1 and 5-40 μg mL- 1of PARA, HCTZ and ENM, respectively. The results were statistically compared with reported HPLC method. Thus, the proposed methods can be effectively useful for the routine quality control analysis of these drugs in commercial tablet dosage form.
NASA Astrophysics Data System (ADS)
Wang, Yunzhi; Qiu, Yuchen; Thai, Theresa; More, Kathleen; Ding, Kai; Liu, Hong; Zheng, Bin
2016-03-01
How to rationally identify epithelial ovarian cancer (EOC) patients who will benefit from bevacizumab or other antiangiogenic therapies is a critical issue in EOC treatments. The motivation of this study is to quantitatively measure adiposity features from CT images and investigate the feasibility of predicting potential benefit of EOC patients with or without receiving bevacizumab-based chemotherapy treatment using multivariate statistical models built based on quantitative adiposity image features. A dataset involving CT images from 59 advanced EOC patients were included. Among them, 32 patients received maintenance bevacizumab after primary chemotherapy and the remaining 27 patients did not. We developed a computer-aided detection (CAD) scheme to automatically segment subcutaneous fat areas (VFA) and visceral fat areas (SFA) and then extracted 7 adiposity-related quantitative features. Three multivariate data analysis models (linear regression, logistic regression and Cox proportional hazards regression) were performed respectively to investigate the potential association between the model-generated prediction results and the patients' progression-free survival (PFS) and overall survival (OS). The results show that using all 3 statistical models, a statistically significant association was detected between the model-generated results and both of the two clinical outcomes in the group of patients receiving maintenance bevacizumab (p<0.01), while there were no significant association for both PFS and OS in the group of patients without receiving maintenance bevacizumab. Therefore, this study demonstrated the feasibility of using quantitative adiposity-related CT image features based statistical prediction models to generate a new clinical marker and predict the clinical outcome of EOC patients receiving maintenance bevacizumab-based chemotherapy.
NASA Astrophysics Data System (ADS)
Baker, Paul T.; Caudill, Sarah; Hodge, Kari A.; Talukder, Dipongkar; Capano, Collin; Cornish, Neil J.
2015-03-01
Searches for gravitational waves produced by coalescing black hole binaries with total masses ≳25 M⊙ use matched filtering with templates of short duration. Non-Gaussian noise bursts in gravitational wave detector data can mimic short signals and limit the sensitivity of these searches. Previous searches have relied on empirically designed statistics incorporating signal-to-noise ratio and signal-based vetoes to separate gravitational wave candidates from noise candidates. We report on sensitivity improvements achieved using a multivariate candidate ranking statistic derived from a supervised machine learning algorithm. We apply the random forest of bagged decision trees technique to two separate searches in the high mass (≳25 M⊙ ) parameter space. For a search which is sensitive to gravitational waves from the inspiral, merger, and ringdown of binary black holes with total mass between 25 M⊙ and 100 M⊙ , we find sensitive volume improvements as high as 70±13%-109±11% when compared to the previously used ranking statistic. For a ringdown-only search which is sensitive to gravitational waves from the resultant perturbed intermediate mass black hole with mass roughly between 10 M⊙ and 600 M⊙ , we find sensitive volume improvements as high as 61±4%-241±12% when compared to the previously used ranking statistic. We also report how sensitivity improvements can differ depending on mass regime, mass ratio, and available data quality information. Finally, we describe the techniques used to tune and train the random forest classifier that can be generalized to its use in other searches for gravitational waves.
Statistical analysis of multivariate atmospheric variables. [cloud cover
NASA Technical Reports Server (NTRS)
Tubbs, J. D.
1979-01-01
Topics covered include: (1) estimation in discrete multivariate distributions; (2) a procedure to predict cloud cover frequencies in the bivariate case; (3) a program to compute conditional bivariate normal parameters; (4) the transformation of nonnormal multivariate to near-normal; (5) test of fit for the extreme value distribution based upon the generalized minimum chi-square; (6) test of fit for continuous distributions based upon the generalized minimum chi-square; (7) effect of correlated observations on confidence sets based upon chi-square statistics; and (8) generation of random variates from specified distributions.
USDA-ARS?s Scientific Manuscript database
The mixed linear model (MLM) is currently among the most advanced and flexible statistical modeling techniques and its use in tackling problems in plant pathology has begun surfacing in the literature. The longitudinal MLM is a multivariate extension that handles repeatedly measured data, such as r...
ERIC Educational Resources Information Center
Martin, James L.
This paper reports on attempts by the author to construct a theoretical framework of adult education participation using a theory development process and the corresponding multivariate statistical techniques. Two problems are identified: the lack of theoretical framework in studying problems, and the limiting of statistical analysis to univariate…
[PROGNOSTIC MODELS IN MODERN MANAGEMENT OF VULVAR CANCER].
Tsvetkov, Ch; Gorchev, G; Tomov, S; Nikolova, M; Genchev, G
2016-01-01
The aim of the research was to evaluate and analyse prognosis and prognostic factors in patients with squamous cell vulvar carcinoma after primary surgery with individual approach applied during the course of treatment. In the period between January 2000 and July 2010, 113 patients with squamous cell carcinoma of the vulva were diagnosed and operated on at Gynecologic Oncology Clinic of Medical University, Pleven. All the patients were monitored at the same clinic. Individual approach was applied to each patient and whenever it was possible, more conservative operative techniques were applied. The probable clinicopathological characteristics influencing the overall survival and recurrence free survival were analyzed. Univariate statistical analysis and Cox regression analysis were made in order to evaluate the characteristics, which were statistically significant for overall survival and survival without recurrence. A multivariate logistic regression analysis (Forward Wald procedure) was applied to evaluate the combined influence of the significant factors. While performing the multivariate analysis, the synergic effect of the independent prognostic factors of both kinds of survivals was also evaluated. Approaching individually each patient, we applied the following operative techniques: 1. Deep total radical vulvectomy with separate incisions for lymph dissection (LD) or without dissection--68 (60.18 %) patients. 2. En-bloc vulvectomy with bilateral LD without vulva reconstruction--10 (8.85%) 3. Modified radical vulvactomy (hemivulvectomy, patial vulvactomy)--25 (22.02%). 4. wide-local excision--3 (2.65%). 5. Simple (total /partial) vulvectomy--5 (4.43%) patients. 6. En-bloc resection with reconstruction--2 (1.77%) After a thorough analysis of the overall survival and recurrence free survival, we made the conclusion that the relapse occurrence and clinical stage of FIGO were independent prognostic factors for overall survival and the independent prognostic factors for recurrence free survival were: metastatic inguinal nodes (unilateral or bilateral), tumor size (above or below 3 cm) and lymphovascular space invasion. On the basis of these results we created two prognostic models: 1. A prognostic model of overall survival 2. A prognostic model for survival without recurrence. Following the surgical staging of the disease, were able to gather and analyse important clinicopathological indexes, which gave us the opportunity to form prognostic groups for overall survival and recurrence-free survival.
A multivariate model and statistical method for validating tree grade lumber yield equations
Donald W. Seegrist
1975-01-01
Lumber yields within lumber grades can be described by a multivariate linear model. A method for validating lumber yield prediction equations when there are several tree grades is presented. The method is based on multivariate simultaneous test procedures.
NASA Astrophysics Data System (ADS)
Moustafa, Azza A.; Hegazy, Maha A.; Mohamed, Dalia; Ali, Omnia
2016-02-01
A novel approach for the resolution and quantitation of severely overlapped quaternary mixture of carbinoxamine maleate (CAR), pholcodine (PHL), ephedrine hydrochloride (EPH) and sunset yellow (SUN) in syrup was demonstrated utilizing different spectrophotometric assisted multivariate calibration methods. The applied methods have used different processing and pre-processing algorithms. The proposed methods were partial least squares (PLS), concentration residuals augmented classical least squares (CRACLS), and a novel method; continuous wavelet transforms coupled with partial least squares (CWT-PLS). These methods were applied to a training set in the concentration ranges of 40-100 μg/mL, 40-160 μg/mL, 100-500 μg/mL and 8-24 μg/mL for the four components, respectively. The utilized methods have not required any preliminary separation step or chemical pretreatment. The validity of the methods was evaluated by an external validation set. The selectivity of the developed methods was demonstrated by analyzing the drugs in their combined pharmaceutical formulation without any interference from additives. The obtained results were statistically compared with the official and reported methods where no significant difference was observed regarding both accuracy and precision.
Diagnostic tools for mixing models of stream water chemistry
Hooper, Richard P.
2003-01-01
Mixing models provide a useful null hypothesis against which to evaluate processes controlling stream water chemical data. Because conservative mixing of end‐members with constant concentration is a linear process, a number of simple mathematical and multivariate statistical methods can be applied to this problem. Although mixing models have been most typically used in the context of mixing soil and groundwater end‐members, an extension of the mathematics of mixing models is presented that assesses the “fit” of a multivariate data set to a lower dimensional mixing subspace without the need for explicitly identified end‐members. Diagnostic tools are developed to determine the approximate rank of the data set and to assess lack of fit of the data. This permits identification of processes that violate the assumptions of the mixing model and can suggest the dominant processes controlling stream water chemical variation. These same diagnostic tools can be used to assess the fit of the chemistry of one site into the mixing subspace of a different site, thereby permitting an assessment of the consistency of controlling end‐members across sites. This technique is applied to a number of sites at the Panola Mountain Research Watershed located near Atlanta, Georgia.
Almeida, Tiago P; Chu, Gavin S; Li, Xin; Dastagir, Nawshin; Tuan, Jiun H; Stafford, Peter J; Schlindwein, Fernando S; Ng, G André
2017-01-01
Purpose: Complex fractionated atrial electrograms (CFAE)-guided ablation after pulmonary vein isolation (PVI) has been used for persistent atrial fibrillation (persAF) therapy. This strategy has shown suboptimal outcomes due to, among other factors, undetected changes in the atrial tissue following PVI. In the present work, we investigate CFAE distribution before and after PVI in patients with persAF using a multivariate statistical model. Methods: 207 pairs of atrial electrograms (AEGs) were collected before and after PVI respectively, from corresponding LA regions in 18 persAF patients. Twelve attributes were measured from the AEGs, before and after PVI. Statistical models based on multivariate analysis of variance (MANOVA) and linear discriminant analysis (LDA) have been used to characterize the atrial regions and AEGs. Results: PVI significantly reduced CFAEs in the LA (70 vs. 40%; P < 0.0001). Four types of LA regions were identified, based on the AEGs characteristics: (i) fractionated before PVI that remained fractionated after PVI (31% of the collected points); (ii) fractionated that converted to normal (39%); (iii) normal prior to PVI that became fractionated (9%) and; (iv) normal that remained normal (21%). Individually, the attributes failed to distinguish these LA regions, but multivariate statistical models were effective in their discrimination ( P < 0.0001). Conclusion: Our results have unveiled that there are LA regions resistant to PVI, while others are affected by it. Although, traditional methods were unable to identify these different regions, the proposed multivariate statistical model discriminated LA regions resistant to PVI from those affected by it without prior ablation information.
Multivariate analysis in thoracic research.
Mengual-Macenlle, Noemí; Marcos, Pedro J; Golpe, Rafael; González-Rivas, Diego
2015-03-01
Multivariate analysis is based in observation and analysis of more than one statistical outcome variable at a time. In design and analysis, the technique is used to perform trade studies across multiple dimensions while taking into account the effects of all variables on the responses of interest. The development of multivariate methods emerged to analyze large databases and increasingly complex data. Since the best way to represent the knowledge of reality is the modeling, we should use multivariate statistical methods. Multivariate methods are designed to simultaneously analyze data sets, i.e., the analysis of different variables for each person or object studied. Keep in mind at all times that all variables must be treated accurately reflect the reality of the problem addressed. There are different types of multivariate analysis and each one should be employed according to the type of variables to analyze: dependent, interdependence and structural methods. In conclusion, multivariate methods are ideal for the analysis of large data sets and to find the cause and effect relationships between variables; there is a wide range of analysis types that we can use.
Avalappampatty Sivasamy, Aneetha; Sundan, Bose
2015-01-01
The ever expanding communication requirements in today's world demand extensive and efficient network systems with equally efficient and reliable security features integrated for safe, confident, and secured communication and data transfer. Providing effective security protocols for any network environment, therefore, assumes paramount importance. Attempts are made continuously for designing more efficient and dynamic network intrusion detection models. In this work, an approach based on Hotelling's T2 method, a multivariate statistical analysis technique, has been employed for intrusion detection, especially in network environments. Components such as preprocessing, multivariate statistical analysis, and attack detection have been incorporated in developing the multivariate Hotelling's T2 statistical model and necessary profiles have been generated based on the T-square distance metrics. With a threshold range obtained using the central limit theorem, observed traffic profiles have been classified either as normal or attack types. Performance of the model, as evaluated through validation and testing using KDD Cup'99 dataset, has shown very high detection rates for all classes with low false alarm rates. Accuracy of the model presented in this work, in comparison with the existing models, has been found to be much better. PMID:26357668
Sivasamy, Aneetha Avalappampatty; Sundan, Bose
2015-01-01
The ever expanding communication requirements in today's world demand extensive and efficient network systems with equally efficient and reliable security features integrated for safe, confident, and secured communication and data transfer. Providing effective security protocols for any network environment, therefore, assumes paramount importance. Attempts are made continuously for designing more efficient and dynamic network intrusion detection models. In this work, an approach based on Hotelling's T(2) method, a multivariate statistical analysis technique, has been employed for intrusion detection, especially in network environments. Components such as preprocessing, multivariate statistical analysis, and attack detection have been incorporated in developing the multivariate Hotelling's T(2) statistical model and necessary profiles have been generated based on the T-square distance metrics. With a threshold range obtained using the central limit theorem, observed traffic profiles have been classified either as normal or attack types. Performance of the model, as evaluated through validation and testing using KDD Cup'99 dataset, has shown very high detection rates for all classes with low false alarm rates. Accuracy of the model presented in this work, in comparison with the existing models, has been found to be much better.
Multivariate analysis: A statistical approach for computations
NASA Astrophysics Data System (ADS)
Michu, Sachin; Kaushik, Vandana
2014-10-01
Multivariate analysis is a type of multivariate statistical approach commonly used in, automotive diagnosis, education evaluating clusters in finance etc and more recently in the health-related professions. The objective of the paper is to provide a detailed exploratory discussion about factor analysis (FA) in image retrieval method and correlation analysis (CA) of network traffic. Image retrieval methods aim to retrieve relevant images from a collected database, based on their content. The problem is made more difficult due to the high dimension of the variable space in which the images are represented. Multivariate correlation analysis proposes an anomaly detection and analysis method based on the correlation coefficient matrix. Anomaly behaviors in the network include the various attacks on the network like DDOs attacks and network scanning.
NASA Astrophysics Data System (ADS)
Schulz, Hartwig; Quilitzsch, Rolf; Krüger, Hans
2003-12-01
The essential oils obtained from various chemotypes of thyme, origano and chamomile species were studied by ATR/FT-IR as well as NIR spectroscopy. Application of multivariate statistics (PCA, PLS) in conjunction with analytical reference data leads to very good IR and NIR calibration results. For the main essential oil components (e.g. carvacrol, thymol, γ-terpinene, α-bisabolol and β-farnesene) standard errors are in the range of the applied GC reference method. In most cases the multiple coefficients of determination ( R2) are >0.97. Using the IR fingerprint region (900-1400 cm -1) a qualitative discrimination of the individual chemotypes is possible already by visual judgement without to apply any chemometric algorithms.The described rapid and non-destructive methods can be applied in industry to control very easily purifying, blending and redistillation processes of the mentioned essential oils.
Deconstructing multivariate decoding for the study of brain function.
Hebart, Martin N; Baker, Chris I
2017-08-04
Multivariate decoding methods were developed originally as tools to enable accurate predictions in real-world applications. The realization that these methods can also be employed to study brain function has led to their widespread adoption in the neurosciences. However, prior to the rise of multivariate decoding, the study of brain function was firmly embedded in a statistical philosophy grounded on univariate methods of data analysis. In this way, multivariate decoding for brain interpretation grew out of two established frameworks: multivariate decoding for predictions in real-world applications, and classical univariate analysis based on the study and interpretation of brain activation. We argue that this led to two confusions, one reflecting a mixture of multivariate decoding for prediction or interpretation, and the other a mixture of the conceptual and statistical philosophies underlying multivariate decoding and classical univariate analysis. Here we attempt to systematically disambiguate multivariate decoding for the study of brain function from the frameworks it grew out of. After elaborating these confusions and their consequences, we describe six, often unappreciated, differences between classical univariate analysis and multivariate decoding. We then focus on how the common interpretation of what is signal and noise changes in multivariate decoding. Finally, we use four examples to illustrate where these confusions may impact the interpretation of neuroimaging data. We conclude with a discussion of potential strategies to help resolve these confusions in interpreting multivariate decoding results, including the potential departure from multivariate decoding methods for the study of brain function. Copyright © 2017. Published by Elsevier Inc.
Expression of p53, p21 and cyclin D1 in penile cancer: p53 predicts poor prognosis.
Gunia, Sven; Kakies, Christoph; Erbersdobler, Andreas; Hakenberg, Oliver W; Koch, Stefan; May, Matthias
2012-03-01
To evaluate the role of p53, p21 and cyclin D1 expression in patients with penile cancer (PC). Paraffin-embedded tissues from PC specimens from six pathology departments were subjected to a central histopathological review performed by one pathologist. The tissue microarray technique was used for immunostaining which was evaluated by two independent pathologists and correlated with cancer-specific survival (CSS). κ-statistics were used to assess interobserver variability. Uni- and multivariable Cox proportional hazards analysis was applied to assess the independent effects of several prognostic factors on CSS over a median of 32 months (IQR 6-66 months). Specimens and clinical data from 110 men treated surgically for primary PC were collected. p53 staining was positive in 30 and negative in 62 specimens. κ-statistics showed substantial interobserver reproducibility of p53 staining evaluation (κ=0.73; p<0.001). The 5-year CSS rate for the entire study cohort was 74%. Five-year CSS was 84% in p53-negative and 51% in p53-positive PC patients (p=0.003). Multivariable analysis showed p53 (HR=3.20; p=0.041) and pT-stage (HR=4.29; p<0.001) as independent significant prognostic factors for CSS. Cyclin D1 and p21 expression were not correlated with survival. However, incorporating p21 into a multivariable Cox model did contribute to improved model quality for predicting CSS. In patients with PC, the expression of p53 in the primary tumour specimen can be reproducibly assessed and is negatively associated with cancer specific survival.
Rare Variant Association Test with Multiple Phenotypes
Lee, Selyeong; Won, Sungho; Kim, Young Jin; Kim, Yongkang; Kim, Bong-Jo; Park, Taesung
2016-01-01
Although genome-wide association studies (GWAS) have now discovered thousands of genetic variants associated with common traits, such variants cannot explain the large degree of “missing heritability,” likely due to rare variants. The advent of next generation sequencing technology has allowed rare variant detection and association with common traits, often by investigating specific genomic regions for rare variant effects on a trait. Although multiply correlated phenotypes are often concurrently observed in GWAS, most studies analyze only single phenotypes, which may lessen statistical power. To increase power, multivariate analyses, which consider correlations between multiple phenotypes, can be used. However, few existing multi-variant analyses can identify rare variants for assessing multiple phenotypes. Here, we propose Multivariate Association Analysis using Score Statistics (MAAUSS), to identify rare variants associated with multiple phenotypes, based on the widely used Sequence Kernel Association Test (SKAT) for a single phenotype. We applied MAAUSS to Whole Exome Sequencing (WES) data from a Korean population of 1,058 subjects, to discover genes associated with multiple traits of liver function. We then assessed validation of those genes by a replication study, using an independent dataset of 3,445 individuals. Notably, we detected the gene ZNF620 among five significant genes. We then performed a simulation study to compare MAAUSS's performance with existing methods. Overall, MAAUSS successfully conserved type 1 error rates and in many cases, had a higher power than the existing methods. This study illustrates a feasible and straightforward approach for identifying rare variants correlated with multiple phenotypes, with likely relevance to missing heritability. PMID:28039885
Lepore, Natasha; Brun, Caroline A; Chiang, Ming-Chang; Chou, Yi-Yu; Dutton, Rebecca A; Hayashi, Kiralee M; Lopez, Oscar L; Aizenstein, Howard J; Toga, Arthur W; Becker, James T; Thompson, Paul M
2006-01-01
Tensor-based morphometry (TBM) is widely used in computational anatomy as a means to understand shape variation between structural brain images. A 3D nonlinear registration technique is typically used to align all brain images to a common neuroanatomical template, and the deformation fields are analyzed statistically to identify group differences in anatomy. However, the differences are usually computed solely from the determinants of the Jacobian matrices that are associated with the deformation fields computed by the registration procedure. Thus, much of the information contained within those matrices gets thrown out in the process. Only the magnitude of the expansions or contractions is examined, while the anisotropy and directional components of the changes are ignored. Here we remedy this problem by computing multivariate shape change statistics using the strain matrices. As the latter do not form a vector space, means and covariances are computed on the manifold of positive-definite matrices to which they belong. We study the brain morphology of 26 HIV/AIDS patients and 14 matched healthy control subjects using our method. The images are registered using a high-dimensional 3D fluid registration algorithm, which optimizes the Jensen-Rényi divergence, an information-theoretic measure of image correspondence. The anisotropy of the deformation is then computed. We apply a manifold version of Hotelling's T2 test to the strain matrices. Our results complement those found from the determinants of the Jacobians alone and provide greater power in detecting group differences in brain structure.
Maric, Mark; Harvey, Lauren; Tomcsak, Maren; Solano, Angelique; Bridge, Candice
2017-06-30
In comparison to other violent crimes, sexual assaults suffer from very low prosecution and conviction rates especially in the absence of DNA evidence. As a result, the forensic community needs to utilize other forms of trace contact evidence, like lubricant evidence, in order to provide a link between the victim and the assailant. In this study, 90 personal bottled and condom lubricants from the three main marketing types, silicone-based, water-based and condoms, were characterized by direct analysis in real time time of flight mass spectrometry (DART-TOFMS). The instrumental data was analyzed by multivariate statistics including hierarchal cluster analysis, principal component analysis, and linear discriminant analysis. By interpreting the mass spectral data with multivariate statistics, 12 discrete groupings were identified, indicating inherent chemical diversity not only between but within the three main marketing groups. A number of unique chemical markers, both major and minor, were identified, other than the three main chemical components (i.e. PEG, PDMS and nonoxynol-9) currently used for lubricant classification. The data was validated by a stratified 20% withheld cross-validation which demonstrated that there was minimal overlap between the groupings. Based on the groupings identified and unique features of each group, a highly discriminating statistical model was then developed that aims to provide the foundation for the development of a forensic lubricant database that may eventually be applied to casework. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Vasilaki, V; Volcke, E I P; Nandi, A K; van Loosdrecht, M C M; Katsou, E
2018-04-26
Multivariate statistical analysis was applied to investigate the dependencies and underlying patterns between N 2 O emissions and online operational variables (dissolved oxygen and nitrogen component concentrations, temperature and influent flow-rate) during biological nitrogen removal from wastewater. The system under study was a full-scale reactor, for which hourly sensor data were available. The 15-month long monitoring campaign was divided into 10 sub-periods based on the profile of N 2 O emissions, using Binary Segmentation. The dependencies between operating variables and N 2 O emissions fluctuated according to Spearman's rank correlation. The correlation between N 2 O emissions and nitrite concentrations ranged between 0.51 and 0.78. Correlation >0.7 between N 2 O emissions and nitrate concentrations was observed at sub-periods with average temperature lower than 12 °C. Hierarchical k-means clustering and principal component analysis linked N 2 O emission peaks with precipitation events and ammonium concentrations higher than 2 mg/L, especially in sub-periods characterized by low N 2 O fluxes. Additionally, the highest ranges of measured N 2 O fluxes belonged to clusters corresponding with NO 3 -N concentration less than 1 mg/L in the upstream plug-flow reactor (middle of oxic zone), indicating slow nitrification rates. The results showed that the range of N 2 O emissions partially depends on the prior behavior of the system. The principal component analysis validated the findings from the clustering analysis and showed that ammonium, nitrate, nitrite and temperature explained a considerable percentage of the variance in the system for the majority of the sub-periods. The applied statistical methods, linked the different ranges of emissions with the system variables, provided insights on the effect of operating conditions on N 2 O emissions in each sub-period and can be integrated into N 2 O emissions data processing at wastewater treatment plants. Copyright © 2018. Published by Elsevier Ltd.
Multivariate meta-analysis: a robust approach based on the theory of U-statistic.
Ma, Yan; Mazumdar, Madhu
2011-10-30
Meta-analysis is the methodology for combining findings from similar research studies asking the same question. When the question of interest involves multiple outcomes, multivariate meta-analysis is used to synthesize the outcomes simultaneously taking into account the correlation between the outcomes. Likelihood-based approaches, in particular restricted maximum likelihood (REML) method, are commonly utilized in this context. REML assumes a multivariate normal distribution for the random-effects model. This assumption is difficult to verify, especially for meta-analysis with small number of component studies. The use of REML also requires iterative estimation between parameters, needing moderately high computation time, especially when the dimension of outcomes is large. A multivariate method of moments (MMM) is available and is shown to perform equally well to REML. However, there is a lack of information on the performance of these two methods when the true data distribution is far from normality. In this paper, we propose a new nonparametric and non-iterative method for multivariate meta-analysis on the basis of the theory of U-statistic and compare the properties of these three procedures under both normal and skewed data through simulation studies. It is shown that the effect on estimates from REML because of non-normal data distribution is marginal and that the estimates from MMM and U-statistic-based approaches are very similar. Therefore, we conclude that for performing multivariate meta-analysis, the U-statistic estimation procedure is a viable alternative to REML and MMM. Easy implementation of all three methods are illustrated by their application to data from two published meta-analysis from the fields of hip fracture and periodontal disease. We discuss ideas for future research based on U-statistic for testing significance of between-study heterogeneity and for extending the work to meta-regression setting. Copyright © 2011 John Wiley & Sons, Ltd.
Time Series Model Identification by Estimating Information.
1982-11-01
principle, Applications of Statistics, P. R. Krishnaiah , ed., North-Holland: Amsterdam, 27-41. Anderson, T. W. (1971). The Statistical Analysis of Time Series...E. (1969). Multiple Time Series Modeling, Multivariate Analysis II, edited by P. Krishnaiah , Academic Press: New York, 389-409. Parzen, E. (1981...Newton, H. J. (1980). Multiple Time Series Modeling, II Multivariate Analysis - V, edited by P. Krishnaiah , North Holland: Amsterdam, 181-197. Shibata, R
Adams, Dean C
2014-09-01
Phylogenetic signal is the tendency for closely related species to display similar trait values due to their common ancestry. Several methods have been developed for quantifying phylogenetic signal in univariate traits and for sets of traits treated simultaneously, and the statistical properties of these approaches have been extensively studied. However, methods for assessing phylogenetic signal in high-dimensional multivariate traits like shape are less well developed, and their statistical performance is not well characterized. In this article, I describe a generalization of the K statistic of Blomberg et al. that is useful for quantifying and evaluating phylogenetic signal in highly dimensional multivariate data. The method (K(mult)) is found from the equivalency between statistical methods based on covariance matrices and those based on distance matrices. Using computer simulations based on Brownian motion, I demonstrate that the expected value of K(mult) remains at 1.0 as trait variation among species is increased or decreased, and as the number of trait dimensions is increased. By contrast, estimates of phylogenetic signal found with a squared-change parsimony procedure for multivariate data change with increasing trait variation among species and with increasing numbers of trait dimensions, confounding biological interpretations. I also evaluate the statistical performance of hypothesis testing procedures based on K(mult) and find that the method displays appropriate Type I error and high statistical power for detecting phylogenetic signal in high-dimensional data. Statistical properties of K(mult) were consistent for simulations using bifurcating and random phylogenies, for simulations using different numbers of species, for simulations that varied the number of trait dimensions, and for different underlying models of trait covariance structure. Overall these findings demonstrate that K(mult) provides a useful means of evaluating phylogenetic signal in high-dimensional multivariate traits. Finally, I illustrate the utility of the new approach by evaluating the strength of phylogenetic signal for head shape in a lineage of Plethodon salamanders. © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Laurens, L M L; Wolfrum, E J
2013-12-18
One of the challenges associated with microalgal biomass characterization and the comparison of microalgal strains and conversion processes is the rapid determination of the composition of algae. We have developed and applied a high-throughput screening technology based on near-infrared (NIR) spectroscopy for the rapid and accurate determination of algal biomass composition. We show that NIR spectroscopy can accurately predict the full composition using multivariate linear regression analysis of varying lipid, protein, and carbohydrate content of algal biomass samples from three strains. We also demonstrate a high quality of predictions of an independent validation set. A high-throughput 96-well configuration for spectroscopy gives equally good prediction relative to a ring-cup configuration, and thus, spectra can be obtained from as little as 10-20 mg of material. We found that lipids exhibit a dominant, distinct, and unique fingerprint in the NIR spectrum that allows for the use of single and multiple linear regression of respective wavelengths for the prediction of the biomass lipid content. This is not the case for carbohydrate and protein content, and thus, the use of multivariate statistical modeling approaches remains necessary.
Ma, Chunhui; Dastmalchi, Keyvan; Flores, Gema; Wu, Shi-Biao; Pedraza-Peñalosa, Paola; Long, Chunlin; Kennelly, Edward J
2013-04-10
There are many neotropical blueberries, and recent studies have shown that some have even stronger antioxidant activity than the well-known edible North American blueberries. Antioxidant marker compounds were predicted by applying multivariate statistics to data from LC-TOF-MS analysis and antioxidant assays of 3 North American blueberry species (Vaccinium corymbosum, Vaccinium angustifolium, and a defined mixture of Vaccinium virgatum with V. corymbosum) and 12 neotropical blueberry species (Anthopterus wardii, Cavendishia grandifolia, Cavendishia isernii, Ceratostema silvicola, Disterigma rimbachii, Macleania coccoloboides, Macleania cordifolia, Macleania rupestris, Satyria boliviana, Sphyrospermum buxifolium, Sphyrospermum cordifolium, and Sphyrospermum ellipticum). Fourteen antioxidant markers were detected, and 12 of these, including 7 anthocyanins, 3 flavonols, 1 hydroxycinnamic acid, and 1 iridoid glycoside, were identified. This application of multivariate analysis to bioactivity and mass data can be used for identification of pharmacologically active natural products and may help to determine which neotropical blueberry species will be prioritized for agricultural development. Also, the compositional differences between North American and neotropical blueberries were determined by chemometric analysis, and 44 marker compounds including 16 anthocyanins, 15 flavonoids, 7 hydroxycinnamic acid derivatives, 5 triterpene glycosides, and 1 iridoid glycoside were identified.
Systematic evaluation of serum and plasma collection on the endogenous metabolome.
Zhou, Zhi; Chen, Yanhua; He, Jiuming; Xu, Jing; Zhang, Ruiping; Mao, Yan; Abliz, Zeper
2017-02-01
In metabolomics research, the use of different blood collection methods may influence endogenous metabolites. Ultra HPLC coupled with MS/MS was applied together with multivariate statistics to investigate metabolomics differences in serum and plasma samples handled by different anticoagulants. A total of 135 known representative metabolites were assessed for comprehensive evaluation of the effects of anticoagulants. Exogenous factors, including separation gel ingredients from the serum collection tubes and the anticoagulants, affected mass spectrometer detection. Heparin plasma yielded the best detection of different functional groups and is therefore the optimal blood specimen for metabolomics research, followed by potassium oxalate plasma.
Workplace stress in nursing workers from an emergency hospital: Job Stress Scale analysis.
Urbanetto, Janete de Souza; da Silva, Priscila Costa; Hoffmeister, Eveline; de Negri, Bianca Souza; da Costa, Bartira Ercília Pinheiro; Poli de Figueiredo, Carlos Eduardo
2011-01-01
This study identifies workplace stress according to the Job Stress Scale and associates it with socio-demographic and occupational variables of nursing workers from an emergency hospital. This is a cross-sectional study and data were collected through a questionnaire applied to 388 nursing professionals. Descriptive statistics were applied; univariate and multivariate analyses were performed. The results indicate there is a significant association with being a nursing technician or auxiliary, working in the position for more than 15 years, and having low social support, with 3.84, 2.25 and 4.79 times more chances of being placed in the 'high strain job' quadrant. The study reveals that aspects related to the workplace should be monitored by competent agencies in order to improve the quality of life of nursing workers.
Adjustment of geochemical background by robust multivariate statistics
Zhou, D.
1985-01-01
Conventional analyses of exploration geochemical data assume that the background is a constant or slowly changing value, equivalent to a plane or a smoothly curved surface. However, it is better to regard the geochemical background as a rugged surface, varying with changes in geology and environment. This rugged surface can be estimated from observed geological, geochemical and environmental properties by using multivariate statistics. A method of background adjustment was developed and applied to groundwater and stream sediment reconnaissance data collected from the Hot Springs Quadrangle, South Dakota, as part of the National Uranium Resource Evaluation (NURE) program. Source-rock lithology appears to be a dominant factor controlling the chemical composition of groundwater or stream sediments. The most efficacious adjustment procedure is to regress uranium concentration on selected geochemical and environmental variables for each lithologic unit, and then to delineate anomalies by a common threshold set as a multiple of the standard deviation of the combined residuals. Robust versions of regression and RQ-mode principal components analysis techniques were used rather than ordinary techniques to guard against distortion caused by outliers Anomalies delineated by this background adjustment procedure correspond with uranium prospects much better than do anomalies delineated by conventional procedures. The procedure should be applicable to geochemical exploration at different scales for other metals. ?? 1985.
NASA Astrophysics Data System (ADS)
Yao, Yuchen; Bao, Jie; Skyllas-Kazacos, Maria; Welch, Barry J.; Akhmetov, Sergey
2018-04-01
Individual anode current signals in aluminum reduction cells provide localized cell conditions in the vicinity of each anode, which contain more information than the conventionally measured cell voltage and line current. One common use of this measurement is to identify process faults that can cause significant changes in the anode current signals. While this method is simple and direct, it ignores the interactions between anode currents and other important process variables. This paper presents an approach that applies multivariate statistical analysis techniques to individual anode currents and other process operating data, for the detection and diagnosis of local process abnormalities in aluminum reduction cells. Specifically, since the Hall-Héroult process is time-varying with its process variables dynamically and nonlinearly correlated, dynamic kernel principal component analysis with moving windows is used. The cell is discretized into a number of subsystems, with each subsystem representing one anode and cell conditions in its vicinity. The fault associated with each subsystem is identified based on multivariate statistical control charts. The results show that the proposed approach is able to not only effectively pinpoint the problematic areas in the cell, but also assess the effect of the fault on different parts of the cell.
Chounlamany, Vanseng; Tanchuling, Maria Antonia; Inoue, Takanobu
2017-09-01
Payatas landfill in Quezon City, Philippines, releases leachate to the Marikina River through a creek. Multivariate statistical techniques were applied to study temporal and spatial variations in water quality of a segment of the Marikina River. The data set included 12 physico-chemical parameters for five monitoring stations over a year. Cluster analysis grouped the monitoring stations into four clusters and identified January-May as dry season and June-September as wet season. Principal components analysis showed that three latent factors are responsible for the data set explaining 83% of its total variance. The chemical oxygen demand, biochemical oxygen demand, total dissolved solids, Cl - and PO 4 3- are influenced by anthropogenic impact/eutrophication pollution from point sources. Total suspended solids, turbidity and SO 4 2- are influenced by rain and soil erosion. The highest state of pollution is at the Payatas creek outfall from March to May, whereas at downstream stations it is in May. The current study indicates that the river monitoring requires only four stations, nine water quality parameters and testing over three specific months of the year. The findings of this study imply that Payatas landfill requires a proper leachate collection and treatment system to reduce its impact on the Marikina River.
Lei, Tianli; Chen, Shifeng; Wang, Kai; Zhang, Dandan; Dong, Lin; Lv, Chongning; Wang, Jing; Lu, Jincai
2018-02-01
Bupleuri Radix is a commonly used herb in clinic, and raw and vinegar-baked Bupleuri Radix are both documented in the Pharmacopoeia of People's Republic of China. According to the theories of traditional Chinese medicine, Bupleuri Radix possesses different therapeutic effects before and after processing. However, the chemical mechanism of this processing is still unknown. In this study, ultra-high-performance liquid chromatography with quadruple time-of-flight mass spectrometry coupled with multivariate statistical analysis including principal component analysis and orthogonal partial least square-discriminant analysis was developed to holistically compare the difference between raw and vinegar-baked Bupleuri Radix for the first time. As a result, 50 peaks in raw and processed Bupleuri Radix were detected, respectively, and a total of 49 peak chemical compounds were identified. Saikosaponin a, saikosaponin d, saikosaponin b 3 , saikosaponin e, saikosaponin c, saikosaponin b 2 , saikosaponin b 1 , 4''-O-acetyl-saikosaponin d, hyperoside and 3',4'-dimethoxy quercetin were explored as potential markers of raw and vinegar-baked Bupleuri Radix. This study has been successfully applied for global analysis of raw and vinegar-processed samples. Furthermore, the underlying hepatoprotective mechanism of Bupleuri Radix was predicted, which was related to the changes of chemical profiling. Copyright © 2017 John Wiley & Sons, Ltd.
Wang, Fang-Xu; Yuan, Jian-Chao; Kang, Li-Ping; Pang, Xu; Yan, Ren-Yi; Zhao, Yang; Zhang, Jie; Sun, Xin-Guang; Ma, Bai-Ping
2016-09-10
An ultra high-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry approach coupled with multivariate statistical analysis was established and applied to rapidly distinguish the chemical differences between fibrous root and rhizome of Anemarrhena asphodeloides. The datasets of tR-m/z pairs, ion intensity and sample code were processed by principal component analysis and orthogonal partial least squares discriminant analysis. Chemical markers could be identified based on their exact mass data, fragmentation characteristics, and retention times. And the new compounds among chemical markers could be isolated rapidly guided by the ultra high-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry and their definitive structures would be further elucidated by NMR spectra. Using this approach, twenty-four markers were identified on line including nine new saponins and five new steroidal saponins of them were obtained in pure form. The study validated this proposed approach as a suitable method for identification of the chemical differences between various medicinal parts in order to expand medicinal parts and increase the utilization rate of resources. Copyright © 2016 Elsevier B.V. All rights reserved.
Forecasts of non-Gaussian parameter spaces using Box-Cox transformations
NASA Astrophysics Data System (ADS)
Joachimi, B.; Taylor, A. N.
2011-09-01
Forecasts of statistical constraints on model parameters using the Fisher matrix abound in many fields of astrophysics. The Fisher matrix formalism involves the assumption of Gaussianity in parameter space and hence fails to predict complex features of posterior probability distributions. Combining the standard Fisher matrix with Box-Cox transformations, we propose a novel method that accurately predicts arbitrary posterior shapes. The Box-Cox transformations are applied to parameter space to render it approximately multivariate Gaussian, performing the Fisher matrix calculation on the transformed parameters. We demonstrate that, after the Box-Cox parameters have been determined from an initial likelihood evaluation, the method correctly predicts changes in the posterior when varying various parameters of the experimental setup and the data analysis, with marginally higher computational cost than a standard Fisher matrix calculation. We apply the Box-Cox-Fisher formalism to forecast cosmological parameter constraints by future weak gravitational lensing surveys. The characteristic non-linear degeneracy between matter density parameter and normalization of matter density fluctuations is reproduced for several cases, and the capabilities of breaking this degeneracy by weak-lensing three-point statistics is investigated. Possible applications of Box-Cox transformations of posterior distributions are discussed, including the prospects for performing statistical data analysis steps in the transformed Gaussianized parameter space.
NASA Technical Reports Server (NTRS)
Liberty, S. R.; Mielke, R. R.; Tung, L. J.
1981-01-01
Applied research in the area of spectral assignment in multivariable systems is reported. A frequency domain technique for determining the set of all stabilizing controllers for a single feedback loop multivariable system is described. It is shown that decoupling and tracking are achievable using this procedure. The technique is illustrated with a simple example.
Moorman, J. Randall; Delos, John B.; Flower, Abigail A.; Cao, Hanqing; Kovatchev, Boris P.; Richman, Joshua S.; Lake, Douglas E.
2014-01-01
We have applied principles of statistical signal processing and non-linear dynamics to analyze heart rate time series from premature newborn infants in order to assist in the early diagnosis of sepsis, a common and potentially deadly bacterial infection of the bloodstream. We began with the observation of reduced variability and transient decelerations in heart rate interval time series for hours up to days prior to clinical signs of illness. We find that measurements of standard deviation, sample asymmetry and sample entropy are highly related to imminent clinical illness. We developed multivariable statistical predictive models, and an interface to display the real-time results to clinicians. Using this approach, we have observed numerous cases in which incipient neonatal sepsis was diagnosed and treated without any clinical illness at all. This review focuses on the mathematical and statistical time series approaches used to detect these abnormal heart rate characteristics and present predictive monitoring information to the clinician. PMID:22026974
Gridded Calibration of Ensemble Wind Vector Forecasts Using Ensemble Model Output Statistics
NASA Astrophysics Data System (ADS)
Lazarus, S. M.; Holman, B. P.; Splitt, M. E.
2017-12-01
A computationally efficient method is developed that performs gridded post processing of ensemble wind vector forecasts. An expansive set of idealized WRF model simulations are generated to provide physically consistent high resolution winds over a coastal domain characterized by an intricate land / water mask. Ensemble model output statistics (EMOS) is used to calibrate the ensemble wind vector forecasts at observation locations. The local EMOS predictive parameters (mean and variance) are then spread throughout the grid utilizing flow-dependent statistical relationships extracted from the downscaled WRF winds. Using data withdrawal and 28 east central Florida stations, the method is applied to one year of 24 h wind forecasts from the Global Ensemble Forecast System (GEFS). Compared to the raw GEFS, the approach improves both the deterministic and probabilistic forecast skill. Analysis of multivariate rank histograms indicate the post processed forecasts are calibrated. Two downscaling case studies are presented, a quiescent easterly flow event and a frontal passage. Strengths and weaknesses of the approach are presented and discussed.
Predictors of matching in an ophthalmology residency program.
Loh, Allison R; Joseph, Damien; Keenan, Jeremy D; Lietman, Thomas M; Naseri, Ayman
2013-04-01
To examine the characteristics of US medical students applying for ophthalmology residency and to determine the predictors of matching. A retrospective case series. A total of 3435 medical students from the United States who applied to an ophthalmology residency program from 2003 to 2008 were included. Matched and unmatched applicants were compared and stratified by predictor variables, including United States Medical Licensing Examination (USMLE) Step 1 score, Alpha Omega Alpha (AOA) status, medical school reputation, and medical school geographic region. Differences in proportions were analyzed using the Fisher exact test. Logistic regression was used to determine the predictors of successful matching. Successful matching to an ophthalmology program. The majority of applicants (72%, 2486/3435) matched in ophthalmology. In multivariate analysis, AOA membership (odds ratio [OR], 2.6, P<0.0001), USMLE score (OR, 1.6; P<0.0001), presence of an ophthalmology residency at medical school (OR, 1.4; P = 0.01), top 25 medical school (OR, 1.4; P<0.03), top 10 medical school (OR, 1.6; P<0.02), and allopathic degree (OR, 4.0; P<0.0001) were statistically significant predictors of matching. Approximately 60% (1442/2486) of applicants matched to the same geographic region as their medical school. Applicants were more likely to match at a program in the same geographic region as their medical school than would be predicted by chance alone (P<0.0001). In multivariate analysis, higher USMLE score (OR, 0.9; P<0.0001) and top 10 medical school (OR, 0.7; P = 0.027) were statistically significant predictors of matching to outside the geographic region as one's medical school. The majority of applicants applying for an ophthalmology residency position match successfully. Higher performance on quantitative metrics seems to confer an advantage for matching. The majority of applicants match at a residency program within the same geographic region as one's medical school. Copyright © 2013 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Vrac, Mathieu
2018-06-01
Climate simulations often suffer from statistical biases with respect to observations or reanalyses. It is therefore common to correct (or adjust) those simulations before using them as inputs into impact models. However, most bias correction (BC) methods are univariate and so do not account for the statistical dependences linking the different locations and/or physical variables of interest. In addition, they are often deterministic, and stochasticity is frequently needed to investigate climate uncertainty and to add constrained randomness to climate simulations that do not possess a realistic variability. This study presents a multivariate method of rank resampling for distributions and dependences (R2D2) bias correction allowing one to adjust not only the univariate distributions but also their inter-variable and inter-site dependence structures. Moreover, the proposed R2D2 method provides some stochasticity since it can generate as many multivariate corrected outputs as the number of statistical dimensions (i.e., number of grid cell × number of climate variables) of the simulations to be corrected. It is based on an assumption of stability in time of the dependence structure - making it possible to deal with a high number of statistical dimensions - that lets the climate model drive the temporal properties and their changes in time. R2D2 is applied on temperature and precipitation reanalysis time series with respect to high-resolution reference data over the southeast of France (1506 grid cell). Bivariate, 1506-dimensional and 3012-dimensional versions of R2D2 are tested over a historical period and compared to a univariate BC. How the different BC methods behave in a climate change context is also illustrated with an application to regional climate simulations over the 2071-2100 period. The results indicate that the 1d-BC basically reproduces the climate model multivariate properties, 2d-R2D2 is only satisfying in the inter-variable context, 1506d-R2D2 strongly improves inter-site properties and 3012d-R2D2 is able to account for both. Applications of the proposed R2D2 method to various climate datasets are relevant for many impact studies. The perspectives of improvements are numerous, such as introducing stochasticity in the dependence itself, questioning its stability assumption, and accounting for temporal properties adjustment while including more physics in the adjustment procedures.
A Statistical Discrimination Experiment for Eurasian Events Using a Twenty-Seven-Station Network
1980-07-08
to test the effectiveness of a multivariate method of analysis for distinguishing earthquakes from explosions. The data base for the experiment...to test the effectiveness of a multivariate method of analysis for distinguishing earthquakes from explosions. The data base for the experiment...the weight assigned to each variable whenever a new one is added. Jennrich, R. I. (1977). Stepwise discriminant analysis , in Statistical Methods for
Souza, Iara da Costa; Morozesk, Mariana; Duarte, Ian Drumond; Bonomo, Marina Marques; Rocha, Lívia Dorsch; Furlan, Larissa Maria; Arrivabene, Hiulana Pereira; Monferrán, Magdalena Victoria; Matsumoto, Silvia Tamie; Milanez, Camilla Rozindo Dias; Wunderlin, Daniel Alberto; Fernandes, Marisa Narciso
2014-08-01
Roots of mangrove trees have an important role in depurating water and sediments by retaining metals that may accumulate in different plant tissues, affecting physiological processes and anatomy. The present study aimed to evaluate adaptive changes in root of Rhizophora mangle in response to different levels of chemical elements (metals/metalloids) in interstitial water and sediments from four neotropical mangroves in Brazil. What sets this study apart from other studies is that we not only investigate adaptive modifications in R. mangle but also changes in environments where this plant grows, evaluating correspondence between physical, chemical and biological issues by a combined set of multivariate statistical methods (pattern recognition). Thus, we looked to match changes in the environment with adaptations in plants. Multivariate statistics highlighted that the lignified periderm and the air gaps are directly related to the environmental contamination. Current results provide new evidences of root anatomical strategies to deal with contaminated environments. Multivariate statistics greatly contributes to extrapolate results from complex data matrixes obtained when analyzing environmental issues, pointing out parameters involved in environmental changes and also evidencing the adaptive response of the exposed biota. Copyright © 2014 Elsevier Ltd. All rights reserved.
