Science.gov

Sample records for applying robust design

  1. Aerodynamic design applying automatic differentiation and using robust variable fidelity optimization

    NASA Astrophysics Data System (ADS)

    Takemiya, Tetsushi

    , and that (2) the AMF terminates optimization erroneously when the optimization problems have constraints. The first problem is due to inaccuracy in computing derivatives in the AMF, and the second problem is due to erroneous treatment of the trust region ratio, which sets the size of the domain for an optimization in the AMF. In order to solve the first problem of the AMF, automatic differentiation (AD) technique, which reads the codes of analysis models and automatically generates new derivative codes based on some mathematical rules, is applied. If derivatives are computed with the generated derivative code, they are analytical, and the required computational time is independent of the number of design variables, which is very advantageous for realistic aerospace engineering problems. However, if analysis models implement iterative computations such as computational fluid dynamics (CFD), which solves system partial differential equations iteratively, computing derivatives through the AD requires a massive memory size. The author solved this deficiency by modifying the AD approach and developing a more efficient implementation with CFD, and successfully applied the AD to general CFD software. In order to solve the second problem of the AMF, the governing equation of the trust region ratio, which is very strict against the violation of constraints, is modified so that it can accept the violation of constraints within some tolerance. By accepting violations of constraints during the optimization process, the AMF can continue optimization without terminating immaturely and eventually find the true optimum design point. With these modifications, the AMF is referred to as "Robust AMF," and it is applied to airfoil and wing aerodynamic design problems using Euler CFD software. The former problem has 21 design variables, and the latter 64. In both problems, derivatives computed with the proposed AD method are first compared with those computed with the finite

  2. Experimental Investigation on Adaptive Robust Controller Designs Applied to Constrained Manipulators

    PubMed Central

    Nogueira, Samuel L.; Pazelli, Tatiana F. P. A. T.; Siqueira, Adriano A. G.; Terra, Marco H.

    2013-01-01

    In this paper, two interlaced studies are presented. The first is directed to the design and construction of a dynamic 3D force/moment sensor. The device is applied to provide a feedback signal of forces and moments exerted by the robotic end-effector. This development has become an alternative solution to the existing multi-axis load cell based on static force and moment sensors. The second one shows an experimental investigation on the performance of four different adaptive nonlinear ℋ∞ control methods applied to a constrained manipulator subject to uncertainties in the model and external disturbances. Coordinated position and force control is evaluated. Adaptive procedures are based on neural networks and fuzzy systems applied in two different modeling strategies. The first modeling strategy requires a well-known nominal model for the robot, so that the intelligent systems are applied only to estimate the effects of uncertainties, unmodeled dynamics and external disturbances. The second strategy considers that the robot model is completely unknown and, therefore, intelligent systems are used to estimate these dynamics. A comparative study is conducted based on experimental implementations performed with an actual planar manipulator and with the dynamic force sensor developed for this purpose. PMID:23598503

  3. Experimental investigation on adaptive robust controller designs applied to constrained manipulators.

    PubMed

    Nogueira, Samuel L; Pazelli, Tatiana F P A T; Siqueira, Adriano A G; Terra, Marco H

    2013-04-18

    In this paper, two interlaced studies are presented. The first is directed to the design and construction of a dynamic 3D force/moment sensor. The device is applied to provide a feedback signal of forces and moments exerted by the robotic end-effector. This development has become an alternative solution to the existing multi-axis load cell based on static force and moment sensors. The second one shows an experimental investigation on the performance of four different adaptive nonlinear H∞ control methods applied to a constrained manipulator subject to uncertainties in the model and external disturbances. Coordinated position and force control is evaluated. Adaptive procedures are based on neural networks and fuzzy systems applied in two different modeling strategies. The first modeling strategy requires a well-known nominal model for the robot, so that the intelligent systems are applied only to estimate the effects of uncertainties, unmodeled dynamics and external disturbances. The second strategy considers that the robot model is completely unknown and, therefore, intelligent systems are used to estimate these dynamics. A comparative study is conducted based on experimental implementations performed with an actual planar manipulator and with the dynamic force sensor developed for this purpose.

  4. The Problem of Size in Robust Design

    NASA Technical Reports Server (NTRS)

    Koch, Patrick N.; Allen, Janet K.; Mistree, Farrokh; Mavris, Dimitri

    1997-01-01

    To facilitate the effective solution of multidisciplinary, multiobjective complex design problems, a departure from the traditional parametric design analysis and single objective optimization approaches is necessary in the preliminary stages of design. A necessary tradeoff becomes one of efficiency vs. accuracy as approximate models are sought to allow fast analysis and effective exploration of a preliminary design space. In this paper we apply a general robust design approach for efficient and comprehensive preliminary design to a large complex system: a high speed civil transport (HSCT) aircraft. Specifically, we investigate the HSCT wing configuration design, incorporating life cycle economic uncertainties to identify economically robust solutions. The approach is built on the foundation of statistical experimentation and modeling techniques and robust design principles, and is specialized through incorporation of the compromise Decision Support Problem for multiobjective design. For large problems however, as in the HSCT example, this robust design approach developed for efficient and comprehensive design breaks down with the problem of size - combinatorial explosion in experimentation and model building with number of variables -and both efficiency and accuracy are sacrificed. Our focus in this paper is on identifying and discussing the implications and open issues associated with the problem of size for the preliminary design of large complex systems.

  5. Robust modular product family design

    NASA Astrophysics Data System (ADS)

    Jiang, Lan; Allada, Venkat

    2001-10-01

    This paper presents a modified Taguchi methodology to improve the robustness of modular product families against changes in customer requirements. The general research questions posed in this paper are: (1) How to effectively design a product family (PF) that is robust enough to accommodate future customer requirements. (2) How far into the future should designers look to design a robust product family? An example of a simplified vacuum product family is used to illustrate our methodology. In the example, customer requirements are selected as signal factors; future changes of customer requirements are selected as noise factors; an index called quality characteristic (QC) is set to evaluate the product vacuum family; and the module instance matrix (M) is selected as control factor. Initially a relation between the objective function (QC) and the control factor (M) is established, and then the feasible M space is systemically explored using a simplex method to determine the optimum M and the corresponding QC values. Next, various noise levels at different time points are introduced into the system. For each noise level, the optimal values of M and QC are computed and plotted on a QC-chart. The tunable time period of the control factor (the module matrix, M) is computed using the QC-chart. The tunable time period represents the maximum time for which a given control factor can be used to satisfy current and future customer needs. Finally, a robustness index is used to break up the tunable time period into suitable time periods that designers should consider while designing product families.

  6. Robust design of dynamic observers

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, S. P.

    1974-01-01

    The two (identity) observer realizations z = Mz + Ky and z = transpose of Az + transpose of K(y - transpose of Cz), respectively called the open loop and closed loop realizations, for the linear system x = Ax, y = Cx are analyzed with respect to the requirement of robustness; i.e., the requirement that the observer continue to regulate the error x - z satisfactorily despite small variations in the observer parameters from the projected design values. The results show that the open loop realization is never robust, that robustness requires a closed loop implementation, and that the closed loop realization is robust with respect to small perturbations in the gains transpose of K if and only if the observer can be built to contain an exact replica of the unstable and underdamped dynamics of the system being observed. These results clarify the stringent accuracy requirements on both models and hardware that must be met before an observer can be considered for use in a control system.

  7. Advances in robust flight design

    NASA Technical Reports Server (NTRS)

    Wong, Kelvin K.; Dhand, Sanjeev K.

    1991-01-01

    Current launch vehicle trajectory design philosophies, generally based on maximizing payload capability, result in an expensive and time-consuming iteration in trajectory design for each mission. However, for a launch system that is not performance-driven, a flight design that is robust to variations in missions and provides single-engine-out capability can be highly cost-effective. This philosophy has led to the development of two flight design concepts to reduce recurring costs: standard trajectories and command multiplier steering. Preliminary analyses of these two concepts had proven the feasibility and showed encouraging results in applications to an Advanced Launch System vehicle. Recent progress has demonstrated the effective and efficient integration of the two concepts with minimal payload penalty.

  8. Designing for Reliability and Robustness

    NASA Technical Reports Server (NTRS)

    Svetlik, Randall G.; Moore, Cherice; Williams, Antony

    2017-01-01

    Long duration spaceflight has a negative effect on the human body, and exercise countermeasures are used on-board the International Space Station (ISS) to minimize bone and muscle loss, combatting these effects. Given the importance of these hardware systems to the health of the crew, this equipment must continue to be readily available. Designing spaceflight exercise hardware to meet high reliability and availability standards has proven to be challenging throughout the time the crewmembers have been living on ISS beginning in 2000. Furthermore, restoring operational capability after a failure is clearly time-critical, but can be problematic given the challenges of troubleshooting the problem from 220 miles away. Several best-practices have been leveraged in seeking to maximize availability of these exercise systems, including designing for robustness, implementing diagnostic instrumentation, relying on user feedback, and providing ample maintenance and sparing. These factors have enhanced the reliability of hardware systems, and therefore have contributed to keeping the crewmembers healthy upon return to Earth. This paper will review the failure history for three spaceflight exercise countermeasure systems identifying lessons learned that can help improve future systems. Specifically, the Treadmill with Vibration Isolation and Stabilization System (TVIS), Cycle Ergometer with Vibration Isolation and Stabilization System (CEVIS), and the Advanced Resistive Exercise Device (ARED) will be reviewed, analyzed, and conclusions identified so as to provide guidance for improving future exercise hardware designs. These lessons learned, paired with thorough testing, offer a path towards reduced system down-time.

  9. Evaluating efficiency and robustness in cilia design.

    PubMed

    Guo, Hanliang; Kanso, Eva

    2016-03-01

    Motile cilia are used by many eukaryotic cells to transport flow. Cilia-driven flows are important to many physiological functions, yet a deep understanding of the interplay between the mechanical structure of cilia and their physiological functions in healthy and diseased conditions remains elusive. To develop such an understanding, one needs a quantitative framework to assess cilia performance and robustness when subject to perturbations in the cilia apparatus. Here we link cilia design (beating patterns) to function (flow transport) in the context of experimentally and theoretically derived cilia models. We particularly examine the optimality and robustness of cilia design. Optimality refers to efficiency of flow transport, while robustness is defined as low sensitivity to variations in the design parameters. We find that suboptimal designs can be more robust than optimal ones. That is, designing for the most efficient cilium does not guarantee robustness. These findings have significant implications on the understanding of cilia design in artificial and biological systems.

  10. Robust Controller Design for Hemispherical Resonator Gyroscope

    DTIC Science & Technology

    2011-11-01

    f v Figure 1. Operating principle of HRG Robust Controller Design for Hemispherical Resonator Gyroscope Chul Hyun1), Byung ...Petersburg, Russia.: 26-34 4) Chul Hyun. 2011. Design of Robust Digital Controller for Hemispherical Resonator Gyroscopes, Ph.D. dissertation, Seoul

  11. H∞ optimal design of robust observer against disturbances

    NASA Astrophysics Data System (ADS)

    Chen, Min-Shin; Chen, Chi-Che

    2014-06-01

    This paper considers the robust observer design problem for linear dynamic systems subject to the interference of external disturbances. For such systems, the state estimate from the conventional Luenberger is normally biased with respect to the true system state. To remedy this situation, this paper proposes a new structure for robust observers. With this new structure, the robust observer design problem is skillfully transformed into the well-known disturbance rejection control problem. The H∞ optimal control design technique can then be applied to shape the proposed robust observer in the frequency domain. The proposed robust observer is a joint state and disturbance observer, which simultaneously estimates both the system state and unknown disturbances, and can be applied to non-minimum-phase systems.

  12. Robust Design Optimization via Failure Domain Bounding

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Kenny, Sean P.; Giesy, Daniel P.

    2007-01-01

    This paper extends and applies the strategies recently developed by the authors for handling constraints under uncertainty to robust design optimization. For the scope of this paper, robust optimization is a methodology aimed at problems for which some parameters are uncertain and are only known to belong to some uncertainty set. This set can be described by either a deterministic or a probabilistic model. In the methodology developed herein, optimization-based strategies are used to bound the constraint violation region using hyper-spheres and hyper-rectangles. By comparing the resulting bounding sets with any given uncertainty model, it can be determined whether the constraints are satisfied for all members of the uncertainty model (i.e., constraints are feasible) or not (i.e., constraints are infeasible). If constraints are infeasible and a probabilistic uncertainty model is available, upper bounds to the probability of constraint violation can be efficiently calculated. The tools developed enable approximating not only the set of designs that make the constraints feasible but also, when required, the set of designs for which the probability of constraint violation is below a prescribed admissible value. When constraint feasibility is possible, several design criteria can be used to shape the uncertainty model of performance metrics of interest. Worst-case, least-second-moment, and reliability-based design criteria are considered herein. Since the problem formulation is generic and the tools derived only require standard optimization algorithms for their implementation, these strategies are easily applicable to a broad range of engineering problems.

  13. A robust optimization methodology for preliminary aircraft design

    NASA Astrophysics Data System (ADS)

    Prigent, S.; Maréchal, P.; Rondepierre, A.; Druot, T.; Belleville, M.

    2016-05-01

    This article focuses on a robust optimization of an aircraft preliminary design under operational constraints. According to engineers' know-how, the aircraft preliminary design problem can be modelled as an uncertain optimization problem whose objective (the cost or the fuel consumption) is almost affine, and whose constraints are convex. It is shown that this uncertain optimization problem can be approximated in a conservative manner by an uncertain linear optimization program, which enables the use of the techniques of robust linear programming of Ben-Tal, El Ghaoui, and Nemirovski [Robust Optimization, Princeton University Press, 2009]. This methodology is then applied to two real cases of aircraft design and numerical results are presented.

  14. Robust holographic storage system design.

    PubMed

    Watanabe, Takahiro; Watanabe, Minoru

    2011-11-21

    Demand is increasing daily for large data storage systems that are useful for applications in spacecraft, space satellites, and space robots, which are all exposed to radiation-rich space environment. As candidates for use in space embedded systems, holographic storage systems are promising because they can easily provided the demanded large-storage capability. Particularly, holographic storage systems, which have no rotation mechanism, are demanded because they are virtually maintenance-free. Although a holographic memory itself is an extremely robust device even in a space radiation environment, its associated lasers and drive circuit devices are vulnerable. Such vulnerabilities sometimes engendered severe problems that prevent reading of all contents of the holographic memory, which is a turn-off failure mode of a laser array. This paper therefore presents a proposal for a recovery method for the turn-off failure mode of a laser array on a holographic storage system, and describes results of an experimental demonstration.

  15. Towards designing robust coupled networks.

    PubMed

    Schneider, Christian M; Yazdani, Nuri; Araújo, Nuno A M; Havlin, Shlomo; Herrmann, Hans J

    2013-01-01

    Natural and technological interdependent systems have been shown to be highly vulnerable due to cascading failures and an abrupt collapse of global connectivity under initial failure. Mitigating the risk by partial disconnection endangers their functionality. Here we propose a systematic strategy of selecting a minimum number of autonomous nodes that guarantee a smooth transition in robustness. Our method which is based on betweenness is tested on various examples including the famous 2003 electrical blackout of Italy. We show that, with this strategy, the necessary number of autonomous nodes can be reduced by a factor of five compared to a random choice. We also find that the transition to abrupt collapse follows tricritical scaling characterized by a set of exponents which is independent on the protection strategy.

  16. Towards designing robust coupled networks

    PubMed Central

    Schneider, Christian M.; Yazdani, Nuri; Araújo, Nuno A. M.; Havlin, Shlomo; Herrmann, Hans J.

    2013-01-01

    Natural and technological interdependent systems have been shown to be highly vulnerable due to cascading failures and an abrupt collapse of global connectivity under initial failure. Mitigating the risk by partial disconnection endangers their functionality. Here we propose a systematic strategy of selecting a minimum number of autonomous nodes that guarantee a smooth transition in robustness. Our method which is based on betweenness is tested on various examples including the famous 2003 electrical blackout of Italy. We show that, with this strategy, the necessary number of autonomous nodes can be reduced by a factor of five compared to a random choice. We also find that the transition to abrupt collapse follows tricritical scaling characterized by a set of exponents which is independent on the protection strategy. PMID:23752705

  17. Towards designing robust coupled networks

    NASA Astrophysics Data System (ADS)

    Schneider, Christian M.; Yazdani, Nuri; Araújo, Nuno A. M.; Havlin, Shlomo; Herrmann, Hans J.

    2013-06-01

    Natural and technological interdependent systems have been shown to be highly vulnerable due to cascading failures and an abrupt collapse of global connectivity under initial failure. Mitigating the risk by partial disconnection endangers their functionality. Here we propose a systematic strategy of selecting a minimum number of autonomous nodes that guarantee a smooth transition in robustness. Our method which is based on betweenness is tested on various examples including the famous 2003 electrical blackout of Italy. We show that, with this strategy, the necessary number of autonomous nodes can be reduced by a factor of five compared to a random choice. We also find that the transition to abrupt collapse follows tricritical scaling characterized by a set of exponents which is independent on the protection strategy.

  18. Robustness, canalyzing functions and systems design.

    PubMed

    Rauh, Johannes; Ay, Nihat

    2014-06-01

    We study a notion of knockout robustness of a stochastic map (Markov kernel) that describes a system of several input random variables and one output random variable. Robustness requires that the behaviour of the system does not change if one or several of the input variables are knocked out. Gibbs potentials are used to give a mechanistic description of the behaviour of the system after knockouts. Robustness imposes structural constraints on these potentials. We show that robust systems can be described in terms of suitable interaction families of Gibbs potentials, which allows us to address the problem of systems design. Robustness is also characterized by conditional independence constraints on the joint distribution of input and output. The set of all probability distributions corresponding to robust systems can be decomposed into a finite union of components, and we find parametrizations of the components.

  19. Robust Crossfeed Design for Hovering Rotorcraft

    NASA Technical Reports Server (NTRS)

    Catapang, David R.

    1993-01-01

    Control law design for rotorcraft fly-by-wire systems normally attempts to decouple angular responses using fixed-gain crossfeeds. This approach can lead to poor decoupling over the frequency range of pilot inputs and increase the load on the feedback loops. In order to improve the decoupling performance, dynamic crossfeeds may be adopted. Moreover, because of the large changes that occur in rotorcraft dynamics due to small changes about the nominal design condition, especially for near-hovering flight, the crossfeed design must be 'robust'. A new low-order matching method is presented here to design robust crossfeed compensators for multi-input, multi-output (MIMO) systems. The technique identifies degrees-of-freedom that can be decoupled using crossfeeds, given an anticipated set of parameter variations for the range of flight conditions of concern. Cross-coupling is then reduced for degrees-of-freedom that can use crossfeed compensation by minimizing off-axis response magnitude average and variance. Results are presented for the analysis of pitch, roll, yaw and heave coupling of the UH-60 Black Hawk helicopter in near-hovering flight. Robust crossfeeds are designed that show significant improvement in decoupling performance and robustness over nominal, single design point, compensators. The design method and results are presented in an easily used graphical format that lends significant physical insight to the design procedure. This plant pre-compensation technique is an appropriate preliminary step to the design of robust feedback control laws for rotorcraft.

  20. Robust Tensioned Kevlar Suspension Design

    NASA Technical Reports Server (NTRS)

    Young, Joseph B.; Naylor, Bret J.; Holmes, Warren A.

    2012-01-01

    One common but challenging problem in cryogenic engineering is to produce a mount that has excellent thermal isolation but is also rigid. Such mounts can be achieved by suspending the load from a network of fibers or strings held in tension. Kevlar fibers are often used for this purpose owing to their high strength and low thermal conductivity. A suite of compact design elements has been developed to improve the reliability of suspension systems made of Kevlar.

  1. Design optimization for cost and quality: The robust design approach

    NASA Technical Reports Server (NTRS)

    Unal, Resit

    1990-01-01

    Designing reliable, low cost, and operable space systems has become the key to future space operations. Designing high quality space systems at low cost is an economic and technological challenge to the designer. A systematic and efficient way to meet this challenge is a new method of design optimization for performance, quality, and cost, called Robust Design. Robust Design is an approach for design optimization. It consists of: making system performance insensitive to material and subsystem variation, thus allowing the use of less costly materials and components; making designs less sensitive to the variations in the operating environment, thus improving reliability and reducing operating costs; and using a new structured development process so that engineering time is used most productively. The objective in Robust Design is to select the best combination of controllable design parameters so that the system is most robust to uncontrollable noise factors. The robust design methodology uses a mathematical tool called an orthogonal array, from design of experiments theory, to study a large number of decision variables with a significantly small number of experiments. Robust design also uses a statistical measure of performance, called a signal-to-noise ratio, from electrical control theory, to evaluate the level of performance and the effect of noise factors. The purpose is to investigate the Robust Design methodology for improving quality and cost, demonstrate its application by the use of an example, and suggest its use as an integral part of space system design process.

  2. Robust regression applied to fractal/multifractal analysis.

    NASA Astrophysics Data System (ADS)

    Portilla, F.; Valencia, J. L.; Tarquis, A. M.; Saa-Requejo, A.

    2012-04-01

    Fractal and multifractal are concepts that have grown increasingly popular in recent years in the soil analysis, along with the development of fractal models. One of the common steps is to calculate the slope of a linear fit commonly using least squares method. This shouldn't be a special problem, however, in many situations using experimental data the researcher has to select the range of scales at which is going to work neglecting the rest of points to achieve the best linearity that in this type of analysis is necessary. Robust regression is a form of regression analysis designed to circumvent some limitations of traditional parametric and non-parametric methods. In this method we don't have to assume that the outlier point is simply an extreme observation drawn from the tail of a normal distribution not compromising the validity of the regression results. In this work we have evaluated the capacity of robust regression to select the points in the experimental data used trying to avoid subjective choices. Based on this analysis we have developed a new work methodology that implies two basic steps: • Evaluation of the improvement of linear fitting when consecutive points are eliminated based on R p-value. In this way we consider the implications of reducing the number of points. • Evaluation of the significance of slope difference between fitting with the two extremes points and fitted with the available points. We compare the results applying this methodology and the common used least squares one. The data selected for these comparisons are coming from experimental soil roughness transect and simulated based on middle point displacement method adding tendencies and noise. The results are discussed indicating the advantages and disadvantages of each methodology. Acknowledgements Funding provided by CEIGRAM (Research Centre for the Management of Agricultural and Environmental Risks) and by Spanish Ministerio de Ciencia e Innovación (MICINN) through project no

  3. Extensibility of a linear rapid robust design methodology

    NASA Astrophysics Data System (ADS)

    Steinfeldt, Bradley A.; Braun, Robert D.

    2016-05-01

    The extensibility of a linear rapid robust design methodology is examined. This analysis is approached from a computational cost and accuracy perspective. The sensitivity of the solution's computational cost is examined by analysing effects such as the number of design variables, nonlinearity of the CAs, and nonlinearity of the response in addition to several potential complexity metrics. Relative to traditional robust design methods, the linear rapid robust design methodology scaled better with the size of the problem and had performance that exceeded the traditional techniques examined. The accuracy of applying a method with linear fundamentals to nonlinear problems was examined. It is observed that if the magnitude of nonlinearity is less than 1000 times that of the nominal linear response, the error associated with applying successive linearization will result in ? errors in the response less than 10% compared to the full nonlinear error.

  4. ADSL Transceivers Applying DSM and Their Nonstationary Noise Robustness

    NASA Astrophysics Data System (ADS)

    den Bogaert, Etienne Van; Bostoen, Tom; Verlinden, Jan; Cendrillon, Raphael; Moonen, Marc

    2006-12-01

    Dynamic spectrum management (DSM) comprises a new set of techniques for multiuser power allocation and/or detection in digital subscriber line (DSL) networks. At the Alcatel Research and Innovation Labs, we have recently developed a DSM test bed, which allows the performance of DSM algorithms to be evaluated in practice. With this test bed, we have evaluated the performance of a DSM level-1 algorithm known as iterative water-filling in an ADSL scenario. This paper describes the results of, on the one hand, the performance gains achieved with iterative water-filling, and, on the other hand, the nonstationary noise robustness of DSM-enabled ADSL modems. It will be shown that DSM trades off nonstationary noise robustness for performance improvements. A new bit swap procedure is then introduced to increase the noise robustness when applying DSM.

  5. Robustness Analysis and Optimally Robust Control Design via Sum-of-Squares

    NASA Technical Reports Server (NTRS)

    Dorobantu, Andrei; Crespo, Luis G.; Seiler, Peter J.

    2012-01-01

    A control analysis and design framework is proposed for systems subject to parametric uncertainty. The underlying strategies are based on sum-of-squares (SOS) polynomial analysis and nonlinear optimization to design an optimally robust controller. The approach determines a maximum uncertainty range for which the closed-loop system satisfies a set of stability and performance requirements. These requirements, de ned as inequality constraints on several metrics, are restricted to polynomial functions of the uncertainty. To quantify robustness, SOS analysis is used to prove that the closed-loop system complies with the requirements for a given uncertainty range. The maximum uncertainty range, calculated by assessing a sequence of increasingly larger ranges, serves as a robustness metric for the closed-loop system. To optimize the control design, nonlinear optimization is used to enlarge the maximum uncertainty range by tuning the controller gains. Hence, the resulting controller is optimally robust to parametric uncertainty. This approach balances the robustness margins corresponding to each requirement in order to maximize the aggregate system robustness. The proposed framework is applied to a simple linear short-period aircraft model with uncertain aerodynamic coefficients.

  6. Identification, Uncertainty Characterization and Robust Control Synthesis Applied to Large Flexible Structures Control

    NASA Technical Reports Server (NTRS)

    Bayard, David S.; Chiang, Richard Y.

    1996-01-01

    This paper demonstrates an approach to frequency domain identification for the explicit purpose of designing robust H(infinity) controllers. The approach transforms raw experimental data into a plant set estimate directly usable by modern robust control design software(e.g., Matlab Robust Control Toolboxes [11][2]). A key issue in control design from raw data is the question of whether the controller will work when applied to the true system. The main feature fo this approach is that the resulting controller in guaranteed to work as designed(when applied to the true system) to a prescribed statistical confidence. While the overall methodology addresses key theoretical issues, it has at the same time been specifically designed to support practical implementations. A simulation example is included to demonstrate the overall approach.

  7. Effects-Based Design of Robust Organizations

    DTIC Science & Technology

    2004-06-01

    turn, are used to synthesize a robust organizational structure. Keywords: Organizational Design, Markov Deci- sion Processes, Reinforcement Learning , and...Markov Decision Processes (MDP), reinforcement learning , Monte Carlo con- trol method, and mixed integer optimization, as in aElectrical and Computer...based on MDP, Monte Carlo control method, reinforcement learning , and mixed integer optimization techniques. In section III, we formulate the dynamic

  8. Networked Robust Predictive Control Systems Design with Packet Loss

    NASA Astrophysics Data System (ADS)

    Nguyen, Quang T.; Veselý, Vojtech; Kozáková, Alena; Pakshin, Pavel

    2014-01-01

    The paper addresses problem of designing a robust output feedback model predictive control for uncertain linear systems over networks with packet-loss. The packet-loss process is arbitrary and bounded by the control horizon of model predictive control. Networked predictive control systems with packet loss are modeled as switched linear systems. This enables us to apply the theory of switched systems to establish the stability condition. The stabilizing controller design is based on sufficient robust stability conditions formulated as a solution of bilinear matrix inequality. Finally, a benchmark numerical example-double integrator is given to illustrate the effectiveness of the proposed method.

  9. A method for designing robust multivariable feedback systems

    NASA Technical Reports Server (NTRS)

    Milich, David Albert; Athans, Michael; Valavani, Lena; Stein, Gunter

    1988-01-01

    A new methodology is developed for the synthesis of linear, time-invariant (LTI) controllers for multivariable LTI systems. The aim is to achieve stability and performance robustness of the feedback system in the presence of multiple unstructured uncertainty blocks; i.e., to satisfy a frequency-domain inequality in terms of the structured singular value. The design technique is referred to as the Causality Recovery Methodology (CRM). Starting with an initial (nominally) stabilizing compensator, the CRM produces a closed-loop system whose performance-robustness is at least as good as, and hopefully superior to, that of the original design. The robustness improvement is obtained by solving an infinite-dimensional, convex optimization program. A finite-dimensional implementation of the CRM was developed, and it was applied to a multivariate design example.

  10. Matlab as a robust control design tool

    NASA Technical Reports Server (NTRS)

    Gregory, Irene M.

    1994-01-01

    This presentation introduces Matlab as a tool used in flight control research. The example used to illustrate some of the capabilities of this software is a robust controller designed for a single stage to orbit air breathing vehicles's ascent to orbit. The global requirements of the controller are to stabilize the vehicle and follow a trajectory in the presence of atmospheric disturbances and strong dynamic coupling between airframe and propulsion.

  11. Robustness

    NASA Technical Reports Server (NTRS)

    Ryan, R.

    1993-01-01

    Robustness is a buzz word common to all newly proposed space systems design as well as many new commercial products. The image that one conjures up when the word appears is a 'Paul Bunyon' (lumberjack design), strong and hearty; healthy with margins in all aspects of the design. In actuality, robustness is much broader in scope than margins, including such factors as simplicity, redundancy, desensitization to parameter variations, control of parameter variations (environments flucation), and operational approaches. These must be traded with concepts, materials, and fabrication approaches against the criteria of performance, cost, and reliability. This includes manufacturing, assembly, processing, checkout, and operations. The design engineer or project chief is faced with finding ways and means to inculcate robustness into an operational design. First, however, be sure he understands the definition and goals of robustness. This paper will deal with these issues as well as the need for the requirement for robustness.

  12. Robustness of speckle imaging techniques applied to horizontal imaging scenarios

    NASA Astrophysics Data System (ADS)

    Bos, Jeremy P.

    Atmospheric turbulence near the ground severely limits the quality of imagery acquired over long horizontal paths. In defense, surveillance, and border security applications, there is interest in deploying man-portable, embedded systems incorporating image reconstruction to improve the quality of imagery available to operators. To be effective, these systems must operate over significant variations in turbulence conditions while also subject to other variations due to operation by novice users. Systems that meet these requirements and are otherwise designed to be immune to the factors that cause variation in performance are considered robust. In addition to robustness in design, the portable nature of these systems implies a preference for systems with a minimum level of computational complexity. Speckle imaging methods are one of a variety of methods recently been proposed for use in man-portable horizontal imagers. In this work, the robustness of speckle imaging methods is established by identifying a subset of design parameters that provide immunity to the expected variations in operating conditions while minimizing the computation time necessary for image recovery. This performance evaluation is made possible using a novel technique for simulating anisoplanatic image formation. I find that incorporate as few as 15 image frames and 4 estimates of the object phase per reconstructed frame provide an average reduction of 45% reduction in Mean Squared Error (MSE) and 68% reduction in deviation in MSE. In addition, the Knox-Thompson phase recovery method is demonstrated to produce images in half the time required by the bispectrum. Finally, it is shown that certain blind image quality metrics can be used in place of the MSE to evaluate reconstruction quality in field scenarios. Using blind metrics rather depending on user estimates allows for reconstruction quality that differs from the minimum MSE by as little as 1%, significantly reducing the deviation in

  13. A Robust Control Design Framework for Substructure Models

    NASA Technical Reports Server (NTRS)

    Lim, Kyong B.

    1994-01-01

    A framework for designing control systems directly from substructure models and uncertainties is proposed. The technique is based on combining a set of substructure robust control problems by an interface stiffness matrix which appears as a constant gain feedback. Variations of uncertainties in the interface stiffness are treated as a parametric uncertainty. It is shown that multivariable robust control can be applied to generate centralized or decentralized controllers that guarantee performance with respect to uncertainties in the interface stiffness, reduced component modes and external disturbances. The technique is particularly suited for large, complex, and weakly coupled flexible structures.

  14. Design of robust failure detection filters

    NASA Technical Reports Server (NTRS)

    San Martin, A. M.; Vander Velde, W. E.

    1986-01-01

    An essential aspect of the design of control systems for large, flexible spacecraft is fault tolerance. Because it is anticipated that a large number of sensors and actuators will be required to realize good control over these assemblies, the detection and isolation of component failures cannot be based on direct comparisons among replicated components. Instead, the notion of 'analytic redundancy' must be employed for the FDI function. Unfortunately this makes the FDI function sensitive to modeling errors which are certain to exist in the large space structure problem due to model truncation and parameter uncertainty. This paper addresses the robustness to model error of one method of FDI residual generation - the failure detection filter. Initial designs were found to be extremely sensitive to modeling error. The sources of this sensitivity are analyzed and modifications to the design are suggested. The improved filter is shown to have much better visibility of the failure signatures relative to the background due to modeling error.

  15. Design analysis, robust methods, and stress classification

    SciTech Connect

    Bees, W.J.

    1993-01-01

    This special edition publication volume is comprised of papers presented at the 1993 ASME Pressure Vessels and Piping Conference, July 25--29, 1993 in Denver, Colorado. The papers were prepared for presentations in technical sessions developed under the auspices of the PVPD Committees on Computer Technology, Design and Analysis, Operations Applications and Components. The topics included are: Analysis of Pressure Vessels and Components; Expansion Joints; Robust Methods; Stress Classification; and Non-Linear Analysis. Individual papers have been processed separately for inclusion in the appropriate data bases.

  16. Robust Control Design via Linear Programming

    NASA Technical Reports Server (NTRS)

    Keel, L. H.; Bhattacharyya, S. P.

    1998-01-01

    This paper deals with the problem of synthesizing or designing a feedback controller of fixed dynamic order. The closed loop specifications considered here are given in terms of a target performance vector representing a desired set of closed loop transfer functions connecting various signals. In general these point targets are unattainable with a fixed order controller. By enlarging the target from a fixed point set to an interval set the solvability conditions with a fixed order controller are relaxed and a solution is more easily enabled. Results from the parametric robust control literature can be used to design the interval target family so that the performance deterioration is acceptable, even when plant uncertainty is present. It is shown that it is possible to devise a computationally simple linear programming approach that attempts to meet the desired closed loop specifications.

  17. Computational methods of robust controller design for aerodynamic flutter suppression

    NASA Technical Reports Server (NTRS)

    Anderson, L. R.

    1981-01-01

    The development of Riccati iteration, a tool for the design and analysis of linear control systems is examined. First, Riccati iteration is applied to the problem of pole placement and order reduction in two-time scale control systems. Order reduction, yielding a good approximation to the original system, is demonstrated using a 16th order linear model of a turbofan engine. Next, a numerical method for solving the Riccati equation is presented and demonstrated for a set of eighth order random examples. A literature review of robust controller design methods follows which includes a number of methods for reducing the trajectory and performance index sensitivity in linear regulators. Lastly, robust controller design for large parameter variations is discussed.

  18. Robust control systems design by H-infinity optimization theory

    NASA Technical Reports Server (NTRS)

    Chang, B. C.; Li, X. P.; Banda, S. S.; Yeh, H. H.

    1991-01-01

    In this paper, step-by-step procedures of applying the H-infinity theory to robust control systems design are given. The objective of the paper is to eliminate the possible difficulties a control engineer may encounter in applying H-infinity control theory and to clear up some misconceptions about H-infinity theory like high-gain controller and numerical obstacles, etc. An efficient algorithm is used to compute the optimal H-infinity norm. The Glover and Doyle (1988) controller formulas are slightly modified and used to construct an optimal controller without any numerical difficulties.

  19. Robust Path Planning and Feedback Design Under Stochastic Uncertainty

    NASA Technical Reports Server (NTRS)

    Blackmore, Lars

    2008-01-01

    Autonomous vehicles require optimal path planning algorithms to achieve mission goals while avoiding obstacles and being robust to uncertainties. The uncertainties arise from exogenous disturbances, modeling errors, and sensor noise, which can be characterized via stochastic models. Previous work defined a notion of robustness in a stochastic setting by using the concept of chance constraints. This requires that mission constraint violation can occur with a probability less than a prescribed value.In this paper we describe a novel method for optimal chance constrained path planning with feedback design. The approach optimizes both the reference trajectory to be followed and the feedback controller used to reject uncertainty. Our method extends recent results in constrained control synthesis based on convex optimization to solve control problems with nonconvex constraints. This extension is essential for path planning problems, which inherently have nonconvex obstacle avoidance constraints. Unlike previous approaches to chance constrained path planning, the new approach optimizes the feedback gain as wellas the reference trajectory.The key idea is to couple a fast, nonconvex solver that does not take into account uncertainty, with existing robust approaches that apply only to convex feasible regions. By alternating between robust and nonrobust solutions, the new algorithm guarantees convergence to a global optimum. We apply the new method to an unmanned aircraft and show simulation results that demonstrate the efficacy of the approach.

  20. Two challenges in embedded systems design: predictability and robustness.

    PubMed

    Henzinger, Thomas A

    2008-10-28

    I discuss two main challenges in embedded systems design: the challenge to build predictable systems, and that to build robust systems. I suggest how predictability can be formalized as a form of determinism, and robustness as a form of continuity.

  1. Robust design of polyrhythmic neural circuits

    NASA Astrophysics Data System (ADS)

    Schwabedal, Justus T. C.; Neiman, Alexander B.; Shilnikov, Andrey L.

    2014-08-01

    Neural circuit motifs producing coexistent rhythmic patterns are treated as building blocks of multifunctional neuronal networks. We study the robustness of such a motif of inhibitory model neurons to reliably sustain bursting polyrhythms under random perturbations. Without noise, the exponential stability of each of the coexisting rhythms increases with strengthened synaptic coupling, thus indicating an increased robustness. Conversely, after adding noise we find that noise-induced rhythm switching intensifies if the coupling strength is increased beyond a critical value, indicating a decreased robustness. We analyze this stochastic arrhythmia and develop a generic description of its dynamic mechanism. Based on our mechanistic insight, we show how physiological parameters of neuronal dynamics and network coupling can be balanced to enhance rhythm robustness against noise. Our findings are applicable to a broad class of relaxation-oscillator networks, including Fitzhugh-Nagumo and other Hodgkin-Huxley-type networks.

  2. Robust Decision-making Applied to Model Selection

    SciTech Connect

    Hemez, Francois M.

    2012-08-06

    The scientific and engineering communities are relying more and more on numerical models to simulate ever-increasingly complex phenomena. Selecting a model, from among a family of models that meets the simulation requirements, presents a challenge to modern-day analysts. To address this concern, a framework is adopted anchored in info-gap decision theory. The framework proposes to select models by examining the trade-offs between prediction accuracy and sensitivity to epistemic uncertainty. The framework is demonstrated on two structural engineering applications by asking the following question: Which model, of several numerical models, approximates the behavior of a structure when parameters that define each of those models are unknown? One observation is that models that are nominally more accurate are not necessarily more robust, and their accuracy can deteriorate greatly depending upon the assumptions made. It is posited that, as reliance on numerical models increases, establishing robustness will become as important as demonstrating accuracy.

  3. Noise Robust Speech Recognition Applied to Voice-Driven Wheelchair

    NASA Astrophysics Data System (ADS)

    Sasou, Akira; Kojima, Hiroaki

    2009-12-01

    Conventional voice-driven wheelchairs usually employ headset microphones that are capable of achieving sufficient recognition accuracy, even in the presence of surrounding noise. However, such interfaces require users to wear sensors such as a headset microphone, which can be an impediment, especially for the hand disabled. Conversely, it is also well known that the speech recognition accuracy drastically degrades when the microphone is placed far from the user. In this paper, we develop a noise robust speech recognition system for a voice-driven wheelchair. This system can achieve almost the same recognition accuracy as the headset microphone without wearing sensors. We verified the effectiveness of our system in experiments in different environments, and confirmed that our system can achieve almost the same recognition accuracy as the headset microphone without wearing sensors.

  4. Gearbox design for uncertain load requirements using active robust optimization

    NASA Astrophysics Data System (ADS)

    Salomon, Shaul; Avigad, Gideon; Purshouse, Robin C.; Fleming, Peter J.

    2016-04-01

    Design and optimization of gear transmissions have been intensively studied, but surprisingly the robustness of the resulting optimal design to uncertain loads has never been considered. Active Robust (AR) optimization is a methodology to design products that attain robustness to uncertain or changing environmental conditions through adaptation. In this study the AR methodology is utilized to optimize the number of transmissions, as well as their gearing ratios, for an uncertain load demand. The problem is formulated as a bi-objective optimization problem where the objectives are to satisfy the load demand in the most energy efficient manner and to minimize production cost. The results show that this approach can find a set of robust designs, revealing a trade-off between energy efficiency and production cost. This can serve as a useful decision-making tool for the gearbox design process, as well as for other applications.

  5. Robust control for snake maneuver design of missile

    NASA Astrophysics Data System (ADS)

    Kun, Ya; Chen, Xin; Li, Chuntao

    2017-01-01

    For the performance of missile with high Mach number and strongly nonlinear dynamics, this paper uses robust control to design maneuver controller. Robust servomechanism linear quadratic regulator (RSLQR) control is used to form the inner loop and proportional-plus-integral (PI) control is used to provide yawing tracking with no error. Contrast simulations under three types of deviation have been done to confirm robustness of the RSLQR-plus-PI control. Simulation results shows that RSLQR-plus-PI control would resist the disturbance and maintain the properties of the controller, guarantee the robustness and stability of missile more effectively than pure PI control.

  6. Robust sliding mode control applied to double Inverted pendulum system

    SciTech Connect

    Mahjoub, Sonia; Derbel, Nabil; Mnif, Faical

    2009-03-05

    A three hierarchical sliding mode control is presented for a class of an underactuated system which can overcome the mismatched perturbations. The considered underactuated system is a double inverted pendulum (DIP), can be modeled by three subsystems. Such structure allows the construction of several designs of hierarchies for the controller. For all hierarchical designs, the asymptotic stability of every layer sliding mode surface and the sliding mode surface of subsystems are proved theoretically by Barbalat's lemma. Simulation results show the validity of these methods.

  7. Designing Robust and Resilient Tactical MANETs

    DTIC Science & Technology

    2014-09-25

    revocation , designing mechanisms for rapidly disseminating certificate revocation lists and exploring limitations on revocation . Our results show that...optimality for a fixed period of time after that node joins. In vehicular networks, we explored the topic of trust and revocation , designing...mechanisms for rapidly disseminating certificate revocation lists and exploring limitations on revocation . Our results show that vehicle mobility can

  8. In Search for a Robust Design of Environmental Sensor Networks.

    PubMed

    Budi, Setia; Susanto, Ferry; de Souza, Paulo; Timms, Greg; Malhotra, Vishv; Turner, Paul

    2017-03-22

    This paper presents an approach to the design of Environmental Sensor Networks (ESN) which aims at providing a robust, fit-for-purpose network with minimum redundancy. A set of near optimum ESN designs is sought using an Evolutionary Algorithm, which incorporates redundancy and robustness as fitness functions. This work can assist the decision making process when determining the number of sensor nodes and how the nodes are going to be deployed in the region of interest.

  9. Designing Robust Hierarchically Textured Oleophobic Fabrics.

    PubMed

    Kleingartner, Justin A; Srinivasan, Siddarth; Truong, Quoc T; Sieber, Michael; Cohen, Robert E; McKinley, Gareth H

    2015-12-08

    Commercially available woven fabrics (e.g., nylon- or PET-based fabrics) possess inherently re-entrant textures in the form of cylindrical yarns and fibers. We analyze the liquid repellency of woven and nanotextured oleophobic fabrics using a nested model with n levels of hierarchy that is constructed from modular units of cylindrical and spherical building blocks. At each level of hierarchy, the density of the topographical features is captured using a dimensionless textural parameter D(n)*. For a plain-woven mesh comprised of chemically treated fiber bundles (n = 2), the tight packing of individual fibers in each bundle (D2* ≈ 1) imposes a geometric constraint on the maximum oleophobicity that can be achieved solely by modifying the surface energy of the coating. For liquid droplets contacting such tightly bundled fabrics with modified surface energies, we show that this model predicts a lower bound on the equilibrium contact angle of θ(E) ≈ 57° below which the Cassie–Baxter to Wenzel wetting transition occurs spontaneously, and this is validated experimentally. We demonstrate how the introduction of an additional higher order micro-/nanotexture onto the fibers (n = 3) is necessary to overcome this limit and create more robustly nonwetting fabrics. Finally, we show a simple experimental realization of the enhanced oleophobicity of fabrics by depositing spherical microbeads of poly(methyl methacrylate)/fluorodecyl polyhedral oligomeric silsesquioxane (fluorodecyl POSS) onto the fibers of a commercial woven nylon fabric.

  10. Robust Control Design for Systems With Probabilistic Uncertainty

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Kenny, Sean P.

    2005-01-01

    This paper presents a reliability- and robustness-based formulation for robust control synthesis for systems with probabilistic uncertainty. In a reliability-based formulation, the probability of violating design requirements prescribed by inequality constraints is minimized. In a robustness-based formulation, a metric which measures the tendency of a random variable/process to cluster close to a target scalar/function is minimized. A multi-objective optimization procedure, which combines stability and performance requirements in time and frequency domains, is used to search for robustly optimal compensators. Some of the fundamental differences between the proposed strategy and conventional robust control methods are: (i) unnecessary conservatism is eliminated since there is not need for convex supports, (ii) the most likely plants are favored during synthesis allowing for probabilistic robust optimality, (iii) the tradeoff between robust stability and robust performance can be explored numerically, (iv) the uncertainty set is closely related to parameters with clear physical meaning, and (v) compensators with improved robust characteristics for a given control structure can be synthesized.

  11. Design of Optimally Robust Control Systems.

    DTIC Science & Technology

    1980-01-01

    approach is that the optimization framework is an artificial device. While some design constraints can easily be incorporated into a single cost function...indicating that that point was indeed the solution. Also, an intellegent initial guess for k was important in order to avoid being hung up at the double

  12. Robust Control Design for Flight Control

    DTIC Science & Technology

    1989-07-01

    to achieve desired performance over the full flight envelope when linear feedback is employed. Exact linearization methods [48] provide means for...designing nonlinear feedback laws which satisfy these requirements. However, exact linearization is not always compatible with control authority...specific situations. The most promising approaches appear to be those associated with methods of exact linearization . This procedure is based on some

  13. Robust Network Design - Connectivity and Beyond

    DTIC Science & Technology

    2015-01-15

    ANALYSIS OF DATA ACCESS PROTOCOL IN DISTRIBUTED STORAGE SYSTEMS While the use of codes for providing improved security and integrity of data in...distributed storage systems, how fast such systems can provide data or how we should optimize data access protocols are not studied. We first studied...performance of distributed storage systems. Then, we designed superior data access protocol , which uses redundant requests to improve data access

  14. Robust and reconfigurable flight control system design

    NASA Astrophysics Data System (ADS)

    Siwakosit, Wichai

    2001-07-01

    A reconfigurable flight control system is a control system which can automatically adapt itself to maintain the performance of a damaged aircraft to be as close as possible to that of the normal or undamaged one. This research focuses mainly on Multi-Input, Multi-Output (MIMO) reconfigurable flight control for an aircraft with damaged actuator(s) which may greatly affect the performance and control of the aircraft, and also pose a challenging flight control problem. The foundation of the control system is a baseline controller and an adaptive module which constitutes a reconfigurable part. The baseline controller ensures that the aircraft has acceptable performance and handling qualities throughout the flight envelope. The combination of a Quantitative Feedback Theory (QFT) Pre-Design Technique (PDT) and a Reduced-order, Linear, Dynamic Inversion (RLDI) control strategy yields a flight control system with good tracking performance and handling qualities with no Pilot Induced Oscillation (PIO) tendencies throughout the designated set of flight conditions. In addition, the system is highly immune to large uncertainties in the aircraft dynamics. The modified filtered-ɛ adaptive algorithm is developed and utilized in the adaptive module of the system. This adaptive algorithm performs well with MIMO system with the added advantage of not having to pre-identify the dynamics of the damaged aircraft, provided that the conditions of reconfigurability are met. An example of the proposed control system with the NASA F-18 HARV vehicle model and a damaged actuator demonstrates the effectiveness of the concept.

  15. Trading Robustness Requirements in Mars Entry Trajectory Design

    NASA Technical Reports Server (NTRS)

    Lafleur, Jarret M.

    2009-01-01

    One of the most important metrics characterizing an atmospheric entry trajectory in preliminary design is the size of its predicted landing ellipse. Often, requirements for this ellipse are set early in design and significantly influence both the expected scientific return from a particular mission and the cost of development. Requirements typically specify a certain probability level (6-level) for the prescribed ellipse, and frequently this latter requirement is taken at 36. However, searches for the justification of 36 as a robustness requirement suggest it is an empirical rule of thumb borrowed from non-aerospace fields. This paper presents an investigation into the sensitivity of trajectory performance to varying robustness (6-level) requirements. The treatment of robustness as a distinct objective is discussed, and an analysis framework is presented involving the manipulation of design variables to effect trades between performance and robustness objectives. The scenario for which this method is illustrated is the ballistic entry of an MSL-class Mars entry vehicle. Here, the design variable is entry flight path angle, and objectives are parachute deploy altitude performance and error ellipse robustness. Resulting plots show the sensitivities between these objectives and trends in the entry flight path angles required to design to these objectives. Relevance to the trajectory designer is discussed, as are potential steps for further development and use of this type of analysis.

  16. Robust crossfeed design for hovering rotorcraft. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Catapang, David R.

    1993-01-01

    Control law design for rotorcraft fly-by-wire systems normally attempts to decouple angular responses using fixed-gain crossfeeds. This approach can lead to poor decoupling over the frequency range of pilot inputs and increase the load on the feedback loops. In order to improve the decoupling performance, dynamic crossfeeds may be adopted. Moreover, because of the large changes that occur in rotorcraft dynamics due to small changes about the nominal design condition, especially for near-hovering flight, the crossfeed design must be 'robust.' A new low-order matching method is presented here to design robost crossfeed compensators for multi-input, multi-output (MIMO) systems. The technique identifies degrees-of-freedom that can be decoupled using crossfeeds, given an anticipated set of parameter variations for the range of flight conditions of concern. Cross-coupling is then reduced for degrees-of-freedom that can use crossfeed compensation by minimizing off-axis response magnitude average and variance. Results are presented for the analysis of pitch, roll, yaw, and heave coupling of the UH-60 Black Hawk helicopter in near-hovering flight. Robust crossfeeds are designed that show significant improvement in decoupling performance and robustness over nominal, single design point, compensators. The design method and results are presented in an easily-used graphical format that lends significant physical insight to the design procedure. This plant pre-compensation technique is an appropriate preliminary step to the design of robust feedback control laws for rotorcraft.

  17. Designing Flood Management Systems for Joint Economic and Ecological Robustness

    NASA Astrophysics Data System (ADS)

    Spence, C. M.; Grantham, T.; Brown, C. M.; Poff, N. L.

    2015-12-01

    Freshwater ecosystems across the United States are threatened by hydrologic change caused by water management operations and non-stationary climate trends. Nonstationary hydrology also threatens flood management systems' performance. Ecosystem managers and flood risk managers need tools to design systems that achieve flood risk reduction objectives while sustaining ecosystem functions and services in an uncertain hydrologic future. Robust optimization is used in water resources engineering to guide system design under climate change uncertainty. Using principles introduced by Eco-Engineering Decision Scaling (EEDS), we extend robust optimization techniques to design flood management systems that meet both economic and ecological goals simultaneously across a broad range of future climate conditions. We use three alternative robustness indices to identify flood risk management solutions that preserve critical ecosystem functions in a case study from the Iowa River, where recent severe flooding has tested the limits of the existing flood management system. We seek design modifications to the system that both reduce expected cost of flood damage while increasing ecologically beneficial inundation of riparian floodplains across a wide range of plausible climate futures. The first robustness index measures robustness as the fraction of potential climate scenarios in which both engineering and ecological performance goals are met, implicitly weighting each climate scenario equally. The second index builds on the first by using climate projections to weight each climate scenario, prioritizing acceptable performance in climate scenarios most consistent with climate projections. The last index measures robustness as mean performance across all climate scenarios, but penalizes scenarios with worse performance than average, rewarding consistency. Results stemming from alternate robustness indices reflect implicit assumptions about attitudes toward risk and reveal the

  18. Stochastic simulation and robust design optimization of integrated photonic filters

    NASA Astrophysics Data System (ADS)

    Weng, Tsui-Wei; Melati, Daniele; Melloni, Andrea; Daniel, Luca

    2017-01-01

    Manufacturing variations are becoming an unavoidable issue in modern fabrication processes; therefore, it is crucial to be able to include stochastic uncertainties in the design phase. In this paper, integrated photonic coupled ring resonator filters are considered as an example of significant interest. The sparsity structure in photonic circuits is exploited to construct a sparse combined generalized polynomial chaos model, which is then used to analyze related statistics and perform robust design optimization. Simulation results show that the optimized circuits are more robust to fabrication process variations and achieve a reduction of 11%-35% in the mean square errors of the 3 dB bandwidth compared to unoptimized nominal designs.

  19. Stochastic simulation and robust design optimization of integrated photonic filters

    NASA Astrophysics Data System (ADS)

    Weng, Tsui-Wei; Melati, Daniele; Melloni, Andrea; Daniel, Luca

    2016-07-01

    Manufacturing variations are becoming an unavoidable issue in modern fabrication processes; therefore, it is crucial to be able to include stochastic uncertainties in the design phase. In this paper, integrated photonic coupled ring resonator filters are considered as an example of significant interest. The sparsity structure in photonic circuits is exploited to construct a sparse combined generalized polynomial chaos model, which is then used to analyze related statistics and perform robust design optimization. Simulation results show that the optimized circuits are more robust to fabrication process variations and achieve a reduction of 11%-35% in the mean square errors of the 3 dB bandwidth compared to unoptimized nominal designs.

  20. Enabling Rapid and Robust Structural Analysis During Conceptual Design

    NASA Technical Reports Server (NTRS)

    Eldred, Lloyd B.; Padula, Sharon L.; Li, Wu

    2015-01-01

    This paper describes a multi-year effort to add a structural analysis subprocess to a supersonic aircraft conceptual design process. The desired capabilities include parametric geometry, automatic finite element mesh generation, static and aeroelastic analysis, and structural sizing. The paper discusses implementation details of the new subprocess, captures lessons learned, and suggests future improvements. The subprocess quickly compares concepts and robustly handles large changes in wing or fuselage geometry. The subprocess can rank concepts with regard to their structural feasibility and can identify promising regions of the design space. The automated structural analysis subprocess is deemed robust and rapid enough to be included in multidisciplinary conceptual design and optimization studies.

  1. Robust Multivariable Controller Design via Implicit Model-Following Methods.

    DTIC Science & Technology

    1983-12-01

    HD-Ri38 309 ROBUST MULTIVARIABLE CONTROLLER DESIGN VIA IMPLICIT 1/4 MODEL-FOLLOWING METHODS(U) AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOOL...aaS. a%. 1 .111 I Q~ 18 0 ROBUST MULTIVARIABLE CONTROLLER DESIGN -~ :VIA IMPLICIT MODEL-FOLLOWING METHODS ’.% THESIS , AFIT/GE/EE/83D-48 William G... CONTROLLER DESIGN VIA IMPLICIT MODEL-FOLLOWING METHODS THESIS AFIT/GE/EE/83D-48 William G. Miller Capt USAF ,. Approved for pubi release; distribution

  2. Design for robustness of unique, multi-component engineering systems

    NASA Astrophysics Data System (ADS)

    Shelton, Kenneth A.

    2007-12-01

    The purpose of this research is to advance the science of conceptual designing for robustness in unique, multi-component engineering systems. Robustness is herein defined as the ability of an engineering system to operate within a desired performance range even if the actual configuration has differences from specifications within specified tolerances. These differences are caused by three sources, namely manufacturing errors, system degradation (operational wear and tear), and parts availability. Unique, multi-component engineering systems are defined as systems produced in unique or very small production numbers. They typically have design and manufacturing costs on the order of billions of dollars, and have multiple, competing performance objectives. Design time for these systems must be minimized due to competition, high manpower costs, long manufacturing times, technology obsolescence, and limited available manpower expertise. Most importantly, design mistakes cannot be easily corrected after the systems are operational. For all these reasons, robustness of these systems is absolutely critical. This research examines the space satellite industry in particular. Although inherent robustness assurance is absolutely critical, it is difficult to achieve in practice. The current state of the art for robustness in the industry is to overdesign components and subsystems with redundancy and margin. The shortfall is that it is not known if the added margins were either necessary or sufficient given the risk management preferences of the designer or engineering system customer. To address this shortcoming, new assessment criteria to evaluate robustness in design concepts have been developed. The criteria are comprised of the "Value Distance", addressing manufacturing errors and system degradation, and "Component Distance", addressing parts availability. They are based on an evolutionary computation format that uses a string of alleles to describe the components in the

  3. Robust enzyme design: bioinformatic tools for improved protein stability.

    PubMed

    Suplatov, Dmitry; Voevodin, Vladimir; Švedas, Vytas

    2015-03-01

    The ability of proteins and enzymes to maintain a functionally active conformation under adverse environmental conditions is an important feature of biocatalysts, vaccines, and biopharmaceutical proteins. From an evolutionary perspective, robust stability of proteins improves their biological fitness and allows for further optimization. Viewed from an industrial perspective, enzyme stability is crucial for the practical application of enzymes under the required reaction conditions. In this review, we analyze bioinformatic-driven strategies that are used to predict structural changes that can be applied to wild type proteins in order to produce more stable variants. The most commonly employed techniques can be classified into stochastic approaches, empirical or systematic rational design strategies, and design of chimeric proteins. We conclude that bioinformatic analysis can be efficiently used to study large protein superfamilies systematically as well as to predict particular structural changes which increase enzyme stability. Evolution has created a diversity of protein properties that are encoded in genomic sequences and structural data. Bioinformatics has the power to uncover this evolutionary code and provide a reproducible selection of hotspots - key residues to be mutated in order to produce more stable and functionally diverse proteins and enzymes. Further development of systematic bioinformatic procedures is needed to organize and analyze sequences and structures of proteins within large superfamilies and to link them to function, as well as to provide knowledge-based predictions for experimental evaluation.

  4. Applying Software Design Methodology to Instructional Design

    ERIC Educational Resources Information Center

    East, J. Philip

    2004-01-01

    The premise of this paper is that computer science has much to offer the endeavor of instructional improvement. Software design processes employed in computer science for developing software can be used for planning instruction and should improve instruction in much the same manner that design processes appear to have improved software. Techniques…

  5. Robust Control Design for Uncertain Nonlinear Dynamic Systems

    NASA Technical Reports Server (NTRS)

    Kenny, Sean P.; Crespo, Luis G.; Andrews, Lindsey; Giesy, Daniel P.

    2012-01-01

    Robustness to parametric uncertainty is fundamental to successful control system design and as such it has been at the core of many design methods developed over the decades. Despite its prominence, most of the work on robust control design has focused on linear models and uncertainties that are non-probabilistic in nature. Recently, researchers have acknowledged this disparity and have been developing theory to address a broader class of uncertainties. This paper presents an experimental application of robust control design for a hybrid class of probabilistic and non-probabilistic parametric uncertainties. The experimental apparatus is based upon the classic inverted pendulum on a cart. The physical uncertainty is realized by a known additional lumped mass at an unknown location on the pendulum. This unknown location has the effect of substantially altering the nominal frequency and controllability of the nonlinear system, and in the limit has the capability to make the system neutrally stable and uncontrollable. Another uncertainty to be considered is a direct current motor parameter. The control design objective is to design a controller that satisfies stability, tracking error, control power, and transient behavior requirements for the largest range of parametric uncertainties. This paper presents an overview of the theory behind the robust control design methodology and the experimental results.

  6. Robust flight design for an advanced launch system vehicle

    NASA Technical Reports Server (NTRS)

    Dhand, Sanjeev K.; Wong, Kelvin K.

    1991-01-01

    Current launch vehicle trajectory design philosophies are generally based on maximizing payload capability. This approach results in an expensive trajectory design process for each mission. Two concepts of robust flight design have been developed to significantly reduce this cost: Standardized Trajectories and Command Multiplier Steering (CMS). These concepts were analyzed for an Advanced Launch System (ALS) vehicle, although their applicability is not restricted to any particular vehicle. Preliminary analysis has demonstrated the feasibility of these concepts at minimal loss in payload capability.

  7. A Fusion Chamber for the 2002 Robust Point Design

    SciTech Connect

    Abbott, R P

    2003-10-01

    A top-level overview of the mechanical design for the 2002 Robust Point Design (RPD-2002) fusion chamber is introduced. It is based on the HYLIFE-II design and includes modifications to the liquid pocket configuration and first structural wall (FSW), facilitates periodic maintenance or replacement of internal components, and is compliant with all other RPD-2002 parameters. This work has been carried out by constructing a parametric computer model capable of being updated as future changes become necessary.

