Numerical approaches to combustion modeling
Oran, E.S.; Boris, J.P. )
1991-01-01
This book presents a series of topics ranging from microscopic combustion physics to several aspects of macroscopic reactive-flow modeling. As the reader progresses into the book, the successive chapters generally include a wider range of physical and chemical processes in the mathematical model. Including more processes, however, usually means that they will be represented phenomenologically at a cruder level. In practice the detailed microscopic models and simulations are often used to develop and calibrate the phenomenologies used in the macroscopic models. The book first describes computations of the most microscopic chemical processes, then considers laminar flames and detonation modeling, and ends with computations of complex, multiphase combustion systems.
An Approach to Query Cost Modelling in Numeric Databases.
ERIC Educational Resources Information Center
Jarvelin, Kalervo
1989-01-01
Examines factors that determine user charges based on query processing costs in numeric databases, and analyzes the problem of estimating such charges in advance. An approach to query cost estimation is presented which is based on the relational data model and the query optimization, cardinality estimation, and file design techniques developed in…
A numerical approach for modelling fault-zone trapped waves
NASA Astrophysics Data System (ADS)
Gulley, A. K.; Kaipio, J. P.; Eccles, J. D.; Malin, P. E.
2017-08-01
We develop a computationally efficient approach to compute the waveforms and the dispersion curves for fault-zone trapped waves guided by arbitrary transversely isotropic across-fault velocity models. The approach is based on a Green's function type representation for FL and FR type fault-zone trapped waves. The model can be used for simulation of the waveforms generated by both infinite line sources (2-D) and point sources (3-D). The numerical scheme is based on a high order finite element approximation and, to increase computational efficiency, we make use of absorbing boundary conditions and mass lumping of finite element matrices.
A Numerical Modeling Approach to Cometary Nucleus Surface Roughness Determination
NASA Astrophysics Data System (ADS)
Höfner, S.; Vincent, J.-B.; Sierks, H.; Blum, J.
2013-09-01
Activity of cometary nuclei is closely linked with thermophysical processes. Main catalyst to activity is the diurnal temperature wave induced by solar heating. Highly resolved comet nucleus geometric models are used to model temperatures with flat surfacial facets taken from shape modeling approaches [1, 3]. Recent analyses of Groussin et al. [4] and Davidsson et al. [2] compared thermal inertia and surface temperatures of Tempel 1 and Hartley 2 synthetic models to those derived from spectral images. They outlined that applying beaming factors and radiative self-heating is not sufficient to understand the thermal behaviour of the nucleus surface. Regions with large incidence angles (e.g. at the morning terminator) distinctively deviate from predicted temperatures. One of the main contributions to this deviation is the effect of surface roughness with scals that are considerably smaller than the model facets. Combined with a relatively low thermal inertia, temperatures cover a wide range of values even at closest neighbourhood to each other. The radiative measurement for a distant observer unveils a smearing effect that indicates higher temperatures compared to average. The authors follow two numerical approaches to model small-scale surface roughness: (A) by using randomly generated fractal surfaces and (B) by downscaling groups of facets originating from larger shape models of Tempel 1. We apply a model that accounts for both radiative heat exchange for all facets and shadowing effects due to incoming solar radiation. These values are calculated in a thermal model. The revealed temperatures are analyzed with respect to average large-scale surface temperatures. Hence, they are compared to deviating temperatures that are measured by a distant observer that is unable to resolve sub-structure surface patterns. A parametric study varying thermal inertia and the degree of surface roughness then outlines a bandwidth of feasible surface structures and relates them to
Numerical approach to unbiased and driven generalized elastic model
NASA Astrophysics Data System (ADS)
Nezhadhaghighi, M. Ghasemi; Chechkin, A.; Metzler, R.
2014-01-01
From scaling arguments and numerical simulations, we investigate the properties of the generalized elastic model (GEM) that is used to describe various physical systems such as polymers, membranes, single-file systems, or rough interfaces. We compare analytical and numerical results for the subdiffusion exponent β characterizing the growth of the mean squared displacement ⟨(δh)2⟩ of the field h described by the GEM dynamic equation. We study the scaling properties of the qth order moments ⟨|δh|q⟩ with time, finding that the interface fluctuations show no intermittent behavior. We also investigate the ergodic properties of the process h in terms of the ergodicity breaking parameter and the distribution of the time averaged mean squared displacement. Finally, we study numerically the driven GEM with a constant, localized perturbation and extract the characteristics of the average drift for a tagged probe.
A participatory modelling approach to developing a numerical sediment dynamics model
NASA Astrophysics Data System (ADS)
Jones, Nicholas; McEwen, Lindsey; Parker, Chris; Staddon, Chad
2016-04-01
Fluvial geomorphology is recognised as an important consideration in policy and legislation in the management of river catchments. Despite this recognition, limited knowledge exchange occurs between scientific researchers and river management practitioners. An example of this can be found within the limited uptake of numerical models of sediment dynamics by river management practitioners in the United Kingdom. The uptake of these models amongst the applied community is important as they have the potential to articulate how, at the catchment-scale, the impacts of management strategies of land-use change affect sediment dynamics and resulting channel quality. This paper describes and evaluates a new approach which involves river management stakeholders in an iterative and reflexive participatory modelling process. The aim of this approach was to create an environment for knowledge exchange between the stakeholders and the research team in the process of co-constructing a model. This process adopted a multiple case study approach, involving four groups of river catchment stakeholders in the United Kingdom. These stakeholder groups were involved in several stages of the participatory modelling process including: requirements analysis, model design, model development, and model evaluation. Stakeholders have provided input into a number of aspects of the modelling process, such as: data requirements, user interface, modelled processes, model assumptions, model applications, and model outputs. This paper will reflect on this process, in particular: the innovative methods used, data generated, and lessons learnt.
Approaches to numerical solution of 2D Ising model
NASA Astrophysics Data System (ADS)
Soldatov, K. S.; Nefedev, K. V.; Kapitan, V. Yu; Andriushchenko, P. D.
2016-08-01
Parallel algorithm of partition function calculation of two-dimensional Ising model for systems with a finite number of spins was developed. Within a method of complete enumeration by using MPI technology with subsequent optimization of a parallel code time of calculations was reduced considerably. Partition function was calculated for systems of 16, 25, 36 Ising spins. Based on the obtained results, main thermodynamic and magnetic values dependences (such as heat capacity, magnetic susceptibility, mean square magnetization) for ferromagnetic and antiferromagnetic interactions was investigated. The analysis of a different configurations contribution showed, that states with the minimum energy have essential influence on dependences of thermodynamic values. Comparison with the results obtained by the Wang Landau algorithm was performed.
Optimising GPR modelling: A practical, multi-threaded approach to 3D FDTD numerical modelling
NASA Astrophysics Data System (ADS)
Millington, T. M.; Cassidy, N. J.
2010-09-01
The demand for advanced interpretational tools has lead to the development of highly sophisticated, computationally demanding, 3D GPR processing and modelling techniques. Many of these methods solve very large problems with stepwise methods that utilise numerically similar functions within iterative computational loops. Problems of this nature are readily parallelised by splitting the computational domain into smaller, independent chunks for direct use on cluster-style, multi-processor supercomputers. Unfortunately, the implications of running such facilities, as well as time investment needed to develop the parallel codes, means that for most researchers, the use of these advanced methods is too impractical. In this paper, we propose an alternative method of parallelisation which exploits the capabilities of the modern multi-core processors (upon which today's desktop PCs are built) by multi-threading the calculation of a problem's individual sub-solutions. To illustrate the approach, we have applied it to an advanced, 3D, finite-difference time-domain (FDTD) GPR modelling tool in which the calculation of the individual vector field components is multi-threaded. To be of practical use, the FDTD scheme must be able to deliver accurate results with short execution times and we, therefore, show that the performance benefits of our approach can deliver runtimes less than half those of the more conventional, serial programming techniques. We evaluate implementations of the technique using different programming languages (e.g., Matlab, Java, C++), which will facilitate the construction of a flexible modelling tool for use in future GPR research. The implementations are compared on a variety of typical hardware platforms, having between one and eight processing cores available, and also a modern Graphical Processing Unit (GPU)-based computer. Our results show that a multi-threaded xyz modelling approach is easy to implement and delivers excellent results when implemented
Kumar, J L G; Zhao, Y Q
2011-03-01
Constructed wetlands (CWs) for wastewater treatment have evolved substantially over the last decades and have been recognized as an effective means of "green technology" for wastewater treatment. This paper reviews the numerous modeling approaches ranging from simple first-order models to more complex dynamic models of treatment behaviour in CWs. The main objective of the modeling work is to better understand the process in CWs and optimize design criteria. A brief study in this review discusses the efforts taken to describe the process-based model for the efficient removal of pollutants in CWs. Obtaining better insights is essential to understand the hydraulic and biochemical processes in CWs. Currently, employed modeling approaches can be seen in two categories, i.e. "black-box models" and "process-based models". It is evident that future development in wetland technology will depend on improved scientific knowledge of internal treatment mechanisms.
Review of numerical models of cavitating flows with the use of the homogeneous approach
NASA Astrophysics Data System (ADS)
Niedźwiedzka, Agnieszka; Schnerr, Günter H.; Sobieski, Wojciech
2016-06-01
The focus of research works on cavitation has changed since the 1960s; the behaviour of a single bubble is no more the area of interest for most scientists. Its place was taken by the cavitating flow considered as a whole. Many numerical models of cavitating flows came into being within the space of the last fifty years. They can be divided into two groups: multi-fluid and homogeneous (i.e., single-fluid) models. The group of homogenous models contains two subgroups: models based on transport equation and pressure based models. Several works tried to order particular approaches and presented short reviews of selected studies. However, these classifications are too rough to be treated as sufficiently accurate. The aim of this paper is to present the development paths of numerical investigations of cavitating flows with the use of homogeneous approach in order of publication year and with relatively detailed description. Each of the presented model is accompanied by examples of the application area. This review focuses not only on the list of the most significant existing models to predict sheet and cloud cavitation, but also on presenting their advantages and disadvantages. Moreover, it shows the reasons which inspired present authors to look for new ways of more accurate numerical predictions and dimensions of cavitation. The article includes also the division of source terms of presented models based on the transport equation with the use of standardized symbols.
Numerical prediction of kinetic model for enzymatic hydrolysis of cellulose using DAE-QMOM approach
NASA Astrophysics Data System (ADS)
Jamil, N. M.; Wang, Q.
2016-06-01
Bioethanol production from lignocellulosic biomass consists of three fundamental processes; pre-treatment, enzymatic hydrolysis, and fermentation. In enzymatic hydrolysis phase, the enzymes break the cellulose chains into sugar in the form of cellobiose or glucose. A currently proposed kinetic model for enzymatic hydrolysis of cellulose that uses population balance equation (PBE) mechanism was studied. The complexity of the model due to integrodifferential equations makes it difficult to find the analytical solution. Therefore, we solved the full model of PBE numerically by using DAE-QMOM approach. The computation was carried out using MATLAB software. The numerical results were compared to the asymptotic solution developed in the author's previous paper and the results of Griggs et al. Besides confirming the findings were consistent with those references, some significant characteristics were also captured. The PBE model for enzymatic hydrolysis process can be solved using DAE-QMOM method. Also, an improved understanding of the physical insights of the model was achieved.
A semi-nonlocal numerical approach for modeling of temperature-dependent crack-wave interaction
NASA Astrophysics Data System (ADS)
Martowicz, Adam; Kijanka, Piotr; Staszewski, Wieslaw J.
2016-04-01
Numerical tools, which are used to simulate complex phenomena for models of complicated shapes suffer from either long computational time or accuracy. Hence, new modeling and simulation tools, which could offer reliable results within reasonable time periods, are highly demanded. Among other approaches, the nonlocal methods have appeared to fulfill these requirements quite efficiently and opened new perspectives for accurate simulations based on crude meshes of the model's degrees of freedom. In the paper, the preliminary results are shown for simulations of the phenomenon of temperature-dependent crack-wave interaction for elastic wave propagation in a model of an aluminum plate. Semi-nonlocal finite differences are considered to solve the problem of thermoelasticity - based on the discretization schemes, which were already proposed by the authors and taken from the previously published work. Numerical modeling is used to examine wave propagation primarily in the vicinity of a notch. Both displacement and temperature fields are sought in the investigated case study.
The interacting gaps model: reconciling theoretical and numerical approaches to limit-order models
NASA Astrophysics Data System (ADS)
Muchnik, Lev; Slanina, Frantisek; Solomon, Sorin
2003-12-01
We consider the emergence of power-law tails in the returns distribution of limit-order driven markets. We explain a previously observed clash between the theoretical and numerical studies of such models. We introduce a solvable model that interpolates between the previous studies and agrees with each of them in the relevant limit.
Minimal duality breaking in the Kallen Lehman approach to 3D Ising model: A numerical test
NASA Astrophysics Data System (ADS)
Astorino, Marco; Canfora, Fabrizio; Martínez, Cristián; Parisi, Luca
2008-06-01
A Kallen-Lehman approach to 3D Ising model is analyzed numerically both at low and high temperatures. It is shown that, even assuming a minimal duality breaking, one can fix three parameters of the model to get a very good agreement with the Monte Carlo results at high temperatures. With the same parameters the agreement is satisfactory both at low and near critical temperatures. How to improve the agreement with Monte Carlo results by introducing a more general duality breaking is shortly discussed.
Wu, Yu-Shu; Pruess, Karsten
2004-05-04
Modeling fracture-matrix interaction within a multiple-phase flow system is a key issue for fractured reservoir simulation. Commonly used mathematical models for dealing with such interactions employ dual- or multiple-continuum concepts, in which fractures and matrix are represented as overlapping, different, but interconnected continua, described by parallel sets of conservation equations. The conventional single-point upstream weighting scheme is most commonly used to estimate flow mobility for fracture-matrix flow. However, such a scheme may have serious limitations or flaws, which lead to unphysical solutions or significant numerical errors. To overcome the limitations of the conventional upstream weighting scheme, this paper presents a physically based modeling approach for estimating physically correct relative permeability in calculating multiphase flow between fractures and the matrix, using continuity of capillary pressure at the fracture-matrix interface. The proposed approach has been implemented into two multiphase reservoir simulators and verified using analytical solutions and laboratory experimental data. The new method is demonstrated to be accurate, numerically efficient, and easy to implement in dual- or multiple-continuum reservoir simulators.
A neural approach for the numerical modeling of two-dimensional magnetic hysteresis
NASA Astrophysics Data System (ADS)
Cardelli, E.; Faba, A.; Laudani, A.; Riganti Fulginei, F.; Salvini, A.
2015-05-01
This paper deals with a neural network approach to model magnetic hysteresis at macro-magnetic scale. Such approach to the problem seems promising in order to couple the numerical treatment of magnetic hysteresis to FEM numerical solvers of the Maxwell's equations in time domain, as in case of the non-linear dynamic analysis of electrical machines, and other similar devices, making possible a full computer simulation in a reasonable time. The neural system proposed consists of four inputs representing the magnetic field and the magnetic inductions components at each time step and it is trained by 2-d measurements performed on the magnetic material to be modeled. The magnetic induction B is assumed as entry point and the output of the neural system returns the predicted value of the field H at the same time step. A suitable partitioning of the neural system, described in the paper, makes the computing process rather fast. Validations with experimental tests and simulations for non-symmetric and minor loops are presented.
A neural approach for the numerical modeling of two-dimensional magnetic hysteresis
Cardelli, E.; Faba, A.; Laudani, A.; Riganti Fulginei, F.; Salvini, A.
2015-05-07
This paper deals with a neural network approach to model magnetic hysteresis at macro-magnetic scale. Such approach to the problem seems promising in order to couple the numerical treatment of magnetic hysteresis to FEM numerical solvers of the Maxwell's equations in time domain, as in case of the non-linear dynamic analysis of electrical machines, and other similar devices, making possible a full computer simulation in a reasonable time. The neural system proposed consists of four inputs representing the magnetic field and the magnetic inductions components at each time step and it is trained by 2-d measurements performed on the magnetic material to be modeled. The magnetic induction B is assumed as entry point and the output of the neural system returns the predicted value of the field H at the same time step. A suitable partitioning of the neural system, described in the paper, makes the computing process rather fast. Validations with experimental tests and simulations for non-symmetric and minor loops are presented.
Yang, An-Shik; Wen, Chih-Yung; Tseng, Li-Yu; Chiang, Chih-Chieh; Tseng, Wen-Yih Isaac; Yu, Hsi-Yu
2014-04-01
Aortic dissection and atherosclerosis are highly fatal diseases. The development of both diseases is closely associated with highly complex haemodynamics. Thus, in predicting the onset of cardiac disease, it is desirable to obtain a detailed understanding of the flowfield characteristics in the human cardiovascular circulatory system. Accordingly, in this study, a numerical model of a normal human thoracic aorta is constructed using the geometry information obtained from a phase-contrast magnetic resonance imaging (PC-MRI) technique. The interaction between the blood flow and the vessel wall dynamics is then investigated using a coupled fluid-structure interaction (FSI) analysis. The simulations focus specifically on the flowfield characteristics and pulse wave velocity (PWV) of the blood flow. Instead of using a conventional PC-MRI method to measure PWV, we present an innovative application of using the FSI approach to numerically resolve PWV for the assessment of wall compliance in a thoracic aorta model. The estimated PWV for a normal thoracic aorta agrees well with the results obtained via PC-MRI measurement. In addition, simulations which consider the FSI effect yield a lower predicted value of the wall shear stress at certain locations in the cardiac cycle than models which assume a rigid vessel wall. Consequently, the model provides a suitable basis for the future development of more sophisticated methods capable of performing the computer-aided analysis of aortic blood flows.