Estimating an Effect Size in One-Way Multivariate Analysis of Variance (MANOVA)
ERIC Educational Resources Information Center
Steyn, H. S., Jr.; Ellis, S. M.
2009-01-01
When two or more univariate population means are compared, the proportion of variation in the dependent variable accounted for by population group membership is eta-squared. This effect size can be generalized by using multivariate measures of association, based on the multivariate analysis of variance (MANOVA) statistics, to establish whether…
Yan, Binjun; Fang, Zhonghua; Shen, Lijuan; Qu, Haibin
2015-01-01
The batch-to-batch quality consistency of herbal drugs has always been an important issue. To propose a methodology for batch-to-batch quality control based on HPLC-MS fingerprints and process knowledgebase. The extraction process of Compound E-jiao Oral Liquid was taken as a case study. After establishing the HPLC-MS fingerprint analysis method, the fingerprints of the extract solutions produced under normal and abnormal operation conditions were obtained. Multivariate statistical models were built for fault detection and a discriminant analysis model was built using the probabilistic discriminant partial-least-squares method for fault diagnosis. Based on multivariate statistical analysis, process knowledge was acquired and the cause-effect relationship between process deviations and quality defects was revealed. The quality defects were detected successfully by multivariate statistical control charts and the type of process deviations were diagnosed correctly by discriminant analysis. This work has demonstrated the benefits of combining HPLC-MS fingerprints, process knowledge and multivariate analysis for the quality control of herbal drugs. Copyright © 2015 John Wiley & Sons, Ltd.
Stamate, Mirela Cristina; Todor, Nicolae; Cosgarea, Marcel
2015-01-01
The clinical utility of otoacoustic emissions as a noninvasive objective test of cochlear function has been long studied. Both transient otoacoustic emissions and distorsion products can be used to identify hearing loss, but to what extent they can be used as predictors for hearing loss is still debated. Most studies agree that multivariate analyses have better test performances than univariate analyses. The aim of the study was to determine transient otoacoustic emissions and distorsion products performance in identifying normal and impaired hearing loss, using the pure tone audiogram as a gold standard procedure and different multivariate statistical approaches. The study included 105 adult subjects with normal hearing and hearing loss who underwent the same test battery: pure-tone audiometry, tympanometry, otoacoustic emission tests. We chose to use the logistic regression as a multivariate statistical technique. Three logistic regression models were developed to characterize the relations between different risk factors (age, sex, tinnitus, demographic features, cochlear status defined by otoacoustic emissions) and hearing status defined by pure-tone audiometry. The multivariate analyses allow the calculation of the logistic score, which is a combination of the inputs, weighted by coefficients, calculated within the analyses. The accuracy of each model was assessed using receiver operating characteristics curve analysis. We used the logistic score to generate receivers operating curves and to estimate the areas under the curves in order to compare different multivariate analyses. We compared the performance of each otoacoustic emission (transient, distorsion product) using three different multivariate analyses for each ear, when multi-frequency gold standards were used. We demonstrated that all multivariate analyses provided high values of the area under the curve proving the performance of the otoacoustic emissions. Each otoacoustic emission test presented high values of area under the curve, suggesting that implementing a multivariate approach to evaluate the performances of each otoacoustic emission test would serve to increase the accuracy in identifying the normal and impaired ears. We encountered the highest area under the curve value for the combined multivariate analysis suggesting that both otoacoustic emission tests should be used in assessing hearing status. Our multivariate analyses revealed that age is a constant predictor factor of the auditory status for both ears, but the presence of tinnitus was the most important predictor for the hearing level, only for the left ear. Age presented similar coefficients, but tinnitus coefficients, by their high value, produced the highest variations of the logistic scores, only for the left ear group, thus increasing the risk of hearing loss. We did not find gender differences between ears for any otoacoustic emission tests, but studies still debate this question as the results are contradictory. Neither gender, nor environment origin had any predictive value for the hearing status, according to the results of our study. Like any other audiological test, using otoacoustic emissions to identify hearing loss is not without error. Even when applying multivariate analysis, perfect test performance is never achieved. Although most studies demonstrated the benefit of using the multivariate analysis, it has not been incorporated into clinical decisions maybe because of the idiosyncratic nature of multivariate solutions or because of the lack of the validation studies.
STAMATE, MIRELA CRISTINA; TODOR, NICOLAE; COSGAREA, MARCEL
2015-01-01
Background and aim The clinical utility of otoacoustic emissions as a noninvasive objective test of cochlear function has been long studied. Both transient otoacoustic emissions and distorsion products can be used to identify hearing loss, but to what extent they can be used as predictors for hearing loss is still debated. Most studies agree that multivariate analyses have better test performances than univariate analyses. The aim of the study was to determine transient otoacoustic emissions and distorsion products performance in identifying normal and impaired hearing loss, using the pure tone audiogram as a gold standard procedure and different multivariate statistical approaches. Methods The study included 105 adult subjects with normal hearing and hearing loss who underwent the same test battery: pure-tone audiometry, tympanometry, otoacoustic emission tests. We chose to use the logistic regression as a multivariate statistical technique. Three logistic regression models were developed to characterize the relations between different risk factors (age, sex, tinnitus, demographic features, cochlear status defined by otoacoustic emissions) and hearing status defined by pure-tone audiometry. The multivariate analyses allow the calculation of the logistic score, which is a combination of the inputs, weighted by coefficients, calculated within the analyses. The accuracy of each model was assessed using receiver operating characteristics curve analysis. We used the logistic score to generate receivers operating curves and to estimate the areas under the curves in order to compare different multivariate analyses. Results We compared the performance of each otoacoustic emission (transient, distorsion product) using three different multivariate analyses for each ear, when multi-frequency gold standards were used. We demonstrated that all multivariate analyses provided high values of the area under the curve proving the performance of the otoacoustic emissions. Each otoacoustic emission test presented high values of area under the curve, suggesting that implementing a multivariate approach to evaluate the performances of each otoacoustic emission test would serve to increase the accuracy in identifying the normal and impaired ears. We encountered the highest area under the curve value for the combined multivariate analysis suggesting that both otoacoustic emission tests should be used in assessing hearing status. Our multivariate analyses revealed that age is a constant predictor factor of the auditory status for both ears, but the presence of tinnitus was the most important predictor for the hearing level, only for the left ear. Age presented similar coefficients, but tinnitus coefficients, by their high value, produced the highest variations of the logistic scores, only for the left ear group, thus increasing the risk of hearing loss. We did not find gender differences between ears for any otoacoustic emission tests, but studies still debate this question as the results are contradictory. Neither gender, nor environment origin had any predictive value for the hearing status, according to the results of our study. Conclusion Like any other audiological test, using otoacoustic emissions to identify hearing loss is not without error. Even when applying multivariate analysis, perfect test performance is never achieved. Although most studies demonstrated the benefit of using the multivariate analysis, it has not been incorporated into clinical decisions maybe because of the idiosyncratic nature of multivariate solutions or because of the lack of the validation studies. PMID:26733749
Classification of Malaysia aromatic rice using multivariate statistical analysis
NASA Astrophysics Data System (ADS)
Abdullah, A. H.; Adom, A. H.; Shakaff, A. Y. Md; Masnan, M. J.; Zakaria, A.; Rahim, N. A.; Omar, O.
2015-05-01
Aromatic rice (Oryza sativa L.) is considered as the best quality premium rice. The varieties are preferred by consumers because of its preference criteria such as shape, colour, distinctive aroma and flavour. The price of aromatic rice is higher than ordinary rice due to its special needed growth condition for instance specific climate and soil. Presently, the aromatic rice quality is identified by using its key elements and isotopic variables. The rice can also be classified via Gas Chromatography Mass Spectrometry (GC-MS) or human sensory panels. However, the uses of human sensory panels have significant drawbacks such as lengthy training time, and prone to fatigue as the number of sample increased and inconsistent. The GC-MS analysis techniques on the other hand, require detailed procedures, lengthy analysis and quite costly. This paper presents the application of in-house developed Electronic Nose (e-nose) to classify new aromatic rice varieties. The e-nose is used to classify the variety of aromatic rice based on the samples odour. The samples were taken from the variety of rice. The instrument utilizes multivariate statistical data analysis, including Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and K-Nearest Neighbours (KNN) to classify the unknown rice samples. The Leave-One-Out (LOO) validation approach is applied to evaluate the ability of KNN to perform recognition and classification of the unspecified samples. The visual observation of the PCA and LDA plots of the rice proves that the instrument was able to separate the samples into different clusters accordingly. The results of LDA and KNN with low misclassification error support the above findings and we may conclude that the e-nose is successfully applied to the classification of the aromatic rice varieties.
Bonetti, Jennifer; Quarino, Lawrence
2014-05-01
This study has shown that the combination of simple techniques with the use of multivariate statistics offers the potential for the comparative analysis of soil samples. Five samples were obtained from each of twelve state parks across New Jersey in both the summer and fall seasons. Each sample was examined using particle-size distribution, pH analysis in both water and 1 M CaCl2 , and a loss on ignition technique. Data from each of the techniques were combined, and principal component analysis (PCA) and canonical discriminant analysis (CDA) were used for multivariate data transformation. Samples from different locations could be visually differentiated from one another using these multivariate plots. Hold-one-out cross-validation analysis showed error rates as low as 3.33%. Ten blind study samples were analyzed resulting in no misclassifications using Mahalanobis distance calculations and visual examinations of multivariate plots. Seasonal variation was minimal between corresponding samples, suggesting potential success in forensic applications. © 2014 American Academy of Forensic Sciences.
Sciutto, Giorgia; Oliveri, Paolo; Catelli, Emilio; Bonacini, Irene
2017-01-01
In the field of applied researches in heritage science, the use of multivariate approach is still quite limited and often chemometric results obtained are often underinterpreted. Within this scenario, the present paper is aimed at disseminating the use of suitable multivariate methodologies and proposes a procedural workflow applied on a representative group of case studies, of considerable importance for conservation purposes, as a sort of guideline on the processing and on the interpretation of this FTIR data. Initially, principal component analysis (PCA) is performed and the score values are converted into chemical maps. Successively, the brushing approach is applied, demonstrating its usefulness for a deep understanding of the relationships between the multivariate map and PC score space, as well as for the identification of the spectral bands mainly involved in the definition of each area localised within the score maps. PMID:29333162
Alkarkhi, Abbas F M; Ramli, Saifullah Bin; Easa, Azhar Mat
2009-01-01
Major (sodium, potassium, calcium, magnesium) and minor elements (iron, copper, zinc, manganese) and one heavy metal (lead) of Cavendish banana flour and Dream banana flour were determined, and data were analyzed using multivariate statistical techniques of factor analysis and discriminant analysis. Factor analysis yielded four factors explaining more than 81% of the total variance: the first factor explained 28.73%, comprising magnesium, sodium, and iron; the second factor explained 21.47%, comprising only manganese and copper; the third factor explained 15.66%, comprising zinc and lead; while the fourth factor explained 15.50%, comprising potassium. Discriminant analysis showed that magnesium and sodium exhibited a strong contribution in discriminating the two types of banana flour, affording 100% correct assignation. This study presents the usefulness of multivariate statistical techniques for analysis and interpretation of complex mineral content data from banana flour of different varieties.
Hopke, P K; Liu, C; Rubin, D B
2001-03-01
Many chemical and environmental data sets are complicated by the existence of fully missing values or censored values known to lie below detection thresholds. For example, week-long samples of airborne particulate matter were obtained at Alert, NWT, Canada, between 1980 and 1991, where some of the concentrations of 24 particulate constituents were coarsened in the sense of being either fully missing or below detection limits. To facilitate scientific analysis, it is appealing to create complete data by filling in missing values so that standard complete-data methods can be applied. We briefly review commonly used strategies for handling missing values and focus on the multiple-imputation approach, which generally leads to valid inferences when faced with missing data. Three statistical models are developed for multiply imputing the missing values of airborne particulate matter. We expect that these models are useful for creating multiple imputations in a variety of incomplete multivariate time series data sets.
Detection of Leukemia with Blood Samples Using Raman Spectroscopy and Multivariate Analysis
NASA Astrophysics Data System (ADS)
Martínez-Espinosa, J. C.; González-Solís, J. L.; Frausto-Reyes, C.; Miranda-Beltrán, M. L.; Soria-Fregoso, C.; Medina-Valtierra, J.
2009-06-01
The use of Raman spectroscopy to analyze blood biochemistry and hence distinguish between normal and abnormal blood was investigated. Blood samples were obtained from 6 patients who were clinically diagnosed with leukemia and 6 healthy volunteers. The imprint was put under the microscope and several points were chosen for Raman measurement. All the spectra were collected by a confocal Raman micro-spectroscopy (Renishaw) with a NIR 830 nm laser. It is shown that the serum samples from patients with leukemia and from the control group can be discriminated when the multivariate statistical methods of principal component analysis (PCA) and linear discriminated analysis (LDA) are applied to their Raman spectra. The ratios of some band intensities were analyzed and some band ratios were significant and corresponded to proteins, phospholipids, and polysaccharides. The preliminary results suggest that Raman Spectroscopy could be a new technique to study the degree of damage to the bone marrow using just blood samples instead of biopsies, treatment very painful for patients.
Moore, Hannah E; Pechal, Jennifer L; Benbow, M Eric; Drijfhout, Falko P
2017-05-16
Cuticular hydrocarbons (CHC) have been successfully used in the field of forensic entomology for identifying and ageing forensically important blowfly species, primarily in the larval stages. However in older scenes where all other entomological evidence is no longer present, Calliphoridae puparial cases can often be all that remains and therefore being able to establish the age could give an indication of the PMI. This paper examined the CHCs present in the lipid wax layer of insects, to determine the age of the cases over a period of nine months. The two forensically important species examined were Calliphora vicina and Lucilia sericata. The hydrocarbons were chemically extracted and analysed using Gas Chromatography - Mass Spectrometry. Statistical analysis was then applied in the form of non-metric multidimensional scaling analysis (NMDS), permutational multivariate analysis of variance (PERMANOVA) and random forest models. This study was successful in determining age differences within the empty cases, which to date, has not been establish by any other technique.
Ritota, Mena; Casciani, Lorena; Valentini, Massimiliano
2013-05-01
Analytical traceability of PGI and PDO foods (Protected Geographical Indication and Protected Denomination Origin respectively) is one of the most challenging tasks of current applied research. Here we proposed a metabolomic approach based on the combination of (1)H high-resolution magic angle spinning-nuclear magnetic resonance (HRMAS-NMR) spectroscopy with multivariate analysis, i.e. PLS-DA, as a reliable tool for the traceability of Italian PGI chicories (Cichorium intybus L.), i.e. Radicchio Rosso di Treviso and Radicchio Variegato di Castelfranco, also known as red and red-spotted, respectively. The metabolic profile was gained by means of HRMAS-NMR, and multivariate data analysis allowed us to build statistical models capable of providing clear discrimination among the two varieties and classification according to the geographical origin. Based on Variable Importance in Projection values, the molecular markers for classifying the different types of red chicories analysed were found accounting for both the cultivar and the place of origin. © 2012 Society of Chemical Industry.
Quirós, Elia; Felicísimo, Angel M; Cuartero, Aurora
2009-01-01
This work proposes a new method to classify multi-spectral satellite images based on multivariate adaptive regression splines (MARS) and compares this classification system with the more common parallelepiped and maximum likelihood (ML) methods. We apply the classification methods to the land cover classification of a test zone located in southwestern Spain. The basis of the MARS method and its associated procedures are explained in detail, and the area under the ROC curve (AUC) is compared for the three methods. The results show that the MARS method provides better results than the parallelepiped method in all cases, and it provides better results than the maximum likelihood method in 13 cases out of 17. These results demonstrate that the MARS method can be used in isolation or in combination with other methods to improve the accuracy of soil cover classification. The improvement is statistically significant according to the Wilcoxon signed rank test.
Taheri, Mohammadreza; Moazeni-Pourasil, Roudabeh Sadat; Sheikh-Olia-Lavasani, Majid; Karami, Ahmad; Ghassempour, Alireza
2016-03-01
Chromatographic method development for preparative targets is a time-consuming and subjective process. This can be particularly problematic because of the use of valuable samples for isolation and the large consumption of solvents in preparative scale. These processes could be improved by using statistical computations to save time, solvent and experimental efforts. Thus, contributed by ESI-MS, after applying DryLab software to gain an overview of the most effective parameters in separation of synthesized celecoxib and its co-eluted compounds, design of experiment software that relies on multivariate modeling as a chemometric approach was used to predict the optimized touching-band overloading conditions by objective functions according to the relationship between selectivity and stationary phase properties. The loadability of the method was investigated on the analytical and semi-preparative scales, and the performance of this chemometric approach was approved by peak shapes beside recovery and purity of products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Song, Seung Yeob; Lee, Young Koung; Kim, In-Jung
2016-01-01
A high-throughput screening system for Citrus lines were established with higher sugar and acid contents using Fourier transform infrared (FT-IR) spectroscopy in combination with multivariate analysis. FT-IR spectra confirmed typical spectral differences between the frequency regions of 950-1100 cm(-1), 1300-1500 cm(-1), and 1500-1700 cm(-1). Principal component analysis (PCA) and subsequent partial least square-discriminant analysis (PLS-DA) were able to discriminate five Citrus lines into three separate clusters corresponding to their taxonomic relationships. The quantitative predictive modeling of sugar and acid contents from Citrus fruits was established using partial least square regression algorithms from FT-IR spectra. The regression coefficients (R(2)) between predicted values and estimated sugar and acid content values were 0.99. These results demonstrate that by using FT-IR spectra and applying quantitative prediction modeling to Citrus sugar and acid contents, excellent Citrus lines can be early detected with greater accuracy. Copyright © 2015 Elsevier Ltd. All rights reserved.
Alamilla, Francisco; Calcerrada, Matías; García-Ruiz, Carmen; Torre, Mercedes
2013-05-10
The differentiation of blue ballpoint pen inks written on documents through an LA-ICP-MS methodology is proposed. Small common office paper portions containing ink strokes from 21 blue pens of known origin were cut and measured without any sample preparation. In a first step, Mg, Ca and Sr were proposed as internal standards (ISs) and used in order to normalize elemental intensities and subtract background signals from the paper. Then, specific criteria were designed and employed to identify target elements (Li, V, Mn, Co, Ni, Cu, Zn, Zr, Sn, W and Pb) which resulted independent of the IS chosen in a 98% of the cases and allowed a qualitative clustering of the samples. In a second step, an elemental-related ratio (ink ratio) based on the targets previously identified was used to obtain mass independent intensities and perform pairwise comparisons by means of multivariate statistical analyses (MANOVA, Tukey's HSD and T2 Hotelling). This treatment improved the discrimination power (DP) and provided objective results, achieving a complete differentiation among different brands and a partial differentiation within pen inks from the same brands. The designed data treatment, together with the use of multivariate statistical tools, represents an easy and useful tool for differentiating among blue ballpoint pen inks, with hardly sample destruction and without the need for methodological calibrations, being its use potentially advantageous from a forensic-practice standpoint. To test the procedure, it was applied to analyze real handwritten questioned contracts, previously studied by the Department of Forensic Document Exams of the Criminalistics Service of Civil Guard (Spain). The results showed that all questioned ink entries were clustered in the same group, being those different from the remaining ink on the document. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Appolloni, L; Sandulli, R; Vetrano, G; Russo, G F
2018-05-15
Marine Protected Areas are considered key tools for conservation of coastal ecosystems. However, many reserves are characterized by several problems mainly related to inadequate zonings that often do not protect high biodiversity and propagule supply areas precluding, at the same time, economic important zones for local interests. The Gulf of Naples is here employed as a study area to assess the effects of inclusion of different conservation features and costs in reserve design process. In particular eight scenarios are developed using graph theory to identify propagule source patches and fishing and exploitation activities as costs-in-use for local population. Scenarios elaborated by MARXAN, software commonly used for marine conservation planning, are compared using multivariate analyses (MDS, PERMANOVA and PERMDISP) in order to assess input data having greatest effects on protected areas selection. MARXAN is heuristic software able to give a number of different correct results, all of them near to the best solution. Its outputs show that the most important areas to be protected, in order to ensure long-term habitat life and adequate propagule supply, are mainly located around the Gulf islands. In addition through statistical analyses it allowed us to prove that different choices on conservation features lead to statistically different scenarios. The presence of propagule supply patches forces MARXAN to select almost the same areas to protect decreasingly different MARXAN results and, thus, choices for reserves area selection. The multivariate analyses applied here to marine spatial planning proved to be very helpful allowing to identify i) how different scenario input data affect MARXAN and ii) what features have to be taken into account in study areas characterized by peculiar biological and economic interests. Copyright © 2018 Elsevier Ltd. All rights reserved.
Self-Regulated Learning Strategies in Relation with Statistics Anxiety
ERIC Educational Resources Information Center
Kesici, Sahin; Baloglu, Mustafa; Deniz, M. Engin
2011-01-01
Dealing with students' attitudinal problems related to statistics is an important aspect of statistics instruction. Employing the appropriate learning strategies may have a relationship with anxiety during the process of statistics learning. Thus, the present study investigated multivariate relationships between self-regulated learning strategies…
A functional U-statistic method for association analysis of sequencing data.
Jadhav, Sneha; Tong, Xiaoran; Lu, Qing
2017-11-01
Although sequencing studies hold great promise for uncovering novel variants predisposing to human diseases, the high dimensionality of the sequencing data brings tremendous challenges to data analysis. Moreover, for many complex diseases (e.g., psychiatric disorders) multiple related phenotypes are collected. These phenotypes can be different measurements of an underlying disease, or measurements characterizing multiple related diseases for studying common genetic mechanism. Although jointly analyzing these phenotypes could potentially increase the power of identifying disease-associated genes, the different types of phenotypes pose challenges for association analysis. To address these challenges, we propose a nonparametric method, functional U-statistic method (FU), for multivariate analysis of sequencing data. It first constructs smooth functions from individuals' sequencing data, and then tests the association of these functions with multiple phenotypes by using a U-statistic. The method provides a general framework for analyzing various types of phenotypes (e.g., binary and continuous phenotypes) with unknown distributions. Fitting the genetic variants within a gene using a smoothing function also allows us to capture complexities of gene structure (e.g., linkage disequilibrium, LD), which could potentially increase the power of association analysis. Through simulations, we compared our method to the multivariate outcome score test (MOST), and found that our test attained better performance than MOST. In a real data application, we apply our method to the sequencing data from Minnesota Twin Study (MTS) and found potential associations of several nicotine receptor subunit (CHRN) genes, including CHRNB3, associated with nicotine dependence and/or alcohol dependence. © 2017 WILEY PERIODICALS, INC.
Health and human rights: a statistical measurement framework using household survey data in Uganda.
Wesonga, Ronald; Owino, Abraham; Ssekiboobo, Agnes; Atuhaire, Leonard; Jehopio, Peter
2015-05-03
Health is intertwined with human rights as is clearly reflected in the right to life. Promotion of health practices in the context of human rights can be accomplished if there is a better understanding of the level of human rights observance. In this paper, we evaluate and present an appraisal for a possibility of applying household survey to study the determinants of health and human rights and also derive the probability that human rights are observed; an important ingredient into the national planning framework. Data from the Uganda National Governance Baseline Survey were used. A conceptual framework for predictors of a hybrid dependent variable was developed and both bivariate and multivariate statistical techniques employed. Multivariate post estimation computations were derived after evaluations of the significance of coefficients of health and human rights predictors. Findings, show that household characteristics of respondents considered in this study were statistically significant (p < 0.05) to provide a reliable assessment of human rights observance. For example, a unit increase of respondents' schooling levels results in an increase of about 34% level of positively assessing human rights observance. Additionally, the study establishes, through the three models presented, that household assessment of health and human rights observance was 20% which also represents how much of the entire continuum of human rights is demanded. Findings propose important evidence for monitoring and evaluation of health in the context human rights using household survey data. They provide a benchmark for health and human rights assessments with a focus on international and national development plans to achieve socio-economic transformation and health in society.
McArtor, Daniel B.; Lubke, Gitta H.; Bergeman, C. S.
2017-01-01
Person-centered methods are useful for studying individual differences in terms of (dis)similarities between response profiles on multivariate outcomes. Multivariate distance matrix regression (MDMR) tests the significance of associations of response profile (dis)similarities and a set of predictors using permutation tests. This paper extends MDMR by deriving and empirically validating the asymptotic null distribution of its test statistic, and by proposing an effect size for individual outcome variables, which is shown to recover true associations. These extensions alleviate the computational burden of permutation tests currently used in MDMR and render more informative results, thus making MDMR accessible to new research domains. PMID:27738957
McArtor, Daniel B; Lubke, Gitta H; Bergeman, C S
2017-12-01
Person-centered methods are useful for studying individual differences in terms of (dis)similarities between response profiles on multivariate outcomes. Multivariate distance matrix regression (MDMR) tests the significance of associations of response profile (dis)similarities and a set of predictors using permutation tests. This paper extends MDMR by deriving and empirically validating the asymptotic null distribution of its test statistic, and by proposing an effect size for individual outcome variables, which is shown to recover true associations. These extensions alleviate the computational burden of permutation tests currently used in MDMR and render more informative results, thus making MDMR accessible to new research domains.
Riba Ruiz, Jordi-Roger; Canals, Trini; Cantero, Rosa
2017-01-01
Ethylene propylene diene monomer (EPDM) rubber is widely used in a diverse type of applications, such as the automotive, industrial and construction sectors among others. Due to its appealing features, the consumption of vulcanized EPDM rubber is growing significantly. However, environmental issues are forcing the application of devulcanization processes to facilitate recovery, which has led rubber manufacturers to implement strict quality controls. Consequently, it is important to develop methods for supervising the vulcanizing and recovery processes of such products. This paper deals with the supervision process of EPDM compounds by means of Fourier transform mid-infrared (FT-IR) spectroscopy and suitable multivariate statistical methods. An expedited and nondestructive classification approach was applied to a sufficient number of EPDM samples with different applied processes, that is, with and without application of vulcanizing agents, vulcanized samples, and microwave treated samples. First the FT-IR spectra of the samples is acquired and next it is processed by applying suitable feature extraction methods, i.e., principal component analysis and canonical variate analysis to obtain the latent variables to be used for classifying test EPDM samples. Finally, the k nearest neighbor algorithm was used in the classification stage. Experimental results prove the accuracy of the proposed method and the potential of FT-IR spectroscopy in this area, since the classification accuracy can be as high as 100%.
1981-08-01
RATIO TEST STATISTIC FOR SPHERICITY OF COMPLEX MULTIVARIATE NORMAL DISTRIBUTION* C. Fang P. R. Krishnaiah B. N. Nagarsenker** August 1981 Technical...and their applications in time sEries, the reader is referred to Krishnaiah (1976). Motivated by the applications in the area of inference on multiple...for practical purposes. Here, we note that Krishnaiah , Lee and Chang (1976) approxi- mated the null distribution of certain power of the likeli
NASA Astrophysics Data System (ADS)
Fernández-González, Daniel; Martín-Duarte, Ramón; Ruiz-Bustinza, Íñigo; Mochón, Javier; González-Gasca, Carmen; Verdeja, Luis Felipe
2016-08-01
Blast furnace operators expect to get sinter with homogenous and regular properties (chemical and mechanical), necessary to ensure regular blast furnace operation. Blends for sintering also include several iron by-products and other wastes that are obtained in different processes inside the steelworks. Due to their source, the availability of such materials is not always consistent, but their total production should be consumed in the sintering process, to both save money and recycle wastes. The main scope of this paper is to obtain the least expensive iron ore blend for the sintering process, which will provide suitable chemical and mechanical features for the homogeneous and regular operation of the blast furnace. The systematic use of statistical tools was employed to analyze historical data, including linear and partial correlations applied to the data and fuzzy clustering based on the Sugeno Fuzzy Inference System to establish relationships among the available variables.
Rapid analysis of pharmaceutical drugs using LIBS coupled with multivariate analysis.
Tiwari, P K; Awasthi, S; Kumar, R; Anand, R K; Rai, P K; Rai, A K
2018-02-01
Type 2 diabetes drug tablets containing voglibose having dose strengths of 0.2 and 0.3 mg of various brands have been examined, using laser-induced breakdown spectroscopy (LIBS) technique. The statistical methods such as the principal component analysis (PCA) and the partial least square regression analysis (PLSR) have been employed on LIBS spectral data for classifying and developing the calibration models of drug samples. We have developed the ratio-based calibration model applying PLSR in which relative spectral intensity ratios H/C, H/N and O/N are used. Further, the developed model has been employed to predict the relative concentration of element in unknown drug samples. The experiment has been performed in air and argon atmosphere, respectively, and the obtained results have been compared. The present model provides rapid spectroscopic method for drug analysis with high statistical significance for online control and measurement process in a wide variety of pharmaceutical industrial applications.
NASA Astrophysics Data System (ADS)
Darvishzadeh, R.; Skidmore, A. K.; Mirzaie, M.; Atzberger, C.; Schlerf, M.
2014-12-01
Accurate estimation of grassland biomass at their peak productivity can provide crucial information regarding the functioning and productivity of the rangelands. Hyperspectral remote sensing has proved to be valuable for estimation of vegetation biophysical parameters such as biomass using different statistical techniques. However, in statistical analysis of hyperspectral data, multicollinearity is a common problem due to large amount of correlated hyper-spectral reflectance measurements. The aim of this study was to examine the prospect of above ground biomass estimation in a heterogeneous Mediterranean rangeland employing multivariate calibration methods. Canopy spectral measurements were made in the field using a GER 3700 spectroradiometer, along with concomitant in situ measurements of above ground biomass for 170 sample plots. Multivariate calibrations including partial least squares regression (PLSR), principal component regression (PCR), and Least-Squared Support Vector Machine (LS-SVM) were used to estimate the above ground biomass. The prediction accuracy of the multivariate calibration methods were assessed using cross validated R2 and RMSE. The best model performance was obtained using LS_SVM and then PLSR both calibrated with first derivative reflectance dataset with R2cv = 0.88 & 0.86 and RMSEcv= 1.15 & 1.07 respectively. The weakest prediction accuracy was appeared when PCR were used (R2cv = 0.31 and RMSEcv= 2.48). The obtained results highlight the importance of multivariate calibration methods for biomass estimation when hyperspectral data are used.
GAISE 2016 Promotes Statistical Literacy
ERIC Educational Resources Information Center
Schield, Milo
2017-01-01
In the 2005 Guidelines for Assessment and Instruction in Statistics Education (GAISE), statistical literacy featured as a primary goal. The 2016 revision eliminated statistical literacy as a stated goal. Although this looks like a rejection, this paper argues that by including multivariate thinking and--more importantly--confounding as recommended…
A Mulitivariate Statistical Model Describing the Compound Nature of Soil Moisture Drought
NASA Astrophysics Data System (ADS)
Manning, Colin; Widmann, Martin; Bevacqua, Emanuele; Maraun, Douglas; Van Loon, Anne; Vrac, Mathieu
2017-04-01
Soil moisture in Europe acts to partition incoming energy into sensible and latent heat fluxes, thereby exerting a large influence on temperature variability. Soil moisture is predominantly controlled by precipitation and evapotranspiration. When these meteorological variables are accumulated over different timescales, their joint multivariate distribution and dependence structure can be used to provide information of soil moisture. We therefore consider soil moisture drought as a compound event of meteorological drought (deficits of precipitation) and heat waves, or more specifically, periods of high Potential Evapotraspiration (PET). We present here a statistical model of soil moisture based on Pair Copula Constructions (PCC) that can describe the dependence amongst soil moisture and its contributing meteorological variables. The model is designed in such a way that it can account for concurrences of meteorological drought and heat waves and describe the dependence between these conditions at a local level. The model is composed of four variables; daily soil moisture (h); a short term and a long term accumulated precipitation variable (Y1 and Y_2) that account for the propagation of meteorological drought to soil moisture drought; and accumulated PET (Y_3), calculated using the Penman Monteith equation, which can represent the effect of a heat wave on soil conditions. Copula are multivariate distribution functions that allow one to model the dependence structure of given variables separately from their marginal behaviour. PCCs then allow in theory for the formulation of a multivariate distribution of any dimension where the multivariate distribution is decomposed into a product of marginal probability density functions and two-dimensional copula, of which some are conditional. We apply PCC here in such a way that allows us to provide estimates of h and their uncertainty through conditioning on the Y in the form h=h|y_1,y_2,y_3 (1) Applying the model to various Fluxnet sites across Europe, we find the model has good skill and can particularly capture periods of low soil moisture well. We illustrate the relevance of the dependence structure of these Y variables to soil moisture and show how it may be generalised to offer information of soil moisture on a widespread scale where few observations of soil moisture exist. We then present results from a validation study of a selection of EURO CORDEX climate models where we demonstrate the skill of these models in representing these dependencies and so offer insight into the skill seen in the representation of soil moisture in these models.
NASA Astrophysics Data System (ADS)
Fuchs, Julia; Cermak, Jan; Andersen, Hendrik
2017-04-01
This study aims at untangling the impacts of external dynamics and local conditions on cloud properties in the Southeast Atlantic (SEA) by combining satellite and reanalysis data using multivariate statistics. The understanding of clouds and their determinants at different scales is important for constraining the Earth's radiative budget, and thus prominent in climate-system research. In this study, SEA stratocumulus cloud properties are observed not only as the result of local environmental conditions but also as affected by external dynamics and spatial origins of air masses entering the study area. In order to assess to what extent cloud properties are impacted by aerosol concentration, air mass history, and meteorology, a multivariate approach is conducted using satellite observations of aerosol and cloud properties (MODIS, SEVIRI), information on aerosol species composition (MACC) and meteorological context (ERA-Interim reanalysis). To account for the often-neglected but important role of air mass origin, information on air mass history based on HYSPLIT modeling is included in the statistical model. This multivariate approach is intended to lead to a better understanding of the physical processes behind observed stratocumulus cloud properties in the SEA.
Karunathilaka, Sanjeewa R; Kia, Ali-Reza Fardin; Srigley, Cynthia; Chung, Jin Kyu; Mossoba, Magdi M
2016-10-01
A rapid tool for evaluating authenticity was developed and applied to the screening of extra virgin olive oil (EVOO) retail products by using Fourier-transform near infrared (FT-NIR) spectroscopy in combination with univariate and multivariate data analysis methods. Using disposable glass tubes, spectra for 62 reference EVOO, 10 edible oil adulterants, 20 blends consisting of EVOO spiked with adulterants, 88 retail EVOO products and other test samples were rapidly measured in the transmission mode without any sample preparation. The univariate conformity index (CI) and the multivariate supervised soft independent modeling of class analogy (SIMCA) classification tool were used to analyze the various olive oil products which were tested for authenticity against a library of reference EVOO. Better discrimination between the authentic EVOO and some commercial EVOO products was observed with SIMCA than with CI analysis. Approximately 61% of all EVOO commercial products were flagged by SIMCA analysis, suggesting that further analysis be performed to identify quality issues and/or potential adulterants. Due to its simplicity and speed, FT-NIR spectroscopy in combination with multivariate data analysis can be used as a complementary tool to conventional official methods of analysis to rapidly flag EVOO products that may not belong to the class of authentic EVOO. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
Hou, Deyi; O'Connor, David; Nathanail, Paul; Tian, Li; Ma, Yan
2017-12-01
Heavy metal soil contamination is associated with potential toxicity to humans or ecotoxicity. Scholars have increasingly used a combination of geographical information science (GIS) with geostatistical and multivariate statistical analysis techniques to examine the spatial distribution of heavy metals in soils at a regional scale. A review of such studies showed that most soil sampling programs were based on grid patterns and composite sampling methodologies. Many programs intended to characterize various soil types and land use types. The most often used sampling depth intervals were 0-0.10 m, or 0-0.20 m, below surface; and the sampling densities used ranged from 0.0004 to 6.1 samples per km 2 , with a median of 0.4 samples per km 2 . The most widely used spatial interpolators were inverse distance weighted interpolation and ordinary kriging; and the most often used multivariate statistical analysis techniques were principal component analysis and cluster analysis. The review also identified several determining and correlating factors in heavy metal distribution in soils, including soil type, soil pH, soil organic matter, land use type, Fe, Al, and heavy metal concentrations. The major natural and anthropogenic sources of heavy metals were found to derive from lithogenic origin, roadway and transportation, atmospheric deposition, wastewater and runoff from industrial and mining facilities, fertilizer application, livestock manure, and sewage sludge. This review argues that the full potential of integrated GIS and multivariate statistical analysis for assessing heavy metal distribution in soils on a regional scale has not yet been fully realized. It is proposed that future research be conducted to map multivariate results in GIS to pinpoint specific anthropogenic sources, to analyze temporal trends in addition to spatial patterns, to optimize modeling parameters, and to expand the use of different multivariate analysis tools beyond principal component analysis (PCA) and cluster analysis (CA). Copyright © 2017 Elsevier Ltd. All rights reserved.
Kilborn, Joshua P; Jones, David L; Peebles, Ernst B; Naar, David F
2017-04-01
Clustering data continues to be a highly active area of data analysis, and resemblance profiles are being incorporated into ecological methodologies as a hypothesis testing-based approach to clustering multivariate data. However, these new clustering techniques have not been rigorously tested to determine the performance variability based on the algorithm's assumptions or any underlying data structures. Here, we use simulation studies to estimate the statistical error rates for the hypothesis test for multivariate structure based on dissimilarity profiles (DISPROF). We concurrently tested a widely used algorithm that employs the unweighted pair group method with arithmetic mean (UPGMA) to estimate the proficiency of clustering with DISPROF as a decision criterion. We simulated unstructured multivariate data from different probability distributions with increasing numbers of objects and descriptors, and grouped data with increasing overlap, overdispersion for ecological data, and correlation among descriptors within groups. Using simulated data, we measured the resolution and correspondence of clustering solutions achieved by DISPROF with UPGMA against the reference grouping partitions used to simulate the structured test datasets. Our results highlight the dynamic interactions between dataset dimensionality, group overlap, and the properties of the descriptors within a group (i.e., overdispersion or correlation structure) that are relevant to resemblance profiles as a clustering criterion for multivariate data. These methods are particularly useful for multivariate ecological datasets that benefit from distance-based statistical analyses. We propose guidelines for using DISPROF as a clustering decision tool that will help future users avoid potential pitfalls during the application of methods and the interpretation of results.
Learning investment indicators through data extension
NASA Astrophysics Data System (ADS)
Dvořák, Marek
2017-07-01
Stock prices in the form of time series were analysed using single and multivariate statistical methods. After simple data preprocessing in the form of logarithmic differences, we augmented this single variate time series to a multivariate representation. This method makes use of sliding windows to calculate several dozen of new variables using simple statistic tools like first and second moments as well as more complicated statistic, like auto-regression coefficients and residual analysis, followed by an optional quadratic transformation that was further used for data extension. These were used as a explanatory variables in a regularized logistic LASSO regression which tried to estimate Buy-Sell Index (BSI) from real stock market data.
A Review of Calibration Transfer Practices and Instrument Differences in Spectroscopy.
Workman, Jerome J
2018-03-01
Calibration transfer for use with spectroscopic instruments, particularly for near-infrared, infrared, and Raman analysis, has been the subject of multiple articles, research papers, book chapters, and technical reviews. There has been a myriad of approaches published and claims made for resolving the problems associated with transferring calibrations; however, the capability of attaining identical results over time from two or more instruments using an identical calibration still eludes technologists. Calibration transfer, in a precise definition, refers to a series of analytical approaches or chemometric techniques used to attempt to apply a single spectral database, and the calibration model developed using that database, for two or more instruments, with statistically retained accuracy and precision. Ideally, one would develop a single calibration for any particular application, and move it indiscriminately across instruments and achieve identical analysis or prediction results. There are many technical aspects involved in such precision calibration transfer, related to the measuring instrument reproducibility and repeatability, the reference chemical values used for the calibration, the multivariate mathematics used for calibration, and sample presentation repeatability and reproducibility. Ideally, a multivariate model developed on a single instrument would provide a statistically identical analysis when used on other instruments following transfer. This paper reviews common calibration transfer techniques, mostly related to instrument differences, and the mathematics of the uncertainty between instruments when making spectroscopic measurements of identical samples. It does not specifically address calibration maintenance or reference laboratory differences.
Cabrieto, Jedelyn; Tuerlinckx, Francis; Kuppens, Peter; Grassmann, Mariel; Ceulemans, Eva
2017-06-01
Change point detection in multivariate time series is a complex task since next to the mean, the correlation structure of the monitored variables may also alter when change occurs. DeCon was recently developed to detect such changes in mean and\\or correlation by combining a moving windows approach and robust PCA. However, in the literature, several other methods have been proposed that employ other non-parametric tools: E-divisive, Multirank, and KCP. Since these methods use different statistical approaches, two issues need to be tackled. First, applied researchers may find it hard to appraise the differences between the methods. Second, a direct comparison of the relative performance of all these methods for capturing change points signaling correlation changes is still lacking. Therefore, we present the basic principles behind DeCon, E-divisive, Multirank, and KCP and the corresponding algorithms, to make them more accessible to readers. We further compared their performance through extensive simulations using the settings of Bulteel et al. (Biological Psychology, 98 (1), 29-42, 2014) implying changes in mean and in correlation structure and those of Matteson and James (Journal of the American Statistical Association, 109 (505), 334-345, 2014) implying different numbers of (noise) variables. KCP emerged as the best method in almost all settings. However, in case of more than two noise variables, only DeCon performed adequately in detecting correlation changes.
NASA Astrophysics Data System (ADS)
Waubke, Holger; Kasess, Christian H.
2016-11-01
Devices that emit structure-borne sound are commonly decoupled by elastic components to shield the environment from acoustical noise and vibrations. The elastic elements often have a hysteretic behavior that is typically neglected. In order to take hysteretic behavior into account, Bouc developed a differential equation for such materials, especially joints made of rubber or equipped with dampers. In this work, the Bouc model is solved by means of the Gaussian closure technique based on the Kolmogorov equation. Kolmogorov developed a method to derive probability density functions for arbitrary explicit first-order vector differential equations under white noise excitation using a partial differential equation of a multivariate conditional probability distribution. Up to now no analytical solution of the Kolmogorov equation in conjunction with the Bouc model exists. Therefore a wide range of approximate solutions, especially the statistical linearization, were developed. Using the Gaussian closure technique that is an approximation to the Kolmogorov equation assuming a multivariate Gaussian distribution an analytic solution is derived in this paper for the Bouc model. For the stationary case the two methods yield equivalent results, however, in contrast to statistical linearization the presented solution allows to calculate the transient behavior explicitly. Further, stationary case leads to an implicit set of equations that can be solved iteratively with a small number of iterations and without instabilities for specific parameter sets.
Early warnings for suicide attempt among Chinese rural population.
Lyu, Juncheng; Wang, Yingying; Shi, Hong; Zhang, Jie
2018-06-05
This study was to explore the main influencing factors of attempted suicide and establish an early warning model, so as to put forward prevention strategies for attempted suicide. Data came from a large-scale case-control epidemiological survey. A sample of 659 serious suicide attempters was randomly recruited from 13 rural counties in China. Each case was matched by a community control for gender, age, and residence location. Face to face interviews were conducted for all the cases and controls with the same structured questionnaire. Univariate logistic regression was applied to screen the factors and multivariate logistic regression was used to excavate the predictors. There were no statistical differences between suicide attempters and the community controls in gender, age, and residence location. The Cronbach`s coefficients for all the scales used were above 0.675. The multivariate logistic regressions have revealed 12 statistically significant variables predicting attempted suicide, including less education, family history of suicide, poor health, mental problem, aspiration strain, hopelessness, impulsivity, depression, negative life events. On the other hand, social support, coping skills, and healthy community protected the rural residents from suicide attempt. The excavated warning predictors are significant clinical meaning for the clinical psychiatrist. Crisis intervention strategies in rural China should be informed by the findings from this research. Education, social support, healthy community, and strain reduction are all measures to decrease the likelihood of crises. Copyright © 2018. Published by Elsevier B.V.
Multivariate statistical analysis of low-voltage EDS spectrum images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, I.M.
1998-03-01
Whereas energy-dispersive X-ray spectrometry (EDS) has been used for compositional analysis in the scanning electron microscope for 30 years, the benefits of using low operating voltages for such analyses have been explored only during the last few years. This paper couples low-voltage EDS with two other emerging areas of characterization: spectrum imaging and multivariate statistical analysis. The specimen analyzed for this study was a finished Intel Pentium processor, with the polyimide protective coating stripped off to expose the final active layers.
Quick Overview Scout 2008 Version 1.0
The Scout 2008 version 1.0 statistical software package has been updated from past DOS and Windows versions to provide classical and robust univariate and multivariate graphical and statistical methods that are not typically available in commercial or freeware statistical softwar...
Text mining factor analysis (TFA) in green tea patent data
NASA Astrophysics Data System (ADS)
Rahmawati, Sela; Suprijadi, Jadi; Zulhanif
2017-03-01
Factor analysis has become one of the most widely used multivariate statistical procedures in applied research endeavors across a multitude of domains. There are two main types of analyses based on factor analysis: Exploratory Factor Analysis (EFA) and Confirmatory Factor Analysis (CFA). Both EFA and CFA aim to observed relationships among a group of indicators with a latent variable, but they differ fundamentally, a priori and restrictions made to the factor model. This method will be applied to patent data technology sector green tea to determine the development technology of green tea in the world. Patent analysis is useful in identifying the future technological trends in a specific field of technology. Database patent are obtained from agency European Patent Organization (EPO). In this paper, CFA model will be applied to the nominal data, which obtain from the presence absence matrix. While doing processing, analysis CFA for nominal data analysis was based on Tetrachoric matrix. Meanwhile, EFA model will be applied on a title from sector technology dominant. Title will be pre-processing first using text mining analysis.
Development of the statistical ARIMA model: an application for predicting the upcoming of MJO index
NASA Astrophysics Data System (ADS)
Hermawan, Eddy; Nurani Ruchjana, Budi; Setiawan Abdullah, Atje; Gede Nyoman Mindra Jaya, I.; Berliana Sipayung, Sinta; Rustiana, Shailla
2017-10-01
This study is mainly concerned in development one of the most important equatorial atmospheric phenomena that we call as the Madden Julian Oscillation (MJO) which having strong impacts to the extreme rainfall anomalies over the Indonesian Maritime Continent (IMC). In this study, we focused to the big floods over Jakarta and surrounded area that suspecting caused by the impacts of MJO. We concentrated to develop the MJO index using the statistical model that we call as Box-Jenkis (ARIMA) ini 1996, 2002, and 2007, respectively. They are the RMM (Real Multivariate MJO) index as represented by RMM1 and RMM2, respectively. There are some steps to develop that model, starting from identification of data, estimated, determined model, before finally we applied that model for investigation some big floods that occurred at Jakarta in 1996, 2002, and 2007 respectively. We found the best of estimated model for the RMM1 and RMM2 prediction is ARIMA (2,1,2). Detailed steps how that model can be extracted and applying to predict the rainfall anomalies over Jakarta for 3 to 6 months later is discussed at this paper.