  8. Towards Robust Designs Via Multiple-Objective Optimization Methods

    NASA Technical Reports Server (NTRS)

    Man Mohan, Rai

    2006-01-01

    Fabricating and operating complex systems involves dealing with uncertainty in the relevant variables. In the case of aircraft, flow conditions are subject to change during operation. Efficiency and engine noise may be different from the expected values because of manufacturing tolerances and normal wear and tear. Engine components may have a shorter life than expected because of manufacturing tolerances. In spite of the important effect of operating- and manufacturing-uncertainty on the performance and expected life of the component or system, traditional aerodynamic shape optimization has focused on obtaining the best design given a set of deterministic flow conditions. Clearly it is important to both maintain near-optimal performance levels at off-design operating conditions, and, ensure that performance does not degrade appreciably when the component shape differs from the optimal shape due to manufacturing tolerances and normal wear and tear. These requirements naturally lead to the idea of robust optimal design wherein the concept of robustness to various perturbations is built into the design optimization procedure. The basic ideas involved in robust optimal design will be included in this lecture. The imposition of the additional requirement of robustness results in a multiple-objective optimization problem requiring appropriate solution procedures. Typically the costs associated with multiple-objective optimization are substantial. Therefore efficient multiple-objective optimization procedures are crucial to the rapid deployment of the principles of robust design in industry. Hence the companion set of lecture notes (Single- and Multiple-Objective Optimization with Differential Evolution and Neural Networks ) deals with methodology for solving multiple-objective Optimization problems efficiently, reliably and with little user intervention. Applications of the methodologies presented in the companion lecture to robust design will be included here. The

  9. Design and tuning of robust PID controller for HVAC systems

    SciTech Connect

    Kasahara, Masato; Matsuba, Tadahiko; Kuzuu, Yoshiaki; Yamazaki, Takanori; Hashimoto, Yukihiro; Kamimura, Kazuyuki; Kurosu, Shigeru

    1999-07-01

    This paper concerns the development of a new design and tuning method for use with robust proportional-plus-integral-plus-derivative (PID) controllers that are commonly used in the heating, ventilating, and air-conditioning (HVAC) fields. The robust PID controller is designed for temperature control of a single-zone environmental space. Although the dynamics of environmental space are described by higher-order transfer functions, most HVAC plants are approximated by first-order lag plus deadtime systems. Its control performance is examined for this commonly approximated controlled plant. Since most HVAC plants are complex with nonlinearity, distributed parameters, and multivariables, a single set of PID gains does not necessarily yield a satisfactory control performance. For this reason, the PID controller must be designed as a robust control system considering model uncertainty caused by changes in characteristics of the plant. The PID gains obtained by solving a two-disk type of mixed sensitivity problem can be modified by contrast to those tuned by the traditional Ziegler-Nichols rule. The results, which are surprisingly simple, are given as linear functions of ratio of deadtime to time constant for robustness. The numerical simulation and the experiments on a commercial-size test plant for air conditioning suggest that the robust PID controller proposed in this paper is effective enough for practical applications.

  10. Towards robust optimal design of storm water systems

    NASA Astrophysics Data System (ADS)

    Marquez Calvo, Oscar; Solomatine, Dimitri

    2015-04-01

    In this study the focus is on the design of a storm water or a combined sewer system. Such a system should be capable to handle properly most of the storm to minimize the damages caused by flooding due to the lack of capacity of the system to cope with rain water at peak times. This problem is a multi-objective optimization problem: we have to take into account the minimization of the construction costs, the minimization of damage costs due to flooding, and possibly other criteria. One of the most important factors influencing the design of storm water systems is the expected amount of water to deal with. It is common that this infrastructure is developed with the capacity to cope with events that occur once in, say 10 or 20 years - so-called design rainfall events. However, rainfall is a random variable and such uncertainty typically is not taken explicitly into account in optimization. Rainfall design data is based on historical information of rainfalls, but many times this data is based on unreliable measures; or in not enough historical information; or as we know, the patterns of rainfall are changing regardless of historical information. There are also other sources of uncertainty influencing design, for example, leakages in the pipes and accumulation of sediments in pipes. In the context of storm water or combined sewer systems design or rehabilitation, robust optimization technique should be able to find the best design (or rehabilitation plan) within the available budget but taking into account uncertainty in those variables that were used to design the system. In this work we consider various approaches to robust optimization proposed by various authors (Gabrel, Murat, Thiele 2013; Beyer, Sendhoff 2007) and test a novel method ROPAR (Solomatine 2012) to analyze robustness. References Beyer, H.G., & Sendhoff, B. (2007). Robust optimization - A comprehensive survey. Comput. Methods Appl. Mech. Engrg., 3190-3218. Gabrel, V.; Murat, C., Thiele, A. (2014

  11. Robust, Decoupled, Flight Control Design with Rate Saturating Actuators

    NASA Technical Reports Server (NTRS)

    Snell, S. A.; Hess, R. A.

    1997-01-01

    Techniques for the design of control systems for manually controlled, high-performance aircraft must provide the following: (1) multi-input, multi-output (MIMO) solutions, (2) acceptable handling qualities including no tendencies for pilot-induced oscillations, (3) a tractable approach for compensator design, (4) performance and stability robustness in the presence of significant plant uncertainty, and (5) performance and stability robustness in the presence actuator saturation (particularly rate saturation). A design technique built upon Quantitative Feedback Theory is offered as a candidate methodology which can provide flight control systems meeting these requirements, and do so over a considerable part of the flight envelope. An example utilizing a simplified model of a supermaneuverable fighter aircraft demonstrates the proposed design methodology.

  12. Robust design of biological circuits: evolutionary systems biology approach.

    PubMed

    Chen, Bor-Sen; Hsu, Chih-Yuan; Liou, Jing-Jia

    2011-01-01

    Artificial gene circuits have been proposed to be embedded into microbial cells that function as switches, timers, oscillators, and the Boolean logic gates. Building more complex systems from these basic gene circuit components is one key advance for biologic circuit design and synthetic biology. However, the behavior of bioengineered gene circuits remains unstable and uncertain. In this study, a nonlinear stochastic system is proposed to model the biological systems with intrinsic parameter fluctuations and environmental molecular noise from the cellular context in the host cell. Based on evolutionary systems biology algorithm, the design parameters of target gene circuits can evolve to specific values in order to robustly track a desired biologic function in spite of intrinsic and environmental noise. The fitness function is selected to be inversely proportional to the tracking error so that the evolutionary biological circuit can achieve the optimal tracking mimicking the evolutionary process of a gene circuit. Finally, several design examples are given in silico with the Monte Carlo simulation to illustrate the design procedure and to confirm the robust performance of the proposed design method. The result shows that the designed gene circuits can robustly track desired behaviors with minimal errors even with nontrivial intrinsic and external noise.

  13. Robustness-Based Design Optimization Under Data Uncertainty

    NASA Technical Reports Server (NTRS)

    Zaman, Kais; McDonald, Mark; Mahadevan, Sankaran; Green, Lawrence

    2010-01-01

    This paper proposes formulations and algorithms for design optimization under both aleatory (i.e., natural or physical variability) and epistemic uncertainty (i.e., imprecise probabilistic information), from the perspective of system robustness. The proposed formulations deal with epistemic uncertainty arising from both sparse and interval data without any assumption about the probability distributions of the random variables. A decoupled approach is proposed in this paper to un-nest the robustness-based design from the analysis of non-design epistemic variables to achieve computational efficiency. The proposed methods are illustrated for the upper stage design problem of a two-stage-to-orbit (TSTO) vehicle, where the information on the random design inputs are only available as sparse point and/or interval data. As collecting more data reduces uncertainty but increases cost, the effect of sample size on the optimality and robustness of the solution is also studied. A method is developed to determine the optimal sample size for sparse point data that leads to the solutions of the design problem that are least sensitive to variations in the input random variables.

  14. Simulation/optimization modeling for robust pumping strategy design.

    PubMed

    Kalwij, Ineke M; Peralta, Richard C

    2006-01-01

    A new simulation/optimization modeling approach is presented for addressing uncertain knowledge of aquifer parameters. The Robustness Enhancing Optimizer (REO) couples genetic algorithm and tabu search as optimizers and incorporates aquifer parameter sensitivity analysis to guide multiple-realization optimization. The REO maximizes strategy robustness for a pumping strategy that is optimal for a primary objective function (OF), such as cost. The more robust a strategy, the more likely it is to achieve management goals in the field, even if the physical system differs from the model. The REO is applied to trinitrotoluene and Royal Demolition Explosive plumes at Umatilla Chemical Depot in Oregon to develop robust least cost strategies. The REO efficiently develops robust pumping strategies while maintaining the optimal value of the primary OF-differing from the common situation in which a primary OF value degrades as strategy reliability increases. The REO is especially valuable where data to develop realistic probability density functions (PDFs) or statistically derived realizations are unavailable. Because they require much less field data, REO-developed strategies might not achieve as high a mathematical reliability as strategies developed using many realizations based upon real aquifer parameter PDFs. REO-developed strategies might or might not yield a better OF value in the field.

  15. Robust nonlinear dynamic inversion flight control design using structured singular value synthesis based on genetic algorithm

    NASA Astrophysics Data System (ADS)

    Ying, Sibin; Ai, Jianliang; Luo, Changhang; Wang, Peng

    2006-11-01

    Non-linear Dynamic Inversion (NDI) is a technique for control law design, which is based on the feedback linearization and achieving desired dynamic response characteristics. NDI requires an ideal and precise model, however, there must be some errors due to the modeling error or actuator faults, therefore the control law designed by NDI has less robustness. Combining with structured singular value μ synthesis method, the system's robustness can be improved notably. The designed controller, which uses the structured singular value μ synthesis method, has high dimensions, and the dimensions must be reduced when we calculate it. This paper presents a new method for the design of robust flight control, which uses structured singular value μ synthesis based on genetic algorithm. The designed controller, which uses this method, can reduce the dimensions obviously compared with the normal method of structured singular value synthesis, so it is easier for application. The presented method is applied to robustness controller design of some super maneuverable fighter. The simulation results show that the dynamic inversion control law achieves a high level of performance in post-stall maneuver condition, and the whole control system has perfect robustness and anti-disturbance ability.

  16. Optimal robust motion controller design using multiobjective genetic algorithm.

    PubMed

    Sarjaš, Andrej; Svečko, Rajko; Chowdhury, Amor

    2014-01-01

    This paper describes the use of a multiobjective genetic algorithm for robust motion controller design. Motion controller structure is based on a disturbance observer in an RIC framework. The RIC approach is presented in the form with internal and external feedback loops, in which an internal disturbance rejection controller and an external performance controller must be synthesised. This paper involves novel objectives for robustness and performance assessments for such an approach. Objective functions for the robustness property of RIC are based on simple even polynomials with nonnegativity conditions. Regional pole placement method is presented with the aims of controllers' structures simplification and their additional arbitrary selection. Regional pole placement involves arbitrary selection of central polynomials for both loops, with additional admissible region of the optimized pole location. Polynomial deviation between selected and optimized polynomials is measured with derived performance objective functions. A multiobjective function is composed of different unrelated criteria such as robust stability, controllers' stability, and time-performance indexes of closed loops. The design of controllers and multiobjective optimization procedure involve a set of the objectives, which are optimized simultaneously with a genetic algorithm-differential evolution.

  17. Optimal Robust Motion Controller Design Using Multiobjective Genetic Algorithm

    PubMed Central

    Svečko, Rajko

    2014-01-01

    This paper describes the use of a multiobjective genetic algorithm for robust motion controller design. Motion controller structure is based on a disturbance observer in an RIC framework. The RIC approach is presented in the form with internal and external feedback loops, in which an internal disturbance rejection controller and an external performance controller must be synthesised. This paper involves novel objectives for robustness and performance assessments for such an approach. Objective functions for the robustness property of RIC are based on simple even polynomials with nonnegativity conditions. Regional pole placement method is presented with the aims of controllers' structures simplification and their additional arbitrary selection. Regional pole placement involves arbitrary selection of central polynomials for both loops, with additional admissible region of the optimized pole location. Polynomial deviation between selected and optimized polynomials is measured with derived performance objective functions. A multiobjective function is composed of different unrelated criteria such as robust stability, controllers' stability, and time-performance indexes of closed loops. The design of controllers and multiobjective optimization procedure involve a set of the objectives, which are optimized simultaneously with a genetic algorithm—differential evolution. PMID:24987749

  18. Robust design of configurations and parameters of adaptable products

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Chen, Yongliang; Xue, Deyi; Gu, Peihua

    2014-03-01

    An adaptable product can satisfy different customer requirements by changing its configuration and parameter values during the operation stage. Design of adaptable products aims at reducing the environment impact through replacement of multiple different products with single adaptable ones. Due to the complex architecture, multiple functional requirements, and changes of product configurations and parameter values in operation, impact of uncertainties to the functional performance measures needs to be considered in design of adaptable products. In this paper, a robust design approach is introduced to identify the optimal design configuration and parameters of an adaptable product whose functional performance measures are the least sensitive to uncertainties. An adaptable product in this paper is modeled by both configurations and parameters. At the configuration level, methods to model different product configuration candidates in design and different product configuration states in operation to satisfy design requirements are introduced. At the parameter level, four types of product/operating parameters and relations among these parameters are discussed. A two-level optimization approach is developed to identify the optimal design configuration and its parameter values of the adaptable product. A case study is implemented to illustrate the effectiveness of the newly developed robust adaptable design method.

  19. Design principles for the analysis and construction of robustly homeostatic biological networks.

    PubMed

    Tang, Zhe F; McMillen, David R

    2016-11-07

    Homeostatic biological systems resist external disturbances, allowing cells and organisms to maintain a constant internal state despite perturbations from their surroundings. Many biological regulatory networks are known to act homeostatically, with examples including thermal adaptation, osmoregulation, and chemotaxis. Understanding the network topologies (sets of regulatory interactions) and biological parameter regimes that can yield homeostasis in a biological system is of interest both for the study of natural biological system, and in the context of designing new biological control schemes for use in synthetic biology. Here, we examine the mathematical properties of a function that maps a biological system's inputs to its outputs, we have formulated a novel criterion (the "cofactor condition") that compactly describes the conditions for homeostasis. We further analyze the problem of robust homeostasis, wherein the system is required to maintain homeostatic behavior when its parameter values are slightly altered. We use the cofactor condition to examine previously reported examples of robust homeostasis, showing that it is a useful way to unify a number of seemingly different analyses into a single framework. Based on the observation that all previous robustly homeostatic examples fall into one of three classes, we propose a "strong cofactor condition" and use it to provide an algorithm for designing new robustly homeostatic biological networks, giving both their topologies and constraints on their parameter values. Applying the design algorithm to a three-node biological network, we construct several robustly homeostatic genetic networks, uncovering network topologies not previously identified as candidates for exhibiting robust homeostasis.

  20. Robust decentralized controller design for UPFC using μ-synthesis

    NASA Astrophysics Data System (ADS)

    Taher, Seyed Abbas; Akbari, Shahabeddin; Abdolalipour, Ali; Hematti, Reza

    2010-08-01

    In this paper a new method based on structured singular value ( μ-synthesis) is proposed for the robust decentralized unified power flow controller (UPFC) design. To achieve decentralization, using the Schauder fixed point theorem the synthesis and analysis of multi-input multi-output (MIMO) control system is transformed into a set of equivalent multi-input single-output (MISO) control system. To cope with power system uncertainties μ-synthesis technique is being used for designing of UPFC controllers. The proposed μ-based controller has a decentralized scheme which has the advantage of reduction in the controller complexity and suitability for practical implementation. The effectiveness of the proposed control strategy on damping low frequency oscillations is evaluated under different operating conditions and compared with the conventional controller to demonstrate its robust performance through nonlinear simulation and some performance indices.

  1. Optimizing Hyperspectral Imagery Anomaly Detection through Robust Parameter Design

    DTIC Science & Technology

    2011-10-01

    THROUGH ROBUST PARAMETER DESIGN DISSERTATION Presented to the Faculty Graduate School of Engineering and Management Air Force Institute of Technology...Air University Air Education and Training Command in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Francis M. Mindrup...Graduate School of Engineering and Management For my loving wife, daughter and sons iv AFIT/DS/ENS/11-04 Abstract Advances in sensor technology

  2. Robust spherical direct-drive design for NI

    NASA Astrophysics Data System (ADS)

    Masse, Laurent; Hurricane, O.; Michel, P.; Nora, R.; Tabak, M.; Lawrence Livermore Natl Lab Team

    2016-10-01

    Achieving ignition in a direct-drive or indirect-drive cryogenic implosion is a tremendous challenge. Both approaches need to deal with physic and technologic issues. During the past years, the indirect drive effort on the National Ignition Facility (NIF) has revealed unpredicted lost of performances that force to think to more robust designs and to dig into detailed physics aspects. Encouraging results have been obtained using a strong first shock during the implosion of CH ablator ignition capsules. These ``high-foot'' implosion results in a significantly lower ablation Rayleigh-Taylor instability growth than that of the NIC point design capsule. The trade-off with this design is a higher fuel adiabat that limits both fuel compression and theoretical capsule yield. The purpose of designing this capsule is to recover a more ideal one-dimensional implosion that is in closer agreement to simulation predictions. In the same spirit of spending energy on margin, at the coast of decreased performance, we are presenting here a study on ``robust'' spherical direct drive design for NIF. This 2-Shock direct drive pulse shape results in a high adiabat (>3) and low convergence (<17) implosion designed to produce a near 1D-like implosion. We take a particular attention to design a robust implosion with respect to long-wavelength non uniformity seeded by power imbalance and target offset. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  3. Performance Analysis of Intelligent Robust Facility Layout Design

    NASA Astrophysics Data System (ADS)

    Moslemipour, G.; Lee, T. S.; Loong, Y. T.

    2017-03-01

    Design of a robust production facility layout with minimum handling cost (MHC) presents an appropriate approach to tackle facility layout problems in a dynamic volatile environment, in which product demands randomly change in each planning period. The objective of the design is to find the robust facility layout with minimum total material handling cost over the entire multi-period planning horizon. This paper proposes a new mathematical model for designing robust machine layout in the stochastic dynamic environment of manufacturing systems using quadratic assignment problem (QAP) formulation. In this investigation, product demands are assumed to be normally distributed random variables with known expected value, variance, and covariance that randomly change from period to period. The proposed model was verified and validated using randomly generated numerical data and benchmark examples. The effect of dependent product demands and varying interest rate on the total cost function of the proposed model has also been investigated. Sensitivity analysis on the proposed model has been performed. Dynamic programming and simulated annealing optimization algorithms were used in solving the modeled example problems.

  4. A Control Law Design Method Facilitating Control Power, Robustness, Agility, and Flying Qualities Tradeoffs: CRAFT

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.; Davidson, John B.

    1998-01-01

    A multi-input, multi-output control law design methodology, named "CRAFT", is presented. CRAFT stands for the design objectives addressed, namely, Control power, Robustness, Agility, and Flying Qualities Tradeoffs. The methodology makes use of control law design metrics from each of the four design objective areas. It combines eigenspace assignment, which allows for direct specification of eigenvalues and eigenvectors, with a graphical approach for representing the metrics that captures numerous design goals in one composite illustration. Sensitivity of the metrics to eigenspace choice is clearly displayed, enabling the designer to assess the cost of design tradeoffs. This approach enhances the designer's ability to make informed design tradeoffs and to reach effective final designs. An example of the CRAFT methodology applied to an advanced experimental fighter and discussion of associated design issues are provided.

  5. Research Design and Statistics for Applied Linguistics.

    ERIC Educational Resources Information Center

    Hatch, Evelyn; Farhady, Hossein

    An introduction to the conventions of research design and statistical analysis is presented for graduate students of applied linguistics. The chapters cover such concepts as the definition of research, variables, research designs, research report formats, sorting and displaying data, probability and hypothesis testing, comparing means,…

  6. Robust design of binary countercurrent adsorption separation processes

    SciTech Connect

    Storti, G. ); Mazzotti, M.; Morbidelli, M.; Carra, S. )

    1993-03-01

    The separation of a binary mixture, using a third component having intermediate adsorptivity as desorbent, in a four section countercurrent adsorption separation unit is considered. A procedure for the optimal and robust design of the unit is developed in the frame of Equilibrium Theory, using a model where the adsorption equilibria are described through the constant selectivity stoichiometric model, while mass-transfer resistances and axial mixing are neglected. By requiring that the unit achieves complete separation, it is possible to identify a set of implicity constraints on the operating parameters, that is, the flow rate ratios in the four sections of the unit. From these constraints explicit bounds on the operating parameters are obtained, thus yielding a region in the operating parameters space, which can be drawn a priori in terms of the adsorption equilibrium constants and the feed composition. This result provides a very convenient tool to determine both optimal and robust operating conditions. The latter issue is addressed by first analyzing the various possible sources of disturbances, as well as their effect on the separation performance. Next, the criteria for the robust design of the unit are discussed. Finally, these theoretical findings are compared with a set of experimental results obtained in a six port simulated moving bed adsorption separation unit operated in the vapor phase.

  7. Optimal flexible sample size design with robust power.

    PubMed

    Zhang, Lanju; Cui, Lu; Yang, Bo

    2016-08-30

    It is well recognized that sample size determination is challenging because of the uncertainty on the treatment effect size. Several remedies are available in the literature. Group sequential designs start with a sample size based on a conservative (smaller) effect size and allow early stop at interim looks. Sample size re-estimation designs start with a sample size based on an optimistic (larger) effect size and allow sample size increase if the observed effect size is smaller than planned. Different opinions favoring one type over the other exist. We propose an optimal approach using an appropriate optimality criterion to select the best design among all the candidate designs. Our results show that (1) for the same type of designs, for example, group sequential designs, there is room for significant improvement through our optimization approach; (2) optimal promising zone designs appear to have no advantages over optimal group sequential designs; and (3) optimal designs with sample size re-estimation deliver the best adaptive performance. We conclude that to deal with the challenge of sample size determination due to effect size uncertainty, an optimal approach can help to select the best design that provides most robust power across the effect size range of interest. Copyright © 2016 John Wiley & Sons, Ltd.

  8. The yeast cell-cycle network is robustly designed

    NASA Astrophysics Data System (ADS)

    Li, Fangting; Long, Tao; Lu, Ying; Ouyang, Qi; Tang, Chao

    2004-04-01

    The interactions between proteins, DNA, and RNA in living cells constitute molecular networks that govern various cellular functions. To investigate the global dynamical properties and stabilities of such networks, we studied the cell-cycle regulatory network of the budding yeast. With the use of a simple dynamical model, it was demonstrated that the cell-cycle network is extremely stable and robust for its function. The biological stationary state, the G1 state, is a global attractor of the dynamics. The biological pathway, the cell-cycle sequence of protein states, is a globally attracting trajectory of the dynamics. These properties are largely preserved with respect to small perturbations to the network. These results suggest that cellular regulatory networks are robustly designed for their functions.

  9. Frequency domain identification for robust large space structure control design

    NASA Technical Reports Server (NTRS)

    Yam, Y.; Bayard, D. S.; Scheid, R. E.

    1991-01-01

    A methodology is demonstrated for frequency domain identification of large space structures which systematically transforms experimental raw data into a form required for synthesizing H(infinity) controllers using modern robust control design software (e.g., Matlab Toolboxes). A unique feature of this approach is that the additive uncertainty is characterized to a specified statistic confidence rather than with hard bounds. In this study, the difference in robust performance is minimal between the two levels of confidence. In general cases, the present methodology provides a tool for performance/confidence level tradeoff studies. For simplicity, the additive uncertainty on a frequency grid is considered and the interpolation error in between grid points is neglected.

  10. Analysis and design of robust decentralized controllers for nonlinear systems

    SciTech Connect

    Schoenwald, D.A.

    1993-07-01

    Decentralized control strategies for nonlinear systems are achieved via feedback linearization techniques. New results on optimization and parameter robustness of non-linear systems are also developed. In addition, parametric uncertainty in large-scale systems is handled by sensitivity analysis and optimal control methods in a completely decentralized framework. This idea is applied to alleviate uncertainty in friction parameters for the gimbal joints on Space Station Freedom. As an example of decentralized nonlinear control, singular perturbation methods and distributed vibration damping are merged into a control strategy for a two-link flexible manipulator.

  11. Quantum theory as plausible reasoning applied to data obtained by robust experiments.

    PubMed

    De Raedt, H; Katsnelson, M I; Michielsen, K

    2016-05-28

    We review recent work that employs the framework of logical inference to establish a bridge between data gathered through experiments and their objective description in terms of human-made concepts. It is shown that logical inference applied to experiments for which the observed events are independent and for which the frequency distribution of these events is robust with respect to small changes of the conditions under which the experiments are carried out yields, without introducing any concept of quantum theory, the quantum theoretical description in terms of the Schrödinger or the Pauli equation, the Stern-Gerlach or Einstein-Podolsky-Rosen-Bohm experiments. The extraordinary descriptive power of quantum theory then follows from the fact that it is plausible reasoning, that is common sense, applied to reproducible and robust experimental data.

  12. Robust integrated autopilot/autothrottle design using constrained parameter optimization

    NASA Technical Reports Server (NTRS)

    Ly, Uy-Loi; Voth, Christopher; Sanjay, Swamy

    1990-01-01

    A multivariable control design method based on constrained parameter optimization was applied to the design of a multiloop aircraft flight control system. Specifically, the design method is applied to the following: (1) direct synthesis of a multivariable 'inner-loop' feedback control system based on total energy control principles; (2) synthesis of speed/altitude-hold designs as 'outer-loop' feedback/feedforward control systems around the above inner loop; and (3) direct synthesis of a combined 'inner-loop' and 'outer-loop' multivariable control system. The design procedure offers a direct and structured approach for the determination of a set of controller gains that meet design specifications in closed-loop stability, command tracking performance, disturbance rejection, and limits on control activities. The presented approach may be applied to a broader class of multiloop flight control systems. Direct tradeoffs between many real design goals are rendered systematic by this method following careful problem formulation of the design objectives and constraints. Performance characteristics of the optimization design were improved over the current autopilot design on the B737-100 Transport Research Vehicle (TSRV) at the landing approach and cruise flight conditions; particularly in the areas of closed-loop damping, command responses, and control activity in the presence of turbulence.

  13. A preferential design approach for energy-efficient and robust implantable neural signal processing hardware.

    PubMed

    Narasimhan, Seetharam; Chiel, Hillel J; Bhunia, Swarup

    2009-01-01

    For implantable neural interface applications, it is important to compress data and analyze spike patterns across multiple channels in real time. Such a computational task for online neural data processing requires an innovative circuit-architecture level design approach for low-power, robust and area-efficient hardware implementation. Conventional microprocessor or Digital Signal Processing (DSP) chips would dissipate too much power and are too large in size for an implantable system. In this paper, we propose a novel hardware design approach, referred to as "Preferential Design" that exploits the nature of the neural signal processing algorithm to achieve a low-voltage, robust and area-efficient implementation using nanoscale process technology. The basic idea is to isolate the critical components with respect to system performance and design them more conservatively compared to the noncritical ones. This allows aggressive voltage scaling for low power operation while ensuring robustness and area efficiency. We have applied the proposed approach to a neural signal processing algorithm using the Discrete Wavelet Transform (DWT) and observed significant improvement in power and robustness over conventional design.

  14. Robust Feedback Linearization Applied to a Separation Column for {sup 13}C

    SciTech Connect

    Dulf, Eva-Henrietta; Pop, Cristina-Ioana; Festila, Clement; Dulf, Francisc

    2009-03-05

    In the present developing plan to apply the cryogenic technology for the production of the {sup 13}C, an efficient and safe operation is a strong reason to conceive and to apply a modern computer based control strategy. The authors are concerned with the problem of developing effective and readily implemental techniques for modelling and control of the isotope separation plant. These columns are characterized by complex nonlinearities, with large time-delays. Furthermore, are subject to external disturbances, which are difficult to model. The present paper presents two models of the plant: a nonlinear model and a linear system obtained by robust feedback linearization.

  15. Robust control design for a wheel loader using Hinfinity and feedback linearization based methods.

    PubMed

    Fales, Roger; Kelkar, Atul

    2009-07-01

    The heavy equipment industry is building more and more equipment with electro-hydraulic control systems. The existing industry practices for the design of control systems in construction machines primarily rely on classical designs coupled with ad-hoc synthesis procedures. Such practices produce desirable results, but lack a systematic procedure to account for invariably present plant uncertainties in the design process as well as coupled dynamics of the multi-input multi-output (MIMO) configuration. In this paper, two H(infinity) based robust control designs are presented for an automatic bucket leveling mechanism of a wheel loader. In one case, the controller is designed for the base plant model. In another case, the controller is designed for the plant with a feedback linearization control law applied yielding improved stability robustness. A MIMO nonlinear model for an electro-hydraulically actuated wheel loader linkage is considered. The robustness of the controller designs are validated by using analysis and by simulation using a complete nonlinear model of the wheel loader linkage and hydraulic system.

  16. Multiobjective robust design of the double wishbone suspension system based on particle swarm optimization.

    PubMed

    Cheng, Xianfu; Lin, Yuqun

    2014-01-01

    The performance of the suspension system is one of the most important factors in the vehicle design. For the double wishbone suspension system, the conventional deterministic optimization does not consider any deviations of design parameters, so design sensitivity analysis and robust optimization design are proposed. In this study, the design parameters of the robust optimization are the positions of the key points, and the random factors are the uncertainties in manufacturing. A simplified model of the double wishbone suspension is established by software ADAMS. The sensitivity analysis is utilized to determine main design variables. Then, the simulation experiment is arranged and the Latin hypercube design is adopted to find the initial points. The Kriging model is employed for fitting the mean and variance of the quality characteristics according to the simulation results. Further, a particle swarm optimization method based on simple PSO is applied and the tradeoff between the mean and deviation of performance is made to solve the robust optimization problem of the double wishbone suspension system.

  17. Hiding the weakness: structural robustness using origami design

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Santangelo, Christian; Cohen, Itai

    2015-03-01

    A non-deformable structure is typically associated with infinitely stiff materials that resist distortion. In this work, we designed a structure with a region that will not deform even though it is made of arbitrarily compliant materials. More specifically, we show that a foldable sheet with a circular hole in the middle can be deformed externally with the internal geometry of the hole unaffected. Instead of strengthening the local stiffness, we fine tune the crease patterns so that all the soft modes that can potentially deform the internal geometry are not accessible through strain on the external boundary. The inner structure is thus protected by the topological mechanics, based on the detailed geometry of how the vertices in the foldable sheet are connected. In this way, we isolate the structural robustness from the mechanical properties of the materials, which introduces an extra degree of freedom for structural design.

  18. Preliminary demonstration of a robust controller design method

    NASA Technical Reports Server (NTRS)

    Anderson, L. R.

    1980-01-01

    Alternative computational procedures for obtaining a feedback control law which yields a control signal based on measurable quantitites are evaluated. The three methods evaluated are: (1) the standard linear quadratic regulator design model; (2) minimization of the norm of the feedback matrix, k via nonlinear programming subject to the constraint that the closed loop eigenvalues be in a specified domain in the complex plane; and (3) maximize the angles between the closed loop eigenvectors in combination with minimizing the norm of K also via the constrained nonlinear programming. The third or robust design method was chosen to yield a closed loop system whose eigenvalues are insensitive to small changes in the A and B matrices. The relationship between orthogonality of closed loop eigenvectors and the sensitivity of closed loop eigenvalues is described. Computer programs are described.

  19. Sliding-Mode Control Applied for Robust Control of a Highly Unstable Aircraft

    NASA Technical Reports Server (NTRS)

    Vetter, Travis Kenneth

    2002-01-01

    An investigation into the application of an observer based sliding mode controller for robust control of a highly unstable aircraft and methods of compensating for actuator dynamics is performed. After a brief overview of some reconfigurable controllers, sliding mode control (SMC) is selected because of its invariance properties and lack of need for parameter identification. SMC is reviewed and issues with parasitic dynamics, which cause system instability, are addressed. Utilizing sliding manifold boundary layers, the nonlinear control is converted to a linear control and sliding manifold design is performed in the frequency domain. An additional feedback form of model reference hedging is employed which is similar to a prefilter and has large benefits to system performance. The effects of inclusion of actuator dynamics into the designed plant is heavily investigated. Multiple Simulink models of the full longitudinal dynamics and wing deflection modes of the forward swept aero elastic vehicle (FSAV) are constructed. Additionally a linear state space models to analyze effects from various system parameters. The FSAV has a pole at +7 rad/sec and is non-minimum phase. The use of 'model actuators' in the feedback path, and varying there design, is heavily investigated for the resulting effects on plant robustness and tolerance to actuator failure. The use of redundant actuators is also explored and improved robustness is shown. All models are simulated with severe failure and excellent tracking, and task dependent handling qualities, and low pilot induced oscillation tendency is shown.

  20. Real-World Application of Robust Design Optimization Assisted by Response Surface Approximation and Visual Data-Mining

    NASA Astrophysics Data System (ADS)

    Shimoyama, Koji; Jeong, Shinkyu; Obayashi, Shigeru

    A new approach for multi-objective robust design optimization was proposed and applied to a real-world design problem with a large number of objective functions. The present approach is assisted by response surface approximation and visual data-mining, and resulted in two major gains regarding computational time and data interpretation. The Kriging model for response surface approximation can markedly reduce the computational time for predictions of robustness. In addition, the use of self-organizing maps as a data-mining technique allows visualization of complicated design information between optimality and robustness in a comprehensible two-dimensional form. Therefore, the extraction and interpretation of trade-off relations between optimality and robustness of design, and also the location of sweet spots in the design space, can be performed in a comprehensive manner.

  1. Robust surface reconstruction by design-guided SEM photometric stereo

    NASA Astrophysics Data System (ADS)

    Miyamoto, Atsushi; Matsuse, Hiroki; Koutaki, Gou

    2017-04-01

    We present a novel approach that addresses the blind reconstruction problem in scanning electron microscope (SEM) photometric stereo for complicated semiconductor patterns to be measured. In our previous work, we developed a bootstrapping de-shadowing and self-calibration (BDS) method, which automatically calibrates the parameter of the gradient measurement formulas and resolves shadowing errors for estimating an accurate three-dimensional (3D) shape and underlying shadowless images. Experimental results on 3D surface reconstruction demonstrated the significance of the BDS method for simple shapes, such as an isolated line pattern. However, we found that complicated shapes, such as line-and-space (L&S) and multilayered patterns, produce deformed and inaccurate measurement results. This problem is due to brightness fluctuations in the SEM images, which are mainly caused by the energy fluctuations of the primary electron beam, variations in the electronic expanse inside a specimen, and electrical charging of specimens. Despite these being essential difficulties encountered in SEM photometric stereo, it is difficult to model accurately all the complicated physical phenomena of electronic behavior. We improved the robustness of the surface reconstruction in order to deal with these practical difficulties with complicated shapes. Here, design data are useful clues as to the pattern layout and layer information of integrated semiconductors. We used the design data as a guide of the measured shape and incorporated a geometrical constraint term to evaluate the difference between the measured and designed shapes into the objective function of the BDS method. Because the true shape does not necessarily correspond to the designed one, we use an iterative scheme to develop proper guide patterns and a 3D surface that provides both a less distorted and more accurate 3D shape after convergence. Extensive experiments on real image data demonstrate the robustness and effectiveness

  2. Robust parameter design for automatically controlled systems and nanostructure synthesis

    NASA Astrophysics Data System (ADS)

    Dasgupta, Tirthankar

    2007-12-01

    This research focuses on developing comprehensive frameworks for developing robust parameter design methodology for dynamic systems with automatic control and for synthesis of nanostructures. In many automatically controlled dynamic processes, the optimal feedback control law depends on the parameter design solution and vice versa and therefore an integrated approach is necessary. A parameter design methodology in the presence of feedback control is developed for processes of long duration under the assumption that experimental noise factors are uncorrelated over time. Systems that follow a pure-gain dynamic model are considered and the best proportional-integral and minimum mean squared error control strategies are developed by using robust parameter design. The proposed method is illustrated using a simulated example and a case study in a urea packing plant. This idea is also extended to cases with on-line noise factors. The possibility of integrating feedforward control with a minimum mean squared error feedback control scheme is explored. To meet the needs of large scale synthesis of nanostructures, it is critical to systematically find experimental conditions under which the desired nanostructures are synthesized reproducibly, at large quantity and with controlled morphology. The first part of the research in this area focuses on modeling and optimization of existing experimental data. Through a rigorous statistical analysis of experimental data, models linking the probabilities of obtaining specific morphologies to the process variables are developed. A new iterative algorithm for fitting a Multinomial GLM is proposed and used. The optimum process conditions, which maximize the above probabilities and make the synthesis process less sensitive to variations of process variables around set values, are derived from the fitted models using Monte-Carlo simulations. The second part of the research deals with development of an experimental design methodology, tailor

  3. Advanced Vibration Analysis Tool Developed for Robust Engine Rotor Designs

    NASA Technical Reports Server (NTRS)

    Min, James B.

    2005-01-01

    The primary objective of this research program is to develop vibration analysis tools, design tools, and design strategies to significantly improve the safety and robustness of turbine engine rotors. Bladed disks in turbine engines always feature small, random blade-to-blade differences, or mistuning. Mistuning can lead to a dramatic increase in blade forced-response amplitudes and stresses. Ultimately, this results in high-cycle fatigue, which is a major safety and cost concern. In this research program, the necessary steps will be taken to transform a state-of-the-art vibration analysis tool, the Turbo- Reduce forced-response prediction code, into an effective design tool by enhancing and extending the underlying modeling and analysis methods. Furthermore, novel techniques will be developed to assess the safety of a given design. In particular, a procedure will be established for using natural-frequency curve veerings to identify ranges of operating conditions (rotational speeds and engine orders) in which there is a great risk that the rotor blades will suffer high stresses. This work also will aid statistical studies of the forced response by reducing the necessary number of simulations. Finally, new strategies for improving the design of rotors will be pursued.

  4. Robust Design of Sheet Metal Forming Process Based on Kriging Metamodel

    NASA Astrophysics Data System (ADS)

    Xie, Yanmin

    2011-08-01

    Nowadays, sheet metal forming processes design is not a trivial task due to the complex issues to be taken into account (conflicting design goals, complex shapes forming and so on). Optimization methods have also been widely applied in sheet metal forming. Therefore, proper design methods to reduce time and costs have to be developed mostly based on computer aided procedures. At the same time, the existence of variations during manufacturing processes significantly may influence final product quality, rendering non-robust optimal solutions. In this paper, a small size of design of experiments is conducted to investigate how a stochastic behavior of noise factors affects drawing quality. The finite element software (LS_DYNA) is used to simulate the complex sheet metal stamping processes. The Kriging metamodel is adopted to map the relation between input process parameters and part quality. Robust design models for sheet metal forming process integrate adaptive importance sampling with Kriging model, in order to minimize impact of the variations and achieve reliable process parameters. In the adaptive sample, an improved criterion is used to provide direction in which additional training samples can be added to better the Kriging model. Nonlinear functions as test functions and a square stamping example (NUMISHEET'93) are employed to verify the proposed method. Final results indicate application feasibility of the aforesaid method proposed for multi-response robust design.

  5. Efficiency and robustness of different bus network designs

    NASA Astrophysics Data System (ADS)

    Pang, John Zhen Fu; Bin Othman, Nasri; Ng, Keng Meng; Monterola, Christopher

    2015-07-01

    We compare the efficiencies and robustness of four transport networks that can be possibly formed as a result of deliberate city planning. The networks are constructed based on their spatial resemblance to the cities of Manhattan (lattice), Sudan (random), Beijing (single-blob) and Greater Cairo (dual-blob). For a given type, a genetic algorithm is employed to obtain an optimized set of the bus routes. We then simulate how commuter travels using Yen's algorithms for k shortest paths on an adjacency matrix. The cost of traveling such as walking between stations is captured by varying the weighted sums of matrices. We also consider the number of transfers a posteriori by looking at the computed shortest paths. With consideration to distances via radius of gyration, redundancies of travel and number of bus transfers, our simulations indicate that random and dual-blob are more efficient than single-blob and lattice networks. Moreover, dual-blob type is least robust when node removals are targeted but is most resilient when node failures are random. The work hopes to guide and provide technical perspectives on how geospatial distribution of a city limits the optimality of transport designs.

  6. Rational drug design applied to myeloperoxidase inhibition.

    PubMed

    Van Antwerpen, P; Zouaoui Boudjeltia, K

    2015-06-01

    Rational drug design is a general approach using protein-structure technique in which the discovery of a ligand can be driven either by chance, screening, or rational theory. Myeloperoxidase (MPO) was rapidly identified as a therapeutical target because of its involvement in chronic inflammatory syndromes. In this context, the research of MPO inhibitors was intensified and development of new chemical entities was rationally driven by the research of ligands that enter into the MPO catalytic pocket. Actually, as soon as crystallography data of MPO have become available and its structure was virtually designed, the rational drug design has been applied to this peroxidase. Pharmaceutical industries and academic laboratories apply rational drug design on MPO by either optimizing known inhibitors or searching new molecules by high-throughput virtual screening. By these ways, they were able to find efficient MPO inhibitors and understand their interactions with the enzyme. During this quest of MPO inhibition, it appears that Glu268 is a crucial residue in order to optimize ligand-target interaction. This amino acid should be carefully considered by medicinal chemist when they design inhibitors interfering with MPO activity.

  7. Multi-parameter sensitivity analysis and application research in the robust optimization design for complex nonlinear system

    NASA Astrophysics Data System (ADS)

    Ma, Tao; Zhang, Weigang; Zhang, Yang; Tang, Ting

    2015-01-01

    The current research of complex nonlinear system robust optimization mainly focuses on the features of design parameters, such as probability density functions, boundary conditions, etc. After parameters study, high-dimensional curve or robust control design is used to find an accurate robust solution. However, there may exist complex interaction between parameters and practical engineering system. With the increase of the number of parameters, it is getting hard to determine high-dimensional curves and robust control methods, thus it's difficult to get the robust design solutions. In this paper, a method of global sensitivity analysis based on divided variables in groups is proposed. By making relevant variables in one group and keeping each other independent among sets of variables, global sensitivity analysis is conducted in grouped variables and the importance of parameters is evaluated by calculating the contribution value of each parameter to the total variance of system response. By ranking the importance of input parameters, relatively important parameters are chosen to conduct robust design analysis of the system. By applying this method to the robust optimization design of a real complex nonlinear system-a vehicle occupant restraint system with multi-parameter, good solution is gained and the response variance of the objective function is reduced to 0.01, which indicates that the robustness of the occupant restraint system is improved in a great degree and the method is effective and valuable for the robust design of complex nonlinear system. This research proposes a new method which can be used to obtain solutions for complex nonlinear system robust design.

  8. Sliding Mode Control Applied to Reconfigurable Flight Control Design

    NASA Technical Reports Server (NTRS)

    Hess, R. A.; Wells, S. R.; Bacon, Barton (Technical Monitor)

    2002-01-01

    Sliding mode control is applied to the design of a flight control system capable of operating with limited bandwidth actuators and in the presence of significant damage to the airframe and/or control effector actuators. Although inherently robust, sliding mode control algorithms have been hampered by their sensitivity to the effects of parasitic unmodeled dynamics, such as those associated with actuators and structural modes. It is known that asymptotic observers can alleviate this sensitivity while still allowing the system to exhibit significant robustness. This approach is demonstrated. The selection of the sliding manifold as well as the interpretation of the linear design that results after introduction of a boundary layer is accomplished in the frequency domain. The design technique is exercised on a pitch-axis controller for a simple short-period model of the High Angle of Attack F-18 vehicle via computer simulation. Stability and performance is compared to that of a system incorporating a controller designed by classical loop-shaping techniques.

  9. Systems approach to developmental biology--designs for robust patterning.

    PubMed

    Morishita, Yoshihiro; Hironaka, Ken-Ichi

    2013-04-01

    Patterning is an important step in animal development that generates spatially non-uniform gene expression patterns or spatially heterogeneous cellular responses. Patterning is realised by the generation and reading of positional information provided by spatial gradients of morphogens, diffusive chemicals in the extracellular environment. To achieve normal development, accurate patterning that is robust against noise is necessary. Here the authors describe how morphogen gradient formation and gradient interpretation processes are designed to achieve highly reproducible patterning. Furthermore, recent advancements in measurement and imaging techniques have enabled researchers to obtain quantitative dynamic and multi-physical data, not only for chemical events, but also for the geometrical and mechanical properties of cells in vivo. The authors briefly review some recent studies on the effects of such non-chemical events on patterning.

  10. Robust Optimization Design Algorithm for High-Frequency TWTs

    NASA Technical Reports Server (NTRS)

    Wilson, Jeffrey D.; Chevalier, Christine T.

    2010-01-01

    Traveling-wave tubes (TWTs), such as the Ka-band (26-GHz) model recently developed for the Lunar Reconnaissance Orbiter, are essential as communication amplifiers in spacecraft for virtually all near- and deep-space missions. This innovation is a computational design algorithm that, for the first time, optimizes the efficiency and output power of a TWT while taking into account the effects of dimensional tolerance variations. Because they are primary power consumers and power generation is very expensive in space, much effort has been exerted over the last 30 years to increase the power efficiency of TWTs. However, at frequencies higher than about 60 GHz, efficiencies of TWTs are still quite low. A major reason is that at higher frequencies, dimensional tolerance variations from conventional micromachining techniques become relatively large with respect to the circuit dimensions. When this is the case, conventional design- optimization procedures, which ignore dimensional variations, provide inaccurate designs for which the actual amplifier performance substantially under-performs that of the design. Thus, this new, robust TWT optimization design algorithm was created to take account of and ameliorate the deleterious effects of dimensional variations and to increase efficiency, power, and yield of high-frequency TWTs. This design algorithm can help extend the use of TWTs into the terahertz frequency regime of 300-3000 GHz. Currently, these frequencies are under-utilized because of the lack of efficient amplifiers, thus this regime is known as the "terahertz gap." The development of an efficient terahertz TWT amplifier could enable breakthrough applications in space science molecular spectroscopy, remote sensing, nondestructive testing, high-resolution "through-the-wall" imaging, biomedical imaging, and detection of explosives and toxic biochemical agents.

  11. Intergration of system identification and robust controller designs for flexible structures in space

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Lew, Jiann-Shiun

    1990-01-01

    An approach is developed using experimental data to identify a reduced-order model and its model error for a robust controller design. There are three steps involved in the approach. First, an approximately balanced model is identified using the Eigensystem Realization Algorithm, which is an identification algorithm. Second, the model error is calculated and described in frequency domain in terms of the H(infinity) norm. Third, a pole placement technique in combination with a H(infinity) control method is applied to design a controller for the considered system. A set experimental data from an existing setup, namely the Mini-Mast system, is used to illustrate and verify the approach.

  12. Coding design of positional information for robust morphogenesis.

    PubMed

    Morishita, Yoshihiro; Iwasa, Yoh

    2011-11-16

    Robust positioning of cells in a tissue against unavoidable noises is important for achieving normal and reproducible morphogenesis. The position in a tissue is represented by morphogen concentrations, and cells read them to recognize their spatial coordinates. From the engineering viewpoint, these positioning processes can be regarded as an information coding. Organisms are conjectured to adopt good coding designs with high reliability for a given number of available morphogen species and their chemical properties. To answer, quantitatively, the questions of how good coding is adopted, and subsequently when, where, and to what extent each morphogen contributes to positioning, we need a way to evaluate the goodness of coding. In this article, by introducing basic concepts of computer science, we mathematically formulate coding processes in morphogen-dependent positioning, and define some key concepts such as encoding, decoding, and positional information and its precision. We demonstrate the best designs for pairs of encoding and decoding rules, and show how those designs can be biologically implemented by using some examples. We also propose a possible procedure of data analysis to validate the coding optimality formulated here.

  13. Designing for Damage: Robust Flight Control Design using Sliding Mode Techniques

    NASA Technical Reports Server (NTRS)

    Vetter, T. K.; Wells, S. R.; Hess, Ronald A.; Bacon, Barton (Technical Monitor); Davidson, John (Technical Monitor)

    2002-01-01

    A brief review of sliding model control is undertaken, with particular emphasis upon the effects of neglected parasitic dynamics. Sliding model control design is interpreted in the frequency domain. The inclusion of asymptotic observers and control 'hedging' is shown to reduce the effects of neglected parasitic dynamics. An investigation into the application of observer-based sliding mode control to the robust longitudinal control of a highly unstable is described. The sliding mode controller is shown to exhibit stability and performance robustness superior to that of a classical loop-shaped design when significant changes in vehicle and actuator dynamics are employed to model airframe damage.

  14. Design of a robust SHM system for composite structures

    NASA Astrophysics Data System (ADS)

    Beard, Shawn; Liu, Ching-Chao; Chang, Fu-Kuo

    2007-04-01

    Composites are becoming increasingly popular materials used in a wide range of applications on large-scale structures such as windmill blades, rocket motor cases, and aircraft fuselage and wings. For these large structures, using composites greatly enhances the operation and performance of the application, but also introduces extraordinary inspection challenges that push the limits of traditional NDE in terms of time and cost. Recent advances in Structural Health Monitoring (SHM) technologies offer a promising solution to these inspection challenges. But efficient design methodologies and implementation procedures are needed to ensure the reliability and robustness of SHM technologies for use in real-world applications. This paper introduces the essential elements of the design and implementation process by way of example. State-of-the-art techniques to optimize sensor placement, perform self-diagnostics, compensate for environmental conditions, and generate probability of detection (POD) curves for any application are discussed. The techniques are presented in relation to Acellent's recently developed SmartComposite System that is used to monitor the integrity of large composite structures. The system builds on the active sensor network technology of Acellent that is analogous to a built-in acousto-ultrasonic NDE system. Key features of the system include new miniaturized lightweight hardware, self-diagnostics and adaptive algorithm to automatically compensate for damaged sensors, reliable damage detection under different environmental conditions, and generation of POD curves. This paper will provide an overview of the system and demonstrate its key features.

  15. Robustness analysis and controller design for static var compensators in power systems

    NASA Astrophysics Data System (ADS)

    Yu, Xuechun I.

    effect of the supplementary controller on improving system dynamic performance and stability limits is also examined. The technique is applied to two test systems which are the four-machine test system and the IEEE 50-generator test system. Both the analysis and synthesis results clearly demonstrate the efficacy of the mu-based technique in analyzing and designing controls to meet robust performance and stability requirement.

  16. Robust Engineering Designs for Infrastructure Adaptation to a Changing Climate

    NASA Astrophysics Data System (ADS)

    Samaras, C.; Cook, L.

    2015-12-01

    Infrastructure systems are expected to be functional, durable and safe over long service lives - 50 to over 100 years. Observations and models of climate science show that greenhouse gas emissions resulting from human activities have changed climate, weather and extreme events. Projections of future changes (albeit with uncertainties caused by inadequacies of current climate/weather models) can be made based on scenarios for future emissions, but actual future emissions are themselves uncertain. Most current engineering standards and practices for infrastructure assume that the probabilities of future extreme climate and weather events will match those of the past. Climate science shows that this assumption is invalid, but is unable, at present, to define these probabilities over the service lives of existing and new infrastructure systems. Engineering designs, plans, and institutions and regulations will need to be adaptable for a range of future conditions (conditions of climate, weather and extreme events, as well as changing societal demands for infrastructure services). For their current and future projects, engineers should: Involve all stakeholders (owners, financers, insurance, regulators, affected public, climate/weather scientists, etc.) in key decisions; Use low regret, adaptive strategies, such as robust decision making and the observational method, comply with relevant standards and regulations, and exceed their requirements where appropriate; Publish design studies and performance/failure investigations to extend the body of knowledge for advancement of practice. The engineering community should conduct observational and modeling research with climate/weather/social scientists and the concerned communities and account rationally for climate change in revised engineering standards and codes. This presentation presents initial research on decisionmaking under uncertainty for climate resilient infrastructure design.

  17. Applying network theory to prioritize multi-species habitat networks that are robust to climate and land-use change.

    PubMed

    Albert, Cécile H; Rayfield, Bronwyn; Dumitru, Maria; Gonzalez, Andrew

    2017-04-06

    Designing connected landscapes is among the most widespread strategies for achieving biodiversity conservation targets. The challenge lies in simultaneously satisfying the connectivity needs of multiple species at multiple spatial scales under uncertain climate and land-use change. To evaluate the contribution of remnant habitat fragments to the connectivity of regional habitat networks, we develop a framework integrating uncertainty in climate and land-use change projections with the latest developments in network connectivity research and spatial, multi-purpose conservation prioritization. We apply this framework to a set of fourteen vertebrate focal species in peri-urban Montreal, Canada. We show that accounting for connectivity in spatial prioritization strongly modifies conservation priorities, and that these priorities are robust to uncertain climate change. We use land-use change simulations to explore the robustness of species' habitat networks to alternative development scenarios. Setting conservation priorities based on habitat quality and connectivity maintains a large proportion of the region's connectivity despite anticipated habitat loss due to climate and land-use change. We found that the application of connectivity criteria alongside habitat quality criteria for protected-area design is area-efficient and does not necessarily amplify trade-offs among conservation criteria. Our approach and results are now being applied in and around the city of Montreal and are well suited to the design of ecological networks and green infrastructure for biodiversity and ecosystem services in other regions, in particular regions around large cities, where connectivity is critically low. This article is protected by copyright. All rights reserved.

  18. Robust Stability Analysis of the Space Launch System Control Design: A Singular Value Approach

    NASA Technical Reports Server (NTRS)

    Pei, Jing; Newsome, Jerry R.

    2015-01-01

    Classical stability analysis consists of breaking the feedback loops one at a time and determining separately how much gain or phase variations would destabilize the stable nominal feedback system. For typical launch vehicle control design, classical control techniques are generally employed. In addition to stability margins, frequency domain Monte Carlo methods are used to evaluate the robustness of the design. However, such techniques were developed for Single-Input-Single-Output (SISO) systems and do not take into consideration the off-diagonal terms in the transfer function matrix of Multi-Input-Multi-Output (MIMO) systems. Robust stability analysis techniques such as H(sub infinity) and mu are applicable to MIMO systems but have not been adopted as standard practices within the launch vehicle controls community. This paper took advantage of a simple singular-value-based MIMO stability margin evaluation method based on work done by Mukhopadhyay and Newsom and applied it to the SLS high-fidelity dynamics model. The method computes a simultaneous multi-loop gain and phase margin that could be related back to classical margins. The results presented in this paper suggest that for the SLS system, traditional SISO stability margins are similar to the MIMO margins. This additional level of verification provides confidence in the robustness of the control design.

  19. Robustness results in LQG based multivariable control designs

    NASA Technical Reports Server (NTRS)

    Lehtomaki, N. A.; Sandell, N. R., Jr.; Athans, M.

    1980-01-01

    The robustness of control systems with respect to model uncertainty is considered using simple frequency domain criteria. Results are derived under a common framework in which the minimum singular value of the return difference transfer matrix is the key quantity. In particular, the LQ and LQG robustness results are discussed.

  20. Robust controller design of four wheel steering systems using mu synthesis techniques

    SciTech Connect

    Gao, X.; McVey, B.D.; Tokar, R.L.

    1995-02-27

    In this paper, a linearized four wheel steering (4WS) system model is deduced and then modified into a form which is appropriate for applying Matlab {mu} Toolbox to design robust controller. Several important topics are discussed in detail, such as (1) how to make system set-up match Matlab {mu} Toolbox requirement, (2) how to select weights based on plant`s uncertainty, (3) how to solve controller discretization problem, and (4) how to adjust the system so that the conditions necessary for using a state-space formula to solve H{infinity} optimal (sub-optimal) problem and performing the Matlab {mu} Toolbox D--K iteration procedure are satisfied. Finally simulation results of robust controller and a PID controller are compared.

  1. Design and Evaluation of a Robust PID Controller for a Fully Implantable Artificial Pancreas.

    PubMed

    Huyett, Lauren M; Dassau, Eyal; Zisser, Howard C; Doyle, Francis J

    2015-10-28

    Treatment of type 1 diabetes mellitus could be greatly improved by applying a closed-loop control strategy to insulin delivery, also known as an artificial pancreas (AP). In this work, we outline the design of a fully implantable AP using intraperitoneal (IP) insulin delivery and glucose sensing. The design process utilizes the rapid glucose sensing and insulin action offered by the IP space to tune a PID controller with insulin feedback to provide safe and effective insulin delivery. The controller was tuned to meet robust performance and stability specifications. An anti-reset windup strategy was introduced to prevent dangerous undershoot toward hypoglycemia after a large meal disturbance. The final controller design achieved 78% of time within the tight glycemic range of 80-140 mg/dL, with no time spent in hypoglycemia. The next step is to test this controller design in an animal model to evaluate the in vivo performance.

  2. Robustness in linear quadratic feedback design with application to an aircraft control problem

    NASA Technical Reports Server (NTRS)

    Patel, R. V.; Sridhar, B.; Toda, M.

    1977-01-01

    Some new results concerning robustness and asymptotic properties of error bounds of a linear quadratic feedback design are applied to an aircraft control problem. An autopilot for the flare control of the Augmentor Wing Jet STOL Research Aircraft (AWJSRA) is designed based on Linear Quadratic (LQ) theory and the results developed in this paper. The variation of the error bounds to changes in the weighting matrices in the LQ design is studied by computer simulations, and appropriate weighting matrices are chosen to obtain a reasonable error bound for variations in the system matrix and at the same time meet the practical constraints for the flare maneuver of the AWJSRA. Results from the computer simulation of a satisfactory autopilot design for the flare control of the AWJSRA are presented.

  3. Design and Evaluation of a Robust PID Controller for a Fully Implantable Artificial Pancreas

    PubMed Central

    2015-01-01

    Treatment of type 1 diabetes mellitus could be greatly improved by applying a closed-loop control strategy to insulin delivery, also known as an artificial pancreas (AP). In this work, we outline the design of a fully implantable AP using intraperitoneal (IP) insulin delivery and glucose sensing. The design process utilizes the rapid glucose sensing and insulin action offered by the IP space to tune a PID controller with insulin feedback to provide safe and effective insulin delivery. The controller was tuned to meet robust performance and stability specifications. An anti-reset windup strategy was introduced to prevent dangerous undershoot toward hypoglycemia after a large meal disturbance. The final controller design achieved 78% of time within the tight glycemic range of 80–140 mg/dL, with no time spent in hypoglycemia. The next step is to test this controller design in an animal model to evaluate the in vivo performance. PMID:26538805

  4. Student design projects in applied acoustics.

    PubMed

    Bös, Joachim; Moritz, Karsten; Skowronek, Adam; Thyes, Christian; Tschesche, Johannes; Hanselka, Holger

    2012-03-01

    This paper describes a series of student projects which are intended to complement theoretical education in acoustics and engineering noise control with practical experience. The projects are also intended to enhance the students' ability to work in a team, to manage a project, and to present their results. The projects are carried out in close cooperation with industrial partners so that the students can get a taste of the professional life of noise control engineers. The organization of such a project, its execution, and some of the results from the most recent student project are presented as a demonstrative example. This latest project involved the creation of noise maps of a production hall, the acoustic analysis of a packaging machine, and the acoustic analysis of a spiral vibratory conveyor. Upon completion of the analysis, students then designed, applied, and verified some simple preliminary noise reduction measures to demonstrate the potential of these techniques.

  5. A design method for robust stabilizing simple repetitive control systems

    NASA Astrophysics Data System (ADS)

    Yamada, Kou; Takenaga, Hiroshi; Tanaka, Hiroshi

    2007-12-01

    The modified repetitive control system is a type of servomechanism for the periodic reference input. That is, the modified repetitive control system follows the periodic reference input with small steady state error, even if a periodic disturbance or uncertainty exists in the plant. Using previously proposed modified repetitive controllers, even if the plants does not includes time-delay, the transfer function from the periodic reference input to the output and that from the disturbance to the output have an infinite number of poles. When the transfer function from the periodic reference input to the output and that from the disturbance to the output have an infinite number of poles, it is difficult to specify the input-output characteristic and the disturbance attenuation characteristic. From the practical point of view, it is desirable that the input-output characteristic and the disturbance attenuation characteristic are easily specified. In order to specify the input-output characteristic and the disturbance attenuation characteristic easily, the transfer function from the periodic reference input to the output and that from the disturbance to the output are desirable to have a finite number of poles. Yamada et al. proposed the concept of simple repetitive control systems such that the controller works as a modified repetitive controller and the transfer function from the periodic reference input to the output and that from the disturbance to the output have a finite number of poles. In addition, Yamada et al. clarified the parametrization of all stabilizing simple repetitive controllers. However the method by Yamada et al. cannot be applied for the plant with uncertainty. The purpose of this paper is to propose the parametrization of all robust stabilizing simple repetitive controllers for the plant with uncertainty.

  6. Simulation Assisted Risk Assessment Applied to Launch Vehicle Conceptual Design

    NASA Technical Reports Server (NTRS)

    Mathias, Donovan L.; Go, Susie; Gee, Ken; Lawrence, Scott

    2008-01-01

    A simulation-based risk assessment approach is presented and is applied to the analysis of abort during the ascent phase of a space exploration mission. The approach utilizes groupings of launch vehicle failures, referred to as failure bins, which are mapped to corresponding failure environments. Physical models are used to characterize the failure environments in terms of the risk due to blast overpressure, resulting debris field, and the thermal radiation due to a fireball. The resulting risk to the crew is dynamically modeled by combining the likelihood of each failure, the severity of the failure environments as a function of initiator and time of the failure, the robustness of the crew module, and the warning time available due to early detection. The approach is shown to support the launch vehicle design process by characterizing the risk drivers and identifying regions where failure detection would significantly reduce the risk to the crew.

  7. Robustness and modular design of the Drosophila segment polarity network

    PubMed Central

    Ma, Wenzhe; Lai, Luhua; Ouyang, Qi; Tang, Chao

    2006-01-01

    Biomolecular networks have to perform their functions robustly. A robust function may have preferences in the topological structures of the underlying network. We carried out an exhaustive computational analysis on network topologies in relation to a patterning function in Drosophila embryogenesis. We found that whereas the vast majority of topologies can either not perform the required function or only do so very fragilely, a small fraction of topologies emerges as particularly robust for the function. The topology adopted by Drosophila, that of the segment polarity network, is a top ranking one among all topologies with no direct autoregulation. Furthermore, we found that all robust topologies are modular—each being a combination of three kinds of modules. These modules can be traced back to three subfunctions of the patterning function, and their combinations provide a combinatorial variability for the robust topologies. Our results suggest that the requirement of functional robustness drastically reduces the choices of viable topology to a limited set of modular combinations among which nature optimizes its choice under evolutionary and other biological constraints. PMID:17170765

  8. Design of a robust EMG sensing interface for pattern classification

    NASA Astrophysics Data System (ADS)

    Huang, He; Zhang, Fan; Sun, Yan L.; He, Haibo

    2010-10-01

    Electromyographic (EMG) pattern classification has been widely investigated for neural control of external devices in order to assist with movements of patients with motor deficits. Classification performance deteriorates due to inevitable disturbances to the sensor interface, which significantly challenges the clinical value of this technique. This study aimed to design a sensor fault detection (SFD) module in the sensor interface to provide reliable EMG pattern classification. This module monitored the recorded signals from individual EMG electrodes and performed a self-recovery strategy to recover the classification performance when one or more sensors were disturbed. To evaluate this design, we applied synthetic disturbances to EMG signals collected from leg muscles of able-bodied subjects and a subject with a transfemoral amputation and compared the accuracies for classifying transitions between different locomotion modes with and without the SFD module. The results showed that the SFD module maintained classification performance when one signal was distorted and recovered about 20% of classification accuracy when four signals were distorted simultaneously. The method was simple to implement. Additionally, these outcomes were observed for all subjects, including the leg amputee, which implies the promise of the designed sensor interface for providing a reliable neural-machine interface for artificial legs.