Mansilla Alvarez, Luis; Blanco, Pablo; Bulant, Carlos; Dari, Enzo; Veneziani, Alessandro; Feijóo, Raúl
2017-04-01
In this work, we present a novel approach tailored to approximate the Navier-Stokes equations to simulate fluid flow in three-dimensional tubular domains of arbitrary cross-sectional shape. The proposed methodology is aimed at filling the gap between (cheap) one-dimensional and (expensive) three-dimensional models, featuring descriptive capabilities comparable with the full and accurate 3D description of the problem at a low computational cost. In addition, this methodology can easily be tuned or even adapted to address local features demanding more accuracy. The numerical strategy employs finite (pipe-type) elements that take advantage of the pipe structure of the spatial domain under analysis. While low order approximation is used for the longitudinal description of the physical fields, transverse approximation is enriched using high order polynomials. Although our application of interest is computational hemodynamics and its relevance to pathological dynamics like atherosclerosis, the approach is quite general and can be applied in any internal fluid dynamics problem in pipe-like domains. Numerical examples covering academic cases as well as patient-specific coronary arterial geometries demonstrate the potentialities of the developed methodology and its performance when compared against traditional finite element methods. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Simon, Carl P; Percha, Bethany; Riolo, Rick; Foxman, Betsy
2013-10-07
Health-care associated infections are a major problem in our society, accounting for tens of thousands of patient deaths and millions of dollars in wasted health care expenditures each year. Many of these infections are caused by bacteria that are transmitted from patient to patient either through direct contact or via the hands or clothing of health care workers. Because of the complexity of bacterial transmission routes in health care settings, computational approaches are essential, though often analytically intractable. Here we describe the construction and detailed analysis of a model for bacterial transmission in health care settings. Our model includes both colonization and disease stages for patients and health care workers, as well as an isolation ward and both patient-patient and patient-HCW-patient transmission pathways. We explicitly derive the basic reproductive ratio for this complex model, a nine-term expression that contains all nine ways with which a new colonization can occur. Using key parameters found in the medical literature, we use our model to gain insight into the relative importance of various bacterial transmission pathways within health care facilities, and to identify which forms of interventions are likely to prove most effective in hospitals and long-term care settings. We show that analytical and numerical approaches can complement each other as we seek to untangle the complex web of interactions that occur within a health care facility.
NASA Astrophysics Data System (ADS)
Clous, Lucie; Abadie, Stéphane
2017-04-01
The present works aims to show two approaches for the numerical modelling of waves generated by landslides. The first approach is based on a macroscopic view of the landslide. Two cases are introduced : the pyroclastic flow and the generation by a granular flow. Regarding the pyroclastic flow, if we consider that the high interstitial pressure persists during the propagation as showed in some experiments (Roche et al.), the slide has a fluid-like behaviour and therefore can be modelled as a Newtonian fluid. Some experiments are in process to assess this hypothesis. In the case of granular flow, we deal with the experiment of glass beads falling on a slope into water (Viroulet) for two diameters of beads. First, the landslide is modelled as a Newtonian fluid. The aim is to determine the viscosity value for each case and be able to reproduce the first wave. To be closer to the granular media, the mu(I)-rheology is also introduced (GDR MiDi). This rheology has been proposed to model dense granular flow and parameters are defined by the media. The second approach is to model the grain itself in the granular media. It can be done by coupling a DEM code with a Navier-Stokes code for example (Shan and Zhao). However, here, the idea is to compute the slide and the fluids with only a Navier-Stokes (NS) code. To realise that, the solid are modelled using penalised fluid (Ducassou et al.). Yet, the interactions between solid have to be manage by an additional routine in the NS code. A first model has been developed for interaction between discs. Experimental results are expected for the validation of this routine like the fall of several cylinders on a slope into water. References : O. Roche, S. Montserrat, Y. Niño, and A. Tamburrino. Pore fluid pressure and internal kinematics of gravitational laboratory air-particle flows: Insights into the emplacement dynamics of pyroclastic flows. Journal of Geophysical Research, 115(B9), September 2010. Sylvain Viroulet. Simulations de
Combined experimental and numerical approach for identification of dynamic material model parameters
NASA Astrophysics Data System (ADS)
Peirs, J.; Verleysen, P.; van Paepegem, W.; Degrieck, J.
2010-06-01
Extraction of the material stress-strain curve from a dynamic tensile or shear experiment is not straightforward. Indeed, stress and strain are not homogeneously distributed in the specimen, and consequently no one-one relation exists between the measured elongation and strain on one hand, and the measured force and stress on the other hand. This work aims at improving the accuracy of the stress-strain curves calculated from high strain rate experiments and the modelling of the material behaviour. Therefore numerical simulations are used to determine the relationship between the average stress-strain and local effective stress-strain. The material model parameters used in these simulations are improved during an iterative procedure which combines the experimental results and the simulated stress and strain distribution. Stress triaxiality, local temperature and strain rate are taken into account. The method is applied to dynamic tensile and shear experiments on a Ti6Al4V alloy carried out on a split Hopkinson bar set up. The Johnson-Cook model is used to describe the strain rate and temperature dependent material behaviour. The two types of tests are used separately or simultaneously to extract and model the material behaviour. It is found that using tensile and shear experiments simultaneously has clear advantages. The same approach is used to identify parameters for the Johnson-Cook damage initiation criteria.
Validation of engineering dynamic inflow models by experimental and numerical approaches
NASA Astrophysics Data System (ADS)
Yu, W.; Hong, V. W.; Ferreira, C.; van Kuik, G. A. M.
2016-09-01
The state of the art engineering dynamic inflow models of Pitt-Peters, Øye and ECN have been used to correct Blade Element Momentum theory for unsteady load prediction of a wind turbine for two decades. However, their accuracy is unknown. This paper is to benchmark the performance of these engineering models by experimental and numerical methods. The experimental load and flow measurements of an unsteady actuator disc were performed in the Open Jet Facility at Delft University of Technology. The unsteady load was generated by a ramp-type variation of porosity of the disc. A Reynolds Averaged Navier-Stokes (RANS) model, a Free Wake Vortex Ring (FWVR) model and a Vortex Tube Model (VTM) simulate the same transient load changes. The velocity field obtained from the experimental and numerical methods are compared with the engineering dynamic inflow models. Velocity comparison aft the disc between the experimental and numerical methods shows the numerical models of RANS and FWVR model are capable to predict the velocity transient behaviour during transient disc loading. Velocity comparison at the disc between the engineering models and the numerical methods further shows that the engineering models predict much faster velocity decay, which implies the need for more advanced or better tuned dynamic inflow models.
Modeling and numerical simulation of the transport processes inside DSSC using a monodomain approach
NASA Astrophysics Data System (ADS)
Neculae, Adrian; Paulescu, Marius; Curticapean, Dan
2008-04-01
Computer modeling has become a necessity in the solar cells design. A computer model allows the study of the physical behavior of the device offering valuable information on the effects of each parameter on device performance. Dye-sensitized solar cells (DSSC) have attracted a lot of interest in recent years, in research as well as in industry. In present, the development has reached a stage where detailed physical models may contribute considerably to the optimization of these devices. Up to now, there is not a comprehensive model which links material parameters of a DSSC based on TiO2 nanocrystals DSSC to the electrical performance of the whole cell, such as I-V characteristic and spectral response. Typically, a DSSC consists of two layers, a TiO2 porous structure coated with a suitable light-absorbing charge-transfer dye wetted with an iodide/triiodide redox electrolyte and a bulk electrolyte layer, sandwiched between two glass substrates which are coated with transparent conductive oxide (TCO) layers. In this paper we present a model for the transport processes inside the DSSC based on the classical transport equations in one dimension. The equations are solved using the monodomain approach, which consists of using a single set of equations, with different values for the transport coefficients inside the two regions of the computational domain. The transport coefficients for the porous medium are calculated using homogenization techniques. The model permits the computation of the dye-sensitized solar cell I-V curves and efficiency. As model application, the influence of the most important material parameters on the cell performances investigated by numerical simulation is reported.
NASA Astrophysics Data System (ADS)
Headley, Rachel M.; Ehlers, Todd A.
2013-04-01
Mountain topography is constructed through a variety of interacting processes. As one of these processes, glacial erosion plays an important role in the development of landscapes by the formation of distinctive topographic features. Glacial landscape evolution models reproduce many observed features at the orogen scale. Detailed comparisons at the scale of individual valleys holds potential for quantifying the influence of glacial physics in glacial erosion models. Over long timescales (>10,000 yr), glacial erosion has typically been simulated using a modified shallow ice approximation (SIA) approach. In this study, we compare the strengths and weaknesses of shallow ice and high-order, Stokes-flow glacial landscape evolution models. Our emphasis is placed on the patterns and rates of glacial erosion over multiple glacial-interglacial cycles. We present a comparison of two different numerical models for glacial erosion. For both approaches, a modified version of the ICE Cascade model is used to develop and evolve topography. This model calculates hillslope and fluvial erosion and sediment transport, isostasy, temporally variable orographic precipitation, and a range of glaciological processes: glacial mass balance, snow avalanching, basal ice superfreezing, and basal water buoyancy feedback in large overdeepenings. Within this framework, we compare the predicted ice-flow field and erosion patterns using a modified SIA as well as predictions from a nested, thermally-coupled, Stokes-flow model calculated using COMSOL Multiphysics. Simulations are conducted for a range of amplitudes and periodicity in surface temperature change between glacial and interglacial periods. We investigate these simulations, as well as the effects of each model for various initial topographies and with a temperature-dependent ice rheology. In general, both models predict visually similar patterns in sliding velocity, and resulting erosion rates, assuming the erosion rate scales with the
A VAS-numerical model impact study using the Gal-Chen variational approach
NASA Technical Reports Server (NTRS)
Aune, Robert M.; Tuccillo, James J.; Uccellini, Louis W.; Petersen, Ralph A.
1987-01-01
A numerical study based on the use of a variational assimilation technique of Gal-Chen (1983, 1986) was conducted to assess the impact of incorporating temperature data from the VISSR Atmospheric Sounder (VAS) into a regional-scale numerical model. A comparison with the results of a control forecast using only conventional data indicated that the assimilation technique successfully combines actual VAS temperature observations with the dynamically balanced model fields without destabilizing the model during the assimilation cycle. Moreover, increasing the temporal frequency of VAS temperature insertions during the assimilation cycle was shown to enhance the impact on the model forecast through successively longer forecast periods. The incorporation of a nudging technique, whereby the model temperature field is constrained toward the VAS 'updated' values during the assimilation cycle, further enhances the impact of the VAS temperature data.
A numerical approach to thermal history modelling in an extensional basin
NASA Astrophysics Data System (ADS)
Tunwal, Mohit; Mulchrone, Kieran; Meere, Patrick
2017-04-01
Temperature plays an important role in many geological phenomena. In sedimentary basins, maturation of hydrocarbon source rocks depends on the temperature history after deposition. Sedimentation rate, geothermal gradient and duration of sedimentation are therefore key parameters controlling the thermal evolution. The McKenzie model is a widely accepted model for extensional basin formation which can be used for estimating post-rift subsidence, rate of sedimentation and basal heat flow. In this work, a numerical model in 1D has been implemented based on McKenzie's model and allows for the estimation of the thermal evolution of post-rift sediments and the rate of subsidence. The finite difference method is used to solve the heat equation in the sediments, crust and upper mantle. At each time step, subsidence due to thermal relaxation is calculated and added to the system. In this way the generalised moving boundary thermal diffusion problem is solved. Heat generated due to radioactivity may also be taken into account. The numerical model when compared to the McKenzie model gives significantly lower thermal subsidence estimates. Final thermal subsidence for the two models are compared with respect to the stretching factor. This model shows that significantly higher stretching is required to achieve the same level of thermal subsidence when compared to the McKenzie model. For example in the McKenzie model a 5 km of thermal subsidence is achieved with 280% stretching whereas this model requires 450% stretching.
NASA Astrophysics Data System (ADS)
Qi, Shengqi; Hou, Deyi; Luo, Jian
2017-09-01
This study presents a numerical model based on field data to simulate groundwater flow in both the aquifer and the well-bore for the low-flow sampling method and the well-volume sampling method. The numerical model was calibrated to match well with field drawdown, and calculated flow regime in the well was used to predict the variation of dissolved oxygen (DO) concentration during the purging period. The model was then used to analyze sampling representativeness and sampling time. Site characteristics, such as aquifer hydraulic conductivity, and sampling choices, such as purging rate and screen length, were found to be significant determinants of sampling representativeness and required sampling time. Results demonstrated that: (1) DO was the most useful water quality indicator in ensuring groundwater sampling representativeness in comparison with turbidity, pH, specific conductance, oxidation reduction potential (ORP) and temperature; (2) it is not necessary to maintain a drawdown of less than 0.1 m when conducting low flow purging. However, a high purging rate in a low permeability aquifer may result in a dramatic decrease in sampling representativeness after an initial peak; (3) the presence of a short screen length may result in greater drawdown and a longer sampling time for low-flow purging. Overall, the present study suggests that this new numerical model is suitable for describing groundwater flow during the sampling process, and can be used to optimize sampling strategies under various hydrogeological conditions.
NASA Technical Reports Server (NTRS)
Cater, Christopher; Xiao, Xinran; Goldberg, Robert K.; Kohlman, Lee W.
2015-01-01
A combined experimental and analytical approach was performed for characterizing and modeling triaxially braided composites with a modified subcell modeling strategy. Tensile coupon tests were conducted on a [0deg/60deg/-60deg] braided composite at angles [0deg, 30deg, 45deg, 60deg and 90deg] relative to the axial tow of the braid. It was found that measured coupon strength varied significantly with the angle of the applied load and each coupon direction exhibited unique final failures. The subcell modeling approach implemented into the finite element software LS-DYNA was used to simulate the various tensile coupon test angles. The modeling approach was successful in predicting both the coupon strength and reported failure mode for the 0deg, 30deg and 60deg loading directions. The model over-predicted the strength in the 90deg direction; however, the experimental results show a strong influence of free edge effects on damage initiation and failure. In the absence of these local free edge effects, the subcell modeling approach showed promise as a viable and computationally efficient analysis tool for triaxially braided composite structures. Future work will focus on validation of the approach for predicting the impact response of the braided composite against flat panel impact tests.
NASA Technical Reports Server (NTRS)
Cater, Christopher; Xiao, Xinran; Goldberg, Robert K.; Kohlman, Lee W.
2015-01-01
A combined experimental and analytical approach was performed for characterizing and modeling triaxially braided composites with a modified subcell modeling strategy. Tensile coupon tests were conducted on a [0deg/60deg/-60deg] braided composite at angles of 0deg, 30deg, 45deg, 60deg and 90deg relative to the axial tow of the braid. It was found that measured coupon strength varied significantly with the angle of the applied load and each coupon direction exhibited unique final failures. The subcell modeling approach implemented into the finite element software LS-DYNA was used to simulate the various tensile coupon test angles. The modeling approach was successful in predicting both the coupon strength and reported failure mode for the 0deg, 30deg and 60deg loading directions. The model over-predicted the strength in the 90deg direction; however, the experimental results show a strong influence of free edge effects on damage initiation and failure. In the absence of these local free edge effects, the subcell modeling approach showed promise as a viable and computationally efficient analysis tool for triaxially braided composite structures. Future work will focus on validation of the approach for predicting the impact response of the braided composite against flat panel impact tests.
Numerical modeling of axi-symmetrical cold forging process by ``Pseudo Inverse Approach''
NASA Astrophysics Data System (ADS)
Halouani, A.; Li, Y. M.; Abbes, B.; Guo, Y. Q.
2011-05-01
The incremental approach is widely used for the forging process modeling, it gives good strain and stress estimation, but it is time consuming. A fast Inverse Approach (IA) has been developed for the axi-symmetric cold forging modeling [1-2]. This approach exploits maximum the knowledge of the final part's shape and the assumptions of proportional loading and simplified tool actions make the IA simulation very fast. The IA is proved very useful for the tool design and optimization because of its rapidity and good strain estimation. However, the assumptions mentioned above cannot provide good stress estimation because of neglecting the loading history. A new approach called "Pseudo Inverse Approach" (PIA) was proposed by Batoz, Guo et al.. [3] for the sheet forming modeling, which keeps the IA's advantages but gives good stress estimation by taking into consideration the loading history. Our aim is to adapt the PIA for the cold forging modeling in this paper. The main developments in PIA are resumed as follows: A few intermediate configurations are generated for the given tools' positions to consider the deformation history; the strain increment is calculated by the inverse method between the previous and actual configurations. An incremental algorithm of the plastic integration is used in PIA instead of the total constitutive law used in the IA. An example is used to show the effectiveness and limitations of the PIA for the cold forging process modeling.
NASA Astrophysics Data System (ADS)
Laviola, S.; Moscatello, A.; Miglietta, M. M.; Cattani, E.; Levizzani, V.