A direct-gradient multivariate index of biotic condition
Miranda, Leandro E.; Aycock, J.N.; Killgore, K. J.
2012-01-01
Multimetric indexes constructed by summing metric scores have been criticized despite many of their merits. A leading criticism is the potential for investigator bias involved in metric selection and scoring. Often there is a large number of competing metrics equally well correlated with environmental stressors, requiring a judgment call by the investigator to select the most suitable metrics to include in the index and how to score them. Data-driven procedures for multimetric index formulation published during the last decade have reduced this limitation, yet apprehension remains. Multivariate approaches that select metrics with statistical algorithms may reduce the level of investigator bias and alleviate a weakness of multimetric indexes. We investigated the suitability of a direct-gradient multivariate procedure to derive an index of biotic condition for fish assemblages in oxbow lakes in the Lower Mississippi Alluvial Valley. Although this multivariate procedure also requires that the investigator identify a set of suitable metrics potentially associated with a set of environmental stressors, it is different from multimetric procedures because it limits investigator judgment in selecting a subset of biotic metrics to include in the index and because it produces metric weights suitable for computation of index scores. The procedure, applied to a sample of 35 competing biotic metrics measured at 50 oxbow lakes distributed over a wide geographical region in the Lower Mississippi Alluvial Valley, selected 11 metrics that adequately indexed the biotic condition of five test lakes. Because the multivariate index includes only metrics that explain the maximum variability in the stressor variables rather than a balanced set of metrics chosen to reflect various fish assemblage attributes, it is fundamentally different from multimetric indexes of biotic integrity with advantages and disadvantages. As such, it provides an alternative to multimetric procedures.
Macpherson, Ignacio; Roqué-Sánchez, María V; Legget Bn, Finola O; Fuertes, Ferran; Segarra, Ignacio
2016-10-01
personalised support provided to women by health professionals is one of the prime factors attaining women's satisfaction during pregnancy and childbirth. However the multifactorial nature of 'satisfaction' makes difficult to assess it. Statistical multivariate analysis may be an effective technique to obtain in depth quantitative evidence of the importance of this factor and its interaction with the other factors involved. This technique allows us to estimate the importance of overall satisfaction in its context and suggest actions for healthcare services. systematic review of studies that quantitatively measure the personal relationship between women and healthcare professionals (gynecologists, obstetricians, nurse, midwifes, etc.) regarding maternity care satisfaction. The literature search focused on studies carried out between 1970 and 2014 that used multivariate analyses and included the woman-caregiver relationship as a factor of their analysis. twenty-four studies which applied various multivariate analysis tools to different periods of maternity care (antenatal, perinatal, post partum) were selected. The studies included discrete scale scores and questionnaires from women with low-risk pregnancies. The "personal relationship" factor appeared under various names: care received, personalised treatment, professional support, amongst others. The most common multivariate techniques used to assess the percentage of variance explained and the odds ratio of each factor were principal component analysis and logistic regression. the data, variables and factor analysis suggest that continuous, personalised care provided by the usual midwife and delivered within a family or a specialised setting, generates the highest level of satisfaction. In addition, these factors foster the woman's psychological and physiological recovery, often surpassing clinical action (e.g. medicalization and hospital organization) and/or physiological determinants (e.g. pain, pathologies, etc.). Copyright © 2016 Elsevier Ltd. All rights reserved.
The Statistical Consulting Center for Astronomy (SCCA)
NASA Technical Reports Server (NTRS)
Akritas, Michael
2001-01-01
The process by which raw astronomical data acquisition is transformed into scientifically meaningful results and interpretation typically involves many statistical steps. Traditional astronomy limits itself to a narrow range of old and familiar statistical methods: means and standard deviations; least-squares methods like chi(sup 2) minimization; and simple nonparametric procedures such as the Kolmogorov-Smirnov tests. These tools are often inadequate for the complex problems and datasets under investigations, and recent years have witnessed an increased usage of maximum-likelihood, survival analysis, multivariate analysis, wavelet and advanced time-series methods. The Statistical Consulting Center for Astronomy (SCCA) assisted astronomers with the use of sophisticated tools, and to match these tools with specific problems. The SCCA operated with two professors of statistics and a professor of astronomy working together. Questions were received by e-mail, and were discussed in detail with the questioner. Summaries of those questions and answers leading to new approaches were posted on the Web (www.state.psu.edu/ mga/SCCA). In addition to serving individual astronomers, the SCCA established a Web site for general use that provides hypertext links to selected on-line public-domain statistical software and services. The StatCodes site (www.astro.psu.edu/statcodes) provides over 200 links in the areas of: Bayesian statistics; censored and truncated data; correlation and regression, density estimation and smoothing, general statistics packages and information; image analysis; interactive Web tools; multivariate analysis; multivariate clustering and classification; nonparametric analysis; software written by astronomers; spatial statistics; statistical distributions; time series analysis; and visualization tools. StatCodes has received a remarkable high and constant hit rate of 250 hits/week (over 10,000/year) since its inception in mid-1997. It is of interest to scientists both within and outside of astronomy. The most popular sections are multivariate techniques, image analysis, and time series analysis. Hundreds of copies of the ASURV, SLOPES and CENS-TAU codes developed by SCCA scientists were also downloaded from the StatCodes site. In addition to formal SCCA duties, SCCA scientists continued a variety of related activities in astrostatistics, including refereeing of statistically oriented papers submitted to the Astrophysical Journal, talks in meetings including Feigelson's talk to science journalists entitled "The reemergence of astrostatistics" at the American Association for the Advancement of Science meeting, and published papers of astrostatistical content.
The use of multivariate statistics in studies of wildlife habitat
David E. Capen
1981-01-01
This report contains edited and reviewed versions of papers presented at a workshop held at the University of Vermont in April 1980. Topics include sampling avian habitats, multivariate methods, applications, examples, and new approaches to analysis and interpretation.
Rejection of Multivariate Outliers.
1983-05-01
available in Gnanadesikan (1977). 2 The motivation for the present investigation lies in a recent paper of Schvager and Margolin (1982) who derive a... Gnanadesikan , R. (1977). Methods for Statistical Data Analysis of Multivariate Observations. Wiley, New York. [7] Hawkins, D.M. (1980). Identification of
Multivariate analysis: greater insights into complex systems
USDA-ARS?s Scientific Manuscript database
Many agronomic researchers measure and collect multiple response variables in an effort to understand the more complex nature of the system being studied. Multivariate (MV) statistical methods encompass the simultaneous analysis of all random variables (RV) measured on each experimental or sampling ...
Zhi, Ruicong; Zhao, Lei; Xie, Nan; Wang, Houyin; Shi, Bolin; Shi, Jingye
2016-01-13
A framework of establishing standard reference scale (texture) is proposed by multivariate statistical analysis according to instrumental measurement and sensory evaluation. Multivariate statistical analysis is conducted to rapidly select typical reference samples with characteristics of universality, representativeness, stability, substitutability, and traceability. The reasonableness of the framework method is verified by establishing standard reference scale of texture attribute (hardness) with Chinese well-known food. More than 100 food products in 16 categories were tested using instrumental measurement (TPA test), and the result was analyzed with clustering analysis, principal component analysis, relative standard deviation, and analysis of variance. As a result, nine kinds of foods were determined to construct the hardness standard reference scale. The results indicate that the regression coefficient between the estimated sensory value and the instrumentally measured value is significant (R(2) = 0.9765), which fits well with Stevens's theory. The research provides reliable a theoretical basis and practical guide for quantitative standard reference scale establishment on food texture characteristics.
Reservoir characterization using core, well log, and seismic data and intelligent software
NASA Astrophysics Data System (ADS)
Soto Becerra, Rodolfo
We have developed intelligent software, Oilfield Intelligence (OI), as an engineering tool to improve the characterization of oil and gas reservoirs. OI integrates neural networks and multivariate statistical analysis. It is composed of five main subsystems: data input, preprocessing, architecture design, graphics design, and inference engine modules. More than 1,200 lines of programming code as M-files using the language MATLAB been written. The degree of success of many oil and gas drilling, completion, and production activities depends upon the accuracy of the models used in a reservoir description. Neural networks have been applied for identification of nonlinear systems in almost all scientific fields of humankind. Solving reservoir characterization problems is no exception. Neural networks have a number of attractive features that can help to extract and recognize underlying patterns, structures, and relationships among data. However, before developing a neural network model, we must solve the problem of dimensionality such as determining dominant and irrelevant variables. We can apply principal components and factor analysis to reduce the dimensionality and help the neural networks formulate more realistic models. We validated OI by obtaining confident models in three different oil field problems: (1) A neural network in-situ stress model using lithology and gamma ray logs for the Travis Peak formation of east Texas, (2) A neural network permeability model using porosity and gamma ray and a neural network pseudo-gamma ray log model using 3D seismic attributes for the reservoir VLE 196 Lamar field located in Block V of south-central Lake Maracaibo (Venezuela), and (3) Neural network primary ultimate oil recovery (PRUR), initial waterflooding ultimate oil recovery (IWUR), and infill drilling ultimate oil recovery (IDUR) models using reservoir parameters for San Andres and Clearfork carbonate formations in west Texas. In all cases, we compared the results from the neural network models with the results from regression statistical and non-parametric approach models. The results show that it is possible to obtain the highest cross-correlation coefficient between predicted and actual target variables, and the lowest average absolute errors using the integrated techniques of multivariate statistical analysis and neural networks in our intelligent software.
NASA Astrophysics Data System (ADS)
McKinley, C. C.; Scudder, R.; Thomas, D. J.
2016-12-01
The Neodymium Isotopic composition (Nd IC) of oxide coatings has been applied as a tracer of water mass composition and used to address fundamental questions about past ocean conditions. The leached authigenic oxide coating from marine sediment is widely assumed to reflect the dissolved trace metal composition of the bottom water interacting with sediment at the seafloor. However, recent studies have shown that readily reducible sediment components, in addition to trace metal fluxes from the pore water, are incorporated into the bottom water, influencing the trace metal composition of leached oxide coatings. This challenges the prevailing application of the authigenic oxide Nd IC as a proxy of seawater composition. Therefore, it is important to identify the component end-members that create sediments of different lithology and determine if, or how they might contribute to the Nd IC of oxide coatings. To investigate lithologic influence on the results of sequential leaching, we selected two sites with complete bulk sediment statistical characterization. Site U1370 in the South Pacific Gyre, is predominantly composed of Rhyolite ( 60%) and has a distinguishable ( 10%) Fe-Mn Oxyhydroxide component (Dunlea et al., 2015). Site 1149 near the Izu-Bonin-Arc is predominantly composed of dispersed ash ( 20-50%) and eolian dust from Asia ( 50-80%) (Scudder et al., 2014). We perform a two-step leaching procedure: a 14 mL of 0.02 M hydroxylamine hydrochloride (HH) in 20% acetic acid buffered to a pH 4 for one hour, targeting metals bound to Fe- and Mn- oxides fractions, and a second HH leach for 12 hours, designed to remove any remaining oxides from the residual component. We analyze all three resulting fractions for a large suite of major, trace and rare earth elements, a sub-set of the samples are also analyzed for Nd IC. We use multivariate statistical analyses of the resulting geochemical data to identify how each component of the sediment partitions across the sequential extractions. Here we present results comparing the two sites, and examine how the composition of the sediment impacts the resulting Nd IC.
Zhu, Guangxu; Guo, Qingjun; Xiao, Huayun; Chen, Tongbin; Yang, Jun
2017-06-01
Heavy metals are considered toxic to humans and ecosystems. In the present study, heavy metal concentration in soil was investigated using the single pollution index (PIi), the integrated Nemerow pollution index (PIN), and the geoaccumulation index (Igeo) to determine metal accumulation and its pollution status at the abandoned site of the Capital Iron and Steel Factory in Beijing and its surrounding area. Multivariate statistical (principal component analysis and correlation analysis), geostatistical analysis (ArcGIS tool), combined with stable Pb isotopic ratios, were applied to explore the characteristics of heavy metal pollution and the possible sources of pollutants. The results indicated that heavy metal elements show different degrees of accumulation in the study area, the observed trend of the enrichment factors, and the geoaccumulation index was Hg > Cd > Zn > Cr > Pb > Cu ≈ As > Ni. Hg, Cd, Zn, and Cr were the dominant elements that influenced soil quality in the study area. The Nemerow index method indicated that all of the heavy metals caused serious pollution except Ni. Multivariate statistical analysis indicated that Cd, Zn, Cu, and Pb show obvious correlation and have higher loads on the same principal component, suggesting that they had the same sources, which are related to industrial activities and vehicle emissions. The spatial distribution maps based on ordinary kriging showed that high concentrations of heavy metals were located in the local factory area and in the southeast-northwest part of the study region, corresponding with the predominant wind directions. Analyses of lead isotopes confirmed that Pb in the study soils is predominantly derived from three Pb sources: dust generated during steel production, coal combustion, and the natural background. Moreover, the ternary mixture model based on lead isotope analysis indicates that lead in the study soils originates mainly from anthropogenic sources, which contribute much more than the natural sources. Our study could not only reveal the overall situation of heavy metal contamination, but also identify the specific pollution sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cullen, David A; Koestner, Roland; Kukreja, Ratan
Improved conditions for imaging and spectroscopic mapping of thin perfluorosulfonic acid (PFSA) ionomer layers in fuel cell electrodes by scanning transmission electron microscopy (STEM) have been investigated. These conditions are first identified on model systems of Nafion ionomer-coated nanostructured thin films and nanoporous Si. The optimized conditions are then applied in a quantitative study of the ionomer through-layer loading for two typical electrode catalyst coatings using electron energy loss and energy dispersive X-ray spectroscopy in the transmission electron microscope. The e-beam induced damage to the perfluorosulfonic acid (PFSA) ionomer is quantified by following the fluorine mass loss with electron exposuremore » and is then mitigated by a few orders of magnitude using cryogenic specimen cooling and a higher incident electron voltage. Multivariate statistical analysis is also applied to the analysis of spectrum images for data denoising and unbiased separation of independent components related to the catalyst, ionomer, and support.« less
Katsarov, Plamen; Gergov, Georgi; Alin, Aylin; Pilicheva, Bissera; Al-Degs, Yahya; Simeonov, Vasil; Kassarova, Margarita
2018-03-01
The prediction power of partial least squares (PLS) and multivariate curve resolution-alternating least squares (MCR-ALS) methods have been studied for simultaneous quantitative analysis of the binary drug combination - doxylamine succinate and pyridoxine hydrochloride. Analysis of first-order UV overlapped spectra was performed using different PLS models - classical PLS1 and PLS2 as well as partial robust M-regression (PRM). These linear models were compared to MCR-ALS with equality and correlation constraints (MCR-ALS-CC). All techniques operated within the full spectral region and extracted maximum information for the drugs analysed. The developed chemometric methods were validated on external sample sets and were applied to the analyses of pharmaceutical formulations. The obtained statistical parameters were satisfactory for calibration and validation sets. All developed methods can be successfully applied for simultaneous spectrophotometric determination of doxylamine and pyridoxine both in laboratory-prepared mixtures and commercial dosage forms.
Interpreting support vector machine models for multivariate group wise analysis in neuroimaging
Gaonkar, Bilwaj; Shinohara, Russell T; Davatzikos, Christos
2015-01-01
Machine learning based classification algorithms like support vector machines (SVMs) have shown great promise for turning a high dimensional neuroimaging data into clinically useful decision criteria. However, tracing imaging based patterns that contribute significantly to classifier decisions remains an open problem. This is an issue of critical importance in imaging studies seeking to determine which anatomical or physiological imaging features contribute to the classifier’s decision, thereby allowing users to critically evaluate the findings of such machine learning methods and to understand disease mechanisms. The majority of published work addresses the question of statistical inference for support vector classification using permutation tests based on SVM weight vectors. Such permutation testing ignores the SVM margin, which is critical in SVM theory. In this work we emphasize the use of a statistic that explicitly accounts for the SVM margin and show that the null distributions associated with this statistic are asymptotically normal. Further, our experiments show that this statistic is a lot less conservative as compared to weight based permutation tests and yet specific enough to tease out multivariate patterns in the data. Thus, we can better understand the multivariate patterns that the SVM uses for neuroimaging based classification. PMID:26210913
A refined method for multivariate meta-analysis and meta-regression.
Jackson, Daniel; Riley, Richard D
2014-02-20
Making inferences about the average treatment effect using the random effects model for meta-analysis is problematic in the common situation where there is a small number of studies. This is because estimates of the between-study variance are not precise enough to accurately apply the conventional methods for testing and deriving a confidence interval for the average effect. We have found that a refined method for univariate meta-analysis, which applies a scaling factor to the estimated effects' standard error, provides more accurate inference. We explain how to extend this method to the multivariate scenario and show that our proposal for refined multivariate meta-analysis and meta-regression can provide more accurate inferences than the more conventional approach. We explain how our proposed approach can be implemented using standard output from multivariate meta-analysis software packages and apply our methodology to two real examples. Copyright © 2013 John Wiley & Sons, Ltd.
Badran, M; Morsy, R; Soliman, H; Elnimr, T
2016-01-01
The trace elements metabolism has been reported to possess specific roles in the pathogenesis and progress of diabetes mellitus. Due to the continuous increase in the population of patients with Type 2 diabetes (T2D), this study aims to assess the levels and inter-relationships of fast blood glucose (FBG) and serum trace elements in Type 2 diabetic patients. This study was conducted on 40 Egyptian Type 2 diabetic patients and 36 healthy volunteers (Hospital of Tanta University, Tanta, Egypt). The blood serum was digested and then used to determine the levels of 24 trace elements using an inductive coupled plasma mass spectroscopy (ICP-MS). Multivariate statistical analysis depended on correlation coefficient, cluster analysis (CA) and principal component analysis (PCA), were used to analysis the data. The results exhibited significant changes in FBG and eight of trace elements, Zn, Cu, Se, Fe, Mn, Cr, Mg, and As, levels in the blood serum of Type 2 diabetic patients relative to those of healthy controls. The statistical analyses using multivariate statistical techniques were obvious in the reduction of the experimental variables, and grouping the trace elements in patients into three clusters. The application of PCA revealed a distinct difference in associations of trace elements and their clustering patterns in control and patients group in particular for Mg, Fe, Cu, and Zn that appeared to be the most crucial factors which related with Type 2 diabetes. Therefore, on the basis of this study, the contributors of trace elements content in Type 2 diabetic patients can be determine and specify with correlation relationship and multivariate statistical analysis, which confirm that the alteration of some essential trace metals may play a role in the development of diabetes mellitus. Copyright © 2015 Elsevier GmbH. All rights reserved.
Application of two tests of multivariate discordancy to fisheries data sets
Stapanian, M.A.; Kocovsky, P.M.; Garner, F.C.
2008-01-01
The generalized (Mahalanobis) distance and multivariate kurtosis are two powerful tests of multivariate discordancies (outliers). Unlike the generalized distance test, the multivariate kurtosis test has not been applied as a test of discordancy to fisheries data heretofore. We applied both tests, along with published algorithms for identifying suspected causal variable(s) of discordant observations, to two fisheries data sets from Lake Erie: total length, mass, and age from 1,234 burbot, Lota lota; and 22 combinations of unique subsets of 10 morphometrics taken from 119 yellow perch, Perca flavescens. For the burbot data set, the generalized distance test identified six discordant observations and the multivariate kurtosis test identified 24 discordant observations. In contrast with the multivariate tests, the univariate generalized distance test identified no discordancies when applied separately to each variable. Removing discordancies had a substantial effect on length-versus-mass regression equations. For 500-mm burbot, the percent difference in estimated mass after removing discordancies in our study was greater than the percent difference in masses estimated for burbot of the same length in lakes that differed substantially in productivity. The number of discordant yellow perch detected ranged from 0 to 2 with the multivariate generalized distance test and from 6 to 11 with the multivariate kurtosis test. With the kurtosis test, 108 yellow perch (90.7%) were identified as discordant in zero to two combinations, and five (4.2%) were identified as discordant in either all or 21 of the 22 combinations. The relationship among the variables included in each combination determined which variables were identified as causal. The generalized distance test identified between zero and six discordancies when applied separately to each variable. Removing the discordancies found in at least one-half of the combinations (k=5) had a marked effect on a principal components analysis. In particular, the percent of the total variation explained by second and third principal components, which explain shape, increased by 52 and 44% respectively when the discordancies were removed. Multivariate applications of the tests have numerous ecological advantages over univariate applications, including improved management of fish stocks and interpretation of multivariate morphometric data. ?? 2007 Springer Science+Business Media B.V.
Zamani, Abbas Ali; Yaftian, Mohammad Reza; Parizanganeh, Abdolhossein
2012-12-17
The contamination of groundwater by heavy metal ions around a lead and zinc plant has been studied. As a case study groundwater contamination in Bonab Industrial Estate (Zanjan-Iran) for iron, cobalt, nickel, copper, zinc, cadmium and lead content was investigated using differential pulse polarography (DPP). Although, cobalt, copper and zinc were found correspondingly in 47.8%, 100.0%, and 100.0% of the samples, they did not contain these metals above their maximum contaminant levels (MCLs). Cadmium was detected in 65.2% of the samples and 17.4% of them were polluted by this metal. All samples contained detectable levels of lead and iron with 8.7% and 13.0% of the samples higher than their MCLs. Nickel was also found in 78.3% of the samples, out of which 8.7% were polluted. In general, the results revealed the contamination of groundwater sources in the studied zone. The higher health risks are related to lead, nickel, and cadmium ions. Multivariate statistical techniques were applied for interpreting the experimental data and giving a description for the sources. The data analysis showed correlations and similarities between investigated heavy metals and helps to classify these ion groups. Cluster analysis identified five clusters among the studied heavy metals. Cluster 1 consisted of Pb, Cu, and cluster 3 included Cd, Fe; also each of the elements Zn, Co and Ni was located in groups with single member. The same results were obtained by factor analysis. Statistical investigations revealed that anthropogenic factors and notably lead and zinc plant and pedo-geochemical pollution sources are influencing water quality in the studied area.
2012-01-01
The contamination of groundwater by heavy metal ions around a lead and zinc plant has been studied. As a case study groundwater contamination in Bonab Industrial Estate (Zanjan-Iran) for iron, cobalt, nickel, copper, zinc, cadmium and lead content was investigated using differential pulse polarography (DPP). Although, cobalt, copper and zinc were found correspondingly in 47.8%, 100.0%, and 100.0% of the samples, they did not contain these metals above their maximum contaminant levels (MCLs). Cadmium was detected in 65.2% of the samples and 17.4% of them were polluted by this metal. All samples contained detectable levels of lead and iron with 8.7% and 13.0% of the samples higher than their MCLs. Nickel was also found in 78.3% of the samples, out of which 8.7% were polluted. In general, the results revealed the contamination of groundwater sources in the studied zone. The higher health risks are related to lead, nickel, and cadmium ions. Multivariate statistical techniques were applied for interpreting the experimental data and giving a description for the sources. The data analysis showed correlations and similarities between investigated heavy metals and helps to classify these ion groups. Cluster analysis identified five clusters among the studied heavy metals. Cluster 1 consisted of Pb, Cu, and cluster 3 included Cd, Fe; also each of the elements Zn, Co and Ni was located in groups with single member. The same results were obtained by factor analysis. Statistical investigations revealed that anthropogenic factors and notably lead and zinc plant and pedo-geochemical pollution sources are influencing water quality in the studied area. PMID:23369182
Péron, Julien; Pond, Gregory R; Gan, Hui K; Chen, Eric X; Almufti, Roula; Maillet, Denis; You, Benoit
2012-07-03
The Consolidated Standards of Reporting Trials (CONSORT) guidelines were developed in the mid-1990s for the explicit purpose of improving clinical trial reporting. However, there is little information regarding the adherence to CONSORT guidelines of recent publications of randomized controlled trials (RCTs) in oncology. All phase III RCTs published between 2005 and 2009 were reviewed using an 18-point overall quality score for reporting based on the 2001 CONSORT statement. Multivariable linear regression was used to identify features associated with improved reporting quality. To provide baseline data for future evaluations of reporting quality, RCTs were also assessed according to the 2010 revised CONSORT statement. All statistical tests were two-sided. A total of 357 RCTs were reviewed. The mean 2001 overall quality score was 13.4 on a scale of 0-18, whereas the mean 2010 overall quality score was 19.3 on a scale of 0-27. The overall RCT reporting quality score improved by 0.21 points per year from 2005 to 2009. Poorly reported items included method used to generate the random allocation (adequately reported in 29% of trials), whether and how blinding was applied (41%), method of allocation concealment (51%), and participant flow (59%). High impact factor (IF, P = .003), recent publication date (P = .008), and geographic origin of RCTs (P = .003) were independent factors statistically significantly associated with higher reporting quality in a multivariable regression model. Sample size, tumor type, and positivity of trial results were not associated with higher reporting quality, whereas funding source and treatment type had a borderline statistically significant impact. The results show that numerous items remained unreported for many trials. Thus, given the potential impact of poorly reported trials, oncology journals should require even stricter adherence to the CONSORT guidelines.
NASA Astrophysics Data System (ADS)
Gocheva-Ilieva, S.; Stoimenova, M.; Ivanov, A.; Voynikova, D.; Iliev, I.
2016-10-01
Fine particulate matter PM2.5 and PM10 air pollutants are a serious problem in many urban areas affecting both the health of the population and the environment as a whole. The availability of large data arrays for the levels of these pollutants makes it possible to perform statistical analysis, to obtain relevant information, and to find patterns within the data. Research in this field is particularly topical for a number of Bulgarian cities, European country, where in recent years regulatory air pollution health limits are constantly being exceeded. This paper examines average daily data for air pollution with PM2.5 and PM10, collected by 3 monitoring stations in the cities of Plovdiv and Asenovgrad between 2011 and 2016. The goal is to find and analyze actual relationships in data time series, to build adequate mathematical models, and to develop short-term forecasts. Modeling is carried out by stochastic univariate and multivariate time series analysis, based on Box-Jenkins methodology. The best models are selected following initial transformation of the data and using a set of standard and robust statistical criteria. The Mathematica and SPSS software were used to perform calculations. This examination showed measured concentrations of PM2.5 and PM10 in the region of Plovdiv and Asenovgrad regularly exceed permissible European and national health and safety thresholds. We obtained adequate stochastic models with high statistical fit with the data and good quality forecasting when compared against actual measurements. The mathematical approach applied provides an independent alternative to standard official monitoring and control means for air pollution in urban areas.
Williams, L. Keoki; Buu, Anne
2017-01-01
We propose a multivariate genome-wide association test for mixed continuous, binary, and ordinal phenotypes. A latent response model is used to estimate the correlation between phenotypes with different measurement scales so that the empirical distribution of the Fisher’s combination statistic under the null hypothesis is estimated efficiently. The simulation study shows that our proposed correlation estimation methods have high levels of accuracy. More importantly, our approach conservatively estimates the variance of the test statistic so that the type I error rate is controlled. The simulation also shows that the proposed test maintains the power at the level very close to that of the ideal analysis based on known latent phenotypes while controlling the type I error. In contrast, conventional approaches–dichotomizing all observed phenotypes or treating them as continuous variables–could either reduce the power or employ a linear regression model unfit for the data. Furthermore, the statistical analysis on the database of the Study of Addiction: Genetics and Environment (SAGE) demonstrates that conducting a multivariate test on multiple phenotypes can increase the power of identifying markers that may not be, otherwise, chosen using marginal tests. The proposed method also offers a new approach to analyzing the Fagerström Test for Nicotine Dependence as multivariate phenotypes in genome-wide association studies. PMID:28081206
Borrowing of strength and study weights in multivariate and network meta-analysis.
Jackson, Dan; White, Ian R; Price, Malcolm; Copas, John; Riley, Richard D
2017-12-01
Multivariate and network meta-analysis have the potential for the estimated mean of one effect to borrow strength from the data on other effects of interest. The extent of this borrowing of strength is usually assessed informally. We present new mathematical definitions of 'borrowing of strength'. Our main proposal is based on a decomposition of the score statistic, which we show can be interpreted as comparing the precision of estimates from the multivariate and univariate models. Our definition of borrowing of strength therefore emulates the usual informal assessment. We also derive a method for calculating study weights, which we embed into the same framework as our borrowing of strength statistics, so that percentage study weights can accompany the results from multivariate and network meta-analyses as they do in conventional univariate meta-analyses. Our proposals are illustrated using three meta-analyses involving correlated effects for multiple outcomes, multiple risk factor associations and multiple treatments (network meta-analysis).
Borrowing of strength and study weights in multivariate and network meta-analysis
Jackson, Dan; White, Ian R; Price, Malcolm; Copas, John; Riley, Richard D
2016-01-01
Multivariate and network meta-analysis have the potential for the estimated mean of one effect to borrow strength from the data on other effects of interest. The extent of this borrowing of strength is usually assessed informally. We present new mathematical definitions of ‘borrowing of strength’. Our main proposal is based on a decomposition of the score statistic, which we show can be interpreted as comparing the precision of estimates from the multivariate and univariate models. Our definition of borrowing of strength therefore emulates the usual informal assessment. We also derive a method for calculating study weights, which we embed into the same framework as our borrowing of strength statistics, so that percentage study weights can accompany the results from multivariate and network meta-analyses as they do in conventional univariate meta-analyses. Our proposals are illustrated using three meta-analyses involving correlated effects for multiple outcomes, multiple risk factor associations and multiple treatments (network meta-analysis). PMID:26546254
Friedman, David B
2012-01-01
All quantitative proteomics experiments measure variation between samples. When performing large-scale experiments that involve multiple conditions or treatments, the experimental design should include the appropriate number of individual biological replicates from each condition to enable the distinction between a relevant biological signal from technical noise. Multivariate statistical analyses, such as principal component analysis (PCA), provide a global perspective on experimental variation, thereby enabling the assessment of whether the variation describes the expected biological signal or the unanticipated technical/biological noise inherent in the system. Examples will be shown from high-resolution multivariable DIGE experiments where PCA was instrumental in demonstrating biologically significant variation as well as sample outliers, fouled samples, and overriding technical variation that would not be readily observed using standard univariate tests.
Multivariate analyses applied to fetal, neonatal and pediatric MRI of neurodevelopmental disorders
Levman, Jacob; Takahashi, Emi
2015-01-01
Multivariate analysis (MVA) is a class of statistical and pattern recognition methods that involve the processing of data that contains multiple measurements per sample. MVA can be used to address a wide variety of medical neuroimaging-related challenges including identifying variables associated with a measure of clinical importance (i.e. patient outcome), creating diagnostic tests, assisting in characterizing developmental disorders, understanding disease etiology, development and progression, assisting in treatment monitoring and much more. Compared to adults, imaging of developing immature brains has attracted less attention from MVA researchers. However, remarkable MVA research growth has occurred in recent years. This paper presents the results of a systematic review of the literature focusing on MVA technologies applied to neurodevelopmental disorders in fetal, neonatal and pediatric magnetic resonance imaging (MRI) of the brain. The goal of this manuscript is to provide a concise review of the state of the scientific literature on studies employing brain MRI and MVA in a pre-adult population. Neurological developmental disorders addressed in the MVA research contained in this review include autism spectrum disorder, attention deficit hyperactivity disorder, epilepsy, schizophrenia and more. While the results of this review demonstrate considerable interest from the scientific community in applications of MVA technologies in pediatric/neonatal/fetal brain MRI, the field is still young and considerable research growth remains ahead of us. PMID:26640765
Multivariate analyses applied to fetal, neonatal and pediatric MRI of neurodevelopmental disorders.
Levman, Jacob; Takahashi, Emi
2015-01-01
Multivariate analysis (MVA) is a class of statistical and pattern recognition methods that involve the processing of data that contains multiple measurements per sample. MVA can be used to address a wide variety of medical neuroimaging-related challenges including identifying variables associated with a measure of clinical importance (i.e. patient outcome), creating diagnostic tests, assisting in characterizing developmental disorders, understanding disease etiology, development and progression, assisting in treatment monitoring and much more. Compared to adults, imaging of developing immature brains has attracted less attention from MVA researchers. However, remarkable MVA research growth has occurred in recent years. This paper presents the results of a systematic review of the literature focusing on MVA technologies applied to neurodevelopmental disorders in fetal, neonatal and pediatric magnetic resonance imaging (MRI) of the brain. The goal of this manuscript is to provide a concise review of the state of the scientific literature on studies employing brain MRI and MVA in a pre-adult population. Neurological developmental disorders addressed in the MVA research contained in this review include autism spectrum disorder, attention deficit hyperactivity disorder, epilepsy, schizophrenia and more. While the results of this review demonstrate considerable interest from the scientific community in applications of MVA technologies in pediatric/neonatal/fetal brain MRI, the field is still young and considerable research growth remains ahead of us.
A review on the multivariate statistical methods for dimensional reduction studies
NASA Astrophysics Data System (ADS)
Aik, Lim Eng; Kiang, Lam Chee; Mohamed, Zulkifley Bin; Hong, Tan Wei
2017-05-01
In this research study we have discussed multivariate statistical methods for dimensional reduction, which has been done by various researchers. The reduction of dimensionality is valuable to accelerate algorithm progression, as well as really may offer assistance with the last grouping/clustering precision. A lot of boisterous or even flawed info information regularly prompts a not exactly alluring algorithm progression. Expelling un-useful or dis-instructive information segments may for sure help the algorithm discover more broad grouping locales and principles and generally speaking accomplish better exhibitions on new data set.
Computerized recognition of persons by EEG spectral patterns.
Stassen, H H
1980-07-01
Modified techniques of communication theory in connection with multivariate statistical procedures were applied to a sample of 82 patients for the purpose of defining EEG spectral patterns and for solving the relevant classification problems. Ten measurements per patient were made and it could be shown that a subject can be characterized and be recognized by his EEG spectral pattern with high reliability and a confidence probability of almost 90%. This result is valid not only for normal adults but also for schizophrenic patients, implying a close relationship between the EEG spectral pattern and the individual person. At the moment the nature of this relationship is not clear; in particular the supposed relationship to psychopathology could not be proved.
Longitudinal flying qualities criteria for single-pilot instrument flight operations
NASA Technical Reports Server (NTRS)
Stengel, R. F.; Bar-Gill, A.
1983-01-01
Modern estimation and control theory, flight testing, and statistical analysis were used to deduce flying qualities criteria for General Aviation Single Pilot Instrument Flight Rule (SPIFR) operations. The principal concern is that unsatisfactory aircraft dynamic response combined with high navigation/communication workload can produce problems of safety and efficiency. To alleviate these problems. The relative importance of these factors must be determined. This objective was achieved by flying SPIFR tasks with different aircraft dynamic configurations and assessing the effects of such variations under these conditions. The experimental results yielded quantitative indicators of pilot's performance and workload, and for each of them, multivariate regression was applied to evaluate several candidate flying qualities criteria.
A novel principal component analysis for spatially misaligned multivariate air pollution data.
Jandarov, Roman A; Sheppard, Lianne A; Sampson, Paul D; Szpiro, Adam A
2017-01-01
We propose novel methods for predictive (sparse) PCA with spatially misaligned data. These methods identify principal component loading vectors that explain as much variability in the observed data as possible, while also ensuring the corresponding principal component scores can be predicted accurately by means of spatial statistics at locations where air pollution measurements are not available. This will make it possible to identify important mixtures of air pollutants and to quantify their health effects in cohort studies, where currently available methods cannot be used. We demonstrate the utility of predictive (sparse) PCA in simulated data and apply the approach to annual averages of particulate matter speciation data from national Environmental Protection Agency (EPA) regulatory monitors.
Decoding the Nature of Emotion in the Brain.
Kragel, Philip A; LaBar, Kevin S
2016-06-01
A central, unresolved problem in affective neuroscience is understanding how emotions are represented in nervous system activity. After prior localization approaches largely failed, researchers began applying multivariate statistical tools to reconceptualize how emotion constructs might be embedded in large-scale brain networks. Findings from pattern analyses of neuroimaging data show that affective dimensions and emotion categories are uniquely represented in the activity of distributed neural systems that span cortical and subcortical regions. Results from multiple-category decoding studies are incompatible with theories postulating that specific emotions emerge from the neural coding of valence and arousal. This 'new look' into emotion representation promises to improve and reformulate neurobiological models of affect. Copyright © 2016 Elsevier Ltd. All rights reserved.
Decoding the Nature of Emotion in the Brain
Kragel, Philip A.; LaBar, Kevin S.
2016-01-01
A central, unresolved problem in affective neuroscience is understanding how emotions are represented in nervous system activity. After prior localization approaches largely failed, researchers began applying multivariate statistical tools to reconceptualize how emotion constructs might be embedded in large-scale brain networks. Findings from pattern analyses of neuroimaging data show that affective dimensions and emotion categories are uniquely represented in the activity of distributed neural systems that span cortical and subcortical regions. Results from multiple-category decoding studies are incompatible with theories postulating that specific emotions emerge from the neural coding of valence and arousal. This ‘new look’ into emotion representation promises to improve and reformulate neurobiological models of affect. PMID:27133227
Generating an Empirical Probability Distribution for the Andrews-Pregibon Statistic.
ERIC Educational Resources Information Center
Jarrell, Michele G.
A probability distribution was developed for the Andrews-Pregibon (AP) statistic. The statistic, developed by D. F. Andrews and D. Pregibon (1978), identifies multivariate outliers. It is a ratio of the determinant of the data matrix with an observation deleted to the determinant of the entire data matrix. Although the AP statistic has been used…
NASA Astrophysics Data System (ADS)
Esposito, Carlo; Barra, Anna; Evans, Stephen G.; Scarascia Mugnozza, Gabriele; Delaney, Keith
2014-05-01
The study of landslide susceptibility by multivariate statistical methods is based on finding a quantitative relationship between controlling factors and landslide occurrence. Such studies have become popular in the last few decades thanks to the development of geographic information systems (GIS) software and the related improved data management. In this work we applied a statistical approach to an area of high landslide susceptibility mainly due to its tropical climate and geological-geomorphological setting. The study area is located in the south-east region of Brazil that has frequently been affected by flood and landslide hazard, especially because of heavy rainfall events during the summer season. In this work we studied a disastrous event that occurred on January 11th and 12th of 2011, which involved Região Serrana (the mountainous region of Rio de Janeiro State) and caused more than 5000 landslides and at least 904 deaths. In order to produce susceptibility maps, we focused our attention on an area of 93,6 km2 that includes Nova Friburgo city. We utilized two different multivariate statistic methods: Logistic Regression (LR), already widely used in applied geosciences, and Random Forest (RF), which has only recently been applied to landslide susceptibility analysis. With reference to each mapping unit, the first method (LR) results in a probability of landslide occurrence, while the second one (RF) gives a prediction in terms of % of area susceptible to slope failure. With this aim in mind, a landslide inventory map (related to the studied event) has been drawn up through analyses of high-resolution GeoEye satellite images, in a GIS environment. Data layers of 11 causative factors have been created and processed in order to be used as continuous numerical or discrete categorical variables in statistical analysis. In particular, the logistic regression method has frequent difficulties in managing numerical continuous and discrete categorical variables together; therefore in our work we tried different methods to process categorical variables , until we obtained a statistically significant model. The outcomes of the two statistical methods (RF and LR) have been tested with a spatial validation and gave us two susceptibility maps. The significance of the models is quantified in terms of Area Under ROC Curve (AUC resulted in 0.81 for RF model and in 0.72 for LR model). In the first instance, a graphical comparison of the two methods shows a good correspondence between them. Further, we integrated results in a unique susceptibility map which maintains both information of probability of occurrence and % of area of landslide detachment, resulting from LR and RF respectively. In fact, in view of a landslide susceptibility classification of the study area, the former is less accurate but gives easily classifiable results, while the latter is more accurate but the results can be only subjectively classified. The obtained "integrated" susceptibility map preserves information about the probability that a given % of area could fail for each mapping unit.
Castro Grijalba, Alexander; Martinis, Estefanía M; Wuilloud, Rodolfo G
2017-03-15
A highly sensitive vortex assisted liquid-liquid microextraction (VA-LLME) method was developed for inorganic Se [Se(IV) and Se(VI)] speciation analysis in Allium and Brassica vegetables. Trihexyl(tetradecyl)phosphonium decanoate phosphonium ionic liquid (IL) was applied for the extraction of Se(IV)-ammonium pyrrolidine dithiocarbamate (APDC) complex followed by Se determination with electrothermal atomic absorption spectrometry. A complete optimization of the graphite furnace temperature program was developed for accurate determination of Se in the IL-enriched extracts and multivariate statistical optimization was performed to define the conditions for the highest extraction efficiency. Significant factors of IL-VA-LLME method were sample volume, extraction pH, extraction time and APDC concentration. High extraction efficiency (90%), a 100-fold preconcentration factor and a detection limit of 5.0ng/L were achieved. The high sensitivity obtained with preconcentration and the non-chromatographic separation of inorganic Se species in complex matrix samples such as garlic, onion, leek, broccoli and cauliflower, are the main advantages of IL-VA-LLME. Copyright © 2016 Elsevier Ltd. All rights reserved.
Estuarine Sediment Deposition during Wetland Restoration: A GIS and Remote Sensing Modeling Approach
NASA Technical Reports Server (NTRS)
Newcomer, Michelle; Kuss, Amber; Kentron, Tyler; Remar, Alex; Choksi, Vivek; Skiles, J. W.
2011-01-01
Restoration of the industrial salt flats in the San Francisco Bay, California is an ongoing wetland rehabilitation project. Remote sensing maps of suspended sediment concentration, and other GIS predictor variables were used to model sediment deposition within these recently restored ponds. Suspended sediment concentrations were calibrated to reflectance values from Landsat TM 5 and ASTER using three statistical techniques -- linear regression, multivariate regression, and an Artificial Neural Network (ANN), to map suspended sediment concentrations. Multivariate and ANN regressions using ASTER proved to be the most accurate methods, yielding r2 values of 0.88 and 0.87, respectively. Predictor variables such as sediment grain size and tidal frequency were used in the Marsh Sedimentation (MARSED) model for predicting deposition rates for three years. MARSED results for a fully restored pond show a root mean square deviation (RMSD) of 66.8 mm (<1) between modeled and field observations. This model was further applied to a pond breached in November 2010 and indicated that the recently breached pond will reach equilibrium levels after 60 months of tidal inundation.
NASA Astrophysics Data System (ADS)
Rish, Irina; Bashivan, Pouya; Cecchi, Guillermo A.; Goldstein, Rita Z.
2016-03-01
The objective of this study is to investigate effects of methylphenidate on brain activity in individuals with cocaine use disorder (CUD) using functional MRI (fMRI). Methylphenidate hydrochloride (MPH) is an indirect dopamine agonist commonly used for treating attention deficit/hyperactivity disorders; it was also shown to have some positive effects on CUD subjects, such as improved stop signal reaction times associated with better control/inhibition,1 as well as normalized task-related brain activity2 and resting-state functional connectivity in specific areas.3 While prior fMRI studies of MPH in CUDs have focused on mass-univariate statistical hypothesis testing, this paper evaluates multivariate, whole-brain effects of MPH as captured by the generalization (prediction) accuracy of different classification techniques applied to features extracted from resting-state functional networks (e.g., node degrees). Our multivariate predictive results based on resting-state data from3 suggest that MPH tends to normalize network properties such as voxel degrees in CUD subjects, thus providing additional evidence for potential benefits of MPH in treating cocaine addiction.
Conlon, Anna S C; Taylor, Jeremy M G; Elliott, Michael R
2014-04-01
In clinical trials, a surrogate outcome variable (S) can be measured before the outcome of interest (T) and may provide early information regarding the treatment (Z) effect on T. Using the principal surrogacy framework introduced by Frangakis and Rubin (2002. Principal stratification in causal inference. Biometrics 58, 21-29), we consider an approach that has a causal interpretation and develop a Bayesian estimation strategy for surrogate validation when the joint distribution of potential surrogate and outcome measures is multivariate normal. From the joint conditional distribution of the potential outcomes of T, given the potential outcomes of S, we propose surrogacy validation measures from this model. As the model is not fully identifiable from the data, we propose some reasonable prior distributions and assumptions that can be placed on weakly identified parameters to aid in estimation. We explore the relationship between our surrogacy measures and the surrogacy measures proposed by Prentice (1989. Surrogate endpoints in clinical trials: definition and operational criteria. Statistics in Medicine 8, 431-440). The method is applied to data from a macular degeneration study and an ovarian cancer study.
Conlon, Anna S. C.; Taylor, Jeremy M. G.; Elliott, Michael R.
2014-01-01
In clinical trials, a surrogate outcome variable (S) can be measured before the outcome of interest (T) and may provide early information regarding the treatment (Z) effect on T. Using the principal surrogacy framework introduced by Frangakis and Rubin (2002. Principal stratification in causal inference. Biometrics 58, 21–29), we consider an approach that has a causal interpretation and develop a Bayesian estimation strategy for surrogate validation when the joint distribution of potential surrogate and outcome measures is multivariate normal. From the joint conditional distribution of the potential outcomes of T, given the potential outcomes of S, we propose surrogacy validation measures from this model. As the model is not fully identifiable from the data, we propose some reasonable prior distributions and assumptions that can be placed on weakly identified parameters to aid in estimation. We explore the relationship between our surrogacy measures and the surrogacy measures proposed by Prentice (1989. Surrogate endpoints in clinical trials: definition and operational criteria. Statistics in Medicine 8, 431–440). The method is applied to data from a macular degeneration study and an ovarian cancer study. PMID:24285772
Ji, Hong; Petro, Nathan M; Chen, Badong; Yuan, Zejian; Wang, Jianji; Zheng, Nanning; Keil, Andreas
2018-02-06
Over the past decade, the simultaneous recording of electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) data has garnered growing interest because it may provide an avenue towards combining the strengths of both imaging modalities. Given their pronounced differences in temporal and spatial statistics, the combination of EEG and fMRI data is however methodologically challenging. Here, we propose a novel screening approach that relies on a Cross Multivariate Correlation Coefficient (xMCC) framework. This approach accomplishes three tasks: (1) It provides a measure for testing multivariate correlation and multivariate uncorrelation of the two modalities; (2) it provides criterion for the selection of EEG features; (3) it performs a screening of relevant EEG information by grouping the EEG channels into clusters to improve efficiency and to reduce computational load when searching for the best predictors of the BOLD signal. The present report applies this approach to a data set with concurrent recordings of steady-state-visual evoked potentials (ssVEPs) and fMRI, recorded while observers viewed phase-reversing Gabor patches. We test the hypothesis that fluctuations in visuo-cortical mass potentials systematically covary with BOLD fluctuations not only in visual cortical, but also in anterior temporal and prefrontal areas. Results supported the hypothesis and showed that the xMCC-based analysis provides straightforward identification of neurophysiological plausible brain regions with EEG-fMRI covariance. Furthermore xMCC converged with other extant methods for EEG-fMRI analysis. © 2018 The Authors Journal of Neuroscience Research Published by Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Djorgovski, George
1993-01-01
The existing and forthcoming data bases from NASA missions contain an abundance of information whose complexity cannot be efficiently tapped with simple statistical techniques. Powerful multivariate statistical methods already exist which can be used to harness much of the richness of these data. Automatic classification techniques have been developed to solve the problem of identifying known types of objects in multiparameter data sets, in addition to leading to the discovery of new physical phenomena and classes of objects. We propose an exploratory study and integration of promising techniques in the development of a general and modular classification/analysis system for very large data bases, which would enhance and optimize data management and the use of human research resource.