  9. Reducing Design Risk Using Robust Design Methods: A Dual Response Surface Approach

    NASA Technical Reports Server (NTRS)

    Unal, Resit; Yeniay, Ozgur; Lepsch, Roger A. (Technical Monitor)

    2003-01-01

    Space transportation system conceptual design is a multidisciplinary process containing considerable element of risk. Risk here is defined as the variability in the estimated (output) performance characteristic of interest resulting from the uncertainties in the values of several disciplinary design and/or operational parameters. Uncertainties from one discipline (and/or subsystem) may propagate to another, through linking parameters and the final system output may have a significant accumulation of risk. This variability can result in significant deviations from the expected performance. Therefore, an estimate of variability (which is called design risk in this study) together with the expected performance characteristic value (e.g. mean empty weight) is necessary for multidisciplinary optimization for a robust design. Robust design in this study is defined as a solution that minimizes variability subject to a constraint on mean performance characteristics. Even though multidisciplinary design optimization has gained wide attention and applications, the treatment of uncertainties to quantify and analyze design risk has received little attention. This research effort explores the dual response surface approach to quantify variability (risk) in critical performance characteristics (such as weight) during conceptual design.

  10. Reliability- and performance-based robust design optimization of MEMS structures considering technological uncertainties

    NASA Astrophysics Data System (ADS)

    Martowicz, Adam; Uhl, Tadeusz

    2012-10-01

    The paper discusses the applicability of a reliability- and performance-based multi-criteria robust design optimization technique for micro-electromechanical systems, considering their technological uncertainties. Nowadays, micro-devices are commonly applied systems, especially in the automotive industry, taking advantage of utilizing both the mechanical structure and electronic control circuit on one board. Their frequent use motivates the elaboration of virtual prototyping tools that can be applied in design optimization with the introduction of technological uncertainties and reliability. The authors present a procedure for the optimization of micro-devices, which is based on the theory of reliability-based robust design optimization. This takes into consideration the performance of a micro-device and its reliability assessed by means of uncertainty analysis. The procedure assumes that, for each checked design configuration, the assessment of uncertainty propagation is performed with the meta-modeling technique. The described procedure is illustrated with an example of the optimization carried out for a finite element model of a micro-mirror. The multi-physics approach allowed the introduction of several physical phenomena to correctly model the electrostatic actuation and the squeezing effect present between electrodes. The optimization was preceded by sensitivity analysis to establish the design and uncertain domains. The genetic algorithms fulfilled the defined optimization task effectively. The best discovered individuals are characterized by a minimized value of the multi-criteria objective function, simultaneously satisfying the constraint on material strength. The restriction of the maximum equivalent stresses was introduced with the conditionally formulated objective function with a penalty component. The yielded results were successfully verified with a global uniform search through the input design domain.

  11. A robust rotorcraft flight control system design methodology utilizing quantitative feedback theory

    NASA Technical Reports Server (NTRS)

    Gorder, Peter James

    1993-01-01

    Rotorcraft flight control systems present design challenges which often exceed those associated with fixed-wing aircraft. First, large variations in the response characteristics of the rotorcraft result from the wide range of airspeeds of typical operation (hover to over 100 kts). Second, the assumption of vehicle rigidity often employed in the design of fixed-wing flight control systems is rarely justified in rotorcraft where rotor degrees of freedom can have a significant impact on the system performance and stability. This research was intended to develop a methodology for the design of robust rotorcraft flight control systems. Quantitative Feedback Theory (QFT) was chosen as the basis for the investigation. Quantitative Feedback Theory is a technique which accounts for variability in the dynamic response of the controlled element in the design robust control systems. It was developed to address a Multiple-Input Single-Output (MISO) design problem, and utilizes two degrees of freedom to satisfy the design criteria. Two techniques were examined for extending the QFT MISO technique to the design of a Multiple-Input-Multiple-Output (MIMO) flight control system (FCS) for a UH-60 Black Hawk Helicopter. In the first, a set of MISO systems, mathematically equivalent to the MIMO system, was determined. QFT was applied to each member of the set simultaneously. In the second, the same set of equivalent MISO systems were analyzed sequentially, with closed loop response information from each loop utilized in subsequent MISO designs. The results of each technique were compared, and the advantages of the second, termed Sequential Loop Closure, were clearly evident.

  12. An advancing front Delaunay triangulation algorithm designed for robustness

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.

    1992-01-01

    A new algorithm is described for generating an unstructured mesh about an arbitrary two-dimensional configuration. Mesh points are generated automatically by the algorithm in a manner which ensures a smooth variation of elements, and the resulting triangulation constitutes the Delaunay triangulation of these points. The algorithm combines the mathematical elegance and efficiency of Delaunay triangulation algorithms with the desirable point placement features, boundary integrity, and robustness traditionally associated with advancing-front-type mesh generation strategies. The method offers increased robustness over previous algorithms in that it cannot fail regardless of the initial boundary point distribution and the prescribed cell size distribution throughout the flow-field.

  13. A Robust Design Approach to Cost Estimation: Solar Energy for Marine Corps Expeditionary Operations

    DTIC Science & Technology

    2014-07-14

    Resources Energy Technology Basics Electricity Grid Basics Costs Renewable Technologies Biomass Geothermal Solar Concentrators Solar Photovoltaics Wind...SPONSORED REPORT SERIES A Robust Design Approach to Cost Estimation: Solar Energy for Marine Corps Expeditionary Operations 14 July 2014...SUBTITLE A Robust Design Approach to Cost Estimation: Solar Energy for Marine Corps Expeditionary Operations 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  14. A comparative study of multivariable robustness analysis methods as applied to integrated flight and propulsion control

    NASA Technical Reports Server (NTRS)

    Schierman, John D.; Lovell, T. A.; Schmidt, David K.

    1993-01-01

    Three multivariable robustness analysis methods are compared and contrasted. The focus of the analysis is on system stability and performance robustness to uncertainty in the coupling dynamics between two interacting subsystems. Of particular interest is interacting airframe and engine subsystems, and an example airframe/engine vehicle configuration is utilized in the demonstration of these approaches. The singular value (SV) and structured singular value (SSV) analysis methods are compared to a method especially well suited for analysis of robustness to uncertainties in subsystem interactions. This approach is referred to here as the interacting subsystem (IS) analysis method. This method has been used previously to analyze airframe/engine systems, emphasizing the study of stability robustness. However, performance robustness is also investigated here, and a new measure of allowable uncertainty for acceptable performance robustness is introduced. The IS methodology does not require plant uncertainty models to measure the robustness of the system, and is shown to yield valuable information regarding the effects of subsystem interactions. In contrast, the SV and SSV methods allow for the evaluation of the robustness of the system to particular models of uncertainty, and do not directly indicate how the airframe (engine) subsystem interacts with the engine (airframe) subsystem.

  15. Decentralized adaptive control of robot manipulators with robust stabilization design

    NASA Technical Reports Server (NTRS)

    Yuan, Bau-San; Book, Wayne J.

    1988-01-01

    Due to geometric nonlinearities and complex dynamics, a decentralized technique for adaptive control for multilink robot arms is attractive. Lyapunov-function theory for stability analysis provides an approach to robust stabilization. Each joint of the arm is treated as a component subsystem. The adaptive controller is made locally stable with servo signals including proportional and integral gains. This results in the bound on the dynamical interactions with other subsystems. A nonlinear controller which stabilizes the system with uniform boundedness is used to improve the robustness properties of the overall system. As a result, the robot tracks the reference trajectories with convergence. This strategy makes computation simple and therefore facilitates real-time implementation.

  16. Robust control design techniques for active flutter suppression

    NASA Technical Reports Server (NTRS)

    Ozbay, Hitay; Bachmann, Glen R.

    1994-01-01

    In this paper, an active flutter suppression problem is studied for a thin airfoil in unsteady aerodynamics. The mathematical model of this system is infinite dimensional because of Theodorsen's function which is irrational. Several second order approximations of Theodorsen's function are compared. A finite dimensional model is obtained from such an approximation. We use H infinity control techniques to find a robustly stabilizing controller for active flutter suppression.

  17. Aircraft ride quality controller design using new robust root clustering theory for linear uncertain systems

    NASA Technical Reports Server (NTRS)

    Yedavalli, R. K.

    1992-01-01

    The aspect of controller design for improving the ride quality of aircraft in terms of damping ratio and natural frequency specifications on the short period dynamics is addressed. The controller is designed to be robust with respect to uncertainties in the real parameters of the control design model such as uncertainties in the dimensional stability derivatives, imperfections in actuator/sensor locations and possibly variations in flight conditions, etc. The design is based on a new robust root clustering theory developed by the author by extending the nominal root clustering theory of Gutman and Jury to perturbed matrices. The proposed methodology allows to get an explicit relationship between the parameters of the root clustering region and the uncertainty radius of the parameter space. The current literature available for robust stability becomes a special case of this unified theory. The bounds derived on the parameter perturbation for robust root clustering are then used in selecting the robust controller.

  18. Analytical quality by design: a tool for regulatory flexibility and robust analytics.

    PubMed

    Peraman, Ramalingam; Bhadraya, Kalva; Padmanabha Reddy, Yiragamreddy

    2015-01-01

    Very recently, Food and Drug Administration (FDA) has approved a few new drug applications (NDA) with regulatory flexibility for quality by design (QbD) based analytical approach. The concept of QbD applied to analytical method development is known now as AQbD (analytical quality by design). It allows the analytical method for movement within method operable design region (MODR). Unlike current methods, analytical method developed using analytical quality by design (AQbD) approach reduces the number of out-of-trend (OOT) results and out-of-specification (OOS) results due to the robustness of the method within the region. It is a current trend among pharmaceutical industry to implement analytical quality by design (AQbD) in method development process as a part of risk management, pharmaceutical development, and pharmaceutical quality system (ICH Q10). Owing to the lack explanatory reviews, this paper has been communicated to discuss different views of analytical scientists about implementation of AQbD in pharmaceutical quality system and also to correlate with product quality by design and pharmaceutical analytical technology (PAT).

  19. Analytical Quality by Design: A Tool for Regulatory Flexibility and Robust Analytics

    PubMed Central

    Bhadraya, Kalva; Padmanabha Reddy, Yiragamreddy

    2015-01-01

    Very recently, Food and Drug Administration (FDA) has approved a few new drug applications (NDA) with regulatory flexibility for quality by design (QbD) based analytical approach. The concept of QbD applied to analytical method development is known now as AQbD (analytical quality by design). It allows the analytical method for movement within method operable design region (MODR). Unlike current methods, analytical method developed using analytical quality by design (AQbD) approach reduces the number of out-of-trend (OOT) results and out-of-specification (OOS) results due to the robustness of the method within the region. It is a current trend among pharmaceutical industry to implement analytical quality by design (AQbD) in method development process as a part of risk management, pharmaceutical development, and pharmaceutical quality system (ICH Q10). Owing to the lack explanatory reviews, this paper has been communicated to discuss different views of analytical scientists about implementation of AQbD in pharmaceutical quality system and also to correlate with product quality by design and pharmaceutical analytical technology (PAT). PMID:25722723

  20. Applying Knowledge of Qualitative Design and Analysis

    ERIC Educational Resources Information Center

    Baskas, Richard S.

    2011-01-01

    This study compared and contrasted two qualitative scholarly articles in relation to their research designs. Their designs were analyzed by the comparison of research references and research specific vocabulary to describe how various research methods were used. When researching and analyzing qualitative scholarly articles, it is imperative to…

  1. Applying Knowledge of Quantitative Design and Analysis

    ERIC Educational Resources Information Center

    Baskas, Richard S.

    2011-01-01

    This study compared and contrasted two quantitative scholarly articles in relation to their research designs. Their designs were analyzed by the comparison of research references and research specific vocabulary to describe how various research methods were used. When researching and analyzing quantitative scholarly articles, it is imperative to…

  2. Optimization methods applied to hybrid vehicle design

    NASA Technical Reports Server (NTRS)

    Donoghue, J. F.; Burghart, J. H.

    1983-01-01

    The use of optimization methods as an effective design tool in the design of hybrid vehicle propulsion systems is demonstrated. Optimization techniques were used to select values for three design parameters (battery weight, heat engine power rating and power split between the two on-board energy sources) such that various measures of vehicle performance (acquisition cost, life cycle cost and petroleum consumption) were optimized. The apporach produced designs which were often significant improvements over hybrid designs already reported on in the literature. The principal conclusions are as follows. First, it was found that the strategy used to split the required power between the two on-board energy sources can have a significant effect on life cycle cost and petroleum consumption. Second, the optimization program should be constructed so that performance measures and design variables can be easily changed. Third, the vehicle simulation program has a significant effect on the computer run time of the overall optimization program; run time can be significantly reduced by proper design of the types of trips the vehicle takes in a one year period. Fourth, care must be taken in designing the cost and constraint expressions which are used in the optimization so that they are relatively smooth functions of the design variables. Fifth, proper handling of constraints on battery weight and heat engine rating, variables which must be large enough to meet power demands, is particularly important for the success of an optimization study. Finally, the principal conclusion is that optimization methods provide a practical tool for carrying out the design of a hybrid vehicle propulsion system.

  3. Computational Methods Applied to Rational Drug Design.

    PubMed

    Ramírez, David

    2016-01-01

    Due to the synergic relationship between medical chemistry, bioinformatics and molecular simulation, the development of new accurate computational tools for small molecules drug design has been rising over the last years. The main result is the increased number of publications where computational techniques such as molecular docking, de novo design as well as virtual screening have been used to estimate the binding mode, site and energy of novel small molecules. In this work I review some tools, which enable the study of biological systems at the atomistic level, providing relevant information and thereby, enhancing the process of rational drug design.

  4. Computational Methods Applied to Rational Drug Design

    PubMed Central

    Ramírez, David

    2016-01-01

    Due to the synergic relationship between medical chemistry, bioinformatics and molecular simulation, the development of new accurate computational tools for small molecules drug design has been rising over the last years. The main result is the increased number of publications where computational techniques such as molecular docking, de novo design as well as virtual screening have been used to estimate the binding mode, site and energy of novel small molecules. In this work I review some tools, which enable the study of biological systems at the atomistic level, providing relevant information and thereby, enhancing the process of rational drug design. PMID:27708723

  5. Systems design analysis applied to launch vehicle configuration

    NASA Technical Reports Server (NTRS)

    Ryan, R.; Verderaime, V.

    1993-01-01

    As emphasis shifts from optimum-performance aerospace systems to least lift-cycle costs, systems designs must seek, adapt, and innovate cost improvement techniques in design through operations. The systems design process of concept, definition, and design was assessed for the types and flow of total quality management techniques that may be applicable in a launch vehicle systems design analysis. Techniques discussed are task ordering, quality leverage, concurrent engineering, Pareto's principle, robustness, quality function deployment, criteria, and others. These cost oriented techniques are as applicable to aerospace systems design analysis as to any large commercial system.

  6. A Robust Design Methodology for Optimal Microscale Secondary Flow Control in Compact Inlet Diffusers

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Keller, Dennis J.

    2001-01-01

    It is the purpose of this study to develop an economical Robust design methodology for microscale secondary flow control in compact inlet diffusers. To illustrate the potential of economical Robust Design methodology, two different mission strategies were considered for the subject inlet, namely Maximum Performance and Maximum HCF Life Expectancy. The Maximum Performance mission maximized total pressure recovery while the Maximum HCF Life Expectancy mission minimized the mean of the first five Fourier harmonic amplitudes, i.e., 'collectively' reduced all the harmonic 1/2 amplitudes of engine face distortion. Each of the mission strategies was subject to a low engine face distortion constraint, i.e., DC60<0.10, which is a level acceptable for commercial engines. For each of these missions strategies, an 'Optimal Robust' (open loop control) and an 'Optimal Adaptive' (closed loop control) installation was designed over a twenty degree angle-of-incidence range. The Optimal Robust installation used economical Robust Design methodology to arrive at a single design which operated over the entire angle-of-incident range (open loop control). The Optimal Adaptive installation optimized all the design parameters at each angle-of-incidence. Thus, the Optimal Adaptive installation would require a closed loop control system to sense a proper signal for each effector and modify that effector device, whether mechanical or fluidic, for optimal inlet performance. In general, the performance differences between the Optimal Adaptive and Optimal Robust installation designs were found to be marginal. This suggests, however, that Optimal Robust open loop installation designs can be very competitive with Optimal Adaptive close loop designs. Secondary flow control in inlets is inherently robust, provided it is optimally designed. Therefore, the new methodology presented in this paper, combined array 'Lower Order' approach to Robust DOE, offers the aerodynamicist a very viable and

  7. Robustness of controllers designed using Galerkin type approximations

    NASA Technical Reports Server (NTRS)

    Morris, K. A.

    1990-01-01

    One of the difficulties in designing controllers for infinite-dimensional systems arises from attempting to calculate a state for the system. It is shown that Galerkin type approximations can be used to design controllers which will perform as designed when implemented on the original infinite-dimensional system. No assumptions, other than those typically employed in numerical analysis, are made on the approximating scheme.

  8. Applying colour science in colour design

    NASA Astrophysics Data System (ADS)

    Luo, Ming Ronnier

    2006-06-01

    Although colour science has been widely used in a variety of industries over the years, it has not been fully explored in the field of product design. This paper will initially introduce the three main application fields of colour science: colour specification, colour-difference evaluation and colour appearance modelling. By integrating these advanced colour technologies together with modern colour imaging devices such as display, camera, scanner and printer, some computer systems have been recently developed to assist designers for designing colour palettes through colour selection by means of a number of widely used colour order systems, for creating harmonised colour schemes via a categorical colour system, for generating emotion colours using various colour emotional scales and for facilitating colour naming via a colour-name library. All systems are also capable of providing accurate colour representation on displays and output to different imaging devices such as printers.

  9. Optimization of experimental parameters based on the Taguchi robust design for the formation of zinc oxide nanocrystals by solvothermal method

    SciTech Connect

    Yiamsawas, Doungporn; Boonpavanitchakul, Kanittha; Kangwansupamonkon, Wiyong

    2011-05-15

    Research highlights: {yields} Taguchi robust design can be applied to study ZnO nanocrystal growth. {yields} Spherical-like and rod-like shaped of ZnO nanocrystals can be obtained from solvothermal method. {yields} [NaOH]/[Zn{sup 2+}] ratio plays the most important factor on the aspect ratio of prepared ZnO. -- Abstract: Zinc oxide (ZnO) nanoparticles and nanorods were successfully synthesized by a solvothermal process. Taguchi robust design was applied to study the factors which result in stronger ZnO nanocrystal growth. The factors which have been studied are molar concentration ratio of sodium hydroxide and zinc acetate, amount of polymer templates and molecular weight of polymer templates. Transmission electron microscopy and X-ray diffraction technique were used to analyze the experiment results. The results show that the concentration ratio of sodium hydroxide and zinc acetate ratio has the greatest effect on ZnO nanocrystal growth.

  10. Using open robust design models to estimate temporary emigration from capture-recapture data

    USGS Publications Warehouse

    Kendall, W.L.; Bjorkland, R.

    2001-01-01

    Capture-recapture studies are crucial in many circumstances for estimating demographic parameters for wildlife and fish populations. Pollock's robust design, involving multiple sampling occasions per period of interest, provides several advantages over classical approaches. This includes the ability to estimate the probability of being present and available for detection, which in some situations is equivalent to breeding probability. We present a model for estimating availability for detection that relaxes two assumptions required in previous approaches. The first is that the sampled population is closed to additions and deletions across samples within a period of interest. The second is that each member of the population has the same probability of being available for detection in a given period. We apply our model to estimate survival and breeding probability in a study of hawksbill sea turtles (Eretmochelys imbricata), where previous approaches are not appropriate.

  11. Optimization of wire Electrical Discharge turning operations using robust design of experiment

    NASA Astrophysics Data System (ADS)

    Mohammadi, Aminollah; Fadaei Tehrani, Alireza; Safari, Mahdi

    2011-01-01

    In the present study a multi response optimization method using Taguchi's robust design approach is proposed for wire electrical discharge turning (WEDT) operations. Experimentation was planned as per Taguchi's L18 orthogonal array. Each experiment has been performed under different machining conditions of power, servo, voltage, pulse off time, wire tension, wire feed speed, and rotational speed. Three responses namely material removal rate (MRR), surface roughness, and roundness have been considered for each experiment. The machining parameters are optimized with the multi response characteristics of the material removal rate, surface roughness, and roundness. Multi response S/N (MRSN) ratio is applied to measure the performance characteristics deviating from the actual value. Analysis of variance (ANOVA) is employed to identify the level of importance of the machining parameters on the multiple performance considered characteristics. Finally experimental confirmation was carried out to identify the effectiveness of this proposed method.

  12. Two Reconfigurable Flight-Control Design Methods: Robust Servomechanism and Control Allocation

    NASA Technical Reports Server (NTRS)

    Burken, John J.; Lu, Ping; Wu, Zheng-Lu; Bahm, Cathy

    2001-01-01

    Two methods for control system reconfiguration have been investigated. The first method is a robust servomechanism control approach (optimal tracking problem) that is a generalization of the classical proportional-plus-integral control to multiple input-multiple output systems. The second method is a control-allocation approach based on a quadratic programming formulation. A globally convergent fixed-point iteration algorithm has been developed to make onboard implementation of this method feasible. These methods have been applied to reconfigurable entry flight control design for the X-33 vehicle. Examples presented demonstrate simultaneous tracking of angle-of-attack and roll angle commands during failures of the fight body flap actuator. Although simulations demonstrate success of the first method in most cases, the control-allocation method appears to provide uniformly better performance in all cases.

  13. Multidisciplinary Design Techniques Applied to Conceptual Aerospace Vehicle Design. Ph.D. Thesis Final Technical Report

    NASA Technical Reports Server (NTRS)

    Olds, John Robert; Walberg, Gerald D.

    1993-01-01

    Multidisciplinary design optimization (MDO) is an emerging discipline within aerospace engineering. Its goal is to bring structure and efficiency to the complex design process associated with advanced aerospace launch vehicles. Aerospace vehicles generally require input from a variety of traditional aerospace disciplines - aerodynamics, structures, performance, etc. As such, traditional optimization methods cannot always be applied. Several multidisciplinary techniques and methods were proposed as potentially applicable to this class of design problem. Among the candidate options are calculus-based (or gradient-based) optimization schemes and parametric schemes based on design of experiments theory. A brief overview of several applicable multidisciplinary design optimization methods is included. Methods from the calculus-based class and the parametric class are reviewed, but the research application reported focuses on methods from the parametric class. A vehicle of current interest was chosen as a test application for this research. The rocket-based combined-cycle (RBCC) single-stage-to-orbit (SSTO) launch vehicle combines elements of rocket and airbreathing propulsion in an attempt to produce an attractive option for launching medium sized payloads into low earth orbit. The RBCC SSTO presents a particularly difficult problem for traditional one-variable-at-a-time optimization methods because of the lack of an adequate experience base and the highly coupled nature of the design variables. MDO, however, with it's structured approach to design, is well suited to this problem. The result of the application of Taguchi methods, central composite designs, and response surface methods to the design optimization of the RBCC SSTO are presented. Attention is given to the aspect of Taguchi methods that attempts to locate a 'robust' design - that is, a design that is least sensitive to uncontrollable influences on the design. Near-optimum minimum dry weight solutions are

  14. Applied virtual reality in aerospace design

    NASA Astrophysics Data System (ADS)

    Hale, Joseph P.

    1995-09-01

    A virtual reality (VR) applications program has been under development at the Marshall Space Flight Center (MSFC) since 1989. The objectives of the MSFC VR Applications Program are to develop, assess, validate, and utilize VR in hardware development, operations development and support, mission operations training and science training. Before VR can be used with confidence in a particular application, VR must be validated for that class of applications. For that reason, specific validation studies for selected classes of applications have been proposed and are currently underway. These include macro-ergonomic 'control room class' design analysis, Spacelab stowage reconfiguration training, a full-body microgravity functional reach simulator, a gross anatomy teaching simulator, and micro-ergonomic design analysis. This paper describes the MSFC VR Applications Program and the validation studies.

  15. Applied virtual reality in aerospace design

    NASA Technical Reports Server (NTRS)

    Hale, Joseph P.

    1995-01-01

    A virtual reality (VR) applications program has been under development at the Marshall Space Flight Center (MSFC) since 1989. The objectives of the MSFC VR Applications Program are to develop, assess, validate, and utilize VR in hardware development, operations development and support, mission operations training and science training. Before VR can be used with confidence in a particular application, VR must be validated for that class of applications. For that reason, specific validation studies for selected classes of applications have been proposed and are currently underway. These include macro-ergonomic 'control room class' design analysis, Spacelab stowage reconfiguration training, a full-body microgravity functional reach simulator, a gross anatomy teaching simulator, and micro-ergonomic design analysis. This paper describes the MSFC VR Applications Program and the validation studies.

  16. Robust fault detection observer design for linear uncertain systems

    NASA Astrophysics Data System (ADS)

    Wei, Xiukun; Verhaegen, Michel

    2011-01-01

    This article addresses the fault detection observer design issue for linear time invariant (LTI) systems with additive or multiplicative uncertainties, which are also subject to unknown disturbances. The observer design is investigated under the ℋ∞/ℋ- index framework using the generalised KYP lemma in the finite-frequency domain. Sufficient conditions for the existence of such a fault detection observer are given in terms of linear matrix inequalities (LMIs). The threshold design issue is discussed and a method for estimating the worst undetectable fault size is proposed. The effectiveness of the proposed algorithms is illustrated by numerical simulation examples.

  17. Applying robust variant of Principal Component Analysis as a damage detector in the presence of outliers

    NASA Astrophysics Data System (ADS)

    Gharibnezhad, Fahit; Mujica, Luis E.; Rodellar, José

    2015-01-01

    Using Principal Component Analysis (PCA) for Structural Health Monitoring (SHM) has received considerable attention over the past few years. PCA has been used not only as a direct method to identify, classify and localize damages but also as a significant primary step for other methods. Despite several positive specifications that PCA conveys, it is very sensitive to outliers. Outliers are anomalous observations that can affect the variance and the covariance as vital parts of PCA method. Therefore, the results based on PCA in the presence of outliers are not fully satisfactory. As a main contribution, this work suggests the use of robust variant of PCA not sensitive to outliers, as an effective way to deal with this problem in SHM field. In addition, the robust PCA is compared with the classical PCA in the sense of detecting probable damages. The comparison between the results shows that robust PCA can distinguish the damages much better than using classical one, and even in many cases allows the detection where classic PCA is not able to discern between damaged and non-damaged structures. Moreover, different types of robust PCA are compared with each other as well as with classical counterpart in the term of damage detection. All the results are obtained through experiments with an aircraft turbine blade using piezoelectric transducers as sensors and actuators and adding simulated damages.

  18. Reconfigurable Flight Control Design using a Robust Servo LQR and Radial Basis Function Neural Networks

    NASA Technical Reports Server (NTRS)

    Burken, John J.

    2005-01-01

    This viewgraph presentation reviews the use of a Robust Servo Linear Quadratic Regulator (LQR) and a Radial Basis Function (RBF) Neural Network in reconfigurable flight control designs in adaptation to a aircraft part failure. The method uses a robust LQR servomechanism design with model Reference adaptive control, and RBF neural networks. During the failure the LQR servomechanism behaved well, and using the neural networks improved the tracking.

  19. A methodology for formulating a minimal uncertainty model for robust control system design and analysis

    NASA Technical Reports Server (NTRS)

    Belcastro, Christine M.; Chang, B.-C.; Fischl, Robert

    1989-01-01

    In the design and analysis of robust control systems for uncertain plants, the technique of formulating what is termed an M-delta model has become widely accepted and applied in the robust control literature. The M represents the transfer function matrix M(s) of the nominal system, and delta represents an uncertainty matrix acting on M(s). The uncertainty can arise from various sources, such as structured uncertainty from parameter variations or multiple unstructured uncertainties from unmodeled dynamics and other neglected phenomena. In general, delta is a block diagonal matrix, and for real parameter variations the diagonal elements are real. As stated in the literature, this structure can always be formed for any linear interconnection of inputs, outputs, transfer functions, parameter variations, and perturbations. However, very little of the literature addresses methods for obtaining this structure, and none of this literature addresses a general methodology for obtaining a minimal M-delta model for a wide class of uncertainty. Since have a delta matrix of minimum order would improve the efficiency of structured singular value (or multivariable stability margin) computations, a method of obtaining a minimal M-delta model would be useful. A generalized method of obtaining a minimal M-delta structure for systems with real parameter variations is given.

  20. Optimisation in the Design of Environmental Sensor Networks with Robustness Consideration

    PubMed Central

    Budi, Setia; de Souza, Paulo; Timms, Greg; Malhotra, Vishv; Turner, Paul

    2015-01-01

    This work proposes the design of Environmental Sensor Networks (ESN) through balancing robustness and redundancy. An Evolutionary Algorithm (EA) is employed to find the optimal placement of sensor nodes in the Region of Interest (RoI). Data quality issues are introduced to simulate their impact on the performance of the ESN. Spatial Regression Test (SRT) is also utilised to promote robustness in data quality of the designed ESN. The proposed method provides high network representativeness (fit for purpose) with minimum sensor redundancy (cost), and ensures robustness by enabling the network to continue to achieve its objectives when some sensors fail. PMID:26633392

  1. Jumbo squid beaks: inspiration for design of robust organic composites.

    PubMed

    Miserez, Ali; Li, Youli; Waite, J Herbert; Zok, Frank

    2007-01-01

    The hard tissues found in some invertebrate marine organisms represent intriguing paradigms for robust, lightweight materials. The present study focuses on one such tissue: that comprising the beak of the jumbo squid (Dosidicus gigas). Its main constituents are chitin fibers (15-20wt.%) and histidine- and glycine-rich proteins (40-45%). Notably absent are mineral phases, metals and halogens. Despite being fully organic, beak hardness and stiffness are at least twice those of the most competitive synthetic organic materials (notably engineering polymers) and comparable to those of Glycera and Nereis jaws. Furthermore, the combination of hardness and stiffness makes the beaks more resistant to plastic deformation when in contact with blunt abrasives than virtually all metals and polymers. The 3,4-dihydroxy-l-phenylalanine and abundant histidine content in the beak proteins as well as the pigmented hydrolysis-resistant residue are suggestive of aromatic cross-linking. A high cross-linking density between the proteins and chitin may be the single most important determinant of hardness and stiffness in the beak. Beak microstructure is characterized by a lamellar arrangement of the constituents, with a weak interface that promotes crack deflection and endows the structure with high fracture toughness. The susceptibility of this microstructure to cracking along these interfaces from contact stresses at the external surface is mitigated by the presence of a protective coating.

  2. Design of robust differential microphone arrays with orthogonal polynomials.

    PubMed

    Pan, Chao; Benesty, Jacob; Chen, Jingdong

    2015-08-01

    Differential microphone arrays have the potential to be widely deployed in hands-free communication systems thanks to their frequency-invariant beampatterns, high directivity factors, and small apertures. Traditionally, they are designed and implemented in a multistage way with uniform linear geometries. This paper presents an approach to the design of differential microphone arrays with orthogonal polynomials, more specifically with Jacobi polynomials. It first shows how to express the beampatterns as a function of orthogonal polynomials. Then several differential beamformers are derived and their performance depends on the parameters of the Jacobi polynomials. Simulations show the great flexibility of the proposed method in terms of designing any order differential microphone arrays with different beampatterns and controlling white noise gain.

  3. Applying the miniaturization technologies for biosensor design.

    PubMed

    Derkus, Burak

    2016-05-15

    Microengineering technologies give us some opportunities in developing high-tech sensing systems that operate with low volumes of samples, integrates one or more laboratory functions on a single substrate, and enables automation. These millimetric sized devices can be produced for only a few dollars, which makes them promising candidates for mass-production. Besides electron beam lithography, stencil lithography, nano-imprint lithography or dip pen lithography, basic photolithography is the technique which is extensively used for the design of microengineered sensing systems. This technique has some advantages such as easy-to-manufacture, do not require expensive instrumentation, and allow creation of lower micron-sized patterns. In this review, it has been focused on three different type of microengineered sensing devices which are developed using micro/nano-patterning techniques, microfluidic technology, and microelectromechanics system based technology.

  4. An framework for robust flight control design using constrained optimization

    NASA Technical Reports Server (NTRS)

    Palazoglu, A.; Yousefpor, M.; Hess, R. A.

    1992-01-01

    An analytical framework is described for the design of feedback control systems to meet specified performance criteria in the presence of structured and unstructured uncertainty. Attention is focused upon the linear time invariant, single-input, single-output problem for the purposes of exposition. The framework provides for control of the degree of the stabilizing compensator or controller.

  5. Robust Controller Design: Minimizing Peak-to-Peak Gain

    DTIC Science & Technology

    1992-09-01

    Optimality of Feedback Control Systems: The SISO Discrete-Time Case", IEEE Trans. A-C, 35, 1082- 1085, 1990. [18] C.A. Desoer and M. Vidyasagar, Feedback...Systems: Input-Output Properties, Aca- demic Press, Inc, N.Y., 1975. [19] C.A. Desoer , R-W. Liu, J. Murray and R. Saeks. "Feedback System Design: The

  6. Parameter Space Techniques for Robust Control System Design.

    DTIC Science & Technology

    1980-07-01

    been further investi- gated by Cruz [2] and Desoer and Wang [3]. In frequency design methods the concept to compensate the loop, such that high gains...of Feedback Systems, McGraw-Hill, New York, 1972. 3. C. A. Desoer and Y. T. Wang, "Foundations of Feedback Theory for Nonlinear Dynamical Systems

  7. Robust Design: Seeking the Best of All Possible Worlds

    DTIC Science & Technology

    2000-12-01

    S. M. Sanchez. 1992. A critique and enhancement of the Taguchi method . ASQC Quality Congress Transactions 491–498. Ramberg, J. S., S. M. Sanchez, P...J. Sanchez and L. W. Hollick. 1991. Designing simulation experiments: Taguchi methods and response surface metamodels. In Proceedings of the 1994

  8. Design in Operations Hazard Controls-Proposal for Design Criteria Assuring Robust Feedback to Crew

    NASA Astrophysics Data System (ADS)

    Herd, Andrew; Favia, Vezio; Maas, Gerard; Boehme, Matthias

    2010-09-01

    Activities on the International Space Station(ISS) form part of the emergent safety system, imparted by on-orbit hardware(and associated configurations), defined operational process and the crew as a dynamic and interactive interface. The interaction between design and operations, and the influence on the crew’s ability to successfully perform the operational process is paramount to safety. The assurance of Safety of Flight(SoF), defined as the compliance to requirements that assure the safety of ISS or visiting vehicle crew and of the ISS or visiting vehicle infrastructure, is achieved through the sympathetic introduction of flight hardware into an active ISS environment. The hardware design alone may not provide for SoF in all hardware configurations required to achieve the required mission outcome(known as mission success). In these aspects the crew then provide local safety verification that SoF is maintained. In the crew’s role of assuring SoF, the design capability to provide robust feedback to the crew on the absolute or relative status of hardware configurations during operations is a key part of the assurance of the overall safety system. The crew are dependent on design features, and predefined criteria(such as inspection, or “end-state” criteria) being provided in the crew procedures that guide them through hardware operations. As such for safety-related operational constraints(known as operations hazard controls) defined during the hardware development phase, there are also design features that are specific to and essential for the assurance of SoF. Examples drawn from successful ISS operations undertaken by the European Space Agency may provide insight into best practice principles for crew feedback. Hardware feedback measures(at the human-machine interface) have been shown to demonstrate common features, in that they assure robust feedback which is “tolerant” of the ISS operational environment. It is concluded that specific criteria can be

  9. Eco-inspired robust control design for linear dynamical systems with applications

    NASA Astrophysics Data System (ADS)

    Devarakonda, Nagini

    Recently, the idea of using Ecological Sign Stability approach for designing robust controllers for engineering systems has attracted attention with promising results. In this work, continued research on this topic is presented. It is well known that, in the field of control systems, key to a good controller design is the choice of the appropriate nominal system. Since it is assumed that the perturbations are about this nominal, the extent of allowed perturbation to maintain the stability and/or performance very much depends on this 'nominal' system. Therefore, it is evident that this nominal system must have superior robustness properties. Incorporating certain robustness measures proposed in the literature, control design techniques have been realized in state space framework. However, the variety of controllers in state space framework is not as large as that of robust control design methods in frequency domain. Even these very few methods tend to be complex and demand some specific structure to the real parameter uncertainty (such as matching conditions). Overall, the success of all these methods for application to complex aerospace systems is still a subject of debate. Hence, there is still significant interest in designing robust controllers which can perform better than the existing controllers. Addressing these issues, current research proposes that the stability robustness measures for parameter perturbation are considerably improved if the 'nominal' system is taken (or driven) to be a 'sign stable' system. Motivated by this observation, a new method for designing a robust controller for linear uncertain state space systems is proposed. The novelty of this research lies in the incorporation of ecological principles in order to design robust controllers for engineering systems. It is observed that an ecological perspective gives better understanding of the dynamics of the open and closed loop system (nominal) matrices. One of the attractive features of this

  10. Robustness of linear quadratic state feedback designs in the presence of system uncertainty. [application to Augmentor Wing Jet STOL Research Aircraft flare control autopilot design

    NASA Technical Reports Server (NTRS)

    Patel, R. V.; Toda, M.; Sridhar, B.

    1977-01-01

    The paper deals with the problem of expressing the robustness (stability) property of a linear quadratic state feedback (LQSF) design quantitatively in terms of bounds on the perturbations (modeling errors or parameter variations) in the system matrices so that the closed-loop system remains stable. Nonlinear time-varying and linear time-invariant perturbations are considered. The only computation required in obtaining a measure of the robustness of an LQSF design is to determine the eigenvalues of two symmetric matrices determined when solving the algebraic Riccati equation corresponding to the LQSF design problem. Results are applied to a complex dynamic system consisting of the flare control of a STOL aircraft. The design of the flare control is formulated as an LQSF tracking problem.

  11. Reliability Assessment of a Robust Design Under Uncertainty for a 3-D Flexible Wing

    NASA Technical Reports Server (NTRS)

    Gumbert, Clyde R.; Hou, Gene J. -W.; Newman, Perry A.

    2003-01-01

    The paper presents reliability assessment results for the robust designs under uncertainty of a 3-D flexible wing previously reported by the authors. Reliability assessments (additional optimization problems) of the active constraints at the various probabilistic robust design points are obtained and compared with the constraint values or target constraint probabilities specified in the robust design. In addition, reliability-based sensitivity derivatives with respect to design variable mean values are also obtained and shown to agree with finite difference values. These derivatives allow one to perform reliability based design without having to obtain second-order sensitivity derivatives. However, an inner-loop optimization problem must be solved for each active constraint to find the most probable point on that constraint failure surface.

  12. Robust Control for Microgravity Vibration Isolation using Fixed Order, Mixed H2/Mu Design

    NASA Technical Reports Server (NTRS)

    Whorton, Mark

    2003-01-01

    Many space-science experiments need an active isolation system to provide a sufficiently quiescent microgravity environment. Modern control methods provide the potential for both high-performance and robust stability in the presence of parametric uncertainties that are characteristic of microgravity vibration isolation systems. While H2 and H(infinity) methods are well established, neither provides the levels of attenuation performance and robust stability in a compensator with low order. Mixed H2/H(infinity), controllers provide a means for maximizing robust stability for a given level of mean-square nominal performance while directly optimizing for controller order constraints. This paper demonstrates the benefit of mixed norm design from the perspective of robustness to parametric uncertainties and controller order for microgravity vibration isolation. A nominal performance metric analogous to the mu measure, for robust stability assessment is also introduced in order to define an acceptable trade space from which different control methodologies can be compared.

  13. Stochastic Satbility and Performance Robustness of Linear Multivariable Systems

    NASA Technical Reports Server (NTRS)

    Ryan, Laurie E.; Stengel, Robert F.

    1990-01-01

    Stochastic robustness, a simple technique used to estimate the robustness of linear, time invariant systems, is applied to a single-link robot arm control system. Concepts behind stochastic stability robustness are extended to systems with estimators and to stochastic performance robustness. Stochastic performance robustness measures based on classical design specifications are introduced, and the relationship between stochastic robustness measures and control system design parameters are discussed. The application of stochastic performance robustness, and the relationship between performance objectives and design parameters are demonstrated by means of example. The results prove stochastic robustness to be a good overall robustness analysis method that can relate robustness characteristics to control system design parameters.

  14. Robust Inference from Conditional Logistic Regression Applied to Movement and Habitat Selection Analysis

    PubMed Central

    Duchesne, Thierry; Fortin, Daniel

    2017-01-01

    Conditional logistic regression (CLR) is widely used to analyze habitat selection and movement of animals when resource availability changes over space and time. Observations used for these analyses are typically autocorrelated, which biases model-based variance estimation of CLR parameters. This bias can be corrected using generalized estimating equations (GEE), an approach that requires partitioning the data into independent clusters. Here we establish the link between clustering rules in GEE and their effectiveness to remove statistical biases in variance estimation of CLR parameters. The current lack of guidelines is such that broad variation in clustering rules can be found among studies (e.g., 14–450 clusters) with unknown consequences on the robustness of statistical inference. We simulated datasets reflecting conditions typical of field studies. Longitudinal data were generated based on several parameters of habitat selection with varying strength of autocorrelation and some individuals having more observations than others. We then evaluated how changing the number of clusters impacted the effectiveness of variance estimators. Simulations revealed that 30 clusters were sufficient to get unbiased and relatively precise estimates of variance of parameter estimates. The use of destructive sampling to increase the number of independent clusters was successful at removing statistical bias, but only when observations were temporally autocorrelated and the strength of inter-individual heterogeneity was weak. GEE also provided robust estimates of variance for different magnitudes of unbalanced datasets. Our simulations demonstrate that GEE should be estimated by assigning each individual to a cluster when at least 30 animals are followed, or by using destructive sampling for studies with fewer individuals having intermediate level of behavioural plasticity in selection and temporally autocorrelated observations. The simulations provide valuable information to

  15. Robust design of distributed controllers for large flexible space structures

    NASA Technical Reports Server (NTRS)

    Nguyen, Charles C.

    1988-01-01

    Independent Modal Space Control (IMSC) method avoids control spillover generated by conventional control schemes such as Coupled Modal Control by decoupling the large flexible space structure into independent subsystems of second order and controlling each mode independently. The IMSC implementation requires that the number of actuators be equal to that of modeled modes, which is in general very huge. Consequently the number of required actuators is unrealizable. Two methods are proposed for the implementation of IMSC with reduced number of actuators. In the first method, the first m modes are optimized, leaving the last (n-m) modes unchanged. In the second method, generalized inverse matrices are employed to design the feedback controller so that the control scheme is suboptimal with respect to IMSC. The performance of the proposed methods is tested by performing computer simulation on a simply support beam. Simulation results are presented and discussed.

  16. Product and Process Improvement Using Mixture-Process Variable Designs and Robust Optimization Techniques

    SciTech Connect

    Sahni, Narinder S.; Piepel, Gregory F.; Naes, Tormod

    2009-04-01

    The quality of an industrial product depends on the raw material proportions and the process variable levels, both of which need to be taken into account in designing a product. This article presents a case study from the food industry in which both kinds of variables were studied by combining a constrained mixture experiment design and a central composite process variable design. Based on the natural structure of the situation, a split-plot experiment was designed and models involving the raw material proportions and process variable levels (separately and combined) were fitted. Combined models were used to study: (i) the robustness of the process to variations in raw material proportions, and (ii) the robustness of the raw material recipes with respect to fluctuations in the process variable levels. Further, the expected variability in the robust settings was studied using the bootstrap.

  17. Robust Design of Reliability Test Plans Using Degradation Measures.

    SciTech Connect

    Lane, Jonathan Wesley; Lane, Jonathan Wesley; Crowder, Stephen V.; Crowder, Stephen V.

    2014-10-01

    With short production development times, there is an increased need to demonstrate product reliability relatively quickly with minimal testing. In such cases there may be few if any observed failures. Thus, it may be difficult to assess reliability using the traditional reliability test plans that measure only time (or cycles) to failure. For many components, degradation measures will contain important information about performance and reliability. These measures can be used to design a minimal test plan, in terms of number of units placed on test and duration of the test, necessary to demonstrate a reliability goal. Generally, the assumption is made that the error associated with a degradation measure follows a known distribution, usually normal, although in practice cases may arise where that assumption is not valid. In this paper, we examine such degradation measures, both simulated and real, and present non-parametric methods to demonstrate reliability and to develop reliability test plans for the future production of components with this form of degradation.

  18. A Robust and Reliability-Based Optimization Framework for Conceptual Aircraft Wing Design

    NASA Astrophysics Data System (ADS)

    Paiva, Ricardo Miguel

    A robustness and reliability based multidisciplinary analysis and optimization framework for aircraft design is presented. Robust design optimization and Reliability Based Design Optimization are merged into a unified formulation which streamlines the setup of optimization problems and aims at preventing foreseeable implementation issues in uncertainty based design. Surrogate models are evaluated to circumvent the intensive computations resulting from using direct evaluation in nondeterministic optimization. Three types of models are implemented in the framework: quadratic interpolation, regression Kriging and artificial neural networks. Regression Kriging presents the best compromise between performance and accuracy in deterministic wing design problems. The performance of the simultaneous implementation of robustness and reliability is evaluated using simple analytic problems and more complex wing design problems, revealing that performance benefits can still be achieved while satisfying probabilistic constraints rather than the simpler (and not as computationally intensive) robust constraints. The latter are proven to to be unable to follow a reliability constraint as uncertainty in the input variables increases. The computational effort of the reliability analysis is further reduced through the implementation of a coordinate change in the respective optimization sub-problem. The computational tool developed is a stand-alone application and it presents a user-friendly graphical user interface. The multidisciplinary analysis and design optimization tool includes modules for aerodynamics, structural, aeroelastic and cost analysis, that can be used either individually or coupled.

  19. Robust design optimization method for centrifugal impellers under surface roughness uncertainties due to blade fouling

    NASA Astrophysics Data System (ADS)

    Ju, Yaping; Zhang, Chuhua

    2016-03-01

    Blade fouling has been proved to be a great threat to compressor performance in operating stage. The current researches on fouling-induced performance degradations of centrifugal compressors are based mainly on simplified roughness models without taking into account the realistic factors such as spatial non-uniformity and randomness of the fouling-induced surface roughness. Moreover, little attention has been paid to the robust design optimization of centrifugal compressor impellers with considerations of blade fouling. In this paper, a multi-objective robust design optimization method is developed for centrifugal impellers under surface roughness uncertainties due to blade fouling. A three-dimensional surface roughness map is proposed to describe the nonuniformity and randomness of realistic fouling accumulations on blades. To lower computational cost in robust design optimization, the support vector regression (SVR) metamodel is combined with the Monte Carlo simulation (MCS) method to conduct the uncertainty analysis of fouled impeller performance. The analyzed results show that the critical fouled region associated with impeller performance degradations lies at the leading edge of blade tip. The SVR metamodel has been proved to be an efficient and accurate means in the detection of impeller performance variations caused by roughness uncertainties. After design optimization, the robust optimal design is found to be more efficient and less sensitive to fouling uncertainties while maintaining good impeller performance in the clean condition. This research proposes a systematic design optimization method for centrifugal compressors with considerations of blade fouling, providing a practical guidance to the design of advanced centrifugal compressors.

  20. Universal Design for Online Courses: Applying Principles to Pedagogy

    ERIC Educational Resources Information Center

    Rao, Kavita; Edelen-Smith, Patricia; Wailehua, Cat-Uyen

    2015-01-01

    Universal design (UD) educational frameworks provide useful guidelines for designing accessible learning environments with the intention of supporting students with and without disabilities. This article describes how one university instructor defined and applied the principles of Universal Instructional Design (UID) to pedagogy, while designing…

  1. Applying Learning Design to Work-Based Learning

    ERIC Educational Resources Information Center

    Miao, Yongwu; Hoppe, Heinz Ulrich

    2011-01-01

    Learning design is currently slanted to reflect a course-based approach to learning. This article explores whether the concept of learning design could be applied to support the informal aspects of work-based learning (WBL). It also discusses the characteristics of WBL and presents a WBL-specific learning design that highlights the key features…

  2. Control design for robust stability in linear regulators: Application to aerospace flight control

    NASA Technical Reports Server (NTRS)

    Yedavalli, R. K.

    1986-01-01

    Time domain stability robustness analysis and design for linear multivariable uncertain systems with bounded uncertainties is the central theme of the research. After reviewing the recently developed upper bounds on the linear elemental (structured), time varying perturbation of an asymptotically stable linear time invariant regulator, it is shown that it is possible to further improve these bounds by employing state transformations. Then introducing a quantitative measure called the stability robustness index, a state feedback conrol design algorithm is presented for a general linear regulator problem and then specialized to the case of modal systems as well as matched systems. The extension of the algorithm to stochastic systems with Kalman filter as the state estimator is presented. Finally an algorithm for robust dynamic compensator design is presented using Parameter Optimization (PO) procedure. Applications in a aircraft control and flexible structure control are presented along with a comparison with other existing methods.

  3. Data-Driven Robust Design and Probabilistic Risk Assessment: Application to Underground Carbon Dioxide Storage

    NASA Astrophysics Data System (ADS)

    Oladyshkin, S.; Class, H.; Helmig, R.; Nowak, W.

    2010-12-01

    CO2 storage in geological formations is currently being discussed intensively as an interim technology with a high potential for mitigating CO2 emissions. Uncertainty analysis using model-based stochastic approaches can help to better judge its potentials and hazards. Such approaches usually require to specify the probability distribution of all model parameters. This poses a huge demand on data availability or requires highly subjective assumptions to compensate for missing data, which can severely bias the results. The current work presents a data-driven approach for probabilistic risk assessment, applied to CO2 storage. We work with a new and purely data-driven version of polynomial chaos expansion that does not require exact knowledge of probability density functions for input parameters. Instead, we can directly employ raw data sets and all other available background information without further modifications or assumptions, thus minimizing both subjectivity and bias. The model response is expended by higher-order polynomials to approximate dependence on uncertain parameters (porosity, permeability etc.) and design parameters (injection rate, depth etc.). This allows for a non-linear propagation of model uncertainty and ensures fast computation. We combine both design and uncertain variables within a single approach based on an integrative response surface. Thus, the design task (e.g. finding optimal injection regimes) explicitly includes uncertainty. This leads to robust designs that minimize the failure probability and provide valuable support for risk-informed management decisions. We verify the accuracy of our proposed stochastic approach by comparison to Monte Carlo simulation. In our case study, the proposed approach yields a significant computational speed-up when compared to Monte Carlo and is accurate even for small order of the polynomial expansion. We demonstrate that uncertainty has a larger impact on prediction than refinement of the physical

  4. Designing a robust minimum variance controller using discrete slide mode controller approach.

    PubMed

    Alipouri, Yousef; Poshtan, Javad

    2013-03-01

    Designing minimum variance controllers (MVC) for nonlinear systems is confronted with many difficulties. The methods able to identify MIMO nonlinear systems are scarce. Harsh control signals produced by MVC are among other disadvantages of this controller. Besides, MVC is not a robust controller. In this article, the Vector ARX (VARX) model is used for simultaneously modeling the system and disturbance in order to tackle these disadvantages. For ensuring the robustness of the control loop, the discrete slide mode controller design approach is used in designing MVC and generalized MVC (GMVC). The proposed method for controller design is tested on a nonlinear experimental Four-Tank benchmark process and is compared with nonlinear MVCs designed by neural networks. In spite of the simplicity of designing GMVCs for the VARX models with uncertainty, the results show that the proposed method is accurate and implementable.

  5. Methodology for the conceptual design of a robust and opportunistic system-of-systems

    NASA Astrophysics Data System (ADS)

    Talley, Diana Noonan

    Systems are becoming more complicated, complex, and interrelated. Designers have recognized the need to develop systems from a holistic perspective and design them as Systems-of-Systems (SoS). The design of the SoS, especially in the conceptual design phase, is generally characterized by significant uncertainty. As a result, it is possible for all three types of uncertainty (aleatory, epistemic, and error) and the associated factors of uncertainty (randomness, sampling, confusion, conflict, inaccuracy, ambiguity, vagueness, coarseness, and simplification) to affect the design process. While there are a number of existing SoS design methods, several gaps have been identified: the ability to modeling all of the factors of uncertainty at varying levels of knowledge; the ability to consider both the pernicious and propitious aspects of uncertainty; and, the ability to determine the value of reducing the uncertainty in the design process. While there are numerous uncertainty modeling theories, no one theory can effectively model every kind of uncertainty. This research presents a Hybrid Uncertainty Modeling Method (HUMM) that integrates techniques from the following theories: Probability Theory, Evidence Theory, Fuzzy Set Theory, and Info-Gap theory. The HUMM is capable of modeling all of the different factors of uncertainty and can model the uncertainty for multiple levels of knowledge. In the design process, there are both pernicious and propitious characteristics associated with the uncertainty. Existing design methods typically focus on developing robust designs that are insensitive to the associated uncertainty. These methods do not capitalize on the possibility of maximizing the potential benefit associated with the uncertainty. This research demonstrates how these deficiencies can be overcome by identifying the most robust and opportunistic design. In a design process it is possible that the most robust and opportunistic design will not be selected from the set

  6. Robust polygon recognition method with similarity invariants applied to star identification

    NASA Astrophysics Data System (ADS)

    Hernández, E. Antonio; Alonso, Miguel A.; Chávez, Edgar; Covarrubias, David H.; Conte, Roberto

    2017-02-01

    In the star identification process the goal is to recognize a star by using the celestial bodies in its vicinity as context. An additional requirement is to avoid having to perform an exhaustive scan of the star database. In this paper we present a novel approach to star identification using similarity invariants. More specifically, the proposed algorithm defines a polygon for each star, using the neighboring celestial bodies in the field of view as vertices. The mapping is insensitive to similarity transformation; that is, the image of the polygon under the transformation is not affected by rotation, scaling or translations. Each polygon is associated with an essentially unique complex number. We perform an exhaustive experimental validation of the proposed algorithm using synthetic data generated from the star catalog with uniformly-distributed positional noise introduced to each star. The star identification method that we present is proven to be robust, achieving a recognition rate of 99.68% when noise levels of up to ± 424 μ radians are introduced to the location of the stars. In our tests the proposed algorithm proves that if a polygon match is found, it always corresponds to the star under analysis; no mismatches are found. In its present form our method cannot identify polygons in cases where there exist missing or false stars in the analyzed images, in those situations it only indicates that no match was found.

  7. Design and evaluation of a robust dynamic neurocontroller for a multivariable aircraft control problem

    NASA Technical Reports Server (NTRS)

    Troudet, T.; Garg, S.; Merrill, W.

    1992-01-01

    The design of a dynamic neurocontroller with good robustness properties is presented for a multivariable aircraft control problem. The internal dynamics of the neurocontroller are synthesized by a state estimator feedback loop. The neurocontrol is generated by a multilayer feedforward neural network which is trained through backpropagation to minimize an objective function that is a weighted sum of tracking errors, and control input commands and rates. The neurocontroller exhibits good robustness through stability margins in phase and vehicle output gains. By maintaining performance and stability in the presence of sensor failures in the error loops, the structure of the neurocontroller is also consistent with the classical approach of flight control design.

  8. Multivariable robust controller design of ACLS using loop-shaping approach

    NASA Astrophysics Data System (ADS)

    Dong, Chaoyang; Cui, Haihua; Wang, Qing

    2008-10-01

    In this paper a multivariable robust controller design approach of the ACLS is accomplished by using robust loop-shaping techniques. In order to avoid the inefficient way of choosing the weight functions by trial-and-error method, the structured genetic algorithm (SGA) approach is introduced, which is capable of simultaneously searching the orders and coefficients of the pre- and post-compensator for weight matrices. According to this approach, engineers can achieve an ideal loop-shape which lies in an appropriate region relating to the desired performance specifications. The effectiveness of this approach is illustrated by the longitudinal equations of a carrier-based aircraft's motion design example.

  9. A Robust Design Approach to Cost Estimation: Solar Energy for Marine Corps Expeditionary Operations (Briefing Charts)

    DTIC Science & Technology

    2014-05-01

    days 75-134 for Salt Lake City, by year, 1961-2010 Cost projections: oil and solar 12 Oil cost projections (from USEIA, 2014) and PV array cost...A ROBUST DESIGN APPROACH TO COST ESTIMATION: SOLAR ENERGY FOR MARINE CORPS EXPEDITIONARY OPERATIONS S.M. Sanchez, M.M. Morse, S.C. Upton, M.L...DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE A Robust Design Approach to Cost Estimation: Solar Energy for Marine Corps

  10. Systematic design methods of robust and structured controllers for satellites. Application to the refinement of Rosetta's orbit controller

    NASA Astrophysics Data System (ADS)

    Falcoz, Alexandre; Pittet, Christelle; Bennani, Samir; Guignard, Anne; Bayart, Cedric; Frapard, Benoit

    2015-09-01

    In this paper, the capability of nonsmooth optimisation techniques to solve complex control problems with implementation issues is addressed. {H}_{∞}/ μ design methods are analysed to enhance the current Airbus Defence and Space industrial development process. In the first instance, a reference μ-synthesis controller that achieves the desired robust performance level is designed. Second, a controller obeying the same initial design objectives is synthesized using a predefined fixed structure and order. This time, the controller is realised using a fixed-structure-based μ-synthesis approach involving a nonsmooth optimisation algorithm provided in the Matlab R2011b Robust Control Toolbox. Finally, a practical structured {H}_{∞} multi-model approach closer to Airbus Defence and Space development practices is proposed. The different methodologies are applied to synthesize the Chemical Station Keeping controllers of a flexible Eurostar E3000 satellite and a comparative performance robustness analysis is provided. Hinfstruct has now been established in the Airbus Defence and Space industrial process. Recently, it has been successfully used to rapidly refine the orbit controller of Rosetta Space Probe before the critical rendezvous with Comet 67P/Churyumov-Gerasimenko. A specific section will be devoted on this point and in-flight data will be presented.

  11. Robust, nonlinear, high angle-of-attack control design for a supermaneuverable vehicle

    NASA Technical Reports Server (NTRS)

    Adams, Richard J.

    1993-01-01

    High angle-of-attack flight control laws are developed for a supermaneuverable fighter aircraft. The methods of dynamic inversion and structured singular value synthesis are combined into an approach which addresses both the nonlinearity and robustness problems of flight at extreme operating conditions. The primary purpose of the dynamic inversion control elements is to linearize the vehicle response across the flight envelope. Structured singular value synthesis is used to design a dynamic controller which provides robust tracking to pilot commands. The resulting control system achieves desired flying qualities and guarantees a large margin of robustness to uncertainties for high angle-of-attack flight conditions. The results of linear simulation and structured singular value stability analysis are presented to demonstrate satisfaction of the design criteria. High fidelity nonlinear simulation results show that the combined dynamics inversion/structured singular value synthesis control law achieves a high level of performance in a realistic environment.

  12. Robust adaptive self-structuring fuzzy control design for nonaffine, nonlinear systems

    NASA Astrophysics Data System (ADS)

    Chen, Pin-Cheng; Wang, Chi-Hsu; Lee, Tsu-Tian

    2011-01-01

    In this article, a robust adaptive self-structuring fuzzy control (RASFC) scheme for the uncertain or ill-defined nonlinear, nonaffine systems is proposed. The RASFC scheme is composed of a robust adaptive controller and a self-structuring fuzzy controller. In the self-structuring fuzzy controller design, a novel self-structuring fuzzy system (SFS) is used to approximate the unknown plant nonlinearity, and the SFS can automatically grow and prune fuzzy rules to realise a compact fuzzy rule base. The robust adaptive controller is designed to achieve an L 2 tracking performance to stabilise the closed-loop system. This L 2 tracking performance can provide a clear expression of tracking error in terms of the sum of lumped uncertainty and external disturbance, which has not been shown in previous works. Finally, five examples are presented to show that the proposed RASFC scheme can achieve favourable tracking performance, yet heavy computational burden is relieved.

  13. Critical Needs for Robust and Reliable Database for Design and Manufacturing of Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Singh, M.

    1999-01-01

    Ceramic matrix composite (CMC) components are being designed, fabricated, and tested for a number of high temperature, high performance applications in aerospace and ground based systems. The critical need for and the role of reliable and robust databases for the design and manufacturing of ceramic matrix composites are presented. A number of issues related to engineering design, manufacturing technologies, joining, and attachment technologies, are also discussed. Examples of various ongoing activities in the area of composite databases. designing to codes and standards, and design for manufacturing are given.

  14. Applying macro design tools to the design of MEMS accelerometers

    SciTech Connect

    Davies, B.R.; Rodgers, M.S.; Montague, S.