2012-04-01
The Mediterranean extreme rainfall events often develop at the end of the warm season when the sea surface temperature is higher than 15°C and the environmental conditions allow for the deepening of convection up to the formation of intense isolated cells and multicellular systems. Although the genesis of these phenomena are connected to the cold fronts in the westerlies with lifting of the oceanic systems operated by the Atlas mountains, the variation of a few local meteorological variables contributes to differentiate the developing stage of such systems. A study is proposed in which two heavy rain events over Mediterranean basin are analysed (Laviola et al., 2011). The investigation of cloud and precipitation properties are first assessed using a geostationary multifrequency satellite method for the identification of cloud type, hydrometeor phase, and cloud vertical extension. Then the study is carried out by means of a triple approach: (1) surface rain gauges, (2) satellite data, and (3) numerical model simulations. The satellite retrieval method 183-WSL (Laviola and Levizzani, 2009; 2011) is used to retrieve precipitation amount and classify precipitation type in terms of stratiform and convective rain. Furthermore, starting from two case studies, almost ten years of autumnal rain events over the Mediterranean are studied using a new method to identify the cloud type on the basis of the perturbation of the nominal signal in the microwave due to the presence of clouds. This technique exploits the properties of the three water vapour channels in the band at 183 GHz on board the NOAA-AMSU-B/MHS satellites. Due to the vertical development of the different cloud types, the typical extinction of radiation in clear sky conditions is perturbed as a function of cloud type and cloud top height. Stratified thin clouds, for example, usually impact less over the water vapour channels peaking at lower altitudes and often appear transparent or completely masked by the
A Three-Fold Approach to the Heat Equation: Data, Modeling, Numerics
ERIC Educational Resources Information Center
Spayd, Kimberly; Puckett, James
2016-01-01
This article describes our modeling approach to teaching the one-dimensional heat (diffusion) equation in a one-semester undergraduate partial differential equations course. We constructed the apparatus for a demonstration of heat diffusion through a long, thin metal rod with prescribed temperatures at each end. The students observed the physical…
A Three-Fold Approach to the Heat Equation: Data, Modeling, Numerics
ERIC Educational Resources Information Center
Spayd, Kimberly; Puckett, James
2016-01-01
This article describes our modeling approach to teaching the one-dimensional heat (diffusion) equation in a one-semester undergraduate partial differential equations course. We constructed the apparatus for a demonstration of heat diffusion through a long, thin metal rod with prescribed temperatures at each end. The students observed the physical…
Direct modeling of coda wave interferometry: comparison of numerical and experimental approaches
NASA Astrophysics Data System (ADS)
Azzola, Jérôme; Masson, Frédéric; Schmittbuhl, Jean
2017-04-01
The sensitivity of coda waves to small changes of the propagation medium is the principle of the coda waves interferometry, a technique which has been found to have a large range of applications over the past years. It exploits the evolution of strongly scattered waves in a limited region of space, to estimate slight changes like the wave velocity of the medium but also the location of scatterer positions or the stress field. Because of the sensitivity of the method, it is of a great value for the monitoring of geothermal EGS reservoir in order to detect fine changes. The aim of this work is thus to monitor the impact of different scatterer distributions and of the loading condition evolution using coda wave interferometry in the laboratory and numerically by modelling the scatter wavefield. In the laboratory, we analyze the scattering of an acoustic wave through a perforated loaded plate of DURAL. Indeed, the localized damages introduced behave as a scatter source. Coda wave interferometry is performed computing correlations of waveforms under different loading conditions, for different scatter distributions. Numerically, we used SPECFEM2D (a 2D spectral element code, (Komatitsch and Vilotte (1998)) to perform 2D simulations of acoustic and elastic seismic wave propagation and enables a direct comparison with laboratory and field results. An unstructured mesh is thus used to simulate the propagation of a wavelet in a loaded plate, before and after introduction of localized damages. The linear elastic deformation of the plate is simulated using Code Aster. The coda wave interferometry is performed similarly to experimental measurements. The accuracy of the comparison of the numerically and laboratory obtained results is strongly depending on the capacity to adapt the laboratory and numerical simulation conditions. In laboratory, the capacity to illuminate the medium in a similar way to that used in the numerical simulation deeply conditions among others the
Numerical modeling of hydrodynamics and sediment transport—an integrated approach
NASA Astrophysics Data System (ADS)
Gic-Grusza, Gabriela; Dudkowska, Aleksandra
2017-07-01
Point measurement-based estimation of bedload transport in the coastal zone is very difficult. The only way to assess the magnitude and direction of bedload transport in larger areas, particularly those characterized by complex bottom topography and hydrodynamics, is to use a holistic approach. This requires modeling of waves, currents, and the critical bed shear stress and bedload transport magnitude, with a due consideration to the realistic bathymetry and distribution of surface sediment types. Such a holistic approach is presented in this paper which describes modeling of bedload transport in the Gulf of Gdańsk. Extreme storm conditions defined based on 138-year NOAA data were assumed. The SWAN model (Booij et al. 1999) was used to define wind-wave fields, whereas wave-induced currents were calculated using the Kołodko and Gic-Grusza (2015) model, and the magnitude of bedload transport was estimated using the modified Meyer-Peter and Müller (1948) formula. The calculations were performed using a GIS model. The results obtained are innovative. The approach presented appears to be a valuable source of information on bedload transport in the coastal zone.
Numerical modeling of hydrodynamics and sediment transport—an integrated approach
NASA Astrophysics Data System (ADS)
Gic-Grusza, Gabriela; Dudkowska, Aleksandra
2017-10-01
Point measurement-based estimation of bedload transport in the coastal zone is very difficult. The only way to assess the magnitude and direction of bedload transport in larger areas, particularly those characterized by complex bottom topography and hydrodynamics, is to use a holistic approach. This requires modeling of waves, currents, and the critical bed shear stress and bedload transport magnitude, with a due consideration to the realistic bathymetry and distribution of surface sediment types. Such a holistic approach is presented in this paper which describes modeling of bedload transport in the Gulf of Gdańsk. Extreme storm conditions defined based on 138-year NOAA data were assumed. The SWAN model (Booij et al. 1999) was used to define wind-wave fields, whereas wave-induced currents were calculated using the Kołodko and Gic-Grusza (2015) model, and the magnitude of bedload transport was estimated using the modified Meyer-Peter and Müller (1948) formula. The calculations were performed using a GIS model. The results obtained are innovative. The approach presented appears to be a valuable source of information on bedload transport in the coastal zone.
Numerical damage models using a structural approach: application in bones and ligaments
NASA Astrophysics Data System (ADS)
Arnoux, P. J.; Bonnoit, J.; Chabrand, P.; Jean, M.; Pithioux, M.
2002-01-01
The purpose of the present study was to apply knowledge of structural properties to perform numerical simulations with models of bones and knee ligaments exposed to dynamic tensile loading leading to tissue damage. Compact bones and knee ligaments exhibit the same geometrical pattern in their different levels of structural hierarchy from the tropocollagen molecule to the fibre. Nevertheless, their mechanical behaviours differ considerably at the fibril level. These differences are due to the contribution of the joints in the microfibril-fibril-fibre assembly and to the mechanical properties of the structural components. Two finite element models of the fibrous bone and ligament structure were used to describe damage in terms of elastoplastic laws or joint decohesion processes.
Pennell, Kelly G.; Scammell, Madeleine K.; McClean, Michael D.; Suuberg, Eric M.; Moradi, Ali; Roghani, Mohammadyousef; Ames, Jennifer; Friguglietti, Leigh; Indeglia, Paul A.; Shen, Rui; Yao, Yijun; Heiger-Bernays, Wendy J.
2016-01-01
USEPA recommends a multiple lines of evidence approach to make informed decisions at vapor intrusion sites because the vapor intrusion pathway is notoriously difficult to characterize. Our study uses this approach by incorporating groundwater, soil gas, indoor air field measurements and numerical models to evaluate vapor intrusion exposure risks in a Metro-Boston neighborhood known to exhibit lower than anticipated indoor air concentrations based on groundwater concentrations. We collected and evaluated five rounds of field sampling data over the period of one year. Field data results show a steep gradient in soil gas concentrations near the groundwater surface; however as the depth decreases, soil gas concentration gradients also decrease. Together, the field data and the numerical model results suggest that a subsurface feature is limiting vapor transport into indoor air spaces at the study site and that groundwater concentrations are not appropriate indicators of vapor intrusion exposure risks in this neighborhood. This research also reveals the importance of including relevant physical models when evaluating vapor intrusion exposure risks using the multiple lines of evidence approach. Overall, the findings provide insight about how the multiple lines of evidence approach can be used to inform decisions by using field data collected using regulatory-relevant sampling techniques, and a well-established 3-D vapor intrusion model. PMID:26977535
NASA Astrophysics Data System (ADS)
Klein, E. C.; Le Corvec, N.; Galgana, G.
2014-12-01
Basaltic shield volcanoes are subjected to important gravitational loads that lead to their spreading. Such deformation influences the stress state within the volcano, thus the formation of faults and the location of earthquakes and the propagation of magmas and the potential eruption location. Using distinct numerical approaches constrained by geophysical data from the Hawai`i Island Shield Volcano (HISV), we studied the extent to which horizontal deviatoric stresses (HDS) induced from gravitational loading drives the process of volcanic spreading. Two distinct numerical approaches based on similar models were used: 1- the thin-sheet method, and 2- finite element models using COMSOL Multiphysics. We quantified depth integrals of vertical stress (i.e., the gravitational potential energy per unit area or GPE) and then we derived the HDS that balance the horizontal gradients in GPE. We performed the integration over series of single layers that encompasses the surface of variable topography down to a uniform depth of 10 km b.s.l. consistent with the base of the HISV. To compare the results of our numerical approaches we built a fine-scale, Island-wide, set of kinematically constrained deformation indicators (KCDI) using the slip-rate and fault style information from a comprehensive fault database for the HISV. We measure the success of each numerical approach by how well model HDS match the horizontal styles of the strain rates associated with KCDI. Thus far we find that the HDS obtained using the thin-sheet method match well with the KCDI. This may indicate that to first order that patterns of observed surface deformation on the HISV are governed by gradients in GPE. This provides a balance to the gravitationally-induced stresses associated with the volcano load. These HDS do not account for other competing sources of stress (e.g., flexure, magmatic, or hoop) that taken all together may combine to better explain the volcano spreading process for basaltic shield type
Numerical Approach to Spatial Deterministic-Stochastic Models Arising in Cell Biology
Gao, Fei; Li, Ye; Novak, Igor L.; Slepchenko, Boris M.
2016-01-01
Hybrid deterministic-stochastic methods provide an efficient alternative to a fully stochastic treatment of models which include components with disparate levels of stochasticity. However, general-purpose hybrid solvers for spatially resolved simulations of reaction-diffusion systems are not widely available. Here we describe fundamentals of a general-purpose spatial hybrid method. The method generates realizations of a spatially inhomogeneous hybrid system by appropriately integrating capabilities of a deterministic partial differential equation solver with a popular particle-based stochastic simulator, Smoldyn. Rigorous validation of the algorithm is detailed, using a simple model of calcium ‘sparks’ as a testbed. The solver is then applied to a deterministic-stochastic model of spontaneous emergence of cell polarity. The approach is general enough to be implemented within biologist-friendly software frameworks such as Virtual Cell. PMID:27959915
Early Earth tectonics: A high-resolution 3D numerical modelling approach
NASA Astrophysics Data System (ADS)
Fischer, R.; Gerya, T.
2014-12-01
Early Earth had a higher amount of remaining radiogenic elements as well as a higher amount of leftover primordial heat. Both contributed to the increased temperature in the Earth's interior and it is mainly this increased mantle potential temperature ΔTp that controls the dynamics of the crust and upper mantle and the style of Early Earth tectonics. For a minor increase in temperature ΔTp < 175 K a subduction-collision style ensues which is largely similar to present day plate tectonics. For a moderate increase in ΔTp = 175-250 K subduction can still occur, however plates are strongly weakened and buckling, delamination and Rayleigh-Taylor style dripping of the plate is observed in addition. For higher temperatures ΔTp > 250 K no subduction can be observed anymore and tectonics is dominated by delamination and Rayleigh-Taylor instabilities. We conduct 3D petrological-thermomechanical numerical modelling experiments of the crust and upper mantle under Early Earth conditions and a plume tectonics model setup. For varying crustal structures and an increased mantle potential temperature ΔTp, a thermal anomaly in the bottom temperature boundary introduces a plume. The model is able to self-sufficiently form depleted mantle lithosphere after repeated melt removal. New crust can be produced in the form of volcanics or plutonics. To simulate differentiation the newly formed crust can have a range in composition from basaltic over dacitic to granitic depending on its source rock. Models show large amounts of subcrustal decompression melting and consequently large amounts of new formed crust which in turn influences the dynamics. Mantle and crust are convecting separately. Dome-shaped plutons of mafic or felsic composition can be observed in the crust. Between these domes elongated belts of upper crust, volcanics and sediments are formed. These structures look similar to, for example, the Kaapvaal craton in South Africa where the elongated shape of the Barberton
Early Earth plume-lid tectonics: A high-resolution 3D numerical modelling approach
NASA Astrophysics Data System (ADS)
Fischer, R.; Gerya, T.
2016-10-01
Geological-geochemical evidence point towards higher mantle potential temperature and a different type of tectonics (global plume-lid tectonics) in the early Earth (>3.2 Ga) compared to the present day (global plate tectonics). In order to investigate tectono-magmatic processes associated with plume-lid tectonics and crustal growth under hotter mantle temperature conditions, we conduct a series of 3D high-resolution magmatic-thermomechanical models with the finite-difference code I3ELVIS. No external plate tectonic forces are applied to isolate 3D effects of various plume-lithosphere and crust-mantle interactions. Results of the numerical experiments show two distinct phases in coupled crust-mantle evolution: (1) a longer (80-100 Myr) and relatively quiet 'growth phase' which is marked by growth of crust and lithosphere, followed by (2) a short (∼20 Myr) and catastrophic 'removal phase', where unstable parts of the crust and mantle lithosphere are removed by eclogitic dripping and later delamination. This modelling suggests that the early Earth plume-lid tectonic regime followed a pattern of episodic growth and removal also called episodic overturn with a periodicity of ∼100 Myr.
Early Earth plume-lid tectonics: A high-resolution 3D numerical modelling approach
NASA Astrophysics Data System (ADS)
Fischer, Ria; Gerya, Taras
2016-04-01
Early Earth had a higher amount of radiogenic elements as well as a higher amount of leftover primordial heat. Both contribute to the increased temperature in the Earth's interior and it is mainly this increased mantle potential temperature Tp that controls the dynamics of the crust and upper mantle and the predominant style of tectonics in the Archean Earth. We conduct 3D petrological-magmatic-thermomechanical numerical modelling experiments of the crust and upper mantle under Archean conditions using a plume-lid tectonics model setup. For varying crustal compositions and a mantle potential temperature increase ΔTp = 250K (compared to present day conditions), a hot lower thermal boundary layer introduces spontaneously developing mantle plumes and after repeated melt removal, depleted mantle lithosphere is formed self-consistently. New crust is produced in the form of both volcanic and plutonic magmatism. Models show large amounts of subcrustal decompression melting and production of new crust which in turn influences the dynamics. On short-term (10 - 20Myr) rising diapirs and sinking basaltic crust lead to crustal overturn and to the formation of the typical Archean dome-and-keel pattern. On long-term a long (˜ 80Myr) passive 'growth phase' with strong growth of crust and lithosphere is observed. Both crust and lithosphere thickness are regulated by thermochemical instabilities assisted by lower crustal eclogitisation and a subcrustal small-scale convection area. Delamination of lower crust and lithosphere is initiated by linear or cylindrical eclogite drips and occurs as one 'catastrophic' event within a 20Myr 'removal phase'.
Po river plume patterns variability and dynamics: a numerical modeling and statistical approach.
NASA Astrophysics Data System (ADS)
Falcieri, Francesco M.; Benetazzo, Alvise; Bergamasco, Andrea; Bonaldo, Davide; Carniel, Sandro; Sclavo, Mauro; Russo, Aniello
2013-04-01
Processes and dynamics of estuarine-shelf environments are defined by many drivers, some of the most important being riverine inputs, winds (and wind driven currents) and tides. Two of them are directly involved in the formation and spatial evolution of a coastal river plume: on the one hand the amount of fresh water entering into the sea through river' discharge, on the other hand the direction and intensity of winds blowing over the domain. The Adriatic Sea is generally considered a dilution basin due to the large amount of freshwater inputs received. These inputs have a significant influence on the basin, both from a physical point of view (by affecting buoyancy) and on the biogeochemical characteristics (by introducing large quantities of nutrients, which sustain primary production in the areas interested by the rivers' plumes). The Po River (mean daily discharge between 275 and 11600 m3/s, yearly mean of 1500 m3/s) is the single largest freshwater source of the Adriatic; its discharges result in a plume that directly influences the characteristics of the coastal areas of the whole Northern sub-basin and as far South as Ancona. The development of strong lateral gradients in salinity is an all year around driver (particularly in Spring and Autumn) of the general and coastal circulation, and influences the water column vertical structure and an important process such as the formation of the Northern Adriatic Dense Water. The Po plume generally follows two major patterns of evolution: southward along the Italian coasts in a ribbon that can fill the whole water column, or across the northern part of the basin toward the Istrian coasts in a generally more stratified condition. A model-based assessment, albeit semi-quantitative, of the dynamics and variability of the Po plume has not been yet reported in literature. In this work we investigated its dynamics by means of an 8 years (2003-2010) numerical simulation with the Regional Ocean Modelling System (ROMS). The
Chemical processing of volcanic ash within eruption plume and cloud: a numerical modeling approach
NASA Astrophysics Data System (ADS)
Hoshyaripour, Gholam Ali; Hort, Matthias; Langmann, Baerbel; Brasseur, Guy
2015-04-01
Volcanic ash is recently identified as an active chemical agent in the Earth system. Generated mainly through lithospheric processes and magma fragmentation, it can pose significant impacts upon different components of the Earth system for e.g. atmosphere and hydrosphere on various temporal and spatial scales. While airborne in the atmosphere, transition metals contained in the ash can catalyze the sulfur oxidation cycle thereby indirectly affecting the volcanic radiative forcing. Moreover, upon deposition on the surface ocean, ash can release soluble iron that fertilizes Fe-limited areas of the ocean and stimulate the marine productivity and CO2 drawdown. Such impacts are provoked through interfacial processes and thus, are mainly induced by the ash surface composition. Recent studies suggest that in-plume and in-cloud processing of volcanic ash primarily control its surface composition. Direct evidences concerning such processes are, however, lacking. Here we present the results of our recent investigations on in-plume and in-cloud processing of volcanic ash. A 1D numerical model is developed that simulates the gas-ash-aerosol interactions in volcanic eruption plume and cloud at temperatures between 600 C and 0 C focusing on iron, sulfur and halogen chemistry. Results show that sulfuric acid and water vapor condense at 150 C and 50 C, respectively, generating a liquid coating at the ash surface that scavenges the surrounding gases (>95extremely acidic (pH
Toward Scientific Numerical Modeling
NASA Technical Reports Server (NTRS)
Kleb, Bil
2007-01-01
Ultimately, scientific numerical models need quantified output uncertainties so that modeling can evolve to better match reality. Documenting model input uncertainties and verifying that numerical models are translated into code correctly, however, are necessary first steps toward that goal. Without known input parameter uncertainties, model sensitivities are all one can determine, and without code verification, output uncertainties are simply not reliable. To address these two shortcomings, two proposals are offered: (1) an unobtrusive mechanism to document input parameter uncertainties in situ and (2) an adaptation of the Scientific Method to numerical model development and deployment. Because these two steps require changes in the computational simulation community to bear fruit, they are presented in terms of the Beckhard-Harris-Gleicher change model.