NASA Technical Reports Server (NTRS)
Djorgovski, Stanislav
1992-01-01
The existing and forthcoming data bases from NASA missions contain an abundance of information whose complexity cannot be efficiently tapped with simple statistical techniques. Powerful multivariate statistical methods already exist which can be used to harness much of the richness of these data. Automatic classification techniques have been developed to solve the problem of identifying known types of objects in multi parameter data sets, in addition to leading to the discovery of new physical phenomena and classes of objects. We propose an exploratory study and integration of promising techniques in the development of a general and modular classification/analysis system for very large data bases, which would enhance and optimize data management and the use of human research resources.
Dangers in Using Analysis of Covariance Procedures.
ERIC Educational Resources Information Center
Campbell, Kathleen T.
Problems associated with the use of analysis of covariance (ANCOVA) as a statistical control technique are explained. Three problems relate to the use of "OVA" methods (analysis of variance, analysis of covariance, multivariate analysis of variance, and multivariate analysis of covariance) in general. These are: (1) the wasting of information when…
A Multivariate Solution of the Multivariate Ranking and Selection Problem
1980-02-01
Taneja (1972)), a ’a for a vector of constants c (Krishnaiah and Rizvi (1966)), the generalized variance ( Gnanadesikan and Gupta (1970)), iegier (1976...Olk-in, I. and Sobel, M. (1977). Selecting and Ordering Populations: A New Statistical Methodology, John Wiley & Sons, Inc., New York. Gnanadesikan
Evaluation of Meterorite Amono Acid Analysis Data Using Multivariate Techniques
NASA Technical Reports Server (NTRS)
McDonald, G.; Storrie-Lombardi, M.; Nealson, K.
1999-01-01
The amino acid distributions in the Murchison carbonaceous chondrite, Mars meteorite ALH84001, and ice from the Allan Hills region of Antarctica are shown, using a multivariate technique known as Principal Component Analysis (PCA), to be statistically distinct from the average amino acid compostion of 101 terrestrial protein superfamilies.
Dimou, Niki L; Pantavou, Katerina G; Bagos, Pantelis G
2017-09-01
Apolipoprotein E (ApoE) is potentially a genetic risk factor for the development of left ventricular failure (LVF), the main cause of death in beta-thalassemia homozygotes. In the present study, we synthesize the results of independent studies examining the effect of ApoE on LVF development in thalassemic patients through a meta-analytic approach. However, all studies report more than one outcome, as patients are classified into three groups according to the severity of the symptoms and the genetic polymorphism. Thus, a multivariate meta-analytic method that addresses simultaneously multiple exposures and multiple comparison groups was developed. Four individual studies were included in the meta-analysis involving 613 beta-thalassemic patients and 664 controls. The proposed method that takes into account the correlation of log odds ratios (log(ORs)), revealed a statistically significant overall association (P-value = 0.009), mainly attributed to the contrast of E4 versus E3 allele for patients with evidence (OR: 2.32, 95% CI: 1.19, 4.53) or patients with clinical and echocardiographic findings (OR: 3.34, 95% CI: 1.78, 6.26) of LVF. This study suggests that E4 is a genetic risk factor for LVF in beta-thalassemia major. The presented multivariate approach can be applied in several fields of research. © 2017 John Wiley & Sons Ltd/University College London.
NASA Astrophysics Data System (ADS)
Hampel, B.; Liu, B.; Nording, F.; Ostermann, J.; Struszewski, P.; Langfahl-Klabes, J.; Bieler, M.; Bosse, H.; Güttler, B.; Lemmens, P.; Schilling, M.; Tutsch, R.
2018-03-01
In many cases, the determination of the measurement uncertainty of complex nanosystems provides unexpected challenges. This is in particular true for complex systems with many degrees of freedom, i.e. nanosystems with multiparametric dependencies and multivariate output quantities. The aim of this paper is to address specific questions arising during the uncertainty calculation of such systems. This includes the division of the measurement system into subsystems and the distinction between systematic and statistical influences. We demonstrate that, even if the physical systems under investigation are very different, the corresponding uncertainty calculation can always be realized in a similar manner. This is exemplarily shown in detail for two experiments, namely magnetic nanosensors and ultrafast electro-optical sampling of complex time-domain signals. For these examples the approach for uncertainty calculation following the guide to the expression of uncertainty in measurement (GUM) is explained, in which correlations between multivariate output quantities are captured. To illustate the versatility of the proposed approach, its application to other experiments, namely nanometrological instruments for terahertz microscopy, dimensional scanning probe microscopy, and measurement of concentration of molecules using surface enhanced Raman scattering, is shortly discussed in the appendix. We believe that the proposed approach provides a simple but comprehensive orientation for uncertainty calculation in the discussed measurement scenarios and can also be applied to similar or related situations.
Quantification of Covariance in Tropical Cyclone Activity across Teleconnected Basins
NASA Astrophysics Data System (ADS)
Tolwinski-Ward, S. E.; Wang, D.
2015-12-01
Rigorous statistical quantification of natural hazard covariance across regions has important implications for risk management, and is also of fundamental scientific interest. We present a multivariate Bayesian Poisson regression model for inferring the covariance in tropical cyclone (TC) counts across multiple ocean basins and across Saffir-Simpson intensity categories. Such covariability results from the influence of large-scale modes of climate variability on local environments that can alternately suppress or enhance TC genesis and intensification, and our model also simultaneously quantifies the covariance of TC counts with various climatic modes in order to deduce the source of inter-basin TC covariability. The model explicitly treats the time-dependent uncertainty in observed maximum sustained wind data, and hence the nominal intensity category of each TC. Differences in annual TC counts as measured by different agencies are also formally addressed. The probabilistic output of the model can be probed for probabilistic answers to such questions as: - Does the relationship between different categories of TCs differ statistically by basin? - Which climatic predictors have significant relationships with TC activity in each basin? - Are the relationships between counts in different basins conditionally independent given the climatic predictors, or are there other factors at play affecting inter-basin covariability? - How can a portfolio of insured property be optimized across space to minimize risk? Although we present results of our model applied to TCs, the framework is generalizable to covariance estimation between multivariate counts of natural hazards across regions and/or across peril types.
NASA Astrophysics Data System (ADS)
Cao, Yingjie; Tang, Changyuan; Song, Xianfang; Liu, Changming; Zhang, Yinghua
2016-06-01
Two multivariate statistical technologies, factor analysis (FA) and discriminant analysis (DA), are applied to study the river and groundwater hydrochemistry and its controlling processes in the Sanjiang Plain of the northeast China. Factor analysis identifies five factors which account for 79.65 % of the total variance in the dataset. Four factors bearing specific meanings as the river and groundwater hydrochemistry controlling processes are divided into two groups, the "natural hydrochemistry evolution" group and the "pollution" group. The "natural hydrochemistry evolution" group includes the salinity factor (factor 1) caused by rock weathering and the residence time factor (factor 2) reflecting the groundwater traveling time. The "pollution" group represents the groundwater quality deterioration due to geogenic pollution caused by elevated Fe and Mn (factor 3) and elevated nitrate (NO3 -) introduced by human activities such as agriculture exploitations (factor 5). The hydrochemical difference and hydraulic connection among rivers (surface water, SW), shallow groundwater (SG) and deep groundwater (DG) group are evaluated by the factor scores obtained from FA and DA (Fisher's method). It is showed that the river water is characterized as low salinity and slight pollution, and the shallow groundwater has the highest salinity and severe pollution. The SW is well separated from SG and DG by Fisher's discriminant function, but the SG and DG can not be well separated showing their hydrochemical similarities, and emphasize hydraulic connections between SG and DG.
Lee, Byeong-Ju; Zhou, Yaoyao; Lee, Jae Soung; Shin, Byeung Kon; Seo, Jeong-Ah; Lee, Doyup; Kim, Young-Suk
2018-01-01
The ability to determine the origin of soybeans is an important issue following the inclusion of this information in the labeling of agricultural food products becoming mandatory in South Korea in 2017. This study was carried out to construct a prediction model for discriminating Chinese and Korean soybeans using Fourier-transform infrared (FT-IR) spectroscopy and multivariate statistical analysis. The optimal prediction models for discriminating soybean samples were obtained by selecting appropriate scaling methods, normalization methods, variable influence on projection (VIP) cutoff values, and wave-number regions. The factors for constructing the optimal partial-least-squares regression (PLSR) prediction model were using second derivatives, vector normalization, unit variance scaling, and the 4000–400 cm–1 region (excluding water vapor and carbon dioxide). The PLSR model for discriminating Chinese and Korean soybean samples had the best predictability when a VIP cutoff value was not applied. When Chinese soybean samples were identified, a PLSR model that has the lowest root-mean-square error of the prediction value was obtained using a VIP cutoff value of 1.5. The optimal PLSR prediction model for discriminating Korean soybean samples was also obtained using a VIP cutoff value of 1.5. This is the first study that has combined FT-IR spectroscopy with normalization methods, VIP cutoff values, and selected wave-number regions for discriminating Chinese and Korean soybeans. PMID:29689113
Predicting clinical diagnosis in Huntington's disease: An imaging polymarker
Daws, Richard E.; Soreq, Eyal; Johnson, Eileanoir B.; Scahill, Rachael I.; Tabrizi, Sarah J.; Barker, Roger A.; Hampshire, Adam
2018-01-01
Objective Huntington's disease (HD) gene carriers can be identified before clinical diagnosis; however, statistical models for predicting when overt motor symptoms will manifest are too imprecise to be useful at the level of the individual. Perfecting this prediction is integral to the search for disease modifying therapies. This study aimed to identify an imaging marker capable of reliably predicting real‐life clinical diagnosis in HD. Method A multivariate machine learning approach was applied to resting‐state and structural magnetic resonance imaging scans from 19 premanifest HD gene carriers (preHD, 8 of whom developed clinical disease in the 5 years postscanning) and 21 healthy controls. A classification model was developed using cross‐group comparisons between preHD and controls, and within the preHD group in relation to “estimated” and “actual” proximity to disease onset. Imaging measures were modeled individually, and combined, and permutation modeling robustly tested classification accuracy. Results Classification performance for preHDs versus controls was greatest when all measures were combined. The resulting polymarker predicted converters with high accuracy, including those who were not expected to manifest in that time scale based on the currently adopted statistical models. Interpretation We propose that a holistic multivariate machine learning treatment of brain abnormalities in the premanifest phase can be used to accurately identify those patients within 5 years of developing motor features of HD, with implications for prognostication and preclinical trials. Ann Neurol 2018;83:532–543 PMID:29405351
Wu, Wei; Sun, Le; Zhang, Zhe; Guo, Yingying; Liu, Shuying
2015-03-25
An ultra-high-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) method was developed for the detection and structural analysis of ginsenosides in white ginseng and related processed products (red ginseng). Original neutral, malonyl, and chemically transformed ginsenosides were identified in white and red ginseng samples. The aglycone types of ginsenosides were determined by MS/MS as PPD (m/z 459), PPT (m/z 475), C-24, -25 hydrated-PPD or PPT (m/z 477 or m/z 493), and Δ20(21)-or Δ20(22)-dehydrated-PPD or PPT (m/z 441 or m/z 457). Following the structural determination, the UHPLC-Q-TOF-MS-based chemical profiling coupled with multivariate statistical analysis method was applied for global analysis of white and processed ginseng samples. The chemical markers present between the processed products red ginseng and white ginseng could be assigned. Process-mediated chemical changes were recognized as the hydrolysis of ginsenosides with large molecular weight, chemical transformations of ginsenosides, changes in malonyl-ginsenosides, and generation of 20-(R)-ginsenoside enantiomers. The relative contents of compounds classified as PPD, PPT, malonyl, and transformed ginsenosides were calculated based on peak areas in ginseng before and after processing. This study provides possibility to monitor multiple components for the quality control and global evaluation of ginseng products during processing. Copyright © 2014 Elsevier B.V. All rights reserved.
Lee, Byeong-Ju; Kim, Hye-Youn; Lim, Sa Rang; Huang, Linfang; Choi, Hyung-Kyoon
2017-01-01
Panax ginseng C.A. Meyer is a herb used for medicinal purposes, and its discrimination according to cultivation age has been an important and practical issue. This study employed Fourier-transform infrared (FT-IR) spectroscopy with multivariate statistical analysis to obtain a prediction model for discriminating cultivation ages (5 and 6 years) and three different parts (rhizome, tap root, and lateral root) of P. ginseng. The optimal partial-least-squares regression (PLSR) models for discriminating ginseng samples were determined by selecting normalization methods, number of partial-least-squares (PLS) components, and variable influence on projection (VIP) cutoff values. The best prediction model for discriminating 5- and 6-year-old ginseng was developed using tap root, vector normalization applied after the second differentiation, one PLS component, and a VIP cutoff of 1.0 (based on the lowest root-mean-square error of prediction value). In addition, for discriminating among the three parts of P. ginseng, optimized PLSR models were established using data sets obtained from vector normalization, two PLS components, and VIP cutoff values of 1.5 (for 5-year-old ginseng) and 1.3 (for 6-year-old ginseng). To our knowledge, this is the first study to provide a novel strategy for rapidly discriminating the cultivation ages and parts of P. ginseng using FT-IR by selected normalization methods, number of PLS components, and VIP cutoff values.
Lim, Sa Rang; Huang, Linfang
2017-01-01
Panax ginseng C.A. Meyer is a herb used for medicinal purposes, and its discrimination according to cultivation age has been an important and practical issue. This study employed Fourier-transform infrared (FT-IR) spectroscopy with multivariate statistical analysis to obtain a prediction model for discriminating cultivation ages (5 and 6 years) and three different parts (rhizome, tap root, and lateral root) of P. ginseng. The optimal partial-least-squares regression (PLSR) models for discriminating ginseng samples were determined by selecting normalization methods, number of partial-least-squares (PLS) components, and variable influence on projection (VIP) cutoff values. The best prediction model for discriminating 5- and 6-year-old ginseng was developed using tap root, vector normalization applied after the second differentiation, one PLS component, and a VIP cutoff of 1.0 (based on the lowest root-mean-square error of prediction value). In addition, for discriminating among the three parts of P. ginseng, optimized PLSR models were established using data sets obtained from vector normalization, two PLS components, and VIP cutoff values of 1.5 (for 5-year-old ginseng) and 1.3 (for 6-year-old ginseng). To our knowledge, this is the first study to provide a novel strategy for rapidly discriminating the cultivation ages and parts of P. ginseng using FT-IR by selected normalization methods, number of PLS components, and VIP cutoff values. PMID:29049369
NASA Astrophysics Data System (ADS)
Das, Shreya; Nag, S. K.
2017-05-01
Multivariate statistical techniques, cluster and principal component analysis were applied to the data on groundwater quality of Suri I and II Blocks of Birbhum District, West Bengal, India, to extract principal factors corresponding to the different sources of variation in the hydrochemistry as well as the main controls on the hydrochemistry. For this, bore well water samples have been collected in two phases, during Post-monsoon (November 2012) and Pre-monsoon (April 2013) from 26 sampling locations spread homogeneously over the two blocks. Excess fluoride in groundwater has been reported at two locations both in post- and in pre-monsoon sessions, with a rise observed in pre-monsoon. Localized presence of excess iron has also been observed during both sessions. The water is found to be mildly alkaline in post-monsoon but slightly acidic at some locations during pre-monsoon. Correlation and cluster analysis studies demonstrate that fluoride shares a moderately positive correlation with pH in post-monsoon and a very strong one with carbonate in pre-monsoon indicating dominance of rock water interaction and ion exchange activity in the study area. Certain locations in the study area have been reported with less than 0.6 mg/l fluoride in groundwater, leading to possibility of occurrence of severe dental caries especially in children. Low values of sulfate and phosphate in water indicate a meager chance of contamination of groundwater due to anthropogenic factors.
NASA Astrophysics Data System (ADS)
Cheong, Youjin; Kim, Young Jin; Kang, Heeyoon; Choi, Samjin; Lee, Hee Joo
2017-08-01
Although many methodologies have been developed to identify unknown bacteria, bacterial identification in clinical microbiology remains a complex and time-consuming procedure. To address this problem, we developed a label-free method for rapidly identifying clinically relevant multilocus sequencing typing-verified quinolone-resistant Klebsiella pneumoniae strains. We also applied the method to identify three strains from colony samples, ATCC70063 (control), ST11 and ST15; these are the prevalent quinolone-resistant K. pneumoniae strains in East Asia. The colonies were identified using a drop-coating deposition surface-enhanced Raman scattering (DCD-SERS) procedure coupled with a multivariate statistical method. Our workflow exhibited an enhancement factor of 11.3 × 106 to Raman intensities, high reproducibility (relative standard deviation of 7.4%), and a sensitive limit of detection (100 pM rhodamine 6G), with a correlation coefficient of 0.98. All quinolone-resistant K. pneumoniae strains showed similar spectral Raman shifts (high correlations) regardless of bacterial type, as well as different Raman vibrational modes compared to Escherichia coli strains. Our proposed DCD-SERS procedure coupled with the multivariate statistics-based identification method achieved excellent performance in discriminating similar microbes from one another and also in subtyping of K. pneumoniae strains. Therefore, our label-free DCD-SERS procedure coupled with the computational decision supporting method is a potentially useful method for the rapid identification of clinically relevant K. pneumoniae strains.
Cho, Hyun-Deok; Kim, Unyong; Suh, Joon Hyuk; Eom, Han Young; Kim, Junghyun; Lee, Seul Gi; Choi, Yong Seok; Han, Sang Beom
2016-04-01
Analytical methods using high-performance liquid chromatography with diode array and tandem mass spectrometry detection were developed for the discrimination of the rhizomes of four Atractylodes medicinal plants: A. japonica, A. macrocephala, A. chinensis, and A. lancea. A quantitative study was performed, selecting five bioactive components, including atractylenolide I, II, III, eudesma-4(14),7(11)-dien-8-one and atractylodin, on twenty-six Atractylodes samples of various origins. Sample extraction was optimized to sonication with 80% methanol for 40 min at room temperature. High-performance liquid chromatography with diode array detection was established using a C18 column with a water/acetonitrile gradient system at a flow rate of 1.0 mL/min, and the detection wavelength was set at 236 nm. Liquid chromatography with tandem mass spectrometry was applied to certify the reliability of the quantitative results. The developed methods were validated by ensuring specificity, linearity, limit of quantification, accuracy, precision, recovery, robustness, and stability. Results showed that cangzhu contained higher amounts of atractylenolide I and atractylodin than baizhu, and especially atractylodin contents showed the greatest variation between baizhu and cangzhu. Multivariate statistical analysis, such as principal component analysis and hierarchical cluster analysis, were also employed for further classification of the Atractylodes plants. The established method was suitable for quality control of the Atractylodes plants. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thuy, Tran Thi; Tengstrand, Erik; Aberg, Magnus; Thorsén, Gunnar
2012-11-01
Optimal glycosylation with respect to the efficacy, serum half-life time, and immunogenic properties is essential in the generation of therapeutic antibodies. The glycosylation pattern can be affected by several different parameters during the manufacture of antibodies and may change significantly over cultivation time. Fast and robust methods for determination of the glycosylation patterns of therapeutic antibodies are therefore needed. We have recently presented an efficient method for the determination of glycans on therapeutic antibodies using a microfluidic CD platform for sample preparation prior to matrix-assisted laser-desorption mass spectrometry analysis. In the present work, this method is applied to analyse the glycosylation patterns of three commercially available therapeutic antibodies and one intended for therapeutic use. Two of the antibodies produced in mouse myeloma cell line (SP2/0) and one produced in Chinese hamster ovary (CHO) cells exhibited similar glycosylation patterns but could still be readily differentiated from each other using multivariate statistical methods. The two antibodies with most similar glycosylation patterns were also studied in an assessment of the method's applicability for quality control of therapeutic antibodies. The method presented in this paper is highly automated and rapid. It can therefore efficiently generate data that helps to keep a production process within the desired design space or assess that an identical product is being produced after changes to the process. Copyright © 2012 Elsevier B.V. All rights reserved.
Ebqa'ai, Mohammad; Ibrahim, Bashar
2017-12-01
This study aims to analyse the heavy metal pollutants in Jeddah, the second largest city in the Gulf Cooperation Council with a population exceeding 3.5 million, and many vehicles. Ninety-eight street dust samples were collected seasonally from the six major roads as well as the Jeddah Beach, and subsequently digested using modified Leeds Public Analyst method. The heavy metals (Fe, Zn, Mn, Cu, Cd, and Pb) were extracted from the ash using methyl isobutyl ketone as solvent extraction and eventually analysed by atomic absorption spectroscopy. Multivariate statistical techniques, principal component analysis (PCA), and hierarchical cluster analysis were applied to these data. Heavy metal concentrations were ranked according to the following descending order: Fe > Zn > Mn > Cu > Pb > Cd. In order to study the pollution and health risk from these heavy metals as well as estimating their effect on the environment, pollution indices, integrated pollution index, enrichment factor, daily dose average, hazard quotient, and hazard index were all analysed. The PCA showed high levels of Zn, Fe, and Cd in Al Kurnish road, while these elements were consistently detected on King Abdulaziz and Al Madina roads. The study indicates that high levels of Zn and Pb pollution were recorded for major roads in Jeddah. Six out of seven roads had high pollution indices. This study is the first step towards further investigations into current health problems in Jeddah, such as anaemia and asthma.
[Effect of vinegar-processed Curcumae Rhizoma on bile metabolism in rats].
Gu, Wei; Lu, Tu-Lin; Li, Jin-Ci; Wang, Qiao-Han; Pan, Zi-Hao; Ji, De; Li, Lin; Zhang, Ji; Mao, Chun-Qin
2016-04-01
To explore the effect of vinegar-processed Curcumae Rhizoma on endogenous metabolites in bile by investigating the endogenous metabolites difference in bile before and after Curcumae Rhizoma was processed with vinegar. Alcohol extracts of crude and vinegar-processed Curcumae Rhizoma, as well as normal saline were prepared respectively, which were then given to the rats by intragastric administration for 0.5 h. Then common bile duct intubation drainage was conducted to collect 12 h bile of the rats. UPLC-TOF-MS analysis of bile samples was applied after 1∶3 acetonitrile protein precipitation; unidimensional statistics were combined with multivariate statistics and PeakView software was compared with network database to identify the potential biomarkers. Vinegar-processed Curcumae Rhizoma extracts had significant effects on metabolites spectrum in bile of the rats. With the boundaries of P<0.05, 13 metabolites with significant differences were found in bile of crude and vinegar-processed Curcumae Rhizoma groups, and 8 of them were identified when considering the network database. T-test unidimensional statistical analysis was applied between administration groups and blank group to obtain 7 metabolites with significant differences and identify them as potential biomarkers. 6 of the potential biomarkers were up-regulated in vinegar-processed group, which were related to the metabolism regulation of phospholipid metabolism, fat metabolism, bile acid metabolism, and N-acylethanolamine hydrolysis reaction balance, indicating the mechanism of vinegar-processed Curcumae Rhizoma on endogenous metabolites in bile of the rats. Copyright© by the Chinese Pharmaceutical Association.
Hohn, M. Ed; Nuhfer, E.B.; Vinopal, R.J.; Klanderman, D.S.
1980-01-01
Classifying very fine-grained rocks through fabric elements provides information about depositional environments, but is subject to the biases of visual taxonomy. To evaluate the statistical significance of an empirical classification of very fine-grained rocks, samples from Devonian shales in four cored wells in West Virginia and Virginia were measured for 15 variables: quartz, illite, pyrite and expandable clays determined by X-ray diffraction; total sulfur, organic content, inorganic carbon, matrix density, bulk density, porosity, silt, as well as density, sonic travel time, resistivity, and ??-ray response measured from well logs. The four lithologic types comprised: (1) sharply banded shale, (2) thinly laminated shale, (3) lenticularly laminated shale, and (4) nonbanded shale. Univariate and multivariate analyses of variance showed that the lithologic classification reflects significant differences for the variables measured, difference that can be detected independently of stratigraphic effects. Little-known statistical methods found useful in this work included: the multivariate analysis of variance with more than one effect, simultaneous plotting of samples and variables on canonical variates, and the use of parametric ANOVA and MANOVA on ranked data. ?? 1980 Plenum Publishing Corporation.
Del Giudice, G; Padulano, R; Siciliano, D
2016-01-01
The lack of geometrical and hydraulic information about sewer networks often excludes the adoption of in-deep modeling tools to obtain prioritization strategies for funds management. The present paper describes a novel statistical procedure for defining the prioritization scheme for preventive maintenance strategies based on a small sample of failure data collected by the Sewer Office of the Municipality of Naples (IT). Novelty issues involve, among others, considering sewer parameters as continuous statistical variables and accounting for their interdependences. After a statistical analysis of maintenance interventions, the most important available factors affecting the process are selected and their mutual correlations identified. Then, after a Box-Cox transformation of the original variables, a methodology is provided for the evaluation of a vulnerability map of the sewer network by adopting a joint multivariate normal distribution with different parameter sets. The goodness-of-fit is eventually tested for each distribution by means of a multivariate plotting position. The developed methodology is expected to assist municipal engineers in identifying critical sewers, prioritizing sewer inspections in order to fulfill rehabilitation requirements.
Buttigieg, Pier Luigi; Ramette, Alban
2014-12-01
The application of multivariate statistical analyses has become a consistent feature in microbial ecology. However, many microbial ecologists are still in the process of developing a deep understanding of these methods and appreciating their limitations. As a consequence, staying abreast of progress and debate in this arena poses an additional challenge to many microbial ecologists. To address these issues, we present the GUide to STatistical Analysis in Microbial Ecology (GUSTA ME): a dynamic, web-based resource providing accessible descriptions of numerous multivariate techniques relevant to microbial ecologists. A combination of interactive elements allows users to discover and navigate between methods relevant to their needs and examine how they have been used by others in the field. We have designed GUSTA ME to become a community-led and -curated service, which we hope will provide a common reference and forum to discuss and disseminate analytical techniques relevant to the microbial ecology community. © 2014 The Authors. FEMS Microbiology Ecology published by John Wiley & Sons Ltd on behalf of Federation of European Microbiological Societies.
Ensembles of radial basis function networks for spectroscopic detection of cervical precancer
NASA Technical Reports Server (NTRS)
Tumer, K.; Ramanujam, N.; Ghosh, J.; Richards-Kortum, R.
1998-01-01
The mortality related to cervical cancer can be substantially reduced through early detection and treatment. However, current detection techniques, such as Pap smear and colposcopy, fail to achieve a concurrently high sensitivity and specificity. In vivo fluorescence spectroscopy is a technique which quickly, noninvasively and quantitatively probes the biochemical and morphological changes that occur in precancerous tissue. A multivariate statistical algorithm was used to extract clinically useful information from tissue spectra acquired from 361 cervical sites from 95 patients at 337-, 380-, and 460-nm excitation wavelengths. The multivariate statistical analysis was also employed to reduce the number of fluorescence excitation-emission wavelength pairs required to discriminate healthy tissue samples from precancerous tissue samples. The use of connectionist methods such as multilayered perceptrons, radial basis function (RBF) networks, and ensembles of such networks was investigated. RBF ensemble algorithms based on fluorescence spectra potentially provide automated and near real-time implementation of precancer detection in the hands of nonexperts. The results are more reliable, direct, and accurate than those achieved by either human experts or multivariate statistical algorithms.
SPReM: Sparse Projection Regression Model For High-dimensional Linear Regression *
Sun, Qiang; Zhu, Hongtu; Liu, Yufeng; Ibrahim, Joseph G.
2014-01-01
The aim of this paper is to develop a sparse projection regression modeling (SPReM) framework to perform multivariate regression modeling with a large number of responses and a multivariate covariate of interest. We propose two novel heritability ratios to simultaneously perform dimension reduction, response selection, estimation, and testing, while explicitly accounting for correlations among multivariate responses. Our SPReM is devised to specifically address the low statistical power issue of many standard statistical approaches, such as the Hotelling’s T2 test statistic or a mass univariate analysis, for high-dimensional data. We formulate the estimation problem of SPREM as a novel sparse unit rank projection (SURP) problem and propose a fast optimization algorithm for SURP. Furthermore, we extend SURP to the sparse multi-rank projection (SMURP) by adopting a sequential SURP approximation. Theoretically, we have systematically investigated the convergence properties of SURP and the convergence rate of SURP estimates. Our simulation results and real data analysis have shown that SPReM out-performs other state-of-the-art methods. PMID:26527844
Calypso: a user-friendly web-server for mining and visualizing microbiome-environment interactions.
Zakrzewski, Martha; Proietti, Carla; Ellis, Jonathan J; Hasan, Shihab; Brion, Marie-Jo; Berger, Bernard; Krause, Lutz
2017-03-01
Calypso is an easy-to-use online software suite that allows non-expert users to mine, interpret and compare taxonomic information from metagenomic or 16S rDNA datasets. Calypso has a focus on multivariate statistical approaches that can identify complex environment-microbiome associations. The software enables quantitative visualizations, statistical testing, multivariate analysis, supervised learning, factor analysis, multivariable regression, network analysis and diversity estimates. Comprehensive help pages, tutorials and videos are provided via a wiki page. The web-interface is accessible via http://cgenome.net/calypso/ . The software is programmed in Java, PERL and R and the source code is available from Zenodo ( https://zenodo.org/record/50931 ). The software is freely available for non-commercial users. l.krause@uq.edu.au. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Chen, Yong; Luo, Sheng; Chu, Haitao; Wei, Peng
2013-05-01
Multivariate meta-analysis is useful in combining evidence from independent studies which involve several comparisons among groups based on a single outcome. For binary outcomes, the commonly used statistical models for multivariate meta-analysis are multivariate generalized linear mixed effects models which assume risks, after some transformation, follow a multivariate normal distribution with possible correlations. In this article, we consider an alternative model for multivariate meta-analysis where the risks are modeled by the multivariate beta distribution proposed by Sarmanov (1966). This model have several attractive features compared to the conventional multivariate generalized linear mixed effects models, including simplicity of likelihood function, no need to specify a link function, and has a closed-form expression of distribution functions for study-specific risk differences. We investigate the finite sample performance of this model by simulation studies and illustrate its use with an application to multivariate meta-analysis of adverse events of tricyclic antidepressants treatment in clinical trials.
Statistical analysis and interpolation of compositional data in materials science.
Pesenson, Misha Z; Suram, Santosh K; Gregoire, John M
2015-02-09
Compositional data are ubiquitous in chemistry and materials science: analysis of elements in multicomponent systems, combinatorial problems, etc., lead to data that are non-negative and sum to a constant (for example, atomic concentrations). The constant sum constraint restricts the sampling space to a simplex instead of the usual Euclidean space. Since statistical measures such as mean and standard deviation are defined for the Euclidean space, traditional correlation studies, multivariate analysis, and hypothesis testing may lead to erroneous dependencies and incorrect inferences when applied to compositional data. Furthermore, composition measurements that are used for data analytics may not include all of the elements contained in the material; that is, the measurements may be subcompositions of a higher-dimensional parent composition. Physically meaningful statistical analysis must yield results that are invariant under the number of composition elements, requiring the application of specialized statistical tools. We present specifics and subtleties of compositional data processing through discussion of illustrative examples. We introduce basic concepts, terminology, and methods required for the analysis of compositional data and utilize them for the spatial interpolation of composition in a sputtered thin film. The results demonstrate the importance of this mathematical framework for compositional data analysis (CDA) in the fields of materials science and chemistry.
Jia, Erik; Chen, Tianlu
2018-01-01
Left-censored missing values commonly exist in targeted metabolomics datasets and can be considered as missing not at random (MNAR). Improper data processing procedures for missing values will cause adverse impacts on subsequent statistical analyses. However, few imputation methods have been developed and applied to the situation of MNAR in the field of metabolomics. Thus, a practical left-censored missing value imputation method is urgently needed. We developed an iterative Gibbs sampler based left-censored missing value imputation approach (GSimp). We compared GSimp with other three imputation methods on two real-world targeted metabolomics datasets and one simulation dataset using our imputation evaluation pipeline. The results show that GSimp outperforms other imputation methods in terms of imputation accuracy, observation distribution, univariate and multivariate analyses, and statistical sensitivity. Additionally, a parallel version of GSimp was developed for dealing with large scale metabolomics datasets. The R code for GSimp, evaluation pipeline, tutorial, real-world and simulated targeted metabolomics datasets are available at: https://github.com/WandeRum/GSimp. PMID:29385130
Reconstructing the intermittent dynamics of the torque in wind turbines
NASA Astrophysics Data System (ADS)
Lind, Pedro G.; Wächter, Matthias; Peinke, Joachim
2014-06-01
We apply a framework introduced in the late nineties to analyze load measurements in off-shore wind energy converters (WEC). The framework is borrowed from statistical physics and properly adapted to the analysis of multivariate data comprising wind velocity, power production and torque measurements, taken at one single WEC. In particular, we assume that wind statistics drives the fluctuations of the torque produced in the wind turbine and show how to extract an evolution equation of the Langevin type for the torque driven by the wind velocity. It is known that the intermittent nature of the atmosphere, i.e. of the wind field, is transferred to the power production of a wind energy converter and consequently to the shaft torque. We show that the derived stochastic differential equation quantifies the dynamical coupling of the measured fluctuating properties as well as it reproduces the intermittency observed in the data. Finally, we discuss our approach in the light of turbine monitoring, a particular important issue in off-shore wind farms.
Linear regression analysis: part 14 of a series on evaluation of scientific publications.
Schneider, Astrid; Hommel, Gerhard; Blettner, Maria
2010-11-01
Regression analysis is an important statistical method for the analysis of medical data. It enables the identification and characterization of relationships among multiple factors. It also enables the identification of prognostically relevant risk factors and the calculation of risk scores for individual prognostication. This article is based on selected textbooks of statistics, a selective review of the literature, and our own experience. After a brief introduction of the uni- and multivariable regression models, illustrative examples are given to explain what the important considerations are before a regression analysis is performed, and how the results should be interpreted. The reader should then be able to judge whether the method has been used correctly and interpret the results appropriately. The performance and interpretation of linear regression analysis are subject to a variety of pitfalls, which are discussed here in detail. The reader is made aware of common errors of interpretation through practical examples. Both the opportunities for applying linear regression analysis and its limitations are presented.
NASA Astrophysics Data System (ADS)
Tien, Hai Minh; Le, Kien Anh; Le, Phung Thi Kim
2017-09-01
Bio hydrogen is a sustainable energy resource due to its potentially higher efficiency of conversion to usable power, high energy efficiency and non-polluting nature resource. In this work, the experiments have been carried out to indicate the possibility of generating bio hydrogen as well as identifying effective factors and the optimum conditions from cassava starch. Experimental design was used to investigate the effect of operating temperature (37-43 °C), pH (6-7), and inoculums ratio (6-10 %) to the yield hydrogen production, the COD reduction and the ratio of volume of hydrogen production to COD reduction. The statistical analysis of the experiment indicated that the significant effects for the fermentation yield were the main effect of temperature, pH and inoculums ratio. The interaction effects between them seem not significant. The central composite design showed that the polynomial regression models were in good agreement with the experimental results. This result will be applied to enhance the process of cassava starch processing wastewater treatment.
Parasites as valuable stock markers for fisheries in Australasia, East Asia and the Pacific Islands.
Lester, R J G; Moore, B R
2015-01-01
Over 30 studies in Australasia, East Asia and the Pacific Islands region have collected and analysed parasite data to determine the ranges of individual fish, many leading to conclusions about stock delineation. Parasites used as biological tags have included both those known to have long residence times in the fish and those thought to be relatively transient. In many cases the parasitological conclusions have been supported by other methods especially analysis of the chemical constituents of otoliths, and to a lesser extent, genetic data. In analysing parasite data, authors have applied multiple different statistical methodologies, including summary statistics, and univariate and multivariate approaches. Recently, a growing number of researchers have found non-parametric methods, such as analysis of similarities and cluster analysis, to be valuable. Future studies into the residence times, life cycles and geographical distributions of parasites together with more robust analytical methods will yield much important information to clarify stock structures in the area.
Damage detection of engine bladed-disks using multivariate statistical analysis
NASA Astrophysics Data System (ADS)
Fang, X.; Tang, J.
2006-03-01
The timely detection of damage in aero-engine bladed-disks is an extremely important and challenging research topic. Bladed-disks have high modal density and, particularly, their vibration responses are subject to significant uncertainties due to manufacturing tolerance (blade-to-blade difference or mistuning), operating condition change and sensor noise. In this study, we present a new methodology for the on-line damage detection of engine bladed-disks using their vibratory responses during spin-up or spin-down operations which can be measured by blade-tip-timing sensing technique. We apply a principle component analysis (PCA)-based approach for data compression, feature extraction, and denoising. The non-model based damage detection is achieved by analyzing the change between response features of the healthy structure and of the damaged one. We facilitate such comparison by incorporating the Hotelling's statistic T2 analysis, which yields damage declaration with a given confidence level. The effectiveness of the method is demonstrated by case studies.
Fine Mapping Causal Variants with an Approximate Bayesian Method Using Marginal Test Statistics
Chen, Wenan; Larrabee, Beth R.; Ovsyannikova, Inna G.; Kennedy, Richard B.; Haralambieva, Iana H.; Poland, Gregory A.; Schaid, Daniel J.
2015-01-01
Two recently developed fine-mapping methods, CAVIAR and PAINTOR, demonstrate better performance over other fine-mapping methods. They also have the advantage of using only the marginal test statistics and the correlation among SNPs. Both methods leverage the fact that the marginal test statistics asymptotically follow a multivariate normal distribution and are likelihood based. However, their relationship with Bayesian fine mapping, such as BIMBAM, is not clear. In this study, we first show that CAVIAR and BIMBAM are actually approximately equivalent to each other. This leads to a fine-mapping method using marginal test statistics in the Bayesian framework, which we call CAVIAR Bayes factor (CAVIARBF). Another advantage of the Bayesian framework is that it can answer both association and fine-mapping questions. We also used simulations to compare CAVIARBF with other methods under different numbers of causal variants. The results showed that both CAVIARBF and BIMBAM have better performance than PAINTOR and other methods. Compared to BIMBAM, CAVIARBF has the advantage of using only marginal test statistics and takes about one-quarter to one-fifth of the running time. We applied different methods on two independent cohorts of the same phenotype. Results showed that CAVIARBF, BIMBAM, and PAINTOR selected the same top 3 SNPs; however, CAVIARBF and BIMBAM had better consistency in selecting the top 10 ranked SNPs between the two cohorts. Software is available at https://bitbucket.org/Wenan/caviarbf. PMID:25948564
NASA Astrophysics Data System (ADS)
Theodorakou, Chrysoula; Farquharson, Michael J.
2009-08-01
The motivation behind this study is to assess whether angular dispersive x-ray diffraction (ADXRD) data, processed using multivariate analysis techniques, can be used for classifying secondary colorectal liver cancer tissue and normal surrounding liver tissue in human liver biopsy samples. The ADXRD profiles from a total of 60 samples of normal liver tissue and colorectal liver metastases were measured using a synchrotron radiation source. The data were analysed for 56 samples using nonlinear peak-fitting software. Four peaks were fitted to all of the ADXRD profiles, and the amplitude, area, amplitude and area ratios for three of the four peaks were calculated and used for the statistical and multivariate analysis. The statistical analysis showed that there are significant differences between all the peak-fitting parameters and ratios between the normal and the diseased tissue groups. The technique of soft independent modelling of class analogy (SIMCA) was used to classify normal liver tissue and colorectal liver metastases resulting in 67% of the normal tissue samples and 60% of the secondary colorectal liver tissue samples being classified correctly. This study has shown that the ADXRD data of normal and secondary colorectal liver cancer are statistically different and x-ray diffraction data analysed using multivariate analysis have the potential to be used as a method of tissue classification.
Al-Aziz, Jameel; Christou, Nicolas; Dinov, Ivo D.
2011-01-01
The amount, complexity and provenance of data have dramatically increased in the past five years. Visualization of observed and simulated data is a critical component of any social, environmental, biomedical or scientific quest. Dynamic, exploratory and interactive visualization of multivariate data, without preprocessing by dimensionality reduction, remains a nearly insurmountable challenge. The Statistics Online Computational Resource (www.SOCR.ucla.edu) provides portable online aids for probability and statistics education, technology-based instruction and statistical computing. We have developed a new Java-based infrastructure, SOCR Motion Charts, for discovery-based exploratory analysis of multivariate data. This interactive data visualization tool enables the visualization of high-dimensional longitudinal data. SOCR Motion Charts allows mapping of ordinal, nominal and quantitative variables onto time, 2D axes, size, colors, glyphs and appearance characteristics, which facilitates the interactive display of multidimensional data. We validated this new visualization paradigm using several publicly available multivariate datasets including Ice-Thickness, Housing Prices, Consumer Price Index, and California Ozone Data. SOCR Motion Charts is designed using object-oriented programming, implemented as a Java Web-applet and is available to the entire community on the web at www.socr.ucla.edu/SOCR_MotionCharts. It can be used as an instructional tool for rendering and interrogating high-dimensional data in the classroom, as well as a research tool for exploratory data analysis. PMID:21479108
A Descriptive Study of Individual and Cross-Cultural Differences in Statistics Anxiety
ERIC Educational Resources Information Center
Baloglu, Mustafa; Deniz, M. Engin; Kesici, Sahin
2011-01-01
The present study investigated individual and cross-cultural differences in statistics anxiety among 223 Turkish and 237 American college students. A 2 x 2 between-subjects factorial multivariate analysis of covariance (MANCOVA) was performed on the six dependent variables which are the six subscales of the Statistical Anxiety Rating Scale.…
Luo, Li; Zhu, Yun
2012-01-01
Abstract The genome-wide association studies (GWAS) designed for next-generation sequencing data involve testing association of genomic variants, including common, low frequency, and rare variants. The current strategies for association studies are well developed for identifying association of common variants with the common diseases, but may be ill-suited when large amounts of allelic heterogeneity are present in sequence data. Recently, group tests that analyze their collective frequency differences between cases and controls shift the current variant-by-variant analysis paradigm for GWAS of common variants to the collective test of multiple variants in the association analysis of rare variants. However, group tests ignore differences in genetic effects among SNPs at different genomic locations. As an alternative to group tests, we developed a novel genome-information content-based statistics for testing association of the entire allele frequency spectrum of genomic variation with the diseases. To evaluate the performance of the proposed statistics, we use large-scale simulations based on whole genome low coverage pilot data in the 1000 Genomes Project to calculate the type 1 error rates and power of seven alternative statistics: a genome-information content-based statistic, the generalized T2, collapsing method, multivariate and collapsing (CMC) method, individual χ2 test, weighted-sum statistic, and variable threshold statistic. Finally, we apply the seven statistics to published resequencing dataset from ANGPTL3, ANGPTL4, ANGPTL5, and ANGPTL6 genes in the Dallas Heart Study. We report that the genome-information content-based statistic has significantly improved type 1 error rates and higher power than the other six statistics in both simulated and empirical datasets. PMID:22651812
Luo, Li; Zhu, Yun; Xiong, Momiao
2012-06-01
The genome-wide association studies (GWAS) designed for next-generation sequencing data involve testing association of genomic variants, including common, low frequency, and rare variants. The current strategies for association studies are well developed for identifying association of common variants with the common diseases, but may be ill-suited when large amounts of allelic heterogeneity are present in sequence data. Recently, group tests that analyze their collective frequency differences between cases and controls shift the current variant-by-variant analysis paradigm for GWAS of common variants to the collective test of multiple variants in the association analysis of rare variants. However, group tests ignore differences in genetic effects among SNPs at different genomic locations. As an alternative to group tests, we developed a novel genome-information content-based statistics for testing association of the entire allele frequency spectrum of genomic variation with the diseases. To evaluate the performance of the proposed statistics, we use large-scale simulations based on whole genome low coverage pilot data in the 1000 Genomes Project to calculate the type 1 error rates and power of seven alternative statistics: a genome-information content-based statistic, the generalized T(2), collapsing method, multivariate and collapsing (CMC) method, individual χ(2) test, weighted-sum statistic, and variable threshold statistic. Finally, we apply the seven statistics to published resequencing dataset from ANGPTL3, ANGPTL4, ANGPTL5, and ANGPTL6 genes in the Dallas Heart Study. We report that the genome-information content-based statistic has significantly improved type 1 error rates and higher power than the other six statistics in both simulated and empirical datasets.
Richard. D. Wood-Smith; John M. Buffington
1996-01-01
Multivariate statistical analyses of geomorphic variables from 23 forest stream reaches in southeast Alaska result in successful discrimination between pristine streams and those disturbed by land management, specifically timber harvesting and associated road building. Results of discriminant function analysis indicate that a three-variable model discriminates 10...
Parametric Cost Models for Space Telescopes
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2010-01-01
A study is in-process to develop a multivariable parametric cost model for space telescopes. Cost and engineering parametric data has been collected on 30 different space telescopes. Statistical correlations have been developed between 19 variables of 59 variables sampled. Single Variable and Multi-Variable Cost Estimating Relationships have been developed. Results are being published.
Preliminary Multi-Variable Parametric Cost Model for Space Telescopes
NASA Technical Reports Server (NTRS)
Stahl, H. Philip; Hendrichs, Todd
2010-01-01
This slide presentation reviews creating a preliminary multi-variable cost model for the contract costs of making a space telescope. There is discussion of the methodology for collecting the data, definition of the statistical analysis methodology, single variable model results, testing of historical models and an introduction of the multi variable models.
Giordano, Bruno L.; Kayser, Christoph; Rousselet, Guillaume A.; Gross, Joachim; Schyns, Philippe G.