    1998-02-01

    This paper describes the design of two different surface micromachined (MEMS) accelerometers and the use of design and analysis tools intended for macro sized devices. This work leverages a process for integrating both the micromechanical structures and microelectronics circuitry of a MEMS accelerometer on the same chip. In this process, the mechanical components of the sensor are first fabricated at the bottom of a trench etched into the wafer substrate. The trench is then filled with oxide and sealed to protect the mechanical components during subsequent microelectronics processing. The wafer surface is then planarized in preparation for CMOS processing. Next, the CMOS electronics are fabricated and the mechanical structures are released. The mechanical structure of each sensor consists of two polysilicon plate masses suspended by multiple springs (cantilevered beam structures) over corresponding polysilicon plates fixed to the substrate to form two parallel plate capacitors. One polysilicon plate mass is suspended using compliant springs forming a variable capacitor. The other polysilicon plate mass is suspended using very stiff springs acting as a fixed capacitor. Acceleration is measured by comparing the variable capacitance with the fixed capacitance during acceleration.

  15. HEURISTIC OPTIMIZATION AND ALGORITHM TUNING APPLIED TO SORPTIVE BARRIER DESIGN

    EPA Science Inventory

    While heuristic optimization is applied in environmental applications, ad-hoc algorithm configuration is typical. We use a multi-layer sorptive barrier design problem as a benchmark for an algorithm-tuning procedure, as applied to three heuristics (genetic algorithms, simulated ...

  16. A robust design mark-resight abundance estimator allowing heterogeneity in resighting probabilities

    USGS Publications Warehouse

    McClintock, B.T.; White, Gary C.; Burnham, K.P.

    2006-01-01

    This article introduces the beta-binomial estimator (BBE), a closed-population abundance mark-resight model combining the favorable qualities of maximum likelihood theory and the allowance of individual heterogeneity in sighting probability (p). The model may be parameterized for a robust sampling design consisting of multiple primary sampling occasions where closure need not be met between primary occasions. We applied the model to brown bear data from three study areas in Alaska and compared its performance to the joint hypergeometric estimator (JHE) and Bowden's estimator (BOWE). BBE estimates suggest heterogeneity levels were non-negligible and discourage the use of JHE for these data. Compared to JHE and BOWE, confidence intervals were considerably shorter for the AICc model-averaged BBE. To evaluate the properties of BBE relative to JHE and BOWE when sample sizes are small, simulations were performed with data from three primary occasions generated under both individual heterogeneity and temporal variation in p. All models remained consistent regardless of levels of variation in p. In terms of precision, the AICc model-averaged BBE showed advantages over JHE and BOWE when heterogeneity was present and mean sighting probabilities were similar between primary occasions. Based on the conditions examined, BBE is a reliable alternative to JHE or BOWE and provides a framework for further advances in mark-resight abundance estimation. ?? 2006 American Statistical Association and the International Biometric Society.

  17. Robust optimization of a mathematical model to design a dynamic cell formation problem considering labor utilization

    NASA Astrophysics Data System (ADS)

    Vafaeinezhad, Moghadaseh; Kia, Reza; Shahnazari-Shahrezaei, Parisa

    2016-11-01

    Cell formation (CF) problem is one of the most important decision problems in designing a cellular manufacturing system includes grouping machines into machine cells and parts into part families. Several factors should be considered in a cell formation problem. In this work, robust optimization of a mathematical model of a dynamic cell formation problem integrating CF, production planning and worker assignment is implemented with uncertain scenario-based data. The robust approach is used to reduce the effects of fluctuations of the uncertain parameters with regards to all possible future scenarios. In this research, miscellaneous cost parameters of the cell formation and demand fluctuations are subject to uncertainty and a mixed-integer nonlinear programming model is developed to formulate the related robust dynamic cell formation problem. The objective function seeks to minimize total costs including machine constant, machine procurement, machine relocation, machine operation, inter-cell and intra-cell movement, overtime, shifting labors between cells and inventory holding. Finally, a case study is carried out to display the robustness and effectiveness of the proposed model. The tradeoff between solution robustness and model robustness is also analyzed in the obtained results.

  18. Applying axiomatic design to a medication distribution system

    NASA Astrophysics Data System (ADS)

    Raguini, Pepito B.

    As the need to minimize medication errors drives many medical facilities to come up with robust solutions to the most common error that affects patient's safety, these hospitals would be wise to put a concerted effort into finding methodologies that can facilitate an optimized medical distribution system. If the hospitals' upper management is looking for an optimization method that is an ideal fit, it is just as important that the right tool be selected for the application at hand. In the present work, we propose the application of Axiomatic Design (AD), which is a process that focuses on the generation and selection of functional requirements to meet the customer needs for product and/or process design. The appeal of the axiomatic approach is to provide both a formal design process and a set of technical coefficients for meeting the customer's needs. Thus, AD offers a strategy for the effective integration of people, design methods, design tools and design data. Therefore, we propose the AD methodology to medical applications with the main objective of allowing nurses the opportunity to provide cost effective delivery of medications to inpatients, thereby improving quality patient care. The AD methodology will be implemented through the use of focused stores, where medications can be readily stored and can be conveniently located near patients, as well as a mobile apparatus that can also store medications and is commonly used by hospitals, the medication cart. Moreover, a robust methodology called the focused store methodology will be introduced and developed for both the uncapacitated and capacitated case studies, which will set up an appropriate AD framework and design problem for a medication distribution case study.

  19. Application of a robust linear control design to a truss structure with nonlinear joints

    NASA Technical Reports Server (NTRS)

    Webster, Mark; Vander Velde, Wallace

    1991-01-01

    An efficient nonlinear equivalent beam finite-element method for the application of a full state feedback design is described, which is robust to plant uncertainties to a beamlike truss structure with nonlinear elements. The method may be extended to model nonlinear structures with other types of control systems, such as model-based compensators.

  20. Enhancing Functional Robustness of Gene Regulatory Networks Based on Fitness Landscape Design

    NASA Astrophysics Data System (ADS)

    Kim, Kyung

    We aim to develop design principles for enhancing functional robustness of engineered cells using gene-network topology. We observed the effect of genetic regulation types (inhibition and activation) on robustness. Inhibition was much more stable than activation in E. coli. In the case of activation, if the upstream activator expression is shutdown by mutation, then its downstream expression is shut down as well. Without activation, the activator shutdown due to mutation will make its downstream expression ``remains`` turned off. Thus, the change in the metabolic load is higher in the activation case. Therefore, the stronger activation, the less robust the circuits are. In the inhibition case, we found that the story becomes opposite. When an inhibitor expression is shut down by mutation, the downstream expression turns on because the inhibitor is not expressed. This compensates changes in the metabolic load that might have been decreased without the inhibition. This result presents potential significant roles of network topology on the robustness of engineered cellular networks. This also emphasizes that the concept of fitness landscape, where the local slope corresponds to the fitness difference between different genotypes, can be useful to design robust gene circuits. We acknowledge the support of the NSF (MCB Award # 1515280).

  1. Robust dynamic inversion controller design and analysis (using the X-38 vehicle as a case study)

    NASA Astrophysics Data System (ADS)

    Ito, Daigoro

    A new way to approach robust Dynamic Inversion controller synthesis is addressed in this paper. A Linear Quadratic Gaussian outer-loop controller improves the robustness of a Dynamic Inversion inner-loop controller in the presence of uncertainties. Desired dynamics are given by the dynamic compensator, which shapes the loop. The selected dynamics are based on both performance and stability robustness requirements. These requirements are straightforwardly formulated as frequency-dependent singular value bounds during synthesis of the controller. Performance and robustness of the designed controller is tested using a worst case time domain quadratic index, which is a simple but effective way to measure robustness due to parameter variation. Using this approach, a lateral-directional controller for the X-38 vehicle is designed and its robustness to parameter variations and disturbances is analyzed. It is found that if full state measurements are available, the performance of the designed lateral-directional control system, measured by the chosen cost function, improves by approximately a factor of four. Also, it is found that the designed system is stable up to a parametric variation of 1.65 standard deviation with the set of uncertainty considered. The system robustness is determined to be highly sensitive to the dihedral derivative and the roll damping coefficients. The controller analysis is extended to the nonlinear system where both control input displacements and rates are bounded. In this case, the considered nonlinear system is stable up to 48.1° in bank angle and 1.59° in sideslip angle variations, indicating it is more sensitive to variations in sideslip angle than in bank angle. This nonlinear approach is further extended for the actuator failure mode analysis. The results suggest that the designed system maintains a high level of stability in the event of aileron failure. However, only 35% or less of the original stability range is maintained for the

  2. Applying the ID Process to the Guided Design Teaching Strategy.

    ERIC Educational Resources Information Center

    Coscarelli, William C.; White, Gregory P.

    1982-01-01

    Describes the application of the instructional development process to a teaching technique called Guided Design in a Production-Operations Management course. In Guided Design, students are self-instructed in course content and use class time to apply this knowledge to self-instruction; in-class problem-solving is stressed. (JJD)

  3. Bioassay case study applying the maximin D-optimal design algorithm to the four-parameter logistic model.

    PubMed

    Coffey, Todd

    2015-01-01

    Cell-based potency assays play an important role in the characterization of biopharmaceuticals but they can be challenging to develop in part because of greater inherent variability than other analytical methods. Our objective is to select concentrations on a dose-response curve that will enhance assay robustness. We apply the maximin D-optimal design concept to the four-parameter logistic (4 PL) model and then derive and compute the maximin D-optimal design for a challenging bioassay using curves representative of assay variation. The selected concentration points from this 'best worst case' design adequately fit a variety of 4 PL shapes and demonstrate improved robustness.

  4. Estimating survival and breeding probability for pond-breeding amphibians: a modified robust design

    USGS Publications Warehouse

    Bailey, L.L.; Kendall, W.L.; Church, D.R.; Wilbur, H.M.

    2004-01-01

    Many studies of pond-breeding amphibians involve sampling individuals during migration to and from breeding habitats. Interpreting population processes and dynamics from these studies is difficult because (1) only a proportion of the population is observable each season, while an unknown proportion remains unobservable (e.g., non-breeding adults) and (2) not all observable animals are captured. Imperfect capture probability can be easily accommodated in capture?recapture models, but temporary transitions between observable and unobservable states, often referred to as temporary emigration, is known to cause problems in both open- and closed-population models. We develop a multistate mark?recapture (MSMR) model, using an open-robust design that permits one entry and one exit from the study area per season. Our method extends previous temporary emigration models (MSMR with an unobservable state) in two ways. First, we relax the assumption of demographic closure (no mortality) between consecutive (secondary) samples, allowing estimation of within-pond survival. Also, we add the flexibility to express survival probability of unobservable individuals (e.g., ?non-breeders?) as a function of the survival probability of observable animals while in the same, terrestrial habitat. This allows for potentially different annual survival probabilities for observable and unobservable animals. We apply our model to a relictual population of eastern tiger salamanders (Ambystoma tigrinum tigrinum). Despite small sample sizes, demographic parameters were estimated with reasonable precision. We tested several a priori biological hypotheses and found evidence for seasonal differences in pond survival. Our methods could be applied to a variety of pond-breeding species and other taxa where individuals are captured entering or exiting a common area (e.g., spawning or roosting area, hibernacula).

  5. Multi-criteria optimal pole assignment robust controller design for uncertainty systems using an evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    Sarjaš, Andrej; Chowdhury, Amor; Svečko, Rajko

    2016-09-01

    This paper presents the synthesis of an optimal robust controller design using the polynomial pole placement technique and multi-criteria optimisation procedure via an evolutionary computation algorithm - differential evolution. The main idea of the design is to provide a reliable fixed-order robust controller structure and an efficient closed-loop performance with a preselected nominally characteristic polynomial. The multi-criteria objective functions have quasi-convex properties that significantly improve convergence and the regularity of the optimal/sub-optimal solution. The fundamental aim of the proposed design is to optimise those quasi-convex functions with fixed closed-loop characteristic polynomials, the properties of which are unrelated and hard to present within formal algebraic frameworks. The objective functions are derived from different closed-loop criteria, such as robustness with metric ?∞, time performance indexes, controller structures, stability properties, etc. Finally, the design results from the example verify the efficiency of the controller design and also indicate broader possibilities for different optimisation criteria and control structures.

  6. A traditional and a less-invasive robust design: choices in optimizing effort allocation for seabird population studies

    USGS Publications Warehouse

    Converse, S.J.; Kendall, W.L.; Doherty, P.F.; Naughton, M.B.; Hines, J.E.; Thomson, David L.; Cooch, Evan G.; Conroy, Michael J.

    2009-01-01

    For many animal populations, one or more life stages are not accessible to sampling, and therefore an unobservable state is created. For colonially-breeding populations, this unobservable state could represent the subset of adult breeders that have foregone breeding in a given year. This situation applies to many seabird populations, notably albatrosses, where skipped breeders are either absent from the colony, or are present but difficult to capture or correctly assign to breeding state. Kendall et al. have proposed design strategies for investigations of seabird demography where such temporary emigration occurs, suggesting the use of the robust design to permit the estimation of time-dependent parameters and to increase the precision of estimates from multi-state models. A traditional robust design, where animals are subject to capture multiple times in a sampling season, is feasible in many cases. However, due to concerns that multiple captures per season could cause undue disturbance to animals, Kendall et al. developed a less-invasive robust design (LIRD), where initial captures are followed by an assessment of the ratio of marked-to-unmarked birds in the population or sampled plot. This approach has recently been applied in the Northwestern Hawaiian Islands to populations of Laysan (Phoebastria immutabilis) and black-footed (P. nigripes) albatrosses. In this paper, we outline the LIRD and its application to seabird population studies. We then describe an approach to determining optimal allocation of sampling effort in which we consider a non-robust design option (nRD), and variations of both the traditional robust design (RD), and the LIRD. Variations we considered included the number of secondary sampling occasions for the RD and the amount of total effort allocated to the marked-to-unmarked ratio assessment for the LIRD. We used simulations, informed by early data from the Hawaiian study, to address optimal study design for our example cases. We found that

  7. A Simple Robust PID Controller Design Method Based on Sine Wave Identification of the Uncertain Plant

    NASA Astrophysics Data System (ADS)

    Bucz, Štefan; Marič, Ladislav; Harsányi, Ladislav; Veselý, Vojtech

    2010-05-01

    The paper deals with the development and application of a new simple empirical approach to the design of robust PID controllers for technological processes in industrial practice. The main advantage of the proposed approach is the possibility to specify the required performance before the design algorithm implementation. Identification of characteristic data of the black-box type plant with varying parameters is carried out using the sine wave excitation signal, thus allowing to design the controller without necessarily knowing the mathematical model of the plant. The proposed approach has been verified on a real-world physical process.

  8. Design of a nonlinear robust controller for a complete unmanned aerial vehicle mission

    NASA Astrophysics Data System (ADS)

    Sadraey, Mohammad Hashem

    Unmanned Aerial Vehicle (UAV) flight control systems must be capable of delivering the required performance while handling nonlinearities and uncertainties in the vehicle model, the atmosphere, and ambient wind. These factors necessitate the development of nonlinear flight control system design methods that can handle large nonlinearities and uncertainties. Variable approaches to the linear control of UAVs have been discussed in the recent literature. However, the development of a nonlinear robust autopilot has not been addressed to any significant degree. The development of a nonlinear autopilot based on robust control methods will be discussed in this dissertation. In this design technique, the nonlinear UAV model is not linearized. The control law is designed using the Hinfinity technique. This dissertation presents the results of an exploratory study to examine robust autopilot nonlinear design methods for the UAV and compare this new approach with existing PID, LQR, and linear Hinfinity techniques. Since the method must then be verified, its flight simulation will be done using MATLAB/SIMULINK. Verification, validation and robustness tests are documented at the end of this dissertation. The airplane examined is called the Hawkeye. It was designed and built by KU students in the fall of 2004. It is a small, 14 foot wingspan, remotely controlled airplane made from composite materials with a maximum takeoff weight of 90 lbs. It will be used in the future as a small UAV for research programs at KU. The mission includes take-off, climb, cruise, a one and a half circle accomplished in a level turn, and a return back to its original airfield accomplished by cruising back, descending, and completing an approach and landing. After take-off, the airplane is required to climb to 1,000 ft altitude, and then it travels 5,000 ft over the ground into the target area. It will then take some photos of that target using its camera. The complete mission for the UAV lasts about

  9. Design of inner coupling matrix for robustly self-synchronizing networks

    NASA Astrophysics Data System (ADS)

    Gequn, Liu; Zhiguo, Zhan; Knowles, Gareth

    2015-12-01

    A self-synchronizing network may undergo change of scale and topology during its functioning, thus adjustment of parameters is necessary to enable the synchronization. The adjustment cost and runtime-break demand a method to maintain continuous operation of the network. To address these issues, this paper presents an analytical method for the design of the inner coupling matrix. The proposed method renders the synchronization robust to change of network scale and topology. It is usual in network models that scale and topology are represented by outer coupling matrix. In this paper we only consider diffusively coupled networks. For these networks, the eigenvalues of the outer coupling matrix are all non-positive. By utilizing this property, the designed inner coupling matrix can cover the entire left half of complex plane within the synchronized region to underlie robustness of synchronization. After elaborating the applicability of several types of synchronization state for a robustly self-synchronizing network, the analytical design method is given for the stable equilibrium point case. Sometimes the Jacobian matrix of the node dynamical equation may lead to an unrealizable complex inner coupling matrix in the method. We then introduce a lemma of matrix transformation to prevent this possibility. Additionally, we investigated the choice of inner coupling matrix to get a desirable self-synchronization speed. The corresponding condition in the design procedure is given to drive the network synchronization faster than convergence of each node. Finally, the article includes examples that show effectiveness and soundness of the method.

  10. Applying complexity theory: a review to inform evaluation design.

    PubMed

    Walton, Mat

    2014-08-01

    Complexity theory has increasingly been discussed and applied within evaluation literature over the past decade. This article reviews the discussion and use of complexity theory within academic journal literature. The aim is to identify the issues to be considered when applying complexity theory to evaluation. Reviewing 46 articles, two groups of themes are identified. The first group considers implications of applying complexity theory concepts for defining evaluation purpose, scope and units of analysis. The second group of themes consider methodology and method. Results provide a starting point for a configuration of an evaluation approach consistent with complexity theory, whilst also identifying a number of design considerations to be resolved within evaluation planning.

  11. Hierarchical Modeling and Robust Synthesis for the Preliminary Design of Large Scale Complex Systems

    NASA Technical Reports Server (NTRS)

    Koch, Patrick N.

    1997-01-01

    Large-scale complex systems are characterized by multiple interacting subsystems and the analysis of multiple disciplines. The design and development of such systems inevitably requires the resolution of multiple conflicting objectives. The size of complex systems, however, prohibits the development of comprehensive system models, and thus these systems must be partitioned into their constituent parts. Because simultaneous solution of individual subsystem models is often not manageable iteration is inevitable and often excessive. In this dissertation these issues are addressed through the development of a method for hierarchical robust preliminary design exploration to facilitate concurrent system and subsystem design exploration, for the concurrent generation of robust system and subsystem specifications for the preliminary design of multi-level, multi-objective, large-scale complex systems. This method is developed through the integration and expansion of current design techniques: Hierarchical partitioning and modeling techniques for partitioning large-scale complex systems into more tractable parts, and allowing integration of subproblems for system synthesis; Statistical experimentation and approximation techniques for increasing both the efficiency and the comprehensiveness of preliminary design exploration; and Noise modeling techniques for implementing robust preliminary design when approximate models are employed. Hierarchical partitioning and modeling techniques including intermediate responses, linking variables, and compatibility constraints are incorporated within a hierarchical compromise decision support problem formulation for synthesizing subproblem solutions for a partitioned system. Experimentation and approximation techniques are employed for concurrent investigations and modeling of partitioned subproblems. A modified composite experiment is introduced for fitting better predictive models across the ranges of the factors, and an approach for

  12. Application of Taguchi robust design method to SAW mass sensing device.

    PubMed

    Wu, Der Ho; Chen, Hsin Hua

    2005-12-01

    It is essential that measurement systems provide an accurate and robust performance over a wide range of input conditions. This paper adopts Taguchi's signal-to-noise ratio (SNR) analysis to develop a robust design for the Rayleigh surface acoustic wave (SAW) gas sensing device operated in a conventional delay-line configuration. The goal of the present Taguchi design activity is to increase the sensitivity of this sensor while simultaneously reducing its variability. A time- and cost-efficient finite-element analysis method is used to investigate the effects on the sensor's response output of variations in the carbon dioxide (CO2) gas deposited mass. The simulation results for the resonant frequency and wave mode analysis are all shown to be in good agreement with the values predicted theoretically.

  13. Improving the Robustness of Local Network Alignment: Design and Extensive Assessment of a Markov Clustering-Based Approach.

    PubMed

    Mina, Marco; Guzzi, Pietro Hiram

    2014-01-01

    The analysis of protein behavior at the network level had been applied to elucidate the mechanisms of protein interaction that are similar in different species. Published network alignment algorithms proved to be able to recapitulate known conserved modules and protein complexes, and infer new conserved interactions confirmed by wet lab experiments. In the meantime, however, a plethora of continuously evolving protein-protein interaction (PPI) data sets have been developed, each featuring different levels of completeness and reliability. For instance, algorithms performance may vary significantly when changing the data set used in their assessment. Moreover, existing papers did not deeply investigate the robustness of alignment algorithms. For instance, some algorithms performances vary significantly when changing the data set used in their assessment. In this work, we design an extensive assessment of current algorithms discussing the robustness of the results on the basis of input networks. We also present AlignMCL, a local network alignment algorithm based on an improved model of alignment graph and Markov Clustering. AlignMCL performs better than other state-of-the-art local alignment algorithms over different updated data sets. In addition, AlignMCL features high levels of robustness, producing similar results regardless the selected data set.

  14. The 'robust' capture-recapture design allows components of recruitment to be estimated

    USGS Publications Warehouse

    Pollock, K.H.; Kendall, W.L.; Nichols, J.D.; Lebreton, J.-D.; North, P.M.

    1993-01-01

    The 'robust' capture-recapture design (Pollock 1982) allows analyses which combine features of closed population model analyses (Otis et aI., 1978, White et aI., 1982) and open population model analyses (Pollock et aI., 1990). Estimators obtained under these analyses are more robust to unequal catch ability than traditional Jolly-Seber estimators (Pollock, 1982; Pollock et al., 1990; Kendall, 1992). The robust design also allows estimation of parameters for population size, survival rate and recruitment numbers for all periods of the study unlike under Jolly-Seber type models. The major advantage of this design that we emphasize in this short review paper is that it allows separate estimation of immigration and in situ recruitment numbers for a two or more age class model (Nichols and Pollock, 1990). This is contrasted with the age-dependent Jolly-Seber model (Pollock, 1981; Stokes, 1984; Pollock et L, 1990) which provides separate estimates for immigration and in situ recruitment for all but the first two age classes where there is at least a three age class model. The ability to achieve this separation of recruitment components can be very important to population modelers and wildlife managers as many species can only be separated into two easily identified age classes in the field.

  15. Robust controller design for flexible structures using normalized coprime factor plant descriptions

    NASA Technical Reports Server (NTRS)

    Armstrong, Ernest S.

    1993-01-01

    Stabilization is a fundamental requirement in the design of feedback compensators for flexible structures. The search for the largest neighborhood around a given design plant for which a single controller produces closed-loop stability can be formulated as an H(sub infinity) control problem. The use of normalized coprime factor plant descriptions, in which the plant perturbations are defined as additive modifications to the coprime factors, leads to a closed-form expression for the maximum neighborhood boundary allowing optimal and suboptimal H(sub infinity) compensators to be computed directly without the usual gamma iteration. A summary of the theory on robust stabilization using normalized coprime factor plant descriptions is presented, and the application of the theory to the computation of robustly stable compensators for the phase version of the Control-Structures Interaction (CSI) Evolutionary Model is described. Results from the application indicate that the suboptimal version of the theory has the potential of providing the bases for the computation of low-authority compensators that are robustly stable to expected variations in design model parameters and additive unmodeled dynamics.

  16. Robust design of spot welds in automotive structures: A decision-making methodology

    NASA Astrophysics Data System (ADS)

    Ouisse, M.; Cogan, S.

    2010-05-01

    Automotive structures include thousands of spot welds whose design must allow the assembled vehicle to satisfy a wide variety of performance constraints including static, dynamic and crash criteria. The objective of a standard optimization strategy is to reduce the number of spot welds as much as possible while satisfying all the design objectives. However, a classical optimization of the spot weld distribution using an exhaustive search approach is simply not feasible due to the very high order of the design space and the subsequently prohibitive calculation costs. Moreover, even if this calculation could be done, the result would not necessarily be very informative with respect to the design robustness to manufacturing uncertainties (location of welds and defective welds) and to the degradation of spot welds due to fatigue effects over the lifetime of the vehicle. In this paper, a decision-making methodology is presented which allows some aspects of the robustness issues to be integrated into the spot weld design process. The starting point is a given distribution of spot welds on the structure, which is based on both engineering know-how and preliminary critical numerical results, in particular criteria such as crash behavior. An over-populated spot weld distribution is then built in order to satisfy the remaining design criteria, such as static torsion angle and modal behavior. Then, an efficient optimization procedure based on energy considerations is used to eliminate redundant spot welds while preserving as far as possible the nominal structural behavior. The resulting sub-optimal solution is then used to provide a decision indicator for defining effective quality control procedures (e.g. visual post-assembly inspection of a small number of critical spot welds) as well as designing redundancy into critical zones. The final part of the paper is related to comparing the robustness of competing designs. Some decision-making indicators are presented to help the

  17. Probabilistic Methods for Uncertainty Propagation Applied to Aircraft Design

    NASA Technical Reports Server (NTRS)

    Green, Lawrence L.; Lin, Hong-Zong; Khalessi, Mohammad R.

    2002-01-01

    Three methods of probabilistic uncertainty propagation and quantification (the method of moments, Monte Carlo simulation, and a nongradient simulation search method) are applied to an aircraft analysis and conceptual design program to demonstrate design under uncertainty. The chosen example problems appear to have discontinuous design spaces and thus these examples pose difficulties for many popular methods of uncertainty propagation and quantification. However, specific implementation features of the first and third methods chosen for use in this study enable successful propagation of small uncertainties through the program. Input uncertainties in two configuration design variables are considered. Uncertainties in aircraft weight are computed. The effects of specifying required levels of constraint satisfaction with specified levels of input uncertainty are also demonstrated. The results show, as expected, that the designs under uncertainty are typically heavier and more conservative than those in which no input uncertainties exist.

  18. Applying riding-posture optimization on bicycle frame design.

    PubMed

    Hsiao, Shih-Wen; Chen, Rong-Qi; Leng, Wan-Lee

    2015-11-01

    Customization design is a trend for developing a bicycle in recent years. Thus, the comfort of riding a bike is an important factor that should be paid much attention to while developing a bicycle. From the viewpoint of ergonomics, the concept of "fitting object to the human body" is designed into the bicycle frame in this study. Firstly, the important feature points of riding posture were automatically detected by the image processing method. In the measurement process, the best riding posture was identified experimentally, thus the positions of feature points and joint angles of human body were obtained. Afterwards, according to the measurement data, three key points: the handlebar, the saddle and the crank center, were identified and applied to the frame design of various bicycle types. Lastly, this study further proposed a frame size table for common bicycle types, which is helpful for the designer to design a bicycle.

  19. Design and experimental validation of a robust CFAR distributed multifrequency radar data fusion system

    NASA Astrophysics Data System (ADS)

    Thomopoulos, Stelios C.; Okello, Nickens N.

    1995-07-01

    A robust constant false alarm rate (CFAR) distributed detection system that operates in heavy clutter with unknown distribution is presented. The system is designed to provide CFARness under clutter power fluctuations and robustness under unknown clutter and noise distributions. The system is also designed to operate successfully under unbalanced power distributions among sensors, and exhibits fault-tolerance in the presence of sensor power fluctuations. The test statistic at each sensor is a robust (in terms of signal-to-noise ratio distribution across sensors) CFAR t-statistic. In addition to the primary binary decisions, confidence levels are generated with each decision and used in the fusion logic to robustify the fusion performance and eliminate weaknesses of the Boolean fusion logic. The test statistic and the fusion logic are analyzed theoretically for Weibull and lognormal clutter. The theoretical performance is compared against Monte-Carlo simulations that verify that the system exhibits the desired characteristics of CFARness, robustness, insensitivity to power fluctuations, and fault- tolerance. The system is tested with experimental target-in-clear and target-in-clutter data. The experimental performance agrees with the theoretically predicted behavior when the target is visible by all three radars. When the target is not visible in two out of the three radars, due to a possible undetected misalignment, the fusion performance is compromised. Robustification of the fusion performance against unpredictable and undetectable degradation of data quality in the majority of the sensors is then achieved using geometric filtering. Geometrical filtering is accomplished by using the Hough transform and additional information in the fusion design about the shape of the target trajectory(ies).

  20. Fault Injection Software Tools and Robust Design Principles for Reliability and Safety in Measurement Science Education

    NASA Astrophysics Data System (ADS)

    Faller, Lisa-Marie; Zangl, Hubert; Leitzke, Juliana P.

    2016-11-01

    In the design of measurement systems we face the fact that parameters are subject to (measurement-) uncertainties. Additionally, components may behave entirely different from what is specified, which is then considered a fault. Consequently, both uncertainty as well as probability of failure should be considered in education on robust design and reliability. In this paper we present a teaching concept based on hardware fault injection using a simple level sensor system as an example. Learning objectives are faults, errors, failures, false alarms versus misses as well as advantages and disadvantages of redundancy.

  1. LQG/LTR Design of a Robust Flight Controller for the STOL F-15.

    DTIC Science & Technology

    1985-12-01

    BUREAU OF STANDARDSI 963-A IA ’uOF LQG/LTR DESIGN OF ROBSTFLIGHT CONTROLLERFOR THE STOL F-15 THESIS Gregory L. Gross Captain, USAF DT IC ~E.ECTEM...fpuic~ rt~t, ftrbuo 8:6 2 1.2 AFIT/GAE/ENG/85D-1 S LQG/LTR DESIGN OF A ROBUST FLIGHT CONTROLLER FOR THE STOL F-15 THESIS Gregory L. Gross Captain, USAF...FOR THE STOL F-I5 THESIS Presented to the Faculty of the School of Engineering of the Air Force Institute of Technology Air University in Partial

  2. Optimizing ELISAs for precision and robustness using laboratory automation and statistical design of experiments.

    PubMed

    Joelsson, Daniel; Moravec, Phil; Troutman, Matthew; Pigeon, Joseph; DePhillips, Pete

    2008-08-20

    Transferring manual ELISAs to automated platforms requires optimizing the assays for each particular robotic platform. These optimization experiments are often time consuming and difficult to perform using a traditional one-factor-at-a-time strategy. In this manuscript we describe the development of an automated process using statistical design of experiments (DOE) to quickly optimize immunoassays for precision and robustness on the Tecan EVO liquid handler. By using fractional factorials and a split-plot design, five incubation time variables and four reagent concentration variables can be optimized in a short period of time.

  3. AP1000{sup R} design robustness against extreme external events - Seismic, flooding, and aircraft crash

    SciTech Connect

    Pfister, A.; Goossen, C.; Coogler, K.; Gorgemans, J.

    2012-07-01

    Both the International Atomic Energy Agency (IAEA) and the U.S. Nuclear Regulatory Commission (NRC) require existing and new nuclear power plants to conduct plant assessments to demonstrate the unit's ability to withstand external hazards. The events that occurred at the Fukushima-Dai-ichi nuclear power station demonstrated the importance of designing a nuclear power plant with the ability to protect the plant against extreme external hazards. The innovative design of the AP1000{sup R} nuclear power plant provides unparalleled protection against catastrophic external events which can lead to extensive infrastructure damage and place the plant in an extended abnormal situation. The AP1000 plant is an 1100-MWe pressurized water reactor with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance and safety. The plant's compact safety related footprint and protection provided by its robust nuclear island structures prevent significant damage to systems, structures, and components required to safely shutdown the plant and maintain core and spent fuel pool cooling and containment integrity following extreme external events. The AP1000 nuclear power plant has been extensively analyzed and reviewed to demonstrate that it's nuclear island design and plant layout provide protection against both design basis and extreme beyond design basis external hazards such as extreme seismic events, external flooding that exceeds the maximum probable flood limit, and malicious aircraft impact. The AP1000 nuclear power plant uses fail safe passive features to mitigate design basis accidents. The passive safety systems are designed to function without safety-grade support systems (such as AC power, component cooling water, service water, compressed air or HVAC). The plant has been designed to protect systems, structures, and components critical to placing the reactor in a safe shutdown condition within the steel containment vessel

  4. Robust control design with real parameter uncertainty using absolute stability theory. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    How, Jonathan P.; Hall, Steven R.

    1993-01-01

    The purpose of this thesis is to investigate an extension of mu theory for robust control design by considering systems with linear and nonlinear real parameter uncertainties. In the process, explicit connections are made between mixed mu and absolute stability theory. In particular, it is shown that the upper bounds for mixed mu are a generalization of results from absolute stability theory. Both state space and frequency domain criteria are developed for several nonlinearities and stability multipliers using the wealth of literature on absolute stability theory and the concepts of supply rates and storage functions. The state space conditions are expressed in terms of Riccati equations and parameter-dependent Lyapunov functions. For controller synthesis, these stability conditions are used to form an overbound of the H2 performance objective. A geometric interpretation of the equivalent frequency domain criteria in terms of off-axis circles clarifies the important role of the multiplier and shows that both the magnitude and phase of the uncertainty are considered. A numerical algorithm is developed to design robust controllers that minimize the bound on an H2 cost functional and satisfy an analysis test based on the Popov stability multiplier. The controller and multiplier coefficients are optimized simultaneously, which avoids the iteration and curve-fitting procedures required by the D-K procedure of mu synthesis. Several benchmark problems and experiments on the Middeck Active Control Experiment at M.I.T. demonstrate that these controllers achieve good robust performance and guaranteed stability bounds.

  5. Design of Robust PI Controllers and their Application to a Nonlinear Electronic System

    NASA Astrophysics Data System (ADS)

    Matušů, Radek; Vaneková, Katarína; Prokop, Roman; Bakošová, Monika

    2010-01-01

    The principal aim of the paper is to present a possible approach to the design of simple Proportional-Integral (PI) robust controllers and subsequently to demonstrate their applicability during control of a laboratory model with uncertain parameters through the Programmable Logic Controller (PLC) SIMATIC S7-300 by Siemens Company. The proposed and utilized synthesis consists of two steps. The former one is determination of controller parameters area, which ensures the robustly stable control loop and is based on computing/plotting the stability boundary locus while the latter one lies in the final choice of the controller itself relying on algebraic techniques. The basic theoretical parts are followed by laboratory experiments in which the 3rd order nonlinear electronic model has been successfully controlled in various working points.

  6. Intelligent, Robust Control of Deteriorated Turbofan Engines via Linear Parameter Varying Quadratic Lyapunov Function Design

    NASA Technical Reports Server (NTRS)

    Turso, James A.; Litt, Jonathan S.

    2004-01-01

    A method for accommodating engine deterioration via a scheduled Linear Parameter Varying Quadratic Lyapunov Function (LPVQLF)-Based controller is presented. The LPVQLF design methodology provides a means for developing unconditionally stable, robust control of Linear Parameter Varying (LPV) systems. The controller is scheduled on the Engine Deterioration Index, a function of estimated parameters that relate to engine health, and is computed using a multilayer feedforward neural network. Acceptable thrust response and tight control of exhaust gas temperature (EGT) is accomplished by adjusting the performance weights on these parameters for different levels of engine degradation. Nonlinear simulations demonstrate that the controller achieves specified performance objectives while being robust to engine deterioration as well as engine-to-engine variations.

  7. Robust SDRE filter design for nonlinear uncertain systems with an H∞ performance criterion.

    PubMed

    Beikzadeh, Hossein; Taghirad, Hamid D

    2012-01-01

    In order to remedy the effects of modeling uncertainty, measurement noise and input disturbance on the performance of the standard state-dependent Riccati equation (SDRE) filter, a new robust H(∞) SDRE filter design is developed in this paper. Based on the infinity-norm minimization criterion, the proposed filter effectively estimates the states of nonlinear uncertain system exposed to unknown disturbance inputs. Moreover, by assuming a mild Lipschitz condition on the chosen state-dependent coefficient form, fulfillment of a modified H(∞) performance index is guaranteed in the proposed filter. The effectiveness of the robust SDRE filter is demonstrated through numerical simulations where it brilliantly outperforms the conventional SDRE filter in presence of model uncertainties, disturbance and measurement noise, in terms of estimation error and region of convergence.

  8. Robust design of adenovirus purification by two-column, simulated moving-bed, size-exclusion chromatography.

    PubMed

    Nestola, Piergiuseppe; Silva, Ricardo J S; Peixoto, Cristina; Alves, Paula M; Carrondo, Manuel J T; Mota, José P B

    2015-11-10

    A simple, yet efficient, two-column simulated moving-bed (2CSMB) process for purifying adenovirus serotype 5 (Ad5) by size-exclusion chromatography (SEC) is presented and validated experimentally, and a general procedure for its robust design under parameter uncertainty is described. The pilot-scale run yielded a virus recovery of 86 percent and DNA and HCP clearances of 90 and 89 percent, respectively, without any fine tuning of the operating parameters. This performance compares very favorably against that of single-column batch chromatography for the same volume of size-exclusion resin. To improve the robustness of the 2CSMB-SEC process the best set of operating parameters is selected only among candidate solutions that are robust feasible, that is, remain feasible for all parameter perturbations within their uncertainty intervals. This robust approach to optimal design replaces the nominal problem by a worst case problem. Computational tractability is ensured by formulating the robust design problem with only the vertices of the uncertainty region that have the worst effect on the product purity and recovery. The robust design is exemplified on the case where the column volume and interparticle porosity are subject to uncertainty. As expected, to increase the robustness of the 2CSMB-SEC process it is necessary to reduce its productivity and increase its solvent consumption. Nevertheless, the design solution given by our robust approach is the least detrimental of all feasible operating conditions for the 2CSMB-SEC process.

  9. Evolutionary algorithms applied to reliable communication network design

    NASA Astrophysics Data System (ADS)

    Nesmachnow, Sergio; Cancela, Hector; Alba, Enrique

    2007-10-01

    Several evolutionary algorithms (EAs) applied to a wide class of communication network design problems modelled under the generalized Steiner problem (GSP) are evaluated. In order to provide a fault-tolerant design, a solution to this problem consists of a preset number of independent paths linking each pair of potentially communicating terminal nodes. This usually requires considering intermediate non-terminal nodes (Steiner nodes), which are used to ensure path redundancy, while trying to minimize the overall cost. The GSP is an NP-hard problem for which few algorithms have been proposed. This article presents a comparative study of pure and hybrid EAs applied to the GSP, codified over MALLBA, a general purpose library for combinatorial optimization. The algorithms were tested on several GSPs, and asset efficient numerical results are reported for both serial and distributed models of the evaluated algorithms.

  10. Design of the optocoupler applied to medical lighting systems.

    PubMed

    Yang, Xibin; Lit, Rui; Zhu, Jianfeng; Xiong, Daxi

    2012-12-01

    A new type of optocoupler applied to medical lighting system is proposed, and the principle, Etendue and design process is introduced. With the help of Tracrpro, modeling and simulation of the optocoupler is conducted and the parameters are optimized. Analysis of factors affecting the energy coupling efficiency is done. With a view towards the development of Ultra High Brightness Light Emitting Diodes (UHB-LEDs), which play an important role a new sources of lighting in various biomedical devices, including those used in diagnosis and treatment, a series of simulations are executed and a variety of solutions are achieved. According to simulation results, the design target of coupling efficiency is achieved and the optical uniformity is also significantly improved. According to the result of theoretical analysis, verification experiments are designed and simulation results are verified. The optocoupler, which has simple structure, compact size and low cost, is suitable for applications in the field of low-cost medical domain.

  11. Designing Agent Utilities for Coordinated, Scalable and Robust Multi-Agent Systems

    NASA Technical Reports Server (NTRS)

    Tumer, Kagan

    2005-01-01

    Coordinating the behavior of a large number of agents to achieve a system level goal poses unique design challenges. In particular, problems of scaling (number of agents in the thousands to tens of thousands), observability (agents have limited sensing capabilities), and robustness (the agents are unreliable) make it impossible to simply apply methods developed for small multi-agent systems composed of reliable agents. To address these problems, we present an approach based on deriving agent goals that are aligned with the overall system goal, and can be computed using information readily available to the agents. Then, each agent uses a simple reinforcement learning algorithm to pursue its own goals. Because of the way in which those goals are derived, there is no need to use difficult to scale external mechanisms to force collaboration or coordination among the agents, or to ensure that agents actively attempt to appropriate the tasks of agents that suffered failures. To present these results in a concrete setting, we focus on the problem of finding the sub-set of a set of imperfect devices that results in the best aggregate device. This is a large distributed agent coordination problem where each agent (e.g., device) needs to determine whether to be part of the aggregate device. Our results show that the approach proposed in this work provides improvements of over an order of magnitude over both traditional search methods and traditional multi-agent methods. Furthermore, the results show that even in extreme cases of agent failures (i.e., half the agents failed midway through the simulation) the system's performance degrades gracefully and still outperforms a failure-free and centralized search algorithm. The results also show that the gains increase as the size of the system (e.g., number of agents) increases. This latter result is particularly encouraging and suggests that this method is ideally suited for domains where the number of agents is currently in the

  12. Solving Two-Level Optimization Problems with Applications to Robust Design and Energy Markets

    DTIC Science & Technology

    2011-01-01

    made up of only robust points otherwise the term is ill-defined. There is also a global counterpart as defined below. Definition 2.6: Globally ...optimal robust: For a robust optimization problem, a globally optimal robust solution x*, is a robust point such that x* is optimal ( xxfxf...Since this dissertation‟s approach is based on gradient-based methods, a globally optimal robust solution can never be guaranteed for the complete

  13. Robust optimal design of diffusion-weighted magnetic resonance experiments for skin microcirculation

    NASA Astrophysics Data System (ADS)

    Choi, J.; Raguin, L. G.

    2010-10-01

    Skin microcirculation plays an important role in several diseases including chronic venous insufficiency and diabetes. Magnetic resonance (MR) has the potential to provide quantitative information and a better penetration depth compared with other non-invasive methods such as laser Doppler flowmetry or optical coherence tomography. The continuous progress in hardware resulting in higher sensitivity must be coupled with advances in data acquisition schemes. In this article, we first introduce a physical model for quantifying skin microcirculation using diffusion-weighted MR (DWMR) based on an effective dispersion model for skin leading to a q-space model of the DWMR complex signal, and then design the corresponding robust optimal experiments. The resulting robust optimal DWMR protocols improve the worst-case quality of parameter estimates using nonlinear least squares optimization by exploiting available a priori knowledge of model parameters. Hence, our approach optimizes the gradient strengths and directions used in DWMR experiments to robustly minimize the size of the parameter estimation error with respect to model parameter uncertainty. Numerical evaluations are presented to demonstrate the effectiveness of our approach as compared to conventional DWMR protocols.

  14. A robust approach to optimal matched filter design in ultrasonic non-destructive evaluation (NDE)

    NASA Astrophysics Data System (ADS)

    Li, Minghui; Hayward, Gordon

    2017-02-01

    The matched filter was demonstrated to be a powerful yet efficient technique to enhance defect detection and imaging in ultrasonic non-destructive evaluation (NDE) of coarse grain materials, provided that the filter was properly designed and optimized. In the literature, in order to accurately approximate the defect echoes, the design utilized the real excitation signals, which made it time consuming and less straightforward to implement in practice. In this paper, we present a more robust and flexible approach to optimal matched filter design using the simulated excitation signals, and the control parameters are chosen and optimized based on the real scenario of array transducer, transmitter-receiver system response, and the test sample, as a result, the filter response is optimized and depends on the material characteristics. Experiments on industrial samples are conducted and the results confirm the great benefits of the method.

  15. A Robust Variable Sampling Time BLDC Motor Control Design Based upon μ-Synthesis

    PubMed Central

    Yen, Jia-Yush

    2013-01-01

    The variable sampling rate system is encountered in many applications. When the speed information is derived from the position marks along the trajectory, one would have a speed dependent sampling rate system. The conventional fixed or multisampling rate system theory may not work in these cases because the system dynamics include the uncertainties which resulted from the variable sampling rate. This paper derived a convenient expression for the speed dependent sampling rate system. The varying sampling rate effect is then translated into multiplicative uncertainties to the system. The design then uses the popular μ-synthesis process to achieve a robust performance controller design. The implementation on a BLDC motor demonstrates the effectiveness of the design approach. PMID:24327804

  16. A robust variable sampling time BLDC motor control design based upon μ-synthesis.

    PubMed

    Hung, Chung-Wen; Yen, Jia-Yush

    2013-01-01

    The variable sampling rate system is encountered in many applications. When the speed information is derived from the position marks along the trajectory, one would have a speed dependent sampling rate system. The conventional fixed or multisampling rate system theory may not work in these cases because the system dynamics include the uncertainties which resulted from the variable sampling rate. This paper derived a convenient expression for the speed dependent sampling rate system. The varying sampling rate effect is then translated into multiplicative uncertainties to the system. The design then uses the popular μ-synthesis process to achieve a robust performance controller design. The implementation on a BLDC motor demonstrates the effectiveness of the design approach.

  17. Robust fixed-order dynamic output feedback controller design for nonlinear uncertain suspension system

    NASA Astrophysics Data System (ADS)

    Badri, Pouya; Amini, Amir; Sojoodi, Mahdi

    2016-12-01

    This paper deals with designing a robust fixed-order non-fragile dynamic output feedback controller for active suspension system of a quarter-car, by means of convex optimization and linear matrix inequalities (LMIs). Our purpose is to design a low-order controller that keeps the desired design specifications besides the simplicity of the implementation. The proposed controller is capable of asymptotically stabilizing the closed-loop system and developing H∞ control, despite model uncertainties and nonlinear dynamics of the quarter-car as well as the norm bounded perturbations of controller parameters. Furthermore, controller parameters are prevented from taking very large and undesirable amounts through appropriate LMI constraints. Finally, a numerical example is presented to show the effectiveness of the proposed method by comparing it with similar works.

  18. Not all sequence tags are created equal: designing and validating sequence identification tags robust to indels.

    PubMed

    Faircloth, Brant C; Glenn, Travis C

    2012-01-01

    Ligating adapters with unique synthetic oligonucleotide sequences (sequence tags) onto individual DNA samples before massively parallel sequencing is a popular and efficient way to obtain sequence data from many individual samples. Tag sequences should be numerous and sufficiently different to ensure sequencing, replication, and oligonucleotide synthesis errors do not cause tags to be unrecoverable or confused. However, many design approaches only protect against substitution errors during sequencing and extant tag sets contain too few tag sequences. We developed an open-source software package to validate sequence tags for conformance to two distance metrics and design sequence tags robust to indel and substitution errors. We use this software package to evaluate several commercial and non-commercial sequence tag sets, design several large sets (max(count) = 7,198) of edit metric sequence tags having different lengths and degrees of error correction, and integrate a subset of these edit metric tags to polymerase chain reaction (PCR) primers and sequencing adapters. We validate a subset of these edit metric tagged PCR primers and sequencing adapters by sequencing on several platforms and subsequent comparison to commercially available alternatives. We find that several commonly used sets of sequence tags or design methodologies used to produce sequence tags do not meet the minimum expectations of their underlying distance metric, and we find that PCR primers and sequencing adapters incorporating edit metric sequence tags designed by our software package perform as well as their commercial counterparts. We suggest that researchers evaluate sequence tags prior to use or evaluate tags that they have been using. The sequence tag sets we design improve on extant sets because they are large, valid across the set, and robust to the suite of substitution, insertion, and deletion errors affecting massively parallel sequencing workflows on all currently used platforms.

  19. Design and Implementation of a Robust Sensor Data Fusion System for Unknown Signals

    NASA Astrophysics Data System (ADS)

    Kim, Younghun; Schmid, Thomas; Srivastava, Mani B.

    In this work, we present a robust sensor fusion system for exploratory data collection, exploiting the spatial redundancy in sensor networks. Unlike prior work, our system design criteria considers a heterogeneous correlated noise model and packet loss, but no prior knowledge of signal characteristics. The former two assumptions are both common signal degradation sources in sensor networks, while the latter allows exploratory data collection of unknown signals. Through both a numerical example and an experimental study on a large military site, we show that our proposed system reduces the noise in an unknown signal by 58.2% better than a comparable algorithm.

  20. Modular Design of Artificial Tissue Homeostasis: Robust Control through Synthetic Cellular Heterogeneity

    PubMed Central

    Sontag, Eduardo; Davidsohn, Noah; Subramanian, Sairam; Purnick, Priscilla E. M.; Lauffenburger, Douglas; Weiss, Ron

    2012-01-01

    Synthetic biology efforts have largely focused on small engineered gene networks, yet understanding how to integrate multiple synthetic modules and interface them with endogenous pathways remains a challenge. Here we present the design, system integration, and analysis of several large scale synthetic gene circuits for artificial tissue homeostasis. Diabetes therapy represents a possible application for engineered homeostasis, where genetically programmed stem cells maintain a steady population of β-cells despite continuous turnover. We develop a new iterative process that incorporates modular design principles with hierarchical performance optimization targeted for environments with uncertainty and incomplete information. We employ theoretical analysis and computational simulations of multicellular reaction/diffusion models to design and understand system behavior, and find that certain features often associated with robustness (e.g., multicellular synchronization and noise attenuation) are actually detrimental for tissue homeostasis. We overcome these problems by engineering a new class of genetic modules for ‘synthetic cellular heterogeneity’ that function to generate beneficial population diversity. We design two such modules (an asynchronous genetic oscillator and a signaling throttle mechanism), demonstrate their capacity for enhancing robust control, and provide guidance for experimental implementation with various computational techniques. We found that designing modules for synthetic heterogeneity can be complex, and in general requires a framework for non-linear and multifactorial analysis. Consequently, we adapt a ‘phenotypic sensitivity analysis’ method to determine how functional module behaviors combine to achieve optimal system performance. We ultimately combine this analysis with Bayesian network inference to extract critical, causal relationships between a module's biochemical rate-constants, its high level functional behavior in isolation

  1. Modular design of artificial tissue homeostasis: robust control through synthetic cellular heterogeneity.

    PubMed

    Miller, Miles; Hafner, Marc; Sontag, Eduardo; Davidsohn, Noah; Subramanian, Sairam; Purnick, Priscilla E M; Lauffenburger, Douglas; Weiss, Ron

    2012-01-01

    Synthetic biology efforts have largely focused on small engineered gene networks, yet understanding how to integrate multiple synthetic modules and interface them with endogenous pathways remains a challenge. Here we present the design, system integration, and analysis of several large scale synthetic gene circuits for artificial tissue homeostasis. Diabetes therapy represents a possible application for engineered homeostasis, where genetically programmed stem cells maintain a steady population of β-cells despite continuous turnover. We develop a new iterative process that incorporates modular design principles with hierarchical performance optimization targeted for environments with uncertainty and incomplete information. We employ theoretical analysis and computational simulations of multicellular reaction/diffusion models to design and understand system behavior, and find that certain features often associated with robustness (e.g., multicellular synchronization and noise attenuation) are actually detrimental for tissue homeostasis. We overcome these problems by engineering a new class of genetic modules for 'synthetic cellular heterogeneity' that function to generate beneficial population diversity. We design two such modules (an asynchronous genetic oscillator and a signaling throttle mechanism), demonstrate their capacity for enhancing robust control, and provide guidance for experimental implementation with various computational techniques. We found that designing modules for synthetic heterogeneity can be complex, and in general requires a framework for non-linear and multifactorial analysis. Consequently, we adapt a 'phenotypic sensitivity analysis' method to determine how functional module behaviors combine to achieve optimal system performance. We ultimately combine this analysis with Bayesian network inference to extract critical, causal relationships between a module's biochemical rate-constants, its high level functional behavior in isolation, and

  2. A sensitivity analysis of process design parameters, commodity prices and robustness on the economics of odour abatement technologies.

    PubMed

    Estrada, José M; Kraakman, N J R Bart; Lebrero, Raquel; Muñoz, Raúl

    2012-01-01

    The sensitivity of the economics of the five most commonly applied odour abatement technologies (biofiltration, biotrickling filtration, activated carbon adsorption, chemical scrubbing and a hybrid technology consisting of a biotrickling filter coupled with carbon adsorption) towards design parameters and commodity prices was evaluated. Besides, the influence of the geographical location on the Net Present Value calculated for a 20 years lifespan (NPV20) of each technology and its robustness towards typical process fluctuations and operational upsets were also assessed. This comparative analysis showed that biological techniques present lower operating costs (up to 6 times) and lower sensitivity than their physical/chemical counterparts, with the packing material being the key parameter affecting their operating costs (40-50% of the total operating costs). The use of recycled or partially treated water (e.g. secondary effluent in wastewater treatment plants) offers an opportunity to significantly reduce costs in biological techniques. Physical/chemical technologies present a high sensitivity towards H2S concentration, which is an important drawback due to the fluctuating nature of malodorous emissions. The geographical analysis evidenced high NPV20 variations around the world for all the technologies evaluated, but despite the differences in wage and price levels, biofiltration and biotrickling filtration are always the most cost-efficient alternatives (NPV20). When, in an economical evaluation, the robustness is as relevant as the overall costs (NPV20), the hybrid technology would move up next to BTF as the most preferred technologies.

  3. A robust approach to the design of an electromagnetic shield based on pyrolitic carbon

    NASA Astrophysics Data System (ADS)

    Lamberti, Patrizia; Kuzhir, Polina; Tucci, Vincenzo

    2016-07-01

    A robust approach to the design of an electromagnetic shield based on ultra-thin pyrolytic carbon (PyC, 5 ÷ 110 nm) films is proposed. Finite Element Method (FEM) simulations and Monte Carlo based tolerance analysis are used to show that even a deviation of 15 ÷ 20% from the nominal values of the most important design parameters of the PyC film, i.e. its thickness and sheet resistance, does not significantly affect the wanted level of electromagnetic interference shielding efficiency (EMI SE). The ranges of the SE show that EMI shield based on PyC film is characterized by a robust behavior with respect to the variation of such parameters due to the production processes. Therefore, since the PyC can be produced on a scalable basis, is chemically inert, significantly transparent in the visible range and can be deposited onto both metal and dielectric substrates, including flexible polymers, it may be appropriate for the highly demanding technological needs associated to the graphene revolution and can be developed from laboratory to mass production applications.

  4. Flight control design using a blend of modern nonlinear adaptive and robust techniques

    NASA Astrophysics Data System (ADS)

    Yang, Xiaolong

    In this dissertation, the modern control techniques of feedback linearization, mu synthesis, and neural network based adaptation are used to design novel control laws for two specific applications: F/A-18 flight control and reusable launch vehicle (an X-33 derivative) entry guidance. For both applications, the performance of the controllers is assessed. As a part of a NASA Dryden program to develop and flight test experimental controllers for an F/A-18 aircraft, a novel method of combining mu synthesis and feedback linearization is developed to design longitudinal and lateral-directional controllers. First of all, the open-loop and closed-loop dynamics of F/A-18 are investigated. The production F/A-18 controller as well as the control distribution mechanism are studied. The open-loop and closed-loop handling qualities of the F/A-18 are evaluated using low order transfer functions. Based on this information, a blend of robust mu synthesis and feedback linearization is used to design controllers for a low dynamic pressure envelope of flight conditions. For both the longitudinal and the lateral-directional axes, a robust linear controller is designed for a trim point in the center of the envelope. Then by including terms to cancel kinematic nonlinearities and variations in the aerodynamic forces and moments over the flight envelope, a complete nonlinear controller is developed. In addition, to compensate for the model uncertainty, linearization error and variations between operating points, neural network based adaptation is added to the designed longitudinal controller. The nonlinear simulations, robustness and handling qualities analysis indicate that the performance is similar to or better than that for the production F/A-18 controllers. When the dynamic pressure is very low, the performance of both the experimental and the production flight controllers is degraded, but Level I handling qualities are still achieved. A new generation of Reusable Launch Vehicles

  5. A new smooth robust control design for uncertain nonlinear systems with non-vanishing disturbances

    NASA Astrophysics Data System (ADS)

    Xian, Bin; Zhang, Yao

    2016-06-01

    In this paper, we consider the control problem for a general class of nonlinear system subjected to uncertain dynamics and non-varnishing disturbances. A smooth nonlinear control algorithm is presented to tackle these uncertainties and disturbances. The proposed control design employs the integral of a nonlinear sigmoid function to compensate the uncertain dynamics, and achieve a uniformly semi-global practical asymptotic stable tracking control of the system outputs. A novel Lyapunov-based stability analysis is employed to prove the convergence of the tracking errors and the stability of the closed-loop system. Numerical simulation results on a two-link robot manipulator are presented to illustrate the performance of the proposed control algorithm comparing with the layer-boundary sliding mode controller and the robust of integration of sign of error control design. Furthermore, real-time experiment results for the attitude control of a quadrotor helicopter are also included to confirm the effectiveness of the proposed algorithm.

  6. An info-gap application to robust design of a prestressed space structure under epistemic uncertainties

    NASA Astrophysics Data System (ADS)

    Hot, Aurélien; Weisser, Thomas; Cogan, Scott

    2017-07-01

    Uncertainty quantification is an integral part of the model validation process and is important to take into account during the design of mechanical systems. Sources of uncertainty are diverse but generally fall into two categories: aleatory due to random process and epistemic resulting from a lack of knowledge. This work focuses on the behavior of solar arrays in their stowed configuration. To avoid impacts during launch, snubbers are used to prestress the panels. Since the mechanical properties of the snubbers and the associated preload configurations are difficult to characterize precisely, an info-gap approach is proposed to investigate the influence of such uncertainties on design configurations obtained for different values of safety factors. This eventually allows to revise the typical values of these factors and to reevaluate them with respect to a targeted robustness level. The proposed methodology is illustrated using a simplified finite element model of a solar array.

  7. Designing the Electronic Classroom: Applying Learning Theory and Ergonomic Design Principles.

    ERIC Educational Resources Information Center

    Emmons, Mark; Wilkinson, Frances C.

    2001-01-01

    Applies learning theory and ergonomic principles to the design of effective learning environments for library instruction. Discusses features of electronic classroom ergonomics, including the ergonomics of physical space, environmental factors, and workstations; and includes classroom layouts. (Author/LRW)

  8. Behaviour Centred Design: towards an applied science of behaviour change

    PubMed Central

    Aunger, Robert; Curtis, Valerie

    2016-01-01

    ABSTRACT Behaviour change has become a hot topic. We describe a new approach, Behaviour Centred Design (BCD), which encompasses a theory of change, a suite of behavioural determinants and a programme design process. The theory of change is generic, assuming that successful interventions must create a cascade of effects via environments, through brains, to behaviour and hence to the desired impact, such as improved health. Changes in behaviour are viewed as the consequence of a reinforcement learning process involving the targeting of evolved motives and changes to behaviour settings, and are produced by three types of behavioural control mechanism (automatic, motivated and executive). The implications are that interventions must create surprise, revalue behaviour and disrupt performance in target behaviour settings. We then describe a sequence of five steps required to design an intervention to change specific behaviours: Assess, Build, Create, Deliver and Evaluate. The BCD approach has been shown to change hygiene, nutrition and exercise-related behaviours and has the advantages of being applicable to product, service or institutional design, as well as being able to incorporate future developments in behaviour science. We therefore argue that BCD can become the foundation for an applied science of behaviour change. PMID:27535821

  9. Effective, Robust Design of Community Mitigation for Pandemic Influenza: A Systematic Examination of Proposed US Guidance

    PubMed Central

    Min, H. Jason; Beyeler, Walter E.; Glass, Laura M.

    2008-01-01

    Background The US government proposes pandemic influenza mitigation guidance that includes isolation and antiviral treatment of ill persons, voluntary household member quarantine and antiviral prophylaxis, social distancing of individuals, school closure, reduction of contacts at work, and prioritized vaccination. Is this the best strategy combination? Is choice of this strategy robust to pandemic uncertainties? What are critical enablers of community resilience? Methods and Findings We systematically simulate a broad range of pandemic scenarios and mitigation strategies using a networked, agent-based model of a community of explicit, multiply-overlapping social contact networks. We evaluate illness and societal burden for alterations in social networks, illness parameters, or intervention implementation. For a 1918-like pandemic, the best strategy minimizes illness to <1% of the population and combines network-based (e.g. school closure, social distancing of all with adults' contacts at work reduced), and case-based measures (e.g. antiviral treatment of the ill and prophylaxis of household members). We find choice of this best strategy robust to removal of enhanced transmission by the young, additional complexity in contact networks, and altered influenza natural history including extended viral shedding. Administration of age-group or randomly targeted 50% effective pre-pandemic vaccine with 7% population coverage (current US H5N1 vaccine stockpile) had minimal effect on outcomes. In order, mitigation success depends on rapid strategy implementation, high compliance, regional mitigation, and rigorous rescinding criteria; these are the critical enablers for community resilience. Conclusions Systematic evaluation of feasible, recommended pandemic influenza interventions generally confirms the US community mitigation guidance yields best strategy choices for pandemic planning that are robust to a wide range of uncertainty. The best strategy combines network- and

  10. Optimization of Systems with Uncertainty: Initial Developments for Performance, Robustness and Reliability Based Designs

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    This paper presents a study on the optimization of systems with structured uncertainties, whose inputs and outputs can be exhaustively described in the probabilistic sense. By propagating the uncertainty from the input to the output in the space of the probability density functions and the moments, optimization problems that pursue performance, robustness and reliability based designs are studied. Be specifying the desired outputs in terms of desired probability density functions and then in terms of meaningful probabilistic indices, we settle a computationally viable framework for solving practical optimization problems. Applications to static optimization and stability control are used to illustrate the relevance of incorporating uncertainty in the early stages of the design. Several examples that admit a full probabilistic description of the output in terms of the design variables and the uncertain inputs are used to elucidate the main features of the generic problem and its solution. Extensions to problems that do not admit closed form solutions are also evaluated. Concrete evidence of the importance of using a consistent probabilistic formulation of the optimization problem and a meaningful probabilistic description of its solution is provided in the examples. In the stability control problem the analysis shows that standard deterministic approaches lead to designs with high probability of running into instability. The implementation of such designs can indeed have catastrophic consequences.