Toward Scientific Numerical Modeling
NASA Technical Reports Server (NTRS)
Kleb, Bil
2007-01-01
Ultimately, scientific numerical models need quantified output uncertainties so that modeling can evolve to better match reality. Documenting model input uncertainties and verifying that numerical models are translated into code correctly, however, are necessary first steps toward that goal. Without known input parameter uncertainties, model sensitivities are all one can determine, and without code verification, output uncertainties are simply not reliable. To address these two shortcomings, two proposals are offered: (1) an unobtrusive mechanism to document input parameter uncertainties in situ and (2) an adaptation of the Scientific Method to numerical model development and deployment. Because these two steps require changes in the computational simulation community to bear fruit, they are presented in terms of the Beckhard-Harris-Gleicher change model.
Impact of hydrothermal alteration on lava dome stability: a numerical modelling approach
NASA Astrophysics Data System (ADS)
Detienne, Marie; Delmelle, Pierre
2016-04-01
Lava domes are a common feature of many volcanoes worldwide. They represent a serious volcanic hazard as they are prone to repeated collapses, generating devastating debris avalanches and pyroclastic flows. While it has long been known that hydrothermal alteration degrades rock properties and weakens rock mass cohesion and strength, there is still little quantitative information allowing the description of this effect and its consequences for assessing the stability of a volcanic rock mass such as a lava dome. In this study, we use the finite difference numerical model FLAC 3D to investigate the impact of hydrothermal alteration on the stability of a volcanic dome lying on a flat surface. Different hydrothermal alteration distributions were tested to encompass the variability observed in natural lava domes. Rock shear strength parameters (minimum, maximum and mean cohesion "c" and friction angle "φ" values) representative of various degrees of hydrothermal rock alteration were used in the simulations. The model predicts that reduction of the basement rock's shear strength decreases the factor of safety significantly. A similar result is found by increasing the vertical and horizontal extension of hydrothermal alteration in the basement rocks. In addition, pervasive hydrothermal alteration within the lava dome is predicted to exert a strong negative influence on the factor of safety. Through reduction of rock porosity and permeability, hydrothermal alteration may also affect pore fluid pressure within a lava dome. The results of new FLAC 3D runs which simulate the effect of hydrothermal alteration-induced pore pressure changes on lava dome stability will be presented.
Numerical models in hydrodynamics
NASA Astrophysics Data System (ADS)
Belotserkovskii, Oleg Mikhailovich
The use of numerical models in fluid mechanics is examined with emphasis on separated flows at high Reynolds numbers. Topics discussed include the splitting method, homogeneous difference schemes, calculation of the nonstationary motion of ordered and large-scale structures, and numerical modeling of the stochastic component of turbulent shear flow. Attention is also given to motion in wake flows, the problem of turbulent spot breakup, and stability problems.
Pelletier, J.D.; Mayer, L.; Pearthree, P.A.; House, P.K.; Demsey, K.A.; Klawon, J.K.; Vincent, K.R.
2005-01-01
Millions of people in the western United States live near the dynamic, distributary channel networks of alluvial fans where flood behavior is complex and poorly constrained. Here we test a new comprehensive approach to alluvial-fan flood hazard assessment that uses four complementary methods: two-dimensional raster-based hydraulic modeling, satellite-image change detection, fieldbased mapping of recent flood inundation, and surficial geologic mapping. Each of these methods provides spatial detail lacking in the standard method and each provides critical information for a comprehensive assessment. Our numerical model simultaneously solves the continuity equation and Manning's equation (Chow, 1959) using an implicit numerical method. It provides a robust numerical tool for predicting flood flows using the large, high-resolution Digital Elevation Models (DEMs) necessary to resolve the numerous small channels on the typical alluvial fan. Inundation extents and flow depths of historic floods can be reconstructed with the numerical model and validated against field- and satellite-based flood maps. A probabilistic flood hazard map can also be constructed by modeling multiple flood events with a range of specified discharges. This map can be used in conjunction with a surficial geologic map to further refine floodplain delineation on fans. To test the accuracy of the numerical model, we compared model predictions of flood inundation and flow depths against field- and satellite-based flood maps for two recent extreme events on the southern Tortolita and Harquahala piedmonts in Arizona. Model predictions match the field- and satellite-based maps closely. Probabilistic flood hazard maps based on the 10 yr, 100 yr, and maximum floods were also constructed for the study areas using stream gage records and paleoflood deposits. The resulting maps predict spatially complex flood hazards that strongly reflect small-scale topography and are consistent with surficial geology. In
NASA Astrophysics Data System (ADS)
Kocifaj, Miroslav
2016-09-01
The study of diffuse light of a night sky is undergoing a renaissance due to the development of inexpensive high performance computers which can significantly reduce the time needed for accurate numerical simulations. Apart from targeted field campaigns, numerical modeling appears to be one of the most attractive and powerful approaches for predicting the diffuse light of a night sky. However, computer-aided simulation of night-sky radiances over any territory and under arbitrary conditions is a complex problem that is difficult to solve. This study addresses three concepts for modeling the artificial light propagation through a turbid stratified atmosphere. Specifically, these are two-stream approximation, iterative approach to Radiative Transfer Equation (RTE) and Method of Successive Orders of Scattering (MSOS). The principles of the methods, their strengths and weaknesses are reviewed with respect to their implications for night-light modeling in different environments.
The response of debris-covered glaciers to climate change: A numerical modeling approach
NASA Astrophysics Data System (ADS)
Anderson, Leif S.; Anderson, Robert S.
2016-04-01
Debris-covered glaciers are common in rapidly-eroding alpine landscapes. When thicker than a few centimeters, surface debris suppresses melt rates. Continuous debris cover can therefore reduce the mass balance gradient in the ablation zone, leading to increases in glacier length. In order to quantify feedbacks in the debris-glacier-climate system, we developed a 2D long-valley numerical glacier model that includes deposition of debris on the glacier surface, and both englacial and supraglacial debris advection. We ran 120 simulations in which a steady state debris-free glacier responds to a step increase of surface debris deposition. Simulated glaciers advance to new steady states in which ice accumulation equals ice ablation, and debris input equals debris loss from the glacier. The debris flux onto the glacier surface, and the details of the relationship between debris thickness and melt rate strongly control glacier length. Debris deposited near the equilibrium-line altitude, where ice discharge is high, results in the greatest glacier extension when other debris-related variables are held constant. Continuous debris cover reduces ice discharge gradients, ice thickness gradients, and velocity gradients relative to debris-free glaciers forced by the same climate. Debris-forced glacier extension decreases the ratio of accumulation zone to total glacier area (AAR). The model reproduces first-order relationships between debris cover, AARs, and glacier surface velocities reported from glaciers in High Asia. We also explore the response of debris-covered glaciers to increases in the equilibrium-line altitude (climate warming). We highlight the conditions required to generate a low surface velocity 'dead' ice terminal reach during a warming climate, and the associated increase of fractional glacier surface debris. We also compare our debris-covered glacier climate response results with data from glaciers in High Asia. Our model provides a quantitative, theoretical
NASA Astrophysics Data System (ADS)
Hoshyaripour, G. A.; Hort, M.; Langmann, B.
2015-08-01
It has been shown that volcanic ash fertilizes the Fe-limited areas of the surface ocean through releasing soluble iron. As ash iron is mostly insoluble upon the eruption, it is hypothesized that heterogeneous in-plume and in-cloud processing of the ash promote the iron solubilization. Direct evidences concerning such processes are, however, lacking. In this study, a 1-D numerical model is developed to simulate the physicochemical interactions of the gas-ash-aerosol in volcanic eruption plumes focusing on the iron mobilization processes at temperatures between 600 and 0 °C. Results show that sulfuric acid and water vapor condense at ~ 150 and ~ 50 °C on the ash surface, respectively. This liquid phase then efficiently scavenges the surrounding gases (> 95 % of HCl, 3-20 % of SO2 and 12-62 % of HF) forming an extremely acidic coating at the ash surface. The low pH conditions of the aqueous film promote acid-mediated dissolution of the Fe-bearing phases present in the ash material. We estimate that 0.1-33 % of the total iron available at the ash surface is dissolved in the aqueous phase before the freezing point is reached. The efficiency of dissolution is controlled by the halogen content of the erupted gas as well as the mineralogy of the iron at ash surface: elevated halogen concentrations and presence of Fe2+-carrying phases lead to the highest dissolution efficiency. Findings of this study are in agreement with the data obtained through leaching experiments.
NASA Astrophysics Data System (ADS)
Sun, Guodong; Mu, Mu
2017-05-01
An important source of uncertainty, which causes further uncertainty in numerical simulations, is that residing in the parameters describing physical processes in numerical models. Therefore, finding a subset among numerous physical parameters in numerical models in the atmospheric and oceanic sciences, which are relatively more sensitive and important parameters, and reducing the errors in the physical parameters in this subset would be a far more efficient way to reduce the uncertainties involved in simulations. In this context, we present a new approach based on the conditional nonlinear optimal perturbation related to parameter (CNOP-P) method. The approach provides a framework to ascertain the subset of those relatively more sensitive and important parameters among the physical parameters. The Lund-Potsdam-Jena (LPJ) dynamical global vegetation model was utilized to test the validity of the new approach in China. The results imply that nonlinear interactions among parameters play a key role in the identification of sensitive parameters in arid and semi-arid regions of China compared to those in northern, northeastern, and southern China. The uncertainties in the numerical simulations were reduced considerably by reducing the errors of the subset of relatively more sensitive and important parameters. The results demonstrate that our approach not only offers a new route to identify relatively more sensitive and important physical parameters but also that it is viable to then apply "target observations" to reduce the uncertainties in model parameters.
1989-03-01
by Colorado State University, Fort Collins, CO, for US Army Engineer Waterways Experiment Station, Vicksburg, MS. Thompson , J . F . 1983 (Mar). "A...Waterways Experiment Station, Vicksburg, MS. Thompson , J . F ., and Bernard, R. S. 1985 (Aug). "WESSEL: Code for Numerical Simulation of Two-Dimensional Time
NASA Astrophysics Data System (ADS)
Shuaib, M.; Daoud, O.
2015-07-01
This paper includes an investigation for the deformations, including deflections and damage modes, which occur in reinforced concrete (RC) slabs when subjected to blast loads of explosions. The slab considered for the investigation is a one-way square RC slab with the dimensions of 1000 x 1000 x 40 mm, fixed supported at two opposite sides. It was subjected to close-in detonations of three different charge weights for a constant standoff distance. For the study, the slab was analysed using the numerical method by means of nonlinear finite element analysis. The slab was modelled as 3-D structural continuum using LS-DYNA software. For concrete modelling, two constitutive models were selected, namely the KCC and Winfrith concrete models. Blast loads were applied to the slab through the Lagrangian approach, and the blast command available in the software, namely LOAD_BLAST_ENHANCED, was selected for the application. The deflections and damage modes results obtained were compared to those from a previously published experiment. From the study, both the KCC and Winfrith concrete models effectively and satisfactorily estimated the actual slab maximum deflection. For damage modes, the KCC model appeared to be capable to capture satisfactorily the general damage mode including flexural cracks. However, the model could not capture the local shear mode at the middle of slab (spallation) because the Lagrangian approach does not simulate the interaction between the ambient air and the solid slab.
Two-Phase Fluid Leakage through Faults Using a Multi-Scale Analytical-Numerical Modeling Approach
NASA Astrophysics Data System (ADS)
Kang, M.; Nordbotten, J. M.; Doster, F.; Celia, M. A.
2014-12-01
Fluid flow through faults must be considered in many applications including geologic storage of carbon dioxide (CO2), deep storage of hazardous waste, groundwater contamination, and petroleum engineering. In the case of CO2 storage, the presence of faults is of concern, because they can act as leakage pathways. Therefore, modeling tools that can accurately and efficiently quantify fluid leakage through faults in basin-scale models are necessary. In basin-scale models, the flow around and through faults is a local-scale process and this local-scale variation is important when determining leakage rates. We present a multi-scale modeling approach based on embedding local-scale analytical solutions within basin-scale numerical models. At the local scale, steady-state analytical solutions that represent fluid flow in the vicinity of leaky faults, including any vertical flow effects, are derived. Using both numerical simulations and analytical solutions, an empirical model representing fault properties, permeabilities and widths, is also developed. The combination of this empirical fault model and the analytical solutions captures the local-scale effects of leakage through faults. The local-scale model is used within a multi-scale modeling framework to determine the flow in and around faults and the associated local-scale pressure and saturation corrections that are applied to the coarse model. Here, a fault is viewed as a 2-D surface on one side of a coarse-scale grid block. The corrections relate local-scale pressure and saturation at the fault to coarse-scale pressures and saturations in numerical grid blocks. The corrections are used to determine the vertical and lateral flow in the fault and horizontal flows perpendicular and parallel to the fault in the grid block. At every coarse-scale time step, the local-scale fault model is implemented using the coarse-scale information from the previous time step. The resulting leakage rates and pressure and saturation
NASA Astrophysics Data System (ADS)
Havaej, Mohsen; Coggan, John; Stead, Doug; Elmo, Davide
2016-04-01
Rock slope geometry and discontinuity properties are among the most important factors in realistic rock slope analysis yet they are often oversimplified in numerical simulations. This is primarily due to the difficulties in obtaining accurate structural and geometrical data as well as the stochastic representation of discontinuities. Recent improvements in both digital data acquisition and incorporation of discrete fracture network data into numerical modelling software have provided better tools to capture rock mass characteristics, slope geometries and digital terrain models allowing more effective modelling of rock slopes. Advantages of using improved data acquisition technology include safer and faster data collection, greater areal coverage, and accurate data geo-referencing far exceed limitations due to orientation bias and occlusion. A key benefit of a detailed point cloud dataset is the ability to measure and evaluate discontinuity characteristics such as orientation, spacing/intensity and persistence. This data can be used to develop a discrete fracture network which can be imported into the numerical simulations to study the influence of the stochastic nature of the discontinuities on the failure mechanism. We demonstrate the application of digital terrestrial photogrammetry in discontinuity characterization and distinct element simulations within a slate quarry. An accurately geo-referenced photogrammetry model is used to derive the slope geometry and to characterize geological structures. We first show how a discontinuity dataset, obtained from a photogrammetry model can be used to characterize discontinuities and to develop discrete fracture networks. A deterministic three-dimensional distinct element model is then used to investigate the effect of some key input parameters (friction angle, spacing and persistence) on the stability of the quarry slope model. Finally, adopting a stochastic approach, discrete fracture networks are used as input for 3D
Numerical Modeling of Airblast.
1987-06-01
REPORT SAIC 87/1701 June 1987 Dr.. Submitted to: cp Dr. Jay Boris Laboratory for Computational Physics Accet F4,r Naval Research Laboratory I...boundary layer physical assumptions provides an unsteady prediction of the mass flux emerging from the ground. This model was first proposed by Mirels...the physics modeled will be explained. High explosive dust cloud simulation provides a research path when combined with numerical calculations can lead
Numerical modeling of the motion of rigid ellipsoidal objects in slow viscous flows: A new approach
NASA Astrophysics Data System (ADS)
Jiang, Dazhi
2007-02-01
A simple algorithm for modeling the rotation of rigid ellipsoidal objects in viscous flows based on Jeffery's (1922, Proceedings of the Royal Society of London A102, 161-179) theory is presented and is implemented in a fully graphic mathematics application Mathcad ® ( http://www.mathsoft.com). The orientation of ellipsoidal objects is specified in terms of polar coordinate angles that can be easily converted to the trend and plunge angles of the three principal axes rather than the Euler angles. With the Mathcad worksheets presented in the supplementary data associated with this paper, modeling the rotation paths of individual rigid objects, the development of inclusion trail geometry within syn-kinematic porphyroblasts, and the development of preferred orientation and shape fabrics for a population of rigid objects becomes as easy a task as using a spreadsheet. The shape and preferred orientation fabrics for a population of rigid objects can be presented in both a three-dimensional form and a two-dimensional form, allowing easy comparison between field data and model predictions. The modeler can customize the type and format of the output to best fit the purpose of the investigation and to facilitate the comparison of model predictions with geological observations. Application examples are presented for various types of modeling involving rigid objects.
NASA Astrophysics Data System (ADS)
Marjoribanks, T. I.; Hardy, R. J.; Lane, S. N.; Parsons, D. R.
2012-12-01
The flow and plant dynamics of vegetated channel flows are governed by a variety of processes and feedback mechanisms that interact, across a range of scales, to form a complex inter-connected system. It is well documented that vegetation exerts a significant drag force on the flow, creating a drag discontinuity between the canopy layer and the flow above. This has been shown to control the mean flow and turbulent structure through the development of a canopy shear layer, which leads to the generation of coherent roller vortices at the canopy top. In turn, the canopy reacts to the flow forcing through reconfiguration to minimize drag, and responds to the passage of vortices through exhibiting coherent monami. It has been hypothesized that the vegetation consequently acts to modulate the turbulence structure through the vibrational response of the natural frequency of the vegetation. Hence the interaction of processes is complex and nonlinear. Here we report on a series of high resolution numerical experiments designed to investigate the exact nature and role of these feedback mechanisms within the flow-vegetation system. Two biomechanical models are developed and applied within a computational fluid dynamics framework to investigate the nature of the time-dependent flow dynamics. The first model, for semi-flexible vegetation uses the Euler Beam equation to drive plant motion, whilst the second model uses an n-pendula approach to represent cases of highly flexible vegetation. Both models were validated through a series of laboratory experiments using particle image velocimetry that employed both real and prototype vegetation. The high-resolution numerical models enable detailed analysis of both the plant motion and corresponding flow field. The results clearly show the presence of a strong drag discontinuity, coherent canopy motion and large scale turbulent structures formed at the canopy top. Time series and spectral analysis reveals a clear, time
NASA Astrophysics Data System (ADS)
Doummar, Joanna; Kassem, Assaad
2017-04-01
In the framework of a three-year PEER (USAID/NSF) funded project, flow in a Karst system in Lebanon (Assal) dominated by snow and semi arid conditions was simulated and successfully calibrated using an integrated numerical model (MIKE-She 2016) based on high resolution input data and detailed catchment characterization. Point source infiltration and fast flow pathways were simulated by a bypass function and a high conductive lens respectively. The approach consisted of identifying all the factors used in qualitative vulnerability methods (COP, EPIK, PI, DRASTIC, GOD) applied in karst systems and to assess their influence on recharge signals in the different hydrological karst compartments (Atmosphere, Unsaturated zone and Saturated zone) based on the integrated numerical model. These parameters are usually attributed different weights according to their estimated impact on Groundwater vulnerability. The aim of this work is to quantify the importance of each of these parameters and outline parameters that are not accounted for in standard methods, but that might play a role in the vulnerability of a system. The spatial distribution of the detailed evapotranspiration, infiltration, and recharge signals from atmosphere to unsaturated zone to saturated zone was compared and contrasted among different surface settings and under varying flow conditions (e.g., in varying slopes, land cover, precipitation intensity, and soil properties as well point source infiltration). Furthermore a sensitivity analysis of individual or coupled major parameters allows quantifying their impact on recharge and indirectly on vulnerability. The preliminary analysis yields a new methodology that accounts for most of the factors influencing vulnerability while refining the weights attributed to each one of them, based on a quantitative approach.