2016-01-01
Abstract We begin by reviewing the statistical framework of information theory as applicable to neuroimaging data analysis. A major factor hindering wider adoption of this framework in neuroimaging is the difficulty of estimating information theoretic quantities in practice. We present a novel estimation technique that combines the statistical theory of copulas with the closed form solution for the entropy of Gaussian variables. This results in a general, computationally efficient, flexible, and robust multivariate statistical framework that provides effect sizes on a common meaningful scale, allows for unified treatment of discrete, continuous, unidimensional and multidimensional variables, and enables direct comparisons of representations from behavioral and brain responses across any recording modality. We validate the use of this estimate as a statistical test within a neuroimaging context, considering both discrete stimulus classes and continuous stimulus features. We also present examples of analyses facilitated by these developments, including application of multivariate analyses to MEG planar magnetic field gradients, and pairwise temporal interactions in evoked EEG responses. We show the benefit of considering the instantaneous temporal derivative together with the raw values of M/EEG signals as a multivariate response, how we can separately quantify modulations of amplitude and direction for vector quantities, and how we can measure the emergence of novel information over time in evoked responses. Open‐source Matlab and Python code implementing the new methods accompanies this article. Hum Brain Mapp 38:1541–1573, 2017. © 2016 Wiley Periodicals, Inc. PMID:27860095
Multivariate generalized multifactor dimensionality reduction to detect gene-gene interactions
2013-01-01
Background Recently, one of the greatest challenges in genome-wide association studies is to detect gene-gene and/or gene-environment interactions for common complex human diseases. Ritchie et al. (2001) proposed multifactor dimensionality reduction (MDR) method for interaction analysis. MDR is a combinatorial approach to reduce multi-locus genotypes into high-risk and low-risk groups. Although MDR has been widely used for case-control studies with binary phenotypes, several extensions have been proposed. One of these methods, a generalized MDR (GMDR) proposed by Lou et al. (2007), allows adjusting for covariates and applying to both dichotomous and continuous phenotypes. GMDR uses the residual score of a generalized linear model of phenotypes to assign either high-risk or low-risk group, while MDR uses the ratio of cases to controls. Methods In this study, we propose multivariate GMDR, an extension of GMDR for multivariate phenotypes. Jointly analysing correlated multivariate phenotypes may have more power to detect susceptible genes and gene-gene interactions. We construct generalized estimating equations (GEE) with multivariate phenotypes to extend generalized linear models. Using the score vectors from GEE we discriminate high-risk from low-risk groups. We applied the multivariate GMDR method to the blood pressure data of the 7,546 subjects from the Korean Association Resource study: systolic blood pressure (SBP) and diastolic blood pressure (DBP). We compare the results of multivariate GMDR for SBP and DBP to the results from separate univariate GMDR for SBP and DBP, respectively. We also applied the multivariate GMDR method to the repeatedly measured hypertension status from 5,466 subjects and compared its result with those of univariate GMDR at each time point. Results Results from the univariate GMDR and multivariate GMDR in two-locus model with both blood pressures and hypertension phenotypes indicate best combinations of SNPs whose interaction has significant association with risk for high blood pressures or hypertension. Although the test balanced accuracy (BA) of multivariate analysis was not always greater than that of univariate analysis, the multivariate BAs were more stable with smaller standard deviations. Conclusions In this study, we have developed multivariate GMDR method using GEE approach. It is useful to use multivariate GMDR with correlated multiple phenotypes of interests. PMID:24565370
Lu, Tsui-Shan; Longnecker, Matthew P.; Zhou, Haibo
2016-01-01
Outcome-dependent sampling (ODS) scheme is a cost-effective sampling scheme where one observes the exposure with a probability that depends on the outcome. The well-known such design is the case-control design for binary response, the case-cohort design for the failure time data and the general ODS design for a continuous response. While substantial work has been done for the univariate response case, statistical inference and design for the ODS with multivariate cases remain under-developed. Motivated by the need in biological studies for taking the advantage of the available responses for subjects in a cluster, we propose a multivariate outcome dependent sampling (Multivariate-ODS) design that is based on a general selection of the continuous responses within a cluster. The proposed inference procedure for the Multivariate-ODS design is semiparametric where all the underlying distributions of covariates are modeled nonparametrically using the empirical likelihood methods. We show that the proposed estimator is consistent and developed the asymptotically normality properties. Simulation studies show that the proposed estimator is more efficient than the estimator obtained using only the simple-random-sample portion of the Multivariate-ODS or the estimator from a simple random sample with the same sample size. The Multivariate-ODS design together with the proposed estimator provides an approach to further improve study efficiency for a given fixed study budget. We illustrate the proposed design and estimator with an analysis of association of PCB exposure to hearing loss in children born to the Collaborative Perinatal Study. PMID:27966260
NASA Astrophysics Data System (ADS)
Sarkar, Arnab; Karki, Vijay; Aggarwal, Suresh K.; Maurya, Gulab S.; Kumar, Rohit; Rai, Awadhesh K.; Mao, Xianglei; Russo, Richard E.
2015-06-01
Laser induced breakdown spectroscopy (LIBS) was applied for elemental characterization of high alloy steel using partial least squares regression (PLSR) with an objective to evaluate the analytical performance of this multivariate approach. The optimization of the number of principle components for minimizing error in PLSR algorithm was investigated. The effect of different pre-treatment procedures on the raw spectral data before PLSR analysis was evaluated based on several statistical (standard error of prediction, percentage relative error of prediction etc.) parameters. The pre-treatment with "NORM" parameter gave the optimum statistical results. The analytical performance of PLSR model improved by increasing the number of laser pulses accumulated per spectrum as well as by truncating the spectrum to appropriate wavelength region. It was found that the statistical benefit of truncating the spectrum can also be accomplished by increasing the number of laser pulses per accumulation without spectral truncation. The constituents (Co and Mo) present in hundreds of ppm were determined with relative precision of 4-9% (2σ), whereas the major constituents Cr and Ni (present at a few percent levels) were determined with a relative precision of ~ 2%(2σ).
Connectopic mapping with resting-state fMRI.
Haak, Koen V; Marquand, Andre F; Beckmann, Christian F
2018-04-15
Brain regions are often topographically connected: nearby locations within one brain area connect with nearby locations in another area. Mapping these connection topographies, or 'connectopies' in short, is crucial for understanding how information is processed in the brain. Here, we propose principled, fully data-driven methods for mapping connectopies using functional magnetic resonance imaging (fMRI) data acquired at rest by combining spectral embedding of voxel-wise connectivity 'fingerprints' with a novel approach to spatial statistical inference. We apply the approach in human primary motor and visual cortex, and show that it can trace biologically plausible, overlapping connectopies in individual subjects that follow these regions' somatotopic and retinotopic maps. As a generic mechanism to perform inference over connectopies, the new spatial statistics approach enables rigorous statistical testing of hypotheses regarding the fine-grained spatial profile of functional connectivity and whether that profile is different between subjects or between experimental conditions. The combined framework offers a fundamental alternative to existing approaches to investigating functional connectivity in the brain, from voxel- or seed-pair wise characterizations of functional association, towards a full, multivariate characterization of spatial topography. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Sharpening method of satellite thermal image based on the geographical statistical model
NASA Astrophysics Data System (ADS)
Qi, Pengcheng; Hu, Shixiong; Zhang, Haijun; Guo, Guangmeng
2016-04-01
To improve the effectiveness of thermal sharpening in mountainous regions, paying more attention to the laws of land surface energy balance, a thermal sharpening method based on the geographical statistical model (GSM) is proposed. Explanatory variables were selected from the processes of land surface energy budget and thermal infrared electromagnetic radiation transmission, then high spatial resolution (57 m) raster layers were generated for these variables through spatially simulating or using other raster data as proxies. Based on this, the local adaptation statistical relationship between brightness temperature (BT) and the explanatory variables, i.e., the GSM, was built at 1026-m resolution using the method of multivariate adaptive regression splines. Finally, the GSM was applied to the high-resolution (57-m) explanatory variables; thus, the high-resolution (57-m) BT image was obtained. This method produced a sharpening result with low error and good visual effect. The method can avoid the blind choice of explanatory variables and remove the dependence on synchronous imagery at visible and near-infrared bands. The influences of the explanatory variable combination, sampling method, and the residual error correction on sharpening results were analyzed deliberately, and their influence mechanisms are reported herein.
Li, Jinling; He, Ming; Han, Wei; Gu, Yifan
2009-05-30
An investigation on heavy metal sources, i.e., Cu, Zn, Ni, Pb, Cr, and Cd in the coastal soils of Shanghai, China, was conducted using multivariate statistical methods (principal component analysis, clustering analysis, and correlation analysis). All the results of the multivariate analysis showed that: (i) Cu, Ni, Pb, and Cd had anthropogenic sources (e.g., overuse of chemical fertilizers and pesticides, industrial and municipal discharges, animal wastes, sewage irrigation, etc.); (ii) Zn and Cr were associated with parent materials and therefore had natural sources (e.g., the weathering process of parent materials and subsequent pedo-genesis due to the alluvial deposits). The effect of heavy metals in the soils was greatly affected by soil formation, atmospheric deposition, and human activities. These findings provided essential information on the possible sources of heavy metals, which would contribute to the monitoring and assessment process of agricultural soils in worldwide regions.
Analysis/forecast experiments with a multivariate statistical analysis scheme using FGGE data
NASA Technical Reports Server (NTRS)
Baker, W. E.; Bloom, S. C.; Nestler, M. S.
1985-01-01
A three-dimensional, multivariate, statistical analysis method, optimal interpolation (OI) is described for modeling meteorological data from widely dispersed sites. The model was developed to analyze FGGE data at the NASA-Goddard Laboratory of Atmospherics. The model features a multivariate surface analysis over the oceans, including maintenance of the Ekman balance and a geographically dependent correlation function. Preliminary comparisons are made between the OI model and similar schemes employed at the European Center for Medium Range Weather Forecasts and the National Meteorological Center. The OI scheme is used to provide input to a GCM, and model error correlations are calculated for forecasts of 500 mb vertical water mixing ratios and the wind profiles. Comparisons are made between the predictions and measured data. The model is shown to be as accurate as a successive corrections model out to 4.5 days.
Predicting trauma patient mortality: ICD [or ICD-10-AM] versus AIS based approaches.
Willis, Cameron D; Gabbe, Belinda J; Jolley, Damien; Harrison, James E; Cameron, Peter A
2010-11-01
The International Classification of Diseases Injury Severity Score (ICISS) has been proposed as an International Classification of Diseases (ICD)-10-based alternative to mortality prediction tools that use Abbreviated Injury Scale (AIS) data, including the Trauma and Injury Severity Score (TRISS). To date, studies have not examined the performance of ICISS using Australian trauma registry data. This study aimed to compare the performance of ICISS with other mortality prediction tools in an Australian trauma registry. This was a retrospective review of prospectively collected data from the Victorian State Trauma Registry. A training dataset was created for model development and a validation dataset for evaluation. The multiplicative ICISS model was compared with a worst injury ICISS approach, Victorian TRISS (V-TRISS, using local coefficients), maximum AIS severity and a multivariable model including ICD-10-AM codes as predictors. Models were investigated for discrimination (C-statistic) and calibration (Hosmer-Lemeshow statistic). The multivariable approach had the highest level of discrimination (C-statistic 0.90) and calibration (H-L 7.65, P= 0.468). Worst injury ICISS, V-TRISS and maximum AIS had similar performance. The multiplicative ICISS produced the lowest level of discrimination (C-statistic 0.80) and poorest calibration (H-L 50.23, P < 0.001). The performance of ICISS may be affected by the data used to develop estimates, the ICD version employed, the methods for deriving estimates and the inclusion of covariates. In this analysis, a multivariable approach using ICD-10-AM codes was the best-performing method. A multivariable ICISS approach may therefore be a useful alternative to AIS-based methods and may have comparable predictive performance to locally derived TRISS models. © 2010 The Authors. ANZ Journal of Surgery © 2010 Royal Australasian College of Surgeons.
Salas, Desirée; Le Gall, Antoine; Fiche, Jean-Bernard; Valeri, Alessandro; Ke, Yonggang; Bron, Patrick; Bellot, Gaetan
2017-01-01
Superresolution light microscopy allows the imaging of labeled supramolecular assemblies at a resolution surpassing the classical diffraction limit. A serious limitation of the superresolution approach is sample heterogeneity and the stochastic character of the labeling procedure. To increase the reproducibility and the resolution of the superresolution results, we apply multivariate statistical analysis methods and 3D reconstruction approaches originally developed for cryogenic electron microscopy of single particles. These methods allow for the reference-free 3D reconstruction of nanomolecular structures from two-dimensional superresolution projection images. Since these 2D projection images all show the structure in high-resolution directions of the optical microscope, the resulting 3D reconstructions have the best possible isotropic resolution in all directions. PMID:28811371
Duarte, Iola F; Lamego, Ines; Marques, Joana; Marques, M Paula M; Blaise, Benjamin J; Gil, Ana M
2010-11-05
In the present study, (1)H HRMAS NMR spectroscopy was used to assess the changes in the intracellular metabolic profile of MG-63 human osteosarcoma (OS) cells induced by the chemotherapy agent cisplatin (CDDP) at different times of exposure. Multivariate analysis was applied to the cells spectra, enabling consistent variation patterns to be detected and drug-specific metabolic effects to be identified. Statistical recoupling of variables (SRV) analysis and spectral integration enabled the most relevant spectral changes to be evaluated, revealing significant time-dependent alterations in lipids, choline-containing compounds, some amino acids, polyalcohols, and nitrogenated bases. The metabolic relevance of these compounds in the response of MG-63 cells to CDDP treatment is discussed.
Pre-selection and assessment of green organic solvents by clustering chemometric tools.
Tobiszewski, Marek; Nedyalkova, Miroslava; Madurga, Sergio; Pena-Pereira, Francisco; Namieśnik, Jacek; Simeonov, Vasil
2018-01-01
The study presents the result of the application of chemometric tools for selection of physicochemical parameters of solvents for predicting missing variables - bioconcentration factors, water-octanol and octanol-air partitioning constants. EPI Suite software was successfully applied to predict missing values for solvents commonly considered as "green". Values for logBCF, logK OW and logK OA were modelled for 43 rather nonpolar solvents and 69 polar ones. Application of multivariate statistics was also proved to be useful in the assessment of the obtained modelling results. The presented approach can be one of the first steps and support tools in the assessment of chemicals in terms of their greenness. Copyright © 2017 Elsevier Inc. All rights reserved.
Fragility of Results in Ophthalmology Randomized Controlled Trials: A Systematic Review.
Shen, Carl; Shamsudeen, Isabel; Farrokhyar, Forough; Sabri, Kourosh
2018-05-01
Evidence-based medicine is guided by our interpretation of randomized controlled trials (RCTs) that address important clinical questions. Evaluation of the robustness of statistically significant outcomes adds a crucial element to the global assessment of trial findings. The purpose of this systematic review was to determine the robustness of ophthalmology RCTs through application of the Fragility Index (FI), a novel metric of the robustness of statistically significant outcomes. Systematic review. A literature search (MEDLINE) was performed for all RCTs published in top ophthalmology journals and ophthalmology-related RCTs published in high-impact journals in the past 10 years. Two reviewers independently screened 1811 identified articles for inclusion if they (1) were a human ophthalmology-related trial, (2) had a 1:1 prospective study design, and (3) reported a statistically significant dichotomous outcome in the abstract. All relevant data, including outcome, P value, number of patients in each group, number of events in each group, number of patients lost to follow-up, and trial characteristics, were extracted. The FI of each RCT was calculated and multivariate regression applied to determine predictive factors. The 156 trials had a median sample size of 91.5 (range, 13-2593) patients/eyes, and a median of 28 (range, 4-2217) events. The median FI of the included trials was 2 (range, 0-48), meaning that if 2 non-events were switched to events in the treatment group, the result would lose its statistical significance. A quarter of all trials had an FI of 1 or less, and 75% of trials had an FI of 6 or less. The FI was less than the number of missing data points in 52.6% of trials. Predictive factors for FI by multivariate regression included smaller P value (P < 0.001), larger sample size (P = 0.001), larger number of events (P = 0.011), and journal impact factor (P = 0.029). In ophthalmology trials, statistically significant dichotomous results are often fragile, meaning that a difference of only a couple of events can change the statistical significance. An application of the FI in RCTs may aid in the interpretation of results and assessment of quality of evidence. Copyright © 2017 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
NONPARAMETRIC MANOVA APPROACHES FOR NON-NORMAL MULTIVARIATE OUTCOMES WITH MISSING VALUES
He, Fanyin; Mazumdar, Sati; Tang, Gong; Bhatia, Triptish; Anderson, Stewart J.; Dew, Mary Amanda; Krafty, Robert; Nimgaonkar, Vishwajit; Deshpande, Smita; Hall, Martica; Reynolds, Charles F.
2017-01-01
Between-group comparisons often entail many correlated response variables. The multivariate linear model, with its assumption of multivariate normality, is the accepted standard tool for these tests. When this assumption is violated, the nonparametric multivariate Kruskal-Wallis (MKW) test is frequently used. However, this test requires complete cases with no missing values in response variables. Deletion of cases with missing values likely leads to inefficient statistical inference. Here we extend the MKW test to retain information from partially-observed cases. Results of simulated studies and analysis of real data show that the proposed method provides adequate coverage and superior power to complete-case analyses. PMID:29416225
Forcino, Frank L; Leighton, Lindsey R; Twerdy, Pamela; Cahill, James F
2015-01-01
Community ecologists commonly perform multivariate techniques (e.g., ordination, cluster analysis) to assess patterns and gradients of taxonomic variation. A critical requirement for a meaningful statistical analysis is accurate information on the taxa found within an ecological sample. However, oversampling (too many individuals counted per sample) also comes at a cost, particularly for ecological systems in which identification and quantification is substantially more resource consuming than the field expedition itself. In such systems, an increasingly larger sample size will eventually result in diminishing returns in improving any pattern or gradient revealed by the data, but will also lead to continually increasing costs. Here, we examine 396 datasets: 44 previously published and 352 created datasets. Using meta-analytic and simulation-based approaches, the research within the present paper seeks (1) to determine minimal sample sizes required to produce robust multivariate statistical results when conducting abundance-based, community ecology research. Furthermore, we seek (2) to determine the dataset parameters (i.e., evenness, number of taxa, number of samples) that require larger sample sizes, regardless of resource availability. We found that in the 44 previously published and the 220 created datasets with randomly chosen abundances, a conservative estimate of a sample size of 58 produced the same multivariate results as all larger sample sizes. However, this minimal number varies as a function of evenness, where increased evenness resulted in increased minimal sample sizes. Sample sizes as small as 58 individuals are sufficient for a broad range of multivariate abundance-based research. In cases when resource availability is the limiting factor for conducting a project (e.g., small university, time to conduct the research project), statistically viable results can still be obtained with less of an investment.
Attitudes toward Advanced and Multivariate Statistics When Using Computers.
ERIC Educational Resources Information Center
Kennedy, Robert L.; McCallister, Corliss Jean
This study investigated the attitudes toward statistics of graduate students who studied advanced statistics in a course in which the focus of instruction was the use of a computer program in class. The use of the program made it possible to provide an individualized, self-paced, student-centered, and activity-based course. The three sections…
ERIC Educational Resources Information Center
Williams, Amanda S.
2015-01-01
Statistics anxiety is a common problem for graduate students. This study explores the multivariate relationship between a set of worry-related variables and six types of statistics anxiety. Canonical correlation analysis indicates a significant relationship between the two sets of variables. Findings suggest that students who are more intolerant…
Multi-country health surveys: are the analyses misleading?
Masood, Mohd; Reidpath, Daniel D
2014-05-01
The aim of this paper was to review the types of approaches currently utilized in the analysis of multi-country survey data, specifically focusing on design and modeling issues with a focus on analyses of significant multi-country surveys published in 2010. A systematic search strategy was used to identify the 10 multi-country surveys and the articles published from them in 2010. The surveys were selected to reflect diverse topics and foci; and provide an insight into analytic approaches across research themes. The search identified 159 articles appropriate for full text review and data extraction. The analyses adopted in the multi-country surveys can be broadly classified as: univariate/bivariate analyses, and multivariate/multivariable analyses. Multivariate/multivariable analyses may be further divided into design- and model-based analyses. Of the 159 articles reviewed, 129 articles used model-based analysis, 30 articles used design-based analyses. Similar patterns could be seen in all the individual surveys. While there is general agreement among survey statisticians that complex surveys are most appropriately analyzed using design-based analyses, most researchers continued to use the more common model-based approaches. Recent developments in design-based multi-level analysis may be one approach to include all the survey design characteristics. This is a relatively new area, however, and there remains statistical, as well as applied analytic research required. An important limitation of this study relates to the selection of the surveys used and the choice of year for the analysis, i.e., year 2010 only. There is, however, no strong reason to believe that analytic strategies have changed radically in the past few years, and 2010 provides a credible snapshot of current practice.
Statistical methods and neural network approaches for classification of data from multiple sources
NASA Technical Reports Server (NTRS)
Benediktsson, Jon Atli; Swain, Philip H.
1990-01-01
Statistical methods for classification of data from multiple data sources are investigated and compared to neural network models. A problem with using conventional multivariate statistical approaches for classification of data of multiple types is in general that a multivariate distribution cannot be assumed for the classes in the data sources. Another common problem with statistical classification methods is that the data sources are not equally reliable. This means that the data sources need to be weighted according to their reliability but most statistical classification methods do not have a mechanism for this. This research focuses on statistical methods which can overcome these problems: a method of statistical multisource analysis and consensus theory. Reliability measures for weighting the data sources in these methods are suggested and investigated. Secondly, this research focuses on neural network models. The neural networks are distribution free since no prior knowledge of the statistical distribution of the data is needed. This is an obvious advantage over most statistical classification methods. The neural networks also automatically take care of the problem involving how much weight each data source should have. On the other hand, their training process is iterative and can take a very long time. Methods to speed up the training procedure are introduced and investigated. Experimental results of classification using both neural network models and statistical methods are given, and the approaches are compared based on these results.
Interfaces between statistical analysis packages and the ESRI geographic information system
NASA Technical Reports Server (NTRS)
Masuoka, E.
1980-01-01
Interfaces between ESRI's geographic information system (GIS) data files and real valued data files written to facilitate statistical analysis and display of spatially referenced multivariable data are described. An example of data analysis which utilized the GIS and the statistical analysis system is presented to illustrate the utility of combining the analytic capability of a statistical package with the data management and display features of the GIS.
Denis Valle; Benjamin Baiser; Christopher W. Woodall; Robin Chazdon; Jerome Chave
2014-01-01
We propose a novel multivariate method to analyse biodiversity data based on the Latent Dirichlet Allocation (LDA) model. LDA, a probabilistic model, reduces assemblages to sets of distinct component communities. It produces easily interpretable results, can represent abrupt and gradual changes in composition, accommodates missing data and allows for coherent estimates...
ERIC Educational Resources Information Center
Grasman, Raoul P. P. P.; Huizenga, Hilde M.; Geurts, Hilde M.
2010-01-01
Crawford and Howell (1998) have pointed out that the common practice of z-score inference on cognitive disability is inappropriate if a patient's performance on a task is compared with relatively few typical control individuals. Appropriate univariate and multivariate statistical tests have been proposed for these studies, but these are only valid…
Park, Eun Sug; Symanski, Elaine; Han, Daikwon; Spiegelman, Clifford
2015-06-01
A major difficulty with assessing source-specific health effects is that source-specific exposures cannot be measured directly; rather, they need to be estimated by a source-apportionment method such as multivariate receptor modeling. The uncertainty in source apportionment (uncertainty in source-specific exposure estimates and model uncertainty due to the unknown number of sources and identifiability conditions) has been largely ignored in previous studies. Also, spatial dependence of multipollutant data collected from multiple monitoring sites has not yet been incorporated into multivariate receptor modeling. The objectives of this project are (1) to develop a multipollutant approach that incorporates both sources of uncertainty in source-apportionment into the assessment of source-specific health effects and (2) to develop enhanced multivariate receptor models that can account for spatial correlations in the multipollutant data collected from multiple sites. We employed a Bayesian hierarchical modeling framework consisting of multivariate receptor models, health-effects models, and a hierarchical model on latent source contributions. For the health model, we focused on the time-series design in this project. Each combination of number of sources and identifiability conditions (additional constraints on model parameters) defines a different model. We built a set of plausible models with extensive exploratory data analyses and with information from previous studies, and then computed posterior model probability to estimate model uncertainty. Parameter estimation and model uncertainty estimation were implemented simultaneously by Markov chain Monte Carlo (MCMC*) methods. We validated the methods using simulated data. We illustrated the methods using PM2.5 (particulate matter ≤ 2.5 μm in aerodynamic diameter) speciation data and mortality data from Phoenix, Arizona, and Houston, Texas. The Phoenix data included counts of cardiovascular deaths and daily PM2.5 speciation data from 1995-1997. The Houston data included respiratory mortality data and 24-hour PM2.5 speciation data sampled every six days from a region near the Houston Ship Channel in years 2002-2005. We also developed a Bayesian spatial multivariate receptor modeling approach that, while simultaneously dealing with the unknown number of sources and identifiability conditions, incorporated spatial correlations in the multipollutant data collected from multiple sites into the estimation of source profiles and contributions based on the discrete process convolution model for multivariate spatial processes. This new modeling approach was applied to 24-hour ambient air concentrations of 17 volatile organic compounds (VOCs) measured at nine monitoring sites in Harris County, Texas, during years 2000 to 2005. Simulation results indicated that our methods were accurate in identifying the true model and estimated parameters were close to the true values. The results from our methods agreed in general with previous studies on the source apportionment of the Phoenix data in terms of estimated source profiles and contributions. However, we had a greater number of statistically insignificant findings, which was likely a natural consequence of incorporating uncertainty in the estimated source contributions into the health-effects parameter estimation. For the Houston data, a model with five sources (that seemed to be Sulfate-Rich Secondary Aerosol, Motor Vehicles, Industrial Combustion, Soil/Crustal Matter, and Sea Salt) showed the highest posterior model probability among the candidate models considered when fitted simultaneously to the PM2.5 and mortality data. There was a statistically significant positive association between respiratory mortality and same-day PM2.5 concentrations attributed to one of the sources (probably industrial combustion). The Bayesian spatial multivariate receptor modeling approach applied to the VOC data led to a highest posterior model probability for a model with five sources (that seemed to be refinery, petrochemical production, gasoline evaporation, natural gas, and vehicular exhaust) among several candidate models, with the number of sources varying between three and seven and with different identifiability conditions. Our multipollutant approach assessing source-specific health effects is more advantageous than a single-pollutant approach in that it can estimate total health effects from multiple pollutants and can also identify emission sources that are responsible for adverse health effects. Our Bayesian approach can incorporate not only uncertainty in the estimated source contributions, but also model uncertainty that has not been addressed in previous studies on assessing source-specific health effects. The new Bayesian spatial multivariate receptor modeling approach enables predictions of source contributions at unmonitored sites, minimizing exposure misclassification and providing improved exposure estimates along with their uncertainty estimates, as well as accounting for uncertainty in the number of sources and identifiability conditions.
Piernas Sánchez, C M; Morales Falo, E M; Zamora Navarro, S; Garaulet Aza, M
2010-01-01
The excess of visceral abdominal adipose tissue is one of the major concerns in obesity and its clinical treatment. To apply the two-dimensional predictive equation proposed by Garaulet et al. to determine the abdominal fat distribution and to compare the results with the body composition obtained by multi-frequency bioelectrical impedance analysis (M-BIA). We studied 230 women, who underwent anthropometry and M-BIA. The predictive equation was applied. Multivariate lineal and partial correlation analyses were performed with control for BMI and % body fat, using SPSS 15.0 with statistical significance P < 0.05. Overall, women were considered as having subcutaneous distribution of abdominal fat. Truncal fat, regional fat and muscular mass were negatively associated with VA/SA(predicted), while the visceral index obtained by M-BIA was positively correlated with VA/SA(predicted). The predictive equation may be useful in the clinical practice to obtain an accurate, costless and safe classification of abdominal obesity.
Vystavna, Y; Diadin, D; Grynenko, V; Yakovlev, V; Vergeles, Y; Huneau, F; Rossi, P M; Hejzlar, J; Knöller, K
2017-09-18
Nitrate contamination of surface water and shallow groundwater was studied in transboundary (Russia/Ukraine) catchment with heterogeneous land use. Dominant sources of nitrate contamination were determined by applying a dual δ 15 N-NO 3 and δ 18 O-NO 3 isotope approach, multivariate statistics, and land use analysis. Nitrate concentration was highly variable from 0.25 to 22 mg L -1 in surface water and from 0.5 to 100 mg L -1 in groundwater. The applied method indicated that sewage to surface water and sewage and manure to groundwater were dominant sources of nitrate contamination. Nitrate/chloride molar ratio was added to support the dual isotope signature and indicated the contribution of fertilizers to the nitrate content in groundwater. Groundwater temperature was found to be an additional indicator of manure and sewerage leaks in the shallow aquifer which has limited protection and is vulnerable to groundwater pollution.
Gouvinhas, Irene; Machado, Nelson; Carvalho, Teresa; de Almeida, José M M M; Barros, Ana I R N A
2015-01-01
Extra virgin olive oils produced from three cultivars on different maturation stages were characterized using Raman spectroscopy. Chemometric methods (principal component analysis, discriminant analysis, principal component regression and partial least squares regression) applied to Raman spectral data were utilized to evaluate and quantify the statistical differences between cultivars and their ripening process. The models for predicting the peroxide value and free acidity of olive oils showed good calibration and prediction values and presented high coefficients of determination (>0.933). Both the R(2), and the correlation equations between the measured chemical parameters, and the values predicted by each approach are presented; these comprehend both PCR and PLS, used to assess SNV normalized Raman data, as well as first and second derivative of the spectra. This study demonstrates that a combination of Raman spectroscopy with multivariate analysis methods can be useful to predict rapidly olive oil chemical characteristics during the maturation process. Copyright © 2014 Elsevier B.V. All rights reserved.
Selvarasu, Suresh; Kim, Do Yun; Karimi, Iftekhar A; Lee, Dong-Yup
2010-10-01
We present an integrated framework for characterizing fed-batch cultures of mouse hybridoma cells producing monoclonal antibody (mAb). This framework systematically combines data preprocessing, elemental balancing and statistical analysis technique. Initially, specific rates of cell growth, glucose/amino acid consumptions and mAb/metabolite productions were calculated via curve fitting using logistic equations, with subsequent elemental balancing of the preprocessed data indicating the presence of experimental measurement errors. Multivariate statistical analysis was then employed to understand physiological characteristics of the cellular system. The results from principal component analysis (PCA) revealed three major clusters of amino acids with similar trends in their consumption profiles: (i) arginine, threonine and serine, (ii) glycine, tyrosine, phenylalanine, methionine, histidine and asparagine, and (iii) lysine, valine and isoleucine. Further analysis using partial least square (PLS) regression identified key amino acids which were positively or negatively correlated with the cell growth, mAb production and the generation of lactate and ammonia. Based on these results, the optimal concentrations of key amino acids in the feed medium can be inferred, potentially leading to an increase in cell viability and productivity, as well as a decrease in toxic waste production. The study demonstrated how the current methodological framework using multivariate statistical analysis techniques can serve as a potential tool for deriving rational medium design strategies. Copyright © 2010 Elsevier B.V. All rights reserved.
Multivariate model of female black bear habitat use for a Geographic Information System
Clark, Joseph D.; Dunn, James E.; Smith, Kimberly G.
1993-01-01
Simple univariate statistical techniques may not adequately assess the multidimensional nature of habitats used by wildlife. Thus, we developed a multivariate method to model habitat-use potential using a set of female black bear (Ursus americanus) radio locations and habitat data consisting of forest cover type, elevation, slope, aspect, distance to roads, distance to streams, and forest cover type diversity score in the Ozark Mountains of Arkansas. The model is based on the Mahalanobis distance statistic coupled with Geographic Information System (GIS) technology. That statistic is a measure of dissimilarity and represents a standardized squared distance between a set of sample variates and an ideal based on the mean of variates associated with animal observations. Calculations were made with the GIS to produce a map containing Mahalanobis distance values within each cell on a 60- × 60-m grid. The model identified areas of high habitat use potential that could not otherwise be identified by independent perusal of any single map layer. This technique avoids many pitfalls that commonly affect typical multivariate analyses of habitat use and is a useful tool for habitat manipulation or mitigation to favor terrestrial vertebrates that use habitats on a landscape scale.
Sepehrband, Farshid; Lynch, Kirsten M; Cabeen, Ryan P; Gonzalez-Zacarias, Clio; Zhao, Lu; D'Arcy, Mike; Kesselman, Carl; Herting, Megan M; Dinov, Ivo D; Toga, Arthur W; Clark, Kristi A
2018-05-15
Exploring neuroanatomical sex differences using a multivariate statistical learning approach can yield insights that cannot be derived with univariate analysis. While gross differences in total brain volume are well-established, uncovering the more subtle, regional sex-related differences in neuroanatomy requires a multivariate approach that can accurately model spatial complexity as well as the interactions between neuroanatomical features. Here, we developed a multivariate statistical learning model using a support vector machine (SVM) classifier to predict sex from MRI-derived regional neuroanatomical features from a single-site study of 967 healthy youth from the Philadelphia Neurodevelopmental Cohort (PNC). Then, we validated the multivariate model on an independent dataset of 682 healthy youth from the multi-site Pediatric Imaging, Neurocognition and Genetics (PING) cohort study. The trained model exhibited an 83% cross-validated prediction accuracy, and correctly predicted the sex of 77% of the subjects from the independent multi-site dataset. Results showed that cortical thickness of the middle occipital lobes and the angular gyri are major predictors of sex. Results also demonstrated the inferential benefits of going beyond classical regression approaches to capture the interactions among brain features in order to better characterize sex differences in male and female youths. We also identified specific cortical morphological measures and parcellation techniques, such as cortical thickness as derived from the Destrieux atlas, that are better able to discriminate between males and females in comparison to other brain atlases (Desikan-Killiany, Brodmann and subcortical atlases). Copyright © 2018 Elsevier Inc. All rights reserved.
MANCOVA for one way classification with homogeneity of regression coefficient vectors
NASA Astrophysics Data System (ADS)
Mokesh Rayalu, G.; Ravisankar, J.; Mythili, G. Y.
2017-11-01
The MANOVA and MANCOVA are the extensions of the univariate ANOVA and ANCOVA techniques to multidimensional or vector valued observations. The assumption of a Gaussian distribution has been replaced with the Multivariate Gaussian distribution for the vectors data and residual term variables in the statistical models of these techniques. The objective of MANCOVA is to determine if there are statistically reliable mean differences that can be demonstrated between groups later modifying the newly created variable. When randomization assignment of samples or subjects to groups is not possible, multivariate analysis of covariance (MANCOVA) provides statistical matching of groups by adjusting dependent variables as if all subjects scored the same on the covariates. In this research article, an extension has been made to the MANCOVA technique with more number of covariates and homogeneity of regression coefficient vectors is also tested.
ERIC Educational Resources Information Center
Yuan, Ke-Hai
2008-01-01
In the literature of mean and covariance structure analysis, noncentral chi-square distribution is commonly used to describe the behavior of the likelihood ratio (LR) statistic under alternative hypothesis. Due to the inaccessibility of the rather technical literature for the distribution of the LR statistic, it is widely believed that the…
Some Tests of Randomness with Applications
1981-02-01
freedom. For further details, the reader is referred to Gnanadesikan (1977, p. 169) wherein other relevant tests are also given, Graphical tests, as...sample from a gamma distri- bution. J. Am. Statist. Assoc. 71, 480-7. Gnanadesikan , R. (1977). Methods for Statistical Data Analysis of Multivariate
Analysis of risk factors for central venous port failure in cancer patients
Hsieh, Ching-Chuan; Weng, Hsu-Huei; Huang, Wen-Shih; Wang, Wen-Ke; Kao, Chiung-Lun; Lu, Ming-Shian; Wang, Chia-Siu
2009-01-01
AIM: To analyze the risk factors for central port failure in cancer patients administered chemotherapy, using univariate and multivariate analyses. METHODS: A total of 1348 totally implantable venous access devices (TIVADs) were implanted into 1280 cancer patients in this cohort study. A Cox proportional hazard model was applied to analyze risk factors for failure of TIVADs. Log-rank test was used to compare actuarial survival rates. Infection, thrombosis, and surgical complication rates (χ2 test or Fisher’s exact test) were compared in relation to the risk factors. RESULTS: Increasing age, male gender and open-ended catheter use were significant risk factors reducing survival of TIVADs as determined by univariate and multivariate analyses. Hematogenous malignancy decreased the survival time of TIVADs; this reduction was not statistically significant by univariate analysis [hazard ratio (HR) = 1.336, 95% CI: 0.966-1.849, P = 0.080)]. However, it became a significant risk factor by multivariate analysis (HR = 1.499, 95% CI: 1.079-2.083, P = 0.016) when correlated with variables of age, sex and catheter type. Close-ended (Groshong) catheters had a lower thrombosis rate than open-ended catheters (2.5% vs 5%, P = 0.015). Hematogenous malignancy had higher infection rates than solid malignancy (10.5% vs 2.5%, P < 0.001). CONCLUSION: Increasing age, male gender, open-ended catheters and hematogenous malignancy were risk factors for TIVAD failure. Close-ended catheters had lower thrombosis rates and hematogenous malignancy had higher infection rates. PMID:19787834
Anthropometric profile of combat athletes via multivariate analysis.
Burdukiewicz, Anna; Pietraszewska, Jadwiga; Stachoń, Aleksandra; Andrzejewska, Justyna
2017-11-07
Athletic success is a complex phenotype influenced by multiple factors, from sport-specific skills to anthropometric characteristics. Considering the latter, the literature has repeatedly indicated that athletes possess distinct physical characteristics depending on the practiced discipline. The aim of the present study was to apply univariate and multivariate methods to assess a wide range of morphometric and somatotypic characteristics in male combat athletes. Biometric data were obtained from 206 male university-level practitioners of judo, jiu-jitsu, karate, kickboxing, taekwondo, and wrestling. Measures included height- and length-based variables, breadths, circumferences, and skinfolds. Body proportions and somatotype, using Sheldon's method of somatotopy as modified by Heath and Carter, were then determined. Body fat percentage was assessed by bioelectrical impedance analysis using tetrapolar hand-to-foot electrodes. Data were subjected to a wide array of statistical analysis. The results show between-group differences in the magnitudes of the analyzed characteristics. While mesomorphy was the dominant component of each group somatotype, enhanced ectomorphy was observed in those disciplines that require a high level of agility. Principal component analysis reduced the multivariate dimensionality of the data to three components (characterizing body size, height-based measures, and the anthropometric structure of the upper extremities) that explained the majority of data variance. The development of a sport-specific anthropometric profile via height- and mass-based and morphometric and somatotypic variables can aid in the design of training protocols and the identification of athlete markers as well as serve as a diagnostic criterion in predicting combat athlete performance.
Lu, Tsui-Shan; Longnecker, Matthew P; Zhou, Haibo
2017-03-15
Outcome-dependent sampling (ODS) scheme is a cost-effective sampling scheme where one observes the exposure with a probability that depends on the outcome. The well-known such design is the case-control design for binary response, the case-cohort design for the failure time data, and the general ODS design for a continuous response. While substantial work has been carried out for the univariate response case, statistical inference and design for the ODS with multivariate cases remain under-developed. Motivated by the need in biological studies for taking the advantage of the available responses for subjects in a cluster, we propose a multivariate outcome-dependent sampling (multivariate-ODS) design that is based on a general selection of the continuous responses within a cluster. The proposed inference procedure for the multivariate-ODS design is semiparametric where all the underlying distributions of covariates are modeled nonparametrically using the empirical likelihood methods. We show that the proposed estimator is consistent and developed the asymptotically normality properties. Simulation studies show that the proposed estimator is more efficient than the estimator obtained using only the simple-random-sample portion of the multivariate-ODS or the estimator from a simple random sample with the same sample size. The multivariate-ODS design together with the proposed estimator provides an approach to further improve study efficiency for a given fixed study budget. We illustrate the proposed design and estimator with an analysis of association of polychlorinated biphenyl exposure to hearing loss in children born to the Collaborative Perinatal Study. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
TATES: Efficient Multivariate Genotype-Phenotype Analysis for Genome-Wide Association Studies
van der Sluis, Sophie; Posthuma, Danielle; Dolan, Conor V.
2013-01-01
To date, the genome-wide association study (GWAS) is the primary tool to identify genetic variants that cause phenotypic variation. As GWAS analyses are generally univariate in nature, multivariate phenotypic information is usually reduced to a single composite score. This practice often results in loss of statistical power to detect causal variants. Multivariate genotype–phenotype methods do exist but attain maximal power only in special circumstances. Here, we present a new multivariate method that we refer to as TATES (Trait-based Association Test that uses Extended Simes procedure), inspired by the GATES procedure proposed by Li et al (2011). For each component of a multivariate trait, TATES combines p-values obtained in standard univariate GWAS to acquire one trait-based p-value, while correcting for correlations between components. Extensive simulations, probing a wide variety of genotype–phenotype models, show that TATES's false positive rate is correct, and that TATES's statistical power to detect causal variants explaining 0.5% of the variance can be 2.5–9 times higher than the power of univariate tests based on composite scores and 1.5–2 times higher than the power of the standard MANOVA. Unlike other multivariate methods, TATES detects both genetic variants that are common to multiple phenotypes and genetic variants that are specific to a single phenotype, i.e. TATES provides a more complete view of the genetic architecture of complex traits. As the actual causal genotype–phenotype model is usually unknown and probably phenotypically and genetically complex, TATES, available as an open source program, constitutes a powerful new multivariate strategy that allows researchers to identify novel causal variants, while the complexity of traits is no longer a limiting factor. PMID:23359524
A first application of independent component analysis to extracting structure from stock returns.
Back, A D; Weigend, A S
1997-08-01
This paper explores the application of a signal processing technique known as independent component analysis (ICA) or blind source separation to multivariate financial time series such as a portfolio of stocks. The key idea of ICA is to linearly map the observed multivariate time series into a new space of statistically independent components (ICs). We apply ICA to three years of daily returns of the 28 largest Japanese stocks and compare the results with those obtained using principal component analysis. The results indicate that the estimated ICs fall into two categories, (i) infrequent large shocks (responsible for the major changes in the stock prices), and (ii) frequent smaller fluctuations (contributing little to the overall level of the stocks). We show that the overall stock price can be reconstructed surprisingly well by using a small number of thresholded weighted ICs. In contrast, when using shocks derived from principal components instead of independent components, the reconstructed price is less similar to the original one. ICA is shown to be a potentially powerful method of analyzing and understanding driving mechanisms in financial time series. The application to portfolio optimization is described in Chin and Weigend (1998).
NASA Astrophysics Data System (ADS)
Bellier, Joseph; Bontron, Guillaume; Zin, Isabella
2017-12-01
Meteorological ensemble forecasts are nowadays widely used as input of hydrological models for probabilistic streamflow forecasting. These forcings are frequently biased and have to be statistically postprocessed, using most of the time univariate techniques that apply independently to individual locations, lead times and weather variables. Postprocessed ensemble forecasts therefore need to be reordered so as to reconstruct suitable multivariate dependence structures. The Schaake shuffle and ensemble copula coupling are the two most popular methods for this purpose. This paper proposes two adaptations of them that make use of meteorological analogues for reconstructing spatiotemporal dependence structures of precipitation forecasts. Performances of the original and adapted techniques are compared through a multistep verification experiment using real forecasts from the European Centre for Medium-Range Weather Forecasts. This experiment evaluates not only multivariate precipitation forecasts but also the corresponding streamflow forecasts that derive from hydrological modeling. Results show that the relative performances of the different reordering methods vary depending on the verification step. In particular, the standard Schaake shuffle is found to perform poorly when evaluated on streamflow. This emphasizes the crucial role of the precipitation spatiotemporal dependence structure in hydrological ensemble forecasting.
NASA Technical Reports Server (NTRS)
Smith, O. E.
1976-01-01
The techniques are presented to derive several statistical wind models. The techniques are from the properties of the multivariate normal probability function. Assuming that the winds can be considered as bivariate normally distributed, then (1) the wind components and conditional wind components are univariate normally distributed, (2) the wind speed is Rayleigh distributed, (3) the conditional distribution of wind speed given a wind direction is Rayleigh distributed, and (4) the frequency of wind direction can be derived. All of these distributions are derived from the 5-sample parameter of wind for the bivariate normal distribution. By further assuming that the winds at two altitudes are quadravariate normally distributed, then the vector wind shear is bivariate normally distributed and the modulus of the vector wind shear is Rayleigh distributed. The conditional probability of wind component shears given a wind component is normally distributed. Examples of these and other properties of the multivariate normal probability distribution function as applied to Cape Kennedy, Florida, and Vandenberg AFB, California, wind data samples are given. A technique to develop a synthetic vector wind profile model of interest to aerospace vehicle applications is presented.
NASA Astrophysics Data System (ADS)
Malik, Riffat Naseem; Hashmi, Muhammad Zaffar
2017-10-01
Himalayan foothills streams, Pakistan play an important role in living water supply and irrigation of farmlands; thus, the water quality is closely related to public health. Multivariate techniques were applied to check spatial and seasonal trends, and metals contamination sources of the Himalayan foothills streams, Pakistan. Grab surface water samples were collected from different sites (5-15 cm water depth) in pre-washed polyethylene containers. Fast Sequential Atomic Absorption Spectrophotometer (Varian FSAA-240) was used to measure the metals concentration. Concentrations of Ni, Cu, and Mn were high in pre-monsoon season than the post-monsoon season. Cluster analysis identified impaired, moderately impaired and least impaired clusters based on water parameters. Discriminant function analysis indicated spatial variability in water was due to temperature, electrical conductivity, nitrates, iron and lead whereas seasonal variations were correlated with 16 physicochemical parameters. Factor analysis identified municipal and poultry waste, automobile activities, surface runoff, and soil weathering as major sources of contamination. Levels of Mn, Cr, Fe, Pb, Cd, Zn and alkalinity were above the WHO and USEPA standards for surface water. The results of present study will help to higher authorities for the management of the Himalayan foothills streams.
Wang, Xiuquan; Huang, Guohe; Zhao, Shan; Guo, Junhong
2015-09-01
This paper presents an open-source software package, rSCA, which is developed based upon a stepwise cluster analysis method and serves as a statistical tool for modeling the relationships between multiple dependent and independent variables. The rSCA package is efficient in dealing with both continuous and discrete variables, as well as nonlinear relationships between the variables. It divides the sample sets of dependent variables into different subsets (or subclusters) through a series of cutting and merging operations based upon the theory of multivariate analysis of variance (MANOVA). The modeling results are given by a cluster tree, which includes both intermediate and leaf subclusters as well as the flow paths from the root of the tree to each leaf subcluster specified by a series of cutting and merging actions. The rSCA package is a handy and easy-to-use tool and is freely available at http://cran.r-project.org/package=rSCA . By applying the developed package to air quality management in an urban environment, we demonstrate its effectiveness in dealing with the complicated relationships among multiple variables in real-world problems.
Guan, Qingyu; Wang, Feifei; Xu, Chuanqi; Pan, Ninghui; Lin, Jinkuo; Zhao, Rui; Yang, Yanyan; Luo, Haiping
2018-02-01
Hexi Corridor is the most important base of commodity grain and producing area for cash crops. However, the rapid development of agriculture and industry has inevitably led to heavy metal contamination in the soils. Multivariate statistical analysis, GIS-based geostatistical methods and Positive Matrix Factorization (PMF) receptor modeling techniques were used to understand the levels of heavy metals and their source apportionment for agricultural soil in Hexi Corridor. The results showed that the average concentrations of Cr, Cu, Ni, Pb and Zn were lower than the secondary standard of soil environmental quality; however, the concentrations of eight metals (Cr, Cu, Mn, Ni, Pb, Ti, V and Zn) were higher than background values, and their corresponding enrichment factor values were significantly greater than 1. Different degrees of heavy metal pollution occurred in the agricultural soils; specifically, Ni had the most potential for impacting human health. The results from the multivariate statistical analysis and GIS-based geostatistical methods indicated both natural sources (Co and W) and anthropogenic sources (Cr, Cu, Mn, Ni, Pb, Ti, V and Zn). To better identify pollution sources of heavy metals in the agricultural soils, the PMF model was applied. Further source apportionment revealed that enrichments of Pb and Zn were attributed to traffic sources; Cr and Ni were closely related to industrial activities, including mining, smelting, coal combustion, iron and steel production and metal processing; Zn and Cu originated from agricultural activities; and V, Ti and Mn were derived from oil- and coal-related activities. Copyright © 2017 Elsevier Ltd. All rights reserved.