  11. Quality by Design: Multidimensional exploration of the design space in high performance liquid chromatography method development for better robustness before validation.

    PubMed

    Monks, K; Molnár, I; Rieger, H-J; Bogáti, B; Szabó, E

    2012-04-06

    Robust HPLC separations lead to fewer analysis failures and better method transfer as well as providing an assurance of quality. This work presents the systematic development of an optimal, robust, fast UHPLC method for the simultaneous assay of two APIs of an eye drop sample and their impurities, in accordance with Quality by Design principles. Chromatography software is employed to effectively generate design spaces (Method Operable Design Regions), which are subsequently employed to determine the final method conditions and to evaluate robustness prior to validation.

  12. Combining band recovery data and Pollock's robust design to model temporary and permanent emigration

    USGS Publications Warehouse

    Lindberg, M.S.; Kendall, W.L.; Hines, J.E.; Anderson, M.G.

    2001-01-01

    Capture-recapture models are widely used to estimate demographic parameters of marked populations. Recently, this statistical theory has been extended to modeling dispersal of open populations. Multistate models can be used to estimate movement probabilities among subdivided populations if multiple sites are sampled. Frequently, however, sampling is limited to a single site. Models described by Burnham (1993, in Marked Individuals in the Study of Bird Populations, 199-213), which combined open population capture-recapture and band-recovery models, can be used to estimate permanent emigration when sampling is limited to a single population. Similarly, Kendall, Nichols, and Hines (1997, Ecology 51, 563-578) developed models to estimate temporary emigration under Pollock's (1982, Journal of Wildlife Management 46, 757-760) robust design. We describe a likelihood-based approach to simultaneously estimate temporary and permanent emigration when sampling is limited to a single population. We use a sampling design that combines the robust design and recoveries of individuals obtained immediately following each sampling period. We present a general form for our model where temporary emigration is a first-order Markov process, and we discuss more restrictive models. We illustrate these models with analysis of data on marked Canvasback ducks. Our analysis indicates that probability of permanent emigration for adult female Canvasbacks was 0.193 (SE = 0.082) and that birds that were present at the study area in year i - 1 had a higher probability of presence in year i than birds that were not present in year i - 1.

  13. An Integrated Optimization Design Method Based on Surrogate Modeling Applied to Diverging Duct Design

    NASA Astrophysics Data System (ADS)

    Hanan, Lu; Qiushi, Li; Shaobin, Li

    2016-12-01

    This paper presents an integrated optimization design method in which uniform design, response surface methodology and genetic algorithm are used in combination. In detail, uniform design is used to select the experimental sampling points in the experimental domain and the system performance is evaluated by means of computational fluid dynamics to construct a database. After that, response surface methodology is employed to generate a surrogate mathematical model relating the optimization objective and the design variables. Subsequently, genetic algorithm is adopted and applied to the surrogate model to acquire the optimal solution in the case of satisfying some constraints. The method has been applied to the optimization design of an axisymmetric diverging duct, dealing with three design variables including one qualitative variable and two quantitative variables. The method of modeling and optimization design performs well in improving the duct aerodynamic performance and can be also applied to wider fields of mechanical design and seen as a useful tool for engineering designers, by reducing the design time and computation consumption.

  14. Feedback control for counterflow thrust vectoring with a turbine engine: Experiment design and robust control design and implementation

    NASA Astrophysics Data System (ADS)

    Dores, Delfim Zambujo Das

    2005-11-01

    Engineering research over the last few years has successfully demonstrated the potential of thrust vector control using counterflow at conditions up to Mach 2. Flow configurations that include the pitch vectoring of rectangular jets and multi-axis vector control in diamond and axisymmetric nozzle geometries have been studied. Although bistable (on-off) fluid-based control has been around for some time, the present counterflow thrust vector control is unique because proportional and continuous jet response can be achieved in the absence of moving parts, while avoiding jet attachment, which renders most fluidic approaches unacceptable for aircraft and missile control applications. However, before this study, research had been limited to open-loop studies of counterflow thrust vectoring. For practical implementation it was vital that the counterflow scheme be used in conjunction with feedback control. Hence, the focus of this research was to develop and experimentally demonstrate a feedback control design methodology for counterflow thrust vectoring. This research focused on 2-D (pitch) thrust vectoring and addresses four key modeling issues. The first issue is to determine the measured variable to be commanded since the thrust vector angle is not measurable in real time. The second related issue is to determine the static mapping from the thrust vector angle to this measured variable. The third issue is to determine the dynamic relationship between the measured variable and the thrust vector angle. The fourth issue is to develop dynamic models with uncertainty characterizations. The final and main goal was the design and implementation of robust controllers that yield closed-loop systems with fast response times, and avoid overshoot in order to aid in the avoidance of attachment. These controllers should be simple and easy to implement in real applications. Hence, PID design has been chosen. Robust control design is accomplished by using ℓ1 control theory in

  15. Design of Robust Adaptive Unbalance Response Controllers for Rotors with Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Knospe, Carl R.; Tamer, Samir M.; Fedigan, Stephen J.

    1996-01-01

    Experimental results have recently demonstrated that an adaptive open loop control strategy can be highly effective in the suppression of unbalance induced vibration on rotors supported in active magnetic bearings. This algorithm, however, relies upon a predetermined gain matrix. Typically, this matrix is determined by an optimal control formulation resulting in the choice of the pseudo-inverse of the nominal influence coefficient matrix as the gain matrix. This solution may result in problems with stability and performance robustness since the estimated influence coefficient matrix is not equal to the actual influence coefficient matrix. Recently, analysis tools have been developed to examine the robustness of this control algorithm with respect to structured uncertainty. Herein, these tools are extended to produce a design procedure for determining the adaptive law's gain matrix. The resulting control algorithm has a guaranteed convergence rate and steady state performance in spite of the uncertainty in the rotor system. Several examples are presented which demonstrate the effectiveness of this approach and its advantages over the standard optimal control formulation.

  16. Data-Division-Specific Robustness and Power of Randomization Tests for ABAB Designs

    ERIC Educational Resources Information Center

    Manolov, Rumen; Solanas, Antonio; Bulte, Isis; Onghena, Patrick

    2010-01-01

    This study deals with the statistical properties of a randomization test applied to an ABAB design in cases where the desirable random assignment of the points of change in phase is not possible. To obtain information about each possible data division, the authors carried out a conditional Monte Carlo simulation with 100,000 samples for each…

  17. Fungal mediated silver nanoparticle synthesis using robust experimental design and its application in cotton fabric

    NASA Astrophysics Data System (ADS)

    Velhal, Sulbha Girish; Kulkarni, S. D.; Latpate, R. V.

    2016-09-01

    Among the different methods employed for the synthesis of nanoparticles, the biological method is most favorable and quite well established. In microorganisms, use of fungi in the biosynthesis of silver nanoparticles has a greater advantage over other microbial mediators. In this study, intracellular synthesis of silver nanoparticles from Aspergillus terrerus (Thom) MTCC632 was carried out. We observed that synthesis of silver nanoparticles depended on factors such as temperature, amount of biomass and concentration of silver ions in the reaction mixture. Hence, optimization of biosynthesis using these parameters was carried out using statistical tool `robust experimental design'. Size and morphology of synthesized nanoparticles were determined using X-ray diffraction technique, field emission scanning electron microscopy, energy dispersion spectroscopy, and transmission electron microscopy. Nano-embedded cotton fabric was further prepared and studied for its antibacterial properties.

  18. Robust constrained waveform design for MIMO radar with uncertain steering vectors

    NASA Astrophysics Data System (ADS)

    Yu, Xianxiang; Cui, Guolong; Piezzo, Marco; Iommelli, Salvatore; Kong, Lingjiang

    2017-01-01

    This paper considers the robust waveform design of multiple-input multiple-output (MIMO) radar to enhance targets detection in the presence of signal-dependent interferences assuming the knowledge of steering vectors is imprecise. Specifically, resorting to semidefinite programming (SDP)-related technique, we first maximize the worst-case signal-to-interference-plus-noise ratio (SINR) over uncertain region to optimize waveform covariance matrix forcing a uniform elemental power requirement. Then, based on least square (LS) approach, we devise the waveform accounting for constant modulus and similarity constraints by the obtained waveform covariance matrix using cyclic algorithm (CA). Finally, we assess the effectiveness of the proposed technique through numerical simulations in terms of non-uniform point-like clutter and uniform clutter.

  19. A methodology for designing robust multivariable nonlinear control systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Grunberg, D. B.

    1986-01-01

    A new methodology is described for the design of nonlinear dynamic controllers for nonlinear multivariable systems providing guarantees of closed-loop stability, performance, and robustness. The methodology is an extension of the Linear-Quadratic-Gaussian with Loop-Transfer-Recovery (LQG/LTR) methodology for linear systems, thus hinging upon the idea of constructing an approximate inverse operator for the plant. A major feature of the methodology is a unification of both the state-space and input-output formulations. In addition, new results on stability theory, nonlinear state estimation, and optimal nonlinear regulator theory are presented, including the guaranteed global properties of the extended Kalman filter and optimal nonlinear regulators.

  20. Estimating temporary emigration and breeding proportions using capture-recapture data with Pollock's robust design

    USGS Publications Warehouse

    Kendall, W.L.; Nichols, J.D.; Hines, J.E.

    1997-01-01

    Statistical inference for capture-recapture studies of open animal populations typically relies on the assumption that all emigration from the studied population is permanent. However, there are many instances in which this assumption is unlikely to be met. We define two general models for the process of temporary emigration, completely random and Markovian. We then consider effects of these two types of temporary emigration on Jolly-Seber (Seber 1982) estimators and on estimators arising from the full-likelihood approach of Kendall et al. (1995) to robust design data. Capture-recapture data arising from Pollock's (1982) robust design provide the basis for obtaining unbiased estimates of demographic parameters in the presence of temporary emigration and for estimating the probability of temporary emigration. We present a likelihood-based approach to dealing with temporary emigration that permits estimation under different models of temporary emigration and yields tests for completely random and Markovian emigration. In addition, we use the relationship between capture probability estimates based on closed and open models under completely random temporary emigration to derive three ad hoc estimators for the probability of temporary emigration, two of which should be especially useful in situations where capture probabilities are heterogeneous among individual animals. Ad hoc and full-likelihood estimators are illustrated for small mammal capture-recapture data sets. We believe that these models and estimators will be useful for testing hypotheses about the process of temporary emigration, for estimating demographic parameters in the presence of temporary emigration, and for estimating probabilities of temporary emigration. These latter estimates are frequently of ecological interest as indicators of animal movement and, in some sampling situations, as direct estimates of breeding probabilities and proportions.

  1. Use of Taguchi design of experiments to optimize and increase robustness of preliminary designs

    NASA Technical Reports Server (NTRS)

    Carrasco, Hector R.

    1992-01-01

    The research performed this summer includes the completion of work begun last summer in support of the Air Launched Personnel Launch System parametric study, providing support on the development of the test matrices for the plume experiments in the Plume Model Investigation Team Project, and aiding in the conceptual design of a lunar habitat. After the conclusion of last years Summer Program, the Systems Definition Branch continued with the Air Launched Personnel Launch System (ALPLS) study by running three experiments defined by L27 Orthogonal Arrays. Although the data was evaluated during the academic year, the analysis of variance and the final project review were completed this summer. The Plume Model Investigation Team (PLUMMIT) was formed by the Engineering Directorate to develop a consensus position on plume impingement loads and to validate plume flowfield models. In order to obtain a large number of individual correlated data sets for model validation, a series of plume experiments was planned. A preliminary 'full factorial' test matrix indicated that 73,024 jet firings would be necessary to obtain all of the information requested. As this was approximately 100 times more firings than the scheduled use of Vacuum Chamber A would permit, considerable effort was needed to reduce the test matrix and optimize it with respect to the specific objectives of the program. Part of the First Lunar Outpost Project deals with Lunar Habitat. Requirements for the habitat include radiation protection, a safe haven for occasional solar flare storms, an airlock module as well as consumables to support 34 extra vehicular activities during a 45 day mission. The objective for the proposed work was to collaborate with the Habitat Team on the development and reusability of the Logistics Modules.

  2. Use of Taguchi design of experiments to optimize and increase robustness of preliminary designs

    NASA Astrophysics Data System (ADS)

    Carrasco, Hector R.

    1992-12-01

    The research performed this summer includes the completion of work begun last summer in support of the Air Launched Personnel Launch System parametric study, providing support on the development of the test matrices for the plume experiments in the Plume Model Investigation Team Project, and aiding in the conceptual design of a lunar habitat. After the conclusion of last years Summer Program, the Systems Definition Branch continued with the Air Launched Personnel Launch System (ALPLS) study by running three experiments defined by L27 Orthogonal Arrays. Although the data was evaluated during the academic year, the analysis of variance and the final project review were completed this summer. The Plume Model Investigation Team (PLUMMIT) was formed by the Engineering Directorate to develop a consensus position on plume impingement loads and to validate plume flowfield models. In order to obtain a large number of individual correlated data sets for model validation, a series of plume experiments was planned. A preliminary 'full factorial' test matrix indicated that 73,024 jet firings would be necessary to obtain all of the information requested. As this was approximately 100 times more firings than the scheduled use of Vacuum Chamber A would permit, considerable effort was needed to reduce the test matrix and optimize it with respect to the specific objectives of the program. Part of the First Lunar Outpost Project deals with Lunar Habitat. Requirements for the habitat include radiation protection, a safe haven for occasional solar flare storms, an airlock module as well as consumables to support 34 extra vehicular activities during a 45 day mission. The objective for the proposed work was to collaborate with the Habitat Team on the development and reusability of the Logistics Modules.

  3. Hierarchical design of an electro-hydraulic actuator based on robust LPV methods

    NASA Astrophysics Data System (ADS)

    Németh, Balázs; Varga, Balázs; Gáspár, Péter

    2015-08-01

    The paper proposes a hierarchical control design of an electro-hydraulic actuator, which is used to improve the roll stability of vehicles. The purpose of the control system is to generate a reference torque, which is required by the vehicle dynamic control. The control-oriented model of the actuator is formulated in two subsystems. The high-level hydromotor is described in a linear form, while the low-level spool valve is a polynomial system. These subsystems require different control strategies. At the high level, a linear parameter-varying control is used to guarantee performance specifications. At the low level, a control Lyapunov-function-based algorithm, which creates discrete control input values of the valve, is proposed. The interaction between the two subsystems is guaranteed by the spool displacement, which is control input at the high level and must be tracked at the low-level control. The spool displacement has physical constraints, which must also be incorporated into the control design. The robust design of the high-level control incorporates the imprecision of the low-level control as an uncertainty of the system.

  4. Applying robust control theory to solve problems in bio-medical sciences: study of an apoptotic model

    NASA Astrophysics Data System (ADS)

    Trujillo, M.; Becerra, V. M.; Hadjiloucas, S.

    2014-03-01

    Biological models of an apoptotic process are studied using models describing a system of differential equations derived from reaction kinetics information. The mathematical model is re-formulated in a state-space robust control theory framework where parametric and dynamic uncertainty can be modelled to account for variations naturally occurring in biological processes. We propose to handle the nonlinearities using neural networks.

  5. Integration of the Response Surface Methodology with the Compromise Decision Support Problem in Developing a General Robust Design Procedure

    NASA Technical Reports Server (NTRS)

    Chen, Wei; Tsui, Kwok-Leung; Allen, Janet K.; Mistree, Farrokh

    1994-01-01

    In this paper we introduce a comprehensive and rigorous robust design procedure to overcome some limitations of the current approaches. A comprehensive approach is general enough to model the two major types of robust design applications, namely, robust design associated with the minimization of the deviation of performance caused by the deviation of noise factors (uncontrollable parameters), and robust design due to the minimization of the deviation of performance caused by the deviation of control factors (design variables). We achieve mathematical rigor by using, as a foundation, principles from the design of experiments and optimization. Specifically, we integrate the Response Surface Method (RSM) with the compromise Decision Support Problem (DSP). Our approach is especially useful for design problems where there are no closed-form solutions and system performance is computationally expensive to evaluate. The design of a solar powered irrigation system is used as an example. Our focus in this paper is on illustrating our approach rather than on the results per se.

  6. A Robust Reinforcement Learning Control Design Method for Nonlinear System with Partially Unknown Structure

    NASA Astrophysics Data System (ADS)

    Nakano, Kazuhiro; Obayashi, Masanao; Kuremoto, Takashi; Kobayashi, Kunikazu

    We propose a robust control system which has robustness for disturbance and can deal with a nonlinear system with partially unknown structure by fusing reinforcement learning and robust control theory. First, we solved an optimal control problem without using unknown part of functions of the system, using neural network and the repetition learning of reinforcement learning algorithm. Second, we built the robust reinforcement learning control system which permits uncertainty and has robustness for disturbance by fusing the idea of H infinity control theory with above system.

  7. Nonlinear dynamic analysis and robust controller design for Francis hydraulic turbine regulating system with a straight-tube surge tank

    NASA Astrophysics Data System (ADS)

    Liang, Ji; Yuan, Xiaohui; Yuan, Yanbin; Chen, Zhihuan; Li, Yuanzheng

    2017-02-01

    The safety and stability of hydraulic turbine regulating system (HTRS) in hydropower plants become increasingly important since the rapid development and the broad application of hydro energy technology. In this paper, a novel mathematical model of Francis hydraulic turbine regulating system with a straight-tube surge tank based on a few state-space equations is introduced to study the dynamic behaviors of the HTRS system, where the existence of possible unstable oscillations of this model is studied extensively and presented in the forms of the bifurcation diagram, time waveform plot, phase trajectories, and power spectrum. To eliminate these undesirable behaviors, a specified fuzzy sliding mode controller is designed. In this hybrid controller, the sliding mode control law makes full use of the proposed model to guarantee the robust control in the presence of system uncertainties, while the fuzzy system is applied to approximate the proper gains of the switching control in sliding mode technique to reduce the chattering effect, and particle swarm optimization is developed to search the optimal gains of the controller. Numerical simulations are presented to verify the effectiveness of the designed controller, and the results show that the performances of the nonlinear HTRS system assisted with the proposed controller is much better than that with the commonly used optimal PID controller.

  8. Generation After Next Propulsor Research: Robust Design for Embedded Engine Systems

    NASA Technical Reports Server (NTRS)

    Arend, David J.; Tillman, Gregory; O'Brien, Walter F.

    2012-01-01

    The National Aeronautics and Space Administration, United Technologies Research Center and Virginia Polytechnic and State University have contracted to pursue multi-disciplinary research into boundary layer ingesting (BLI) propulsors for generation after next environmentally responsible subsonic fixed wing aircraft. This Robust Design for Embedded Engine Systems project first conducted a high-level vehicle system study based on a large commercial transport class hybrid wing body aircraft, which determined that a 3 to 5 percent reduction in fuel burn could be achieved over a 7,500 nanometer mission. Both pylon-mounted baseline and BLI propulsion systems were based on a low-pressure-ratio fan (1.35) in an ultra-high-bypass ratio engine (16), consistent with the next generation of advanced commercial turbofans. An optimized, coupled BLI inlet and fan system was subsequently designed to achieve performance targets identified in the system study. The resulting system possesses an inlet with total pressure losses less than 0.5%, and a fan stage with an efficiency debit of less than 1.5 percent relative to the pylon-mounted, clean-inflow baseline. The subject research project has identified tools and methodologies necessary for the design of next-generation, highly-airframe-integrated propulsion systems. These tools will be validated in future large-scale testing of the BLI inlet / fan system in NASA's 8 foot x 6 foot transonic wind tunnel. In addition, fan unsteady response to screen-generated total pressure distortion is being characterized experimentally in a JT15D engine test rig. These data will document engine sensitivities to distortion magnitude and spatial distribution, providing early insight into key physical processes that will control BLI propulsor design.

  9. The conceptual design of a robust, compact, modular tokamak reactor based on high-field superconductors

    NASA Astrophysics Data System (ADS)

    Whyte, D. G.; Bonoli, P.; Barnard, H.; Haakonsen, C.; Hartwig, Z.; Kasten, C.; Palmer, T.; Sung, C.; Sutherland, D.; Bromberg, L.; Mangiarotti, F.; Goh, J.; Sorbom, B.; Sierchio, J.; Ball, J.; Greenwald, M.; Olynyk, G.; Minervini, J.

    2012-10-01

    Two of the greatest challenges to tokamak reactors are 1) large single-unit cost of each reactor's construction and 2) their susceptibility to disruptions from operation at or above operational limits. We present an attractive tokamak reactor design that substantially lessens these issues by exploiting recent advancements in superconductor (SC) tapes allowing peak field on SC coil > 20 Tesla. A R˜3.3 m, B˜9.2 T, ˜ 500 MW fusion power tokamak provides high fusion gain while avoiding all disruptive operating boundaries (no-wall beta, kink, and density limits). Robust steady-state core scenarios are obtained by exploiting the synergy of high field, compact size and ideal efficiency current drive using high-field side launch of Lower Hybrid waves. The design features a completely modular replacement of internal solid components enabled by the demountability of the coils/tapes and the use of an immersion liquid blanket. This modularity opens up the possibility of using the device as a nuclear component test facility.

  10. Optimal design of loudspeaker arrays for robust cross-talk cancellation using the Taguchi method and the genetic algorithm.

    PubMed

    Bai, Mingsian R; Tung, Chih-Wei; Lee, Chih-Chung

    2005-05-01

    An optimal design technique of loudspeaker arrays for cross-talk cancellation with application in three-dimensional audio is presented. An array focusing scheme is presented on the basis of the inverse propagation that relates the transducers to a set of chosen control points. Tikhonov regularization is employed in designing the inverse cancellation filters. An extensive analysis is conducted to explore the cancellation performance and robustness issues. To best compromise the performance and robustness of the cross-talk cancellation system, optimal configurations are obtained with the aid of the Taguchi method and the genetic algorithm (GA). The proposed systems are further justified by physical as well as subjective experiments. The results reveal that large number of loudspeakers, closely spaced configuration, and optimal control point design all contribute to the robustness of cross-talk cancellation systems (CCS) against head misalignment.

  11. Robust Constrained Optimization Approach to Control Design for International Space Station Centrifuge Rotor Auto Balancing Control System

    NASA Technical Reports Server (NTRS)

    Postma, Barry Dirk

    2005-01-01

    This thesis discusses application of a robust constrained optimization approach to control design to develop an Auto Balancing Controller (ABC) for a centrifuge rotor to be implemented on the International Space Station. The design goal is to minimize a performance objective of the system, while guaranteeing stability and proper performance for a range of uncertain plants. The Performance objective is to minimize the translational response of the centrifuge rotor due to a fixed worst-case rotor imbalance. The robustness constraints are posed with respect to parametric uncertainty in the plant. The proposed approach to control design allows for both of these objectives to be handled within the framework of constrained optimization. The resulting controller achieves acceptable performance and robustness characteristics.

  12. Object Design: Twelve Concepts to Know, Understand and Apply

    ERIC Educational Resources Information Center

    Marschalek, Douglas G.

    2005-01-01

    Some art teachers say that art is all around us when they actually mean that "design" is all around us. The everyday objects we view, purchase, and use are designed. Some are well designed, others are poorly designed, and many are in-between. Teachers need to develop learning strategies that enable their students to understand how design is part…

  13. Parametric Design within an Atomic Design Process (ADP) applied to Spacecraft Design

    NASA Astrophysics Data System (ADS)

    Ramos Alarcon, Rafael

    This thesis describes research investigating the development of a model for the initial design of complex systems, with application to spacecraft design. The design model is called an atomic design process (ADP) and contains four fundamental stages (specifications, configurations, trade studies and drivers) that constitute the minimum steps of an iterative process that helps designers find a feasible solution. Representative design models from the aerospace industry are reviewed and are compared with the proposed model. The design model's relevance, adaptability and scalability features are evaluated through a focused design task exercise with two undergraduate teams and a long-term design exercise performed by a spacecraft payload team. The implementation of the design model is explained in the context in which the model has been researched. This context includes the organization (a student-run research laboratory at the University of Michigan), its culture (academically oriented), members that have used the design model and the description of the information technology elements meant to provide support while using the model. This support includes a custom-built information management system that consolidates relevant information that is currently being used in the organization. The information is divided in three domains: personnel development history, technical knowledge base and laboratory operations. The focused study with teams making use of the design model to complete an engineering design exercise consists of the conceptual design of an autonomous system, including a carrier and a deployable lander that form the payload of a rocket with an altitude range of over 1000 meters. Detailed results from each of the stages of the design process while implementing the model are presented, and an increase in awareness of good design practices in the teams while using the model are explained. A long-term investigation using the design model consisting of the

  14. Time Domain Design of Robust Controllers for LQG (Linear Quadratic Gaussian); Application to Large Space Structures

    DTIC Science & Technology

    1985-12-01

    schemes involving more general perturbations. Also Desoer et al [8] have established conditions for stability robustness of linear multivarible...address regulators with quadratic performance indices. Desoer et al [8] have established conditions for stability robust- ness of linear...p. 45-46. 8. Desoer , C.A., Callier, F.M. and Chan, W.S., "Robustness of Stability Conditions for Linear Time Invariant Feedback Systems," IEEE

  15. CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES: Efficient and Robust Design for Absorbing Boundary Conditions in Atomistic Computations

    NASA Astrophysics Data System (ADS)

    Fang, Ming; Tang, Shao-Qiang

    2009-11-01

    We propose an efficient and robust way to design absorbing boundary conditions in atomistic computations. An optimal discrete boundary condition is obtained by minimizing a functional of a reflection coefficient integral over a range of wave numbers. The minimization is performed with respect to a set of wave numbers, at which transparent absorption is reached. Compared with the optimization with respect to the boundary condition coefficients suggested by E and Huang [Phys. Rev. Lett. 87 (2001) 133501], we reduce considerably the number of independent variables and the computing cost. We further demonstrate with numerical examples that both the optimization and the wave absorption are more robust in the proposed design.

  16. Design, synthesis, and characterization of ultra-thin robust films with molecular control

    NASA Astrophysics Data System (ADS)

    Kohli, Punit

    The work reported in this dissertation has demonstrated new ways to design, synthesize and characterize robust thin films with controlled molecular dimensions. The central point of this work is to provide the fundamental knowledge and understanding of layered-material assemblies to advance the field. We are especially interested in controlled layer-by-layer multilayer assemblies in which the properties of these films such as film thickness, linear and non-linear optical response, electrical and electronic behavior, and porosity can be controlled. Ultimately, these ultra-thin films may find applications in the areas of controlled released delivery systems, nonlinear optical devices, chemical interfaces and interfacial sciences, separation science, nanoelectronics, biocatalysis, and biotechnology. There are some requirements for successful films and coatings. For example, the films must be stable in their surrounding environment in which are used. Furthermore, the control of the properties of the films is also an important issue. Keeping these requirements in mind, we used maleimide-vinyl ether (MVE) copolymers to deposit coatings where we have ability to change the pendant groups on the maleimide monomers. We used MVE polymers because they form strictly alternating polymers and their structure and properties are well studied by others. They also possess excellent thermal and chemical resistant. Since changing the pendant groups on the succinimide groups gives us a great ability to control various properties makes MVE copolymers ideal candidates. We have used zirconium phosphonate (ZP) interlayer linking chemistry which is robust and allows for exquisite control over layered material assembly. Thus the use of polymer chains and ZP complexation led to quasi-2-dimensional films where we can control the properties of each layer of the films. These films are found to be robust to both chemical and thermal treatments. Although these coatings may find uses in various

  17. SU-E-T-266: Proton PBS Plan Design and Robustness Evaluation for Head and Neck Cancers

    SciTech Connect

    Liang, X; Tang, S; Zhai, H; Kirk, M; Kalbasi, A; Lin, A; Ahn, P; Tochner, Z; McDonough, J; Both, S

    2014-06-01

    Purpose: To describe a newly designed proton pencil beam scanning (PBS) planning technique for radiotherapy of patients with bilateral oropharyngeal cancer, and to assess plan robustness. Methods: We treated 10 patients with proton PBS plans using 2 posterior oblique field (2F PBS) comprised of 80% single-field uniform dose (SFUD) and 20% intensity-modulated proton therapy (IMPT). All patients underwent weekly CT scans for verification. Using dosimetric indicators for both targets and organs at risk (OARs), we quantitatively compared initial plans and verification plans using student t-tests. We created a second proton PBS plan for each patient using 2 posterior oblique plus 1 anterior field comprised of 100% SFUD (3F PBS). We assessed plan robustness for both proton plan groups, as well as a photon volumetric modulated arc therapy (VMAT) plan group by comparing initial and verification plans. Results: The 2F PBS plans were not robust in target coverage. D98% for clinical target volume (CTV) degraded from 100% to 96% on average, with maximum change Δ D98% of −24%. Two patients were moved to photon VMAT treatment due to insufficient CTV coverage on verification plans. Plan robustness was especially weak in the low-anterior neck. The 3F PBS plans, however, demonstrated robust target coverage, which was comparable to the VMAT photon plan group. Doses to oral cavity were lower in the Proton PBS plans compared to photon VMAT plans due to no lower exit dose to the oral cavity. Conclusion: Proton PBS plans using 2 posterior oblique fields were not robust for CTV coverage, due to variable positioning of redundant soft tissue in the posterior neck. We designed 3-field proton PBS plans using an anterior field to avoid long heterogeneous paths in the low neck. These 3-field proton PBS plans had significantly improved plan robustness, and the robustness is comparable to VMAT photon plans.

  18. Design and application of robust rf pulses for toroid cavity NMR spectroscopy.

    PubMed

    Skinner, Thomas E; Braun, Michael; Woelk, Klaus; Gershenzon, Naum I; Glaser, Steffen J

    2011-04-01

    We present robust radio frequency (rf) pulses that tolerate a factor of six inhomogeneity in the B₁ field, significantly enhancing the potential of toroid cavity resonators for NMR spectroscopic applications. Both point-to-point (PP) and unitary rotation (UR) pulses were optimized for excitation, inversion, and refocusing using the gradient ascent pulse engineering (GRAPE) algorithm based on optimal control theory. In addition, the optimized parameterization (OP) algorithm applied to the adiabatic BIR-4 UR pulse scheme enabled ultra-short (50 μs) pulses with acceptable performance compared to standard implementations. OP also discovered a new class of non-adiabatic pulse shapes with improved performance within the BIR-4 framework. However, none of the OP-BIR4 pulses are competitive with the more generally optimized UR pulses. The advantages of the new pulses are demonstrated in simulations and experiments. In particular, the DQF COSY result presented here represents the first implementation of 2D NMR spectroscopy using a toroid probe.

  19. Design and experimental evaluation of a robust position controller for an electrohydrostatic actuator using adaptive antiwindup sliding mode scheme.

    PubMed

    Lee, Ji Min; Park, Sung Hwan; Kim, Jong Shik

    2013-01-01

    A robust control scheme is proposed for the position control of the electrohydrostatic actuator (EHA) when considering hardware saturation, load disturbance, and lumped system uncertainties and nonlinearities. To reduce overshoot due to a saturation of electric motor and to realize robustness against load disturbance and lumped system uncertainties such as varying parameters and modeling error, this paper proposes an adaptive antiwindup PID sliding mode scheme as a robust position controller for the EHA system. An optimal PID controller and an optimal anti-windup PID controller are also designed to compare control performance. An EHA prototype is developed, carrying out system modeling and parameter identification in designing the position controller. The simply identified linear model serves as the basis for the design of the position controllers, while the robustness of the control systems is compared by experiments. The adaptive anti-windup PID sliding mode controller has been found to have the desired performance and become robust against hardware saturation, load disturbance, and lumped system uncertainties and nonlinearities.

  20. Design and Experimental Evaluation of a Robust Position Controller for an Electrohydrostatic Actuator Using Adaptive Antiwindup Sliding Mode Scheme

    PubMed Central

    Lee, Ji Min; Park, Sung Hwan; Kim, Jong Shik

    2013-01-01

    A robust control scheme is proposed for the position control of the electrohydrostatic actuator (EHA) when considering hardware saturation, load disturbance, and lumped system uncertainties and nonlinearities. To reduce overshoot due to a saturation of electric motor and to realize robustness against load disturbance and lumped system uncertainties such as varying parameters and modeling error, this paper proposes an adaptive antiwindup PID sliding mode scheme as a robust position controller for the EHA system. An optimal PID controller and an optimal anti-windup PID controller are also designed to compare control performance. An EHA prototype is developed, carrying out system modeling and parameter identification in designing the position controller. The simply identified linear model serves as the basis for the design of the position controllers, while the robustness of the control systems is compared by experiments. The adaptive anti-windup PID sliding mode controller has been found to have the desired performance and become robust against hardware saturation, load disturbance, and lumped system uncertainties and nonlinearities. PMID:23983640

  1. Design of diode-pumped solid-state laser applied in laser fuses

    NASA Astrophysics Data System (ADS)

    Deng, FangLin; Zhang, YiFei

    2005-04-01

    The function of laser fuzes which are parts of certain weapon systems is to control the blasting height of warheads. Commonly the battle environment these weapon systems are confronted with is very complicated and the tactical demand for them is very rigor, so laser fuzes equipped for them must fulfill some special technical requirements, such as high repetition rate, long ranging scope, etc. Lasers are one of key components which constitute fuze systems. Whether designed lasers are advanced and reasonable will determine whether laser fuzes can be applied in these weapon systems or not. So we adopt the novel technology of diode-pumped solid-state laser (DPSSL) to design lasers applied in fuzes. Nd:YVO4 crystal is accepted as gain material, which has wide absorption band and large absorption efficient for 808nm pumping laser. As warhead's temperature is usually very high, wider absorption band is beneficial to reduce the influence of temperature fluctuation. Passive Q-switching with Cr4+:YAG is used to reduce the power consumption farthest. Design the end-pumped microchip sandwich-architecture to decrease lasers' size and increase the reliability, further it's advantageous to produce short pulses and increase peak power of lasers. The designed DPSSL features small size and weight, high repetition rate and peak power, robustness, etc. The repetition rate is expected to reach 1 kHz; peak power will exceed 300 kW; pulse width is only 5 ns; and divergence angle of laser beams is less than 5 mrad. So DPSSL is suitable for laser fuzes as an emitter.

  2. Reduced-Order Blade Mistuning Analysis Techniques Developed for the Robust Design of Engine Rotors

    NASA Technical Reports Server (NTRS)

    Min, James B.

    2004-01-01

    The primary objective of this research program is to develop vibration analysis tools, design tools, and design strategies to significantly improve the safety and robustness of turbine engine rotors. Bladed disks in turbine engines always feature small, random blade-to-blade differences, or mistuning. Mistuning can lead to a dramatic increase in blade forced-response amplitudes and stresses. Ultimately, this results in high-cycle fatigue, which is a major safety and cost concern. In this research program, the necessary steps will be taken to transform a state-of-the-art vibration analysis tool, the Turbo-Reduce forced-response prediction code, into an effective design tool by enhancing and extending the underlying modeling and analysis methods. Furthermore, novel techniques will be developed to assess the safety of a given design. In particular, a procedure will be established for using eigenfrequency curve veerings to identify "danger zones" in the operating conditions--ranges of rotational speeds and engine orders in which there is a great risk that the rotor blades will suffer high stresses. This work also will aid statistical studies of the forced response by reducing the necessary number of simulations. Finally, new strategies for improving the design of rotors will be pursued. Several methods will be investigated, including the use of intentional mistuning patterns to mitigate the harmful effects of random mistuning, and the modification of disk stiffness to avoid reaching critical values of interblade coupling in the desired operating range. Recent research progress is summarized in the following paragraphs. First, significant progress was made in the development of the component mode mistuning (CMM) and static mode compensation (SMC) methods for reduced-order modeling of mistuned bladed disks (see the following figure). The CMM method has been formalized and extended to allow a general treatment of mistuning. In addition, CMM allows individual mode

  3. Design of a robust underwater acoustic communication system over multipath fading channels

    NASA Astrophysics Data System (ADS)

    Kim, Jangeun; Shim, Taebo

    2012-11-01

    Due to the surface and bottom constraints of the underwater acoustic channel (UAC) in shallow waters, multipath fading occurs and causes degradation of the signal for the UAC system. To overcome these problems, a robust underwater acoustic communication system was designed over multipath fading channels by employing both decision feedback equalization with the RLS algorithm and convolutional coding with interleaving+shuffling block data sequence. The dual use of these two methods simultaneously can reduce the intersymbol interference (ISI) and the adjacent bit and burst errors. The system will retransmit the same signal if the system fails to estimate the channel due to severe multipath fading. To verify the performance of the system, the transmission of an image was tested using a 524,288bit gray-scaled image through the multipath fading channel. The test results showed that the number of bit errors was reduced from 86,824 to 5,106 when the reference SNR was 12 dB.

  4. Quantifying disturbance resistance in an ecologically dominant species: a robust design analysis.

    PubMed

    Plavsic, Militsa Justine

    2011-08-01

    Disturbance is now recognized as a key ecosystem process but few studies have examined its indirect effects on individuals in a population or its relationship to ecological dominance in a community. Using an ecologically dominant small mammal population in experimentally burned habitat as a model, I empirically tested the effect of disturbance on survival, abundance and fecundity and investigated whether recently burned habitat is a population sink. I also examined the effect of fire on community diversity, particularly how fire influenced dominance by bushveld gerbils Tatera leucogaster (Peters 1852). Live trapping in the first year post-fire yielded a total of 4,774 captures of 1,076 individual bushveld gerbils in a tropical savanna in southern Africa. The robust design allowed for an investigation of the effects of fire, sex and temporal variation on survival while controlling for potential differences in detection and temporary emigration. Although there were fewer individuals in burned savanna during the first 6 months post-fire, their apparent monthly survival was not significantly lowered compared with the control, with males and females surviving equally well. Fecundity, represented by proportion of females lactating, was unaffected by fire and, overall, recently burned habitat does not appear to be sink habitat. The disturbance resistance exhibited by this species is likely a contributing factor to its ecological dominance in the area, which is subject to relatively frequent fires. Results of this study highlight the need to consider disturbance regimes when evaluating patterns of species richness and evenness in an ecosystem.

  5. The Study of an Optimal Robust Design and Adjustable Ordering Strategies in the HSCM

    PubMed Central

    Liao, Hung-Chang; Chen, Yan-Kwang; Wang, Ya-huei

    2015-01-01

    The purpose of this study was to establish a hospital supply chain management (HSCM) model in which three kinds of drugs in the same class and with the same indications were used in creating an optimal robust design and adjustable ordering strategies to deal with a drug shortage. The main assumption was that although each doctor has his/her own prescription pattern, when there is a shortage of a particular drug, the doctor may choose a similar drug with the same indications as a replacement. Four steps were used to construct and analyze the HSCM model. The computation technology used included a simulation, a neural network (NN), and a genetic algorithm (GA). The mathematical methods of the simulation and the NN were used to construct a relationship between the factor levels and performance, while the GA was used to obtain the optimal combination of factor levels from the NN. A sensitivity analysis was also used to assess the change in the optimal factor levels. Adjustable ordering strategies were also developed to prevent drug shortages. PMID:26451162

  6. Robust System and Cross-Layer Design for H.264/AVC-Based Wireless Video Applications

    NASA Astrophysics Data System (ADS)

    Stockhammer, Thomas

    2006-12-01

    H.264/AVC is an essential component in emerging wireless video applications, thanks to its excellent compression efficiency and network-friendly design. However, a video coding standard itself is only a single component within a complex system. Its effectiveness strongly depends on the appropriate configuration of encoders, decoders, as well as transport and network features. The applicability of different features depends on application constraints, the availability and quality of feedback and cross-layer information, and the accessible quality-of-service (QoS) tools in modern wireless networks. We discuss robust integration of H.264/AVC in wireless real-time video applications. Specifically, the use of different coding and transport-related features for different application types is elaborated. Guidelines for the selection of appropriate coding tools, encoder and decoder settings, as well as transport and network parameters are provided and justified. Selected simulation results show the superiority of lower layer error control over application layer error control and video error resilience features.

  7. A less field-intensive robust design for estimating demographic parameters with Mark-resight data

    USGS Publications Warehouse

    McClintock, B.T.; White, Gary C.

    2009-01-01

    The robust design has become popular among animal ecologists as a means for estimating population abundance and related demographic parameters with mark-recapture data. However, two drawbacks of traditional mark-recapture are financial cost and repeated disturbance to animals. Mark-resight methodology may in many circumstances be a less expensive and less invasive alternative to mark-recapture, but the models developed to date for these data have overwhelmingly concentrated only on the estimation of abundance. Here we introduce a mark-resight model analogous to that used in mark-recapture for the simultaneous estimation of abundance, apparent survival, and transition probabilities between observable and unobservable states. The model may be implemented using standard statistical computing software, but it has also been incorporated into the freeware package Program MARK. We illustrate the use of our model with mainland New Zealand Robin (Petroica australis) data collected to ascertain whether this methodology may be a reliable alternative for monitoring endangered populations of a closely related species inhabiting the Chatham Islands. We found this method to be a viable alternative to traditional mark-recapture when cost or disturbance to species is of particular concern in long-term population monitoring programs. ?? 2009 by the Ecological Society of America.

  8. Rational Design of a Polymer with Robust Efficacy for Intracellular Protein and Peptide Delivery.

    PubMed

    Chang, Hong; Lv, Jia; Gao, Xin; Wang, Xing; Wang, Hui; Chen, Hui; He, Xu; Li, Lei; Cheng, Yiyun

    2017-03-08

    The efficient delivery of biopharmaceutical drugs such as proteins and peptides into the cytosol of target cells poses substantial challenges owing to their large size and susceptibility to degradation. Current protein delivery vehicles have limitations such as the need for protein modification, insufficient delivery of large-size proteins or small peptides, and loss of protein function after the delivery. Here, we adopted a rational approach to design a polymer with robust efficacy for intracellular protein and peptide delivery. The polymer is composed of a dendrimer scaffold, a hydrophobic membrane-disruptive region, and a multivalent protein binding surface. It allows efficient protein/peptide binding, endocytosis, and endosomal disruption and is capable of efficiently delivering various biomacromolecules including bovine serum albumin, R-phycoerythrin, p53, saporin, β-galactosidase, and peptides into the cytosol of living cells. Transduction of apoptotic proteins and peptides successfully induces apoptosis in cancer cells, suggesting that the activities of proteins and peptides are maintained during the delivery. This technology represents an efficient and useful tool for intracellular protein and peptide delivery and has broad applicability for basic research and clinical applications.

  9. Uncertainty in hyperthermia treatment planning: the need for robust system design.

    PubMed

    de Greef, M; Kok, H P; Correia, D; Borsboom, P-P; Bel, A; Crezee, J

    2011-06-07

    Hyperthermia treatment planning (HTP) is an important tool to improve the quality of hyperthermia treatment. It is a practical way of designing new hyperthermia systems and can be used to optimize the phase and amplitude settings to achieve optimal heating. One of the main challenges to be dealt with however is the uncertainty in the modeling parameters. The role of dielectric and combined dielectric and perfusion uncertainty on optimization was investigated by means of HTP for six different systems: the 70 MHz AMC-4 (AMC: Academic Medical Center) and AMC-8 system, a 130 MHz version of the AMC-8 system, a three-ring AMC-12 system operating at 130 MHz, the BSD SigmaEye applicator and a dipole applicator with three rings each containing six dipole pairs operated at 150 MHz. For five patients with cervix uteri carcinoma, a patient model was created based on a hyperthermia planning CT. Variation of tissue parameters resulted in 16 dielectric models for every patient. In addition, four thermal models were created to study the combined effect of perfusion and dielectric uncertainty. The impact of dielectric uncertainty on optimization is found to be clearly dependent on the number of channels and increased from 0.5 °C for four channels to 1.5 °C for the 18-channel system. As a result, the potential gain relative to the AMC-4 system for the 70 MHz AMC-8 system was found to be largely compromised, while for the remaining systems a robust improvement in T(90) was observed. The dipole applicator showed the best target heating for two out of five patients, while for three others heating efficacy was comparable to the 130 MHz AMC-12 system or the 130 MHz AMC-8 system (one patient). Considering the increase in complexity when the number of channels is increased from 12 to 18, the AMC-12 system is considered as a good compromise between heating efficacy and robustness while still being a manageable heating system in clinical practice.

  10. Robust Brain-Machine Interface Design Using Optimal Feedback Control Modeling and Adaptive Point Process Filtering

    PubMed Central

    Carmena, Jose M.

    2016-01-01

    Much progress has been made in brain-machine interfaces (BMI) using decoders such as Kalman filters and finding their parameters with closed-loop decoder adaptation (CLDA). However, current decoders do not model the spikes directly, and hence may limit the processing time-scale of BMI control and adaptation. Moreover, while specialized CLDA techniques for intention estimation and assisted training exist, a unified and systematic CLDA framework that generalizes across different setups is lacking. Here we develop a novel closed-loop BMI training architecture that allows for processing, control, and adaptation using spike events, enables robust control and extends to various tasks. Moreover, we develop a unified control-theoretic CLDA framework within which intention estimation, assisted training, and adaptation are performed. The architecture incorporates an infinite-horizon optimal feedback-control (OFC) model of the brain’s behavior in closed-loop BMI control, and a point process model of spikes. The OFC model infers the user’s motor intention during CLDA—a process termed intention estimation. OFC is also used to design an autonomous and dynamic assisted training technique. The point process model allows for neural processing, control and decoder adaptation with every spike event and at a faster time-scale than current decoders; it also enables dynamic spike-event-based parameter adaptation unlike current CLDA methods that use batch-based adaptation on much slower adaptation time-scales. We conducted closed-loop experiments in a non-human primate over tens of days to dissociate the effects of these novel CLDA components. The OFC intention estimation improved BMI performance compared with current intention estimation techniques. OFC assisted training allowed the subject to consistently achieve proficient control. Spike-event-based adaptation resulted in faster and more consistent performance convergence compared with batch-based methods, and was robust to

  11. Robust Brain-Machine Interface Design Using Optimal Feedback Control Modeling and Adaptive Point Process Filtering.

    PubMed

    Shanechi, Maryam M; Orsborn, Amy L; Carmena, Jose M

    2016-04-01

    Much progress has been made in brain-machine interfaces (BMI) using decoders such as Kalman filters and finding their parameters with closed-loop decoder adaptation (CLDA). However, current decoders do not model the spikes directly, and hence may limit the processing time-scale of BMI control and adaptation. Moreover, while specialized CLDA techniques for intention estimation and assisted training exist, a unified and systematic CLDA framework that generalizes across different setups is lacking. Here we develop a novel closed-loop BMI training architecture that allows for processing, control, and adaptation using spike events, enables robust control and extends to various tasks. Moreover, we develop a unified control-theoretic CLDA framework within which intention estimation, assisted training, and adaptation are performed. The architecture incorporates an infinite-horizon optimal feedback-control (OFC) model of the brain's behavior in closed-loop BMI control, and a point process model of spikes. The OFC model infers the user's motor intention during CLDA-a process termed intention estimation. OFC is also used to design an autonomous and dynamic assisted training technique. The point process model allows for neural processing, control and decoder adaptation with every spike event and at a faster time-scale than current decoders; it also enables dynamic spike-event-based parameter adaptation unlike current CLDA methods that use batch-based adaptation on much slower adaptation time-scales. We conducted closed-loop experiments in a non-human primate over tens of days to dissociate the effects of these novel CLDA components. The OFC intention estimation improved BMI performance compared with current intention estimation techniques. OFC assisted training allowed the subject to consistently achieve proficient control. Spike-event-based adaptation resulted in faster and more consistent performance convergence compared with batch-based methods, and was robust to parameter

  12. Applying Quality Function Deployment in Industrial Design Curriculum Planning

    ERIC Educational Resources Information Center

    Liu, Shuo-Fang; Lee, Yann-Long; Lin, Yi-Zhi; Tseng, Chien-Feng

    2013-01-01

    Industrial design is a discipline that combines multiple professional fields. Enterprise demands for industrial design competencies also change over time; thus, the curriculum of industrial design education should be compatible with the current demands of the industry. However, scientific approaches have not been previously employed to plan…

  13. Designing a New Program in Family Relations and Applied Nutrition

    ERIC Educational Resources Information Center

    Devine, Sharon Mayne; Daly, Kerry; Lero, Donna; MacMartin, Clare

    2007-01-01

    Family Relations and Applied Nutrition, which is offered at the University of Guelph, is an interdisciplinary department that previously offered three undergraduate majors: child, youth, and family; applied human nutrition; and gerontology; as well as graduate programs at the master's and doctoral levels. Several factors have precipitated a review…

  14. A "Politically Robust" Experimental Design for Public Policy Evaluation, with Application to the Mexican Universal Health Insurance Program

    ERIC Educational Resources Information Center

    King, Gary; Gakidou, Emmanuela; Ravishankar, Nirmala; Moore, Ryan T.; Lakin, Jason; Vargas, Manett; Tellez-Rojo, Martha Maria; Avila, Juan Eugenio Hernandez; Avila, Mauricio Hernandez; Llamas, Hector Hernandez

    2007-01-01

    We develop an approach to conducting large-scale randomized public policy experiments intended to be more robust to the political interventions that have ruined some or all parts of many similar previous efforts. Our proposed design is insulated from selection bias in some circumstances even if we lose observations; our inferences can still be…

  15. Determining a Robust D-Optimal Design for Testing for Departure from Additivity in a Mixture of Four Perfluoroalkyl Acids.

    EPA Science Inventory

    Our objective is to determine an optimal experimental design for a mixture of perfluoroalkyl acids (PFAAs) that is robust to the assumption of additivity. PFAAs are widely used in consumer products and industrial applications. The presence and persistence of PFAAs, especially in ...

  16. DETERMINING A ROBUST D-OPTIMAL DESIGN FOR TESTING FOR DEPARTURE FROM ADDITIVITY IN A MIXTURE OF FOUR PFAAS

    EPA Science Inventory

    Our objective was to determine an optimal experimental design for a mixture of perfluoroalkyl acids (PFAAs) that is robust to the assumption of additivity. Of particular focus to this research project is whether an environmentally relevant mixture of four PFAAs with long half-liv...

  17. GA-based Design Algorithms for the Robust Synthetic Genetic Oscillators with Prescribed Amplitude, Period and Phase

    PubMed Central

    Chen, Bor-Sen; Chen, Po-Wei

    2010-01-01

    In the past decade, the development of synthetic gene networks has attracted much attention from many researchers. In particular, the genetic oscillator known as the repressilator has become a paradigm for how to design a gene network with a desired dynamic behaviour. Even though the repressilator can show oscillatory properties in its protein concentrations, their amplitudes, frequencies and phases are perturbed by the kinetic parametric fluctuations (intrinsic molecular perturbations) and external disturbances (extrinsic molecular noises) of the environment. Therefore, how to design a robust genetic oscillator with desired amplitude, frequency and phase under stochastic intrinsic and extrinsic molecular noises is an important topic for synthetic biology. In this study, based on periodic reference signals with arbitrary amplitudes, frequencies and phases, a robust synthetic gene oscillator is designed by tuning the kinetic parameters of repressilator via a genetic algorithm (GA) so that the protein concentrations can track the desired periodic reference signals under intrinsic and extrinsic molecular noises. GA is a stochastic optimization algorithm which was inspired by the mechanisms of natural selection and evolution genetics. By the proposed GA-based design algorithm, the repressilator can track the desired amplitude, frequency and phase of oscillation under intrinsic and extrinsic noises through the optimization of fitness function. The proposed GA-based design algorithm can mimic the natural selection in evolutionary process to select adequate kinetic parameters for robust genetic oscillators. The design method can be easily extended to any synthetic gene network design with prescribed behaviours. PMID:20535234

  18. Designing a robust feature extraction method based on optimum allocation and principal component analysis for epileptic EEG signal classification.

    PubMed

    Siuly, Siuly; Li, Yan

    2015-04-01

    The aim of this study is to design a robust feature extraction method for the classification of multiclass EEG signals to determine valuable features from original epileptic EEG data and to discover an efficient classifier for the features. An optimum allocation based principal component analysis method named as OA_PCA is developed for the feature extraction from epileptic EEG data. As EEG data from different channels are correlated and huge in number, the optimum allocation (OA) scheme is used to discover the most favorable representatives with minimal variability from a large number of EEG data. The principal component analysis (PCA) is applied to construct uncorrelated components and also to reduce the dimensionality of the OA samples for an enhanced recognition. In order to choose a suitable classifier for the OA_PCA feature set, four popular classifiers: least square support vector machine (LS-SVM), naive bayes classifier (NB), k-nearest neighbor algorithm (KNN), and linear discriminant analysis (LDA) are applied and tested. Furthermore, our approaches are also compared with some recent research work. The experimental results show that the LS-SVM_1v1 approach yields 100% of the overall classification accuracy (OCA), improving up to 7.10% over the existing algorithms for the epileptic EEG data. The major finding of this research is that the LS-SVM with the 1v1 system is the best technique for the OA_PCA features in the epileptic EEG signal classification that outperforms all the recent reported existing methods in the literature.

  19. Improving Large Cetacean Implantable Satellite Tag Designs to Maximize Tag Robustness and Minimize Health Effects to Individual Animals

    DTIC Science & Technology

    2015-09-30

    Fig. 2 – Drawing of the implantable satellite tag Mold 303C Fig. 3 – Experiment using a load cell (left) to insert and remove different types...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Improving Large Cetacean Implantable Satellite Tag Designs...robust implantable satellite tags for large cetaceans considering observed tag design flaws observed during follow-up studies conducted with Gulf of Maine

  20. Applying a User-Centered Approach to Interactive Visualisation Design

    NASA Astrophysics Data System (ADS)

    Wassink, Ingo; Kulyk, Olga; van Dijk, Betsy; van der Veer, Gerrit; van der Vet, Paul

    Analysing users in their context of work and finding out how and why they use different information resources is essential to provide interactive visualisation systems that match their goals and needs. Designers should actively involve the intended users throughout the whole process. This chapter presents a user-centered approach for the design of interactive visualisation systems. We describe three phases of the iterative visualisation design process: the early envisioning phase, the global specification phase, and the detailed specification phase. The whole design cycle is repeated until some criterion of success is reached. We discuss different techniques for the analysis of users, their tasks and domain. Subsequently, the design of prototypes and evaluation methods in visualisation practice are presented. Finally, we discuss the practical challenges in design and evaluation of collaborative visualisation environments. Our own case studies and those of others are used throughout the whole chapter to illustrate various approaches.

  1. Robust reliable control design for networked control system with sampling communication

    NASA Astrophysics Data System (ADS)

    Sakthivel, R.; Santra, Srimanta; Mathiyalagan, K.; Su, Hongye

    2015-12-01

    In this article, the problem of robust exponential stability and reliable stabilisation for a class of continuous-time networked control systems (NCSs) with a sample-data controller and unknown time-varying sampling rate is considered. The analysis is based on average dwell-time, Lyapunov-Krasovskii functional and linear matrix inequality (LMI) technique. The delay-dependent criteria are developed for ensuring the robust exponential stability of the considered NCSs. The obtained conditions are formulated in terms of LMIs that can easily be solved by using standard software packages. Furthermore, the result is extended to study the robust stabilisation for NCS with parameter uncertainties. A state feedback controller is constructed in terms of the solution to a set of LMIs, which guarantee the robust exponential stabilisation of NCS and the controller. Finally, numerical examples are presented to illustrate the effectiveness of the obtained results.

  2. Approach for Input Uncertainty Propagation and Robust Design in CFD Using Sensitivity Derivatives

    NASA Technical Reports Server (NTRS)

    Putko, Michele M.; Taylor, Arthur C., III; Newman, Perry A.; Green, Lawrence L.

    2002-01-01

    An implementation of the approximate statistical moment method for uncertainty propagation and robust optimization for quasi 3-D Euler CFD code is presented. Given uncertainties in statistically independent, random, normally distributed input variables, first- and second-order statistical moment procedures are performed to approximate the uncertainty in the CFD output. Efficient calculation of both first- and second-order sensitivity derivatives is required. In order to assess the validity of the approximations, these moments are compared with statistical moments generated through Monte Carlo simulations. The uncertainties in the CFD input variables are also incorporated into a robust optimization procedure. For this optimization, statistical moments involving first-order sensitivity derivatives appear in the objective function and system constraints. Second-order sensitivity derivatives are used in a gradient-based search to successfully execute a robust optimization. The approximate methods used throughout the analyses are found to be valid when considering robustness about input parameter mean values.

  3. Lessons Learned from Applying Design Thinking in a NASA Rapid Design Study in Aeronautics

    NASA Technical Reports Server (NTRS)

    McGowan, Anna-Maria; Bakula, Casey; Castner, Raymond

    2017-01-01

    In late 2015, NASA's Aeronautics Research Mission Directorate (ARMD) funded an experiment in rapid design and rapid teaming to explore new approaches to solving challenging design problems in aeronautics in an effort to cultivate and foster innovation. This report summarizes several lessons learned from the rapid design portion of the study. This effort entailed learning and applying design thinking, a human-centered design approach, to complete the conceptual design for an open-ended design challenge within six months. The design challenge focused on creating a capability to advance experimental testing of autonomous aeronautics systems, an area of great interest to NASA, the US government as a whole, and an entire ecosystem of users and developers around the globe. A team of nine civil servant researchers from three of NASA's aeronautics field centers with backgrounds in several disciplines was assembled and rapidly trained in design thinking under the guidance of the innovation and design firm IDEO. The design thinking process, while used extensively outside the aerospace industry, is less common and even counter to many practices within the aerospace industry. In this report, several contrasts between common aerospace research and development practices and design thinking are discussed, drawing upon the lessons learned from the NASA rapid design study. The lessons discussed included working towards a design solution without a set of detailed design requirements, which may not be practical or even feasible for management to ascertain for complex, challenging problems. This approach allowed for the possibility of redesigning the original problem statement to better meet the needs of the users. Another lesson learned was to approach problems holistically from the perspective of the needs of individuals that may be affected by advances in topic area instead of purely from a technological feasibility viewpoint. The interdisciplinary nature of the design team also

  4. Applying Universal Design for Learning to Instructional Lesson Planning

    ERIC Educational Resources Information Center

    McGhie-Richmond, Donna; Sung, Andrew N.

    2013-01-01

    Universal Design for Learning is a framework for developing inclusive instructional lesson plans. The effects of introducing Universal Design for Learning Principles and Guidelines in a university teacher education program with pre-service and practicing teachers were explored in a mixed methods approach. The results indicate that the study…

  5. Robust design of (s, S) inventory policy parameters in supply chains with demand and lead time uncertainties

    NASA Astrophysics Data System (ADS)

    Karimi Movahed, Kamran; Zhang, Zhi-Hai

    2015-09-01

    Demand and lead time uncertainties have significant effects on supply chain behaviour. In this paper, we present a single-product three-level multi-period supply chain with uncertain demands and lead times by using robust techniques to study the managerial insights of the supply chain inventory system under uncertainty. We formulate this problem as a robust mixed-integer linear program with minimised expected cost and total cost variation to determine the optimal (s, S) values of the inventory parameters. Several numerical studies are performed to investigate the supply chain behaviour. Useful guidelines for the design of a robust supply chain are also provided. Results show that the order variance and the expected cost in a supply chain significantly increase when the manufacturer's review period is an integer ratio of the distributor's and the retailer's review periods.

  6. Managing Uncertainty in Water Infrastructure Design Using Info-gap Robustness

    NASA Astrophysics Data System (ADS)

    Irias, X.; Cicala, D.

    2013-12-01

    Info-gap theory, a tool for managing deep uncertainty, can be of tremendous value for design of water systems in areas of high seismic risk. Maintaining reliable water service in those areas is subject to significant uncertainties including uncertainty of seismic loading, unknown seismic performance of infrastructure, uncertain costs of innovative seismic-resistant construction, unknown costs to repair seismic damage, unknown societal impacts from downtime, and more. Practically every major earthquake that strikes a population center reveals additional knowledge gaps. In situations of such deep uncertainty, info-gap can offer advantages over traditional approaches, whether deterministic approaches that use empirical safety factors to address the uncertainties involved, or probabilistic methods that attempt to characterize various stochastic properties and target a compromise between cost and reliability. The reason is that in situations of deep uncertainty, it may not be clear what safety factor would be reasonable, or even if any safety factor is sufficient to address the uncertainties, and we may lack data to characterize the situation probabilistically. Info-gap is a tool that recognizes up front that our best projection of the future may be wrong. Thus, rather than seeking a solution that is optimal for that projection, info-gap seeks a solution that works reasonably well for all plausible conditions. In other words, info-gap seeks solutions that are robust in the face of uncertainty. Info-gap has been used successfully across a wide range of disciplines including climate change science, project management, and structural design. EBMUD is currently using info-gap to help it gain insight into possible solutions for providing reliable water service to an island community within its service area. The island, containing about 75,000 customers, is particularly vulnerable to water supply disruption from earthquakes, since it has negligible water storage and is

  7. The use of a robust capture-recapture design in small mammal population studies: A field example with Microtus pennsylvanicus

    USGS Publications Warehouse

    Nichols, J.D.; Pollock, K.H.; Hines, J.E.

    1984-01-01

    The robust design of Pollock (1982) was used to estimate parameters of a Maryland M. pennsylvanicus population. Closed model tests provided strong evidence of heterogeneity of capture probability, and model M eta (Otis et al., 1978) was selected as the most appropriate model for estimating population size. The Jolly-Seber model goodness-of-fit test indicated rejection of the model for this data set, and the M eta estimates of population size were all higher than the Jolly-Seber estimates. Both of these results are consistent with the evidence of heterogeneous capture probabilities. The authors thus used M eta estimates of population size, Jolly-Seber estimates of survival rate, and estimates of birth-immigration based on a combination of the population size and survival rate estimates. Advantages of the robust design estimates for certain inference procedures are discussed, and the design is recommended for future small mammal capture-recapture studies directed at estimation.