NASA Astrophysics Data System (ADS)
Vérèmes, H.; Cammas, J.-P.; Baray, J.-L.; Keckhut, P.; Barthe, C.; Posny, F.; Tulet, P.; Dionisi, D.; Bielli, S.
2016-12-01
Signatures of multiple stratospheric intrusions were observed on simultaneous and collocated ozone and water vapor profiles retrieved by lidars and radiosondes at the Maïdo Observatory, Reunion Island (21°S, 55°E, 2160 m above sea level), during MAïdo LIdar Calibration CAmpaign in April 2013. A singular structure of the ozone vertical profile with three peaks (in excess of 90 ppbv, at 8, 10, and 13 km altitude) embedded in a thick dry layer of air suggested stratospheric intrusions with multiple origins. The hypothesis is corroborated by a synoptic analysis based on re-analyses. European Centre for Medium-Range Weather Forecasts ERA-Interim temporal series associated with 5 days Lagrangian back trajectories initialized on each ozone peak allows to capture their stratospheric origin. The ozone peak at the lowest altitude is associated with an irreversible tropopause folding process along the polar jet stream during an extratropical cutoff low formation. Simultaneous lidar water vapor profiles of this peak show that the anticorrelation with ozone has been removed, due to mixing processes. Back trajectories indicate that the two other ozone peaks observed at higher altitudes are associated with the dynamics of the subtropical jet stream and the lower stratosphere. The observations confirm the recent stratospheric origins. The highest ozone peak is explained by the horizontal distribution of the intrusion. Use of a Lagrangian Reverse Domain Filling model and of the Meso-NH Eulerian mesoscale model with a passive stratospheric tracer allow to further document the stratosphere-troposphere transport processes and to describe the detailed potential vorticity and ozone structures in which are embedded in the observed multiple stratospheric intrusions.
NASA Astrophysics Data System (ADS)
Schildgen, Taylor F.; Ehlers, Todd A.; Whipp, David M.; van Soest, Matthijs C.; Whipple, Kelin X.; Hodges, Kip V.
2009-11-01
Apatite and zircon (U-Th)/He ages from Ocoña canyon at the western margin of the Central Andean plateau record rock cooling histories induced by a major phase of canyon incision. We quantify the timing and magnitude of incision by integrating previously published ages from the valley bottom with 19 new sample ages from four valley wall transects. Interpretation of the incision history from cooling ages is complicated by a southwest to northeast increase in temperatures at the base of the crust due to subduction and volcanism. Furthermore, the large magnitude of incision leads to additional three-dimensional variations in the thermal field. We address these complications with finite element thermal and thermochronometer age prediction models to quantify the range of topographic evolution scenarios consistent with observed cooling ages. Comparison of 275 model simulations to observed cooling ages and regional heat flow determinations identify a best fit history with ≤0.2 km of incision in the forearc region prior to ˜14 Ma and up to 3.0 km of incision starting between 7 and 11 Ma. Incision starting at 7 Ma requires incision to end by ˜5.5 to 6 Ma. However, a 2.2 Ma age on a volcanic flow on the current valley floor and 5 Ma gravels on the uplifted piedmont surface together suggest that incision ended during the time span between 2.2 and 5 Ma. These additional constraints for incision end time lead to a range of best fit incision onset times between 8 and 11 Ma, which must coincide with or postdate surface uplift.
Numerical Modelling of Gelating Aerosols
Babovsky, Hans
2008-09-01
The numerical simulation of the gel phase transition of an aerosol system is an interesting and demanding task. Here, we follow an approach first discussed in [6, 8] which turns out as a useful numerical tool. We investigate several improvements and generalizations. In the center of interest are coagulation diffusion systems, where the aerosol dynamics is supplemented with diffusive spreading in physical space. This leads to a variety of scenarios (depending on the coagulation kernel and the diffusion model) for the spatial evolution of the gelation area.
NASA Astrophysics Data System (ADS)
Kavka, P.; Jeřábek, J.; Strouhal, L.
2016-12-01
The contribution presents a numerical model SMODERP that is used for calculation and prediction of surface runoff and soil erosion from agricultural land. The physically based model includes the processes of infiltration (Phillips equation), surface runoff routing (kinematic wave based equation), surface retention, surface roughness and vegetation impact on runoff. The model is being developed at the Department of Irrigation, Drainage and Landscape Engineering, Civil Engineering Faculty, CTU in Prague. 2D version of the model was introduced in last years. The script uses ArcGIS system tools for data preparation. The physical relations are implemented through Python scripts. The main computing part is stand alone in numpy arrays. Flow direction is calculated by Steepest Descent algorithm and in multiple flow algorithm. Sheet flow is described by modified kinematic wave equation. Parameters for five different soil textures were calibrated on the set of hundred measurements performed on the laboratory and filed rainfall simulators. Spatially distributed models enable to estimate not only surface runoff but also flow in the rills. Development of the rills is based on critical shear stress and critical velocity. For modelling of the rills a specific sub model was created. This sub model uses Manning formula for flow estimation. Flow in the ditches and streams are also computed. Numerical stability of the model is controled by Courant criterion. Spatial scale is fixed. Time step is dynamic and depends on the actual discharge. The model is used in the framework of the project "Variability of Short-term Precipitation and Runoff in Small Czech Drainage Basins and its Influence on Water Resources Management". Main goal of the project is to elaborate a methodology and online utility for deriving short-term design precipitation series, which could be utilized by a broad community of scientists, state administration as well as design planners. The methodology will account for
NASA Astrophysics Data System (ADS)
Pechlivanidou, Sofia; Cowie, Patience; Finch, Emma; Gawthorpe, Robert; Attal, Mikael
2016-04-01
This study uses a numerical modelling approach to explore structural controls on erosional/depositional systems within rifts that are characterized by complex multiphase extensional histories. Multiphase-rift related topography is generated by a 3D discrete element model (Finch et al., Basin Res., 2004) of normal fault growth and is used to drive the landscape evolution model CHILD (Tucker et al., Comput. Geosci., 2001). Fault populations develop spontaneously in the discrete element model and grow by both tip propagation and segment linkage. We conduct a series of experiments to simulate the evolution of the landscape (55x40 km) produced by two extensional phases that differ in the direction and in the amount of extension. In order to isolate the effects of fault propagation on the drainage network development, we conduct experiments where uplift/subsidence rates vary both in space and time as the fault array evolves and compare these results with experiments using a fixed fault array geometry with uplift rate/subsidence rates that vary only spatially. In many cases, areas of sediment deposition become uplifted and vise-versa due to complex elevation changes with respect to sea level as the fault array develops. These changes from subaerial (erosional) to submarine (depositional) processes have implications for sediment volumes and sediment caliber as well as for the sediment routing systems across the rift. We also explore the consequences of changing the angle between the two phases of extension on the depositional systems and we make a comparison with single-phase rift systems. Finally, we discuss the controls of different erodibilities on sediment supply and detachment-limited versus transport-limited end-member models for river erosion. Our results provide insights into the nature and distribution of sediment source areas and the sediment routing in rift systems where pre-existing rift topography and normal fault growth exert a fundamental control on
Numerical Approaches to Spacetime Singularities.
Berger, Beverly K
1998-01-01
This review updates a previous review article [22]. Numerical exploration of the properties of singularities could, in principle, yield detailed understanding of their nature in physically realistic cases. Examples of numerical investigations into the formation of naked singularities, critical behavior in collapse, passage through the Cauchy horizon, chaos of the Mixmaster singularity, and singularities in spatially inhomogeneous cosmologies are discussed.
NASA Astrophysics Data System (ADS)
Samaras, Achilleas G.; Koutitas, Christopher G.
2014-04-01
Coastal morphology evolves as the combined result of both natural- and human- induced factors that cover a wide range of spatial and temporal scales of effect. Areas in the vicinity of natural stream mouths are of special interest, as the direct connection with the upstream watershed extends the search for drivers of morphological evolution from the coastal area to the inland as well. Although the impact of changes in watersheds on the coastal sediment budget is well established, references that study concurrently the two fields and the quantification of their connection are scarce. In the present work, the impact of land-use changes in a watershed on coastal erosion is studied for a selected site in North Greece. Applications are based on an integrated approach to quantify the impact of watershed management on coastal morphology through numerical modeling. The watershed model SWAT and a shoreline evolution model developed by the authors (PELNCON-M) are used, evaluating with the latter the performance of the three longshore sediment transport rate formulae included in the model formulation. Results document the impact of crop abandonment on coastal erosion (agricultural land decrease from 23.3% to 5.1% is accompanied by the retreat of ~ 35 m in the vicinity of the stream mouth) and show the effect of sediment transport formula selection on the evolution of coastal morphology. Analysis denotes the relative importance of the parameters involved in the dynamics of watershed-coast systems, and - through the detailed description of a case study - is deemed to provide useful insights for researchers and policy-makers involved in their study.
Numerical Approaches to Spacetime Singularities.
Berger, Beverly K
2002-01-01
This Living Review updates a previous version [25] which is itself an update of a review article [31]. Numerical exploration of the properties of singularities could, in principle, yield detailed understanding of their nature in physically realistic cases. Examples of numerical investigations into the formation of naked singularities, critical behavior in collapse, passage through the Cauchy horizon, chaos of the Mixmaster singularity, and singularities in spatially inhomogeneous cosmologies are discussed.
NASA Astrophysics Data System (ADS)
Popp, Andrea; Moeck, Christian; Radny, Dirk; Borer, Paul; Affolter, Annette; Epting, Jannis; Huggenberger, Peter; Auckenthaler, Adrian; Schirmer, Mario
2015-04-01
Drinking water supply in urban areas is challenging due to different kinds of water use and potential groundwater contamination. We investigate an area where drinking water production is close to different contaminated sites. The study site is characterized by a high complexity of the tectonic and geological setting with a gravel and a karstic aquifer. The two aquifers are partly connected, partly disconnected by an aquitard. To avoid drinking water contamination, artificial groundwater recharge with surface water into the gravel aquifer is used to create a hydraulic barrier between the contaminated sites and the water abstraction wells. Trace compounds, that were found in former times in the surface water but not nowadays, are still detected in the extracted drinking water. Different studies have been performed such as numerical modeling, intensive groundwater monitoring and investigation of drilling cores to get a differentiated overview of the distribution of the contaminants. Back-diffusion from the matrix due to changing hydraulic boundary was stated to be the reason for the actual distribution of the contaminants. In a first approach due to the lack of experimental data or evidence from field measurements, the permeabilities of the karstic aquifer were assumed as homogeneous. In our study, we seek to identify the flow and transport processes within the system including the fracture network in a combined approach of field work and 3D modeling with FEFLOW. During a field campaign we acquired water samples for the analysis of stable water isotopes as well as organic and inorganic compounds. Furthermore, tritium and helium samples were taken to estimate water ages and to determine the flow through the fracture networks. A combination of existing and recently obtained data was used to build and validate a 3D flow and transport model. The simulation of different scenarios such as the water flow for varying injection and extraction rates as well as particle
NASA Astrophysics Data System (ADS)
Maussion, Fabien; Huintjes, Eva; Schneider, Christoph; Scherer, Dieter
2010-05-01
The central goal of the project DynRG-TiP (Dynamic Response of Glaciers on the Tibetan Plateau) is improving our understanding of atmosphere-cryosphere interactions on the Tibetan Plateau (TiP) by adding new data and improved methods combining field studies, remote sensing and numerical modelling. The setup of two automatic weather stations (AWS) on the slopes of Zhadang (north exposed) and Tangse River No. 2 Glacier (south exposed) - 5.850 m a.s.l, Western Nyainqentanglha Mountains (NyM) - in May 2009, joining the previous installations of the Chinese co-operating partners from the Institute of Tibetan Plateau Research, make the Zhadang glacier one of the most extensively equipped and best observed glaciers in Central Asia. Based on previous studies (Kang et al., 2009), a summer ablation lower than 2 m w.e. was expected at the positions of the AWS. However, at the time of the second field campaign in October 2009, both stations had fallen over. This incidence occurred already in mid-July, despite of the mast being fixed three meters deep in the ice. At that time approximately half of the ablation period had passed and the estimated lowering of the surface already summed up to about 2 m. The ice-atmosphere interaction processes leading to this exceptional high melt rates are studied using the data gathered from the two AWS, supplemented by the output of the mesoscale Weather Research and Forecasting (WRF-ARW) model. The downscaling approach using two-way nesting, following Box et al., 2006 and Caldwell et al., 2009, allows substantial improvements in surface mass balance (SMB) computations, providing additional spatial information on long-term time series. A first assessment of the downscaling capabilities of the WRF modelling system is realized for the ablation season 2009, analyzing the output of a 2 km grid resolution nested domain centered on the NyM. References: Box, J. E., Bromwich, D. H., Veenhuis, B. A., Bai, L.-S., Stroeve, J. C., Rogers, J. C., Steffen, K
NASA Astrophysics Data System (ADS)
Baitsch Ghirardello, Bettina; Gerya, Taras; Burg, Jean-Pierre
2010-05-01
Since most of the modern intraoceanic collision zones have an extension, it is important to understand how and where the extensions are created and what the decisive factors are. Why is there no extension in certain subductions zones? Why can basins with a thin crust be observed, while in other places the crust spreads and a new magmatic arc is produced? What is the involvement of slab fluids and melt production in the mantle wedge for the extension process? In order to answer these questions we performed systematic numerical experiments with a 2D coupled petrological-thermo-mechanical numerical model of an intra-oceanic subduction process. Over time, part of our numerical models developed a spontaneous slab retreat associated with following flattening of the slab angle, and therefore an extension of the overriding plate and formation of a new spreading center. Our results indicate that weakening effects from subduction related melts play a major role in defining where the extension is localized: in the for-arc, the back-arc or within an arc. According to the general trend the stronger the weakening is, the more the extension shifts toward the back-arc direction. The intensity of the forearc weakening by slab derived fluids also plays a notable role: if such weakening is insufficient two plates are strongly coupled which results in a compressive subduction without the overriding plate extension. If we compare the different extension types in our models with observations in nature, we observe a good agreement. For example in nature, intra-arc extension may split initially homogeneous arc in two distinct parts such as the active Mariana arc and the inactive West Mariana Ridge and create thin oceanic crust in the middle like the Mariana Trough, similar to our experiments. In this way observations based on seismic images of the Izu-Bonin-Mariana arc crust and mantle structure can be simulated with our model. For example, the first arc with no back-arc rifting (Kyushu
NASA Astrophysics Data System (ADS)
Salehi Taleghani, Sara; Zamani Meymian, Mohammad Reza; Ameri, Mohsen
2016-10-01
In the present research, we report fabrication, experimental characterization and theoretical analysis of semi and full flexible dye sensitized solar cells (DSSCs) manufactured on the basis of bare and roughened stainless steel type 304 (SS304) substrates. The morphological, optical and electrical characterizations confirm the advantage of roughened SS304 over bare and even common transparent conducting oxides (TCOs). A significant enhancement of about 51% in power conversion efficiency is obtained for flexible device (5.51%) based on roughened SS304 substrate compared to the bare SS304. The effect of roughening the SS304 substrates on electrical transport characteristics is also investigated by means of numerical modeling with regard to metal-semiconductor and interfacial resistance arising from the metallic substrate and nanocrystalline semiconductor contact. The numerical modeling results provide a reliable theoretical backbone to be combined with experimental implications. It highlights the stronger effect of series resistance compared to schottky barrier in lowering the fill factor of the SS304-based DSSCs. The findings of the present study nominate roughened SS304 as a promising replacement for conventional DSSCs substrates as well as introducing a highly accurate modeling framework to design and diagnose treated metallic or non-metallic based DSSCs.
NASA Technical Reports Server (NTRS)
Klimas, A. J.
1983-01-01
A numerical method is presented for studying one-dimensional electron plasma evolution under typical interplanetary conditions. The method applies the Fourier-Fourier transform approach to a plasma model that is a generalization of the electrostatic Vlasov-Poisson system of equations. Conservation laws that are modified to include the plasma model generalization and also the boundary effects of nonperiodic solutions are given. A new conservation law for entropy in the transformed space is then introduced. These conservation laws are used to verify the numerical solutions. A discretization error analysis is presented. Two numerical instabilities and the methods used for their suppression are treated. It is shown that in interplanetary plasma conditions, the bump-on-tail instability produces significant excitation of plasma oscillations at the Bohm-Gross frequency and its second harmonic. An explanation of the second harmonic excitation is given in terms of wave-wave coupling during the growth phase of the instability.
NASA Technical Reports Server (NTRS)
Klimas, A. J.
1983-01-01
A numerical method is presented for studying one-dimensional electron plasma evolution under typical interplanetary conditions. The method applies the Fourier-Fourier transform approach to a plasma model that is a generalization of the electrostatic Vlasov-Poisson system of equations. Conservation laws that are modified to include the plasma model generalization and also the boundary effects of nonperiodic solutions are given. A new conservation law for entropy in the transformed space is then introduced. These conservation laws are used to verify the numerical solutions. A discretization error analysis is presented. Two numerical instabilities and the methods used for their suppression are treated. It is shown that in interplanetary plasma conditions, the bump-on-tail instability produces significant excitation of plasma oscillations at the Bohm-Gross frequency and its second harmonic. An explanation of the second harmonic excitation is given in terms of wave-wave coupling during the growth phase of the instability.