Busico, Gianluigi; Cuoco, Emilio; Kazakis, Nerantzis; Colombani, Nicolò; Mastrocicco, Micòl; Tedesco, Dario; Voudouris, Konstantinos
2018-03-01
Shallow aquifers are the most accessible reservoirs of potable groundwater; nevertheless, they are also prone to various sources of pollution and it is usually difficult to distinguish between human and natural sources at the watershed scale. The area chosen for this study (the Campania Plain) is characterized by high spatial heterogeneities both in geochemical features and in hydraulic properties. Groundwater mineralization is driven by many processes such as, geothermal activity, weathering of volcanic products and intense human activities. In such a landscape, multivariate statistical analysis has been used to differentiate among the main hydrochemical processes occurring in the area, using three different approaches of factor analysis: (i) major elements, (ii) trace elements, (iii) both major and trace elements. The elaboration of the factor analysis approaches has revealed seven distinct hydrogeochemical processes: i) Salinization (Cl - , Na + ); ii) Carbonate rocks dissolution; iii) Anthropogenic inputs (NO 3 - , SO 4 2- , U, V); iv) Reducing conditions (Fe 2+ , Mn 2+ ); v) Heavy metals contamination (Cr and Ni); vi) Geothermal fluids influence (Li + ); and vii) Volcanic products contribution (As, Rb). Results from this study highlight the need to separately apply factor analysis when a large data set of trace elements is available. In fact, the impact of geothermal fluids in the shallow aquifer was identified from the application of the factor analysis using only trace elements. This study also reveals that the factor analysis of major and trace elements can differentiate between anthropogenic and geogenic sources of pollution in intensively exploited aquifers. Copyright © 2017 Elsevier Ltd. All rights reserved.
Multiscale climate emulator of multimodal wave spectra: MUSCLE-spectra
NASA Astrophysics Data System (ADS)
Rueda, Ana; Hegermiller, Christie A.; Antolinez, Jose A. A.; Camus, Paula; Vitousek, Sean; Ruggiero, Peter; Barnard, Patrick L.; Erikson, Li H.; Tomás, Antonio; Mendez, Fernando J.
2017-02-01
Characterization of multimodal directional wave spectra is important for many offshore and coastal applications, such as marine forecasting, coastal hazard assessment, and design of offshore wave energy farms and coastal structures. However, the multivariate and multiscale nature of wave climate variability makes this complex problem tractable using computationally expensive numerical models. So far, the skill of statistical-downscaling model-based parametric (unimodal) wave conditions is limited in large ocean basins such as the Pacific. The recent availability of long-term directional spectral data from buoys and wave hindcast models allows for development of stochastic models that include multimodal sea-state parameters. This work introduces a statistical downscaling framework based on weather types to predict multimodal wave spectra (e.g., significant wave height, mean wave period, and mean wave direction from different storm systems, including sea and swells) from large-scale atmospheric pressure fields. For each weather type, variables of interest are modeled using the categorical distribution for the sea-state type, the Generalized Extreme Value (GEV) distribution for wave height and wave period, a multivariate Gaussian copula for the interdependence between variables, and a Markov chain model for the chronology of daily weather types. We apply the model to the southern California coast, where local seas and swells from both the Northern and Southern Hemispheres contribute to the multimodal wave spectrum. This work allows attribution of particular extreme multimodal wave events to specific atmospheric conditions, expanding knowledge of time-dependent, climate-driven offshore and coastal sea-state conditions that have a significant influence on local nearshore processes, coastal morphology, and flood hazards.
Multiscale Climate Emulator of Multimodal Wave Spectra: MUSCLE-spectra
NASA Astrophysics Data System (ADS)
Rueda, A.; Hegermiller, C.; Alvarez Antolinez, J. A.; Camus, P.; Vitousek, S.; Ruggiero, P.; Barnard, P.; Erikson, L. H.; Tomas, A.; Mendez, F. J.
2016-12-01
Characterization of multimodal directional wave spectra is important for many offshore and coastal applications, such as marine forecasting, coastal hazard assessment, and design of offshore wave energy farms and coastal structures. However, the multivariate and multiscale nature of wave climate variability makes this problem complex yet tractable using computationally-expensive numerical models. So far, the skill of statistical-downscaling models based parametric (unimodal) wave conditions is limited in large ocean basins such as the Pacific. The recent availability of long-term directional spectral data from buoys and wave hindcast models allows for development of stochastic models that include multimodal sea-state parameters. This work introduces a statistical-downscaling framework based on weather types to predict multimodal wave spectra (e.g., significant wave height, mean wave period, and mean wave direction from different storm systems, including sea and swells) from large-scale atmospheric pressure fields. For each weather type, variables of interest are modeled using the categorical distribution for the sea-state type, the Generalized Extreme Value (GEV) distribution for wave height and wave period, a multivariate Gaussian copula for the interdependence between variables, and a Markov chain model for the chronology of daily weather types. We apply the model to the Southern California coast, where local seas and swells from both the Northern and Southern Hemispheres contribute to the multimodal wave spectrum. This work allows attribution of particular extreme multimodal wave events to specific atmospheric conditions, expanding knowledge of time-dependent, climate-driven offshore and coastal sea-state conditions that have a significant influence on local nearshore processes, coastal morphology, and flood hazards.
NASA Astrophysics Data System (ADS)
Chen, Zhe; Qiu, Zurong; Huo, Xinming; Fan, Yuming; Li, Xinghua
2017-03-01
A fiber-capacitive drop analyzer is an instrument which monitors a growing droplet to produce a capacitive opto-tensiotrace (COT). Each COT is an integration of fiber light intensity signals and capacitance signals and can reflect the unique physicochemical property of a liquid. In this study, we propose a solution analytical and concentration quantitative method based on multivariate statistical methods. Eight characteristic values are extracted from each COT. A series of COT characteristic values of training solutions at different concentrations compose a data library of this kind of solution. A two-stage linear discriminant analysis is applied to analyze different solution libraries and establish discriminant functions. Test solutions can be discriminated by these functions. After determining the variety of test solutions, Spearman correlation test and principal components analysis are used to filter and reduce dimensions of eight characteristic values, producing a new representative parameter. A cubic spline interpolation function is built between the parameters and concentrations, based on which we can calculate the concentration of the test solution. Methanol, ethanol, n-propanol, and saline solutions are taken as experimental subjects in this paper. For each solution, nine or ten different concentrations are chosen to be the standard library, and the other two concentrations compose the test group. By using the methods mentioned above, all eight test solutions are correctly identified and the average relative error of quantitative analysis is 1.11%. The method proposed is feasible which enlarges the applicable scope of recognizing liquids based on the COT and improves the concentration quantitative precision, as well.
Nojima, Masanori; Tokunaga, Mutsumi; Nagamura, Fumitaka
2018-05-05
To investigate under what circumstances inappropriate use of 'multivariate analysis' is likely to occur and to identify the population that needs more support with medical statistics. The frequency of inappropriate regression model construction in multivariate analysis and related factors were investigated in observational medical research publications. The inappropriate algorithm of using only variables that were significant in univariate analysis was estimated to occur at 6.4% (95% CI 4.8% to 8.5%). This was observed in 1.1% of the publications with a medical statistics expert (hereinafter 'expert') as the first author, 3.5% if an expert was included as coauthor and in 12.2% if experts were not involved. In the publications where the number of cases was 50 or less and the study did not include experts, inappropriate algorithm usage was observed with a high proportion of 20.2%. The OR of the involvement of experts for this outcome was 0.28 (95% CI 0.15 to 0.53). A further, nation-level, analysis showed that the involvement of experts and the implementation of unfavourable multivariate analysis are associated at the nation-level analysis (R=-0.652). Based on the results of this study, the benefit of participation of medical statistics experts is obvious. Experts should be involved for proper confounding adjustment and interpretation of statistical models. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Ince, Robin A A; Giordano, Bruno L; Kayser, Christoph; Rousselet, Guillaume A; Gross, Joachim; Schyns, Philippe G
2017-03-01
We begin by reviewing the statistical framework of information theory as applicable to neuroimaging data analysis. A major factor hindering wider adoption of this framework in neuroimaging is the difficulty of estimating information theoretic quantities in practice. We present a novel estimation technique that combines the statistical theory of copulas with the closed form solution for the entropy of Gaussian variables. This results in a general, computationally efficient, flexible, and robust multivariate statistical framework that provides effect sizes on a common meaningful scale, allows for unified treatment of discrete, continuous, unidimensional and multidimensional variables, and enables direct comparisons of representations from behavioral and brain responses across any recording modality. We validate the use of this estimate as a statistical test within a neuroimaging context, considering both discrete stimulus classes and continuous stimulus features. We also present examples of analyses facilitated by these developments, including application of multivariate analyses to MEG planar magnetic field gradients, and pairwise temporal interactions in evoked EEG responses. We show the benefit of considering the instantaneous temporal derivative together with the raw values of M/EEG signals as a multivariate response, how we can separately quantify modulations of amplitude and direction for vector quantities, and how we can measure the emergence of novel information over time in evoked responses. Open-source Matlab and Python code implementing the new methods accompanies this article. Hum Brain Mapp 38:1541-1573, 2017. © 2016 Wiley Periodicals, Inc. 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Hsiao, Chiaowen; Liu, Mengya; Stanton, Rick; McGee, Monnie; Qian, Yu
2015-01-01
Abstract Flow cytometry (FCM) is a fluorescence‐based single‐cell experimental technology that is routinely applied in biomedical research for identifying cellular biomarkers of normal physiological responses and abnormal disease states. While many computational methods have been developed that focus on identifying cell populations in individual FCM samples, very few have addressed how the identified cell populations can be matched across samples for comparative analysis. This article presents FlowMap‐FR, a novel method for cell population mapping across FCM samples. FlowMap‐FR is based on the Friedman–Rafsky nonparametric test statistic (FR statistic), which quantifies the equivalence of multivariate distributions. As applied to FCM data by FlowMap‐FR, the FR statistic objectively quantifies the similarity between cell populations based on the shapes, sizes, and positions of fluorescence data distributions in the multidimensional feature space. To test and evaluate the performance of FlowMap‐FR, we simulated the kinds of biological and technical sample variations that are commonly observed in FCM data. The results show that FlowMap‐FR is able to effectively identify equivalent cell populations between samples under scenarios of proportion differences and modest position shifts. As a statistical test, FlowMap‐FR can be used to determine whether the expression of a cellular marker is statistically different between two cell populations, suggesting candidates for new cellular phenotypes by providing an objective statistical measure. In addition, FlowMap‐FR can indicate situations in which inappropriate splitting or merging of cell populations has occurred during gating procedures. We compared the FR statistic with the symmetric version of Kullback–Leibler divergence measure used in a previous population matching method with both simulated and real data. The FR statistic outperforms the symmetric version of KL‐distance in distinguishing equivalent from nonequivalent cell populations. FlowMap‐FR was also employed as a distance metric to match cell populations delineated by manual gating across 30 FCM samples from a benchmark FlowCAP data set. An F‐measure of 0.88 was obtained, indicating high precision and recall of the FR‐based population matching results. FlowMap‐FR has been implemented as a standalone R/Bioconductor package so that it can be easily incorporated into current FCM data analytical workflows. © 2015 International Society for Advancement of Cytometry PMID:26274018
Hsiao, Chiaowen; Liu, Mengya; Stanton, Rick; McGee, Monnie; Qian, Yu; Scheuermann, Richard H
2016-01-01
Flow cytometry (FCM) is a fluorescence-based single-cell experimental technology that is routinely applied in biomedical research for identifying cellular biomarkers of normal physiological responses and abnormal disease states. While many computational methods have been developed that focus on identifying cell populations in individual FCM samples, very few have addressed how the identified cell populations can be matched across samples for comparative analysis. This article presents FlowMap-FR, a novel method for cell population mapping across FCM samples. FlowMap-FR is based on the Friedman-Rafsky nonparametric test statistic (FR statistic), which quantifies the equivalence of multivariate distributions. As applied to FCM data by FlowMap-FR, the FR statistic objectively quantifies the similarity between cell populations based on the shapes, sizes, and positions of fluorescence data distributions in the multidimensional feature space. To test and evaluate the performance of FlowMap-FR, we simulated the kinds of biological and technical sample variations that are commonly observed in FCM data. The results show that FlowMap-FR is able to effectively identify equivalent cell populations between samples under scenarios of proportion differences and modest position shifts. As a statistical test, FlowMap-FR can be used to determine whether the expression of a cellular marker is statistically different between two cell populations, suggesting candidates for new cellular phenotypes by providing an objective statistical measure. In addition, FlowMap-FR can indicate situations in which inappropriate splitting or merging of cell populations has occurred during gating procedures. We compared the FR statistic with the symmetric version of Kullback-Leibler divergence measure used in a previous population matching method with both simulated and real data. The FR statistic outperforms the symmetric version of KL-distance in distinguishing equivalent from nonequivalent cell populations. FlowMap-FR was also employed as a distance metric to match cell populations delineated by manual gating across 30 FCM samples from a benchmark FlowCAP data set. An F-measure of 0.88 was obtained, indicating high precision and recall of the FR-based population matching results. FlowMap-FR has been implemented as a standalone R/Bioconductor package so that it can be easily incorporated into current FCM data analytical workflows. © The Authors. Published by Wiley Periodicals, Inc. on behalf of ISAC.
ERIC Educational Resources Information Center
Joo, Soohyung; Kipp, Margaret E. I.
2015-01-01
Introduction: This study examines the structure of Web space in the field of library and information science using multivariate analysis of social tags from the Website, Delicious.com. A few studies have examined mathematical modelling of tags, mainly examining tagging in terms of tripartite graphs, pattern tracing and descriptive statistics. This…
ERIC Educational Resources Information Center
Magis, David; De Boeck, Paul
2011-01-01
We focus on the identification of differential item functioning (DIF) when more than two groups of examinees are considered. We propose to consider items as elements of a multivariate space, where DIF items are outlying elements. Following this approach, the situation of multiple groups is a quite natural case. A robust statistics technique is…
ERIC Educational Resources Information Center
Arbaugh, J. B.; Hwang, Alvin
2013-01-01
Seeking to assess the analytical rigor of empirical research in management education, this article reviews the use of multivariate statistical techniques in 85 studies of online and blended management education over the past decade and compares them with prescriptions offered by both the organization studies and educational research communities.…
On Some Multiple Decision Problems
1976-08-01
parameter space. Some recent results in the area of subset selection formulation are Gnanadesikan and Gupta [28], Gupta and Studden [43], Gupta and...York, pp. 363-376. [27) Gnanadesikan , M. (1966). Some Selection and Ranking Procedures for Multivariate Normal Populations. Ph.D. Thesis. Dept. of...Statist., Purdue Univ., West Lafayette, Indiana 47907. [28) Gnanadesikan , M. and Gupta, S. S. (1970). Selection procedures for multivariate normal
Fine Mapping Causal Variants with an Approximate Bayesian Method Using Marginal Test Statistics.
Chen, Wenan; Larrabee, Beth R; Ovsyannikova, Inna G; Kennedy, Richard B; Haralambieva, Iana H; Poland, Gregory A; Schaid, Daniel J
2015-07-01
Two recently developed fine-mapping methods, CAVIAR and PAINTOR, demonstrate better performance over other fine-mapping methods. They also have the advantage of using only the marginal test statistics and the correlation among SNPs. Both methods leverage the fact that the marginal test statistics asymptotically follow a multivariate normal distribution and are likelihood based. However, their relationship with Bayesian fine mapping, such as BIMBAM, is not clear. In this study, we first show that CAVIAR and BIMBAM are actually approximately equivalent to each other. This leads to a fine-mapping method using marginal test statistics in the Bayesian framework, which we call CAVIAR Bayes factor (CAVIARBF). Another advantage of the Bayesian framework is that it can answer both association and fine-mapping questions. We also used simulations to compare CAVIARBF with other methods under different numbers of causal variants. The results showed that both CAVIARBF and BIMBAM have better performance than PAINTOR and other methods. Compared to BIMBAM, CAVIARBF has the advantage of using only marginal test statistics and takes about one-quarter to one-fifth of the running time. We applied different methods on two independent cohorts of the same phenotype. Results showed that CAVIARBF, BIMBAM, and PAINTOR selected the same top 3 SNPs; however, CAVIARBF and BIMBAM had better consistency in selecting the top 10 ranked SNPs between the two cohorts. Software is available at https://bitbucket.org/Wenan/caviarbf. Copyright © 2015 by the Genetics Society of America.
NASA Astrophysics Data System (ADS)
Cannon, Alex J.
2018-01-01
Most bias correction algorithms used in climatology, for example quantile mapping, are applied to univariate time series. They neglect the dependence between different variables. Those that are multivariate often correct only limited measures of joint dependence, such as Pearson or Spearman rank correlation. Here, an image processing technique designed to transfer colour information from one image to another—the N-dimensional probability density function transform—is adapted for use as a multivariate bias correction algorithm (MBCn) for climate model projections/predictions of multiple climate variables. MBCn is a multivariate generalization of quantile mapping that transfers all aspects of an observed continuous multivariate distribution to the corresponding multivariate distribution of variables from a climate model. When applied to climate model projections, changes in quantiles of each variable between the historical and projection period are also preserved. The MBCn algorithm is demonstrated on three case studies. First, the method is applied to an image processing example with characteristics that mimic a climate projection problem. Second, MBCn is used to correct a suite of 3-hourly surface meteorological variables from the Canadian Centre for Climate Modelling and Analysis Regional Climate Model (CanRCM4) across a North American domain. Components of the Canadian Forest Fire Weather Index (FWI) System, a complicated set of multivariate indices that characterizes the risk of wildfire, are then calculated and verified against observed values. Third, MBCn is used to correct biases in the spatial dependence structure of CanRCM4 precipitation fields. Results are compared against a univariate quantile mapping algorithm, which neglects the dependence between variables, and two multivariate bias correction algorithms, each of which corrects a different form of inter-variable correlation structure. MBCn outperforms these alternatives, often by a large margin, particularly for annual maxima of the FWI distribution and spatiotemporal autocorrelation of precipitation fields.
NASA Astrophysics Data System (ADS)
Hoell, Simon; Omenzetter, Piotr
2017-04-01
The increasing demand for carbon neutral energy in a challenging economic environment is a driving factor for erecting ever larger wind turbines in harsh environments using novel wind turbine blade (WTBs) designs characterized by high flexibilities and lower buckling capacities. To counteract resulting increasing of operation and maintenance costs, efficient structural health monitoring systems can be employed to prevent dramatic failures and to schedule maintenance actions according to the true structural state. This paper presents a novel methodology for classifying structural damages using vibrational responses from a single sensor. The method is based on statistical classification using Bayes' theorem and an advanced statistic, which allows controlling the performance by varying the number of samples which represent the current state. This is done for multivariate damage sensitive features defined as partial autocorrelation coefficients (PACCs) estimated from vibrational responses and principal component analysis scores from PACCs. Additionally, optimal DSFs are composed not only for damage classification but also for damage detection based on binary statistical hypothesis testing, where features selections are found with a fast forward procedure. The method is applied to laboratory experiments with a small scale WTB with wind-like excitation and non-destructive damage scenarios. The obtained results demonstrate the advantages of the proposed procedure and are promising for future applications of vibration-based structural health monitoring in WTBs.
Assessing groundwater vulnerability to agrichemical contamination in the Midwest US
Burkart, M.R.; Kolpin, D.W.; James, D.E.
1999-01-01
Agrichemicals (herbicides and nitrate) are significant sources of diffuse pollution to groundwater. Indirect methods are needed to assess the potential for groundwater contamination by diffuse sources because groundwater monitoring is too costly to adequately define the geographic extent of contamination at a regional or national scale. This paper presents examples of the application of statistical, overlay and index, and process-based modeling methods for groundwater vulnerability assessments to a variety of data from the Midwest U.S. The principles for vulnerability assessment include both intrinsic (pedologic, climatologic, and hydrogeologic factors) and specific (contaminant and other anthropogenic factors) vulnerability of a location. Statistical methods use the frequency of contaminant occurrence, contaminant concentration, or contamination probability as a response variable. Statistical assessments are useful for defining the relations among explanatory and response variables whether they define intrinsic or specific vulnerability. Multivariate statistical analyses are useful for ranking variables critical to estimating water quality responses of interest. Overlay and index methods involve intersecting maps of intrinsic and specific vulnerability properties and indexing the variables by applying appropriate weights. Deterministic models use process-based equations to simulate contaminant transport and are distinguished from the other methods in their potential to predict contaminant transport in both space and time. An example of a one-dimensional leaching model linked to a geographic information system (GIS) to define a regional metamodel for contamination in the Midwest is included.
Nyarko, Esmond B; Puzey, Kenneth A; Donnelly, Catherine W
2014-06-01
The objectives of this study were to determine if Fourier transform infrared (FT-IR) spectroscopy and multivariate statistical analysis (chemometrics) could be used to rapidly differentiate epidemic clones (ECs) of Listeria monocytogenes, as well as their intact compared with heat-killed populations. FT-IR spectra were collected from dried thin smears on infrared slides prepared from aliquots of 10 μL of each L. monocytogenes ECs (ECIII: J1-101 and R2-499; ECIV: J1-129 and J1-220), and also from intact and heat-killed cell populations of each EC strain using 250 scans at a resolution of 4 cm(-1) in the mid-infrared region in a reflectance mode. Chemometric analysis of spectra involved the application of the multivariate discriminant method for canonical variate analysis (CVA) and linear discriminant analysis (LDA). CVA of the spectra in the wavelength region 4000 to 600 cm(-1) separated the EC strains while LDA resulted in a 100% accurate classification of all spectra in the data set. Further, CVA separated intact and heat-killed cells of each EC strain and there was 100% accuracy in the classification of all spectra when LDA was applied. FT-IR spectral wavenumbers 1650 to 1390 cm(-1) were used to separate heat-killed and intact populations of L. monocytogenes. The FT-IR spectroscopy method allowed discrimination between strains that belong to the same EC. FT-IR is a highly discriminatory and reproducible method that can be used for the rapid subtyping of L. monocytogenes, as well as for the detection of live compared with dead populations of the organism. Fourier transform infrared (FT-IR) spectroscopy and multivariate statistical analysis can be used for L. monocytogenes source tracking and for clinical case isolate comparison during epidemiological investigations since the method is capable of differentiating epidemic clones and it uses a library of well-characterized strains. The FT-IR method is potentially less expensive and more rapid compared to genetic subtyping methods, and can be used for L. monocytogenes strain typing by food industries and public health agencies to enable faster response and intervention to listeriosis outbreaks. FT-IR can also be applied for routine monitoring of the pathogen in food processing plants and for investigating postprocessing contamination because it is capable of differentiating heat-killed and viable L. monocytogenes populations. © 2014 Institute of Food Technologists®
Are studies reporting significant results more likely to be published?
Koletsi, Despina; Karagianni, Anthi; Pandis, Nikolaos; Makou, Margarita; Polychronopoulou, Argy; Eliades, Theodore
2009-11-01
Our objective was to assess the hypothesis that there are variations of the proportion of articles reporting a significant effect, with a higher percentage of those articles published in journals with impact factors. The contents of 5 orthodontic journals (American Journal of Orthodontics and Dentofacial Orthopedics, Angle Orthodontist, European Journal of Orthodontics, Journal of Orthodontics, and Orthodontics and Craniofacial Research), published between 2004 and 2008, were hand-searched. Articles with statistical analysis of data were included in the study and classified into 4 categories: behavior and psychology, biomaterials and biomechanics, diagnostic procedures and treatment, and craniofacial growth, morphology, and genetics. In total, 2622 articles were examined, with 1785 included in the analysis. Univariate and multivariate logistic regression analyses were applied with statistical significance as the dependent variable, and whether the journal had an impact factor, the subject, and the year were the independent predictors. A higher percentage of articles showed significant results relative to those without significant associations (on average, 88% vs 12%) for those journals. Overall, these journals published significantly more studies with significant results, ranging from 75% to 90% (P = 0.02). Multivariate modeling showed that journals with impact factors had a 100% increased probability of publishing a statistically significant result compared with journals with no impact factor (odds ratio [OR], 1.99; 95% CI, 1.19-3.31). Compared with articles on biomaterials and biomechanics, all other subject categories showed lower probabilities of significant results. Nonsignificant findings in behavior and psychology and diagnosis and treatment were 1.8 (OR, 1.75; 95% CI, 1.51-2.67) and 3.5 (OR, 3.50; 95% CI, 2.27-5.37) times more likely to be published, respectively. Journals seem to prefer reporting significant results; this might be because of authors' perceptions of the importance of their findings and editors' and reviewers' preferences for significant results. The implication of this factor in the reliability of systematic reviews is discussed.
MGAS: a powerful tool for multivariate gene-based genome-wide association analysis.
Van der Sluis, Sophie; Dolan, Conor V; Li, Jiang; Song, Youqiang; Sham, Pak; Posthuma, Danielle; Li, Miao-Xin
2015-04-01
Standard genome-wide association studies, testing the association between one phenotype and a large number of single nucleotide polymorphisms (SNPs), are limited in two ways: (i) traits are often multivariate, and analysis of composite scores entails loss in statistical power and (ii) gene-based analyses may be preferred, e.g. to decrease the multiple testing problem. Here we present a new method, multivariate gene-based association test by extended Simes procedure (MGAS), that allows gene-based testing of multivariate phenotypes in unrelated individuals. Through extensive simulation, we show that under most trait-generating genotype-phenotype models MGAS has superior statistical power to detect associated genes compared with gene-based analyses of univariate phenotypic composite scores (i.e. GATES, multiple regression), and multivariate analysis of variance (MANOVA). Re-analysis of metabolic data revealed 32 False Discovery Rate controlled genome-wide significant genes, and 12 regions harboring multiple genes; of these 44 regions, 30 were not reported in the original analysis. MGAS allows researchers to conduct their multivariate gene-based analyses efficiently, and without the loss of power that is often associated with an incorrectly specified genotype-phenotype models. MGAS is freely available in KGG v3.0 (http://statgenpro.psychiatry.hku.hk/limx/kgg/download.php). Access to the metabolic dataset can be requested at dbGaP (https://dbgap.ncbi.nlm.nih.gov/). The R-simulation code is available from http://ctglab.nl/people/sophie_van_der_sluis. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.
Hegazy, M A; Yehia, A M; Moustafa, A A
2013-05-01
The ability of bivariate and multivariate spectrophotometric methods was demonstrated in the resolution of a quaternary mixture of mosapride, pantoprazole and their degradation products. The bivariate calibrations include bivariate spectrophotometric method (BSM) and H-point standard addition method (HPSAM), which were able to determine the two drugs, simultaneously, but not in the presence of their degradation products, the results showed that simultaneous determinations could be performed in the concentration ranges of 5.0-50.0 microg/ml for mosapride and 10.0-40.0 microg/ml for pantoprazole by bivariate spectrophotometric method and in the concentration ranges of 5.0-45.0 microg/ml for both drugs by H-point standard addition method. Moreover, the applied multivariate calibration methods were able for the determination of mosapride, pantoprazole and their degradation products using concentration residuals augmented classical least squares (CRACLS) and partial least squares (PLS). The proposed multivariate methods were applied to 17 synthetic samples in the concentration ranges of 3.0-12.0 microg/ml mosapride, 8.0-32.0 microg/ml pantoprazole, 1.5-6.0 microg/ml mosapride degradation products and 2.0-8.0 microg/ml pantoprazole degradation products. The proposed bivariate and multivariate calibration methods were successfully applied to the determination of mosapride and pantoprazole in their pharmaceutical preparations.
Siddikee, Md. Ashaduzzaman; Zereen, Mst Israt; Li, Cai-Feng; Dai, Chuan-Chao
2016-01-01
Microbial community structure and functions of rhizosphere soil of rice were investigated after applying low and high doses of nitrogenous fertilizer and Phomopsis liquidambari. Average well color development, substrate richness, catabolic diversity and soil enzymes activities varied after applying N-fertilizer and P. liquidambari and were greater in P. liquidambari treated soil than only N-fertilization. Multivariate analysis distinctly separated the catabolic and enzymes activity profile which statistically proved alteration of microbial functional diversity. Nitrogen fertilizer altered microbial community structure revealed by the increased content of total PLFAs, specific subgroup marker PLFAs except fungal PLFAs and by the decreased ratio of G+/G−, sat/monunsat, iso/anteiso, F/B except trans/cis while P. liquidambari inoculation enhanced N-fertilization effect except increased fungal PLFA and decreased trans/cis. PCA using identified marker PLFAs revealed definite discrimination among the treatments which further statistically confirmed structural changed of microbial community. Nitrogenase activity representative of N-fixing community decreased in N-fertilizer treatment while P. liquidambari inoculation increased. In short, application of P. liquidambari with low doses of N-fertilizer improved rice growth and reduced N-fertilizer requirement by increasing enzymes activities involved in C, N and P cycling, structural and functional diversity of microbes, nitrogenase activity involved in N2 fixation and accumulation of total-N. PMID:27596935
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koch, C.D.; Pirkle, F.L.; Schmidt, J.S.
1981-01-01
A Principal Components Analysis (PCA) has been written to aid in the interpretation of multivariate aerial radiometric data collected by the US Department of Energy (DOE) under the National Uranium Resource Evaluation (NURE) program. The variations exhibited by these data have been reduced and classified into a number of linear combinations by using the PCA program. The PCA program then generates histograms and outlier maps of the individual variates. Black and white plots can be made on a Calcomp plotter by the application of follow-up programs. All programs referred to in this guide were written for a DEC-10. From thismore » analysis a geologist may begin to interpret the data structure. Insight into geological processes underlying the data may be obtained.« less
Jędrkiewicz, Renata; Tsakovski, Stefan; Lavenu, Aurore; Namieśnik, Jacek; Tobiszewski, Marek
2018-02-01
Novel methodology for grouping and ranking with application of self-organizing maps and multicriteria decision analysis is presented. The dataset consists of 22 objects that are analytical procedures applied to furan determination in food samples. They are described by 10 variables, referred to their analytical performance, environmental and economic aspects. Multivariate statistics analysis allows to limit the amount of input data for ranking analysis. Assessment results show that the most beneficial procedures are based on microextraction techniques with GC-MS final determination. It is presented how the information obtained from both tools complement each other. The applicability of combination of grouping and ranking is also discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Dual control and prevention of the turn-off phenomenon in a class of mimo systems
NASA Technical Reports Server (NTRS)
Mookerjee, P.; Bar-Shalom, Y.; Molusis, J. A.
1985-01-01
A recently developed methodology of adaptive dual control based upon sensitivity functions is applied here to a multivariable input-output model. The plant has constant but unknown parameters. It represents a simplified linear version of the relationship between the vibration output and the higher harmonic control input for a helicopter. The cautious and the new dual controller are examined. In many instances, the cautious controller is seen to turn off. The new dual controller modifies the cautious control design by numerator and denominator correction terms which depend upon the sensitivity functions of the expected future cost and avoids the turn-off and burst phenomena. Monte Carlo simulations and statistical tests of significance indicate the superiority of the dual controller over the cautious and the heuristic certainity equivalence controllers.
NASA Astrophysics Data System (ADS)
Vítková, Gabriela; Prokeš, Lubomír; Novotný, Karel; Pořízka, Pavel; Novotný, Jan; Všianský, Dalibor; Čelko, Ladislav; Kaiser, Jozef
2014-11-01
Focusing on historical aspect, during archeological excavation or restoration works of buildings or different structures built from bricks it is important to determine, preferably in-situ and in real-time, the locality of bricks origin. Fast classification of bricks on the base of Laser-Induced Breakdown Spectroscopy (LIBS) spectra is possible using multivariate statistical methods. Combination of principal component analysis (PCA) and linear discriminant analysis (LDA) was applied in this case. LIBS was used to classify altogether the 29 brick samples from 7 different localities. Realizing comparative study using two different LIBS setups - stand-off and table-top it is shown that stand-off LIBS has a big potential for archeological in-field measurements.
NASA Astrophysics Data System (ADS)
Belianinov, Alex; Ganesh, Panchapakesan; Lin, Wenzhi; Sales, Brian C.; Sefat, Athena S.; Jesse, Stephen; Pan, Minghu; Kalinin, Sergei V.
2014-12-01
Atomic level spatial variability of electronic structure in Fe-based superconductor FeTe0.55Se0.45 (Tc = 15 K) is explored using current-imaging tunneling-spectroscopy. Multivariate statistical analysis of the data differentiates regions of dissimilar electronic behavior that can be identified with the segregation of chalcogen atoms, as well as boundaries between terminations and near neighbor interactions. Subsequent clustering analysis allows identification of the spatial localization of these dissimilar regions. Similar statistical analysis of modeled calculated density of states of chemically inhomogeneous FeTe1-xSex structures further confirms that the two types of chalcogens, i.e., Te and Se, can be identified by their electronic signature and differentiated by their local chemical environment. This approach allows detailed chemical discrimination of the scanning tunneling microscopy data including separation of atomic identities, proximity, and local configuration effects and can be universally applicable to chemically and electronically inhomogeneous surfaces.
NASA Astrophysics Data System (ADS)
Brizzi, S.; Sandri, L.; Funiciello, F.; Corbi, F.; Piromallo, C.; Heuret, A.
2018-03-01
The observed maximum magnitude of subduction megathrust earthquakes is highly variable worldwide. One key question is which conditions, if any, favor the occurrence of giant earthquakes (Mw ≥ 8.5). Here we carry out a multivariate statistical study in order to investigate the factors affecting the maximum magnitude of subduction megathrust earthquakes. We find that the trench-parallel extent of subduction zones and the thickness of trench sediments provide the largest discriminating capability between subduction zones that have experienced giant earthquakes and those having significantly lower maximum magnitude. Monte Carlo simulations show that the observed spatial distribution of giant earthquakes cannot be explained by pure chance to a statistically significant level. We suggest that the combination of a long subduction zone with thick trench sediments likely promotes a great lateral rupture propagation, characteristic of almost all giant earthquakes.
Comparative Research of Navy Voluntary Education at Operational Commands
2017-03-01
return on investment, ROI, logistic regression, multivariate analysis, descriptive statistics, Markov, time-series, linear programming 15. NUMBER...21 B. DESCRIPTIVE STATISTICS TABLES ...............................................25 C. PRIVACY CONSIDERATIONS...THIS PAGE INTENTIONALLY LEFT BLANK xi LIST OF TABLES Table 1. Variables and Descriptions . Adapted from NETC (2016). .......................21
Spatial Dynamics and Determinants of County-Level Education Expenditure in China
ERIC Educational Resources Information Center
Gu, Jiafeng
2012-01-01
In this paper, a multivariate spatial autoregressive model of local public education expenditure determination with autoregressive disturbance is developed and estimated. The existence of spatial interdependence is tested using Moran's I statistic and Lagrange multiplier test statistics for both the spatial error and spatial lag models. The full…
ERIC Educational Resources Information Center
Henry, Gary T.; And Others
1992-01-01
A statistical technique is presented for developing performance standards based on benchmark groups. The benchmark groups are selected using a multivariate technique that relies on a squared Euclidean distance method. For each observation unit (a school district in the example), a unique comparison group is selected. (SLD)
Most analyses of daily time series epidemiology data relate mortality or morbidity counts to PM and other air pollutants by means of single-outcome regression models using multiple predictors, without taking into account the complex statistical structure of the predictor variable...
Challenging Conventional Wisdom for Multivariate Statistical Models with Small Samples
ERIC Educational Resources Information Center
McNeish, Daniel
2017-01-01
In education research, small samples are common because of financial limitations, logistical challenges, or exploratory studies. With small samples, statistical principles on which researchers rely do not hold, leading to trust issues with model estimates and possible replication issues when scaling up. Researchers are generally aware of such…
Xu, Min; Zhang, Lei; Yue, Hong-Shui; Pang, Hong-Wei; Ye, Zheng-Liang; Ding, Li
2017-10-01
To establish an on-line monitoring method for extraction process of Schisandrae Chinensis Fructus, the formula medicinal material of Yiqi Fumai lyophilized injection by combining near infrared spectroscopy with multi-variable data analysis technology. The multivariate statistical process control (MSPC) model was established based on 5 normal batches in production and 2 test batches were monitored by PC scores, DModX and Hotelling T2 control charts. The results showed that MSPC model had a good monitoring ability for the extraction process. The application of the MSPC model to actual production process could effectively achieve on-line monitoring for extraction process of Schisandrae Chinensis Fructus, and can reflect the change of material properties in the production process in real time. This established process monitoring method could provide reference for the application of process analysis technology in the process quality control of traditional Chinese medicine injections. Copyright© by the Chinese Pharmaceutical Association.
Yan, Zhengbing; Kuang, Te-Hui; Yao, Yuan
2017-09-01
In recent years, multivariate statistical monitoring of batch processes has become a popular research topic, wherein multivariate fault isolation is an important step aiming at the identification of the faulty variables contributing most to the detected process abnormality. Although contribution plots have been commonly used in statistical fault isolation, such methods suffer from the smearing effect between correlated variables. In particular, in batch process monitoring, the high autocorrelations and cross-correlations that exist in variable trajectories make the smearing effect unavoidable. To address such a problem, a variable selection-based fault isolation method is proposed in this research, which transforms the fault isolation problem into a variable selection problem in partial least squares discriminant analysis and solves it by calculating a sparse partial least squares model. As different from the traditional methods, the proposed method emphasizes the relative importance of each process variable. Such information may help process engineers in conducting root-cause diagnosis. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace, Jack, E-mail: jack.wallace@ce.queensu.ca; Champagne, Pascale, E-mail: champagne@civil.queensu.ca; Monnier, Anne-Charlotte, E-mail: anne-charlotte.monnier@insa-lyon.fr
Highlights: • Performance of a hybrid passive landfill leachate treatment system was evaluated. • 33 Water chemistry parameters were sampled for 21 months and statistically analyzed. • Parameters were strongly linked and explained most (>40%) of the variation in data. • Alkalinity, ammonia, COD, heavy metals, and iron were criteria for performance. • Eight other parameters were key in modeling system dynamics and criteria. - Abstract: A pilot-scale hybrid-passive treatment system operated at the Merrick Landfill in North Bay, Ontario, Canada, treats municipal landfill leachate and provides for subsequent natural attenuation. Collected leachate is directed to a hybrid-passive treatment system,more » followed by controlled release to a natural attenuation zone before entering the nearby Little Sturgeon River. The study presents a comprehensive evaluation of the performance of the system using multivariate statistical techniques to determine the interactions between parameters, major pollutants in the leachate, and the biological and chemical processes occurring in the system. Five parameters (ammonia, alkalinity, chemical oxygen demand (COD), “heavy” metals of interest, with atomic weights above calcium, and iron) were set as criteria for the evaluation of system performance based on their toxicity to aquatic ecosystems and importance in treatment with respect to discharge regulations. System data for a full range of water quality parameters over a 21-month period were analyzed using principal components analysis (PCA), as well as principal components (PC) and partial least squares (PLS) regressions. PCA indicated a high degree of association for most parameters with the first PC, which explained a high percentage (>40%) of the variation in the data, suggesting strong statistical relationships among most of the parameters in the system. Regression analyses identified 8 parameters (set as independent variables) that were most frequently retained for modeling the five criteria parameters (set as dependent variables), on a statistically significant level: conductivity, dissolved oxygen (DO), nitrite (NO{sub 2}{sup −}), organic nitrogen (N), oxidation reduction potential (ORP), pH, sulfate and total volatile solids (TVS). The criteria parameters and the significant explanatory parameters were most important in modeling the dynamics of the passive treatment system during the study period. Such techniques and procedures were found to be highly valuable and could be applied to other sites to determine parameters of interest in similar naturalized engineered systems.« less
NASA Astrophysics Data System (ADS)
Broothaerts, Nils; López-Sáez, José Antonio; Verstraeten, Gert
2017-04-01
Reconstructing and quantifying human impact is an important step to understand human-environment interactions in the past. Quantitative measures of human impact on the landscape are needed to fully understand long-term influence of anthropogenic land cover changes on the global climate, ecosystems and geomorphic processes. Nevertheless, quantifying past human impact is not straightforward. Recently, multivariate statistical analysis of fossil pollen records have been proposed to characterize vegetation changes and to get insights in past human impact. Although statistical analysis of fossil pollen data can provide useful insights in anthropogenic driven vegetation changes, still it cannot be used as an absolute quantification of past human impact. To overcome this shortcoming, in this study fossil pollen records were included in a multivariate statistical analysis (cluster analysis and non-metric multidimensional scaling (NMDS)) together with modern pollen data and modern vegetation data. The information on the modern pollen and vegetation dataset can be used to get a better interpretation of the representativeness of the fossil pollen records, and can result in a full quantification of human impact in the past. This methodology was applied in two contrasting environments: SW Turkey and Central Spain. For each region, fossil pollen data from different study sites were integrated, together with modern pollen data and information on modern vegetation. In this way, arboreal cover, grazing pressure and agricultural activities in the past were reconstructed and quantified. The data from SW Turkey provides new integrated information on changing human impact through time in the Sagalassos territory, and shows that human impact was most intense during the Hellenistic and Roman Period (ca. 2200-1750 cal a BP) and decreased and changed in nature afterwards. The data from central Spain shows for several sites that arboreal cover decreases bellow 5% from the Feudal period onwards (ca. 850 cal a BP) related to increasing human impact in the landscape. At other study sites arboreal cover remained above 25% beside significant human impact. Overall, the presented examples from two contrasting environments shows how cluster analysis and NMDS of modern and fossil pollen data can help to provide quantitative insights in anthropogenic land cover changes. Our study extensively discuss and illustrate the possibilities and limitations of statistical analysis of pollen data to quantify human induced land use changes.
Milic, Natasa M.; Masic, Srdjan; Milin-Lazovic, Jelena; Trajkovic, Goran; Bukumiric, Zoran; Savic, Marko; Milic, Nikola V.; Cirkovic, Andja; Gajic, Milan; Kostic, Mirjana; Ilic, Aleksandra; Stanisavljevic, Dejana
2016-01-01
Background The scientific community increasingly is recognizing the need to bolster standards of data analysis given the widespread concern that basic mistakes in data analysis are contributing to the irreproducibility of many published research findings. The aim of this study was to investigate students’ attitudes towards statistics within a multi-site medical educational context, monitor their changes and impact on student achievement. In addition, we performed a systematic review to better support our future pedagogical decisions in teaching applied statistics to medical students. Methods A validated Serbian Survey of Attitudes Towards Statistics (SATS-36) questionnaire was administered to medical students attending obligatory introductory courses in biostatistics from three medical universities in the Western Balkans. A systematic review of peer-reviewed publications was performed through searches of Scopus, Web of Science, Science Direct, Medline, and APA databases through 1994. A meta-analysis was performed for the correlation coefficients between SATS component scores and statistics achievement. Pooled estimates were calculated using random effects models. Results SATS-36 was completed by 461 medical students. Most of the students held positive attitudes towards statistics. Ability in mathematics and grade point average were associated in a multivariate regression model with the Cognitive Competence score, after adjusting for age, gender and computer ability. The results of 90 paired data showed that Affect, Cognitive Competence, and Effort scores demonstrated significant positive changes. The Cognitive Competence score showed the largest increase (M = 0.48, SD = 0.95). The positive correlation found between the Cognitive Competence score and students’ achievement (r = 0.41; p<0.001), was also shown in the meta-analysis (r = 0.37; 95% CI 0.32–0.41). Conclusion Students' subjective attitudes regarding Cognitive Competence at the beginning of the biostatistics course, which were directly linked to mathematical knowledge, affected their attitudes at the end of the course that, in turn, influenced students' performance. This indicates the importance of positively changing not only students’ cognitive competency, but also their perceptions of gained competency during the biostatistics course. PMID:27764123
Milic, Natasa M; Masic, Srdjan; Milin-Lazovic, Jelena; Trajkovic, Goran; Bukumiric, Zoran; Savic, Marko; Milic, Nikola V; Cirkovic, Andja; Gajic, Milan; Kostic, Mirjana; Ilic, Aleksandra; Stanisavljevic, Dejana
2016-01-01
The scientific community increasingly is recognizing the need to bolster standards of data analysis given the widespread concern that basic mistakes in data analysis are contributing to the irreproducibility of many published research findings. The aim of this study was to investigate students' attitudes towards statistics within a multi-site medical educational context, monitor their changes and impact on student achievement. In addition, we performed a systematic review to better support our future pedagogical decisions in teaching applied statistics to medical students. A validated Serbian Survey of Attitudes Towards Statistics (SATS-36) questionnaire was administered to medical students attending obligatory introductory courses in biostatistics from three medical universities in the Western Balkans. A systematic review of peer-reviewed publications was performed through searches of Scopus, Web of Science, Science Direct, Medline, and APA databases through 1994. A meta-analysis was performed for the correlation coefficients between SATS component scores and statistics achievement. Pooled estimates were calculated using random effects models. SATS-36 was completed by 461 medical students. Most of the students held positive attitudes towards statistics. Ability in mathematics and grade point average were associated in a multivariate regression model with the Cognitive Competence score, after adjusting for age, gender and computer ability. The results of 90 paired data showed that Affect, Cognitive Competence, and Effort scores demonstrated significant positive changes. The Cognitive Competence score showed the largest increase (M = 0.48, SD = 0.95). The positive correlation found between the Cognitive Competence score and students' achievement (r = 0.41; p<0.001), was also shown in the meta-analysis (r = 0.37; 95% CI 0.32-0.41). Students' subjective attitudes regarding Cognitive Competence at the beginning of the biostatistics course, which were directly linked to mathematical knowledge, affected their attitudes at the end of the course that, in turn, influenced students' performance. This indicates the importance of positively changing not only students' cognitive competency, but also their perceptions of gained competency during the biostatistics course.
Sales, C; Cervera, M I; Gil, R; Portolés, T; Pitarch, E; Beltran, J
2017-02-01
The novel atmospheric pressure chemical ionization (APCI) source has been used in combination with gas chromatography (GC) coupled to hybrid quadrupole time-of-flight (QTOF) mass spectrometry (MS) for determination of volatile components of olive oil, enhancing its potential for classification of olive oil samples according to their quality using a metabolomics-based approach. The full-spectrum acquisition has allowed the detection of volatile organic compounds (VOCs) in olive oil samples, including Extra Virgin, Virgin and Lampante qualities. A dynamic headspace extraction with cartridge solvent elution was applied. The metabolomics strategy consisted of three different steps: a full mass spectral alignment of GC-MS data using MzMine 2.0, a multivariate analysis using Ez-Info and the creation of the statistical model with combinations of responses for molecular fragments. The model was finally validated using blind samples, obtaining an accuracy in oil classification of 70%, taking the official established method, "PANEL TEST", as reference. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bias-Free Chemically Diverse Test Sets from Machine Learning.
Swann, Ellen T; Fernandez, Michael; Coote, Michelle L; Barnard, Amanda S
2017-08-14
Current benchmarking methods in quantum chemistry rely on databases that are built using a chemist's intuition. It is not fully understood how diverse or representative these databases truly are. Multivariate statistical techniques like archetypal analysis and K-means clustering have previously been used to summarize large sets of nanoparticles however molecules are more diverse and not as easily characterized by descriptors. In this work, we compare three sets of descriptors based on the one-, two-, and three-dimensional structure of a molecule. Using data from the NIST Computational Chemistry Comparison and Benchmark Database and machine learning techniques, we demonstrate the functional relationship between these structural descriptors and the electronic energy of molecules. Archetypes and prototypes found with topological or Coulomb matrix descriptors can be used to identify smaller, statistically significant test sets that better capture the diversity of chemical space. We apply this same method to find a diverse subset of organic molecules to demonstrate how the methods can easily be reapplied to individual research projects. Finally, we use our bias-free test sets to assess the performance of density functional theory and quantum Monte Carlo methods.