  8. Applying Additive Manufacturing to a New Liquid Oxygen Turbopump Design

    NASA Technical Reports Server (NTRS)

    O’Neal, T. Derek

    2016-01-01

    A liquid oxygen turbopump has been designed at Marshall Space Flight Center as part of the in-house, Advanced Manufacturing Demonstrator Engine (AMDE) project. Additive manufacturing, specifically direct metal laser sintering (DMLS) of Inconel 718, is used for 77% of the parts by mass. These parts include the impeller, turbine components, and housings. This paper discusses the impacts of the DMLS fabrication technique on the design of the turbopump and lessons learned during DMLS hardware fabrication and material testing.

  9. Digital geometry processing applied in customized medical implant design.

    PubMed

    Xiao-Feng, Zhu; Cheng-Tao, Wang

    2005-01-01

    Standard medical implants are used in most implantation cases, but in some special cases, only those implants conforming to individual patient's skeletal morphology can serve the purpose. This paper proposes a new approach to design and fabricate customized exact-fit medical implants. With a real surgical case as the example, technical design details are presented; and two algorithms are given respectively for segmentation based on object features and triangular mesh defragmentation.

  10. Designing IS Curricula for Practical Relevance: Applying Baseball's "Moneyball" Theory

    ERIC Educational Resources Information Center

    Surendra, Nanda C.; Denton, James W.

    2009-01-01

    Baseball's "Moneyball" theory states that the baseball market undervalues some attributes (and players with these attributes) that are key contributors to wins while overvaluing other attributes. Teams who correctly evaluate attributes that contribute to wins have higher winning percentages with relatively low payrolls. We applied the Moneyball…

  11. Use of a qualitative methodological scaffolding process to design robust interprofessional studies.

    PubMed

    Wener, Pamela; Woodgate, Roberta L

    2013-07-01

    Increasingly, researchers are using qualitative methodology to study interprofessional collaboration (IPC). With this increase in use, there seems to be an appreciation for how qualitative studies allow us to understand the unique individual or group experience in more detail and form a basis for policy change and innovative interventions. Furthermore, there is an increased understanding of the potential of studying new or emerging phenomena qualitatively to inform further large-scale studies. Although there is a current trend toward greater acceptance of the value of qualitative studies describing the experiences of IPC, these studies are mostly descriptive in nature. Applying a process suggested by Crotty (1998) may encourage researchers to consider the value in situating research questions within a broader theoretical framework that will inform the overall research approach including methodology and methods. This paper describes the application of a process to a research project and then illustrates how this process encouraged iterative cycles of thinking and doing. The authors describe each step of the process, shares decision-making points, as well as suggests an additional step to the process. Applying this approach to selecting data collection methods may serve to guide and support the qualitative researcher in creating a well-designed study approach.

  12. Applying a user centered design methodology in a clinical context.

    PubMed

    Kashfi, Hajar

    2010-01-01

    A clinical decision support system (CDSS) is an interactive application that is used to facilitate the process of decisionmaking in a clinical context. Developing a usable CDSS is a challenging process; mostly because of the complex nature of domain knowledge and the context of use of those systems. This paper describes how a user centered design (UCD) approach can be used in a clinical context for developing a CDSS. In our effort, a design-based research methodology has been used. The outcomes of this work are as follow; a customized UCD approach is suggested that combines UCD and openEHR. Moreover, the GUI developed in the design phase and the result of the GUI evaluation is briefly presented.

  13. Ergonomics and design: its principles applied in the industry.

    PubMed

    Tavares, Ademario Santos; Silva, Francisco Nilson da

    2012-01-01

    Industrial Design encompasses both product development and optimization of production process. In this sense, Ergonomics plays a fundamental role, because its principles, methods and techniques can help operators to carry out their tasks most successfully. A case study carried out in an industry shows that the interaction among Design, Production Engineering and Materials Engineering departments may improve some aspects concerned security, comfort, efficiency and performance. In this process, Ergonomics had shown to be of essential importance to strategic decision making to the improvement of production section.

  14. Applying Additive Manufacturing to a New Liquid Oxygen Turbopump Design

    NASA Technical Reports Server (NTRS)

    O'Neal, Derek

    2016-01-01

    A liquid oxygen turbopump has been designed at Marshall Space Flight Center as part of the in-house, Advanced Manufacturing Demonstrator Engine (AMDE) project. Additive manufacturing, specifically direct metal laser sintering (DMLS) of Inconel 718, is used for 77% of the parts by mass. These parts include the impeller, turbine components, and housings. The near-net shape DMLS parts have been delivered and final machining is underway. Fabrication of the traditionally manufactured hardware is also proceeding. Testing in liquid oxygen is planned for Q2 of FY2017. This topic explores the design of the turbopump along with fabrication and material testing of the DMLS hardware.

  15. Nonlinear robust controller design for multi-robot systems with unknown payloads

    NASA Technical Reports Server (NTRS)

    Song, Y. D.; Anderson, J. N.; Homaifar, A.; Lai, H. Y.

    1992-01-01

    This work is concerned with the control problem of a multi-robot system handling a payload with unknown mass properties. Force constraints at the grasp points are considered. Robust control schemes are proposed that cope with the model uncertainty and achieve asymptotic path tracking. To deal with the force constraints, a strategy for optimally sharing the task is suggested. This strategy basically consists of two steps. The first detects the robots that need help and the second arranges that help. It is shown that the overall system is not only robust to uncertain payload parameters, but also satisfies the force constraints.

  16. Neighborhood Design, Physical Activity, and Wellbeing: Applying the Walkability Model.

    PubMed

    Zuniga-Teran, Adriana A; Orr, Barron J; Gimblett, Randy H; Chalfoun, Nader V; Guertin, David P; Marsh, Stuart E

    2017-01-13

    Neighborhood design affects lifestyle physical activity, and ultimately human wellbeing. There are, however, a limited number of studies that examine neighborhood design types. In this research, we examine four types of neighborhood designs: traditional development, suburban development, enclosed community, and cluster housing development, and assess their level of walkability and their effects on physical activity and wellbeing. We examine significant associations through a questionnaire (n = 486) distributed in Tucson, Arizona using the Walkability Model. Among the tested neighborhood design types, traditional development showed significant associations and the highest value for walkability, as well as for each of the two types of walking (recreation and transportation) representing physical activity. Suburban development showed significant associations and the highest mean values for mental health and wellbeing. Cluster housing showed significant associations and the highest mean value for social interactions with neighbors and for perceived safety from crime. Enclosed community did not obtain the highest means for any wellbeing benefit. The Walkability Model proved useful in identifying the walkability categories associated with physical activity and perceived crime. For example, the experience category was strongly and inversely associated with perceived crime. This study provides empirical evidence of the importance of including vegetation, particularly trees, throughout neighborhoods in order to increase physical activity and wellbeing. Likewise, the results suggest that regular maintenance is an important strategy to improve mental health and overall wellbeing in cities.

  17. Visual Design Principles Applied To World Wide Web Construction.

    ERIC Educational Resources Information Center

    Luck, Donald D.; Hunter, J. Mark

    This paper describes basic types of World Wide Web pages and presents design criteria for page layout based on principles of visual literacy. Discussion focuses on pages that present information in the following styles: billboard; directory/index; textual; and graphics. Problems and solutions in Web page construction are explored according to…

  18. Applying Learning Theories and Instructional Design Models for Effective Instruction

    ERIC Educational Resources Information Center

    Khalil, Mohammed K.; Elkhider, Ihsan A.

    2016-01-01

    Faculty members in higher education are involved in many instructional design activities without formal training in learning theories and the science of instruction. Learning theories provide the foundation for the selection of instructional strategies and allow for reliable prediction of their effectiveness. To achieve effective learning…

  19. A Probabilistic Design Method Applied to Smart Composite Structures

    NASA Technical Reports Server (NTRS)

    Shiao, Michael C.; Chamis, Christos C.

    1995-01-01

    A probabilistic design method is described and demonstrated using a smart composite wing. Probabilistic structural design incorporates naturally occurring uncertainties including those in constituent (fiber/matrix) material properties, fabrication variables, structure geometry and control-related parameters. Probabilistic sensitivity factors are computed to identify those parameters that have a great influence on a specific structural reliability. Two performance criteria are used to demonstrate this design methodology. The first criterion requires that the actuated angle at the wing tip be bounded by upper and lower limits at a specified reliability. The second criterion requires that the probability of ply damage due to random impact load be smaller than an assigned value. When the relationship between reliability improvement and the sensitivity factors is assessed, the results show that a reduction in the scatter of the random variable with the largest sensitivity factor (absolute value) provides the lowest failure probability. An increase in the mean of the random variable with a negative sensitivity factor will reduce the failure probability. Therefore, the design can be improved by controlling or selecting distribution parameters associated with random variables. This can be implemented during the manufacturing process to obtain maximum benefit with minimum alterations.

  20. Neighborhood Design, Physical Activity, and Wellbeing: Applying the Walkability Model

    PubMed Central

    Zuniga-Teran, Adriana A.; Orr, Barron J.; Gimblett, Randy H.; Chalfoun, Nader V.; Guertin, David P.; Marsh, Stuart E.

    2017-01-01

    Neighborhood design affects lifestyle physical activity, and ultimately human wellbeing. There are, however, a limited number of studies that examine neighborhood design types. In this research, we examine four types of neighborhood designs: traditional development, suburban development, enclosed community, and cluster housing development, and assess their level of walkability and their effects on physical activity and wellbeing. We examine significant associations through a questionnaire (n = 486) distributed in Tucson, Arizona using the Walkability Model. Among the tested neighborhood design types, traditional development showed significant associations and the highest value for walkability, as well as for each of the two types of walking (recreation and transportation) representing physical activity. Suburban development showed significant associations and the highest mean values for mental health and wellbeing. Cluster housing showed significant associations and the highest mean value for social interactions with neighbors and for perceived safety from crime. Enclosed community did not obtain the highest means for any wellbeing benefit. The Walkability Model proved useful in identifying the walkability categories associated with physical activity and perceived crime. For example, the experience category was strongly and inversely associated with perceived crime. This study provides empirical evidence of the importance of including vegetation, particularly trees, throughout neighborhoods in order to increase physical activity and wellbeing. Likewise, the results suggest that regular maintenance is an important strategy to improve mental health and overall wellbeing in cities. PMID:28098785

  1. Applying Minimalist Design Principles to the Problem of Computer Anxiety.

    ERIC Educational Resources Information Center

    Reznich, Christopher B.

    1996-01-01

    Minimalist design principles were used to test whether instructional intervention could decrease computer anxiety of subjects learning basic word-processing skills. Subjects were pre- and posttested on anxiety during each session. Findings indicated that the method as well as increased computer use decreased anxiety. (Author/AEF)

  2. Direct discrete-time design approach to robust ? sampled-data observer-based output-feedback fuzzy control

    NASA Astrophysics Data System (ADS)

    Kim, Do Wan; Lee, Ho Jae

    2016-01-01

    This paper addresses a direct discrete-time design methodology for a robust ? sampled-data observer-based output-feedback stabilisation problem for a class of non-linear systems suffering from parametric uncertainties and disturbances that is identically modelled as a Takagi-Sugeno (T-S) fuzzy model at least locally. The primary features in the current development are that (1) we are based on an exact (rather than approximate) discrete-time model in an integral (rather than closed) form while (2) the ? control performance is characterised with respect to an ? (rather than l2) norm. It is shown that the uncertain sampled-data non-linear control system is robustly asymptotically stable if the employed discrete-time model is so. Design conditions are investigated in the discrete-time Lyapunov sense and concretised in the format of linear matrix inequalities.

  3. Electrostatic separation for recycling waste printed circuit board: a study on external factor and a robust design for optimization.

    PubMed

    Hou, Shibing; Wu, Jiang; Qin, Yufei; Xu, Zhenming

    2010-07-01

    Electrostatic separation is an effective and environmentally friendly method for recycling waste printed circuit board (PCB) by several kinds of electrostatic separators. However, some notable problems have been detected in its applications and cannot be efficiently resolved by optimizing the separation process. Instead of the separator itself, these problems are mainly caused by some external factors such as the nonconductive powder (NP) and the superficial moisture of feeding granule mixture. These problems finally lead to an inefficient separation. In the present research, the impacts of these external factors were investigated and a robust design was built to optimize the process and to weaken the adverse impact. A most robust parameter setting (25 kv, 80 rpm) was concluded from the experimental design. In addition, some theoretical methods, including cyclone separation, were presented to eliminate these problems substantially. This will contribute to efficient electrostatic separation of waste PCB and make remarkable progress for industrial applications.

  4. Approach for Uncertainty Propagation and Robust Design in CFD Using Sensitivity Derivatives

    NASA Technical Reports Server (NTRS)

    Putko, Michele M.; Newman, Perry A.; Taylor, Arthur C., III; Green, Lawrence L.

    2001-01-01

    This paper presents an implementation of the approximate statistical moment method for uncertainty propagation and robust optimization for a quasi 1-D Euler CFD (computational fluid dynamics) code. Given uncertainties in statistically independent, random, normally distributed input variables, a first- and second-order statistical moment matching procedure is performed to approximate the uncertainty in the CFD output. Efficient calculation of both first- and second-order sensitivity derivatives is required. In order to assess the validity of the approximations, the moments are compared with statistical moments generated through Monte Carlo simulations. The uncertainties in the CFD input variables are also incorporated into a robust optimization procedure. For this optimization, statistical moments involving first-order sensitivity derivatives appear in the objective function and system constraints. Second-order sensitivity derivatives are used in a gradient-based search to successfully execute a robust optimization. The approximate methods used throughout the analyses are found to be valid when considering robustness about input parameter mean values.

  5. Development of a Framework for Model-Based Analysis, Uncertainty Quantification, and Robust Control Design of Nonlinear Smart Composite Systems

    DTIC Science & Technology

    2015-06-04

    SMART COMPOSITE SYSTEMS Ralph Smith North Carolina State University at Raleigh Final Report 04/06/2015 DISTRIBUTION A: Distribution approved for public...Analysis, Uncertainty Quantification, and Robust Control Design of Nonlinear Smart Composite Systems 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-11...range of nonlinear and hysteretic smart composite systems. A major component of the program focused on the development of this framework in the context

  6. Robust design of an optical router based on a tapered side-coupled integrated spaced sequence of optical resonators.

    PubMed

    Bettotti, P; Mancinelli, M; Guider, R; Masi, M; Vanacharla, M Rao; Pavesi, L

    2011-04-15

    A novel (to our knowledge) scheme of an optical router/switch element, composed of a tapered side-coupled integrated spaced sequence of optical resonators, is proposed. It is based on a modified design of the ring sequence in which the resonance conditions are set by the single ring resonance and by the coherent feedback of the sequence of rings. This double condition yields robustness against fabrication defects, dense routing capability, and high switching efficiency.

  7. 21 CFR 111.20 - What design and construction requirements apply to your physical plant?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false What design and construction requirements apply to... § 111.20 What design and construction requirements apply to your physical plant? Any physical plant you... in size, construction, and design to facilitate maintenance, cleaning, and sanitizing operations;...

  8. Robust design of multiple-input multiple-output radar waveform covariance matrix in the presence of clutter

    NASA Astrophysics Data System (ADS)

    Guo, Rongyan; Wang, Hongyan

    2016-07-01

    In this work, the issue of robust waveform optimization is addressed in the presence of clutter to improve the worst-case estimation accuracy for collocated multiple-input multiple-output (MIMO) radar. Robust design is necessary due to the fact that waveform design may be sensitive to uncertainties in the initial parameter estimates. Following the min-max approach, the robust waveform covariance matrix design is formulated here on the basis of Cramér-Rao Bound to ease this sensitivity systematically for improving the worst-case accuracy. To tackle the resultant complicated and nonlinear problem, a new diagonal loading (DL)-based iterative approach is developed, in which the inner optimization problem can first be decomposed to some independent subproblems by using the Hadamard's inequality, and then these subproblems can be reformulated into convex issues by using DL method, as well as the outer optimization problem can also be relaxed to a convex issue by translating the nonlinear function into a linear one, and, hence, both of them can be solved very effectively. An optimal solution to the original problem can be obtained via the least-squares fitting of the solution acquired by the iterative approach. Numerical simulations show the efficiency of the proposed method.

  9. Designing Crane Controls with applied Mechanical and Electrical Safety Features

    NASA Technical Reports Server (NTRS)

    Lytle, Bradford P.; Walczak, Thomas A.; Delgado, H. (Technical Monitor)

    2002-01-01

    The use of overhead traveling bridge cranes in many varied applications is common practice. In particular, the use of cranes in the nuclear, military, commercial, aerospace, and other industries can involve safety critical situations. Considerations for Human Injury or Casualty, Loss of Assets, Endangering the Environment, or Economic Reduction must be addressed. Traditionally, in order to achieve additional safety in these applications, mechanical systems have been augmented with a variety of devices. These devices assure that a mechanical component failure shall reduce the risk of a catastrophic loss of the correct and/or safe load carrying capability. ASME NOG-1-1998, (Rules for Construction of Overhead and Gantry Cranes, Top Running Bridge, and Multiple Girder), provides design standards for cranes in safety critical areas. Over and above the minimum safety requirements of todays design standards, users struggle with obtaining a higher degree of reliability through more precise functional specifications while attempting to provide "smart" safety systems. Electrical control systems also may be equipped with protective devices similar to the mechanical design features. Demands for improvement of the cranes "control system" is often recognized, but difficult to quantify for this traditionally "mechanically" oriented market. Finite details for each operation must be examined and understood. As an example, load drift (or small motions) at close tolerances can be unacceptable (and considered critical). To meet these high functional demands encoders and other devices are independently added to control systems to provide motion and velocity feedback to the control drive. This paper will examine the implementation of Programmable Electronic Systems (PES). PES is a term this paper will use to describe any control system utilizing any programmable electronic device such as Programmable Logic Controllers (PLC), or an Adjustable Frequency Drive (AID) 'smart' programmable

  10. APPLYING INSIGHTS FROM BEHAVIORAL ECONOMICS TO POLICY DESIGN

    PubMed Central

    Madrian, Brigitte C.

    2014-01-01

    The premise of this article is that an understanding of psychology and other social science disciplines can inform the effectiveness of the economic tools traditionally deployed in carrying out the functions of government, which include remedying market failures, redistributing income, and collecting tax revenue. An understanding of psychology can also lead to the development of different policy tools that better motivate desired behavior change or that are more cost-effective than traditional policy tools. The article outlines a framework for thinking about the psychology of behavior change in the context of market failures. It then describes the research on the effects of a variety of interventions rooted in an understanding of psychology that have policy-relevant applications. The article concludes by discussing how an understanding of psychology can also inform the use and design of traditional policy tools for behavior change, such as financial incentives. PMID:25520759

  11. Applying Contamination Modelling to Spacecraft Propulsion Systems Designs and Operations

    NASA Technical Reports Server (NTRS)

    Chen, Philip T.; Thomson, Shaun; Woronowicz, Michael S.

    2000-01-01

    Molecular and particulate contaminants generated from the operations of a propulsion system may impinge on spacecraft critical surfaces. Plume depositions or clouds may hinder the spacecraft and instruments from performing normal operations. Firing thrusters will generate both molecular and particulate contaminants. How to minimize the contamination impact from the plume becomes very critical for a successful mission. The resulting effect from either molecular or particulate contamination of the thruster firing is very distinct. This paper will discuss the interconnection between the functions of spacecraft contamination modeling and propulsion system implementation. The paper will address an innovative contamination engineering approach implemented from the spacecraft concept design, manufacturing, integration and test (I&T), launch, to on- orbit operations. This paper will also summarize the implementation on several successful missions. Despite other contamination sources, only molecular contamination will be considered here.

  12. Design of a robust thin-film interference filter for erbium-doped fiber amplifier gain equalization.

    PubMed

    Verly, Pierre G

    2002-06-01

    Gain-flattening filters (GFFs) are key wavelength division multiplexing components in fiber-optics telecommunications. Challenging issues in the design of thin-film GFFs were recently the subject of a contest organized at the 2001 Conference on Optical Interference Coatings. The interest and main difficulty of the proposed problem was to minimize the sensitivity of a GFF to simulated fabrication errors. A high-yield solution and its design philosophy are described. The approach used to control the filter robustness is explained and illustrated by numerical results.

  13. Design of a robust model predictive controller with reduced computational complexity.

    PubMed

    Razi, M; Haeri, M

    2014-11-01

    The practicality of robust model predictive control of systems with model uncertainties depends on the time consumed for solving a defined optimization problem. This paper presents a method for the computational complexity reduction in a robust model predictive control. First a scaled state vector is defined such that the objective function contours in the defined optimization problem become vertical or horizontal ellipses or circles, and then the control input is determined at each sampling time as a state feedback that minimizes the infinite horizon objective function by solving some linear matrix inequalities. The simulation results show that the number of iterations to solve the problem at each sampling interval is reduced while the control performance does not alter noticeably.

  14. Control design and robustness analysis of a ball and plate system by using polynomial chaos

    SciTech Connect

    Colón, Diego; Balthazar, José M.; Reis, Célia A. dos; Bueno, Átila M.; Diniz, Ivando S.; Rosa, Suelia de S. R. F.

    2014-12-10

    In this paper, we present a mathematical model of a ball and plate system, a control law and analyze its robustness properties by using the polynomial chaos method. The ball rolls without slipping. There is an auxiliary robot vision system that determines the bodies' positions and velocities, and is used for control purposes. The actuators are to orthogonal DC motors, that changes the plate's angles with the ground. The model is a extension of the ball and beam system and is highly nonlinear. The system is decoupled in two independent equations for coordinates x and y. Finally, the resulting nonlinear closed loop systems are analyzed by the polynomial chaos methodology, which considers that some system parameters are random variables, and generates statistical data that can be used in the robustness analysis.

  15. Control design and robustness analysis of a ball and plate system by using polynomial chaos

    NASA Astrophysics Data System (ADS)

    Colón, Diego; Balthazar, José M.; dos Reis, Célia A.; Bueno, Átila M.; Diniz, Ivando S.; de S. R. F. Rosa, Suelia

    2014-12-01

    In this paper, we present a mathematical model of a ball and plate system, a control law and analyze its robustness properties by using the polynomial chaos method. The ball rolls without slipping. There is an auxiliary robot vision system that determines the bodies' positions and velocities, and is used for control purposes. The actuators are to orthogonal DC motors, that changes the plate's angles with the ground. The model is a extension of the ball and beam system and is highly nonlinear. The system is decoupled in two independent equations for coordinates x and y. Finally, the resulting nonlinear closed loop systems are analyzed by the polynomial chaos methodology, which considers that some system parameters are random variables, and generates statistical data that can be used in the robustness analysis.

  16. Designing and Applying Proximity-Dependent Hybridization Chain Reaction.

    PubMed

    Koos, Björn; Söderberg, Ola

    2016-08-01

    Proximity-dependent hybridization chain reaction (proxHCR) is a novel technique for detection of protein interaction, post-translational modifications (PTMs), or protein expression. The method is based upon antibodies targeting the proteins of interest that are covalently conjugated to DNA oligonucleotides, which enables the induction of a hybridization chain reaction (HCR) to generate a fluorescent signal visible under a microscope. In contrast to the in situ proximity ligation assay (in situ PLA), which is another method that utilizes antibody-DNA conjugates to detect protein interactions, proxHCR does not require enzymatic steps. This makes proxHCR an inexpensive alternative to in situ PLA. Another potential advantage might be that proxHCR could more readily be adapted for use in automated staining procedures and in point-of-care devices, as all reagents can be stored at room temperature. This unit describes how the oligonucleotide system for proxHCR can be designed and a protocol for how to perform proxHCR is presented. © 2016 by John Wiley & Sons, Inc.

  17. Applying environmental product design to biomedical products research.

    PubMed Central

    Messelbeck, J; Sutherland, L

    2000-01-01

    The principal themes for the Biomedical Research and the Environment Conference Committee on Environmental Economics in Biomedical Research include the following: healthcare delivery companies and biomedical research organizations, both nonprofit and for-profit, need to improve their environmental performance; suppliers of healthcare products will be called upon to support this need; and improving the environmental profile of healthcare products begins in research and development (R&D). The committee report begins with requirements from regulatory authorities (e.g., U.S. Environmental Protection Agency [EPA], the U.S. Food and Drug Administration), and the healthcare delivery sector). The 1998 American Hospital Association and EPA Memorandum of Understanding to reduce solid waste and mercury from healthcare facilities is emblematic of these requirements. The dominant message from the requirements discussion is to ensure that R&D organizations do not ignore customer, environmental, and regulatory requirements in the early stages of product development. Several representatives from healthcare products manufacturers presented their companies' approaches to meeting these requirements. They reported on efforts to ensure that their R&D processes are sensitive to the environmental consequences from manufacturing, distributing, using, and disposing of healthcare products. These reports describe representatives' awareness of requirements and the unique approaches their R&D organizations have taken to meet these requirements. All representatives reported that their R&D organizations have embraced environmental product design because it avoids the potential of returning products to R&D to improve the environmental profile. Additionally, several reports detailed cost savings, sustainability benefits, and improvements in environmental manufacturing or redesign, and increased customer satisfaction. Many companies in healthcare delivery are working to improve environmental

  18. Applying environmental product design to biomedical products research.

    PubMed

    Messelbeck, J; Sutherland, L

    2000-12-01

    The principal themes for the Biomedical Research and the Environment Conference Committee on Environmental Economics in Biomedical Research include the following: healthcare delivery companies and biomedical research organizations, both nonprofit and for-profit, need to improve their environmental performance; suppliers of healthcare products will be called upon to support this need; and improving the environmental profile of healthcare products begins in research and development (R&D). The committee report begins with requirements from regulatory authorities (e.g., U.S. Environmental Protection Agency [EPA], the U.S. Food and Drug Administration), and the healthcare delivery sector). The 1998 American Hospital Association and EPA Memorandum of Understanding to reduce solid waste and mercury from healthcare facilities is emblematic of these requirements. The dominant message from the requirements discussion is to ensure that R&D organizations do not ignore customer, environmental, and regulatory requirements in the early stages of product development. Several representatives from healthcare products manufacturers presented their companies' approaches to meeting these requirements. They reported on efforts to ensure that their R&D processes are sensitive to the environmental consequences from manufacturing, distributing, using, and disposing of healthcare products. These reports describe representatives' awareness of requirements and the unique approaches their R&D organizations have taken to meet these requirements. All representatives reported that their R&D organizations have embraced environmental product design because it avoids the potential of returning products to R&D to improve the environmental profile. Additionally, several reports detailed cost savings, sustainability benefits, and improvements in environmental manufacturing or redesign, and increased customer satisfaction. Many companies in healthcare delivery are working to improve environmental

  19. Applying Universal Instructional Design to Course Websites by Using Course Evaluations

    ERIC Educational Resources Information Center

    Carter, Irene; Leslie, Donald; Kwan, Denise

    2012-01-01

    The authors explore their use of learner-centred teaching strategies and Universal Instructional Design (UID) on course websites. UID is based on universal design, the design of products and environments intended to be usable by all people to the greatest extent possible (Burgstahler & Cory, 2008). UID applies universal design to instructional…

  20. Robust design optimization with an uncertain model of a nonlinear vibro-impact electro-mechanical system

    NASA Astrophysics Data System (ADS)

    Lima, Roberta; Soize, Christian; Sampaio, Rubens

    2015-06-01

    In this paper, the robust design with an uncertain model of a vibro-impact electro-mechanical system is done. The electro-mechanical system is composed of a cart, whose motion is excited by a DC motor (motor with continuous current), and an embarked hammer into this cart. The hammer is connected to the cart by a nonlinear spring component and by a linear damper, so that a relative motion exists between them. A linear flexible barrier, placed outside of the cart, constrains the hammer movements. Due to the relative movement between the hammer and the barrier, impacts can occur between these two elements. The developed model of the system takes into account the influence of the DC motor in the dynamic behavior of the system. Some system parameters are uncertain, such as the stiffness and the damping coefficients of the flexible barrier. The objective of the paper is to perform an optimization of this electro-mechanical system with respect to design parameters (spring component, and barrier g) in order to maximize the impact power under the constraint that the electric power consumed by the DC motor is lower than a maximum value. This optimization is formulated in the framework of robust design due to the presence of uncertainties in the model. The set of nonlinear equations are presented, and an adapted time domain solver is developed. The stochastic nonlinear constrained design optimization problem is solved for different levels of uncertainties, and also for the deterministic case.

  1. Design and evaluation of robust matched filters for chemical agent detection

    NASA Astrophysics Data System (ADS)

    Niu, Sidi; Golowich, Steven E.; Ingle, Vinay K.; Manolakis, Dimitris G.

    2011-11-01

    Most chemical gas detection algorithms for hyperspectral imaging applications assume a gas with a perfectly known spectral signature. In practice, the chemical signature is either imperfectly measured and/or exhibits spectral variability due to temperature variations and Beer's law. The objective of this work is to explore robust matched filters that take the uncertainty and/or variability of the target signatures into account. We introduce various techniques that control the selectivity of the matched filter and we evaluate their performance in standoff LWIR hyperspectral chemical gas detection applications.

  2. 21 CFR 111.20 - What design and construction requirements apply to your physical plant?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... § 111.20 What design and construction requirements apply to your physical plant? Any physical plant you... 21 Food and Drugs 2 2010-04-01 2010-04-01 false What design and construction requirements apply to your physical plant? 111.20 Section 111.20 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT...

  3. 21 CFR 111.20 - What design and construction requirements apply to your physical plant?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... that controls temperature and humidity, when such equipment is necessary to ensure the quality of the... 21 Food and Drugs 2 2012-04-01 2012-04-01 false What design and construction requirements apply to... § 111.20 What design and construction requirements apply to your physical plant? Any physical plant...

  4. 21 CFR 111.20 - What design and construction requirements apply to your physical plant?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... that controls temperature and humidity, when such equipment is necessary to ensure the quality of the... 21 Food and Drugs 2 2011-04-01 2011-04-01 false What design and construction requirements apply to... § 111.20 What design and construction requirements apply to your physical plant? Any physical plant...

  5. Metrology target design simulations for accurate and robust scatterometry overlay measurements

    NASA Astrophysics Data System (ADS)

    Ben-Dov, Guy; Tarshish-Shapir, Inna; Gready, David; Ghinovker, Mark; Adel, Mike; Herzel, Eitan; Oh, Soonho; Choi, DongSub; Han, Sang Hyun; El Kodadi, Mohamed; Hwang, Chan; Lee, Jeongjin; Lee, Seung Yoon; Lee, Kuntack

    2016-03-01

    Overlay metrology target design is an essential step prior to performing overlay measurements. This step is done through the optimization of target parameters for a given process stack. A simulation tool is therefore used to improve measurement performances. This work shows how our Metrology Target Design (MTD) simulator helps significantly in the target design process. We show the role of film and Optical CD measurements in improving significantly the fidelity of the simulations. We demonstrate that for various target design parameters we are capable of predicting measured performance metrics by simulations and correctly rank various designs performances.

  6. Recombinant yeast technology at the cutting edge: robust tools for both designed catalysts and new biologicals.

    PubMed

    Kovar, Karin; Looser, Verena; Hyka, Petr; Merseburger, Tobias; Meier, Christian

    2010-01-01

    Health and safety concerns, enhanced quality criteria, and environmental sustainability, have prompted investigations into production using recombinant yeasts as a feasible alternative for isolation of proteins from natural animal or plant sources, as well as for processes utilising either mammalian cell cultures or bacterial systems. An overview of recent research papers and review articles provides readers with a comprehensive insight into the field of next-generation yeast expression systems. Major breakthroughs in recombinant yeast technology linked to Pichia pastoris are (i) the public availability of tools to generate proteins with tailored and highly homogenous N-glycan structures, similar to the forms assembled in humans, (ii) the recent accomplishment of the annotation of its genome sequence, and finally, (iii) the presence of the first few (non-glycosylated) therapeutic proteins in Pichia on the market. The P. pastoris expression platform is now well developed, as proven by multiple products used in human and veterinary medicine and in industry (e.g., enzymes for chemical synthesis and for the modification/synthesis of pharmaceuticals, drug target proteins used for structural analysis or for high throughput screening, proteins for diagnostics, proteinous biomaterials, vaccines, and therapeutic proteins). Nevertheless, the complexity of protein analysis (monitoring) continues to restrict process development for recombinant products. Drawing on combined expertise in molecular biology and process technology, the Institute of Biotechnology (IBT) at the Zurich University of Applied Science (ZHAW) and its international partners have developed solutions which (i) fully eliminate (or partially reduce) the use of methanol, which is undesirable in high-cell-density and high-productivity processes, (ii) match both strain construction and process design with the target protein characteristics to the benefit of the cells' physiological shape, and (iii) allow multi

  7. A minimum cost tolerance allocation method for rocket engines and robust rocket engine design

    NASA Technical Reports Server (NTRS)

    Gerth, Richard J.

    1993-01-01

    Rocket engine design follows three phases: systems design, parameter design, and tolerance design. Systems design and parameter design are most effectively conducted in a concurrent engineering (CE) environment that utilize methods such as Quality Function Deployment and Taguchi methods. However, tolerance allocation remains an art driven by experience, handbooks, and rules of thumb. It was desirable to develop and optimization approach to tolerancing. The case study engine was the STME gas generator cycle. The design of the major components had been completed and the functional relationship between the component tolerances and system performance had been computed using the Generic Power Balance model. The system performance nominals (thrust, MR, and Isp) and tolerances were already specified, as were an initial set of component tolerances. However, the question was whether there existed an optimal combination of tolerances that would result in the minimum cost without any degradation in system performance.

  8. Control design for robust tracking and smooth transition in power systems with battery/supercapacitor hybrid energy storage devices

    NASA Astrophysics Data System (ADS)

    Jung, Hoeguk; Wang, Haifeng; Hu, Tingshu

    2014-12-01

    This paper considers some control design problems in a power system driven by battery/supercapacitor hybrid energy storage devices. The currents in the battery and the supercapacitor are actively controlled by two bidirectional buck-boost converters. Two control objectives are addressed in this paper: one is to achieve robust tracking of two reference variables, the battery current and the load voltage, the other is to achieve smooth transition of these variables during load switch. Based on the state-space averaged model we newly developed, the control design problems are converted into numerically efficient optimization problems with linear matrix inequality (LMI) constraints. An experimental system is constructed to validate the control design methods.

  9. Robust Multi-Length Scale Deformation Process Design for the Control of Microstructure-Sensitive Material Properties

    DTIC Science & Technology

    2007-07-18

    die underfill caused by material porosity This problem studies the effect of a random voids in the design of flashless closed die forging processes...provides a robust way to estimate the statistics of the extent of die underfill as a result of a random distribution of voids in the billet. The initial...2.38) i=1 where fo = 0.03 is the mean void fraction. A 9x9 grid was used for computing the statistics. The mean underfill was estimated to be

  10. Robust unknown input observer design for state estimation and fault detection using linear parameter varying model

    NASA Astrophysics Data System (ADS)

    Li, Shanzhi; Wang, Haoping; Aitouche, Abdel; Tian, Yang; Christov, Nicolai

    2017-01-01

    This paper proposes a robust unknown input observer for state estimation and fault detection using linear parameter varying model. Since the disturbance and actuator fault is mixed together in the physical system, it is difficult to isolate the fault from the disturbance. Using the state transforation, the estimation of the original state becomes to associate with the transform state. By solving the linear matrix inequalities (LMIs)and linear matrix equalities (LMEs), the parameters of the UIO can be obtained. The convergence of the UIO is also analysed by the Layapunov theory. Finally, a wind turbine system with disturbance and actuator fault is tested for the proposed method. From the simulations, it demonstrates the effectiveness and performances of the proposed method.

  11. Robust Design of Vibration Suppression Control System for Crane Using Sway Angle Observer Considering Friction Disturbance

    NASA Astrophysics Data System (ADS)

    Sano, Hiroki; Sato, Kentaro; Ohishi, Kiyoshi; Miyazaki, Toshimasa

    It is desirable for a container crane to operate smoothly and quickly. For this purpose, the control system of a container crane should be capable of anti-sway control for suppressing vibrations. A vision sensor system is often used to detect the sway angle. However, since a control system with a vision sensor has a delay time when determining the angle, it sometimes leads to the deterioration of the control performance owing to the delay time. In order to overcome this problem, this paper proposes a new anti-sway crane control system based on a dual-state observer with sensor-delay correction. However, because of nonlinear friction in the crane, the estimation accuracy achieved by using the observer is poor. To overcome this problem, this paper proposes a disturbance observer considering friction disturbance. The control performance and effectiveness of the proposed robust control system based on the estimated information are confirmed to be satisfactory from experimental results.

  12. Minimalist design of a robust real-time quantum random number generator

    NASA Astrophysics Data System (ADS)

    Kravtsov, K. S.; Radchenko, I. V.; Kulik, S. P.; Molotkov, S. N.

    2015-08-01

    We present a simple and robust construction of a real-time quantum random number generator (QRNG). Our minimalist approach ensures stable operation of the device as well as its simple and straightforward hardware implementation as a stand-alone module. As a source of randomness the device uses measurements of time intervals between clicks of a single-photon detector. The obtained raw sequence is then filtered and processed by a deterministic randomness extractor, which is realized as a look-up table. This enables high speed on-the-fly processing without the need of extensive computations. The overall performance of the device is around 1 random bit per detector click, resulting in 1.2 Mbit/s generation rate in our implementation.

  13. Fuzzy robust H ∞ filter design for nonlinear discrete-time systems with interval time delays

    NASA Astrophysics Data System (ADS)

    Su, Ya-Kun; Chen, Bing; Zhou, Qi; Lin, Chong

    2012-08-01

    This article deals with the problem of H ∞ filter design for nonlinear discrete-time systems with norm-bounded parameter uncertainties and time-varying delays. A new Lyapunov function and free-weighting matrix method are used for filtering design, consequently, a delay-dependent design method is first proposed in terms of linear matrix inequalities, which produces a less conservative result. Finally, numerical examples are given to demonstrate the effectiveness and the benefits of the proposed method.

  14. Labyrinth Seal Flutter Analysis and Test Validation in Support of Robust Rocket Engine Design

    NASA Technical Reports Server (NTRS)

    El-Aini, Yehia; Park, John; Frady, Greg; Nesman, Tom

    2010-01-01

    High energy-density turbomachines, like the SSME turbopumps, utilize labyrinth seals, also referred to as knife-edge seals, to control leakage flow. The pressure drop for such seals is order of magnitude higher than comparable jet engine seals. This is aggravated by the requirement of tight clearances resulting in possible unfavorable fluid-structure interaction of the seal system (seal flutter). To demonstrate these characteristics, a benchmark case of a High Pressure Oxygen Turbopump (HPOTP) outlet Labyrinth seal was studied in detail. First, an analytical assessment of the seal stability was conducted using a Pratt & Whitney legacy seal flutter code. Sensitivity parameters including pressure drop, rotor-to-stator running clearances and cavity volumes were examined and modeling strategies established. Second, a concurrent experimental investigation was undertaken to validate the stability of the seal at the equivalent operating conditions of the pump. Actual pump hardware was used to construct the test rig, also referred to as the (Flutter Rig). The flutter rig did not include rotational effects or temperature. However, the use of Hydrogen gas at high inlet pressure provided good representation of the critical parameters affecting flutter especially the speed of sound. The flutter code predictions showed consistent trends in good agreement with the experimental data. The rig test program produced a stability threshold empirical parameter that separated operation with and without flutter. This empirical parameter was used to establish the seal build clearances to avoid flutter while providing the required cooling flow metering. The calibrated flutter code along with the empirical flutter parameter was used to redesign the baseline seal resulting in a flutter-free robust configuration. Provisions for incorporation of mechanical damping devices were introduced in the redesigned seal to ensure added robustness

  15. Artificial Earth Satellites Designed and Fabricated by The Johns Hopkins University Applied Physics Laboratory. Revised

    DTIC Science & Technology

    1978-07-01

    until propellant exhaustion on 18 April 1975 , exceeding substantially its one-year design life. Experiments with an orbital prediction span of up to two...UWafeinS APPLIED PHYSICS LABORATORY SDO 1600 -- May 1975 I. 3 Appendix B THE NAVY NAVIGATION SATELLITE SYSTEM! One of the earliest programs designed to...SDO-1600 7 (Revised)lCL SARTIFICIAL EARTH SATELLITEStQ DESIGNED AND FABRICATED 9 by I THE JOHNS HOPKINS UNIVERSITY APPLIED PHYSICS LABORATORY I __CD

  16. Design of robust controllers and a nonlinear observer for the control of a single-link flexible robotic manipulator

    NASA Astrophysics Data System (ADS)

    Chalhoub, N. G.; Kfoury, G. A.; Bazzi, B. A.

    2006-03-01

    Two robust nonlinear controllers along with a nonlinear observer have been developed in this study to control the rigid and flexible motions of a single-link robotic manipulator. The controllers and the observer have been designed based on a simplified model of the arm, which only accounts for the first elastic mode of the beam. The controllers consist of a conventional sliding mode controller (CSMC) and a fuzzy-sliding mode controller (FSMC). Moreover, the robust nonlinear observer has been designed based on the sliding mode methodology. The dynamic model, used in assessing the performances of the controllers and the observer, considers the first two elastic modes of the beam. The inclusion of the second elastic mode has been done to investigate the effects of unstructured uncertainties on the overall performance of the closed-loop system. The digital simulations have demonstrated the capability of the observer in yielding accurate estimates of the state variables in the presence of modeling uncertainties. Moreover, they served to prove the viability of using the observer to provide on-line estimates of the state variables for the computation of the control signals. The results have illustrated robust performances of the controllers and the observer in controlling the rigid and flexible motions of the manipulator in the presence of both structured and unstructured uncertainties. This was achieved irrespective of the differences in the initial conditions between the plant and the observer. Furthermore, the structural deformations, incurred by the beam at the onset of its movement, have been shown to be significantly reduced by fuzzy-tuning the η-control parameter. The results have demonstrated the superiority of the FSMC over the CSMC in producing less oscillatory and more accurate response of the angular displacement at the base joint, in damping out the unwanted vibrations of the beam, and in requiring significantly smaller control torques.

  17. Applying Semiotic Theories to Graphic Design Education: An Empirical Study on Poster Design Teaching

    ERIC Educational Resources Information Center

    Yang, Chao-Ming; Hsu, Tzu-Fan

    2015-01-01

    The rationales behind design are dissimilar to those behind art. Establishing an adequate theoretical foundation for conducting design education can facilitate scientising design methods. Thus, from the perspectives of the semiotic theories proposed by Saussure and Peirce, we investigated graphic design curricula by performing teaching…

  18. Reinforcement-Learning-Based Robust Controller Design for Continuous-Time Uncertain Nonlinear Systems Subject to Input Constraints.

    PubMed

    Liu, Derong; Yang, Xiong; Wang, Ding; Wei, Qinglai

    2015-07-01

    The design of stabilizing controller for uncertain nonlinear systems with control constraints is a challenging problem. The constrained-input coupled with the inability to identify accurately the uncertainties motivates the design of stabilizing controller based on reinforcement-learning (RL) methods. In this paper, a novel RL-based robust adaptive control algorithm is developed for a class of continuous-time uncertain nonlinear systems subject to input constraints. The robust control problem is converted to the constrained optimal control problem with appropriately selecting value functions for the nominal system. Distinct from typical action-critic dual networks employed in RL, only one critic neural network (NN) is constructed to derive the approximate optimal control. Meanwhile, unlike initial stabilizing control often indispensable in RL, there is no special requirement imposed on the initial control. By utilizing Lyapunov's direct method, the closed-loop optimal control system and the estimated weights of the critic NN are proved to be uniformly ultimately bounded. In addition, the derived approximate optimal control is verified to guarantee the uncertain nonlinear system to be stable in the sense of uniform ultimate boundedness. Two simulation examples are provided to illustrate the effectiveness and applicability of the present approach.

  19. An Economical Multifactor within-Subject Design Robust against Trend and Carryover Effects.

    DTIC Science & Technology

    1985-10-17

    Table 1, two sets of labels are provided: (1) new screening design labels , and (2) original factor labels . The first set of labels is used in an...columns and row of the traditional factorial design are ordinarily written in Yates’ standard order. When labelled , this order for the columns would...be an expansion of the form (original labels ): A, B, AB, C, AC, BC, ABC, D, AD... and so forth, depending on how many factors are involved and a

  20. Design of a small robust DASH interferometer suitable for CubeSat observations of Thermospheric winds

    NASA Astrophysics Data System (ADS)

    Harlander, J.; Englert, C. R.

    2012-12-01

    The Doppler Asymmetric Spatial Heterodyne (DASH) concept has been proposed to measure upper atmospheric winds. The approach is identical to the concept of Spatial Heterodyne Spectroscopy (SHS) except one interferometer arm exhibits an additional optical path offset which optimizes the instrument for the measurement of atmospheric winds. A DASH interferometer is a field-widened Michelson that utilizes diffraction gratings instead of mirrors to measure an interferogram over a large path difference interval without moving parts. This feature enables the instrument to simultaneously monitor multiple atmospheric lines and calibration lines to track instrumental drifts. The DASH interferometer described in this paper is designed for satellite measurements of thermospheric winds using the upper atmospheric red line at λ=630.0 nm in a limb imaging geometry. The interferometer departs from previous designs in that the fringes are localized on a plane following the interferometer which eliminates the need for exit optics to re-image the interferogram onto the detector. Only one focusing optic is required to form an image of the limb through the interferometer onto the fringe localization plane. The resulting instrument assembly is smaller and lighter than previous designs making it suitable for deployment on a multi-U CubeSat platform. This paper will discuss the design of the real-fringe interferometer, its advantages and limitations when compared to earlier DASH designs and its possible implementation on a CubeSat.

  1. Advanced Vibration Analysis Tools and New Strategies for Robust Design of Turbine Engine Rotors

    NASA Technical Reports Server (NTRS)

    Min, James B.

    2002-01-01

    The adverse effects of small, random structural irregularities among the blades, called mistuning, can result in blade forced-response amplitudes and stresses that are much larger than those predicted for a perfectly tuned rotor. Manufacturing tolerances, deviations in material properties, or nonuniform operational wear causes mistuning; therefore, mistuning is unavoidable. Furthermore, even a small mistuning can have a dramatic effect on the vibratory behavior of a rotor because it can lead to spatial localization of the vibration energy (see the following photographs). As a result, certain blades may experience forced response amplitudes and stresses that are substantially larger than those predicted by an analysis of the nominal (tuned) design. Unfortunately, these random uncertainties in blade properties, and the immense computational effort involved in obtaining statistically reliable design data, combine to make this aspect of rotor design cumbersome.

  2. Flat-top MZI filters: a novel robust design based on MMI splitters

    NASA Astrophysics Data System (ADS)

    Cherchi, Matteo; Harjanne, Mikko; Ylinen, Sami; Kapulainen, Markku; Vehmas, Tapani; Aalto, Timo

    2016-03-01

    Multimode Interferometers (MMIs) are an attractive alternative to directional couplers, ensuring more relaxed tolerances to fabrication errors and broader operation bandwidth. The drawback is that only a limited discrete set of splitting ratios is achievable with MMIs of constant cross section. This issue clearly limits their use in flat-top interferometric filters, which design requires, in general, free choice of the splitting ratios. Here we show for the first time that it is possible to design 4-stage flat-top interferometers using only standard MMIs with 50:50 and 85:15 splitting ratios. The design approach is based on the representation of the system on the Bloch sphere. Flat-top interleavers with different free spectral ranges have been designed and fabricated on the silicon photonics platform of VTT, based on 3 μm thick rib and strip waveguides. Two different layouts have been explored: one where all components are collinear and a more compact one which elements have been folded in a spiral shape. All interleavers have been designed for TE polarization, and they work in a wavelength range comparable with the 100 nm bandwidth of the MMI splitters. Even though fabrication imperfections and non-ideal behaviour of both waveguide bends and MMIs led to reduced extinction compared to simulations, most devices show in-band extinction exceeding 15 dB. The in-band losses of the most central channels did not exceed 1.5 dB compared to the reference straight waveguide. The designed interleavers can be employed in cascaded configurations to achieve broadband and fabrication tolerant flat-top wavelength (de)multiplexers.

  3. A robust two-stage design identifying the optimal biological dose for phase I/II clinical trials.

    PubMed

    Zang, Yong; Lee, J Jack

    2017-01-15

    We propose a robust two-stage design to identify the optimal biological dose for phase I/II clinical trials evaluating both toxicity and efficacy outcomes. In the first stage of dose finding, we use the Bayesian model averaging continual reassessment method to monitor the toxicity outcomes and adopt an isotonic regression method based on the efficacy outcomes to guide dose escalation. When the first stage ends, we use the Dirichlet-multinomial distribution to jointly model the toxicity and efficacy outcomes and pick the candidate doses based on a three-dimensional volume ratio. The selected candidate doses are then seamlessly advanced to the second stage for dose validation. Both toxicity and efficacy outcomes are continuously monitored so that any overly toxic and/or less efficacious dose can be dropped from the study as the trial continues. When the phase I/II trial ends, we select the optimal biological dose as the dose obtaining the minimal value of the volume ratio within the candidate set. An advantage of the proposed design is that it does not impose a monotonically increasing assumption on the shape of the dose-efficacy curve. We conduct extensive simulation studies to examine the operating characteristics of the proposed design. The simulation results show that the proposed design has desirable operating characteristics across different shapes of the underlying true dose-toxicity and dose-efficacy curves. The software to implement the proposed design is available upon request. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Robust Scale Transformation Methods in IRT True Score Equating under Common-Item Nonequivalent Groups Design

    ERIC Educational Resources Information Center

    He, Yong

    2013-01-01

    Common test items play an important role in equating multiple test forms under the common-item nonequivalent groups design. Inconsistent item parameter estimates among common items can lead to large bias in equated scores for IRT true score equating. Current methods extensively focus on detection and elimination of outlying common items, which…

  5. Designing Interference-Robust Wireless Mesh Networks Using a Defender-Attacker-Defender Model

    DTIC Science & Technology

    2015-02-01

    design. vi THIS PAGE INTENTIONALLY LEFT BLANK vii TABLE OF CONTENTS I. INTRODUCTION ...THIS PAGE INTENTIONALLY LEFT BLANK 1 I. INTRODUCTION Wireless mesh networks (WMNs) are interconnected systems of wireless access points (APs...operations in austere environments, such as combat and humanitarian assistance disaster relief (HA/DR) operations. See Nicholas (2009) for an introduction

  6. Practical Findings from Applying the PSD Model for Evaluating Software Design Specifications

    NASA Astrophysics Data System (ADS)

    Räisänen, Teppo; Lehto, Tuomas; Oinas-Kukkonen, Harri

    This paper presents practical findings from applying the PSD model to evaluating the support for persuasive features in software design specifications for a mobile Internet device. On the one hand, our experiences suggest that the PSD model fits relatively well for evaluating design specifications. On the other hand, the model would benefit from more specific heuristics for evaluating each technique to avoid unnecessary subjectivity. Better distinction between the design principles in the social support category would also make the model easier to use. Practitioners who have no theoretical background can apply the PSD model to increase the persuasiveness of the systems they design. The greatest benefit of the PSD model for researchers designing new systems may be achieved when it is applied together with a sound theory, such as the Elaboration Likelihood Model. Using the ELM together with the PSD model, one may increase the chances for attitude change.

  7. Using Taguchi robust design method to develop an optimized synthesis procedure of nanocrystalline cancrinite

    NASA Astrophysics Data System (ADS)

    Azizi, Seyed Naser; Asemi, Neda; Samadi-Maybodi, Abdolrouf

    2012-09-01

    In this study, perlite was used as a low-cost source of Si and Al to synthesis of nanocrystalline cancrinite zeolite. The synthesis of cancrinite zeolite from perlite by using the alkaline hydrothermal treatment under saturated steam pressure was investigated. A statistical Taguchi design of experiments was employed to evaluate the effects of the process variables such as type of aging, aging time and hydrothermal crystallization time on the crystallnity of synthesized zeolite. The optimum conditions for maximum crystallinity of nanocrystalline cancrinite were obtained as microwave-assisted aging, 60 min aging time and 6 h hydrothermal crystallization time from statistical analysis of the experimental results using Taguchi design. The synthetic samples were characterization by XRD, FT-IR and FE-SEM techniques. The results showed that the microwave-assisted aging can shorten the crystallization time and reduced the crystal size to form nanocrystalline cancrinite zeolite.

  8. Thermochemical hydrolysis of macroalgae Ulva for biorefinery: Taguchi robust design method.

    PubMed

    Jiang, Rui; Linzon, Yoav; Vitkin, Edward; Yakhini, Zohar; Chudnovsky, Alexandra; Golberg, Alexander

    2016-06-13

    Understanding the impact of all process parameters on the efficiency of biomass hydrolysis and on the final yield of products is critical to biorefinery design. Using Taguchi orthogonal arrays experimental design and Partial Least Square Regression, we investigated the impact of change and the comparative significance of thermochemical process temperature, treatment time, %Acid and %Solid load on carbohydrates release from green macroalgae from Ulva genus, a promising biorefinery feedstock. The average density of hydrolysate was determined using a new microelectromechanical optical resonator mass sensor. In addition, using Flux Balance Analysis techniques, we compared the potential fermentation yields of these hydrolysate products using metabolic models of Escherichia coli, Saccharomyces cerevisiae wild type, Saccharomyces cerevisiae RN1016 with xylose isomerase and Clostridium acetobutylicum. We found that %Acid plays the most significant role and treatment time the least significant role in affecting the monosaccharaides released from Ulva biomass. We also found that within the tested range of parameters, hydrolysis with 121 °C, 30 min 2% Acid, 15% Solids could lead to the highest yields of conversion: 54.134-57.500 gr ethanol kg(-1) Ulva dry weight by S. cerevisiae RN1016 with xylose isomerase. Our results support optimized marine algae utilization process design and will enable smart energy harvesting by thermochemical hydrolysis.

  9. Thermochemical hydrolysis of macroalgae Ulva for biorefinery: Taguchi robust design method

    PubMed Central

    Jiang, Rui; Linzon, Yoav; Vitkin, Edward; Yakhini, Zohar; Chudnovsky, Alexandra; Golberg, Alexander

    2016-01-01

    Understanding the impact of all process parameters on the efficiency of biomass hydrolysis and on the final yield of products is critical to biorefinery design. Using Taguchi orthogonal arrays experimental design and Partial Least Square Regression, we investigated the impact of change and the comparative significance of thermochemical process temperature, treatment time, %Acid and %Solid load on carbohydrates release from green macroalgae from Ulva genus, a promising biorefinery feedstock. The average density of hydrolysate was determined using a new microelectromechanical optical resonator mass sensor. In addition, using Flux Balance Analysis techniques, we compared the potential fermentation yields of these hydrolysate products using metabolic models of Escherichia coli, Saccharomyces cerevisiae wild type, Saccharomyces cerevisiae RN1016 with xylose isomerase and Clostridium acetobutylicum. We found that %Acid plays the most significant role and treatment time the least significant role in affecting the monosaccharaides released from Ulva biomass. We also found that within the tested range of parameters, hydrolysis with 121 °C, 30 min 2% Acid, 15% Solids could lead to the highest yields of conversion: 54.134–57.500 gr ethanol kg−1 Ulva dry weight by S. cerevisiae RN1016 with xylose isomerase. Our results support optimized marine algae utilization process design and will enable smart energy harvesting by thermochemical hydrolysis. PMID:27291594

  10. Thermochemical hydrolysis of macroalgae Ulva for biorefinery: Taguchi robust design method

    NASA Astrophysics Data System (ADS)

    Jiang, Rui; Linzon, Yoav; Vitkin, Edward; Yakhini, Zohar; Chudnovsky, Alexandra; Golberg, Alexander

    2016-06-01

    Understanding the impact of all process parameters on the efficiency of biomass hydrolysis and on the final yield of products is critical to biorefinery design. Using Taguchi orthogonal arrays experimental design and Partial Least Square Regression, we investigated the impact of change and the comparative significance of thermochemical process temperature, treatment time, %Acid and %Solid load on carbohydrates release from green macroalgae from Ulva genus, a promising biorefinery feedstock. The average density of hydrolysate was determined using a new microelectromechanical optical resonator mass sensor. In addition, using Flux Balance Analysis techniques, we compared the potential fermentation yields of these hydrolysate products using metabolic models of Escherichia coli, Saccharomyces cerevisiae wild type, Saccharomyces cerevisiae RN1016 with xylose isomerase and Clostridium acetobutylicum. We found that %Acid plays the most significant role and treatment time the least significant role in affecting the monosaccharaides released from Ulva biomass. We also found that within the tested range of parameters, hydrolysis with 121 °C, 30 min 2% Acid, 15% Solids could lead to the highest yields of conversion: 54.134–57.500 gr ethanol kg‑1 Ulva dry weight by S. cerevisiae RN1016 with xylose isomerase. Our results support optimized marine algae utilization process design and will enable smart energy harvesting by thermochemical hydrolysis.

  11. Model-Based Robust Control Design for Magnetostrictive Transducers Operating in Hysteretic and Nonlinear Regimes

    DTIC Science & Technology

    2003-01-01

    ag ne tiz at io n (A /m ) Data Model −1.5 −1 −0.5 0 0.5 1 1.5 x 10 5 0 0.2 0.4 0.6 0.8 1 1.2 1.4 x 10 −3 Field (A/m) S tr ai n Data Model (a) (b...31] R.C. Smith, M.J. Dapino and S . Seelecke, “A Free Energy Model for Hysteresis in Magnetostrictive Transducers,” Journal of Applied Physics, 93(1...of Intelligent Material Systems and Structures, 11(1), pp. 62-79, 2000. [35] R.C. Smith, S . Seelecke, M.J. Dapino and Z. Ounaies, “A Unified Model

  12. Single-Case Designs and Qualitative Methods: Applying a Mixed Methods Research Perspective

    ERIC Educational Resources Information Center

    Hitchcock, John H.; Nastasi, Bonnie K.; Summerville, Meredith

    2010-01-01

    The purpose of this conceptual paper is to describe a design that mixes single-case (sometimes referred to as single-subject) and qualitative methods, hereafter referred to as a single-case mixed methods design (SCD-MM). Minimal attention has been given to the topic of applying qualitative methods to SCD work in the literature. These two…

  13. A Tutorial Design Process Applied to an Introductory Materials Engineering Course

    ERIC Educational Resources Information Center

    Rosenblatt, Rebecca; Heckler, Andrew F.; Flores, Katharine

    2013-01-01

    We apply a "tutorial design process", which has proven to be successful for a number of physics topics, to design curricular materials or "tutorials" aimed at improving student understanding of important concepts in a university-level introductory materials science and engineering course. The process involves the identification…

  14. Promoting Robust Design of Diode Lasers for Space: A National Initiative

    NASA Technical Reports Server (NTRS)

    Tratt, David M.; Amzajerdian, Farzin; Kashem, Nasir B.; Shapiro, Andrew A.; Mense, Allan T.

    2007-01-01

    The Diode-laser Array Working Group (DAWG) is a national-level consumer/provider forum for discussion of engineering and manufacturing issues which influence the reliability and survivability of high-power broad-area laser diode devices in space, with an emphasis on laser diode arrays (LDAs) for optical pumping of solid-state laser media. The goals of the group are to formulate and validate standardized test and qualification protocols, operational control recommendations, and consensus manufacturing and certification standards. The group is using reliability and lifetime data collected by laser diode manufacturers and the user community to develop a set of standardized guidelines for specifying and qualifying laser diodes for long-duration operation in space, the ultimate goal being to promote an informed U.S. Government investment and procurement strategy for assuring the availability and durability of space-qualified LDAs. The group is also working to establish effective implementation of statistical design techniques at the supplier design, development, and manufacturing levels to help reduce product performance variability and improve product reliability for diodes employed in space applications

  15. Design of Amorphous Manganese Oxide@Multiwalled Carbon Nanotube Fiber for Robust Solid-State Supercapacitor.

    PubMed

    Shi, Peipei; Li, Li; Hua, Li; Qian, Qianqian; Wang, Pengfei; Zhou, Jinyuan; Sun, Gengzhi; Huang, Wei

    2017-01-24

    Solid-state fiber-based supercapacitors have been considered promising energy storage devices for wearable electronics due to their lightweight and amenability to be woven into textiles. Efforts have been made to fabricate a high performance fiber electrode by depositing pseudocapacitive materials on the outer surface of carbonaceous fiber, for example, crystalline manganese oxide/multiwalled carbon nanotubes (MnO2/MWCNTs). However, a key challenge remaining is to achieve high specific capacitance and energy density without compromising the high rate capability and cycling stability. In addition, amorphous MnO2 is actually preferred due to its disordered structure and has been proven to exhibit superior electrochemical performance over the crystalline one. Herein, by incorporating amorphous MnO2 onto a well-aligned MWCNT sheet followed by twisting, we design an amorphous MnO2@MWCNT fiber, in which amorphous MnO2 nanoparticles are distributed in MWCNT fiber uniformly. The proposed structure gives the amorphous MnO2@MWCNT fiber good mechanical reliability, high electrical conductivity, and fast ion-diffusion. Solid-state supercapacitor based on amorphous MnO2@MWCNT fibers exhibits improved energy density, superior rate capability, exceptional cycling stability, and excellent flexibility. This study provides a strategy to design a high performance fiber electrode with microstructure control for wearable energy storage devices.