Numerical Modeling Experiments
1974-09-01
presence of clouds is associated with the occurvence of condensation in the atmospheric models. Cloudiness 3t a particulat grid point is introduced -4...when saturation is predicted as a result of either large-scale moisture flux convergence or vertical convective adjustment. In most models such clouds ... cloud top, cloud thickness, and liquid-water content. In some general circulation models the local fractional convective cloud amountv tre taken
Numerical Modelling of Cavitation
2006-11-01
effort then consists in determining a formulation of the source term Γv. 2.2.2.1 Use of the Rayleigh - Plesset Equation The Rayleigh - Plesset equation ...in mind that the Rayleigh - Plesset equation is not solved and that the reference to bubbles is artificial: the most basic expression of Rayleigh ... Plesset equation is simply used to formulate a source term for vaporisation in the frame of a single fluid model. 2.2.2.2 Empirical Modelling of the
Shu, Shi; Zhu, Wei; Wang, Shengwei; Ng, Charles Wang Wai; Chen, Yunmin; Chiu, Abraham Chung Fai
2017-09-07
Groundwater pollution by leachate leakage is one of the most common environmental hazards associated with municipal solid waste (MSW) landfill sites. However, landfill leachate contains a large variety of pollutants with widely different concentrations and biotoxicity. Thus, selecting leachate pollutant indicators and levels for identifying breakthrough of barrier systems are key factors in assessing their breakthrough times. This study investigated the transport behavior of leachate pollutants through landfill barrier systems using centrifuge tests and numerical modeling. The overall objective of this study is to investigate breakthrough mechanism to facilitate the establishment of a consistent pollutant threshold concentration for use as a groundwater pollution alert. The specific objective of the study is to identify which pollutant and breakthrough threshold concentration should be used as an indicator in the transport of multiple pollutants through a landfill barrier system. The threshold concentration from the Chinese groundwater quality standards was used in the analysis of the properties of leachates from many landfill sites in China. The time for the chemical oxygen demand (COD) to reach the breakthrough threshold concentration at the bottom of a 2m compacted clay liner was 1.51years according to centrifuge tests, and 1.81years according to numerical modeling. The COD breakthrough times for single and double composite liners were within the range of 16 and 36.58years. Of all the pollutants, COD was found to consistently reach the breakthrough threshold first. Therefore, COD can be selected as the key indicator for pollution alerts and used to assess the environmental risk posed by MSW landfill sites. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Kristiawan, Budi; Santoso, Budi; Juwana, Wibawa Endra; Ramadhan, Raden Mahesa; Riandana, Ivan
2017-01-01
Laminar convective heat transfer of TiO2/water nanofluids flowing through in tube has been studied numerically using a CFD code (ANSYS Fluent Release 14.5). 2D axisymmetric configuration was applied to a horizontal circular straight tube with 2000 mm in length and 4.0 mm in inner diameter. Semi-Implicit Method for Pressure-Linked Equation (SIMPLE) was performed to couple the pressure and velocity. The convergence of the iterative solution was carefully monitored less than 10-4. The temperature distributions of nanofluids flow at Reynolds number of 900 and 1500 were mapped for a circular tube subjected to constant wall heat flux boundary conditions of 4000 W/m2. By considering the mean temperature of nanofluids, the two-phase mixture model using Eulerian approach was performed to analyze numerically convective heat transfer for titania nanoparticle concentrations of 0.24, 0.60, 1.18 vol.%. The well-known Shah and London equation was used to validate this numerical study at developing laminar flow regime. The computed numerical data has a better agreement with the prediction from Shah-London correlation rather than the centerline temperature. The results show that the two-phase mixture model using Eulerian approach considering the mean temperature has succeeded to evaluate accurately.
Numerical Simulation of Heliospheric Transients Approaching Geospace
2009-12-01
12/15/08 – 12/14/09 Numerical Simulation of Heliospheric Transients Approaching Geospace Report by Dusan Odstrcil, University of Colorado...simulations of heliospheric transients approaching geospace . The project was supervised by Dr. Dusan Odstrcil at the University of Colorado (CU...plays a key role in the prediction accuracy of heliospheric transients approaching geospace . This report presents main results achieved within the
NASA Astrophysics Data System (ADS)
Carr, B. B.; De'Michieli Vitturi, M.; Clarke, A. B.; Voight, B.
2013-12-01
Transitions between effusive and explosive eruptions, common at silicic volcanoes, can occur between distinct eruptive episodes or can occur as changes between effusive and explosive phases within a single episode. The precise causes of these transitions are difficult to determine due to the multitude of mechanisms and variables that can influence fragmentation thresholds. Numerical modeling of magma ascent within a volcanic conduit allows the influence of key variables to be extensively tested. We study the effect of different variables on the mass eruption rate at the vent using a conservative, 1-D, two-phase, steady-state model that allows for lateral gas loss at shallow depths. Several fragmentation criteria are also tested. We are able to generate a number of regime diagrams for a variety of magma and conduit conditions that constrain transitions from effusive to explosive episodes. We show that a transition to explosive activity can occur without changes in the bulk chemistry, crystal volume fraction, or gas mass fraction of the magma. Eruptive style can be controlled by the pressure gradient within the conduit caused by either overpressure in the chamber or varying lava dome size at the vent. Specific results are sensitive to both magma temperature and conduit geometry. It is important that these variables are well constrained when applying this model to different volcanic systems. We apply our model to the recent activity at Merapi Volcano in Indonesia. We constrain model input and output parameters using current petrologic, seismic, and geodetic studies of the Merapi system, and vary critical parameters over reasonable ranges as documented in the literature. Our model is able to reproduce eruption rates observed during both the 2006 effusive and 2010 explosive/effusive eruptions. Our modeling suggests that a combination of chamber overpressure, increased volatile content, and decreased crystal content due to the voluminous injection of new magma into the
NASA Astrophysics Data System (ADS)
Santillan, J. R.; Amora, A. M.; Makinano-Santillan, M.; Marqueso, J. T.; Cutamora, L. C.; Serviano, J. L.; Makinano, R. M.
2016-06-01
In this paper, we present a combined geospatial and two dimensional (2D) flood modeling approach to assess the impacts of flooding due to extreme rainfall events. We developed and implemented this approach to the Tago River Basin in the province of Surigao del Sur in Mindanao, Philippines, an area which suffered great damage due to flooding caused by Tropical Storms Lingling and Jangmi in the year 2014. The geospatial component of the approach involves extraction of several layers of information such as detailed topography/terrain, man-made features (buildings, roads, bridges) from 1-m spatial resolution LiDAR Digital Surface and Terrain Models (DTM/DSMs), and recent land-cover from Landsat 7 ETM+ and Landsat 8 OLI images. We then used these layers as inputs in developing a Hydrologic Engineering Center Hydrologic Modeling System (HEC HMS)-based hydrologic model, and a hydraulic model based on the 2D module of the latest version of HEC River Analysis System (RAS) to dynamically simulate and map the depth and extent of flooding due to extreme rainfall events. The extreme rainfall events used in the simulation represent 6 hypothetical rainfall events with return periods of 2, 5, 10, 25, 50, and 100 years. For each event, maximum flood depth maps were generated from the simulations, and these maps were further transformed into hazard maps by categorizing the flood depth into low, medium and high hazard levels. Using both the flood hazard maps and the layers of information extracted from remotely-sensed datasets in spatial overlay analysis, we were then able to estimate and assess the impacts of these flooding events to buildings, roads, bridges and landcover. Results of the assessments revealed increase in number of buildings, roads and bridges; and increase in areas of land-cover exposed to various flood hazards as rainfall events become more extreme. The wealth of information generated from the flood impact assessment using the approach can be very useful to the
NASA Astrophysics Data System (ADS)
Spreafico, Margherita Cecilia; Cervi, Federico; Francioni, Mirko; Stead, Doug; Borgatti, Lisa
2017-07-01
The mechanisms controlling the onset of minor slope instability at the edges of rocky plateaux exhibiting lateral spreading phenomena are yet to be fully understood. Hypotheses have recently been introduced to explain the influence of groundwater within these plateaux on geomorphological processes leading to slope instability. We present a back analysis of a recent landslide which occurred on 27th February 2014 in the town of San Leo, Italy. The role of the softening of basal clay shales and erosion due to seepage is investigated using finite element geomechanical models. Both processes were observed in the field and are related to groundwater discharging along the contact between the rocky slab and the clay-rich substratum. Fracture propagation paths involving pre-existing discontinuities and intact rock bridges failure were simulated using a simplified discrete fracture network (DFN) model coupled with a Voronoi polygonal mesh approach. Model results allow the failure to be classified as a secondary toppling phenomenon. Moreover, a critical amount of undermining was indicated by the models agreeing with field observations made prior to the failure. Based on the modelling results, an interpretation of the overall mechanism inducing failures at the edges of fractured rock slabs is given. In particular, the inter-relationships between groundwater flow and geomorphic processes acting within the rock masses are presented.
NASA Astrophysics Data System (ADS)
Bartzke, Gerhard; Rogers, Benedict D.; Fourtakas, Georgios; Mokos, Athanasios; Huhn, Katrin
2016-04-01
The processes that cause the creation of a variety of sediment morphological features, e.g. laminated beds, ripples, or dunes, are based on the initial motion of individual sediment grains. However, with experimental techniques it is difficult to measure the flow characteristics, i.e., the velocity of the pore water flow in sediments, at a sufficient resolution and in a non-intrusive way. As a result, the role of fluid infiltration at the surface and in the interior affecting the initiation of motion of a sediment bed is not yet fully understood. Consequently, there is a strong need for numerical models, since these are capable of quantifying fluid driven sediment transport processes of complex sediment beds composed of irregular shapes. The numerical method Smoothed Particle Hydrodynamics (SPH) satisfies this need. As a meshless and Lagrangian technique, SPH is ideally suited to simulating flows in sediment beds composed of various grain shapes, but also flow around single grains at a high temporal and spatial resolution. The solver chosen is DualSPHysics (www.dual.sphysics.org) since this is validated for a range of flow conditions. For the present investigation a 3-D numerical flume model was generated using SPH with a length of 4.0 cm, a width of 0.05 cm and a height of 0.2 cm where mobile sediment particles were deposited in a recess. An experimental setup was designed to test sediment configurations composed of irregular grain shapes (grain diameter, D50=1000 μm). Each bed consisted of 3500 mobile objects. After the bed generation process, the entire domain was flooded with 18 million fluid particles. To drive the flow, an oscillating motion perpendicular to the bed was applied to the fluid, reaching a peak value of 0.3 cm/s, simulating 4 seconds of real time. The model results showed that flow speeds decreased logarithmically from the top of the domain towards the surface of the beds, indicating a fully developed boundary layer. Analysis of the fluid
NASA Astrophysics Data System (ADS)
Bartzke, Gerhard; Rogers, Benedict D.; Fourtakas, Georgios; Mokos, Athanasios; Canelas, Ricardo B.; Huhn, Katrin
2017-04-01
With experimental techniques it is difficult to measure flow characteristics, e.g. the velocity of pore water flow in sediments, at a sufficient resolution and in a non-intrusive way. As a result, the effect of fluid flow at the surface and in the interior of a sediment bed on particle motion is not yet fully understood. Numerical models may help to overcome these problems. In this study Smoothed Particle Hydrodynamics (SPH) was chosen since it is ideally suited to simulate flows in sediment beds, at a high temporal and spatial resolution. The solver chosen is DualSPHysics 4.0 (www.dual.sphysics.org), since this is validated for a range of flow conditions. For the present investigation a 3D numerical flow channel was generated with a length of 15.0 cm, a width of 0.5 cm and a height of 4.0 cm. The entire domain was flooded with 8 million fluid particles, while 400 mobile sediment particles were deposited under applied gravity (grain diameter D50=10 mm) to generate randomly packed beds. Periodic boundaries were applied to the sidewalls to mimic an endless flow. To drive the flow, an acceleration perpendicular to the bed was applied to the fluid, reaching a target value of 0.3 cm/s, simulating 12 seconds of real time. Comparison of the model results to the law of the wall showed that flow speeds decreased logarithmically from the top of the domain towards the surface of the beds, indicating a fully developed boundary layer. Analysis of the fluid surrounding the sediment particles revealed critical threshold velocities, subsequently resulting in the initiation of motion due to drag. Sediment flux measurements indicated that with increasing simulation time a larger quantity of sediment particles was transported at the direct vicinity of the bed, whereas the amount of transported particles along with flow speed values, within the pore spaces, decreased with depth. Moreover, sediment - sediment particle collisions at the sediment surface lead to the opening of new pore
Zhang, Liwei; Anderson, Nicole; Dilmore, Robert; Soeder, Daniel J; Bromhal, Grant
2014-09-16
Potential natural gas leakage into shallow, overlying formations and aquifers from Marcellus Shale gas drilling operations is a public concern. However, before natural gas could reach underground sources of drinking water (USDW), it must pass through several geologic formations. Tracer and pressure monitoring in formations overlying the Marcellus could help detect natural gas leakage at hydraulic fracturing sites before it reaches USDW. In this study, a numerical simulation code (TOUGH 2) was used to investigate the potential for detecting leaking natural gas in such an overlying geologic formation. The modeled zone was based on a gas field in Greene County, Pennsylvania, undergoing production activities. The model assumed, hypothetically, that methane (CH4), the primary component of natural gas, with some tracer, was leaking around an existing well between the Marcellus Shale and the shallower and lower-pressure Bradford Formation. The leaky well was located 170 m away from a monitoring well, in the Bradford Formation. A simulation study was performed to determine how quickly the tracer monitoring could detect a leak of a known size. Using some typical parameters for the Bradford Formation, model results showed that a detectable tracer volume fraction of 2.0 × 10(-15) would be noted at the monitoring well in 9.8 years. The most rapid detection of tracer for the leak rates simulated was 81 days, but this scenario required that the leakage release point was at the same depth as the perforation zone of the monitoring well and the zones above and below the perforation zone had low permeability, which created a preferred tracer migration pathway along the perforation zone. Sensitivity analysis indicated that the time needed to detect CH4 leakage at the monitoring well was very sensitive to changes in the thickness of the high-permeability zone, CH4 leaking rate, and production rate of the monitoring well.
NASA Astrophysics Data System (ADS)
Subasic, E.; Huang, C.; Jakumeit, J.; Hediger, F.
2015-06-01
The ongoing increase in the size and capacity of state-of-the-art wind power plants is highlighting the need to reduce the weight of critical components, such as hubs, main shaft bearing housings, gear box housings and support bases. These components are manufactured as nodular iron castings (spheroid graphite iron, or SGI). A weight reduction of up to 20% is achievable by optimizing the geometry to minimize volume, thus enabling significant downsizing of wind power plants. One method for enhancing quality control in the production of thick-walled SGI castings, and thus reducing tolerances and, consequently, enabling castings of smaller volume is via a casting simulation of mould filling and solidification based on a combination of microscopic model and VoF-multiphase approach. Coupled fluid flow with heat transport and phase transformation kinetics during solidification is described by partial differential equations and solved using the finite volume method. The flow of multiple phases is described using a volume of fluid approach. Mass conservation equations are solved separately for both liquid and solid phases. At the micro-level, the diffusion-controlled growth model for grey iron eutectic grains by Wetterfall et al. is combined with a growth model for white iron eutectic grains. The micro-solidification model is coupled with macro-transport equations via source terms in the energy and continuity equations. As a first step the methodology was applied to a simple geometry to investigate the impact of mould-filling on the grey-to-white transition prediction in nodular cast iron.
NASA Astrophysics Data System (ADS)
Xu, Hongzhou; Zhang, Keqi; Shen, Jian; Li, Yuepeng
2010-12-01
The effectiveness of simulating surge inundation using the Eulerian-Lagrangian circulation (ELCIRC) model over multi-scale unstructured grids was examined in this study. The large domain model grid encompasses the western North Atlantic Ocean, the Gulf of Mexico, and the Caribbean Sea to appropriately account for remote and resonance effects during hurricane events and simplify the specification of the open boundary condition. The U.S. East and Gulf Coasts were divided into 12 overlapping basins with fine-resolution (up to 30 × 30 m) grids to model overland surge flooding. These overlapping basins have different fine-resolution grids near the coastal region, but have an identical coarse-resolution grid in the offshore region within the large model domain. Thus, the storm surge prediction can be conducted without reducing computation efficiency by executing multiple model runs with local fine-resolution grids where potential hurricane landfalls may occur. The capability of the multi-scale approach was examined by simulating storm surge caused by Hurricanes Andrew (1992) and Isabel (2003) along the South Florida coast and in the Chesapeake Bay. Comparisons between simulated and observed results suggest that multi-scale models proficiently simulated storm surges in the Biscayne Bay and the Chesapeake Bay during two hurricanes. A series of sensitivity tests demonstrated that the simulation of surge flooding was improved when LiDAR topographic data and special bottom drag coefficient values for mangrove forests were employed. The tests also showed that appropriate representation of linear hydrologic features is important for computing surge inundation in an urban area.
NASA Astrophysics Data System (ADS)
Gourdeau, L.; Verron, J.; Melet, A.; Kessler, W.; Marin, F.; Djath, B.
2014-04-01
The Solomon Sea is an area of high level of eddy kinetic energy (EKE), and represents a transit area for the low-latitude western boundary currents (LLWBCs) connecting the subtropics to the equatorial Pacific and playing a major role in ENSO dynamics. This study aims at documenting the surface mesoscale activity in the Solomon Sea for the first time. Our analysis is based on the joint analysis of altimetric data and outputs from a 1/12° model simulation. The highest surface EKE is observed in the northern part of the basin and extends southward to the central basin. An eddy tracking algorithm is used to document the characteristics and trajectories of coherent mesoscale vortices. Cyclonic eddies, generated in the south basin, are advected to the north by the LLWBCs before merging with stationary mesoscale structures present in the mean circulation. Anticyclonic eddies are less numerous. They are generated in the southeastern basin, propagate westward, reach the LLWBCs, and dissipate. The seasonal and interannual modulations of the mesoscale activity are well marked. At seasonal time scale, maximum (minimum) activity is in May-June (September). At interannual time scale, the mesoscale activity is particularly enhanced during La Niña conditions. If instabilities of the regional circulations seem to explain the generation of mesoscale features, the modulation of the mesoscale activity seems to be rather related with the intrusion at Solomon Strait of the surface South Equatorial Current, rather than to the LLWBCs, by modulating the horizontal and vertical shears suitable for instabilities.