Levitan, Denise M.; Zipper, Carl E.; Donovan, Patricia; Schreiber, Madeline E.; Seal, Robert; Engle, Mark A.; Chermak, John A.; Bodnar, Robert J.; Johnson, Daniel K.; Aylor, Joseph G.
2015-01-01
Soil geochemical anomalies can be used to identify pathfinders in exploration for ore deposits. In this study, compositional data analysis is used with multivariate statistical methods to analyse soil geochemical data collected from the Coles Hill uranium deposit, Virginia, USA, to identify pathfinders associated with this deposit. Elemental compositions and relationships were compared between the collected Coles Hill soil and reference soil samples extracted from a regional subset of a national-scale geochemical survey. Results show that pathfinders for the Coles Hill deposit include light rare earth elements (La and Ce), which, when normalised by their Al content, are correlated with U/Al, and elevated Th/Al values, which are not correlated with U/Al, supporting decoupling of U from Th during soil generation. These results can be used in genetic and weathering models of the Coles Hill deposit, and can also be applied to future prospecting for similar U deposits in the eastern United States, and in regions with similar geological/climatic conditions.
Uncertainty Analysis of Instrument Calibration and Application
NASA Technical Reports Server (NTRS)
Tripp, John S.; Tcheng, Ping
1999-01-01
Experimental aerodynamic researchers require estimated precision and bias uncertainties of measured physical quantities, typically at 95 percent confidence levels. Uncertainties of final computed aerodynamic parameters are obtained by propagation of individual measurement uncertainties through the defining functional expressions. In this paper, rigorous mathematical techniques are extended to determine precision and bias uncertainties of any instrument-sensor system. Through this analysis, instrument uncertainties determined through calibration are now expressed as functions of the corresponding measurement for linear and nonlinear univariate and multivariate processes. Treatment of correlated measurement precision error is developed. During laboratory calibration, calibration standard uncertainties are assumed to be an order of magnitude less than those of the instrument being calibrated. Often calibration standards do not satisfy this assumption. This paper applies rigorous statistical methods for inclusion of calibration standard uncertainty and covariance due to the order of their application. The effects of mathematical modeling error on calibration bias uncertainty are quantified. The effects of experimental design on uncertainty are analyzed. The importance of replication is emphasized, techniques for estimation of both bias and precision uncertainties using replication are developed. Statistical tests for stationarity of calibration parameters over time are obtained.
NASA Astrophysics Data System (ADS)
Donges, Jonathan F.; Heitzig, Jobst; Beronov, Boyan; Wiedermann, Marc; Runge, Jakob; Feng, Qing Yi; Tupikina, Liubov; Stolbova, Veronika; Donner, Reik V.; Marwan, Norbert; Dijkstra, Henk A.; Kurths, Jürgen
2015-11-01
We introduce the pyunicorn (Pythonic unified complex network and recurrence analysis toolbox) open source software package for applying and combining modern methods of data analysis and modeling from complex network theory and nonlinear time series analysis. pyunicorn is a fully object-oriented and easily parallelizable package written in the language Python. It allows for the construction of functional networks such as climate networks in climatology or functional brain networks in neuroscience representing the structure of statistical interrelationships in large data sets of time series and, subsequently, investigating this structure using advanced methods of complex network theory such as measures and models for spatial networks, networks of interacting networks, node-weighted statistics, or network surrogates. Additionally, pyunicorn provides insights into the nonlinear dynamics of complex systems as recorded in uni- and multivariate time series from a non-traditional perspective by means of recurrence quantification analysis, recurrence networks, visibility graphs, and construction of surrogate time series. The range of possible applications of the library is outlined, drawing on several examples mainly from the field of climatology.
Longobardi, Francesco; Innamorato, Valentina; Di Gioia, Annalisa; Ventrella, Andrea; Lippolis, Vincenzo; Logrieco, Antonio F; Catucci, Lucia; Agostiano, Angela
2017-12-15
Lentil samples coming from two different countries, i.e. Italy and Canada, were analysed using untargeted 1 H NMR fingerprinting in combination with chemometrics in order to build models able to classify them according to their geographical origin. For such aim, Soft Independent Modelling of Class Analogy (SIMCA), k-Nearest Neighbor (k-NN), Principal Component Analysis followed by Linear Discriminant Analysis (PCA-LDA) and Partial Least Squares-Discriminant Analysis (PLS-DA) were applied to the NMR data and the results were compared. The best combination of average recognition (100%) and cross-validation prediction abilities (96.7%) was obtained for the PCA-LDA. All the statistical models were validated both by using a test set and by carrying out a Monte Carlo Cross Validation: the obtained performances were found to be satisfying for all the models, with prediction abilities higher than 95% demonstrating the suitability of the developed methods. Finally, the metabolites that mostly contributed to the lentil discrimination were indicated. Copyright © 2017 Elsevier Ltd. All rights reserved.
A statistical approach to evaluate flood risk at the regional level: an application to Italy
NASA Astrophysics Data System (ADS)
Rossi, Mauro; Marchesini, Ivan; Salvati, Paola; Donnini, Marco; Guzzetti, Fausto; Sterlacchini, Simone; Zazzeri, Marco; Bonazzi, Alessandro; Carlesi, Andrea
2016-04-01
Floods are frequent and widespread in Italy, causing every year multiple fatalities and extensive damages to public and private structures. A pre-requisite for the development of mitigation schemes, including financial instruments such as insurance, is the ability to quantify their costs starting from the estimation of the underlying flood hazard. However, comprehensive and coherent information on flood prone areas, and estimates on the frequency and intensity of flood events, are not often available at scales appropriate for risk pooling and diversification. In Italy, River Basins Hydrogeological Plans (PAI), prepared by basin administrations, are the basic descriptive, regulatory, technical and operational tools for environmental planning in flood prone areas. Nevertheless, such plans do not cover the entire Italian territory, having significant gaps along the minor hydrographic network and in ungauged basins. Several process-based modelling approaches have been used by different basin administrations for the flood hazard assessment, resulting in an inhomogeneous hazard zonation of the territory. As a result, flood hazard assessments expected and damage estimations across the different Italian basin administrations are not always coherent. To overcome these limitations, we propose a simplified multivariate statistical approach for the regional flood hazard zonation coupled with a flood impact model. This modelling approach has been applied in different Italian basin administrations, allowing a preliminary but coherent and comparable estimation of the flood hazard and the relative impact. Model performances are evaluated comparing the predicted flood prone areas with the corresponding PAI zonation. The proposed approach will provide standardized information (following the EU Floods Directive specifications) on flood risk at a regional level which can in turn be more readily applied to assess flood economic impacts. Furthermore, in the assumption of an appropriate flood risk statistical characterization, the proposed procedure could be applied straightforward outside the national borders, particularly in areas with similar geo-environmental settings.
Defining the ecological hydrology of Taiwan Rivers using multivariate statistical methods
NASA Astrophysics Data System (ADS)
Chang, Fi-John; Wu, Tzu-Ching; Tsai, Wen-Ping; Herricks, Edwin E.
2009-09-01
SummaryThe identification and verification of ecohydrologic flow indicators has found new support as the importance of ecological flow regimes is recognized in modern water resources management, particularly in river restoration and reservoir management. An ecohydrologic indicator system reflecting the unique characteristics of Taiwan's water resources and hydrology has been developed, the Taiwan ecohydrological indicator system (TEIS). A major challenge for the water resources community is using the TEIS to provide environmental flow rules that improve existing water resources management. This paper examines data from the extensive network of flow monitoring stations in Taiwan using TEIS statistics to define and refine environmental flow options in Taiwan. Multivariate statistical methods were used to examine TEIS statistics for 102 stations representing the geographic and land use diversity of Taiwan. The Pearson correlation coefficient showed high multicollinearity between the TEIS statistics. Watersheds were separated into upper and lower-watershed locations. An analysis of variance indicated significant differences between upstream, more natural, and downstream, more developed, locations in the same basin with hydrologic indicator redundancy in flow change and magnitude statistics. Issues of multicollinearity were examined using a Principal Component Analysis (PCA) with the first three components related to general flow and high/low flow statistics, frequency and time statistics, and quantity statistics. These principle components would explain about 85% of the total variation. A major conclusion is that managers must be aware of differences among basins, as well as differences within basins that will require careful selection of management procedures to achieve needed flow regimes.
A quantitative approach to evolution of music and philosophy
NASA Astrophysics Data System (ADS)
Vieira, Vilson; Fabbri, Renato; Travieso, Gonzalo; Oliveira, Osvaldo N., Jr.; da Fontoura Costa, Luciano
2012-08-01
The development of new statistical and computational methods is increasingly making it possible to bridge the gap between hard sciences and humanities. In this study, we propose an approach based on a quantitative evaluation of attributes of objects in fields of humanities, from which concepts such as dialectics and opposition are formally defined mathematically. As case studies, we analyzed the temporal evolution of classical music and philosophy by obtaining data for 8 features characterizing the corresponding fields for 7 well-known composers and philosophers, which were treated with multivariate statistics and pattern recognition methods. A bootstrap method was applied to avoid statistical bias caused by the small sample data set, with which hundreds of artificial composers and philosophers were generated, influenced by the 7 names originally chosen. Upon defining indices for opposition, skewness and counter-dialectics, we confirmed the intuitive analysis of historians in that classical music evolved according to a master-apprentice tradition, while in philosophy changes were driven by opposition. Though these case studies were meant only to show the possibility of treating phenomena in humanities quantitatively, including a quantitative measure of concepts such as dialectics and opposition, the results are encouraging for further application of the approach presented here to many other areas, since it is entirely generic.
Joint resonant CMB power spectrum and bispectrum estimation
NASA Astrophysics Data System (ADS)
Meerburg, P. Daniel; Münchmeyer, Moritz; Wandelt, Benjamin
2016-02-01
We develop the tools necessary to assess the statistical significance of resonant features in the CMB correlation functions, combining power spectrum and bispectrum measurements. This significance is typically addressed by running a large number of simulations to derive the probability density function (PDF) of the feature-amplitude in the Gaussian case. Although these simulations are tractable for the power spectrum, for the bispectrum they require significant computational resources. We show that, by assuming that the PDF is given by a multivariate Gaussian where the covariance is determined by the Fisher matrix of the sine and cosine terms, we can efficiently produce spectra that are statistically close to those derived from full simulations. By drawing a large number of spectra from this PDF, both for the power spectrum and the bispectrum, we can quickly determine the statistical significance of candidate signatures in the CMB, considering both single frequency and multifrequency estimators. We show that for resonance models, cosmology and foreground parameters have little influence on the estimated amplitude, which allows us to simplify the analysis considerably. A more precise likelihood treatment can then be applied to candidate signatures only. We also discuss a modal expansion approach for the power spectrum, aimed at quickly scanning through large families of oscillating models.
Willard, Melissa A Bodnar; McGuffin, Victoria L; Smith, Ruth Waddell
2012-01-01
Salvia divinorum is a hallucinogenic herb that is internationally regulated. In this study, salvinorin A, the active compound in S. divinorum, was extracted from S. divinorum plant leaves using a 5-min extraction with dichloromethane. Four additional Salvia species (Salvia officinalis, Salvia guaranitica, Salvia splendens, and Salvia nemorosa) were extracted using this procedure, and all extracts were analyzed by gas chromatography-mass spectrometry. Differentiation of S. divinorum from other Salvia species was successful based on visual assessment of the resulting chromatograms. To provide a more objective comparison, the total ion chromatograms (TICs) were subjected to principal components analysis (PCA). Prior to PCA, the TICs were subjected to a series of data pretreatment procedures to minimize non-chemical sources of variance in the data set. Successful discrimination of S. divinorum from the other four Salvia species was possible based on visual assessment of the PCA scores plot. To provide a numerical assessment of the discrimination, a series of statistical procedures such as Euclidean distance measurement, hierarchical cluster analysis, Student's t tests, Wilcoxon rank-sum tests, and Pearson product moment correlation were also applied to the PCA scores. The statistical procedures were then compared to determine the advantages and disadvantages for forensic applications.
Acoustic correlates of Japanese expressions associated with voice quality of male adults
NASA Astrophysics Data System (ADS)
Kido, Hiroshi; Kasuya, Hideki
2004-05-01
Japanese expressions associated with the voice quality of male adults were extracted by a series of questionnaire surveys and statistical multivariate analysis. One hundred and thirty-seven Japanese expressions were collected through the first questionnaire and careful investigations of well-established Japanese dictionaries and articles. From the second questionnaire about familiarity with each of the expressions and synonymity that were addressed to 249 subjects, 25 expressions were extracted. The third questionnaire was about an evaluation of their own voice quality. By applying a statistical clustering method and a correlation analysis to the results of the questionnaires, eight bipolar expressions and one unipolar expression were obtained. They constituted high-pitched/low-pitched, masculine/feminine, hoarse/clear, calm/excited, powerful/weak, youthful/elderly, thick/thin, tense/lax, and nasal, respectively. Acoustic correlates of each of the eight bipolar expressions were extracted by means of perceptual evaluation experiments that were made with sentence utterances of 36 males and by a statistical decision tree method. They included an average of the fundamental frequency (F0) of the utterance, speaking rate, spectral tilt, formant frequency parameter, standard deviation of F0 values, and glottal noise, when SPL of each of the stimuli was maintained identical in the perceptual experiments.
Vajargah, Kianoush Fathi; Sadeghi-Bazargani, Homayoun; Mehdizadeh-Esfanjani, Robab; Savadi-Oskouei, Daryoush; Farhoudi, Mehdi
2012-01-01
The objective of the present study was to assess the comparable applicability of orthogonal projections to latent structures (OPLS) statistical model vs traditional linear regression in order to investigate the role of trans cranial doppler (TCD) sonography in predicting ischemic stroke prognosis. The study was conducted on 116 ischemic stroke patients admitted to a specialty neurology ward. The Unified Neurological Stroke Scale was used once for clinical evaluation on the first week of admission and again six months later. All data was primarily analyzed using simple linear regression and later considered for multivariate analysis using PLS/OPLS models through the SIMCA P+12 statistical software package. The linear regression analysis results used for the identification of TCD predictors of stroke prognosis were confirmed through the OPLS modeling technique. Moreover, in comparison to linear regression, the OPLS model appeared to have higher sensitivity in detecting the predictors of ischemic stroke prognosis and detected several more predictors. Applying the OPLS model made it possible to use both single TCD measures/indicators and arbitrarily dichotomized measures of TCD single vessel involvement as well as the overall TCD result. In conclusion, the authors recommend PLS/OPLS methods as complementary rather than alternative to the available classical regression models such as linear regression.
Mathematical background and attitudes toward statistics in a sample of Spanish college students.
Carmona, José; Martínez, Rafael J; Sánchez, Manuel
2005-08-01
To examine the relation of mathematical background and initial attitudes toward statistics of Spanish college students in social sciences the Survey of Attitudes Toward Statistics was given to 827 students. Multivariate analyses tested the effects of two indicators of mathematical background (amount of exposure and achievement in previous courses) on the four subscales. Analysis suggested grades in previous courses are more related to initial attitudes toward statistics than the number of mathematics courses taken. Mathematical background was related with students' affective responses to statistics but not with their valuing of statistics. Implications of possible research are discussed.
Multivariate Phylogenetic Comparative Methods: Evaluations, Comparisons, and Recommendations.
Adams, Dean C; Collyer, Michael L
2018-01-01
Recent years have seen increased interest in phylogenetic comparative analyses of multivariate data sets, but to date the varied proposed approaches have not been extensively examined. Here we review the mathematical properties required of any multivariate method, and specifically evaluate existing multivariate phylogenetic comparative methods in this context. Phylogenetic comparative methods based on the full multivariate likelihood are robust to levels of covariation among trait dimensions and are insensitive to the orientation of the data set, but display increasing model misspecification as the number of trait dimensions increases. This is because the expected evolutionary covariance matrix (V) used in the likelihood calculations becomes more ill-conditioned as trait dimensionality increases, and as evolutionary models become more complex. Thus, these approaches are only appropriate for data sets with few traits and many species. Methods that summarize patterns across trait dimensions treated separately (e.g., SURFACE) incorrectly assume independence among trait dimensions, resulting in nearly a 100% model misspecification rate. Methods using pairwise composite likelihood are highly sensitive to levels of trait covariation, the orientation of the data set, and the number of trait dimensions. The consequences of these debilitating deficiencies are that a user can arrive at differing statistical conclusions, and therefore biological inferences, simply from a dataspace rotation, like principal component analysis. By contrast, algebraic generalizations of the standard phylogenetic comparative toolkit that use the trace of covariance matrices are insensitive to levels of trait covariation, the number of trait dimensions, and the orientation of the data set. Further, when appropriate permutation tests are used, these approaches display acceptable Type I error and statistical power. We conclude that methods summarizing information across trait dimensions, as well as pairwise composite likelihood methods should be avoided, whereas algebraic generalizations of the phylogenetic comparative toolkit provide a useful means of assessing macroevolutionary patterns in multivariate data. Finally, we discuss areas in which multivariate phylogenetic comparative methods are still in need of future development; namely highly multivariate Ornstein-Uhlenbeck models and approaches for multivariate evolutionary model comparisons. © The Author(s) 2017. Published by Oxford University Press on behalf of the Systematic Biology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
2011-01-01
Background The advent of ChIP-seq technology has made the investigation of epigenetic regulatory networks a computationally tractable problem. Several groups have applied statistical computing methods to ChIP-seq datasets to gain insight into the epigenetic regulation of transcription. However, methods for estimating enrichment levels in ChIP-seq data for these computational studies are understudied and variable. Since the conclusions drawn from these data mining and machine learning applications strongly depend on the enrichment level inputs, a comparison of estimation methods with respect to the performance of statistical models should be made. Results Various methods were used to estimate the gene-wise ChIP-seq enrichment levels for 20 histone methylations and the histone variant H2A.Z. The Multivariate Adaptive Regression Splines (MARS) algorithm was applied for each estimation method using the estimation of enrichment levels as predictors and gene expression levels as responses. The methods used to estimate enrichment levels included tag counting and model-based methods that were applied to whole genes and specific gene regions. These methods were also applied to various sizes of estimation windows. The MARS model performance was assessed with the Generalized Cross-Validation Score (GCV). We determined that model-based methods of enrichment estimation that spatially weight enrichment based on average patterns provided an improvement over tag counting methods. Also, methods that included information across the entire gene body provided improvement over methods that focus on a specific sub-region of the gene (e.g., the 5' or 3' region). Conclusion The performance of data mining and machine learning methods when applied to histone modification ChIP-seq data can be improved by using data across the entire gene body, and incorporating the spatial distribution of enrichment. Refinement of enrichment estimation ultimately improved accuracy of model predictions. PMID:21834981
NASA Astrophysics Data System (ADS)
Toubar, Safaa S.; Hegazy, Maha A.; Elshahed, Mona S.; Helmy, Marwa I.
2016-06-01
In this work, resolution and quantitation of spectral signals are achieved by several univariate and multivariate techniques. The novel pure component contribution algorithm (PCCA) along with mean centering of ratio spectra (MCR) and the factor based partial least squares (PLS) algorithms were developed for simultaneous determination of chlorzoxazone (CXZ), aceclofenac (ACF) and paracetamol (PAR) in their pure form and recently co-formulated tablets. The PCCA method allows the determination of each drug at its λmax. While, the mean centered values at 230, 302 and 253 nm, were used for quantification of CXZ, ACF and PAR, respectively, by MCR method. Partial least-squares (PLS) algorithm was applied as a multivariate calibration method. The three methods were successfully applied for determination of CXZ, ACF and PAR in pure form and tablets. Good linear relationships were obtained in the ranges of 2-50, 2-40 and 2-30 μg mL- 1 for CXZ, ACF and PAR, in order, by both PCCA and MCR, while the PLS model was built for the three compounds each in the range of 2-10 μg mL- 1. The results obtained from the proposed methods were statistically compared with a reported one. PCCA and MCR methods were validated according to ICH guidelines, while PLS method was validated by both cross validation and an independent data set. They are found suitable for the determination of the studied drugs in bulk powder and tablets.
Integrated environmental monitoring and multivariate data analysis-A case study.
Eide, Ingvar; Westad, Frank; Nilssen, Ingunn; de Freitas, Felipe Sales; Dos Santos, Natalia Gomes; Dos Santos, Francisco; Cabral, Marcelo Montenegro; Bicego, Marcia Caruso; Figueira, Rubens; Johnsen, Ståle
2017-03-01
The present article describes integration of environmental monitoring and discharge data and interpretation using multivariate statistics, principal component analysis (PCA), and partial least squares (PLS) regression. The monitoring was carried out at the Peregrino oil field off the coast of Brazil. One sensor platform and 3 sediment traps were placed on the seabed. The sensors measured current speed and direction, turbidity, temperature, and conductivity. The sediment trap samples were used to determine suspended particulate matter that was characterized with respect to a number of chemical parameters (26 alkanes, 16 PAHs, N, C, calcium carbonate, and Ba). Data on discharges of drill cuttings and water-based drilling fluid were provided on a daily basis. The monitoring was carried out during 7 campaigns from June 2010 to October 2012, each lasting 2 to 3 months due to the capacity of the sediment traps. The data from the campaigns were preprocessed, combined, and interpreted using multivariate statistics. No systematic difference could be observed between campaigns or traps despite the fact that the first campaign was carried out before drilling, and 1 of 3 sediment traps was located in an area not expected to be influenced by the discharges. There was a strong covariation between suspended particulate matter and total N and organic C suggesting that the majority of the sediment samples had a natural and biogenic origin. Furthermore, the multivariate regression showed no correlation between discharges of drill cuttings and sediment trap or turbidity data taking current speed and direction into consideration. Because of this lack of correlation with discharges from the drilling location, a more detailed evaluation of chemical indicators providing information about origin was carried out in addition to numerical modeling of dispersion and deposition. The chemical indicators and the modeling of dispersion and deposition support the conclusions from the multivariate statistics. Integr Environ Assess Manag 2017;13:387-395. © 2016 SETAC. © 2016 SETAC.
Characterizing multivariate decoding models based on correlated EEG spectral features
McFarland, Dennis J.
2013-01-01
Objective Multivariate decoding methods are popular techniques for analysis of neurophysiological data. The present study explored potential interpretative problems with these techniques when predictors are correlated. Methods Data from sensorimotor rhythm-based cursor control experiments was analyzed offline with linear univariate and multivariate models. Features were derived from autoregressive (AR) spectral analysis of varying model order which produced predictors that varied in their degree of correlation (i.e., multicollinearity). Results The use of multivariate regression models resulted in much better prediction of target position as compared to univariate regression models. However, with lower order AR features interpretation of the spectral patterns of the weights was difficult. This is likely to be due to the high degree of multicollinearity present with lower order AR features. Conclusions Care should be exercised when interpreting the pattern of weights of multivariate models with correlated predictors. Comparison with univariate statistics is advisable. Significance While multivariate decoding algorithms are very useful for prediction their utility for interpretation may be limited when predictors are correlated. PMID:23466267
Multivariate Methods for Meta-Analysis of Genetic Association Studies.
Dimou, Niki L; Pantavou, Katerina G; Braliou, Georgia G; Bagos, Pantelis G
2018-01-01
Multivariate meta-analysis of genetic association studies and genome-wide association studies has received a remarkable attention as it improves the precision of the analysis. Here, we review, summarize and present in a unified framework methods for multivariate meta-analysis of genetic association studies and genome-wide association studies. Starting with the statistical methods used for robust analysis and genetic model selection, we present in brief univariate methods for meta-analysis and we then scrutinize multivariate methodologies. Multivariate models of meta-analysis for a single gene-disease association studies, including models for haplotype association studies, multiple linked polymorphisms and multiple outcomes are discussed. The popular Mendelian randomization approach and special cases of meta-analysis addressing issues such as the assumption of the mode of inheritance, deviation from Hardy-Weinberg Equilibrium and gene-environment interactions are also presented. All available methods are enriched with practical applications and methodologies that could be developed in the future are discussed. Links for all available software implementing multivariate meta-analysis methods are also provided.
Warton, David I; Thibaut, Loïc; Wang, Yi Alice
2017-01-01
Bootstrap methods are widely used in statistics, and bootstrapping of residuals can be especially useful in the regression context. However, difficulties are encountered extending residual resampling to regression settings where residuals are not identically distributed (thus not amenable to bootstrapping)-common examples including logistic or Poisson regression and generalizations to handle clustered or multivariate data, such as generalised estimating equations. We propose a bootstrap method based on probability integral transform (PIT-) residuals, which we call the PIT-trap, which assumes data come from some marginal distribution F of known parametric form. This method can be understood as a type of "model-free bootstrap", adapted to the problem of discrete and highly multivariate data. PIT-residuals have the key property that they are (asymptotically) pivotal. The PIT-trap thus inherits the key property, not afforded by any other residual resampling approach, that the marginal distribution of data can be preserved under PIT-trapping. This in turn enables the derivation of some standard bootstrap properties, including second-order correctness of pivotal PIT-trap test statistics. In multivariate data, bootstrapping rows of PIT-residuals affords the property that it preserves correlation in data without the need for it to be modelled, a key point of difference as compared to a parametric bootstrap. The proposed method is illustrated on an example involving multivariate abundance data in ecology, and demonstrated via simulation to have improved properties as compared to competing resampling methods.
Thibaut, Loïc; Wang, Yi Alice
2017-01-01
Bootstrap methods are widely used in statistics, and bootstrapping of residuals can be especially useful in the regression context. However, difficulties are encountered extending residual resampling to regression settings where residuals are not identically distributed (thus not amenable to bootstrapping)—common examples including logistic or Poisson regression and generalizations to handle clustered or multivariate data, such as generalised estimating equations. We propose a bootstrap method based on probability integral transform (PIT-) residuals, which we call the PIT-trap, which assumes data come from some marginal distribution F of known parametric form. This method can be understood as a type of “model-free bootstrap”, adapted to the problem of discrete and highly multivariate data. PIT-residuals have the key property that they are (asymptotically) pivotal. The PIT-trap thus inherits the key property, not afforded by any other residual resampling approach, that the marginal distribution of data can be preserved under PIT-trapping. This in turn enables the derivation of some standard bootstrap properties, including second-order correctness of pivotal PIT-trap test statistics. In multivariate data, bootstrapping rows of PIT-residuals affords the property that it preserves correlation in data without the need for it to be modelled, a key point of difference as compared to a parametric bootstrap. The proposed method is illustrated on an example involving multivariate abundance data in ecology, and demonstrated via simulation to have improved properties as compared to competing resampling methods. PMID:28738071
NASA Astrophysics Data System (ADS)
Leauthaud, Crystele; Cappelaere, Bernard; Demarty, Jérôme; Guichard, Françoise; Velluet, Cécile; Kergoat, Laurent; Vischel, Théo; Grippa, Manuela; Mouhaimouni, Mohammed; Bouzou Moussa, Ibrahim; Mainassara, Ibrahim; Sultan, Benjamin
2017-04-01
The Sahel has experienced strong climate variability in the past decades. Understanding its implications for natural and cultivated ecosystems is pivotal in a context of high population growth and mainly agriculture-based livelihoods. However, efforts to model processes at the land-atmosphere interface are hindered, particularly when the multi-decadal timescale is targeted, as climatic data are scarce, largely incomplete and often unreliable. This study presents the generation of a long-term, high-temporal resolution, multivariate local climatic data set for Niamey, Central Sahel. The continuous series spans the period 1950-2009 at a 30-min timescale and includes ground station-based meteorological variables (precipitation, air temperature, relative and specific humidity, air pressure, wind speed, downwelling long- and short-wave radiation) as well as process-modelled surface fluxes (upwelling long- and short-wave radiation,latent, sensible and soil heat fluxes and surface temperature). A combination of complementary techniques (linear/spline regressions, a multivariate analogue method, artificial neural networks and recursive gap filling) was used to reconstruct missing meteorological data. The complete surface energy budget was then obtained for two dominant land cover types, fallow bush and millet, by applying the meteorological forcing data set to a finely field-calibrated land surface model. Uncertainty in reconstructed data was expressed by means of a stochastic ensemble of plausible historical time series. Climatological statistics were computed at sub-daily to decadal timescales and compared with local, regional and global data sets such as CRU and ERA-Interim. The reconstructed precipitation statistics, ˜1°C increase in mean annual temperature from 1950 to 2009, and mean diurnal and annual cycles for all variables were in good agreement with previous studies. The new data set, denoted NAD (Niamey Airport-derived set) and publicly available, can be used to investigate the water and energy cycles in Central Sahel, while the methodology can be applied to reconstruct series at other stations. The study has been published in Int. J. Climatol. (2016), DOI: 10.1002/joc.4874
Statistical Knowledge for Teaching: Exploring it in the Classroom
ERIC Educational Resources Information Center
Burgess, Tim
2009-01-01
This paper first reports on the methodology of a study of teacher knowledge for statistics, conducted in a classroom at the primary school level. The methodology included videotaping of a sequence of lessons that involved students in investigating multivariate data sets, followed up by audiotaped interviews with each teacher. These stimulated…
Performance of the S - [chi][squared] Statistic for Full-Information Bifactor Models
ERIC Educational Resources Information Center
Li, Ying; Rupp, Andre A.
2011-01-01
This study investigated the Type I error rate and power of the multivariate extension of the S - [chi][squared] statistic using unidimensional and multidimensional item response theory (UIRT and MIRT, respectively) models as well as full-information bifactor (FI-bifactor) models through simulation. Manipulated factors included test length, sample…
Exploring the Replicability of a Study's Results: Bootstrap Statistics for the Multivariate Case.
ERIC Educational Resources Information Center
Thompson, Bruce
Conventional statistical significance tests do not inform the researcher regarding the likelihood that results will replicate. One strategy for evaluating result replication is to use a "bootstrap" resampling of a study's data so that the stability of results across numerous configurations of the subjects can be explored. This paper…
2003-07-01
4, Gnanadesikan , 1977). An entity whose measured features fall into one of the regions is classified accordingly. For the approaches we discuss here... Gnanadesikan , R. 1977. Methods for Statistical Data Analysis of Multivariate Observations. John Wiley & Sons, New York. Hassig, N. L., O’Brien, R. F
Evaluation of statistical protocols for quality control of ecosystem carbon dioxide fluxes
Jorge F. Perez-Quezada; Nicanor Z. Saliendra; William E. Emmerich; Emilio A. Laca
2007-01-01
The process of quality control of micrometeorological and carbon dioxide (CO2) flux data can be subjective and may lack repeatability, which would undermine the results of many studies. Multivariate statistical methods and time series analysis were used together and independently to detect and replace outliers in CO2 flux...
Conceptual and statistical problems associated with the use of diversity indices in ecology.
Barrantes, Gilbert; Sandoval, Luis
2009-09-01
Diversity indices, particularly the Shannon-Wiener index, have extensively been used in analyzing patterns of diversity at different geographic and ecological scales. These indices have serious conceptual and statistical problems which make comparisons of species richness or species abundances across communities nearly impossible. There is often no a single statistical method that retains all information needed to answer even a simple question. However, multivariate analyses could be used instead of diversity indices, such as cluster analyses or multiple regressions. More complex multivariate analyses, such as Canonical Correspondence Analysis, provide very valuable information on environmental variables associated to the presence and abundance of the species in a community. In addition, particular hypotheses associated to changes in species richness across localities, or change in abundance of one, or a group of species can be tested using univariate, bivariate, and/or rarefaction statistical tests. The rarefaction method has proved to be robust to standardize all samples to a common size. Even the simplest method as reporting the number of species per taxonomic category possibly provides more information than a diversity index value.
Texture as a basis for acoustic classification of substrate in the nearshore region
NASA Astrophysics Data System (ADS)
Dennison, A.; Wattrus, N. J.
2016-12-01
Segmentation and classification of substrate type from two locations in Lake Superior, are predicted using multivariate statistical processing of textural measures derived from shallow-water, high-resolution multibeam bathymetric data. During a multibeam sonar survey, both bathymetric and backscatter data are collected. It is well documented that the statistical characteristic of a sonar backscatter mosaic is dependent on substrate type. While classifying the bottom-type on the basis on backscatter alone can accurately predict and map bottom-type, it lacks the ability to resolve and capture fine textural details, an important factor in many habitat mapping studies. Statistical processing can capture the pertinent details about the bottom-type that are rich in textural information. Further multivariate statistical processing can then isolate characteristic features, and provide the basis for an accurate classification scheme. Preliminary results from an analysis of bathymetric data and ground-truth samples collected from the Amnicon River, Superior, Wisconsin, and the Lester River, Duluth, Minnesota, demonstrate the ability to process and develop a novel classification scheme of the bottom type in two geomorphologically distinct areas.
Exploratory Multivariate Analysis. A Graphical Approach.
1981-01-01
Gnanadesikan , 1977) but we feel that these should be used with great caution unless one really has good reason to believe that the data came from such a...are referred to Gnanadesikan (1977). The present author hopes that the convenience of a single summary or significance level will not deter his readers...fit of a harmonic model to meteorological data. (In preparation). Gnanadesikan , R. (1977). Methods for Statistical Data Analysis of Multivariate
Nonlinear multivariate and time series analysis by neural network methods
NASA Astrophysics Data System (ADS)
Hsieh, William W.
2004-03-01
Methods in multivariate statistical analysis are essential for working with large amounts of geophysical data, data from observational arrays, from satellites, or from numerical model output. In classical multivariate statistical analysis, there is a hierarchy of methods, starting with linear regression at the base, followed by principal component analysis (PCA) and finally canonical correlation analysis (CCA). A multivariate time series method, the singular spectrum analysis (SSA), has been a fruitful extension of the PCA technique. The common drawback of these classical methods is that only linear structures can be correctly extracted from the data. Since the late 1980s, neural network methods have become popular for performing nonlinear regression and classification. More recently, neural network methods have been extended to perform nonlinear PCA (NLPCA), nonlinear CCA (NLCCA), and nonlinear SSA (NLSSA). This paper presents a unified view of the NLPCA, NLCCA, and NLSSA techniques and their applications to various data sets of the atmosphere and the ocean (especially for the El Niño-Southern Oscillation and the stratospheric quasi-biennial oscillation). These data sets reveal that the linear methods are often too simplistic to describe real-world systems, with a tendency to scatter a single oscillatory phenomenon into numerous unphysical modes or higher harmonics, which can be largely alleviated in the new nonlinear paradigm.
Multivariate analysis of cytokine profiles in pregnancy complications.
Azizieh, Fawaz; Dingle, Kamaludin; Raghupathy, Raj; Johnson, Kjell; VanderPlas, Jacob; Ansari, Ali
2018-03-01
The immunoregulation to tolerate the semiallogeneic fetus during pregnancy includes a harmonious dynamic balance between anti- and pro-inflammatory cytokines. Several earlier studies reported significantly different levels and/or ratios of several cytokines in complicated pregnancy as compared to normal pregnancy. However, as cytokines operate in networks with potentially complex interactions, it is also interesting to compare groups with multi-cytokine data sets, with multivariate analysis. Such analysis will further examine how great the differences are, and which cytokines are more different than others. Various multivariate statistical tools, such as Cramer test, classification and regression trees, partial least squares regression figures, 2-dimensional Kolmogorov-Smirmov test, principal component analysis and gap statistic, were used to compare cytokine data of normal vs anomalous groups of different pregnancy complications. Multivariate analysis assisted in examining if the groups were different, how strongly they differed, in what ways they differed and further reported evidence for subgroups in 1 group (pregnancy-induced hypertension), possibly indicating multiple causes for the complication. This work contributes to a better understanding of cytokines interaction and may have important implications on targeting cytokine balance modulation or design of future medications or interventions that best direct management or prevention from an immunological approach. © 2018 The Authors. American Journal of Reproductive Immunology Published by John Wiley & Sons Ltd.
Up-scaling of multi-variable flood loss models from objects to land use units at the meso-scale
NASA Astrophysics Data System (ADS)
Kreibich, Heidi; Schröter, Kai; Merz, Bruno
2016-05-01
Flood risk management increasingly relies on risk analyses, including loss modelling. Most of the flood loss models usually applied in standard practice have in common that complex damaging processes are described by simple approaches like stage-damage functions. Novel multi-variable models significantly improve loss estimation on the micro-scale and may also be advantageous for large-scale applications. However, more input parameters also reveal additional uncertainty, even more in upscaling procedures for meso-scale applications, where the parameters need to be estimated on a regional area-wide basis. To gain more knowledge about challenges associated with the up-scaling of multi-variable flood loss models the following approach is applied: Single- and multi-variable micro-scale flood loss models are up-scaled and applied on the meso-scale, namely on basis of ATKIS land-use units. Application and validation is undertaken in 19 municipalities, which were affected during the 2002 flood by the River Mulde in Saxony, Germany by comparison to official loss data provided by the Saxon Relief Bank (SAB).In the meso-scale case study based model validation, most multi-variable models show smaller errors than the uni-variable stage-damage functions. The results show the suitability of the up-scaling approach, and, in accordance with micro-scale validation studies, that multi-variable models are an improvement in flood loss modelling also on the meso-scale. However, uncertainties remain high, stressing the importance of uncertainty quantification. Thus, the development of probabilistic loss models, like BT-FLEMO used in this study, which inherently provide uncertainty information are the way forward.
NASA Astrophysics Data System (ADS)
Rueda, A.; Alvarez Antolinez, J. A.; Hegermiller, C.; Serafin, K.; Anderson, D. L.; Ruggiero, P.; Barnard, P.; Erikson, L. H.; Vitousek, S.; Camus, P.; Tomas, A.; Gonzalez, M.; Mendez, F. J.
2016-02-01
Long-term coastal evolution and coastal flooding hazards are the result of the non-linear interaction of multiple oceanographic, hydrological, geological and meteorological forcings (e.g., astronomical tide, monthly mean sea level, large-scale storm surge, dynamic wave set-up, shoreline evolution, backshore erosion). Additionally, interannual variability and trends in storminess and sea level rise are climate drivers that must be considered. Moreover, the chronology of the hydraulic boundary conditions plays an important role since a collection of consecutive minor storm events can have more impact than the 100-yr return level event. Therefore, proper modeling of shoreline erosion, beach recovery and coastal flooding should consider the sequence of storms, the multivariate nature of the hydrodynamic forcings, and the different time scales of interest (seasonality, interannual and decadal variability). To address this `beautiful problem', we propose a hybrid approach that combines: (a) numerical hydrodynamic and morphodynamic models (SWAN for wave transformation, a shoreline change model, X-Beach for modeling infragravity waves and erosion of the backshore during extreme events and RFSM-EDA (Jamieson et al, 2012) for high resolution flooding of the coastal hinterland); (b) long-term data bases (observational and hindcast) of sea state parameters, astronomical tides and non-tidal residuals; and (c) statistical downscaling techniques, non-linear data mining, and extreme value models. The statistical downscaling approaches for multivariate variables are based on circulation patterns (Espejo et al., 2014), the chronology of the circulation patterns (Guanche et al, 2013) and the event hydrographs of multivariate extremes, resulting in a time-dependent climate emulator of hydraulic boundary conditions for coupled simulations of the coastal change and flooding models. ReferencesEspejo et al (2014) Spectral ocean wave climate variability based on circulation patterns, J Phys Oc, doi: 10.1175/JPO-D-13-0276.1 Guanche et al (2013) Autoregressive logistic regression applied to atmospheric circulation patterns, Clim Dyn, doi: 10.1007/s00382-013-1690-3 Jamieson et al (2012) A highly efficient 2D flood model with sub-element topography, Proc. Of the Inst Civil Eng., 165(10), 581-595
Generalized background error covariance matrix model (GEN_BE v2.0)
NASA Astrophysics Data System (ADS)
Descombes, G.; Auligné, T.; Vandenberghe, F.; Barker, D. M.; Barré, J.
2015-03-01
The specification of state background error statistics is a key component of data assimilation since it affects the impact observations will have on the analysis. In the variational data assimilation approach, applied in geophysical sciences, the dimensions of the background error covariance matrix (B) are usually too large to be explicitly determined and B needs to be modeled. Recent efforts to include new variables in the analysis such as cloud parameters and chemical species have required the development of the code to GENerate the Background Errors (GEN_BE) version 2.0 for the Weather Research and Forecasting (WRF) community model. GEN_BE allows for a simpler, flexible, robust, and community-oriented framework that gathers methods used by some meteorological operational centers and researchers. We present the advantages of this new design for the data assimilation community by performing benchmarks of different modeling of B and showing some of the new features in data assimilation test cases. As data assimilation for clouds remains a challenge, we present a multivariate approach that includes hydrometeors in the control variables and new correlated errors. In addition, the GEN_BE v2.0 code is employed to diagnose error parameter statistics for chemical species, which shows that it is a tool flexible enough to implement new control variables. While the generation of the background errors statistics code was first developed for atmospheric research, the new version (GEN_BE v2.0) can be easily applied to other domains of science and chosen to diagnose and model B. Initially developed for variational data assimilation, the model of the B matrix may be useful for variational ensemble hybrid methods as well.
Evaluation of probabilistic forecasts with the scoringRules package
NASA Astrophysics Data System (ADS)
Jordan, Alexander; Krüger, Fabian; Lerch, Sebastian
2017-04-01
Over the last decades probabilistic forecasts in the form of predictive distributions have become popular in many scientific disciplines. With the proliferation of probabilistic models arises the need for decision-theoretically principled tools to evaluate the appropriateness of models and forecasts in a generalized way in order to better understand sources of prediction errors and to improve the models. Proper scoring rules are functions S(F,y) which evaluate the accuracy of a forecast distribution F , given that an outcome y was observed. In coherence with decision-theoretical principles they allow to compare alternative models, a crucial ability given the variety of theories, data sources and statistical specifications that is available in many situations. This contribution presents the software package scoringRules for the statistical programming language R, which provides functions to compute popular scoring rules such as the continuous ranked probability score for a variety of distributions F that come up in applied work. For univariate variables, two main classes are parametric distributions like normal, t, or gamma distributions, and distributions that are not known analytically, but are indirectly described through a sample of simulation draws. For example, ensemble weather forecasts take this form. The scoringRules package aims to be a convenient dictionary-like reference for computing scoring rules. We offer state of the art implementations of several known (but not routinely applied) formulas, and implement closed-form expressions that were previously unavailable. Whenever more than one implementation variant exists, we offer statistically principled default choices. Recent developments include the addition of scoring rules to evaluate multivariate forecast distributions. The use of the scoringRules package is illustrated in an example on post-processing ensemble forecasts of temperature.
Modeling multivariate time series on manifolds with skew radial basis functions.
Jamshidi, Arta A; Kirby, Michael J
2011-01-01
We present an approach for constructing nonlinear empirical mappings from high-dimensional domains to multivariate ranges. We employ radial basis functions and skew radial basis functions for constructing a model using data that are potentially scattered or sparse. The algorithm progresses iteratively, adding a new function at each step to refine the model. The placement of the functions is driven by a statistical hypothesis test that accounts for correlation in the multivariate range variables. The test is applied on training and validation data and reveals nonstatistical or geometric structure when it fails. At each step, the added function is fit to data contained in a spatiotemporally defined local region to determine the parameters--in particular, the scale of the local model. The scale of the function is determined by the zero crossings of the autocorrelation function of the residuals. The model parameters and the number of basis functions are determined automatically from the given data, and there is no need to initialize any ad hoc parameters save for the selection of the skew radial basis functions. Compactly supported skew radial basis functions are employed to improve model accuracy, order, and convergence properties. The extension of the algorithm to higher-dimensional ranges produces reduced-order models by exploiting the existence of correlation in the range variable data. Structure is tested not just in a single time series but between all pairs of time series. We illustrate the new methodologies using several illustrative problems, including modeling data on manifolds and the prediction of chaotic time series.
A multivariate extension of mutual information for growing neural networks.