  16. Wireless sensing and vibration control with increased redundancy and robustness design.

    PubMed

    Li, Peng; Li, Luyu; Song, Gangbing; Yu, Yan

    2014-11-01

    Control systems with long distance sensor and actuator wiring have the problem of high system cost and increased sensor noise. Wireless sensor network (WSN)-based control systems are an alternative solution involving lower setup and maintenance costs and reduced sensor noise. However, WSN-based control systems also encounter problems such as possible data loss, irregular sampling periods (due to the uncertainty of the wireless channel), and the possibility of sensor breakdown (due to the increased complexity of the overall control system). In this paper, a wireless microcontroller-based control system is designed and implemented to wirelessly perform vibration control. The wireless microcontroller-based system is quite different from regular control systems due to its limited speed and computational power. Hardware, software, and control algorithm design are described in detail to demonstrate this prototype. Model and system state compensation is used in the wireless control system to solve the problems of data loss and sensor breakdown. A positive position feedback controller is used as the control law for the task of active vibration suppression. Both wired and wireless controllers are implemented. The results show that the WSN-based control system can be successfully used to suppress the vibration and produces resilient results in the presence of sensor failure.

  17. Robust design of a 2-DOF GMV controller: a direct self-tuning and fuzzy scheduling approach.

    PubMed

    Silveira, Antonio S; Rodríguez, Jaime E N; Coelho, Antonio A R

    2012-01-01

    This paper presents a study on self-tuning control strategies with generalized minimum variance control in a fixed two degree of freedom structure-or simply GMV2DOF-within two adaptive perspectives. One, from the process model point of view, using a recursive least squares estimator algorithm for direct self-tuning design, and another, using a Mamdani fuzzy GMV2DOF parameters scheduling technique based on analytical and physical interpretations from robustness analysis of the system. Both strategies are assessed by simulation and real plants experimentation environments composed of a damped pendulum and an under development wind tunnel from the Department of Automation and Systems of the Federal University of Santa Catarina.

  18. Applying Universal Design to Disability Service Provision: Outcome Analysis of a Universal Design (UD) Audit

    ERIC Educational Resources Information Center

    Beck, Tanja; Diaz del Castillo, Patricia; Fovet, Frederic; Mole, Heather; Noga, Brodie

    2014-01-01

    This article presents out an outcome analysis of a Universal Design (UD) audit to the various professional facets of a disability service (DS) provider's office on a large North American campus. The context of the audit is a broad campus-wide drive to implement Universal Design for Learning (UDL) in teaching practices. In an effort for consistency…

  19. Bacterial Cellulose: A Robust Platform for Design of Three Dimensional Carbon-Based Functional Nanomaterials.

    PubMed

    Wu, Zhen-Yu; Liang, Hai-Wei; Chen, Li-Feng; Hu, Bi-Cheng; Yu, Shu-Hong

    2016-01-19

    Three dimensional (3D) carbon nanomaterials exhibit great application potential in environmental protection, electrochemical energy storage and conversion, catalysis, polymer science, and advanced sensors fields. Current methods for preparing 3D carbon nanomaterials, for example, carbonization of organogels, chemical vapor deposition, and self-assembly of nanocarbon building blocks, inevitably involve some drawbacks, such as expensive and toxic precursors, complex equipment and technological requirements, and low production ability. From the viewpoint of practical application, it is highly desirable to develop a simple, cheap, and environmentally friendly way for fabricating 3D carbon nanomaterials in large scale. On the other hand, in order to extend the application scope and improve the performance of 3D carbon nanomaterials, we should explore efficient strategies to prepare diverse functional nanomaterials based on their 3D carbon structure. Recently, many researchers tend to fabricate high-performance 3D carbon-based nanomaterials from biomass, which is low cost, easy to obtain, and nontoxic to humans. Bacterial cellulose (BC), a typical biomass material, has long been used as the raw material of nata-de-coco (an indigenous dessert food of the Philippines). It consists of a polysaccharide with a β-1,4-glycosidic linkage and has a interconnected 3D porous network structure. Interestingly, the network is made up of a random assembly of cellulose nanofibers, which have a high aspect ratio with a diameter of 20-100 nm. As a result, BC has a high specific surface area. Additionally, BC hydrogels can be produced on an industrial scale via a microbial fermentation process at a very low price. Thus, it can be an ideal platform for design of 3D carbon-based functional nanomaterials. Before our work, no systematic work and summary on this topic had been reported. This Account presents the concepts and strategies of our studies on BC in the past few years, that is

  20. Robust Risk Prediction with Biomarkers under Two-Phase Stratified Cohort Design

    PubMed Central

    Payne, Rebecca; Yang, Ming; Zheng, Yingye; Jensen, Majken K.; Cai, Tianxi

    2016-01-01

    Summary Identification of novel biomarkers for risk prediction is important for disease prevention and optimal treatment selection. However, studies aiming to discover which biomarkers are useful for risk prediction often require the use of stored biological samples from large assembled cohorts, and thus the depletion of a finite and precious resource. To make efficient use of such these stored samples, two-phase sampling designs are often adopted as resource-efficient sampling strategies, especially when the outcome of interest is rare. Existing methods for analyzing data from two-phase studies focus primarily on single marker analysis or fitting the Cox regression model to combine information from multiple markers. However, the Cox model may not fit the data well. Under model misspecification, the composite score derived from the Cox model may not perform well in predicting the outcome. Under a general two-phase stratified cohort sampling design, we present a novel approach to combining multiple markers to optimize prediction by fitting a flexible non-parametric transformation model. Using inverse probability weighting to account for the outcome dependent sampling, we propose to estimate the model parameters by maximizing an objective function which can be interpreted as a weighted C-statistic for survival outcomes. Regardless of model adequacy, the proposed procedure yields a sensible composite risk score for prediction. A major obstacle for making inference under two phase studies is due to the correlation induced by the finite population sampling, which prevents standard inference procedures such as the bootstrap from being used for variance estimation. We propose a resampling procedure to derive valid confidence intervals for the model parameters and the C-statistic accuracy measure. We illustrate the new methods with simulation studies and an analysis of a two-phase study of high-density lipoprotein cholesterol (HDL-C) subtypes for predicting the risk of

  1. Robust risk prediction with biomarkers under two-phase stratified cohort design.

    PubMed

    Payne, Rebecca; Yang, Ming; Zheng, Yingye; Jensen, Majken K; Cai, Tianxi

    2016-12-01

    Identification of novel biomarkers for risk prediction is important for disease prevention and optimal treatment selection. However, studies aiming to discover which biomarkers are useful for risk prediction often require the use of stored biological samples from large assembled cohorts, and thus the depletion of a finite and precious resource. To make efficient use of such stored samples, two-phase sampling designs are often adopted as resource-efficient sampling strategies, especially when the outcome of interest is rare. Existing methods for analyzing data from two-phase studies focus primarily on single marker analysis or fitting the Cox regression model to combine information from multiple markers. However, the Cox model may not fit the data well. Under model misspecification, the composite score derived from the Cox model may not perform well in predicting the outcome. Under a general two-phase stratified cohort sampling design, we present a novel approach to combining multiple markers to optimize prediction by fitting a flexible nonparametric transformation model. Using inverse probability weighting to account for the outcome-dependent sampling, we propose to estimate the model parameters by maximizing an objective function which can be interpreted as a weighted C-statistic for survival outcomes. Regardless of model adequacy, the proposed procedure yields a sensible composite risk score for prediction. A major obstacle for making inference under two phase studies is due to the correlation induced by the finite population sampling, which prevents standard inference procedures such as the bootstrap from being used for variance estimation. We propose a resampling procedure to derive valid confidence intervals for the model parameters and the C-statistic accuracy measure. We illustrate the new methods with simulation studies and an analysis of a two-phase study of high-density lipoprotein cholesterol (HDL-C) subtypes for predicting the risk of coronary heart

  2. Intelligent microchip networks: an agent-on-chip synthesis framework for the design of smart and robust sensor networks

    NASA Astrophysics Data System (ADS)

    Bosse, Stefan

    2013-05-01

    Sensorial materials consisting of high-density, miniaturized, and embedded sensor networks require new robust and reliable data processing and communication approaches. Structural health monitoring is one major field of application for sensorial materials. Each sensor node provides some kind of sensor, electronics, data processing, and communication with a strong focus on microchip-level implementation to meet the goals of miniaturization and low-power energy environments, a prerequisite for autonomous behaviour and operation. Reliability requires robustness of the entire system in the presence of node, link, data processing, and communication failures. Interaction between nodes is required to manage and distribute information. One common interaction model is the mobile agent. An agent approach provides stronger autonomy than a traditional object or remote-procedure-call based approach. Agents can decide for themselves, which actions are performed, and they are capable of flexible behaviour, reacting on the environment and other agents, providing some degree of robustness. Traditionally multi-agent systems are abstract programming models which are implemented in software and executed on program controlled computer architectures. This approach does not well scale to micro-chip level and requires full equipped computers and communication structures, and the hardware architecture does not consider and reflect the requirements for agent processing and interaction. We propose and demonstrate a novel design paradigm for reliable distributed data processing systems and a synthesis methodology and framework for multi-agent systems implementable entirely on microchip-level with resource and power constrained digital logic supporting Agent-On-Chip architectures (AoC). The agent behaviour and mobility is fully integrated on the micro-chip using pipelined communicating processes implemented with finite-state machines and register-transfer logic. The agent behaviour

  3. Estimating parameters of hidden Markov models based on marked individuals: use of robust design data

    USGS Publications Warehouse

    Kendall, William L.; White, Gary C.; Hines, James E.; Langtimm, Catherine A.; Yoshizaki, Jun

    2012-01-01

    Development and use of multistate mark-recapture models, which provide estimates of parameters of Markov processes in the face of imperfect detection, have become common over the last twenty years. Recently, estimating parameters of hidden Markov models, where the state of an individual can be uncertain even when it is detected, has received attention. Previous work has shown that ignoring state uncertainty biases estimates of survival and state transition probabilities, thereby reducing the power to detect effects. Efforts to adjust for state uncertainty have included special cases and a general framework for a single sample per period of interest. We provide a flexible framework for adjusting for state uncertainty in multistate models, while utilizing multiple sampling occasions per period of interest to increase precision and remove parameter redundancy. These models also produce direct estimates of state structure for each primary period, even for the case where there is just one sampling occasion. We apply our model to expected value data, and to data from a study of Florida manatees, to provide examples of the improvement in precision due to secondary capture occasions. We also provide user-friendly software to implement these models. This general framework could also be used by practitioners to consider constrained models of particular interest, or model the relationship between within-primary period parameters (e.g., state structure) and between-primary period parameters (e.g., state transition probabilities).

  4. A "politically robust" experimental design for public policy evaluation, with application to the Mexican universal health insurance program.

    PubMed

    King, Gary; Gakidou, Emmanuela; Ravishankar, Nirmala; Moore, Ryan T; Lakin, Jason; Vargas, Manett; Tellez-Rojo, Martha Maria; Hernandez Avila, Juan Eugenio; Hernandez Avila, Mauricio; Hernandez Llamas, Hector

    2007-01-01

    We develop an approach to conducting large-scale randomized public policy experiments intended to be more robust to the political interventions that have ruined some or all parts of many similar previous efforts. Our proposed design is insulated from selection bias in some circumstances even if we lose observations; our inferences can still be unbiased even if politics disrupts any two of the three steps in our analytical procedures; and other empirical checks are available to validate the overall design. We illustrate with a design and empirical validation of an evaluation of the Mexican Seguro Popular de Salud (Universal Health Insurance)program we are conducting. Seguro Popular, which is intended to grow to provide medical care, drugs, preventative services, and financial health protection to the 50 million Mexicans without health insurance, is one of the largest health reforms of any country in the last two decades. The evaluation is also large scale, constituting one of the largest policy experiments to date and what may be the largest randomized health policy experiment ever.

  5. Robust magnetic/polymer hybrid nanoparticles designed for crude oil entrapment and recovery in aqueous environments.

    PubMed

    Pavía-Sanders, Adriana; Zhang, Shiyi; Flores, Jeniree A; Sanders, Jonathan E; Raymond, Jeffery E; Wooley, Karen L

    2013-09-24

    Well-defined, magnetic shell cross-linked knedel-like nanoparticles (MSCKs) with hydrodynamic diameters ca. 70 nm were constructed through the co-assembly of amphiphilic block copolymers of PAA20-b-PS280 and oleic acid-stabilized magnetic iron oxide nanoparticles using tetrahydrofuran, N,N-dimethylformamide, and water, ultimately transitioning to a fully aqueous system. These hybrid nanomaterials were designed for application as sequestering agents for hydrocarbons present in crude oil, based upon their combination of amphiphilic organic domains, for aqueous solution dispersibility and capture of hydrophobic guest molecules, with inorganic core particles for magnetic responsivity. The employment of these MSCKs in a contaminated aqueous environment resulted in the successful removal of the hydrophobic contaminants at a ratio of 10 mg of oil per 1 mg of MSCK. Once loaded, the crude oil-sorbed nanoparticles were easily isolated via the introduction of an external magnetic field. The recovery and reusability of these MSCKs were also investigated. These results suggest that deployment of hybrid nanocomposites, such as these, could aid in environmental remediation efforts, including at oil spill sites, in particular, following the bulk recovery phase.

  6. Extreme temperature robust optical sensor designs and fault-tolerant signal processing

    SciTech Connect

    Riza, Nabeel Agha; Perez, Frank

    2012-01-17

    Silicon Carbide (SiC) probe designs for extreme temperature and pressure sensing uses a single crystal SiC optical chip encased in a sintered SiC material probe. The SiC chip may be protected for high temperature only use or exposed for both temperature and pressure sensing. Hybrid signal processing techniques allow fault-tolerant extreme temperature sensing. Wavelength peak-to-peak (or null-to-null) collective spectrum spread measurement to detect wavelength peak/null shift measurement forms a coarse-fine temperature measurement using broadband spectrum monitoring. The SiC probe frontend acts as a stable emissivity Black-body radiator and monitoring the shift in radiation spectrum enables a pyrometer. This application combines all-SiC pyrometry with thick SiC etalon laser interferometry within a free-spectral range to form a coarse-fine temperature measurement sensor. RF notch filtering techniques improve the sensitivity of the temperature measurement where fine spectral shift or spectrum measurements are needed to deduce temperature.

  7. Formulation and demonstration of a robust mean variance optimization approach for concurrent airline network and aircraft design

    NASA Astrophysics Data System (ADS)

    Davendralingam, Navindran

    Conceptual design of aircraft and the airline network (routes) on which aircraft fly on are inextricably linked to passenger driven demand. Many factors influence passenger demand for various Origin-Destination (O-D) city pairs including demographics, geographic location, seasonality, socio-economic factors and naturally, the operations of directly competing airlines. The expansion of airline operations involves the identificaion of appropriate aircraft to meet projected future demand. The decisions made in incorporating and subsequently allocating these new aircraft to serve air travel demand affects the inherent risk and profit potential as predicted through the airline revenue management systems. Competition between airlines then translates to latent passenger observations of the routes served between OD pairs and ticket pricing---this in effect reflexively drives future states of demand. This thesis addresses the integrated nature of aircraft design, airline operations and passenger demand, in order to maximize future expected profits as new aircraft are brought into service. The goal of this research is to develop an approach that utilizes aircraft design, airline network design and passenger demand as a unified framework to provide better integrated design solutions in order to maximize expexted profits of an airline. This is investigated through two approaches. The first is a static model that poses the concurrent engineering paradigm above as an investment portfolio problem. Modern financial portfolio optimization techniques are used to leverage risk of serving future projected demand using a 'yet to be introduced' aircraft against potentially generated future profits. Robust optimization methodologies are incorporated to mitigate model sensitivity and address estimation risks associated with such optimization techniques. The second extends the portfolio approach to include dynamic effects of an airline's operations. A dynamic programming approach is

  8. Combined Integral and Robust Control of the Segmented Mirror Telescope

    DTIC Science & Technology

    2009-12-01

    60 Hz, Best Perf ............ 41 Figure 29. Zernike Control Model ........................................................................ 42 Figure...builds on previous robust control design by combining classical control with an H robust controller on a Singular Value Decomposition reduced model ...It also presents reduction using Zernike polynomials and applies it to the integral control model as an alternate to Singular Value Decomposition

  9. Applying Instructional Design Theories to Bioinformatics Education in Microarray Analysis and Primer Design Workshops

    ERIC Educational Resources Information Center

    Shachak, Aviv; Ophir, Ron; Rubin, Eitan

    2005-01-01

    The need to support bioinformatics training has been widely recognized by scientists, industry, and government institutions. However, the discussion of instructional methods for teaching bioinformatics is only beginning. Here we report on a systematic attempt to design two bioinformatics workshops for graduate biology students on the basis of…

  10. Investigation of Multi-Input Multi-Output Robust Control Methods to Handle Parametric Uncertainties in Autopilot Design.

    PubMed

    Kasnakoğlu, Coşku

    2016-01-01

    Some level of uncertainty is unavoidable in acquiring the mass, geometry parameters and stability derivatives of an aerial vehicle. In certain instances tiny perturbations of these could potentially cause considerable variations in flight characteristics. This research considers the impact of varying these parameters altogether. This is a generalization of examining the effects of particular parameters on selected modes present in existing literature. Conventional autopilot designs commonly assume that each flight channel is independent and develop single-input single-output (SISO) controllers for every one, that are utilized in parallel for actual flight. It is demonstrated that an attitude controller built like this can function flawlessly on separate nominal cases, but can become unstable with a perturbation no more than 2%. Two robust multi-input multi-output (MIMO) design strategies, specifically loop-shaping and μ-synthesis are outlined as potential substitutes and are observed to handle large parametric changes of 30% while preserving decent performance. Duplicating the loop-shaping procedure for the outer loop, a complete flight control system is formed. It is confirmed through software-in-the-loop (SIL) verifications utilizing blade element theory (BET) that the autopilot is capable of navigation and landing exposed to high parametric variations and powerful winds.

  11. Investigation of Multi-Input Multi-Output Robust Control Methods to Handle Parametric Uncertainties in Autopilot Design

    PubMed Central

    Kasnakoğlu, Coşku

    2016-01-01

    Some level of uncertainty is unavoidable in acquiring the mass, geometry parameters and stability derivatives of an aerial vehicle. In certain instances tiny perturbations of these could potentially cause considerable variations in flight characteristics. This research considers the impact of varying these parameters altogether. This is a generalization of examining the effects of particular parameters on selected modes present in existing literature. Conventional autopilot designs commonly assume that each flight channel is independent and develop single-input single-output (SISO) controllers for every one, that are utilized in parallel for actual flight. It is demonstrated that an attitude controller built like this can function flawlessly on separate nominal cases, but can become unstable with a perturbation no more than 2%. Two robust multi-input multi-output (MIMO) design strategies, specifically loop-shaping and μ-synthesis are outlined as potential substitutes and are observed to handle large parametric changes of 30% while preserving decent performance. Duplicating the loop-shaping procedure for the outer loop, a complete flight control system is formed. It is confirmed through software-in-the-loop (SIL) verifications utilizing blade element theory (BET) that the autopilot is capable of navigation and landing exposed to high parametric variations and powerful winds. PMID:27783706

  12. Design and implementation of a robust and cost-effective double-scattering system at a horizontal proton beamline

    NASA Astrophysics Data System (ADS)

    Helmbrecht, S.; Baumann, M.; Enghardt, W.; Fiedler, F.; Krause, M.; Lühr, A.

    2016-11-01

    Purpose: particle therapy has the potential to improve radiooncology. With more and more facilities coming into operation, also the interest for research at proton beams increases. Though many centers provide beam at an experimental room, some of them do not feature a device for radiation field shaping, a so called nozzle. Therefore, a robust and cost-effective double-scattering system for horizontal proton beamlines has been designed and implemented. Materials and methods: the nozzle is based on the double scattering technique. Two lead scatterers, an aluminum ridge-filter and two brass collimators were optimized in a simulation study to form a laterally homogeneous 10 cm × 10 cm field with a spread-out Bragg-peak (SOBP). The parts were mainly manufactured using 3D printing techniques and the system was set up at OncoRay's experimental beamline. Measurement of the radiation field were carried out using a water phantom. Results: high levels of dose homogeneity were found in lateral (dose variation ΔD/D < ±2%) as well as in beam direction (ΔD/D < ± 3% in the SOBP). The system has already been used for radiobiology and physical experiments. Conclusion: the presented setup allows for creating clinically realistic extended radiation fields at fixed horizontal proton beamlines and is ready to use for internal and external users. The excellent performance combined with the simplistic design let it appear as a valuable option for proton therapy centers intending to foster their experimental portfolio.

  13. Robustness and optimal use of design principles of arthropod exoskeletons studied by ab initio-based multiscale simulations.

    PubMed

    Nikolov, S; Fabritius, H; Petrov, M; Friák, M; Lymperakis, L; Sachs, C; Raabe, D; Neugebauer, J

    2011-02-01

    Recently, we proposed a hierarchical model for the elastic properties of mineralized lobster cuticle using (i) ab initio calculations for the chitin properties and (ii) hierarchical homogenization performed in a bottom-up order through all length scales. It has been found that the cuticle possesses nearly extremal, excellent mechanical properties in terms of stiffness that strongly depend on the overall mineral content and the specific microstructure of the mineral-protein matrix. In this study, we investigated how the overall cuticle properties changed when there are significant variations in the properties of the constituents (chitin, amorphous calcium carbonate (ACC), proteins), and the volume fractions of key structural elements such as chitin-protein fibers. It was found that the cuticle performance is very robust with respect to variations in the elastic properties of chitin and fiber proteins at a lower hierarchy level. At higher structural levels, variations of design parameters such as the volume fraction of the chitin-protein fibers have a significant influence on the cuticle performance. Furthermore, we observed that among the possible variations in the cuticle ingredients and volume fractions, the experimental data reflect an optimal use of the structural variations regarding the best possible performance for a given composition due to the smart hierarchical organization of the cuticle design.

  14. Design of embedded SCR device to improve ESD robustness of stacked-device output driver in low-voltage CMOS technology

    NASA Astrophysics Data System (ADS)

    Lin, Chun-Yu; Chiu, Yan-Lian

    2016-10-01

    This study proposes a novel design for an embedded silicon-controlled rectifier (SCR) device to improve the electrostatic discharge (ESD) robustness of a stacked-device output driver. A 3 × VDD-tolerant stacked-device output driver with embedded SCR is demonstrated using a 0.18 μm CMOS process with VDD of 3.3 V. This design is verified in a silicon chip, and it is shown that the proposed output driver with embedded SCR can deliver an output voltage of 3 × VDD. The ESD robustness can be improved without the use of any additional ESD protection device or layout area. Furthermore, the proposed design can also be used for an n × VDD-tolerant stacked-device output driver to improve its ESD robustness.

  15. 23 CFR 636.104 - Does this part apply to all Federal-aid design-build projects?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ENGINEERING AND TRAFFIC OPERATIONS DESIGN-BUILD CONTRACTING General § 636.104 Does this part apply to all Federal-aid design-build projects? The provisions of this part apply to all Federal-aid design-build... 23 Highways 1 2010-04-01 2010-04-01 false Does this part apply to all Federal-aid...

  16. Evaluation of the geomorphometric results and residual values of a robust plane fitting method applied to different DTMs of various scales and accuracy

    NASA Astrophysics Data System (ADS)

    Koma, Zsófia; Székely, Balázs; Dorninger, Peter; Kovács, Gábor

    2013-04-01

    Due to the need for quantitative analysis of various geomorphological landforms, the importance of fast and effective automatic processing of the different kind of digital terrain models (DTMs) is increasing. The robust plane fitting (segmentation) method, developed at the Institute of Photogrammetry and Remote Sensing at Vienna University of Technology, allows the processing of large 3D point clouds (containing millions of points), performs automatic detection of the planar elements of the surface via parameter estimation, and provides a considerable data reduction for the modeled area. Its geoscientific application allows the modeling of different landforms with the fitted planes as planar facets. In our study we aim to analyze the accuracy of the resulting set of fitted planes in terms of accuracy, model reliability and dependence on the input parameters. To this end we used DTMs of different scales and accuracy: (1) artificially generated 3D point cloud model with different magnitudes of error; (2) LiDAR data with 0.1 m error; (3) SRTM (Shuttle Radar Topography Mission) DTM database with 5 m accuracy; (4) DTM data from HRSC (High Resolution Stereo Camera) of the planet Mars with 10 m error. The analysis of the simulated 3D point cloud with normally distributed errors comprised different kinds of statistical tests (for example Chi-square and Kolmogorov-Smirnov tests) applied on the residual values and evaluation of dependence of the residual values on the input parameters. These tests have been repeated on the real data supplemented with the categorization of the segmentation result depending on the input parameters, model reliability and the geomorphological meaning of the fitted planes. The simulation results show that for the artificially generated data with normally distributed errors the null hypothesis can be accepted based on the residual value distribution being also normal, but in case of the test on the real data the residual value distribution is

  17. Optics system design applying a micro-prism array of a single lens stereo image pair.

    PubMed

    Chen, Chien-Yue; Yang, Ting-Ting; Sun, Wen-Shing

    2008-09-29

    In this study we apply a micro-prism array technique to enable a single lens CCD to capture a stereo image for the simulation of double lens vision. A micro-prism array plate serves as the basis for design, which also improves the lightweight and portability of the overall system in addition to lowering the mass-production costs. Most important of all, this design possesses the characteristics of integration compatibility between general-purpose and video camera.

  18. Workspace design for crane cabins applying a combined traditional approach and the Taguchi method for design of experiments.

    PubMed

    Spasojević Brkić, Vesna K; Veljković, Zorica A; Golubović, Tamara; Brkić, Aleksandar Dj; Kosić Šotić, Ivana

    2016-01-01

    Procedures in the development process of crane cabins are arbitrary and subjective. Since approximately 42% of incidents in the construction industry are linked to them, there is a need to collect fresh anthropometric data and provide additional recommendations for design. In this paper, dimensioning of the crane cabin interior space was carried out using a sample of 64 crane operators' anthropometric measurements, in the Republic of Serbia, by measuring workspace with 10 parameters using nine measured anthropometric data from each crane operator. This paper applies experiments run via full factorial designs using a combined traditional and Taguchi approach. The experiments indicated which design parameters are influenced by which anthropometric measurements and to what degree. The results are expected to be of use for crane cabin designers and should assist them to design a cabin that may lead to less strenuous sitting postures and fatigue for operators, thus improving safety and accident prevention.

  19. System Sensitivity Analysis Applied to the Conceptual Design of a Dual-Fuel Rocket SSTO

    NASA Technical Reports Server (NTRS)

    Olds, John R.

    1994-01-01

    This paper reports the results of initial efforts to apply the System Sensitivity Analysis (SSA) optimization method to the conceptual design of a single-stage-to-orbit (SSTO) launch vehicle. SSA is an efficient, calculus-based MDO technique for generating sensitivity derivatives in a highly multidisciplinary design environment. The method has been successfully applied to conceptual aircraft design and has been proven to have advantages over traditional direct optimization methods. The method is applied to the optimization of an advanced, piloted SSTO design similar to vehicles currently being analyzed by NASA as possible replacements for the Space Shuttle. Powered by a derivative of the Russian RD-701 rocket engine, the vehicle employs a combination of hydrocarbon, hydrogen, and oxygen propellants. Three primary disciplines are included in the design - propulsion, performance, and weights & sizing. A complete, converged vehicle analysis depends on the use of three standalone conceptual analysis computer codes. Efforts to minimize vehicle dry (empty) weight are reported in this paper. The problem consists of six system-level design variables and one system-level constraint. Using SSA in a 'manual' fashion to generate gradient information, six system-level iterations were performed from each of two different starting points. The results showed a good pattern of convergence for both starting points. A discussion of the advantages and disadvantages of the method, possible areas of improvement, and future work is included.

  20. Robust optimisation of railway crossing geometry

    NASA Astrophysics Data System (ADS)

    Wan, Chang; Markine, Valeri; Dollevoet, Rolf

    2016-05-01

    This paper presents a methodology for improving the crossing (frog) geometry through the robust optimisation approach, wherein the variability of the design parameters within a prescribed tolerance is included in the optimisation problem. Here, the crossing geometry is defined by parameterising the B-spline represented cross-sectional shape and the longitudinal height profile of the nose rail. The dynamic performance of the crossing is evaluated considering the variation of wheel profiles and track alignment. A multipoint approximation method (MAM) is applied in solving the optimisation problem of minimising the contact pressure during the wheel-rail contact and constraining the location of wheel transition at the crossing. To clarify the difference between the robust optimisation and the normal deterministic optimisation approaches, the optimisation problems are solved in both approaches. The results show that the deterministic optimum fails under slight change of the design variables; the robust optimum, however, has improved and robust performance.

  1. Applying Item Response Theory Methods to Design a Learning Progression-Based Science Assessment

    ERIC Educational Resources Information Center

    Chen, Jing

    2012-01-01

    Learning progressions are used to describe how students' understanding of a topic progresses over time and to classify the progress of students into steps or levels. This study applies Item Response Theory (IRT) based methods to investigate how to design learning progression-based science assessments. The research questions of this study are: (1)…

  2. 13 CFR 108.300 - When and how to apply for designation as a NMVC Company.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false When and how to apply for designation as a NMVC Company. 108.300 Section 108.300 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION NEW MARKETS VENTURE CAPITAL (âNMVCâ) PROGRAM Application and Approval Process for NMVC...

  3. 13 CFR 108.300 - When and how to apply for designation as a NMVC Company.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 13 Business Credit and Assistance 1 2011-01-01 2011-01-01 false When and how to apply for designation as a NMVC Company. 108.300 Section 108.300 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION NEW MARKETS VENTURE CAPITAL (âNMVCâ) PROGRAM Application and Approval Process for NMVC...

  4. 13 CFR 108.300 - When and how to apply for designation as a NMVC Company.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 13 Business Credit and Assistance 1 2012-01-01 2012-01-01 false When and how to apply for designation as a NMVC Company. 108.300 Section 108.300 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION NEW MARKETS VENTURE CAPITAL (âNMVCâ) PROGRAM Application and Approval Process for NMVC...

  5. 13 CFR 108.300 - When and how to apply for designation as a NMVC Company.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 13 Business Credit and Assistance 1 2014-01-01 2014-01-01 false When and how to apply for designation as a NMVC Company. 108.300 Section 108.300 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION NEW MARKETS VENTURE CAPITAL (âNMVCâ) PROGRAM Application and Approval Process for NMVC...

  6. 13 CFR 108.300 - When and how to apply for designation as a NMVC Company.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 13 Business Credit and Assistance 1 2013-01-01 2013-01-01 false When and how to apply for designation as a NMVC Company. 108.300 Section 108.300 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION NEW MARKETS VENTURE CAPITAL (âNMVCâ) PROGRAM Application and Approval Process for NMVC...

  7. "Design Your Own Disease" Assignment: Teaching Students to Apply Metabolic Pathways

    ERIC Educational Resources Information Center

    Flynn, Nick

    2010-01-01

    One of the major focuses of biochemistry courses is metabolic pathways. Although certain aspects of this content may require a rote approach, more applied techniques make these subject areas more interesting. This article describes the use of an assignment, "Design Your Own Disease" to teach students metabolic regulation and biosignaling…

  8. Accessible by Design: Applying UDL Principles in a First Year Undergraduate Course

    ERIC Educational Resources Information Center

    Kumar, Kari Lynne; Wideman, Maureen

    2014-01-01

    This article presents a case study of a technology-enhanced face-to-face health sciences course in which the principles of Universal Design for Learning (UDL) were applied. Students were offered a variety of means of representation, engagement, and expression throughout the course, and were surveyed and interviewed at the end of the term to…

  9. Applying Quality Indicators to Single-Case Research Designs Used in Special Education: A Systematic Review

    ERIC Educational Resources Information Center

    Moeller, Jeremy D.; Dattilo, John; Rusch, Frank

    2015-01-01

    This study examined how specific guidelines and heuristics have been used to identify methodological rigor associated with single-case research designs based on quality indicators developed by Horner et al. Specifically, this article describes how literature reviews have applied Horner et al.'s quality indicators and evidence-based criteria.…

  10. Applying Program Theory-Driven Approach to Design and Evaluate a Teacher Professional Development Program

    ERIC Educational Resources Information Center

    Lin, Su-ching; Wu, Ming-sui

    2016-01-01

    This study was the first year of a two-year project which applied a program theory-driven approach to evaluating the impact of teachers' professional development interventions on students' learning by using a mix of methods, qualitative inquiry, and quasi-experimental design. The current study was to show the results of using the method of…

  11. Probabilistic risk assessment for CO2 storage in geological formations: robust design and support for decision making under uncertainty

    NASA Astrophysics Data System (ADS)

    Oladyshkin, Sergey; Class, Holger; Helmig, Rainer; Nowak, Wolfgang

    2010-05-01

    CO2 storage in geological formations is currently being discussed intensively as a technology for mitigating CO2 emissions. However, any large-scale application requires a thorough analysis of the potential risks. Current numerical simulation models are too expensive for probabilistic risk analysis and for stochastic approaches based on brute-force repeated simulation. Even single deterministic simulations may require parallel high-performance computing. The multiphase flow processes involved are too non-linear for quasi-linear error propagation and other simplified stochastic tools. As an alternative approach, we propose a massive stochastic model reduction based on the probabilistic collocation method. The model response is projected onto a orthogonal basis of higher-order polynomials to approximate dependence on uncertain parameters (porosity, permeability etc.) and design parameters (injection rate, depth etc.). This allows for a non-linear propagation of model uncertainty affecting the predicted risk, ensures fast computation and provides a powerful tool for combining design variables and uncertain variables into one approach based on an integrative response surface. Thus, the design task of finding optimal injection regimes explicitly includes uncertainty, which leads to robust designs of the non-linear system that minimize failure probability and provide valuable support for risk-informed management decisions. We validate our proposed stochastic approach by Monte Carlo simulation using a common 3D benchmark problem (Class et al. Computational Geosciences 13, 2009). A reasonable compromise between computational efforts and precision was reached already with second-order polynomials. In our case study, the proposed approach yields a significant computational speedup by a factor of 100 compared to Monte Carlo simulation. We demonstrate that, due to the non-linearity of the flow and transport processes during CO2 injection, including uncertainty in the analysis

  12. A generalized concept for cost-effective structural design. [Statistical Decision Theory applied to aerospace systems

    NASA Technical Reports Server (NTRS)

    Thomas, J. M.; Hawk, J. D.

    1975-01-01

    A generalized concept for cost-effective structural design is introduced. It is assumed that decisions affecting the cost effectiveness of aerospace structures fall into three basic categories: design, verification, and operation. Within these basic categories, certain decisions concerning items such as design configuration, safety factors, testing methods, and operational constraints are to be made. All or some of the variables affecting these decisions may be treated probabilistically. Bayesian statistical decision theory is used as the tool for determining the cost optimum decisions. A special case of the general problem is derived herein, and some very useful parametric curves are developed and applied to several sample structures.

  13. DSC: software tool for simulation-based design of control strategies applied to wastewater treatment plants.

    PubMed

    Ruano, M V; Ribes, J; Seco, A; Ferrer, J

    2011-01-01

    This paper presents a computer tool called DSC (Simulation based Controllers Design) that enables an easy design of control systems and strategies applied to wastewater treatment plants. Although the control systems are developed and evaluated by simulation, this tool aims to facilitate the direct implementation of the designed control system to the PC of the full-scale WWTP (wastewater treatment plants). The designed control system can be programmed in a dedicated control application and can be connected to either the simulation software or the SCADA of the plant. To this end, the developed DSC incorporates an OPC server (OLE for process control) which facilitates an open-standard communication protocol for different industrial process applications. The potential capabilities of the DSC tool are illustrated through the example of a full-scale application. An aeration control system applied to a nutrient removing WWTP was designed, tuned and evaluated with the DSC tool before its implementation in the full scale plant. The control parameters obtained by simulation were suitable for the full scale plant with only few modifications to improve the control performance. With the DSC tool, the control systems performance can be easily evaluated by simulation. Once developed and tuned by simulation, the control systems can be directly applied to the full-scale WWTP.

  14. Robustness. [in space systems

    NASA Technical Reports Server (NTRS)

    Ryan, Robert

    1993-01-01

    The concept of rubustness includes design simplicity, component and path redundancy, desensitization to the parameter and environment variations, control of parameter variations, and punctual operations. These characteristics must be traded with functional concepts, materials, and fabrication approach against the criteria of performance, cost, and reliability. The paper describes the robustness design process, which includes the following seven major coherent steps: translation of vision into requirements, definition of the robustness characteristics desired, criteria formulation of required robustness, concept selection, detail design, manufacturing and verification, operations.

  15. The transfer function method for gear system dynamics applied to conventional and minimum excitation gearing designs

    NASA Technical Reports Server (NTRS)

    Mark, W. D.

    1982-01-01

    A transfer function method for predicting the dynamic responses of gear systems with more than one gear mesh is developed and applied to the NASA Lewis four-square gear fatigue test apparatus. Methods for computing bearing-support force spectra and temporal histories of the total force transmitted by a gear mesh, the force transmitted by a single pair of teeth, and the maximum root stress in a single tooth are developed. Dynamic effects arising from other gear meshes in the system are included. A profile modification design method to minimize the vibration excitation arising from a pair of meshing gears is reviewed and extended. Families of tooth loading functions required for such designs are developed and examined for potential excitation of individual tooth vibrations. The profile modification design method is applied to a pair of test gears.

  16. Design of sewage treatment system by applying fuzzy adaptive PID controller

    NASA Astrophysics Data System (ADS)

    Jin, Liang-Ping; Li, Hong-Chan

    2013-03-01

    In the sewage treatment system, the dissolved oxygen concentration control, due to its nonlinear, time-varying, large time delay and uncertainty, is difficult to establish the exact mathematical model. While the conventional PID controller only works with good linear not far from its operating point, it is difficult to realize the system control when the operating point far off. In order to solve the above problems, the paper proposed a method which combine fuzzy control with PID methods and designed a fuzzy adaptive PID controller based on S7-300 PLC .It employs fuzzy inference method to achieve the online tuning for PID parameters. The control algorithm by simulation and practical application show that the system has stronger robustness and better adaptability.

  17. Mechanisms for Robust Cognition

    ERIC Educational Resources Information Center

    Walsh, Matthew M.; Gluck, Kevin A.

    2015-01-01

    To function well in an unpredictable environment using unreliable components, a system must have a high degree of robustness. Robustness is fundamental to biological systems and is an objective in the design of engineered systems such as airplane engines and buildings. Cognitive systems, like biological and engineered systems, exist within…

  18. Full and fractionated experimental designs for robustness testing in the high-performance liquid chromatographic analysis of codeine phosphate, pseudoephedrine hydrochloride and chlorpheniramine maleate in a pharmaceutical preparation.

    PubMed

    Ragonese, R; Mulholland, M; Kalman, J

    2000-02-18

    This paper describes the testing of a saturated factorial design using a full factorial design. Saturated factorial designs are often used to test the robustness of high-performance liquid chromatography (HPLC) methods, however they are based on several assumptions. A full factorial design relies on fewer assumptions and hence could be used to evaluate the effectiveness of the saturated design. Both designs were used to test a gradient HPLC method for the assay of codeine phosphate, pseudoephedrine hydrochloride and chlorpheniramine maleate. Six HPLC conditions, including wavelength, mobile phase pH and ion pairing reagent concentration were tested using the saturated design. Three of these factors were selected for full evaluation using a full factorial design. The results showed that the main effects calculated by each design were comparable. However, the saturated design showed higher standard errors, probably due to the effects of changing several more factors. One interaction effect was indicated as a confounding effect by the saturated design and this was confirmed by the calculation of the same interaction effect using the full design. Overall the method was shown to be robust under the variety of HPLC conditions tested.

  19. An optimization-based design framework for steering steady states and improving robustness of glycolysis-glycogenolysis pathway.

    PubMed

    Panja, Surajit; Patra, Sourav; Mukherjee, Anirban; Basu, Madhumita; Sengupta, Sanghamitra; Dutta, Pranab K

    2013-02-01

    A robust synthesis technique is devised for synergism and saturation systems, commonly known as S-systems, for controlling the steady states of the glycolysis-glycogenolysis pathway. The development of the robust biochemical network is essential owing to the fragile response to the perturbation of intrinsic and extrinsic parameters of the nominal S-system. The synthesis problem is formulated in a computationally attractive convex optimization framework. The linear matrix inequalities are framed to aim at the minimization of steady-state error, improvement of robustness, and utilization of minimum control input to the biochemical network.

  20. The Enzyme Portal: a case study in applying user-centred design methods in bioinformatics.

    PubMed

    de Matos, Paula; Cham, Jennifer A; Cao, Hong; Alcántara, Rafael; Rowland, Francis; Lopez, Rodrigo; Steinbeck, Christoph

    2013-03-20

    User-centred design (UCD) is a type of user interface design in which the needs and desires of users are taken into account at each stage of the design process for a service or product; often for software applications and websites. Its goal is to facilitate the design of software that is both useful and easy to use. To achieve this, you must characterise users' requirements, design suitable interactions to meet their needs, and test your designs using prototypes and real life scenarios.For bioinformatics, there is little practical information available regarding how to carry out UCD in practice. To address this we describe a complete, multi-stage UCD process used for creating a new bioinformatics resource for integrating enzyme information, called the Enzyme Portal (http://www.ebi.ac.uk/enzymeportal). This freely-available service mines and displays data about proteins with enzymatic activity from public repositories via a single search, and includes biochemical reactions, biological pathways, small molecule chemistry, disease information, 3D protein structures and relevant scientific literature.We employed several UCD techniques, including: persona development, interviews, 'canvas sort' card sorting, user workflows, usability testing and others. Our hope is that this case study will motivate the reader to apply similar UCD approaches to their own software design for bioinformatics. Indeed, we found the benefits included more effective decision-making for design ideas and technologies; enhanced team-working and communication; cost effectiveness; and ultimately a service that more closely meets the needs of our target audience.

  1. Quantitative Feedback Theory (QFT) applied to the design of a rotorcraft flight control system

    NASA Technical Reports Server (NTRS)

    Hess, R. A.; Gorder, P. J.

    1992-01-01

    Quantitative Feedback Theory describes a frequency-domain technique for the design of multi-input, multi-output control systems which meet time or frequency domain performance criteria when specified uncertainty exists in the linear description of the vehicle dynamics. Quantitative Feedback Theory is applied to the design of the longitudinal flight control system for a linear uncertain model of the AH-64 rotorcraft. In this model, the uncertainty is assigned, and is assumed to be attributable to actual uncertainty in the dynamic model and to the changes in the vehicle aerodynamic characteristics which occur near hover. The model includes an approximation to the rotor and actuator dynamics. The design example indicates the manner in which handling qualities criteria may be incorporated into the design of realistic rotorcraft control systems in which significant uncertainty exists in the vehicle model.

  2. Educational epidemiology: applying population-based design and analytic approaches to study medical education.

    PubMed

    Carney, Patricia A; Nierenberg, David W; Pipas, Catherine F; Brooks, W Blair; Stukel, Therese A; Keller, Adam M

    2004-09-01

    Conducting educational research in medical schools is challenging partly because interventional controlled research designs are difficult to apply. In addition, strict accreditation requirements and student/faculty concerns about educational inequality reduce the flexibility needed to plan and execute educational experiments. Consequently, there is a paucity of rigorous and generalizable educational research to provide an evidence-guided foundation to support educational effectiveness. "Educational epidemiology," ie, the application across the physician education continuum of observational designs (eg, cross-sectional, longitudinal, cohort, and case-control studies) and randomized experimental designs (eg, randomized controlled trials, randomized crossover designs), could revolutionize the conduct of research in medical education. Furthermore, the creation of a comprehensive national network of educational epidemiologists could enhance collaboration and the development of a strong educational research foundation.

  3. Applying Monte Carlo Simulation to Launch Vehicle Design and Requirements Verification

    NASA Technical Reports Server (NTRS)

    Hanson, John M.; Beard, Bernard B.

    2010-01-01

    This paper is focused on applying Monte Carlo simulation to probabilistic launch vehicle design and requirements verification. The approaches developed in this paper can be applied to other complex design efforts as well. Typically the verification must show that requirement "x" is met for at least "y" % of cases, with, say, 10% consumer risk or 90% confidence. Two particular aspects of making these runs for requirements verification will be explored in this paper. First, there are several types of uncertainties that should be handled in different ways, depending on when they become known (or not). The paper describes how to handle different types of uncertainties and how to develop vehicle models that can be used to examine their characteristics. This includes items that are not known exactly during the design phase but that will be known for each assembled vehicle (can be used to determine the payload capability and overall behavior of that vehicle), other items that become known before or on flight day (can be used for flight day trajectory design and go/no go decision), and items that remain unknown on flight day. Second, this paper explains a method (order statistics) for determining whether certain probabilistic requirements are met or not and enables the user to determine how many Monte Carlo samples are required. Order statistics is not new, but may not be known in general to the GN&C community. The methods also apply to determining the design values of parameters of interest in driving the vehicle design. The paper briefly discusses when it is desirable to fit a distribution to the experimental Monte Carlo results rather than using order statistics.

  4. Robust stabilization, robust performance, and disturbance attenuation for uncertain linear systems

    NASA Technical Reports Server (NTRS)

    Wang, Yeih J.; Shieh, Leang S.; Sunkel, John W.

    1992-01-01

    This paper presents a linear quadratic regulator approach to the robust stabilization, robust performance, and disturbance attenuation of uncertain linear systems. The state-feedback designed systems provide both the robust stability with optimal performance and the disturbance attenuation with H-infinity-norm bounds. The proposed approach can be applied to matched and/or mismatched uncertain linear systems. For a matched uncertain linear system, it is shown that the disturbance attenuation robust-stabilizing controllers with or without optimal performance always exist and can be easily determined without searching; whereas, for a mismatched uncertain linear system, the introduced tuning parameters greatly enhance the flexibility of finding the disturbance-attenuation robust-stabilizing controllers.

  5. The Applied Behavior Analysis Research Paradigm and Single-Subject Designs in Adapted Physical Activity Research.

    PubMed

    Haegele, Justin A; Hodge, Samuel Russell

    2015-10-01

    There are basic philosophical and paradigmatic assumptions that guide scholarly research endeavors, including the methods used and the types of questions asked. Through this article, kinesiology faculty and students with interests in adapted physical activity are encouraged to understand the basic assumptions of applied behavior analysis (ABA) methodology for conducting, analyzing, and presenting research of high quality in this paradigm. The purposes of this viewpoint paper are to present information fundamental to understanding the assumptions undergirding research methodology in ABA, describe key aspects of single-subject research designs, and discuss common research designs and data-analysis strategies used in single-subject studies.

  6. Nonmarket valuation of water quality in a rural transition economy in Turkey applying an a posteriori bid design

    NASA Astrophysics Data System (ADS)

    Bederli Tümay, Aylin; Brouwer, Roy

    2007-05-01

    In this paper, we investigate the economic benefits associated with public investments in wastewater treatment in one of the special protected areas along Turkey's touristic Mediterranean coast, the Köyceǧiz-Dalyan watershed. The benefits, measured in terms of boatable, fishable, swimmable and drinkable water quality, are estimated using a public survey format following the contingent valuation (CV) method. The study presented here is the first of its kind in Turkey. The study's main objective is to assess public perception, understanding, and valuation of improved wastewater treatment facilities in the two largest population centers in the watershed, facing the same water pollution problems as a result of lack of appropriate wastewater treatment. We test the validity and reliability of the application of the CV methodology to this specific environmental problem in a rural transition economy and evaluate the transferability of the results within the watershed. In order to facilitate willingness to pay (WTP) value elicitation we apply a novel dichotomous choice procedure where bid design takes place a posteriori instead of a priori. The statistical efficiency of different bid vectors is evaluated in terms of the estimated welfare measures' mean square errors using Monte Carlo simulation. The robustness of bid function specification is analyzed through average WTP and standard deviation estimated using parametric and nonparametric methods.

  7. Applying heuristic evaluation to observation chart design to improve the detection of patient deterioration.

    PubMed

    Preece, Megan H W; Hill, Andrew; Horswill, Mark S; Karamatic, Rozemary; Hewett, David G; Watson, Marcus O

    2013-07-01

    A key goal for patient safety is to improve the early recognition and management of patients whose conditions deteriorate whilst in hospital. Paper-based observation charts are the main means of recording and monitoring patients' physiological stability, yet observations (e.g., blood pressure, heart rate, and respiratory rate) are not always correctly recorded or appropriately acted upon. No prior published study has applied usability heuristics to systematically compare the usability of multiple observation chart designs. In this study, five evaluators with human factors, applied psychology, or medical expertise inspected 25 observation charts for usability problems. Every chart was found to have substantial usability problems, potentially affecting the ability of hospital staff to accurately record observations or recognize patient deterioration. We proposed a new observation chart design, which avoids many of the previously observed usability problems.

  8. Selection of a turbine cooling system applying multi-disciplinary design considerations.

    PubMed

    Glezer, B

    2001-05-01

    The presented paper describes a multi-disciplinary cooling selection approach applied to major gas turbine engine hot section components, including turbine nozzles, blades, discs, combustors and support structures, which maintain blade tip clearances. The paper demonstrates benefits of close interaction between participating disciplines starting from early phases of the hot section development. The approach targets advancements in engine performance and cost by optimizing the design process, often requiring compromises within individual disciplines.

  9. Advanced Non-Linear Control Algorithms Applied to Design Highly Maneuverable Autonomous Underwater Vehicles (AUVs)

    DTIC Science & Technology

    2007-08-01

    Advanced non- linear control algorithms applied to design highly maneuverable Autonomous Underwater Vehicles (AUVs) Vladimir Djapic, Jay A. Farrell...hierarchical such that an ”inner loop” non- linear controller (outputs the appropriate thrust values) is the same for all mission scenarios while a...library of ”outer-loop” non- linear controllers are available to implement specific maneuvering scenarios. On top of the outer-loop is the mission planner

  10. Design and robust tuning of control scheme based on the PD controller plus Disturbance Observer and low-order integrating first-order plus dead-time model.

    PubMed

    Matausek, M R; Ribić, A I

    2009-10-01

    This paper presents an effective design and robust tuning method for the control structure based on a series PD controller and a simple Disturbance Observer. All elements of the proposed controller are directly obtained from the low-order Integrating First-Order Plus Dead-Time (IFOPDT) model, used to approximate essential dynamic characteristics of lag-dominant stable, integrating and unstable plants. The structure of the proposed controller is an effective, easy to implement and tune, extension of the series PID controller. For the same robustness, a better disturbance rejection response is obtained by the proposed controller than that of the PID, by adjusting only two parameters with a clear meaning. A comparison with well-tuned PIDs, done by simulations, and the experimental results, obtained on a real thermal power plant, confirm that high performance and robustness are obtained, for dynamic characteristics common to industrial processes.

  11. A quality by design study applied to an industrial pharmaceutical fluid bed granulation.

    PubMed

    Lourenço, Vera; Lochmann, Dirk; Reich, Gabriele; Menezes, José C; Herdling, Thorsten; Schewitz, Jens

    2012-06-01

    The pharmaceutical industry is encouraged within Quality by Design (QbD) to apply science-based manufacturing principles to assure quality not only of new but also of existing processes. This paper presents how QbD principles can be applied to an existing industrial pharmaceutical fluid bed granulation (FBG) process. A three-step approach is presented as follows: (1) implementation of Process Analytical Technology (PAT) monitoring tools at the industrial scale process, combined with multivariate data analysis (MVDA) of process and PAT data to increase the process knowledge; (2) execution of scaled-down designed experiments at a pilot scale, with adequate PAT monitoring tools, to investigate the process response to intended changes in Critical Process Parameters (CPPs); and finally (3) the definition of a process Design Space (DS) linking CPPs to Critical to Quality Attributes (CQAs), within which product quality is ensured by design, and after scale-up enabling its use at the industrial process scale. The proposed approach was developed for an existing industrial process. Through enhanced process knowledge established a significant reduction in product CQAs, variability already within quality specifications ranges was achieved by a better choice of CPPs values. The results of such step-wise development and implementation are described.

  12. Anthropometric geography applied to the analysis of socioeconomic disparities: cohort trends and spatial patterns of height and robustness in 20th-century Spain

    PubMed Central

    Camara, Antonio D.; Roman, Joan Garcia

    2014-01-01

    Anthropometrics have been widely used to study the influence of environmental factors on health and nutritional status. In contrast, anthropometric geography has not often been employed to approximate the dynamics of spatial disparities associated with socioeconomic and demographic changes. Spain exhibited intense disparity and change during the middle decades of the 20th century, with the result that the life courses of the corresponding cohorts were associated with diverse environmental conditions. This was also true of the Spanish territories. This paper presents insights concerning the relationship between socioeconomic changes and living conditions by combining the analysis of cohort trends and the anthropometric cartography of height and physical build. This analysis is conducted for Spanish male cohorts born 1934–1973 that were recorded in the Spanish military statistics. This information is interpreted in light of region-level data on GDP and infant mortality. Our results show an anthropometric convergence across regions that, nevertheless, did not substantially modify the spatial patterns of robustness, featuring primarily robust northeastern regions and weak Central-Southern regions. These patterns persisted until the 1990s (cohorts born during the 1970s). For the most part, anthropometric disparities were associated with socioeconomic disparities, although the former lessened over time to a greater extent than the latter. Interestingly, the various anthropometric indicators utilized here do not point to the same conclusions. Some discrepancies between height and robustness patterns have been found that moderate the statements from the analysis of cohort height alone regarding the level and evolution of living conditions across Spanish regions. PMID:26640422

  13. Anthropometric geography applied to the analysis of socioeconomic disparities: cohort trends and spatial patterns of height and robustness in 20(th)-century Spain.

    PubMed

    Camara, Antonio D; Roman, Joan Garcia

    2015-11-01

    Anthropometrics have been widely used to study the influence of environmental factors on health and nutritional status. In contrast, anthropometric geography has not often been employed to approximate the dynamics of spatial disparities associated with socioeconomic and demographic changes. Spain exhibited intense disparity and change during the middle decades of the 20(th) century, with the result that the life courses of the corresponding cohorts were associated with diverse environmental conditions. This was also true of the Spanish territories. This paper presents insights concerning the relationship between socioeconomic changes and living conditions by combining the analysis of cohort trends and the anthropometric cartography of height and physical build. This analysis is conducted for Spanish male cohorts born 1934-1973 that were recorded in the Spanish military statistics. This information is interpreted in light of region-level data on GDP and infant mortality. Our results show an anthropometric convergence across regions that, nevertheless, did not substantially modify the spatial patterns of robustness, featuring primarily robust northeastern regions and weak Central-Southern regions. These patterns persisted until the 1990s (cohorts born during the 1970s). For the most part, anthropometric disparities were associated with socioeconomic disparities, although the former lessened over time to a greater extent than the latter. Interestingly, the various anthropometric indicators utilized here do not point to the same conclusions. Some discrepancies between height and robustness patterns have been found that moderate the statements from the analysis of cohort height alone regarding the level and evolution of living conditions across Spanish regions.

  14. Applying design principles to fusion reactor configurations for propulsion in space

    NASA Technical Reports Server (NTRS)

    Carpenter, Scott A.; Deveny, Marc E.; Schulze, Norman R.

    1993-01-01

    The application of fusion power to space propulsion requires rethinking the engineering-design solution to controlled-fusion energy. Whereas the unit cost of electricity (COE) drives the engineering-design solution for utility-based fusion reactor configurations; initial mass to low earth orbit (IMLEO), specific jet power (kW(thrust)/kg(engine)), and reusability drive the engineering-design solution for successful application of fusion power to space propulsion. We applied three design principles (DP's) to adapt and optimize three candidate-terrestrial-fusion-reactor configurations for propulsion in space. The three design principles are: provide maximum direct access to space for waste radiation, operate components as passive radiators to minimize cooling-system mass, and optimize the plasma fuel, fuel mix, and temperature for best specific jet power. The three candidate terrestrial fusion reactor configurations are: the thermal barrier tandem mirror (TBTM), field reversed mirror (FRM), and levitated dipole field (LDF). The resulting three candidate space fusion propulsion systems have their IMLEO minimized and their specific jet power and reusability maximized. We performed a preliminary rating of these configurations and concluded that the leading engineering-design solution to space fusion propulsion is a modified TBTM that we call the Mirror Fusion Propulsion System (MFPS).

  15. Analytical Enantio-Separation of Linagliptin in Linagliptin and Metformin HCl Dosage Forms by Applying Two-Level Factorial Design

    PubMed Central

    Jadhav, Sushant B.; Mane, Rahul M.; Narayanan, Kalyanraman L.; Bhosale, Popatrao N.

    2016-01-01

    A novel, stability indicating, reverse phase high-performance liquid chromatography (RP-HPLC) method was developed to determine the S-isomer of linagliptin (LGP) in linagliptin and metformin hydrochloride (MET HCl) tablets (LGP–MET HCl) by implementing design of experiment (DoE), i.e., two-level, full factorial design (23 + 3 centre points = 11 experiments) to understand the critical method parameters (CMP) and its relation with the critical method attribute (CMA), and to ensure robustness of the method. The separation of the S-isomer, LGP and MET HCl in the presence of their impurities was achieved on Chiralpak® IA-3 (Amylose tris (3, 5-dimethylphenylcarbamate), immobilized on 3 µm silica gel) stationary phase (250 × 4.6 mm, 3 µm) using isocratic elution and detector wavelength at 225 nm with a flow rate of 0.5 mL·min−1, an injection volume of 10 µL with a sample cooler (5 °C) and column oven temperature of 25 °C. Ethanol:Methanol:Monoethanolamine (EtOH:MeOH:MEA) in the ratio of 60:40:0.2 v/v/v was used as a mobile phase. The developed method was validated in accordance with international council for harmonisation (ICH) guidelines and was applied for the estimation of the S-isomer of LGP in LGP–MET HCl tablets. The same method also can be extended for the estimation of the S-isomer in LGP dosage forms. PMID:27763526

  16. Applying epidemiological principles to ergonomics: a checklist for incorporating sound design and interpretation of studies.

    PubMed

    Heacock, H; Koehoorn, M; Tan, J

    1997-06-01

    The primary purpose of this paper is to provide a checklist of scientific requirements necessary for the design of sound ergonomics studies. Ergonomics researchers will be able to use the checklist when designing a study and preparing it for publication. Practitioners can use the checklist to critically appraise study results, thereby having greater confidence when applying ergonomic recommendations to the workplace. A secondary purpose of the paper is to pilot the checklist on a sample of papers in the ergonomics literature and to assess its reliability. While there are checklists to assess the epidemiological rigour of studies, none have been adapted to address methodological issues in ergonomics. Two epidemiologists independently searched five ergonomics journals (Applied Ergonomics, Ergonomics, Human Factors, International Journal of Human-Computer Interaction and Journal of Human Ergology) for research studies on VDT use and visual function published between 1990 and 1995. Twenty-one articles were reviewed. Each paper was scored according to the checklist. Overall, the reviewers found that the articles did not consistently fulfill some of the checklist criteria. An insufficient sample size was the most serious omission. Inter-rater reliability of the checklist was excellent for 11 of 14 items on the checklist (Kappa > 0.74), good for two items (Kappa between 0.40 and 0.74) and poor for one item. As ergonomics is gaining acceptance as an integral part of occupational health and safety, individuals in this field must be cognizant of the fact that study results are being applied directly to workplace procedures and design. It is incumbent upon ergonomists to base their work on a solid research foundation. The checklist can be used as a tool to improve study designs and so ultimately has implications for improving the fit between the worker and the work environment.

  17. Multiple feedback loop design in the tryptophan regulatory network of Escherichia coli suggests a paradigm for robust regulation of processes in series

    PubMed Central

    Bhartiya, Sharad; Chaudhary, Nikhil; Venkatesh, K.V; Doyle, Francis J

    2005-01-01

    Biological networks have evolved through adaptation in uncertain environments. Of the different possible design paradigms, some may offer functional advantages over others. These designs can be quantified by the structure of the network resulting from molecular interactions and the parameter values. One may, therefore, like to identify the design motif present in the evolved network that makes it preferable over other alternatives. In this work, we focus on the regulatory networks characterized by serially arranged processes, which are regulated by multiple feedback loops. Specifically, we consider the tryptophan system present in Escherichia coli, which may be conceptualized as three processes in series, namely transcription, translation and tryptophan synthesis. The multiple feedback loop motif results from three distinct negative feedback loops, namely genetic repression, mRNA attenuation and enzyme inhibition. A framework is introduced to identify the key design components of this network responsible for its physiological performance. We demonstrate that the multiple feedback loop motif, as seen in the tryptophan system, enables robust performance to variations in system parameters while maintaining a rapid response to achieve homeostasis. Superior performance, if arising from a design principle, is intrinsic and, therefore, inherent to any similarly designed system, either natural or engineered. An experimental engineering implementation of the multiple feedback loop design on a two-tank system supports the generality of the robust attributes offered by the design. PMID:16849267

  18. Robust stability analysis and dynamic gain-scheduled controller design for point time-delay systems with parametrical uncertainties

    NASA Astrophysics Data System (ADS)

    De la Sen, M.

    2008-08-01

    This paper discusses linear fractional representations (LFR) of parameter-dependent nonlinear systems with real-rational nonlinearities and point-delayed dynamics. Sufficient conditions for robust global asymptotic stability independent of the delays and the existence of a robust stabilizing gain-scheduled dynamic controller are investigated via linear matrix inequalities. Such inequalities are obtained from the values of the time-derivatives of appropriate Lyapunov functions at all the vertices of the polytope which contains the parametrized uncertainties. The synthesized stabilizing controller consists of an interpolation being performed with the stabilizing controllers at the set of vertices of a certain polytope where the nonlinear-rational parametrization belongs to. Some extensions are also given concerning robust global asymptotic stability dependent of the delays. Numerical examples corroborate the usefulness of the proposed formalism and its applicability to practical related problems.