NASA Astrophysics Data System (ADS)
Smith, L. A.; Barbour, S. L.; Hendry, M. J.; Novakowski, K.; van der Kamp, G.
2016-07-01
Characterizing the hydraulic conductivity (K) of aquitards is difficult due to technical and logistical difficulties associated with field-based methods as well as the cost and challenge of collecting representative and competent core samples for laboratory analysis. The objective of this study was to produce a multiscale comparison of vertical and horizontal hydraulic conductivity (Kv and Kh, respectively) of a regionally extensive Cretaceous clay-rich aquitard in southern Saskatchewan. Ten vibrating wire pressure transducers were lowered into place at depths between 25 and 325 m, then the annular was space was filled with a cement-bentonite grout. The in situ Kh was estimated at the location of each transducer by simulating the early-time pore pressure measurements following setting of the grout using a 2-D axisymmetric, finite element, numerical model. Core samples were collected during drilling for conventional laboratory testing for Kv to compare with the transducer-determined in situ Kh. Results highlight the importance of scale and consideration of the presence of possible secondary features (e.g., fractures) in the aquitard. The proximity of the transducers to an active potash mine (˜1 km) where depressurization of an underlying aquifer resulted in drawdown through the aquitard provided a unique opportunity to model the current hydraulic head profile using both the Kh and Kv estimates. Results indicate that the transducer-determined Kh estimates would allow for the development of the current hydraulic head distribution, and that simulating the pore pressure recovery can be used to estimate moderately low in situ Kh (<10-11 m s-1).
Numerical modeling of preburner flowfield
NASA Astrophysics Data System (ADS)
Chow, A. S.; Mo, J. D.; Jin, K. R.
1993-06-01
This work is intended to numerically predict the flowfields inside the preburner of the Space Shuttle Main Engine. The computer code (FDNS) based on pressure correction method is modified and adapted with an elliptic grid generator. The original configuration of the preburner in conjunction with downstream gas turbines has been simplified geometrically and numerically modeled at its full power in this work. The computational results are presented and qualitatively discussed with test data collected in NASA/MSFC.
Saâdi, Zakaria; Guillevic, Jérôme
2016-01-01
Uncertainties on the mathematical modelling of radon ((222)Rn) transport in an unsaturated covered uranium mill tailings (UMT) soil at field scale can have a great impact on the estimation of the average measured radon exhalation rate to the atmosphere at the landfill cover. These uncertainties are usually attributed to the numerical errors from numerical schemes dealing with soil layering, and to inadequate modelling of physical processes at the soil/plant/atmosphere interface and of the soil hydraulic and transport properties, as well as their parameterization. In this work, we demonstrate how to quantify these uncertainties by comparing simulation results from two different numerical models to experimental data of radon exhalation rate and activity concentration in the soil-gas measured in a covered UMT-soil near the landfill site Lavaugrasse (France). The first approach is based on the finite volume compositional (i.e., water, radon, air) transport model TOUGH2/EOS7Rn (Transport Of Unsaturated Groundwater and Heat version 2/Equation Of State 7 for Radon; Saâdi et al., 2014), while the second one is based on the finite difference one-component (i.e., radon) transport model TRACI (Transport de RAdon dans la Couche Insaturée; Ferry et al., 2001). Transient simulations during six months of variable rainfall and atmospheric air pressure showed that the model TRACI usually overestimates both measured radon exhalation rate and concentration. However, setting effective unsaturated pore diffusivities of water, radon and air components in soil-liquid and gas to their physical values in the model EOS7Rn, allowed us to enhance significantly the modelling of these experimental data. Since soil evaporation has been neglected, none of these two models was able to simulate the high radon peaks observed during the dry periods of summer. However, on average, the radon exhalation rate calculated by EOS7Rn was 34% less than that was calculated by TRACI, and much closer to the
NASA Astrophysics Data System (ADS)
Loeches, Jesus; Vicen-Bueno, Raul; Pennucci, Giuliana; Russo, Aniello
2015-05-01
An understanding of environmental variability (stability/instability) is important to support operational planning of expeditionary warfare and littoral operations, as well as for preparing the Recognized Environmental Picture (REP). Specifically, the identification of environmentally stable/unstable areas helps the planning of maritime operations, increasing their likelihood of success. The purpose of the paper is to describe a methodology to form and interpret an initial spatial-temporal variability characterization of maritime areas from Remote Sensing (RS) and Numerical Ocean Model (NOM) data. As a case study, the analysis of the sea surface tem- perature (SST) in the Black Sea from historical time-series of RS imagery and NOM data is considered. The results of the analysis are validated with in situ measurements from moorings. Identification of gaps of geospatial information is also done in this study. The analysis is focused on monthly spatial-temporal variability of the SST, generating stability maps displaying the geospatial distribution of environmentally stable/unstable areas along a year. The results show how the proposed methodology captures the temporal variability of the SST in the Black Sea, being compared with in situ measurements, and provides useful information for the identification of environmentally stable/unstable areas. The results show a general agreement in the variability with both RS and NOM data, when RS imagery may be used for the present analysis, i.e. when low cloud coverage is given. This paper demonstrates that when RS imagery gaps are not negligible (e.g. due to high cloud occurrence in winter season), these gaps could be filled with NOM data.
Numerical approaches to fractional calculus and fractional ordinary differential equation
NASA Astrophysics Data System (ADS)
Li, Changpin; Chen, An; Ye, Junjie
2011-05-01
Nowadays, fractional calculus are used to model various different phenomena in nature, but due to the non-local property of the fractional derivative, it still remains a lot of improvements in the present numerical approaches. In this paper, some new numerical approaches based on piecewise interpolation for fractional calculus, and some new improved approaches based on the Simpson method for the fractional differential equations are proposed. We use higher order piecewise interpolation polynomial to approximate the fractional integral and fractional derivatives, and use the Simpson method to design a higher order algorithm for the fractional differential equations. Error analyses and stability analyses are also given, and the numerical results show that these constructed numerical approaches are efficient.
NASA Astrophysics Data System (ADS)
Kluczyk, K.; Jacak, W.
2016-01-01
We investigate metal nano-particle size influence on plasmon resonance within theoretical and numerical approaches and compare results with available experimental data in order to improve resolution of optical identification of metallic nano-particle size and shape. The developed microscopic approach is the quantum random phase approximation model of plasmons in metallic nano-particles including plasmon damping by electron scattering and by radiative losses (i.e., by the so-called Lorentz friction). The numerical approach is by the finite element method solution of Maxwell equations for incident planar wave in spherical (also nano-rod, spheroid) geometry upon the system COMSOL and Mie treatment, supplemented with phenomenologically modeled dielectric function of metallic nano-particle. Comparison with experimental data for light extinction in Au and Ag nano-particle colloidal solutions with different particle sizes is presented. The crucial role of the Lorentz friction in the size effect of plasmon resonance in large (e.g., 20-60 nm for Au in vacuum) metallic nanoparticles is evidenced.
Numerical modeling of Waianae Harbor
Mader, C.L.; Lucas, S.
1985-01-01
The Waianae harbor problem is an example of the use of numerical modeling techniques available at JTRE of the University of Hawaii to assist in the evaluation of oceanographic fluid dynamic flow problems. The numerical techniques are available to assist in the modeling of many problems of interest to the Hawaii Ocean Experiment. One application that has received considerable effort is the formation, propagation, and run-up of tsunami waves. The interaction of tsunami waves with the island chain is an important problem that needs more study. The models can be used to study storm surge interaction with the Hawaii islands and current and circulation around and through the islands. It is important that the modeling not be limited to the usual nonlinear shallow-water models, since they are inappropriate for many of the problems of interest to the Hawaii Ocean Experiment. 6 references, 5 figures.
Numerical noise in ocean and estuarine models
Walters, R.; Carey, G.F.
1984-01-01
Approximate methods for solving the shallow water equations may lead to solutions exhibiting large fictitious, numerically-induced oscillations. The analysis of the discrete dispersion relation and modal solutions of small wavelengths provides a powerful technique for assessing the sensitivity of alternative numerical schemes to irregular data which may lead to such oscillatory numerical noise. For those schemes where phase speed vanishes at a finite wavenumber or there are multiple roots for wavenumber, oscillation modes can exist which are uncoupled from the dynamics of the problem. The discrete modal analysis approach is used here to identify two classes of spurious oscillation modes associated respectively with the two different asymptotic limits corresponding to estuarine and large scale ocean models. The analysis provides further insight into recent numerical results for models which include large spatial scales and Coriolis acceleration. ?? 1984.
Numerical Modeling of LCROSS experiment
NASA Astrophysics Data System (ADS)
Sultanov, V. G.; Kim, V. V.; Matveichev, A. V.; Zhukov, B. G.; Lomonosov, I. V.
2009-06-01
The mission objectives of the Lunar Crater Observation and Sensing Satellite (LCROSS) include confirming the presence or absence of water ice in a permanently shadowed crater in the Moon's polar regions. In this research we present results of numerical modeling of forthcoming LCROSS experiment. The parallel FPIC3D gas dynamic code with implemented realistic equations of state (EOS) and constitutive relations [1] was used. New wide--range EOS for lunar ground was developed. We carried out calculations of impact of model body on the lunar surface at different angels. Situations of impact on dry and water ice--contained lunar ground were also taken into account. Modeling results are given for crater's shape and size along with amount of ejecta. [4pt] [1] V.E. Fortov, V.V. Kim, I.V. Lomonosov, A.V. Matveichev, A.V. Ostrik. Numerical modeling of hypervelocity impacts, Intern J Impact Engeneering, 33, 244-253 (2006)
Thermoelectricity of interacting particles: a numerical approach.
Chen, Shunda; Wang, Jiao; Casati, Giulio; Benenti, Giuliano
2015-09-01
A method for computing the thermopower in interacting systems is proposed. This approach, which relies on Monte Carlo simulations, is illustrated first for a diatomic chain of hard-point elastically colliding particles and then in the case of a one-dimensional gas with (screened) Coulomb interparticle interaction. Numerical simulations up to N>10^{4} particles confirm the general theoretical arguments for momentum-conserving systems and show that the thermoelectric figure of merit increases linearly with the system size.
Numerical Modeling of Ablation Heat Transfer
NASA Technical Reports Server (NTRS)
Ewing, Mark E.; Laker, Travis S.; Walker, David T.
2013-01-01
A unique numerical method has been developed for solving one-dimensional ablation heat transfer problems. This paper provides a comprehensive description of the method, along with detailed derivations of the governing equations. This methodology supports solutions for traditional ablation modeling including such effects as heat transfer, material decomposition, pyrolysis gas permeation and heat exchange, and thermochemical surface erosion. The numerical scheme utilizes a control-volume approach with a variable grid to account for surface movement. This method directly supports implementation of nontraditional models such as material swelling and mechanical erosion, extending capabilities for modeling complex ablation phenomena. Verifications of the numerical implementation are provided using analytical solutions, code comparisons, and the method of manufactured solutions. These verifications are used to demonstrate solution accuracy and proper error convergence rates. A simple demonstration of a mechanical erosion (spallation) model is also provided to illustrate the unique capabilities of the method.
Numerical Modeling for Large Scale Hydrothermal System
NASA Astrophysics Data System (ADS)
Sohrabi, Reza; Jansen, Gunnar; Malvoisin, Benjamin; Mazzini, Adriano; Miller, Stephen A.
2017-04-01
Moderate-to-high enthalpy systems are driven by multiphase and multicomponent processes, fluid and rock mechanics, and heat transport processes, all of which present challenges in developing realistic numerical models of the underlying physics. The objective of this work is to present an approach, and some initial results, for modeling and understanding dynamics of the birth of large scale hydrothermal systems. Numerical modeling of such complex systems must take into account a variety of coupled thermal, hydraulic, mechanical and chemical processes, which is numerically challenging. To provide first estimates of the behavior of this deep complex systems, geological structures must be constrained, and the fluid dynamics, mechanics and the heat transport need to be investigated in three dimensions. Modeling these processes numerically at adequate resolution and reasonable computation times requires a suite of tools that we are developing and/or utilizing to investigate such systems. Our long-term goal is to develop 3D numerical models, based on a geological models, which couples mechanics with the hydraulics and thermal processes driving hydrothermal system. Our first results from the Lusi hydrothermal system in East Java, Indonesia provide a basis for more sophisticated studies, eventually in 3D, and we introduce a workflow necessary to achieve these objectives. Future work focuses with the aim and parallelization suitable for High Performance Computing (HPC). Such developments are necessary to achieve high-resolution simulations to more fully understand the complex dynamics of hydrothermal systems.
Numerical FEM modeling in dental implantology
NASA Astrophysics Data System (ADS)
Roateşi, Iulia; Roateşi, Simona
2016-06-01
This paper is devoted to a numerical approach of the stress and displacement calculation of a system made up of dental implant, ceramic crown and surrounding bone. This is the simulation of a clinical situation involving both biological - the bone tissue, and non-biological - the implant and the crown, materials. On the other hand this problem deals with quite fine technical structure details - the threads, tapers, etc with a great impact in masticatory force transmission. Modeling the contact between the implant and the bone tissue is important to a proper bone-implant interface model and implant design. The authors proposed a three-dimensional numerical model to assess the biomechanical behaviour of this complex structure in order to evaluate its stability by determining the risk zones. A comparison between this numerical analysis and clinical cases is performed and a good agreement is obtained.
Numerical approach of the quantum circuit theory
NASA Astrophysics Data System (ADS)
Silva, J. J. B.; Duarte-Filho, G. C.; Almeida, F. A. G.
2017-03-01
In this paper we develop a numerical method based on the quantum circuit theory to approach the coherent electronic transport in a network of quantum dots connected with arbitrary topology. The algorithm was employed in a circuit formed by quantum dots connected each other in a shape of a linear chain (associations in series), and of a ring (associations in series, and in parallel). For both systems we compute two current observables: conductance and shot noise power. We find an excellent agreement between our numerical results and the ones found in the literature. Moreover, we analyze the algorithm efficiency for a chain of quantum dots, where the mean processing time exhibits a linear dependence with the number of quantum dots in the array.
NASA Astrophysics Data System (ADS)
Sert, İsmail Ozan; Sezer-Uzol, Nilay
2016-09-01
Computational fluid dynamics simulations for initially hydro-dynamically fully developed laminar flow with nanofluids in a circular duct under constant wall temperature condition are performed with two-phase mixture model by using Fluent software. Thermal behaviors of the system are investigated for constant wall temperature condition for Al2O3/water nanofluid. Hamilton-Crosser model and the Brownian motion effect are used for the thermal conductivity model of nanofluid instead of the Fluent default model for mixtures which gives extraordinary high thermal conductivity values and is valid for macro systems. Also, thermal conductivity and viscosity of the base fluid are taken as temperature dependent. The effects of nanoparticle volume fraction, nanoparticle size, and inlet Peclet number on the heat transfer enhancement are investigated. The results are compared with single-phase results which give slightly lower heat transfer coefficient values than the results of two-phase mixture model.
Urban pavement surface temperature. Comparison of numerical and statistical approach
NASA Astrophysics Data System (ADS)
Marchetti, Mario; Khalifa, Abderrahmen; Bues, Michel; Bouilloud, Ludovic; Martin, Eric; Chancibaut, Katia
2015-04-01
The forecast of pavement surface temperature is very specific in the context of urban winter maintenance. to manage snow plowing and salting of roads. Such forecast mainly relies on numerical models based on a description of the energy balance between the atmosphere, the buildings and the pavement, with a canyon configuration. Nevertheless, there is a specific need in the physical description and the numerical implementation of the traffic in the energy flux balance. This traffic was originally considered as a constant. Many changes were performed in a numerical model to describe as accurately as possible the traffic effects on this urban energy balance, such as tires friction, pavement-air exchange coefficient, and infrared flux neat balance. Some experiments based on infrared thermography and radiometry were then conducted to quantify the effect fo traffic on urban pavement surface. Based on meteorological data, corresponding pavement temperature forecast were calculated and were compared with fiels measurements. Results indicated a good agreement between the forecast from the numerical model based on this energy balance approach. A complementary forecast approach based on principal component analysis (PCA) and partial least-square regression (PLS) was also developed, with data from thermal mapping usng infrared radiometry. The forecast of pavement surface temperature with air temperature was obtained in the specific case of urban configurtation, and considering traffic into measurements used for the statistical analysis. A comparison between results from the numerical model based on energy balance, and PCA/PLS was then conducted, indicating the advantages and limits of each approach.
NASA Astrophysics Data System (ADS)
Daehne, A.; van Asch, Th. W. J.; Corsini, A.; Spickerman, A.; Bégueria-Portuguès, S.