Ball, Kenneth R; Grant, Christopher; Mundy, William R; Shafer, Timothy J
2017-11-01
Recordings of neural network activity in vitro are increasingly being used to assess the development of neural network activity and the effects of drugs, chemicals and disease states on neural network function. The high-content nature of the data derived from such recordings can be used to infer effects of compounds or disease states on a variety of important neural functions, including network synchrony. Historically, synchrony of networks in vitro has been assessed either by determination of correlation coefficients (e.g. Pearson's correlation), by statistics estimated from cross-correlation histograms between pairs of active electrodes, and/or by pairwise mutual information and related measures. The present study examines the application of Normalized Multiinformation (NMI) as a scalar measure of shared information content in a multivariate network that is robust with respect to changes in network size. Theoretical simulations are designed to investigate NMI as a measure of complexity and synchrony in a developing network relative to several alternative approaches. The NMI approach is applied to these simulations and also to data collected during exposure of in vitro neural networks to neuroactive compounds during the first 12 days in vitro, and compared to other common measures, including correlation coefficients and mean firing rates of neurons. NMI is shown to be more sensitive to developmental effects than first order synchronous and nonsynchronous measures of network complexity. Finally, NMI is a scalar measure of global (rather than pairwise) mutual information in a multivariate network, and hence relies on less assumptions for cross-network comparisons than historical approaches. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lee, Kyu Ha; Tadesse, Mahlet G; Baccarelli, Andrea A; Schwartz, Joel; Coull, Brent A
2017-03-01
The analysis of multiple outcomes is becoming increasingly common in modern biomedical studies. It is well-known that joint statistical models for multiple outcomes are more flexible and more powerful than fitting a separate model for each outcome; they yield more powerful tests of exposure or treatment effects by taking into account the dependence among outcomes and pooling evidence across outcomes. It is, however, unlikely that all outcomes are related to the same subset of covariates. Therefore, there is interest in identifying exposures or treatments associated with particular outcomes, which we term outcome-specific variable selection. In this work, we propose a variable selection approach for multivariate normal responses that incorporates not only information on the mean model, but also information on the variance-covariance structure of the outcomes. The approach effectively leverages evidence from all correlated outcomes to estimate the effect of a particular covariate on a given outcome. To implement this strategy, we develop a Bayesian method that builds a multivariate prior for the variable selection indicators based on the variance-covariance of the outcomes. We show via simulation that the proposed variable selection strategy can boost power to detect subtle effects without increasing the probability of false discoveries. We apply the approach to the Normative Aging Study (NAS) epigenetic data and identify a subset of five genes in the asthma pathway for which gene-specific DNA methylations are associated with exposures to either black carbon, a marker of traffic pollution, or sulfate, a marker of particles generated by power plants. © 2016, The International Biometric Society.
de Falco, Bruna; Incerti, Guido; Pepe, Rosa; Amato, Mariana; Lanzotti, Virginia
2016-09-01
Globe artichoke (Cynara cardunculus L. var. scolymus L. Fiori) and cardoon (Cynara cardunculus L. var. altilis DC) are sources of nutraceuticals and bioactive compounds. To apply a NMR metabolomic fingerprinting approach to Cynara cardunculus heads to obtain simultaneous identification and quantitation of the major classes of organic compounds. The edible part of 14 Globe artichoke populations, belonging to the Romaneschi varietal group, were extracted to obtain apolar and polar organic extracts. The analysis was also extended to one species of cultivated cardoon for comparison. The (1) H-NMR of the extracts allowed simultaneous identification of the bioactive metabolites whose quantitation have been obtained by spectral integration followed by principal component analysis (PCA). Apolar organic extracts were mainly based on highly unsaturated long chain lipids. Polar organic extracts contained organic acids, amino acids, sugars (mainly inulin), caffeoyl derivatives (mainly cynarin), flavonoids, and terpenes. The level of nutraceuticals was found to be highest in the Italian landraces Bianco di Pertosa zia E and Natalina while cardoon showed the lowest content of all metabolites thus confirming the genetic distance between artichokes and cardoon. Metabolomic approach coupling NMR spectroscopy with multivariate data analysis allowed for a detailed metabolite profile of artichoke and cardoon varieties to be obtained. Relevant differences in the relative content of the metabolites were observed for the species analysed. This work is the first application of (1) H-NMR with multivariate statistics to provide a metabolomic fingerprinting of Cynara scolymus. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Sun, Jin; Rutkoski, Jessica E; Poland, Jesse A; Crossa, José; Jannink, Jean-Luc; Sorrells, Mark E
2017-07-01
High-throughput phenotyping (HTP) platforms can be used to measure traits that are genetically correlated with wheat ( L.) grain yield across time. Incorporating such secondary traits in the multivariate pedigree and genomic prediction models would be desirable to improve indirect selection for grain yield. In this study, we evaluated three statistical models, simple repeatability (SR), multitrait (MT), and random regression (RR), for the longitudinal data of secondary traits and compared the impact of the proposed models for secondary traits on their predictive abilities for grain yield. Grain yield and secondary traits, canopy temperature (CT) and normalized difference vegetation index (NDVI), were collected in five diverse environments for 557 wheat lines with available pedigree and genomic information. A two-stage analysis was applied for pedigree and genomic selection (GS). First, secondary traits were fitted by SR, MT, or RR models, separately, within each environment. Then, best linear unbiased predictions (BLUPs) of secondary traits from the above models were used in the multivariate prediction models to compare predictive abilities for grain yield. Predictive ability was substantially improved by 70%, on average, from multivariate pedigree and genomic models when including secondary traits in both training and test populations. Additionally, (i) predictive abilities slightly varied for MT, RR, or SR models in this data set, (ii) results indicated that including BLUPs of secondary traits from the MT model was the best in severe drought, and (iii) the RR model was slightly better than SR and MT models under drought environment. Copyright © 2017 Crop Science Society of America.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Otter, Sophie; Schick, Ulrike; Gulliford, Sarah
Purpose: The study aimed to apply the atlas of complication incidence (ACI) method to patients receiving radical treatment for head and neck squamous cell carcinomas (HNSCC), to generate constraints based on dose-volume histograms (DVHs), and to identify clinical and dosimetric parameters that predict the risk of grade 3 oral mucositis (g3OM) and pharyngeal dysphagia (g3PD). Methods and Materials: Oral and pharyngeal mucosal DVHs were generated for 253 patients who received radiation (RT) or chemoradiation (CRT). They were used to produce ACI for g3OM and g3PD. Multivariate analysis (MVA) of the effect of dosimetry, clinical, and patient-related variables was performed usingmore » logistic regression and bootstrapping. Receiver operating curve (ROC) analysis was also performed, and the Youden index was used to find volume constraints that discriminated between volumes that predicted for toxicity. Results: We derived statistically significant dose-volume constraints for g3OM over the range v28 to v70. Only 3 statistically significant constraints were derived for g3PD v67, v68, and v69. On MVA, mean dose to the oral mucosa predicted for g3OM and concomitant chemotherapy and mean dose to the inferior constrictor (IC) predicted for g3PD. Conclusions: We have used the ACI method to evaluate incidences of g3OM and g3PD and ROC analysis to generate constraints to predict g3OM and g3PD derived from entire individual patient DVHs. On MVA, the strongest predictors were radiation dose (for g3OM) and concomitant chemotherapy (for g3PD).« less
NASA Technical Reports Server (NTRS)
Djorgovski, S. George
1994-01-01
We developed a package to process and analyze the data from the digital version of the Second Palomar Sky Survey. This system, called SKICAT, incorporates the latest in machine learning and expert systems software technology, in order to classify the detected objects objectively and uniformly, and facilitate handling of the enormous data sets from digital sky surveys and other sources. The system provides a powerful, integrated environment for the manipulation and scientific investigation of catalogs from virtually any source. It serves three principal functions: image catalog construction, catalog management, and catalog analysis. Through use of the GID3* Decision Tree artificial induction software, SKICAT automates the process of classifying objects within CCD and digitized plate images. To exploit these catalogs, the system also provides tools to merge them into a large, complete database which may be easily queried and modified when new data or better methods of calibrating or classifying become available. The most innovative feature of SKICAT is the facility it provides to experiment with and apply the latest in machine learning technology to the tasks of catalog construction and analysis. SKICAT provides a unique environment for implementing these tools for any number of future scientific purposes. Initial scientific verification and performance tests have been made using galaxy counts and measurements of galaxy clustering from small subsets of the survey data, and a search for very high redshift quasars. All of the tests were successful, and produced new and interesting scientific results. Attachments to this report give detailed accounts of the technical aspects for multivariate statistical analysis of small and moderate-size data sets, called STATPROG. The package was tested extensively on a number of real scientific applications, and has produced real, published results.
Gavini, S; Borges, L F; Finn, R T; Lo, W-K; Goldberg, H J; Burakoff, R; Feldman, N; Chan, W W
2017-05-01
Gastroesophageal reflux (GER) has been associated with idiopathic pulmonary fibrosis (IPF). Pathogenesis may be related to chronic micro-aspiration. We aimed to assess objective measures of GER on multichannel intraluminal impedance and pH study (MII-pH) and their relationship with pulmonary function testing (PFT) results, and to compare the performance of pH/acid reflux parameters vs corresponding MII/bolus parameters in predicting pulmonary dysfunction in IPF. This was a retrospective cohort study of IPF patients undergoing prelung transplant evaluation with MII-pH off acid suppression, and having received PFT within 3 months. Patients with prior fundoplication were excluded. Severe pulmonary dysfunction was defined using diffusion capacity of the lung for carbon monoxide (DLCO) ≤40%. Six pH/acid reflux parameters with corresponding MII/bolus reflux measures were specified a priori. Multivariate analyses were applied using forward stepwise logistic regression. Predictive value of each parameter for severe pulmonary dysfunction was calculated by area-under-the-receiver-operating-characteristic-curve or c-statistic. Forty-five subjects (67% M, age 59, 15 mild-moderate vs 30 severe) met criteria for inclusion. Patient demographics and clinical characteristics were similar between pulmonary dysfunction groups. Abnormal total reflux episodes and prolonged bolus clearance time were significantly associated with pulmonary dysfunction severity on univariate and multivariate analyses. No pH parameters were significant. The c-statistic of each pH parameter was lower than its MII counterpart in predicting pulmonary dysfunction. MII/bolus reflux, but not pH/acid reflux, was associated with pulmonary dysfunction in prelung transplant patients with IPF. MII-pH may be more valuable than pH testing alone in characterizing GER in IPF. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Thelen, Brian T.; Xique, Ismael J.; Burns, Joseph W.; Goley, G. Steven; Nolan, Adam R.; Benson, Jonathan W.
2017-04-01
With all of the new remote sensing modalities available, and with ever increasing capabilities and frequency of collection, there is a desire to fundamentally understand/quantify the information content in the collected image data relative to various exploitation goals, such as detection/classification. A fundamental approach for this is the framework of Bayesian decision theory, but a daunting challenge is to have significantly flexible and accurate multivariate models for the features and/or pixels that capture a wide assortment of distributions and dependen- cies. In addition, data can come in the form of both continuous and discrete representations, where the latter is often generated based on considerations of robustness to imaging conditions and occlusions/degradations. In this paper we propose a novel suite of "latent" models fundamentally based on multivariate Gaussian copula models that can be used for quantized data from SAR imagery. For this Latent Gaussian Copula (LGC) model, we derive an approximate, maximum-likelihood estimation algorithm and demonstrate very reasonable estimation performance even for the larger images with many pixels. However applying these LGC models to large dimen- sions/images within a Bayesian decision/classification theory is infeasible due to the computational/numerical issues in evaluating the true full likelihood, and we propose an alternative class of novel pseudo-likelihoood detection statistics that are computationally feasible. We show in a few simple examples that these statistics have the potential to provide very good and robust detection/classification performance. All of this framework is demonstrated on a simulated SLICY data set, and the results show the importance of modeling the dependencies, and of utilizing the pseudo-likelihood methods.
Annotating novel genes by integrating synthetic lethals and genomic information
Schöner, Daniel; Kalisch, Markus; Leisner, Christian; Meier, Lukas; Sohrmann, Marc; Faty, Mahamadou; Barral, Yves; Peter, Matthias; Gruissem, Wilhelm; Bühlmann, Peter
2008-01-01
Background Large scale screening for synthetic lethality serves as a common tool in yeast genetics to systematically search for genes that play a role in specific biological processes. Often the amounts of data resulting from a single large scale screen far exceed the capacities of experimental characterization of every identified target. Thus, there is need for computational tools that select promising candidate genes in order to reduce the number of follow-up experiments to a manageable size. Results We analyze synthetic lethality data for arp1 and jnm1, two spindle migration genes, in order to identify novel members in this process. To this end, we use an unsupervised statistical method that integrates additional information from biological data sources, such as gene expression, phenotypic profiling, RNA degradation and sequence similarity. Different from existing methods that require large amounts of synthetic lethal data, our method merely relies on synthetic lethality information from two single screens. Using a Multivariate Gaussian Mixture Model, we determine the best subset of features that assign the target genes to two groups. The approach identifies a small group of genes as candidates involved in spindle migration. Experimental testing confirms the majority of our candidates and we present she1 (YBL031W) as a novel gene involved in spindle migration. We applied the statistical methodology also to TOR2 signaling as another example. Conclusion We demonstrate the general use of Multivariate Gaussian Mixture Modeling for selecting candidate genes for experimental characterization from synthetic lethality data sets. For the given example, integration of different data sources contributes to the identification of genetic interaction partners of arp1 and jnm1 that play a role in the same biological process. PMID:18194531
Multivariate Statistics Applied to Seismic Phase Picking
NASA Astrophysics Data System (ADS)
Velasco, A. A.; Zeiler, C. P.; Anderson, D.; Pingitore, N. E.
2008-12-01
The initial effort of the Seismogram Picking Error from Analyst Review (SPEAR) project has been to establish a common set of seismograms to be picked by the seismological community. Currently we have 13 analysts from 4 institutions that have provided picks on the set of 26 seismograms. In comparing the picks thus far, we have identified consistent biases between picks from different institutions; effects of the experience of analysts; and the impact of signal-to-noise on picks. The institutional bias in picks brings up the important concern that picks will not be the same between different catalogs. This difference means less precision and accuracy when combing picks from multiple institutions. We also note that depending on the experience level of the analyst making picks for a catalog the error could fluctuate dramatically. However, the experience level is based off of number of years in picking seismograms and this may not be an appropriate criterion for determining an analyst's precision. The common data set of seismograms provides a means to test an analyst's level of precision and biases. The analyst is also limited by the quality of the signal and we show that the signal-to-noise ratio and pick error are correlated to the location, size and distance of the event. This makes the standard estimate of picking error based on SNR more complex because additional constraints are needed to accurately constrain the measurement error. We propose to extend the current measurement of error by adding the additional constraints of institutional bias and event characteristics to the standard SNR measurement. We use multivariate statistics to model the data and provide constraints to accurately assess earthquake location and measurement errors.
Shuai, Wang; Yongrui, Bao; Shanshan, Guan; Bo, Liu; Lu, Chen; Lei, Wang; Xiaorong, Ran
2014-01-01
Metabolomics, the systematic analysis of potential metabolites in a biological specimen, has been increasingly applied to discovering biomarkers, identifying perturbed pathways, measuring therapeutic targets, and discovering new drugs. By analyzing and verifying the significant difference in metabolic profiles and changes of metabolite biomarkers, metabolomics enables us to better understand substance metabolic pathways which can clarify the mechanism of Traditional Chinese Medicines (TCM). Corydalis yanhusuo alkaloid (CA) is a major component of Qizhiweitong (QZWT) prescription which has been used for treating gastric ulcer for centuries and its mechanism remains unclear completely. Metabolite profiling was performed by high-performance liquid chromatography combined with time-of-flight mass spectrometry (HPLC/ESI-TOF-MS) and in conjunction with multivariate data analysis and pathway analysis. The statistic software Mass Profiller Prossional (MPP) and statistic method including ANOVA and principal component analysis (PCA) were used for discovering novel potential biomarkers to clarify mechanism of CA in treating acid injected rats with gastric ulcer. The changes in metabolic profiling were restored to their base-line values after CA treatment according to the PCA score plots. Ten different potential biomarkers and seven key metabolic pathways contributing to the treatment of gastric ulcer were discovered and identified. Among the pathways, sphingophospholipid metabolism and fatty acid metabolism related network were acutely perturbed. Quantitative real time polymerase chain reaction (RT-PCR) analysis were performed to evaluate the expression of genes related to the two pathways for verifying the above results. The results show that changed biomarkers and pathways may provide evidence to insight into drug action mechanisms and enable us to increase research productivity toward metabolomics drug discovery. PMID:24454691
Mueller, Daniela; Ferrão, Marco Flôres; Marder, Luciano; da Costa, Adilson Ben; de Cássia de Souza Schneider, Rosana
2013-01-01
The main objective of this study was to use infrared spectroscopy to identify vegetable oils used as raw material for biodiesel production and apply multivariate analysis to the data. Six different vegetable oil sources—canola, cotton, corn, palm, sunflower and soybeans—were used to produce biodiesel batches. The spectra were acquired by Fourier transform infrared spectroscopy using a universal attenuated total reflectance sensor (FTIR-UATR). For the multivariate analysis principal component analysis (PCA), hierarchical cluster analysis (HCA), interval principal component analysis (iPCA) and soft independent modeling of class analogy (SIMCA) were used. The results indicate that is possible to develop a methodology to identify vegetable oils used as raw material in the production of biodiesel by FTIR-UATR applying multivariate analysis. It was also observed that the iPCA found the best spectral range for separation of biodiesel batches using FTIR-UATR data, and with this result, the SIMCA method classified 100% of the soybean biodiesel samples. PMID:23539030
Multivariate Statistical Modelling of Drought and Heat Wave Events
NASA Astrophysics Data System (ADS)
Manning, Colin; Widmann, Martin; Vrac, Mathieu; Maraun, Douglas; Bevaqua, Emanuele
2016-04-01
Multivariate Statistical Modelling of Drought and Heat Wave Events C. Manning1,2, M. Widmann1, M. Vrac2, D. Maraun3, E. Bevaqua2,3 1. School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK 2. Laboratoire des Sciences du Climat et de l'Environnement, (LSCE-IPSL), Centre d'Etudes de Saclay, Gif-sur-Yvette, France 3. Wegener Center for Climate and Global Change, University of Graz, Brandhofgasse 5, 8010 Graz, Austria Compound extreme events are a combination of two or more contributing events which in themselves may not be extreme but through their joint occurrence produce an extreme impact. Compound events are noted in the latest IPCC report as an important type of extreme event that have been given little attention so far. As part of the CE:LLO project (Compound Events: muLtivariate statisticaL mOdelling) we are developing a multivariate statistical model to gain an understanding of the dependence structure of certain compound events. One focus of this project is on the interaction between drought and heat wave events. Soil moisture has both a local and non-local effect on the occurrence of heat waves where it strongly controls the latent heat flux affecting the transfer of sensible heat to the atmosphere. These processes can create a feedback whereby a heat wave maybe amplified or suppressed by the soil moisture preconditioning, and vice versa, the heat wave may in turn have an effect on soil conditions. An aim of this project is to capture this dependence in order to correctly describe the joint probabilities of these conditions and the resulting probability of their compound impact. We will show an application of Pair Copula Constructions (PCCs) to study the aforementioned compound event. PCCs allow in theory for the formulation of multivariate dependence structures in any dimension where the PCC is a decomposition of a multivariate distribution into a product of bivariate components modelled using copulas. A copula is a multivariate distribution function which allows one to model the dependence structure of given variables separately from the marginal behaviour. We firstly look at the structure of soil moisture drought over the entire of France using the SAFRAN dataset between 1959 and 2009. Soil moisture is represented using the Standardised Precipitation Evapotranspiration Index (SPEI). Drought characteristics are computed at grid point scale where drought conditions are identified as those with an SPEI value below -1.0. We model the multivariate dependence structure of drought events defined by certain characteristics and compute return levels of these events. We initially find that drought characteristics such as duration, mean SPEI and the maximum contiguous area to a grid point all have positive correlations, though the degree to which they are correlated can vary considerably spatially. A spatial representation of return levels then may provide insight into the areas most prone to drought conditions. As a next step, we analyse the dependence structure between soil moisture conditions preceding the onset of a heat wave and the heat wave itself.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Yan; Notaro, Michael; Wang, Fuyao
Generalized equilibrium feedback assessment (GEFA) is a potentially valuable multivariate statistical tool for extracting vegetation feedbacks to the atmosphere in either observations or coupled Earth system models. The reliability of GEFA at capturing the terrestrial impacts on regional climate is demonstrated in this paper using the National Center for Atmospheric Research Community Earth System Model (CESM), with focus on North Africa. The feedback is assessed statistically by applying GEFA to output from a fully coupled control run. To reduce the sampling error caused by short data records, the traditional or full GEFA is refined through stepwise GEFA by dropping unimportantmore » forcings. Two ensembles of dynamical experiments are developed for the Sahel or West African monsoon region against which GEFA-based vegetation feedbacks are evaluated. In these dynamical experiments, regional leaf area index (LAI) is modified either alone or in conjunction with soil moisture, with the latter runs motivated by strong regional soil moisture–LAI coupling. Stepwise GEFA boasts higher consistency between statistically and dynamically assessed atmospheric responses to land surface anomalies than full GEFA, especially with short data records. GEFA-based atmospheric responses are more consistent with the coupled soil moisture–LAI experiments, indicating that GEFA is assessing the combined impacts of coupled vegetation and soil moisture. Finally, both the statistical and dynamical assessments reveal a negative vegetation–rainfall feedback in the Sahel associated with an atmospheric stability mechanism in CESM versus a weaker positive feedback in the West African monsoon region associated with a moisture recycling mechanism in CESM.« less
Mean template for tensor-based morphometry using deformation tensors.
Leporé, Natasha; Brun, Caroline; Pennec, Xavier; Chou, Yi-Yu; Lopez, Oscar L; Aizenstein, Howard J; Becker, James T; Toga, Arthur W; Thompson, Paul M
2007-01-01
Tensor-based morphometry (TBM) studies anatomical differences between brain images statistically, to identify regions that differ between groups, over time, or correlate with cognitive or clinical measures. Using a nonlinear registration algorithm, all images are mapped to a common space, and statistics are most commonly performed on the Jacobian determinant (local expansion factor) of the deformation fields. In, it was shown that the detection sensitivity of the standard TBM approach could be increased by using the full deformation tensors in a multivariate statistical analysis. Here we set out to improve the common space itself, by choosing the shape that minimizes a natural metric on the deformation tensors from that space to the population of control subjects. This method avoids statistical bias and should ease nonlinear registration of new subjects data to a template that is 'closest' to all subjects' anatomies. As deformation tensors are symmetric positive-definite matrices and do not form a vector space, all computations are performed in the log-Euclidean framework. The control brain B that is already the closest to 'average' is found. A gradient descent algorithm is then used to perform the minimization that iteratively deforms this template and obtains the mean shape. We apply our method to map the profile of anatomical differences in a dataset of 26 HIV/AIDS patients and 14 controls, via a log-Euclidean Hotelling's T2 test on the deformation tensors. These results are compared to the ones found using the 'best' control, B. Statistics on both shapes are evaluated using cumulative distribution functions of the p-values in maps of inter-group differences.
Yu, Yan; Notaro, Michael; Wang, Fuyao; ...
2018-02-05
Generalized equilibrium feedback assessment (GEFA) is a potentially valuable multivariate statistical tool for extracting vegetation feedbacks to the atmosphere in either observations or coupled Earth system models. The reliability of GEFA at capturing the terrestrial impacts on regional climate is demonstrated in this paper using the National Center for Atmospheric Research Community Earth System Model (CESM), with focus on North Africa. The feedback is assessed statistically by applying GEFA to output from a fully coupled control run. To reduce the sampling error caused by short data records, the traditional or full GEFA is refined through stepwise GEFA by dropping unimportantmore » forcings. Two ensembles of dynamical experiments are developed for the Sahel or West African monsoon region against which GEFA-based vegetation feedbacks are evaluated. In these dynamical experiments, regional leaf area index (LAI) is modified either alone or in conjunction with soil moisture, with the latter runs motivated by strong regional soil moisture–LAI coupling. Stepwise GEFA boasts higher consistency between statistically and dynamically assessed atmospheric responses to land surface anomalies than full GEFA, especially with short data records. GEFA-based atmospheric responses are more consistent with the coupled soil moisture–LAI experiments, indicating that GEFA is assessing the combined impacts of coupled vegetation and soil moisture. Finally, both the statistical and dynamical assessments reveal a negative vegetation–rainfall feedback in the Sahel associated with an atmospheric stability mechanism in CESM versus a weaker positive feedback in the West African monsoon region associated with a moisture recycling mechanism in CESM.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gunn, Andrew J., E-mail: agunn@uabmc.edu; Sheth, Rahul A.; Luber, Brandon
2017-01-15
PurposeThe purpse of this study was to evaluate the ability of various radiologic response criteria to predict patient outcomes after trans-arterial chemo-embolization with drug-eluting beads (DEB-TACE) in patients with advanced-stage (BCLC C) hepatocellular carcinoma (HCC).Materials and methodsHospital records from 2005 to 2011 were retrospectively reviewed. Non-infiltrative lesions were measured at baseline and on follow-up scans after DEB-TACE according to various common radiologic response criteria, including guidelines of the World Health Organization (WHO), Response Evaluation Criteria in Solid Tumors (RECIST), the European Association for the Study of the Liver (EASL), and modified RECIST (mRECIST). Statistical analysis was performed to see which,more » if any, of the response criteria could be used as a predictor of overall survival (OS) or time-to-progression (TTP).Results75 patients met inclusion criteria. Median OS and TTP were 22.6 months (95 % CI 11.6–24.8) and 9.8 months (95 % CI 7.1–21.6), respectively. Univariate and multivariate Cox analyses revealed that none of the evaluated criteria had the ability to be used as a predictor for OS or TTP. Analysis of the C index in both univariate and multivariate models showed that the evaluated criteria were not accurate predictors of either OS (C-statistic range: 0.51–0.58 in the univariate model; range: 0.54–0.58 in the multivariate model) or TTP (C-statistic range: 0.55–0.59 in the univariate model; range: 0.57–0.61 in the multivariate model).ConclusionCurrent response criteria are not accurate predictors of OS or TTP in patients with advanced-stage HCC after DEB-TACE.« less
Gunn, Andrew J; Sheth, Rahul A; Luber, Brandon; Huynh, Minh-Huy; Rachamreddy, Niranjan R; Kalva, Sanjeeva P
2017-01-01
The purpse of this study was to evaluate the ability of various radiologic response criteria to predict patient outcomes after trans-arterial chemo-embolization with drug-eluting beads (DEB-TACE) in patients with advanced-stage (BCLC C) hepatocellular carcinoma (HCC). Hospital records from 2005 to 2011 were retrospectively reviewed. Non-infiltrative lesions were measured at baseline and on follow-up scans after DEB-TACE according to various common radiologic response criteria, including guidelines of the World Health Organization (WHO), Response Evaluation Criteria in Solid Tumors (RECIST), the European Association for the Study of the Liver (EASL), and modified RECIST (mRECIST). Statistical analysis was performed to see which, if any, of the response criteria could be used as a predictor of overall survival (OS) or time-to-progression (TTP). 75 patients met inclusion criteria. Median OS and TTP were 22.6 months (95 % CI 11.6-24.8) and 9.8 months (95 % CI 7.1-21.6), respectively. Univariate and multivariate Cox analyses revealed that none of the evaluated criteria had the ability to be used as a predictor for OS or TTP. Analysis of the C index in both univariate and multivariate models showed that the evaluated criteria were not accurate predictors of either OS (C-statistic range: 0.51-0.58 in the univariate model; range: 0.54-0.58 in the multivariate model) or TTP (C-statistic range: 0.55-0.59 in the univariate model; range: 0.57-0.61 in the multivariate model). Current response criteria are not accurate predictors of OS or TTP in patients with advanced-stage HCC after DEB-TACE.
Clinical Trials With Large Numbers of Variables: Important Advantages of Canonical Analysis.
Cleophas, Ton J
2016-01-01
Canonical analysis assesses the combined effects of a set of predictor variables on a set of outcome variables, but it is little used in clinical trials despite the omnipresence of multiple variables. The aim of this study was to assess the performance of canonical analysis as compared with traditional multivariate methods using multivariate analysis of covariance (MANCOVA). As an example, a simulated data file with 12 gene expression levels and 4 drug efficacy scores was used. The correlation coefficient between the 12 predictor and 4 outcome variables was 0.87 (P = 0.0001) meaning that 76% of the variability in the outcome variables was explained by the 12 covariates. Repeated testing after the removal of 5 unimportant predictor and 1 outcome variable produced virtually the same overall result. The MANCOVA identified identical unimportant variables, but it was unable to provide overall statistics. (1) Canonical analysis is remarkable, because it can handle many more variables than traditional multivariate methods such as MANCOVA can. (2) At the same time, it accounts for the relative importance of the separate variables, their interactions and differences in units. (3) Canonical analysis provides overall statistics of the effects of sets of variables, whereas traditional multivariate methods only provide the statistics of the separate variables. (4) Unlike other methods for combining the effects of multiple variables such as factor analysis/partial least squares, canonical analysis is scientifically entirely rigorous. (5) Limitations include that it is less flexible than factor analysis/partial least squares, because only 2 sets of variables are used and because multiple solutions instead of one is offered. We do hope that this article will stimulate clinical investigators to start using this remarkable method.
NASA Astrophysics Data System (ADS)
Guillen, George; Rainey, Gail; Morin, Michelle
2004-04-01
Currently, the Minerals Management Service uses the Oil Spill Risk Analysis model (OSRAM) to predict the movement of potential oil spills greater than 1000 bbl originating from offshore oil and gas facilities. OSRAM generates oil spill trajectories using meteorological and hydrological data input from either actual physical measurements or estimates generated from other hydrological models. OSRAM and many other models produce output matrices of average, maximum and minimum contact probabilities to specific landfall or target segments (columns) from oil spills at specific points (rows). Analysts and managers are often interested in identifying geographic areas or groups of facilities that pose similar risks to specific targets or groups of targets if a spill occurred. Unfortunately, due to the potentially large matrix generated by many spill models, this question is difficult to answer without the use of data reduction and visualization methods. In our study we utilized a multivariate statistical method called cluster analysis to group areas of similar risk based on potential distribution of landfall target trajectory probabilities. We also utilized ArcView™ GIS to display spill launch point groupings. The combination of GIS and multivariate statistical techniques in the post-processing of trajectory model output is a powerful tool for identifying and delineating areas of similar risk from multiple spill sources. We strongly encourage modelers, statistical and GIS software programmers to closely collaborate to produce a more seamless integration of these technologies and approaches to analyzing data. They are complimentary methods that strengthen the overall assessment of spill risks.
Steiner, John F.; Ho, P. Michael; Beaty, Brenda L.; Dickinson, L. Miriam; Hanratty, Rebecca; Zeng, Chan; Tavel, Heather M.; Havranek, Edward P.; Davidson, Arthur J.; Magid, David J.; Estacio, Raymond O.
2009-01-01
Background Although many studies have identified patient characteristics or chronic diseases associated with medication adherence, the clinical utility of such predictors has rarely been assessed. We attempted to develop clinical prediction rules for adherence with antihypertensive medications in two health care delivery systems. Methods and Results Retrospective cohort studies of hypertension registries in an inner-city health care delivery system (N = 17176) and a health maintenance organization (N = 94297) in Denver, Colorado. Adherence was defined by acquisition of 80% or more of antihypertensive medications. A multivariable model in the inner-city system found that adherent patients (36.3% of the total) were more likely than non-adherent patients to be older, white, married, and acculturated in US society, to have diabetes or cerebrovascular disease, not to abuse alcohol or controlled substances, and to be prescribed less than three antihypertensive medications. Although statistically significant, all multivariate odds ratios were 1.7 or less, and the model did not accurately discriminate adherent from non-adherent patients (C-statistic = 0.606). In the health maintenance organization, where 72.1% of patients were adherent, significant but weak associations existed between adherence and older age, white race, the lack of alcohol abuse, and fewer antihypertensive medications. The multivariate model again failed to accurately discriminate adherent from non-adherent individuals (C-statistic = 0.576). Conclusions Although certain socio-demographic characteristics or clinical diagnoses are statistically associated with adherence to refills of antihypertensive medications, a combination of these characteristics is not sufficiently accurate to allow clinicians to predict whether their patients will be adherent with treatment. PMID:20031876
Wynant, Willy; Abrahamowicz, Michal
2016-11-01
Standard optimization algorithms for maximizing likelihood may not be applicable to the estimation of those flexible multivariable models that are nonlinear in their parameters. For applications where the model's structure permits separating estimation of mutually exclusive subsets of parameters into distinct steps, we propose the alternating conditional estimation (ACE) algorithm. We validate the algorithm, in simulations, for estimation of two flexible extensions of Cox's proportional hazards model where the standard maximum partial likelihood estimation does not apply, with simultaneous modeling of (1) nonlinear and time-dependent effects of continuous covariates on the hazard, and (2) nonlinear interaction and main effects of the same variable. We also apply the algorithm in real-life analyses to estimate nonlinear and time-dependent effects of prognostic factors for mortality in colon cancer. Analyses of both simulated and real-life data illustrate good statistical properties of the ACE algorithm and its ability to yield new potentially useful insights about the data structure. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jordan, Nika; Zakrajšek, Jure; Bohanec, Simona; Roškar, Robert; Grabnar, Iztok
2018-05-01
The aim of the present research is to show that the methodology of Design of Experiments can be applied to stability data evaluation, as they can be seen as multi-factor and multi-level experimental designs. Linear regression analysis is usually an approach for analyzing stability data, but multivariate statistical methods could also be used to assess drug stability during the development phase. Data from a stability study for a pharmaceutical product with hydrochlorothiazide (HCTZ) as an unstable drug substance was used as a case example in this paper. The design space of the stability study was modeled using Umetrics MODDE 10.1 software. We showed that a Partial Least Squares model could be used for a multi-dimensional presentation of all data generated in a stability study and for determination of the relationship among factors that influence drug stability. It might also be used for stability predictions and potentially for the optimization of the extent of stability testing needed to determine shelf life and storage conditions, which would be time and cost-effective for the pharmaceutical industry.
Franklin, Daniel; O'Higgins, Paul; Oxnard, Charles E; Dadour, Ian
2007-03-01
This article forms part of an ongoing series of investigations designed to apply three-dimensional (3D) technology to problems in forensic anthropology. We report here on new morphometric data examining sexual dimorphism and population variation in the adult human mandible. The material is sourced from dissection hall subjects of South African and American origin consequently the sex and a statement of age are known for each individual. Thirty-eight bilateral 3D landmarks were designed and acquired using a Microscribe G2X portable digitizer. The shape analysis software morphologika (www.york.ac.uk/res/fme) is used to analyze the 3D coordinates of the landmarks. A selection of multivariate statistics is applied to visualize the pattern, and assess the significance of, shape variation between the sexes and populations. The determination of sex and identification of population affinity are two important aspects of forensic investigation. Our results indicate that the adult mandible can be used to identify both sex and population affinity with increased sensitivity and objectivity compared to standard analytical techniques.
Qin, Kunming; Wang, Bin; Li, Weidong; Cai, Hao; Chen, Danni; Liu, Xiao; Yin, Fangzhou; Cai, Baochang
2015-05-01
In traditional Chinese medicine, raw and processed herbs are used to treat different diseases. Suitable quality assessment methods are crucial for the discrimination between raw and processed herbs. The dried fruit of Arctium lappa L. and their processed products are widely used in traditional Chinese medicine, yet their therapeutic effects are different. In this study, a novel strategy using high-performance liquid chromatography and diode array detection coupled with multivariate statistical analysis to rapidly explore raw and processed Arctium lappa L. was proposed and validated. Four main components in a total of 30 batches of raw and processed Fructus Arctii samples were analyzed, and ten characteristic peaks were identified in the fingerprint common pattern. Furthermore, similarity evaluation, principal component analysis, and hierachical cluster analysis were applied to demonstrate the distinction. The results suggested that the relative amounts of the chemical components of raw and processed Fructus Arctii samples are different. This new method has been successfully applied to detect the raw and processed Fructus Arctii in marketed herbal medicinal products. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Quantitative methods for analysing cumulative effects on fish migration success: a review.
Johnson, J E; Patterson, D A; Martins, E G; Cooke, S J; Hinch, S G
2012-07-01
It is often recognized, but seldom addressed, that a quantitative assessment of the cumulative effects, both additive and non-additive, of multiple stressors on fish survival would provide a more realistic representation of the factors that influence fish migration. This review presents a compilation of analytical methods applied to a well-studied fish migration, a more general review of quantitative multivariable methods, and a synthesis on how to apply new analytical techniques in fish migration studies. A compilation of adult migration papers from Fraser River sockeye salmon Oncorhynchus nerka revealed a limited number of multivariable methods being applied and the sub-optimal reliance on univariable methods for multivariable problems. The literature review of fisheries science, general biology and medicine identified a large number of alternative methods for dealing with cumulative effects, with a limited number of techniques being used in fish migration studies. An evaluation of the different methods revealed that certain classes of multivariable analyses will probably prove useful in future assessments of cumulative effects on fish migration. This overview and evaluation of quantitative methods gathered from the disparate fields should serve as a primer for anyone seeking to quantify cumulative effects on fish migration survival. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.
Chen, Xiaohong; Fan, Yanqin; Pouzo, Demian; Ying, Zhiliang
2010-07-01
We study estimation and model selection of semiparametric models of multivariate survival functions for censored data, which are characterized by possibly misspecified parametric copulas and nonparametric marginal survivals. We obtain the consistency and root- n asymptotic normality of a two-step copula estimator to the pseudo-true copula parameter value according to KLIC, and provide a simple consistent estimator of its asymptotic variance, allowing for a first-step nonparametric estimation of the marginal survivals. We establish the asymptotic distribution of the penalized pseudo-likelihood ratio statistic for comparing multiple semiparametric multivariate survival functions subject to copula misspecification and general censorship. An empirical application is provided.
Chen, Xiaohong; Fan, Yanqin; Pouzo, Demian; Ying, Zhiliang
2013-01-01
We study estimation and model selection of semiparametric models of multivariate survival functions for censored data, which are characterized by possibly misspecified parametric copulas and nonparametric marginal survivals. We obtain the consistency and root-n asymptotic normality of a two-step copula estimator to the pseudo-true copula parameter value according to KLIC, and provide a simple consistent estimator of its asymptotic variance, allowing for a first-step nonparametric estimation of the marginal survivals. We establish the asymptotic distribution of the penalized pseudo-likelihood ratio statistic for comparing multiple semiparametric multivariate survival functions subject to copula misspecification and general censorship. An empirical application is provided. PMID:24790286
MULTIVARIATE RECEPTOR MODELS-CURRENT PRACTICE AND FUTURE TRENDS. (R826238)
Multivariate receptor models have been applied to the analysis of air quality data for sometime. However, solving the general mixture problem is important in several other fields. This paper looks at the panoply of these models with a view of identifying common challenges and ...
Landslide susceptibility map: from research to application
NASA Astrophysics Data System (ADS)
Fiorucci, Federica; Reichenbach, Paola; Ardizzone, Francesca; Rossi, Mauro; Felicioni, Giulia; Antonini, Guendalina
2014-05-01
Susceptibility map is an important and essential tool in environmental planning, to evaluate landslide hazard and risk and for a correct and responsible management of the territory. Landslide susceptibility is the likelihood of a landslide occurring in an area on the basis of local terrain conditions. Can be expressed as the probability that any given region will be affected by landslides, i.e. an estimate of "where" landslides are likely to occur. In this work we present two examples of landslide susceptibility map prepared for the Umbria Region and for the Perugia Municipality. These two maps were realized following official request from the Regional and Municipal government to the Research Institute for the Hydrogeological Protection (CNR-IRPI). The susceptibility map prepared for the Umbria Region represents the development of previous agreements focused to prepare: i) a landslide inventory map that was included in the Urban Territorial Planning (PUT) and ii) a series of maps for the Regional Plan for Multi-risk Prevention. The activities carried out for the Umbria Region were focused to define and apply methods and techniques for landslide susceptibility zonation. Susceptibility maps were prepared exploiting a multivariate statistical model (linear discriminant analysis) for the five Civil Protection Alert Zones defined in the regional territory. The five resulting maps were tested and validated using the spatial distribution of recent landslide events that occurred in the region. The susceptibility map for the Perugia Municipality was prepared to be integrated as one of the cartographic product in the Municipal development plan (PRG - Piano Regolatore Generale) as required by the existing legislation. At strategic level, one of the main objectives of the PRG, is to establish a framework of knowledge and legal aspects for the management of geo-hydrological risk. At national level most of the susceptibility maps prepared for the PRG, were and still are obtained qualitatively classifying the territory according to slope classes. For the Perugia Municipality the susceptibility map was obtained combining results of statistical multivariate models and landslide density map. In particular, in the first phase a susceptibility zonation was prepared using different single and combined probability statistical multivariate techniques. The zonation was then combined and compared with the landslide density map in order to reclassify the false negative (portion of the territory classified by the model as stable affected by slope failures). The semi-quantitative resulting map was classified in five susceptibility classes. For each class a set of technical regulation was established to manage the territory.
An Integrated Analysis of the Physiological Effects of Space Flight: Executive Summary
NASA Technical Reports Server (NTRS)
Leonard, J. I.
1985-01-01
A large array of models were applied in a unified manner to solve problems in space flight physiology. Mathematical simulation was used as an alternative way of looking at physiological systems and maximizing the yield from previous space flight experiments. A medical data analysis system was created which consist of an automated data base, a computerized biostatistical and data analysis system, and a set of simulation models of physiological systems. Five basic models were employed: (1) a pulsatile cardiovascular model; (2) a respiratory model; (3) a thermoregulatory model; (4) a circulatory, fluid, and electrolyte balance model; and (5) an erythropoiesis regulatory model. Algorithms were provided to perform routine statistical tests, multivariate analysis, nonlinear regression analysis, and autocorrelation analysis. Special purpose programs were prepared for rank correlation, factor analysis, and the integration of the metabolic balance data.
NASA Astrophysics Data System (ADS)
Shi, Jinfei; Zhu, Songqing; Chen, Ruwen
2017-12-01
An order selection method based on multiple stepwise regressions is proposed for General Expression of Nonlinear Autoregressive model which converts the model order problem into the variable selection of multiple linear regression equation. The partial autocorrelation function is adopted to define the linear term in GNAR model. The result is set as the initial model, and then the nonlinear terms are introduced gradually. Statistics are chosen to study the improvements of both the new introduced and originally existed variables for the model characteristics, which are adopted to determine the model variables to retain or eliminate. So the optimal model is obtained through data fitting effect measurement or significance test. The simulation and classic time-series data experiment results show that the method proposed is simple, reliable and can be applied to practical engineering.
NASA Astrophysics Data System (ADS)
Evin, Guillaume; Favre, Anne-Catherine; Hingray, Benoit
2018-02-01
We present a multi-site stochastic model for the generation of average daily temperature, which includes a flexible parametric distribution and a multivariate autoregressive process. Different versions of this model are applied to a set of 26 stations located in Switzerland. The importance of specific statistical characteristics of the model (seasonality, marginal distributions of standardized temperature, spatial and temporal dependence) is discussed. In particular, the proposed marginal distribution is shown to improve the reproduction of extreme temperatures (minima and maxima). We also demonstrate that the frequency and duration of cold spells and heat waves are dramatically underestimated when the autocorrelation of temperature is not taken into account in the model. An adequate representation of these characteristics can be crucial depending on the field of application, and we discuss potential implications in different contexts (agriculture, forestry, hydrology, human health).
NASA Astrophysics Data System (ADS)
Mallamace, Domenico; Vasi, Sebastiano; Corsaro, Carmelo; Naccari, Clara; Clodoveo, Maria Lisa; Dugo, Giacomo; Cicero, Nicola
2017-11-01
The thermal properties of many organic extra Virgin Olive Oils (eVOOs) coming from different countries of the world were investigated by Differential Scanning Calorimetry (DSC). This technique, through a series of heating and cooling cycles, provides a specific curve, i.e., a thermogram, which represents the fingerprint of each eVOO sample. In fact, variations due to the different cultivars, geographical origin or chemical composition can be highlighted because they produce changes in the corresponding thermogram. In particular, in this work, we show the results of an unsupervised multivariate statistical analysis applied to the DSC thermograms of many organic eVOOs. This analysis allows us to discriminate the geographical origin of the different studied samples in terms of the peculiar features shown by the melting profiles of the triacylglycerol moieties.
Arsenault, Jessica S; Buchsbaum, Bradley R
2016-08-01
The motor theory of speech perception has experienced a recent revival due to a number of studies implicating the motor system during speech perception. In a key study, Pulvermüller et al. (2006) showed that premotor/motor cortex differentially responds to the passive auditory perception of lip and tongue speech sounds. However, no study has yet attempted to replicate this important finding from nearly a decade ago. The objective of the current study was to replicate the principal finding of Pulvermüller et al. (2006) and generalize it to a larger set of speech tokens while applying a more powerful statistical approach using multivariate pattern analysis (MVPA). Participants performed an articulatory localizer as well as a speech perception task where they passively listened to a set of eight syllables while undergoing fMRI. Both univariate and multivariate analyses failed to find evidence for somatotopic coding in motor or premotor cortex during speech perception. Positive evidence for the null hypothesis was further confirmed by Bayesian analyses. Results consistently show that while the lip and tongue areas of the motor cortex are sensitive to movements of the articulators, they do not appear to preferentially respond to labial and alveolar speech sounds during passive speech perception.
Dönmez, Ozlem Aksu; Aşçi, Bürge; Bozdoğan, Abdürrezzak; Sungur, Sidika
2011-02-15
A simple and rapid analytical procedure was proposed for the determination of chromatographic peaks by means of partial least squares multivariate calibration (PLS) of high-performance liquid chromatography with diode array detection (HPLC-DAD). The method is exemplified with analysis of quaternary mixtures of potassium guaiacolsulfonate (PG), guaifenesin (GU), diphenhydramine HCI (DP) and carbetapentane citrate (CP) in syrup preparations. In this method, the area does not need to be directly measured and predictions are more accurate. Though the chromatographic and spectral peaks of the analytes were heavily overlapped and interferents coeluted with the compounds studied, good recoveries of analytes could be obtained with HPLC-DAD coupled with PLS calibration. This method was tested by analyzing the synthetic mixture of PG, GU, DP and CP. As a comparison method, a classsical HPLC method was used. The proposed methods were applied to syrups samples containing four drugs and the obtained results were statistically compared with each other. Finally, the main advantage of HPLC-PLS method over the classical HPLC method tried to emphasized as the using of simple mobile phase, shorter analysis time and no use of internal standard and gradient elution. Copyright © 2010 Elsevier B.V. All rights reserved.
Perception of control, coping and psychological stress of infertile women undergoing IVF.
Gourounti, Kleanthi; Anagnostopoulos, Fotios; Potamianos, Grigorios; Lykeridou, Katerina; Schmidt, Lone; Vaslamatzis, Grigorios
2012-06-01
The study aimed to examine: (i) the association between perception of infertility controllability and coping strategies; and (ii) the association between perception of infertility controllability and coping strategies to psychological distress, applying multivariate statistical techniques to control for the effects of demographic variables. This cross-sectional study included 137 women with fertility problems undergoing IVF in a public hospital. All participants completed questionnaires that measured fertility-related stress, state anxiety, depressive symptomatology, perception of control and coping strategies. Pearson's correlation coefficients were calculated between all study variables, followed by hierarchical multiple linear regression. Low perception of personal and treatment controllability was associated with frequent use of avoidance coping and high perception of treatment controllability was positively associated with problem-focused coping. Multivariate analysis showed that, when controlling for demographic factors, low perception of personal control and avoidance coping were positively associated with fertility-related stress and state anxiety, and problem-appraisal coping was negatively and significantly associated with fertility-related stress and depressive symptomatology scores. The findings of this study merit the understanding of the role of control perception and coping in psychological stress of infertile women to identify beforehand those women who might be at risk of experiencing high stress and in need of support. Copyright © 2012 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
Mor, Suman; Singh, Surender; Yadav, Poonam; Rani, Versha; Rani, Pushpa; Sheoran, Monika; Singh, Gurmeet; Ravindra, Khaiwal
2009-12-01
Various physico-chemical parameters, including fluoride (F(-)), were analyzed to understand the hydro-geochemistry of an aquifer in a semi-arid region of India. Furthermore, the quality of the shallow and deep aquifer (using tube well and hand pumps) was also investigated for their best ecological use including drinking, domestic, agricultural and other activities. Different multivariate techniques were applied to understand the groundwater chemistry of the aquifer. Findings of the correlation matrix were strengthened by the factor analysis, and this shows that salinity is mainly caused by magnesium salts as compared to calcium salts in the aquifer. The problem of salinization seems mainly compounded by the contamination of the shallow aquifers by the recharging water. High factor loading of total alkalinity and bicarbonates indicates that total alkalinity was mainly due to carbonates and bicarbonates of sodium. The concentration of F(-) was found more in the deep aquifer than the shallow aquifer. Further, only a few groundwater samples lie below the permissible limit of F(-), and this indicates a risk of dental caries in the populace of the study area. The present study indicates that regular monitoring of groundwater is an important step to avoid human health risks and to assess its quality for various ecological purposes.
Rio, Daniel E.; Rawlings, Robert R.; Woltz, Lawrence A.; Gilman, Jodi; Hommer, Daniel W.
2013-01-01
A linear time-invariant model based on statistical time series analysis in the Fourier domain for single subjects is further developed and applied to functional MRI (fMRI) blood-oxygen level-dependent (BOLD) multivariate data. This methodology was originally developed to analyze multiple stimulus input evoked response BOLD data. However, to analyze clinical data generated using a repeated measures experimental design, the model has been extended to handle multivariate time series data and demonstrated on control and alcoholic subjects taken from data previously analyzed in the temporal domain. Analysis of BOLD data is typically carried out in the time domain where the data has a high temporal correlation. These analyses generally employ parametric models of the hemodynamic response function (HRF) where prewhitening of the data is attempted using autoregressive (AR) models for the noise. However, this data can be analyzed in the Fourier domain. Here, assumptions made on the noise structure are less restrictive, and hypothesis tests can be constructed based on voxel-specific nonparametric estimates of the hemodynamic transfer function (HRF in the Fourier domain). This is especially important for experimental designs involving multiple states (either stimulus or drug induced) that may alter the form of the response function. PMID:23840281