  19. The Enzyme Portal: a case study in applying user-centred design methods in bioinformatics

    PubMed Central

    2013-01-01

    User-centred design (UCD) is a type of user interface design in which the needs and desires of users are taken into account at each stage of the design process for a service or product; often for software applications and websites. Its goal is to facilitate the design of software that is both useful and easy to use. To achieve this, you must characterise users’ requirements, design suitable interactions to meet their needs, and test your designs using prototypes and real life scenarios. For bioinformatics, there is little practical information available regarding how to carry out UCD in practice. To address this we describe a complete, multi-stage UCD process used for creating a new bioinformatics resource for integrating enzyme information, called the Enzyme Portal (http://www.ebi.ac.uk/enzymeportal). This freely-available service mines and displays data about proteins with enzymatic activity from public repositories via a single search, and includes biochemical reactions, biological pathways, small molecule chemistry, disease information, 3D protein structures and relevant scientific literature. We employed several UCD techniques, including: persona development, interviews, ‘canvas sort’ card sorting, user workflows, usability testing and others. Our hope is that this case study will motivate the reader to apply similar UCD approaches to their own software design for bioinformatics. Indeed, we found the benefits included more effective decision-making for design ideas and technologies; enhanced team-working and communication; cost effectiveness; and ultimately a service that more closely meets the needs of our target audience. PMID:23514033

  20. Design and fabrication of facial prostheses for cancer patient applying computer aided method and manufacturing (CADCAM)

    NASA Astrophysics Data System (ADS)

    Din, Tengku Noor Daimah Tengku; Jamayet, Nafij; Rajion, Zainul Ahmad; Luddin, Norhayati; Abdullah, Johari Yap; Abdullah, Abdul Manaf; Yahya, Suzana

    2016-12-01

    Facial defects are either congenital or caused by trauma or cancer where most of them affect the person appearance. The emotional pressure and low self-esteem are problems commonly related to patient with facial defect. To overcome this problem, silicone prosthesis was designed to cover the defect part. This study describes the techniques in designing and fabrication for facial prosthesis applying computer aided method and manufacturing (CADCAM). The steps of fabricating the facial prosthesis were based on a patient case. The patient was diagnosed for Gorlin Gotz syndrome and came to Hospital Universiti Sains Malaysia (HUSM) for prosthesis. The 3D image of the patient was reconstructed from CT data using MIMICS software. Based on the 3D image, the intercanthal and zygomatic measurements of the patient were compared with available data in the database to find the suitable nose shape. The normal nose shape for the patient was retrieved from the nasal digital library. Mirror imaging technique was used to mirror the facial part. The final design of facial prosthesis including eye, nose and cheek was superimposed to see the result virtually. After the final design was confirmed, the mould design was created. The mould of nasal prosthesis was printed using Objet 3D printer. Silicone casting was done using the 3D print mould. The final prosthesis produced from the computer aided method was acceptable to be used for facial rehabilitation to provide better quality of life.

  1. A natural flow wing design employing 3-D nonlinear analysis applied at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Bauer, Steven X. S.; Wood, Richard M.; Brown, S. Melissa

    1989-01-01

    A wing-design study has been conducted on a 65-deg-swept leading-edge delta wing in which a near-conical geometry was employed to take advantage of the naturally occurring conical flow which arises over such a wing in a supersonic flow field. Three-dimensional nonlinear analysis methods were used in the study. In preliminary design, wing planform, design conditions, and near-conical concept were derived and a baseline standard wing (conventional airfoil distribution) and a baseline near-conical wing were chosen. During the initial analysis, a full-potential solver was employed to determine the aerodynamic characteristics of the baseline standard delta wing and the near-conical delta wing. Modifications due to airfoil thickness, leading-edge radius, and camber were then applied to the baseline near-conical wing. The final design employed a Euler solver to analyze the best wing configurations found in the initial design, and to extend this study to develop a more refined wing. Benefits due to each modification are discussed, and a final natural flow wing geometry is chosen and its aerodynamic characteristics are compared with the baseline wings.

  2. Augmented design and analysis of computer experiments: a novel tolerance embedded global optimization approach applied to SWIR hyperspectral illumination design.

    PubMed

    Keresztes, Janos C; John Koshel, R; D'huys, Karlien; De Ketelaere, Bart; Audenaert, Jan; Goos, Peter; Saeys, Wouter

    2016-12-26

    A novel meta-heuristic approach for minimizing nonlinear constrained problems is proposed, which offers tolerance information during the search for the global optimum. The method is based on the concept of design and analysis of computer experiments combined with a novel two phase design augmentation (DACEDA), which models the entire merit space using a Gaussian process, with iteratively increased resolution around the optimum. The algorithm is introduced through a series of cases studies with increasing complexity for optimizing uniformity of a short-wave infrared (SWIR) hyperspectral imaging (HSI) illumination system (IS). The method is first demonstrated for a two-dimensional problem consisting of the positioning of analytical isotropic point sources. The method is further applied to two-dimensional (2D) and five-dimensional (5D) SWIR HSI IS versions using close- and far-field measured source models applied within the non-sequential ray-tracing software FRED, including inherent stochastic noise. The proposed method is compared to other heuristic approaches such as simplex and simulated annealing (SA). It is shown that DACEDA converges towards a minimum with 1 % improvement compared to simplex and SA, and more importantly requiring only half the number of simulations. Finally, a concurrent tolerance analysis is done within DACEDA for to the five-dimensional case such that further simulations are not required.

  3. Design principles for robust biochemical reaction networks: What works, what cannot work, and what might almost work

    PubMed Central

    Shinar, Guy; Feinberg, Martin

    2011-01-01

    We bring together recent results that connect the structure of a mass-action reaction network to its capacity for concentration robustness — that is, its capacity to keep the concentration of a critical bio-active species within narrow limits, even against large fluctuations in the overall supply of the network's constituents. PMID:21377478

  4. A HETEROSCEDASTIC METHOD FOR COMPARING REGRESSION LINES AT SPECIFIED DESIGN POINTS WHEN USING A ROBUST REGRESSION ESTIMATOR.

    PubMed

    Wilcox, Rand R

    2013-04-01

    It is well known that the ordinary least squares (OLS) regression estimator is not robust. Many robust regression estimators have been proposed and inferential methods based on these estimators have been derived. However, for two independent groups, let θj (X) be some conditional measure of location for the jth group, given X, based on some robust regression estimator. An issue that has not been addressed is computing a 1 - α confidence interval for θ1(X) - θ2(X) in a manner that allows both within group and between group hetereoscedasticity. The paper reports the finite sample properties of a simple method for accomplishing this goal. Simulations indicate that, in terms of controlling the probability of a Type I error, the method performs very well for a wide range of situations, even with a relatively small sample size. In principle, any robust regression estimator can be used. The simulations are focused primarily on the Theil-Sen estimator, but some results using Yohai's MM-estimator, as well as the Koenker and Bassett quantile regression estimator, are noted. Data from the Well Elderly II study, dealing with measures of meaningful activity using the cortisol awakening response as a covariate, are used to illustrate that the choice between an extant method based on a nonparametric regression estimator, and the method suggested here, can make a practical difference.

  5. Robust detection-isolation-accommodation for sensor failures

    NASA Technical Reports Server (NTRS)

    Weiss, J. L.; Pattipati, K. R.; Willsky, A. S.; Eterno, J. S.; Crawford, J. T.

    1985-01-01

    The results of a one year study to: (1) develop a theory for Robust Failure Detection and Identification (FDI) in the presence of model uncertainty, (2) develop a design methodology which utilizes the robust FDI ththeory, (3) apply the methodology to a sensor FDI problem for the F-100 jet engine, and (4) demonstrate the application of the theory to the evaluation of alternative FDI schemes are presented. Theoretical results in statistical discrimination are used to evaluate the robustness of residual signals (or parity relations) in terms of their usefulness for FDI. Furthermore, optimally robust parity relations are derived through the optimization of robustness metrics. The result is viewed as decentralization of the FDI process. A general structure for decentralized FDI is proposed and robustness metrics are used for determining various parameters of the algorithm.

  6. KL-optimal experimental design for discriminating between two growth models applied to a beef farm.

    PubMed

    Campos-Barreiro, Santiago; López-Fidalgo, Jesús

    2016-02-01

    The body mass growth of organisms is usually represented in terms of what is known as ontogenetic growth models, which represent the relation of dependence between the mass of the body and time. The paper is concerned with a problem of finding an optimal experimental design for discriminating between two competing mass growth models applied to a beef farm. T-optimality was first introduced for discrimination between models but in this paper, KL-optimality based on the Kullback-Leibler distance is used to deal with correlated obsevations since, in this case, observations on a particular animal are not independent.

  7. Robust tooth surface reconstruction by iterative deformation.

    PubMed

    Jiang, Xiaotong; Dai, Ning; Cheng, Xiaosheng; Wang, Jun; Peng, Qingjin; Liu, Hao; Cheng, Cheng

    2016-01-01

    Digital design technologies have been applied extensively in dental medicine, especially in the field of dental restoration. The all-ceramic crown is an important restoration type of dental CAD systems. This paper presents a robust tooth surface reconstruction algorithm for all-ceramic crown design. The algorithm involves three necessary steps: standard tooth initial positioning and division; salient feature point extraction using Morse theory; and standard tooth deformation using iterative Laplacian Surface Editing and mesh stitching. This algorithm can retain the morphological features of the tooth surface well. It is robust and suitable for almost all types of teeth, including incisor, canine, premolar, and molar. Moreover, it allows dental technicians to use their own preferred library teeth for reconstruction. The algorithm has been successfully integrated in our Dental CAD system, more than 1000 clinical cases have been tested to demonstrate the robustness and effectiveness of the proposed algorithm.

  8. Real-time PCR Machine System Modeling and a Systematic Approach for the Robust Design of a Real-time PCR-on-a-Chip System

    PubMed Central

    Lee, Da-Sheng

    2010-01-01

    Chip-based DNA quantification systems are widespread, and used in many point-of-care applications. However, instruments for such applications may not be maintained or calibrated regularly. Since machine reliability is a key issue for normal operation, this study presents a system model of the real-time Polymerase Chain Reaction (PCR) machine to analyze the instrument design through numerical experiments. Based on model analysis, a systematic approach was developed to lower the variation of DNA quantification and achieve a robust design for a real-time PCR-on-a-chip system. Accelerated lift testing was adopted to evaluate the reliability of the chip prototype. According to the life test plan, this proposed real-time PCR-on-a-chip system was simulated to work continuously for over three years with similar reproducibility in DNA quantification. This not only shows the robustness of the lab-on-a-chip system, but also verifies the effectiveness of our systematic method for achieving a robust design. PMID:22315563

  9. Real-time PCR machine system modeling and a systematic approach for the robust design of a real-time PCR-on-a-chip system.

    PubMed

    Lee, Da-Sheng

    2010-01-01

    Chip-based DNA quantification systems are widespread, and used in many point-of-care applications. However, instruments for such applications may not be maintained or calibrated regularly. Since machine reliability is a key issue for normal operation, this study presents a system model of the real-time Polymerase Chain Reaction (PCR) machine to analyze the instrument design through numerical experiments. Based on model analysis, a systematic approach was developed to lower the variation of DNA quantification and achieve a robust design for a real-time PCR-on-a-chip system. Accelerated lift testing was adopted to evaluate the reliability of the chip prototype. According to the life test plan, this proposed real-time PCR-on-a-chip system was simulated to work continuously for over three years with similar reproducibility in DNA quantification. This not only shows the robustness of the lab-on-a-chip system, but also verifies the effectiveness of our systematic method for achieving a robust design.

  10. 23 CFR 636.104 - Does this part apply to all Federal-aid design-build projects?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 23 Highways 1 2011-04-01 2011-04-01 false Does this part apply to all Federal-aid design-build projects? 636.104 Section 636.104 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS DESIGN-BUILD CONTRACTING General § 636.104 Does this part apply to...

  11. Experimental design applied to the formulation of lipsticks with particular features.

    PubMed

    Zanotti, F; Masiello, S; Bader, S; Guarneri, M; Vojnovic, D

    1998-08-01

    In our work a non-classical experimental design was applied to obtain lipsticks endowed with particular characteristics. Our aim was to formulate lipsticks that leave a brilliant and shiny colour application and have a transparent look. The emollient substances and the waxes (consistency factors) were identified as the main variables of the system. A two phase experimental strategy was thought out: the optimal quantities of consistency factors were selected using a Doehlert experimental matrix, whereas the correct mixtures of emollients were determined using a Scheffé simplex-centroid design. These two design were combined and a set of 49 experiments was obtained. The experiments carried out allowed the definition of a zone of two phases in which the objectives were attained: the correct types and appropriate quantities of emollients and waxes were determined. To find a possible correlation between some mixtures and the lipsticks' sensorial behaviour, differential scanning calorimetry was used. These results, in addition to those obtained using the experimental design allowed us to select the best lipstick formula. (c) Rapid Science Ltd. 1998.

  12. Robust hyperchaotic synchronization via analog transmission line

    NASA Astrophysics Data System (ADS)

    Sadoudi, S.; Tanougast, C.

    2016-02-01

    In this paper, a novel experimental chaotic synchronization technique via analog transmission is discussed. We demonstrate through Field-Programmable Gate Array (FPGA) implementation design the robust synchronization of two embedded hyperchaotic Lorenz generators interconnected with an analog transmission line. The basic idea of this work consists in combining a numerical generation of chaos and transmitting it with an analog signal. The numerical chaos allows to overcome the callback parameter mismatch problem and the analog transmission offers robust data security. As application, this technique can be applied to all families of chaotic systems including time-delayed chaotic systems.

  13. Identification and robust control of an experimental servo motor.

    PubMed

    Adam, E J; Guestrin, E D

    2002-04-01

    In this work, the design of a robust controller for an experimental laboratory-scale position control system based on a dc motor drive as well as the corresponding identification and robust stability analysis are presented. In order to carry out the robust design procedure, first, a classic closed-loop identification technique is applied and then, the parametrization by internal model control is used. The model uncertainty is evaluated under both parametric and global representation. For the latter case, an interesting discussion about the conservativeness of this description is presented by means of a comparison between the uncertainty disk and the critical perturbation radius approaches. Finally, conclusions about the performance of the experimental system with the robust controller are discussed using comparative graphics of the controlled variable and the Nyquist stability margin as a robustness measurement.

  14. Visualization of the Invisible, Explanation of the Unknown, Ruggedization of the Unstable: Sensitivity Analysis, Virtual Tryout and Robust Design through Systematic Stochastic Simulation

    SciTech Connect

    Zwickl, Titus; Carleer, Bart; Kubli, Waldemar

    2005-08-05

    In the past decade, sheet metal forming simulation became a well established tool to predict the formability of parts. In the automotive industry, this has enabled significant reduction in the cost and time for vehicle design and development, and has helped to improve the quality and performance of vehicle parts. However, production stoppages for troubleshooting and unplanned die maintenance, as well as production quality fluctuations continue to plague manufacturing cost and time. The focus therefore has shifted in recent times beyond mere feasibility to robustness of the product and process being engineered. Ensuring robustness is the next big challenge for the virtual tryout / simulation technology.We introduce new methods, based on systematic stochastic simulations, to visualize the behavior of the part during the whole forming process -- in simulation as well as in production. Sensitivity analysis explains the response of the part to changes in influencing parameters. Virtual tryout allows quick exploration of changed designs and conditions. Robust design and manufacturing guarantees quality and process capability for the production process. While conventional simulations helped to reduce development time and cost by ensuring feasible processes, robustness engineering tools have the potential for far greater cost and time savings.Through examples we illustrate how expected and unexpected behavior of deep drawing parts may be tracked down, identified and assigned to the influential parameters. With this knowledge, defects can be eliminated or springback can be compensated e.g.; the response of the part to uncontrollable noise can be predicted and minimized. The newly introduced methods enable more reliable and predictable stamping processes in general.

  15. Genetic algorithm for design and manufacture optimization based on numerical simulations applied to aeronautic composite parts

    SciTech Connect

    Mouton, S.; Ledoux, Y.; Teissandier, D.; Sebastian, P.

    2010-06-15

    A key challenge for the future is to reduce drastically the human impact on the environment. In the aeronautic field, this challenge aims at optimizing the design of the aircraft to decrease the global mass. This reduction leads to the optimization of every part constitutive of the plane. This operation is even more delicate when the used material is composite material. In this case, it is necessary to find a compromise between the strength, the mass and the manufacturing cost of the component. Due to these different kinds of design constraints it is necessary to assist engineer with decision support system to determine feasible solutions. In this paper, an approach is proposed based on the coupling of the different key characteristics of the design process and on the consideration of the failure risk of the component. The originality of this work is that the manufacturing deviations due to the RTM process are integrated in the simulation of the assembly process. Two kinds of deviations are identified: volume impregnation (injection phase of RTM process) and geometrical deviations (curing and cooling phases). The quantification of these deviations and the related failure risk calculation is based on finite element simulations (Pam RTM registered and Samcef registered softwares). The use of genetic algorithm allows to estimate the impact of the design choices and their consequences on the failure risk of the component. The main focus of the paper is the optimization of tool design. In the framework of decision support systems, the failure risk calculation is used for making the comparison of possible industrialization alternatives. It is proposed to apply this method on a particular part of the airplane structure: a spar unit made of carbon fiber/epoxy composite.

  16. A Robust Design Capture-Recapture Analysis of Abundance, Survival and Temporary Emigration of Three Odontocete Species in the Gulf of Corinth, Greece

    PubMed Central

    Bonizzoni, Silvia; Bearzi, Giovanni; Eddy, Lavinia; Gimenez, Olivier

    2016-01-01

    While the Mediterranean Sea has been designated as a Global Biodiversity Hotspot, assessments of cetacean population abundance are lacking for large portions of the region, particularly in the southern and eastern basins. The challenges and costs of obtaining the necessary data often result in absent or poor abundance information. We applied capture-recapture models to estimate abundance, survival and temporary emigration of odontocete populations within a 2,400 km2 semi-enclosed Mediterranean bay, the Gulf of Corinth. Boat surveys were conducted in 2011–2015 to collect photo-identification data on striped dolphins Stenella coeruleoalba, short-beaked common dolphins Delphinus delphis (always found together with striped dolphins in mixed groups) and common bottlenose dolphins Tursiops truncatus, totaling 1,873 h of tracking. After grading images for quality and marking distinctiveness, 23,995 high-quality photos were included in a striped and common dolphin catalog, and 2,472 in a bottlenose dolphin catalog. The proportions of striped and common dolphins were calculated from the photographic sample and used to scale capture-recapture estimates. Best-fitting robust design capture-recapture models denoted no temporary emigration between years for striped and common dolphins, and random temporary emigration for bottlenose dolphins, suggesting different residency patterns in agreement with previous studies. Average estimated abundance over the five years was 1,331 (95% CI 1,122–1,578) striped dolphins, 22 (16–32) common dolphins, 55 (36–84) “intermediate” animals (potential striped x common dolphin hybrids) and 38 (32–46) bottlenose dolphins. Apparent survival was constant for striped, common and intermediate dolphins (0.94, 95% CI 0.92–0.96) and year-dependent for bottlenose dolphins (an average of 0.85, 95% CI 0.76–0.95). Our work underlines the importance of long-term monitoring to contribute reliable baseline information that can help assess the

  17. Evolving Robust Gene Regulatory Networks

    PubMed Central

    Noman, Nasimul; Monjo, Taku; Moscato, Pablo; Iba, Hitoshi

    2015-01-01

    Design and implementation of robust network modules is essential for construction of complex biological systems through hierarchical assembly of ‘parts’ and ‘devices’. The robustness of gene regulatory networks (GRNs) is ascribed chiefly to the underlying topology. The automatic designing capability of GRN topology that can exhibit robust behavior can dramatically change the current practice in synthetic biology. A recent study shows that Darwinian evolution can gradually develop higher topological robustness. Subsequently, this work presents an evolutionary algorithm that simulates natural evolution in silico, for identifying network topologies that are robust to perturbations. We present a Monte Carlo based method for quantifying topological robustness and designed a fitness approximation approach for efficient calculation of topological robustness which is computationally very intensive. The proposed framework was verified using two classic GRN behaviors: oscillation and bistability, although the framework is generalized for evolving other types of responses. The algorithm identified robust GRN architectures which were verified using different analysis and comparison. Analysis of the results also shed light on the relationship among robustness, cooperativity and complexity. This study also shows that nature has already evolved very robust architectures for its crucial systems; hence simulation of this natural process can be very valuable for designing robust biological systems. PMID:25616055

  18. Low power considerations and design for CMOS VCOs applied for direct conversion receivers at 5GHz

    NASA Astrophysics Data System (ADS)

    Adin, Iñigo; Quemada, Carlos; Solar, Hector; Sedano, Beatriz; Gutierrez, Iñigo

    2007-05-01

    Low power design often requires direct conversion architectures, such as low-IF or zero-IF. Any of these two possibilities needs a low power, low phase noise voltage control oscillator (VCO) in the frequency synthesizer. This work is focused on low power considerations applied to the practical modern conception of this device. Fulfilling the standard specifications (output power, phase noise, frequency range) should be completed with this deeper step. A conscious design leads moreover to an improvement in the results obtained by the classical considerations. The increase of the quality factor of the passive elements is one of the key points, followed by an accurate design of the architecture scheme. Furthermore, lower current consumption provides higher oscillation frequencies and facilitates higher frequency ranges, which follow the trends of modern wireless and wideband communication standards. In order to validate the aforementioned assumptions, a CMOS VCO has been implemented in UMC 0.18μm 1P6M technology, with power consumption down to 3.4mW.

  19. 41 CFR 102-76.55 - What sustainable development principles must Federal agencies apply to the siting, design, and...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Regulations System (Continued) FEDERAL MANAGEMENT REGULATION REAL PROPERTY 76-DESIGN AND CONSTRUCTION Design... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false What sustainable development principles must Federal agencies apply to the siting, design, and construction of new...

  20. 41 CFR 102-76.55 - What sustainable development principles must Federal agencies apply to the siting, design, and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Regulations System (Continued) FEDERAL MANAGEMENT REGULATION REAL PROPERTY 76-DESIGN AND CONSTRUCTION Design... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false What sustainable development principles must Federal agencies apply to the siting, design, and construction of new...

  1. 41 CFR 102-76.55 - What sustainable development principles must Federal agencies apply to the siting, design, and...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Regulations System (Continued) FEDERAL MANAGEMENT REGULATION REAL PROPERTY 76-DESIGN AND CONSTRUCTION Design... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false What sustainable development principles must Federal agencies apply to the siting, design, and construction of new...

  2. 41 CFR 102-76.55 - What sustainable development principles must Federal agencies apply to the siting, design, and...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Regulations System (Continued) FEDERAL MANAGEMENT REGULATION REAL PROPERTY 76-DESIGN AND CONSTRUCTION Design... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false What sustainable development principles must Federal agencies apply to the siting, design, and construction of new...

  3. Basis of human factors methodology applied in the Westinghouse AP600 design

    SciTech Connect

    Carrera, J.P.; Easter, J.R. )

    1992-01-01

    The incident at Three Mile Island Unit 2 brought about an awareness that there is a need for a new perspective on nuclear power plant operator performance. It was discerned that besides executing control actions, the operator needs an additional role, that of systems supervisor-someone who considers plant health at the functional level of how all the plant processes are related and how they perform with regard to the high-level operational goals of the plant. Westinghouse has taken the initiative to apply these ideas in dealing with the operator by studying the work of Rasmussen of Denmark's Riso Laboratory, regarding knowledge-based behavior and the requirements for supporting the cognitive processes required of an operator. This has led to the Westinghouse Man-Machine-Interface System (MMIS) design process.

  4. Applying reliability analysis to design electric power systems for More-electric aircraft

    NASA Astrophysics Data System (ADS)

    Zhang, Baozhu

    The More-Electric Aircraft (MEA) is a type of aircraft that replaces conventional hydraulic and pneumatic systems with electrically powered components. These changes have significantly challenged the aircraft electric power system design. This thesis investigates how reliability analysis can be applied to automatically generate system topologies for the MEA electric power system. We first use a traditional method of reliability block diagrams to analyze the reliability level on different system topologies. We next propose a new methodology in which system topologies, constrained by a set reliability level, are automatically generated. The path-set method is used for analysis. Finally, we interface these sets of system topologies with control synthesis tools to automatically create correct-by-construction control logic for the electric power system.

  5. Systems Engineering Techniques Applied to the BepiColombo MPO Science Ground Segment Design

    NASA Astrophysics Data System (ADS)

    de la Fluente, Sara; Perez-Lopez, Fernando; Casale, Mauro

    2013-08-01

    BepiColombo is an interdisciplinary mission to Mercury scheduled for launch in 2015, arriving at Mercury in 2021. It is a joint mission between ESA and JAXA consisting of 2 complementary spacecraft, the Mercury Planetary Orbiter (MPO) and the Mercury Magnetospheric Orbiter (MMO). BepiColombo MPO scientific payload comprises 11 instrument packages comprising 17 experiments that will investigate the Mercury planet interior, surface composition and morphology, the intrinsic magnetic field and the composition of the exosphere and the coupling between all of these fields. Several Systems engineering techniques for requirements capture, verification, modelling and analysis, etc have been applied in the design of the Science Ground Segment, located at the European Space Astronomy Centre (ESAC) in Madrid, Spain.

  6. Definitive screening design applied to electrochemical degradation of Chromotrope 2R with BDD anodes.

    PubMed

    Du, Xiaoming; Zhang, Zhefeng; Zhang, Chunyong; Fu, Degang

    2017-03-01

    Here, a novel three-level definitive screening design (DSD) was initially employed to investigate the electrochemical degradation of Chromotrope 2R (C2R) with boron-doped diamond (BDD) anodes. Experiments were performed using a synthetic C2R solution containing five supporting electrolytes (Na2SO4, NaCl, Na3PO4, NaNO3 and Na2CO3). The effects of nine quantitative parameters on C2R removal rate: initial C2R concentration (50-100 mg L(-1)), applied current density (1.29-3.87 mA cm(-2)), Na2SO4 concentration (0-10 mM), NaCl concentration (0-10 mM), Na3PO4 concentration (0-10 mM), NaNO3 concentration (0-10 mM), Na2CO3 concentration (0-10 mM), flow rate (300-500 mL min(-1)) and temperature (10-50 °C), were investigated. The model obtained was validated and used to select three most significant variables for further investigation. Interestingly, the differing roles of electrolytes during the electrolysis revealed the ion-selective nature of BDD anode system. A five-level central composite rotatable design (CCRD) was then employed to describe the C2R conversion as a function of applied current density, NaCl concentration and temperature. The results obtained confirmed the strong capability of DSD to separate and identify the significant variables in BDD technology. Moreover, the strategy (DSD plus CCRD) employed here enabled a significant reduction in the number of experiments (from over 500 to only 38) compared to traditional screening methods. The possible degradation mechanism of C2R in BDD anode cells was also proposed.

  7. New aspects of developing a dry powder inhalation formulation applying the quality-by-design approach.

    PubMed

    Pallagi, Edina; Karimi, Keyhaneh; Ambrus, Rita; Szabó-Révész, Piroska; Csóka, Ildikó

    2016-09-10

    The current work outlines the application of an up-to-date and regulatory-based pharmaceutical quality management method, applied as a new development concept in the process of formulating dry powder inhalation systems (DPIs). According to the Quality by Design (QbD) methodology and Risk Assessment (RA) thinking, a mannitol based co-spray dried formula was produced as a model dosage form with meloxicam as the model active agent. The concept and the elements of the QbD approach (regarding its systemic, scientific, risk-based, holistic, and proactive nature with defined steps for pharmaceutical development), as well as the experimental drug formulation (including the technological parameters assessed and the methods and processes applied) are described in the current paper. Findings of the QbD based theoretical prediction and the results of the experimental development are compared and presented. Characteristics of the developed end-product were in correlation with the predictions, and all data were confirmed by the relevant results of the in vitro investigations. These results support the importance of using the QbD approach in new drug formulation, and prove its good usability in the early development process of DPIs. This innovative formulation technology and product appear to have a great potential in pulmonary drug delivery.

  8. Probability-based stability robustness assessment of controlled structures

    SciTech Connect

    Field, R.V. Jr.; Voulgaris, P.G.; Bergman, L.A.

    1996-01-01

    Model uncertainty, if ignored, can seriously degrade the performance of an otherwise well-designed control system. If the level of this uncertainty is extreme, the system may even be driven to instability. In the context of structural control, performance degradation and instability imply excessive vibration or even structural failure. Robust control has typically been applied to the issue of model uncertainty through worst-case analyses. These traditional methods include the use of the structured singular value, as applied to the small gain condition, to provide estimates of controller robustness. However, this emphasis on the worst-case scenario has not allowed a probabilistic understanding of robust control. In this paper an attempt to view controller robustness as a probability measure is presented. The probability of failure due to parametric uncertainty is estimated using first-order reliability methods (FORM). It is demonstrated that this method can provide quite accurate results on the probability of failure of actively controlled structures. Moreover, a comparison of this method to a suitability modified structured singular value robustness analysis in a probabilistic framework is performed. It is shown that FORM is the superior analysis technique when applied to a controlled three degree-of-freedom structure. In addition, the robustness qualities of various active control design schemes such as LQR, H{sub 2}, H {sub oo}, and {mu}-synthesis is discussed in order to provide some design guidelines.

  9. Design, fabrication, and test of a graphite/epoxy metering truss. [as applied to the LST

    NASA Technical Reports Server (NTRS)

    Oken, S.; Skoumal, D. E.

    1975-01-01

    A graphite/epoxy metering truss as applied to the large space telescope was investigated. A full-scale truss was designed, fabricated and tested. Tests included static limit loadings, a modal survey and thermal-vacuum distortion evaluation. The most critical requirement was the demonstration of the dimensional stability provided by the graphite/epoxy truss concept. Crucial to the attainment of this objective was the ability to make very sophisticated thermal growth measurements which was provided by a seven beam laser interferometer. The design of the basic truss elements were tuned to provide the high degree of dimensional stability and stiffness required by the truss. The struts and spider assembly were fabricated with Fiberite's AS/934 and HMS/934 broadgoods. The rings utilized T300 graphite fabricate with the same materials. The predicted performance of the truss was developed using the NASTRAN program. These results showed conformance with the critical stiffness and thermal distortion requirements and correlated well with the test results.

  10. Design of Astrometric Mission (JASMINE) by Applying Model Driven System Engineering

    NASA Astrophysics Data System (ADS)

    Yamada, Y.; Miyashita, H.; Nakamura, H.; Suenaga, K.; Kamiyoshi, S.; Tsuiki, A.

    2010-12-01

    We are planning space astrometric satellite mission named JASMINE. The target accuracy of parallaxes in JASMINE observation is 10 micro arc second, which corresponds to 1 nm scale on the focal plane. It is very hard to measure the 1 nm scale deformation of focal plane. Eventually, we need to add the deformation to the observation equations when estimating stellar astrometric parameters, which requires considering many factors such as instrument models and observation data analysis. In this situation, because the observation equations become more complex, we may reduce the stability of the hardware, nevertheless, we require more samplings due to the lack of rigidity of each estimation. This mission imposes a number of trades-offs in the engineering choices and then decide the optimal design from a number of candidates. In order to efficiently support such decisions, we apply Model Driven Systems Engineering (MDSE), which improves the efficiency of the engineering by revealing and formalizing requirements, specifications, and designs to find a good balance among various trade-offs.

  11. Applied & Computational MathematicsChallenges for the Design and Control of Dynamic Energy Systems

    SciTech Connect

    Brown, D L; Burns, J A; Collis, S; Grosh, J; Jacobson, C A; Johansen, H; Mezic, I; Narayanan, S; Wetter, M

    2011-03-10

    The Energy Independence and Security Act of 2007 (EISA) was passed with the goal 'to move the United States toward greater energy independence and security.' Energy security and independence cannot be achieved unless the United States addresses the issue of energy consumption in the building sector and significantly reduces energy consumption in buildings. Commercial and residential buildings account for approximately 40% of the U.S. energy consumption and emit 50% of CO{sub 2} emissions in the U.S. which is more than twice the total energy consumption of the entire U.S. automobile and light truck fleet. A 50%-80% improvement in building energy efficiency in both new construction and in retrofitting existing buildings could significantly reduce U.S. energy consumption and mitigate climate change. Reaching these aggressive building efficiency goals will not happen without significant Federal investments in areas of computational and mathematical sciences. Applied and computational mathematics are required to enable the development of algorithms and tools to design, control and optimize energy efficient buildings. The challenge has been issued by the U.S. Secretary of Energy, Dr. Steven Chu (emphasis added): 'We need to do more transformational research at DOE including computer design tools for commercial and residential buildings that enable reductions in energy consumption of up to 80 percent with investments that will pay for themselves in less than 10 years.' On July 8-9, 2010 a team of technical experts from industry, government and academia were assembled in Arlington, Virginia to identify the challenges associated with developing and deploying newcomputational methodologies and tools thatwill address building energy efficiency. These experts concluded that investments in fundamental applied and computational mathematics will be required to build enabling technology that can be used to realize the target of 80% reductions in energy consumption. In addition the

  12. Robust Design of a Particle-Free Silver-Organo-Complex Ink with High Conductivity and Inkjet Stability for Flexible Electronics.

    PubMed

    Vaseem, Mohammad; McKerricher, Garret; Shamim, Atif

    2016-01-13

    Currently, silver-nanoparticle-based inkjet ink is commercially available. This type of ink has several serious problems such as a complex synthesis protocol, high cost, high sintering temperatures (∼200 °C), particle aggregation, nozzle clogging, poor shelf life, and jetting instability. For the emerging field of printed electronics, these shortcomings in conductive inks are barriers for their widespread use in practical applications. Formulating particle-free silver inks has potential to solve these issues and requires careful design of the silver complexation. The ink complex must meet various requirements, such as in situ reduction, optimum viscosity, storage and jetting stability, smooth uniform sintered films, excellent adhesion, and high conductivity. This study presents a robust formulation of silver-organo-complex (SOC) ink, where complexing molecules act as reducing agents. The 17 wt % silver loaded ink was printed and sintered on a wide range of substrates with uniform surface morphology and excellent adhesion. The jetting stability was monitored for 5 months to confirm that the ink was robust and highly stable with consistent jetting performance. Radio frequency inductors, which are highly sensitive to metal quality, were demonstrated as a proof of concept on flexible PEN substrate. This is a major step toward producing high-quality electronic components with a robust inkjet printing process.

  13. Guaranteed robust fault detection and isolation techniques for small satellites

    NASA Astrophysics Data System (ADS)

    Valavani, L.; Tantouris, N.

    2013-12-01

    The paper presents two generic fault detection and isolation (FDI) techniques which have shown remarkable robustness when applied to the SIMULINK model of a small satellite for thruster failures. While fundamentally different in their design approach, they both generate ʽstructured residuals' which accurately capture the failure mode. The diagnosis criterion in both methods relies on residuals direction rather than magnitude, which avoids the delays and expense of setting accurate thresholds for residuals magnitudes. Most importantly, this fact can account for the enhanced robustness to disturbances and sensor noise, as well as to significant parametric variations. Extensive Monte Carlo simulations are presented validating the robust performance of the two algorithms.

  14. In silico robustness testing of a compendial HPLC purity method by using of a multidimensional design space build by chromatography modeling-Case study pramipexole.

    PubMed

    Schmidt, Alexander H; Stanic, Mijo; Molnár, Imre

    2014-03-01

    Purity testing of the active pharmaceutical ingredient (API) pramipexole is performed using an official (compendial) and harmonized method published in the European Pharmacopeia (E.P.) and United States Pharmacopeia (USP). According to this monograph the successful chromatographic separation of the API from impurities is achieved on a C18 column with gradient elution of an ion pairing buffer of pH 3.0 (mobile phase A) and acetonitrile (mobile phase B). Although not recommended in general, compendial methods are often adapted for purity testing of generic formulations. In this paper a novel approach to evaluate method robustness of an adapted method - prior of full method validation - is described. Based on Quality-by-Design (QbD) principles, a small number of experiments are performed, which after entering them into a chromatography modeling software allow to visualize a multidimensional "Design Space", a region, in which changes in method parameters will not significantly affect the results as defined in the ICH guideline Q8(R2) leading to a more flexible method handling in routine analysis. For two different recommended C18 columns a multidimensional Design Space (Method Operating Design Region, MODR) was constructed to study the robustness of the adapted method with a newly developed Robustness Module. In a full factorial design the following six parameters were varied at three levels (low, nominal, high): gradient time, temperature, pH of the aqueous eluent (A), flow rate, start- and end concentration of the organic mobile phase component (eluent B). The resulting 3(6)=729 experiments were performed in silico from the previously constructed models for Design Space in less than 1min and showed that the required resolution of 2.0 could not be reached in all experiments for the two columns which were recommended by the E.P. (failure rate 25% and 16%, respectively). However, by adjusting the gradient time, we were able to fulfill the requirements with a failure

  15. Design of a robust fuzzy controller for the arc stability of CO(2) welding process using the Taguchi method.

    PubMed

    Kim, Dongcheol; Rhee, Sehun

    2002-01-01

    CO(2) welding is a complex process. Weld quality is dependent on arc stability and minimizing the effects of disturbances or changes in the operating condition commonly occurring during the welding process. In order to minimize these effects, a controller can be used. In this study, a fuzzy controller was used in order to stabilize the arc during CO(2) welding. The input variable of the controller was the Mita index. This index estimates quantitatively the arc stability that is influenced by many welding process parameters. Because the welding process is complex, a mathematical model of the Mita index was difficult to derive. Therefore, the parameter settings of the fuzzy controller were determined by performing actual control experiments without using a mathematical model of the controlled process. The solution, the Taguchi method was used to determine the optimal control parameter settings of the fuzzy controller to make the control performance robust and insensitive to the changes in the operating conditions.

  16. Terahertz absorbing AlGaN/GaN multi-quantum-wells: Demonstration of a robust 4-layer design

    NASA Astrophysics Data System (ADS)

    Beeler, M.; Bougerol, C.; Bellet-Amalric, E.; Monroy, E.

    2013-08-01

    We report on AlGaN/GaN multi-quantum-well structures displaying intersubband absorption in the THz spectral range. First, we theoretically analyze the weaknesses of the state-of-the-art GaN-based step-quantum-well architecture from an optoelectronic standpoint. We then propose a modified geometry with improved structural robustness considering the uncertainties associated to the growth. This later structure, consisting of 4-layer quantum wells, has been grown by plasma-assisted molecular-beam epitaxy and characterized structurally and optically. Low temperature absorption of samples with different Si doping levels confirms intersubband transitions in the far-infrared, centred at 28 μm.

  17. Advanced Behavioral Applications in Schools: A Review of R. Douglas Greer's "Designing Teaching Strategies: An Applied Behavior Analysis Systems Approach"

    ERIC Educational Resources Information Center

    Moxley, Roy A.

    2004-01-01

    R. Douglas Greer's "Designing Teaching Strategies" is an important book directed to advanced students in applied behavior analysis for classrooms. This review presents some of the striking features of the Comprehensive Applied Behavior Analysis to Schooling (CABAS[R]) program and the individualized instruction that the book advances. These include…

  18. Experimental design applied to spin coating of 2D colloidal crystal masks: a relevant method?

    PubMed

    Colson, Pierre; Cloots, Rudi; Henrist, Catherine

    2011-11-01

    Monolayers of colloidal spheres are used as masks in nanosphere lithography (NSL) for the selective deposition of nanostructured layers. Several methods exist for the formation of self-organized particle monolayers, among which spin coating appears to be very promising. However, a spin coating process is defined by several parameters like several ramps, rotation speeds, and durations. All parameters influence the spreading and drying of the droplet containing the particles. Moreover, scientists are confronted with the formation of numerous defects in spin coated layers, limiting well-ordered areas to a few micrometers squared. So far, empiricism has mainly ruled the world of nanoparticle self-organization by spin coating, and much of the literature is experimentally based. Therefore, the development of experimental protocols to control the ordering of particles is a major goal for further progress in NSL. We applied experimental design to spin coating, to evaluate the efficiency of this method to extract and model the relationships between the experimental parameters and the degree of ordering in the particles monolayers. A set of experiments was generated by the MODDE software and applied to the spin coating of latex suspension (diameter 490 nm). We calculated the ordering by a homemade image analysis tool. The results of partial least squares (PLS) modeling show that the proposed mathematical model only fits data from strictly monolayers but is not predictive for new sets of parameters. We submitted the data to principal component analysis (PCA) that was able to explain 91% of the results when based on strictly monolayered samples. PCA shows that the ordering was positively correlated to the ramp time and negatively correlated to the first rotation speed. We obtain large defect-free domains with the best set of parameters tested in this study. This protocol leads to areas of 200 μm(2), which has never been reported so far.

  19. Impact of early applied upper limb stimulation: The EXPLICIT-stroke programme design

    PubMed Central

    Kwakkel, Gert; Meskers, Carel GM; van Wegen, Erwin E; Lankhorst, Guus J; Geurts, Alexander CH; van Kuijk, Annet A; Lindeman, Eline; Visser-Meily, Anne; de Vlugt, Erwin; Arendzen, J Hans

    2008-01-01

    Background Main claims of the literature are that functional recovery of the paretic upper limb is mainly defined within the first month post stroke and that rehabilitation services should preferably be applied intensively and in a task-oriented way within this particular time window. EXplaining PLastICITy after stroke (acronym EXPLICIT-stroke) aims to explore the underlying mechanisms of post stroke upper limb recovery. Two randomized single blinded trials form the core of the programme, investigating the effects of early modified Constraint-Induced Movement Therapy (modified CIMT) and EMG-triggered Neuro-Muscular Stimulation (EMG-NMS) in patients with respectively a favourable or poor probability for recovery of dexterity. Methods/design 180 participants suffering from an acute, first-ever ischemic stroke will be recruited. Functional prognosis at the end of the first week post stroke is used to stratify patient into a poor prognosis group for upper limb recovery (N = 120, A2 project) and a group with a favourable prognosis (N = 60, A1 project). Both groups will be randomized to an experimental arm receiving respectively modified CIMT (favourable prognosis) or EMG-NMS (poor prognosis) for 3 weeks or to a control arm receiving usual care. Primary outcome variable will be the Action Research Arm Test (ARAT), assessed at 1,2,3,4,5, 8, 12 and 26 weeks post stroke. To study the impact of modified CIMT or EMG-NMS on stroke recovery mechanisms i.e. neuroplasticity, compensatory movements and upper limb neuromechanics, 60 patients randomly selected from projects A1 and A2 will undergo TMS, kinematical and haptic robotic measurements within a repeated measurement design. Additionally, 30 patients from the A1 project will undergo fMRI at baseline, 5 and 26 weeks post stroke. Conclusion EXPLICIT stroke is a 5 year translational research programme which main aim is to investigate the effects of early applied intensive intervention for regaining dexterity and to explore the

  20. Disentangling Robust Developmental Constraints from the Instructionally Mutable: Young Children's Epistemic Reasoning about a Study of Their Own Design

    ERIC Educational Resources Information Center

    Metz, Kathleen E.

    2011-01-01

    This study examines first graders' epistemic reasoning, in tacit "practical epistemologies" reflected in thinking about an investigation of their own design. I analyzed children's epistemic reasoning, following a design experiment scaffolding increasing regulation of scientific inquiry in a domain they studied in depth. Participants…

  1. Applying value sensitive design (VSD) to wind turbines and wind parks: an exploration.

    PubMed

    Oosterlaken, Ilse

    2015-04-01

    Community acceptance still remains a challenge for wind energy projects. The most popular explanation for local opposition, the Not in My Backyard effect, has received fierce criticism in the past decade. Critics argue that opposition is not merely a matter of selfishness or ignorance, but that moral, ecological and aesthetic values play an important role. In order to better take such values into account, a more bottom-up, participatory decision process is usually proposed. Research on this topic focusses on either stakeholder motivations/attitudes, or their behavior during project implementation. This paper proposes a third research focus, namely the 'objects' which elicit certain behavioral responses and attitudes-the wind turbine and parks. More concretely, this paper explores Value Sensitive Design (VSD) as way to arrive at wind turbines and parks that better embed or reflect key values. After a critical discussion of the notion of acceptance versus acceptability and support, the paper discusses existing literature on ecology and aesthetics in relation to wind turbine/park design, which could serve as 'building blocks' of a more integral VSD approach of the topic. It also discusses the challenge of demarcating wind park projects as VSD projects. A further challenge is that VSD has been applied mainly at the level of technical artifacts, whereas wind parks can best be conceptualized as socio-technical system. This new application would therefore expand the current practice of VSD, and may as a consequence also lead to interesting new insights for the VSD community. The paper concludes that such an outcome-oriented approach of wind turbines and park is worth exploring further, as a supplement to rather than a replacement of the process-oriented approach that is promoted by the current literature on community acceptance of wind parks.

  2. Engineering robust intelligent robots

    NASA Astrophysics Data System (ADS)

    Hall, E. L.; Ali, S. M. Alhaj; Ghaffari, M.; Liao, X.; Cao, M.

    2010-01-01

    The purpose of this paper is to discuss the challenge of engineering robust intelligent robots. Robust intelligent robots may be considered as ones that not only work in one environment but rather in all types of situations and conditions. Our past work has described sensors for intelligent robots that permit adaptation to changes in the environment. We have also described the combination of these sensors with a "creative controller" that permits adaptive critic, neural network learning, and a dynamic database that permits task selection and criteria adjustment. However, the emphasis of this paper is on engineering solutions which are designed for robust operations and worst case situations such as day night cameras or rain and snow solutions. This ideal model may be compared to various approaches that have been implemented on "production vehicles and equipment" using Ethernet, CAN Bus and JAUS architectures and to modern, embedded, mobile computing architectures. Many prototype intelligent robots have been developed and demonstrated in terms of scientific feasibility but few have reached the stage of a robust engineering solution. Continual innovation and improvement are still required. The significance of this comparison is that it provides some insights that may be useful in designing future robots for various manufacturing, medical, and defense applications where robust and reliable performance is essential.

  3. Case Studies for the Statistical Design of Experiments Applied to Powered Rotor Wind Tunnel Tests

    NASA Technical Reports Server (NTRS)

    Overmeyer, Austin D.; Tanner, Philip E.; Martin, Preston B.; Commo, Sean A.

    2015-01-01

    The application of statistical Design of Experiments (DOE) to helicopter wind tunnel testing was explored during two powered rotor wind tunnel entries during the summers of 2012 and 2013. These tests were performed jointly by the U.S. Army Aviation Development Directorate Joint Research Program Office and NASA Rotary Wing Project Office, currently the Revolutionary Vertical Lift Project, at NASA Langley Research Center located in Hampton, Virginia. Both entries were conducted in the 14- by 22-Foot Subsonic Tunnel with a small portion of the overall tests devoted to developing case studies of the DOE approach as it applies to powered rotor testing. A 16-47 times reduction in the number of data points required was estimated by comparing the DOE approach to conventional testing methods. The average error for the DOE surface response model for the OH-58F test was 0.95 percent and 4.06 percent for drag and download, respectively. The DOE surface response model of the Active Flow Control test captured the drag within 4.1 percent of measured data. The operational differences between the two testing approaches are identified, but did not prevent the safe operation of the powered rotor model throughout the DOE test matrices.

  4. Applying Monte Carlo Simulation to Launch Vehicle Design and Requirements Analysis

    NASA Technical Reports Server (NTRS)

    Hanson, J. M.; Beard, B. B.

    2010-01-01

    This Technical Publication (TP) is meant to address a number of topics related to the application of Monte Carlo simulation to launch vehicle design and requirements analysis. Although the focus is on a launch vehicle application, the methods may be applied to other complex systems as well. The TP is organized so that all the important topics are covered in the main text, and detailed derivations are in the appendices. The TP first introduces Monte Carlo simulation and the major topics to be discussed, including discussion of the input distributions for Monte Carlo runs, testing the simulation, how many runs are necessary for verification of requirements, what to do if results are desired for events that happen only rarely, and postprocessing, including analyzing any failed runs, examples of useful output products, and statistical information for generating desired results from the output data. Topics in the appendices include some tables for requirements verification, derivation of the number of runs required and generation of output probabilistic data with consumer risk included, derivation of launch vehicle models to include possible variations of assembled vehicles, minimization of a consumable to achieve a two-dimensional statistical result, recontact probability during staging, ensuring duplicated Monte Carlo random variations, and importance sampling.

  5. 23 CFR 636.210 - What requirements apply to projects which use the modified design-build procedure?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... modified design-build procedure? 636.210 Section 636.210 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS DESIGN-BUILD CONTRACTING Selection Procedures, Award Criteria § 636.210 What requirements apply to projects which use the modified...

  6. 23 CFR 636.210 - What requirements apply to projects which use the modified design-build procedure?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... modified design-build procedure? 636.210 Section 636.210 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS DESIGN-BUILD CONTRACTING Selection Procedures, Award Criteria § 636.210 What requirements apply to projects which use the modified...

  7. Stability-indicating LC assay for butenafine hydrochloride in creams using an experimental design for robustness evaluation and photodegradation kinetics study.

    PubMed

    Barth, Aline Bergesch; de Oliveira, Gabriela Bolfe; Malesuik, Marcelo Donadel; Paim, Clésio Soldatelli; Volpato, Nadia Maria

    2011-08-01

    A stability-indicating liquid chromatography method for the determination of the antifungal agent butenafine hydrochloride (BTF) in a cream was developed and validated using the Plackett-Burman experimental design for robustness evaluation. Also, the drug photodegradation kinetics was determined. The analytical column was operated with acetonitrile, methanol and a solution of triethylamine 0.3% adjusted to pH 4.0 (6:3:1) at a flow rate of 1 mL/min and detection at 283 nm. BTF extraction from the cream was done with n-butyl alcohol and methanol in ultrasonic bath. The performed degradation conditions were: acid and basic media with HCl 1M and NaOH 1M, respectively, oxidation with H(2)O(2) 10%, and the exposure to UV-C light. No interference in the BTF elution was verified. Linearity was assessed (r(2) = 0.9999) and ANOVA showed non-significative linearity deviation (p > 0.05). Adequate results were obtained for repeatability, intra-day precision, and accuracy. Critical factors were selected to examine the method robustness with the two-level Plackett-Burman experimental design and no significant factors were detected (p > 0.05). The BTF photodegradation kinetics was determined for the standard and for the cream, both in methanolic solution, under UV light at 254 nm. The degradation process can be described by first-order kinetics in both cases.

  8. Applying Item Response Theory methods to design a learning progression-based science assessment

    NASA Astrophysics Data System (ADS)

    Chen, Jing

    Learning progressions are used to describe how students' understanding of a topic progresses over time and to classify the progress of students into steps or levels. This study applies Item Response Theory (IRT) based methods to investigate how to design learning progression-based science assessments. The research questions of this study are: (1) how to use items in different formats to classify students into levels on the learning progression, (2) how to design a test to give good information about students' progress through the learning progression of a particular construct and (3) what characteristics of test items support their use for assessing students' levels. Data used for this study were collected from 1500 elementary and secondary school students during 2009--2010. The written assessment was developed in several formats such as the Constructed Response (CR) items, Ordered Multiple Choice (OMC) and Multiple True or False (MTF) items. The followings are the main findings from this study. The OMC, MTF and CR items might measure different components of the construct. A single construct explained most of the variance in students' performances. However, additional dimensions in terms of item format can explain certain amount of the variance in student performance. So additional dimensions need to be considered when we want to capture the differences in students' performances on different types of items targeting the understanding of the same underlying progression. Items in each item format need to be improved in certain ways to classify students more accurately into the learning progression levels. This study establishes some general steps that can be followed to design other learning progression-based tests as well. For example, first, the boundaries between levels on the IRT scale can be defined by using the means of the item thresholds across a set of good items. Second, items in multiple formats can be selected to achieve the information criterion at all

  9. UPPER MISSOURI RIVER ENVIRONMENTAL MONITORING AND ASSESSMENT PROGRAM (EMAP-UMR): A ROBUST DESIGN FOR A GREAT-RIVER ASSESSMENT

    EPA Science Inventory

    Great rivers are complex, trans-border resources that are difficult to assess without bias. The U.S. EPA is using the Upper Missouri River to develop tools for biological assessments of large rivers. Our focus is to l) apply multi-density randon tessellation stratified (MD-RTS) ...

  10. Robust and accurate single nucleotide polymorphism genotyping by dynamic allele-specific hybridization (DASH): design criteria and assay validation.

    PubMed

    Prince, J A; Feuk, L; Howell, W M; Jobs, M; Emahazion, T; Blennow, K; Brookes, A J

    2001-01-01

    We recently introduced a generic single nucleotide polymorphism (SNP) genotyping method, termed DASH (dynamic allele-specific hybridization), which entails dynamic tracking of probe (oligonucleotide) to target (PCR product) hybridization as reaction temperature is steadily increased. The reliability of DASH and optimal design rules have not been previously reported. We have now evaluated crudely designed DASH assays (sequences unmodified from genomic DNA) for 89 randomly selected and confirmed SNPs. Accurate genotype assignment was achieved for 89% of these worst-case-scenario assays. Failures were determined to be caused by secondary structures in the target molecule, which could be reliably predicted from thermodynamic theory. Improved design rules were thereby established, and these were tested by redesigning six of the failed DASH assays. This involved reengineering PCR primers to eliminate amplified target sequence secondary structures. This sophisticated design strategy led to complete functional recovery of all six assays, implying that SNPs in most if not all sequence contexts can be effectively scored by DASH. Subsequent empirical support for this inference has been evidenced by approximately 30 failure-free DASH assay designs implemented across a range of ongoing genotyping programs. Structured follow-on studies employed standardized assay conditions, and revealed that assay reproducibility (733 duplicated genotypes, six different assays) was as high as 100%, with an assay accuracy (1200 genotypes, three different assays) that exceeded 99.9%. No post-PCR assay failures were encountered. These findings, along with intrinsic low cost and high flexibility, validate DASH as an effective procedure for SNP genotyping.

  11. Design of robust iterative learning control schemes for systems with polytopic uncertainties and sector-bounded nonlinearities

    NASA Astrophysics Data System (ADS)

    Boski, Marcin; Paszke, Wojciech

    2017-01-01

    This paper deals with designing of iterative learning control schemes for uncertain systems with static nonlinearities. More specifically, the nonlinear part is supposed to be sector bounded and system matrices are assumed to range in the polytope of matrices. For systems with such nonlinearities and uncertainties the repetitive process setting is exploited to develop a linear matrix inequality based conditions for computing the feedback and feedforward (learning) controllers. These controllers guarantee acceptable dynamics along the trials and ensure convergence of the trial-to-trial error dynamics, respectively. Numerical examples illustrate the theoretical results and confirm effectiveness of the designed control scheme.

  12. Analysis and Design of Robust H∞ Fault Estimation Observer With Finite-Frequency Specifications for Discrete-Time Fuzzy Systems.

    PubMed

    Zhang, Ke; Jiang, Bin; Shi, Peng; Xu, Jinfa

    2015-07-01

    This paper addresses the problem of fault estimation observer design with finite-frequency specifications for discrete-time Takagi-Sugeno (T-S) fuzzy systems. First, for such T-S fuzzy models, an H∞ fault estimation observer with pole-placement constraint is proposed to achieve fault estimation. Based on the generalized Kalman-Yakubovich-Popov lemma, the given finite-frequency observer possesses less conservatism compared with the design of the entire-frequency domain. Furthermore, the performance of the presented fault estimation observer is further enhanced by adding the degree of freedom. Finally, two examples are presented to illustrate the effectiveness of the proposed strategy.

  13. Development of a fast high performance liquid chromatographic screening system for eight antidiabetic drugs by an improved methodology of in-silico robustness simulation.

    PubMed

    Mokhtar, Hatem I; Abdel-Salam, Randa A; Haddad, Ghada M

    2015-06-19

    Robustness of RP-HPLC methods is a crucial method quality attribute which has gained an increasing interest throughout the efforts to apply quality by design concepts in analytical methodology. Improvement to design space modeling approaches to represent method robustness was the goal of many previous works. Modeling of design spaces regarding to method robustness fulfils quality by design essence of ensuring method validity throughout the design space. The current work aimed to describe an improvement to robustness modeling of design spaces in context of RP-HPLC method development for screening of eight antidiabetic drugs. The described improvement consisted of in-silico simulation of practical robustness testing procedures thus had the advantage of modeling design spaces with higher confidence in estimated of method robustness. The proposed in-silico robustness test was performed as a full factorial design of simulated method conditions deliberate shifts for each predicted point in knowledge space with modeling error propagation. Design space was then calculated as zones exceeding a threshold probability to pass the simulated robustness testing. Potential design spaces were mapped for three different stationary phases as a function of gradient elution parameters, pH and ternary solvent ratio. A robust and fast separation for the eight compounds within less than 6 min was selected and confirmed through experimental robustness testing. The effectiveness of this approach regarding definition of design spaces with ensured robustness and desired objectives was demonstrated.

  14. Improving Large Cetacean Implantable Satellite Tag Designs to Maximize Tag Robustness and Minimize Health Effects to Individual Animals

    DTIC Science & Technology

    2013-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Improving Large Cetacean Implantable Satellite Tag...integrity of designs created in Objective (1) during laboratory experiments and in cetacean carcasses; (3) Examine structural tissue damage in the...blubber, sub-dermal sheath and muscle caused by penetrating dummy implantable tags in cetacean carcasses, including manipulation to simulate live motion

  15. Robust design of multiple trailing edge flaps for helicopter vibration reduction: A multi-objective bat algorithm approach

    NASA Astrophysics Data System (ADS)

    Mallick, Rajnish; Ganguli, Ranjan; Seetharama Bhat, M.

    2015-09-01

    The objective of this study is to determine an optimal trailing edge flap configuration and flap location to achieve minimum hub vibration levels and flap actuation power simultaneously. An aeroelastic analysis of a soft in-plane four-bladed rotor is performed in conjunction with optimal control. A second-order polynomial response surface based on an orthogonal array (OA) with 3-level design describes both the objectives adequately. Two new orthogonal arrays called MGB2P-OA and MGB4P-OA are proposed to generate nonlinear response surfaces with all interaction terms for two and four parameters, respectively. A multi-objective bat algorithm (MOBA) approach is used to obtain the optimal design point for the mutually conflicting objectives. MOBA is a recently developed nature-inspired metaheuristic optimization algorithm that is based on the echolocation behaviour of bats. It is found that MOBA inspired Pareto optimal trailing edge flap design reduces vibration levels by 73% and flap actuation power by 27% in comparison with the baseline design.

  16. Optimization methods applied to the aerodynamic design of helicopter rotor blades

    NASA Technical Reports Server (NTRS)

    Walsh, J. L.; Bingham, G. J.; Riley, M. F.

    1985-01-01

    This paper describes a formal optimization procedure for helicopter rotor blade designs which minimizes hover horsepower while assuring satisfactory forward flight performance. The approach is to couple hover and forward flight analysis programs with a general purpose optimization procedure. The resulting optimization system provides a systematic evaluation of the rotor blade design variables and their interaction, thus reducing the time and cost of designing advanced rotor blades. The paper discusses the basis for and details of the overall procedure, describes the generation of advanced blade designs for representative Army helicopters, and compares designs and design effort with those from the conventional approach which is based on parametric studies and extensive cross-plots.

  17. Optimization methods applied to the aerodynamic design of helicopter rotor blades

    NASA Technical Reports Server (NTRS)

    Walsh, Joanne L.; Bingham, Gene J.; Riley, Michael F.

    1987-01-01

    Described is a formal optimization procedure for helicopter rotor blade design which minimizes hover horsepower while assuring satisfactory forward flight performance. The approach is to couple hover and forward flight analysis programs with a general-purpose optimization procedure. The resulting optimization system provides a systematic evaluation of the rotor blade design variables and their interaction, thus reducing the time and cost of designing advanced rotor blades. The paper discusses the basis for and details of the overall procedure, describes the generation of advanced blade designs for representative Army helicopters, and compares design and design effort with those from the conventional approach which is based on parametric studies and extensive cross-plots.

  18. Further Development of an Optimal Design Approach Applied to Axial Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Bloodgood, V. Dale, Jr.; Groom, Nelson J.; Britcher, Colin P.

    2000-01-01

    Classical design methods involved in magnetic bearings and magnetic suspension systems have always had their limitations. Because of this, the overall effectiveness of a design has always relied heavily on the skill and experience of the individual designer. This paper combines two approaches that have been developed to aid the accuracy and efficiency of magnetostatic design. The first approach integrates classical magnetic circuit theory with modern optimization theory to increase design efficiency. The second approach uses loss factors to increase the accuracy of classical magnetic circuit theory. As an example, an axial magnetic thrust bearing is designed for minimum power.

  19. Robust optimization of 2x2 multimode interference couplers with fabrication uncertainties

    NASA Astrophysics Data System (ADS)

    Rehman, Samee ur; Langelaar, Matthijs; Van Keulen, Fred

    2013-03-01

    In this paper, we propose a novel design-for-manufacture strategy for integrated photonics which specifically addresses the commonly encountered scenario in which probability distributions of the manufacturing variations are not available, however their bounds are known. The best design point for the device, in the presence of these uncertainties, can be found by applying robust optimization. This is performed by minimizing the maximum realizable value of the objective with respect to the uncertainty set so that an optimum is found whose performance is relatively immune to fabrication variations. Instead of applying robust optimization directly on a computationally expensive simulation model of the integrated photonic device, we construct a cheap surrogate model by uniformly sampling the simulated device at different values of the design variables and interpolating the resulting objective using a Kriging metamodel. By applying robust optimization on the constructed surrogate, the global robust optimum can be found at low computational cost. As an illustration of the method's general applicability, we apply the robust optimization approach on a 2x2 multimode interference (MMI) coupler. We robustly minimize the imbalance in the presence of uncertainties arising from variations in the fabricated design geometry. For this example device, we also study the influence of the number of sample points on the quality of the metamodel and on the robust optimization process.

  20. Robust Understanding of Statistical Variation

    ERIC Educational Resources Information Center

    Peters, Susan A.

    2011-01-01

    This paper presents a framework that captures the complexity of reasoning about variation in ways that are indicative of robust understanding and describes reasoning as a blend of design, data-centric, and modeling perspectives. Robust understanding is indicated by integrated reasoning about variation within each perspective and across…