2010-05-01
Understanding the behavior of landslides often starts with a numerical simulation that accurately accounts for observed physical processes. This research proposes a method for the implementation of the dynamic SLOWMOVE model to a high-mobility, moderate velocity earth flow located in the northern Apennines. The Valoria landslide is 3.5 km long earth slide- earth flow that resumed activity in 2001. Landslide materials comprised of disaggregated Flysch, Marl and Claystones are mainly transported as earth slides in the upper slope, and as earth flows in the main track. Repeated acceleration events lasting several weeks occur seasonally since 2001 reactivation. During events it can reach velocities of about 10 m per hour with a cumulative displacement of hundreds of meters. Through this intermittent activity, more than ten million cubic meters have been transferred down-slope since 2001, changing significantly and several times the morphology of the slope. The SLOWMOVE model postulates that landslide materials can be represented as a homogeneous material with rheological properties and constant density. The approach is based on the Navier-Stokes equations. Under the assumptions that the inertia of the moving mass can be neglected, the behavior of the landslide depends solely on the balance between driving forces and resisting forces which contain a Coulomb-viscous component. Excess pore pressure due to undrained loading and lateral force form the main parameters that control the acceleration. The effects of lateral force and excess pore pressure allow a numerical simulation of landslide reactivation by coupling of two landslide bodies. A numerical scheme based on a finite difference solution (2D Eulerian space with Cartesian coordinates) was implemented in Microsoft Excel and used to compute propagation of the mass in 1D. The model allows coupling between mass movements having different geotechnical characteristic. In practice, it allows simulating the reactivation of
Numerical approach for unstructured quantum key distribution
Coles, Patrick J.; Metodiev, Eric M.; Lütkenhaus, Norbert
2016-01-01
Quantum key distribution (QKD) allows for communication with security guaranteed by quantum theory. The main theoretical problem in QKD is to calculate the secret key rate for a given protocol. Analytical formulas are known for protocols with symmetries, since symmetry simplifies the analysis. However, experimental imperfections break symmetries, hence the effect of imperfections on key rates is difficult to estimate. Furthermore, it is an interesting question whether (intentionally) asymmetric protocols could outperform symmetric ones. Here we develop a robust numerical approach for calculating the key rate for arbitrary discrete-variable QKD protocols. Ultimately this will allow researchers to study ‘unstructured' protocols, that is, those that lack symmetry. Our approach relies on transforming the key rate calculation to the dual optimization problem, which markedly reduces the number of parameters and hence the calculation time. We illustrate our method by investigating some unstructured protocols for which the key rate was previously unknown. PMID:27198739
Moore's Law and Numerical Modeling
NASA Astrophysics Data System (ADS)
Voller, V. R.; Porté-Agel, F.
2002-07-01
An estimate of the rate of increase in numerical simulation grid sizes with time is obtained by counting the grids (measured in terms of number of node points) reported in the nine volumes of an established proceedings on the numerical modeling of solidification phenomena dating back to 1980. It is shown that the largest grids used in a given year increase at a rate consistent with the well-known Moore's law on computing power, i.e., the number of nodes in the grids double every 18 months. From this observation, approximate bounds on the available grid size in a current year are established. This approximation is used to provide projections as to when, assuming Moore's law continues to hold, direct simulations of physical phenomena, which resolve to the smallest scale present, will be achievable.
Novel Numerical Approaches to Loop Quantum Cosmology
NASA Astrophysics Data System (ADS)
Diener, Peter
2015-04-01
Loop Quantum Gravity (LQG) is an (as yet incomplete) approach to the quantization of gravity. When applied to symmetry reduced cosmological spacetimes (Loop Quantum Cosmology or LQC) one of the predictions of the theory is that the Big Bang is replaced by a Big Bounce, i.e. a previously existing contracting universe underwent a bounce at finite volume before becoming our expanding universe. The evolution equations of LQC take the form of difference equations (with the discretization given by the theory) that in the large volume limit can be approximated by partial differential equations (PDEs). In this talk I will first discuss some of the unique challenges encountered when trying to numerically solve these difference equations. I will then present some of the novel approaches that have been employed to overcome the challenges. I will here focus primarily on the Chimera scheme that takes advantage of the fact that the LQC difference equations can be approximated by PDEs in the large volume limit. I will finally also briefly discuss some of the results that have been obtained using these numerical techniques by performing simulations in regions of parameter space that were previously unreachable. This work is supported by a grant from the John Templeton Foundation and by NSF grant PHYS1068743.
A Numerical Model for Atomtronic Circuit Analysis
Chow, Weng W.; Straatsma, Cameron J. E.; Anderson, Dana Z.
2015-07-16
A model for studying atomtronic devices and circuits based on finite-temperature Bose-condensed gases is presented. The approach involves numerically solving equations of motion for atomic populations and coherences, derived using the Bose-Hubbard Hamiltonian and the Heisenberg picture. The resulting cluster expansion is truncated at a level giving balance between physics rigor and numerical demand mitigation. This approach allows parametric studies involving time scales that cover both the rapid population dynamics relevant to nonequilibrium state evolution, as well as the much longer time durations typical for reaching steady-state device operation. This model is demonstrated by studying the evolution of a Bose-condensed gas in the presence of atom injection and extraction in a double-well potential. In this configuration phase locking between condensates in each well of the potential is readily observed, and its influence on the evolution of the system is studied.
Shen, Binglin; Pan, Bailiang; Jiao, Jian; Xia, Chunsheng
2015-07-27
Comprehensive analysis of kinetic and fluid dynamic processes in flowing-gas diode-pumped alkali vapor amplifiers is reported. Taking into account effects of the temperature, the amplified spontaneous emission, the saturation power, the excitation of the alkali atoms to high electronic levels and the ionization, a detailed physical model is established to simulate the output performance of flowing-gas diode-pumped alkali vapor amplifiers. Influences of the flow velocity and the pump power on the amplified power are calculated and analyzed. Comparisons between single and double amplifier, longitudinal and transverse flow are made. Results show that end-pumped cascaded amplifier can provide higher output power under the same total pump power and the cell length, while output powers achieved by single- and double-end pumped, double-side pumped amplifiers with longitudinal or transverse flow have a complicated but valuable relation. Thus the model is extremely helpful for designing high-power flowing-gas diode-pumped alkali vapor amplifiers.
NASA Astrophysics Data System (ADS)
Zhang, Ya; Li, Lian; Jiang, Wei; Yi, Lin
2016-07-01
A one dimensional quantum-hydrodynamic/particle-in-cell (QHD/PIC) model is used to study the interaction process of an intense proton beam (injection density of 1017 cm-3) with a dense plasma (initial density of ~ 1021 cm-3), with the PIC method for simulating the beam particle dynamics and the QHD model for considering the quantum effects including the quantum statistical and quantum diffraction effects. By means of the QHD theory, the wake electron density and wakefields are calculated, while the proton beam density is calculated by the PIC method and compared to hydrodynamic results to justify that the PIC method is a more suitable way to simulate the beam particle dynamics. The calculation results show that the incident continuous proton beam when propagating in the plasma generates electron perturbations as well as wakefields oscillations with negative valleys and positive peaks where the proton beams are repelled by the positive wakefields and accelerated by the negative wakefields. Moreover, the quantum correction obviously hinders the electron perturbations as well as the wakefields. Therefore, it is necessary to consider the quantum effects in the interaction of a proton beam with cold dense plasmas, such as in the metal films. supported by National Natural Science Foundation of China (Nos. 11405067, 11105057, 11275007)
Numerical modeling of mesospheric bores
NASA Astrophysics Data System (ADS)
Laughman, Brian Joseph
Mesospheric bores were first observed in 1993 and since then there have been few efforts to characterize them. Early results invoked weakly nonlinear hydraulic theory to explain these observed bores and numerical results have reproduced the essential nonlinearities of bore evolution. Internal bores have been demonstrated to exist in density stratified fluids, such as the oceanic thermocline and tropospheric inversion layers, and have been approximated by the Benjamin-Davis-Ono (BDO) equation (the KdV analogue for internal waves). This thesis considers these earlier theories and explores the limits of their validity with two numerical models. The first is a one-dimensional solver of the KdV and BDO equations. The second model describes the nonlinear incompressible dynamics of the Navier-Stokes equations for thermal ducting environments. The results of both models are directly compared to constrain the validity of the weakly nonlinear theory. These results are also compared with spatial and velocity scales of airglow observations and demonstrate the viability of simple mesopausal thermal ducting environments to support realistic bore evolution. Based on observations and on the dependence of the dispersion relationship on the mean horizontal wind, Doppler ducting structures are posed and also demonstrate nonlinear bore evolution. The direction of future studies is then discussed, including extensions to more complex and realistic ducting environments characteristic of the mesosphere and lower thermosphere (MLT), the viability of forcing mechanisms beyond the long wave perturbations considered in these studies, and applications to observed bore events.
Numerical Model for Hydrovolcanic Explosions.
NASA Astrophysics Data System (ADS)
Mader, Charles; Gittings, Michael
2007-03-01
A hydrovolcanic explosion is generated by the interaction of hot magma with ground water. It is called Surtseyan after the 1963 explosive eruption off Iceland. The water flashes to steam and expands explosively. Liquid water becomes water gas at constant volume and generates pressures of about 3GPa. The Krakatoa hydrovolcanic explosion was modeled using the full Navier-Stokes AMR Eulerian compressible hydrodynamic code called SAGE [1] which includes the high pressure physics of explosions. The water in the hydrovolcanic explosion was described as liquid water heated by magma to 1100 K. The high temperature water is treated as an explosive with the hot liquid water going to water gas. The BKW [2] steady state detonation state has a peak pressure of 8.9 GPa, a propagation velocity of 5900 meters/sec and the water is compressed to 1.33 g/cc. [1] Numerical Modeling of Water Waves, Second Edition, Charles L. Mader, CRC Press 2004. [2] Numerical Modeling of Explosions and Propellants, Charles L. Mader, CRC Press 1998.
Numerical methods used in fusion science numerical modeling
NASA Astrophysics Data System (ADS)
Yagi, M.
2015-04-01
The dynamics of burning plasma is very complicated physics, which is dominated by multi-scale and multi-physics phenomena. To understand such phenomena, numerical simulations are indispensable. Fundamentals of numerical methods used in fusion science numerical modeling are briefly discussed in this paper. In addition, the parallelization technique such as open multi processing (OpenMP) and message passing interface (MPI) parallel programing are introduced and the loop-level parallelization is shown as an example.
Infrared radiation parameterizations in numerical climate models
NASA Technical Reports Server (NTRS)
Chou, Ming-Dah; Kratz, David P.; Ridgway, William
1991-01-01
This study presents various approaches to parameterizing the broadband transmission functions for utilization in numerical climate models. One-parameter scaling is applied to approximate a nonhomogeneous path with an equivalent homogeneous path, and the diffuse transmittances are either interpolated from precomputed tables or fit by analytical functions. Two-parameter scaling is applied to parameterizing the carbon dioxide and ozone transmission functions in both the lower and middle atmosphere. Parameterizations are given for the nitrous oxide and methane diffuse transmission functions.
Numerical models of complex diapirs
NASA Astrophysics Data System (ADS)
Podladchikov, Yu.; Talbot, C.; Poliakov, A. N. B.
1993-12-01
Numerically modelled diapirs that rise into overburdens with viscous rheology produce a large variety of shapes. This work uses the finite-element method to study the development of diapirs that rise towards a surface on which a diapir-induced topography creeps flat or disperses ("erodes") at different rates. Slow erosion leads to diapirs with "mushroom" shapes, moderate erosion rate to "wine glass" diapirs and fast erosion to "beer glass"- and "column"-shaped diapirs. The introduction of a low-viscosity layer at the top of the overburden causes diapirs to develop into structures resembling a "Napoleon hat". These spread lateral sheets.
Ascough, II, James Clifford
1992-05-01
The capability to objectively evaluate design performance of shallow landfill burial (SLB) systems is of great interest to diverse scientific disciplines, including hydrologists, engineers, environmental scientists, and SLB regulators. The goal of this work was to develop and validate a procedure for the nonsubjective evaluation of SLB designs under actual or simulated environmental conditions. A multiobjective decision module (MDM) based on scoring functions (Wymore, 1988) was implemented to evaluate SLB design performance. Input values to the MDM are provided by hydrologic models. The MDM assigns a total score to each SLB design alternative, thereby allowing for rapid and repeatable design performance evaluation. The MDM was validated for a wide range of SLB designs under different climatic conditions. Rigorous assessment of SLB performance also requires incorporation of hydrologic probabilistic analysis and hydrologic risk into the overall design. This was accomplished through the development of a frequency analysis module. The frequency analysis module allows SLB design event magnitudes to be calculated based on the hydrologic return period. The multiobjective decision and freqeuncy anslysis modules were integrated in a decision support system (DSS) framework, SLEUTH (Shallow Landfill Evaluation Using Transport and Hydrology). SLEUTH is a Microsoft Windows {trademark} application, and is written in the Knowledge Pro Windows (Knowledge Garden, Inc., 1991) development language.
NASA Astrophysics Data System (ADS)
Martino, S.; Lenti, L.; Delgado, J.; Garrido, J.; Lopez-Casado, C.
2016-07-01
The interaction between seismic waves and slopes is an important topic to provide reliable scenarios for earthquake-(re)triggered landslides. The physical properties of seismic waves as well as slope topography and geology can significantly modify the local seismic response, influencing landslide triggering. A novel approach is here applied to two case studies in Andalusia (southern Spain) for computing the expected earthquake-induced displacements of existing landslide masses. Towards this aim, dynamic stress-strain numerical modelling was carried out using a selection of seismic signals characterized by different spectral content and energy. In situ geophysical measurements, consisting of noise records and temporary seismometric arrays, were carried out to control the numerical outputs in terms of local seismic response. The results consist of relationships between the characteristic period, Tm, of the seismic signals and the characteristic periods of the landslide masses, related to the thickness (Ts) and length (Tl), respectively. These relationships show that the larger the horizontal dimension (i.e. length of landslide) of a landslide is, the more effective the contribution (to the resulting coseismic displacement) of the long-period seismic waves is, as the maximum displacements are expected for a low Tm at each energy level of the input. On the other hand, when the local seismic response mainly depends on stratigraphy (i.e. landslide thickness), the maximum expected displacements occur close to the resonance period of the landslide, except for high-energy seismic inputs.
Geometrical-numerical approach to diffraction phenomena.
Bosch, S; Ferré-Borrull, J
2001-02-15
The calculation of diffracted fields is considered by means of a geometrical analysis of the incoming wave into semiperiodic zones in the aperture plane, followed by a numerical process for addition of the contributions corresponding to the semiperiodic zones. This general approach constitutes a novel interpretation of diffraction phenomena that permits exact evaluation of the mathematical expressions of diffraction theory and overcomes the limitations of any approximation. The method is illustrated by analysis of two important configuration in optics: the pinhole camera, for which we deduce the optimum radius for imaging, and the diffraction of a spherical converging wave through a circular aperture, from which we determine the limit of the validity of the Fraunhofer approximation (i.e., of the Airy pattern) and the influence of the obliquity factor.
Numerical Modelling of Ground Penetrating Radar Antennas
NASA Astrophysics Data System (ADS)
Giannakis, Iraklis; Giannopoulos, Antonios; Pajewski, Lara
2014-05-01
Numerical methods are needed in order to solve Maxwell's equations in complicated and realistic problems. Over the years a number of numerical methods have been developed to do so. Amongst them the most popular are the finite element, finite difference implicit techniques, frequency domain solution of Helmontz equation, the method of moments, transmission line matrix method. However, the finite-difference time-domain method (FDTD) is considered to be one of the most attractive choice basically because of its simplicity, speed and accuracy. FDTD first introduced in 1966 by Kane Yee. Since then, FDTD has been established and developed to be a very rigorous and well defined numerical method for solving Maxwell's equations. The order characteristics, accuracy and limitations are rigorously and mathematically defined. This makes FDTD reliable and easy to use. Numerical modelling of Ground Penetrating Radar (GPR) is a very useful tool which can be used in order to give us insight into the scattering mechanisms and can also be used as an alternative approach to aid data interpretation. Numerical modelling has been used in a wide range of GPR applications including archeology, geophysics, forensic, landmine detection etc. In engineering, some applications of numerical modelling include the estimation of the effectiveness of GPR to detect voids in bridges, to detect metal bars in concrete, to estimate shielding effectiveness etc. The main challenges in numerical modelling of GPR for engineering applications are A) the implementation of the dielectric properties of the media (soils, concrete etc.) in a realistic way, B) the implementation of the geometry of the media (soils inhomogeneities, rough surface, vegetation, concrete features like fractures and rock fragments etc.) and C) the detailed modelling of the antenna units. The main focus of this work (which is part of the COST Action TU1208) is the accurate and realistic implementation of GPR antenna units into the FDTD
A numerical model for durotaxis.
Stefanoni, Filippo; Ventre, Maurizio; Mollica, Francesco; Netti, Paolo A
2011-07-07
Cell migration is a phenomenon that is involved in several physiological processes. In the absence of external guiding factors it shares analogies with Brownian motion. The presence of biochemical or biophysical cues, on the other hand, can influence cell migration transforming it in a biased random movement. Recent studies have shown that different cell types are able to recognise the mechanical properties of the substratum over which they move and that these properties direct the motion through a process called durotaxis. In this work a 2D mathematical model for the description of this phenomenon is presented. The model is based on the Langevin equation that has been modified to take into account the local mechanical properties of the substratum perceived by the cells. Numerical simulations of the model provide individual cell tracks, whose characteristics can be compared with experimental observations directly. The present model is solved for two important cases: an isotropic substratum, to check that random motility is recovered as a subcase, and a biphasic substratum, to investigate durotaxis. The degree of agreement is satisfactory in both cases. The model can be a useful tool for quantifying relevant parameters of cell migration as a function of the substratum mechanical properties. Copyright © 2011 Elsevier Ltd. All rights reserved.
Numerical approach to Coulomb gauge QCD
Matevosyan, Hrayr H.; Szczepaniak, Adam P.; Bowman, Patrick O.
2008-07-01
We calculate the ghost two-point function in Coulomb gauge QCD with a simple model vacuum gluon wave function using Monte Carlo integration. This approach extends the previous analytic studies of the ghost propagator with this ansatz, where a ladder-rainbow expansion was unavoidable for calculating the path integral over gluon field configurations. The new approach allows us to study the possible critical behavior of the coupling constant, as well as the Coulomb potential derived from the ghost dressing function. We demonstrate that IR enhancement of the ghost correlator or Coulomb form factor fails to quantitatively reproduce confinement using Gaussian vacuum wave functional.
Numerical experiments in geomagnetic modeling
NASA Technical Reports Server (NTRS)
Cain, Joseph C.; Holter, Bill; Sandee, Daan
1990-01-01
Numerical tests were made, using least squares fitting of a spherical harmonic model, to a selection of Magsat data to determine the practical limits of this technique with modern computers. The resulting (M102189) model, whose coefficients were adjusted up to n = 50, was compared with M07AV6, a previous model which used least squares (on vector data) for coefficients up to n = 29, and Gauss-Legendre quadrature (on Z residuals) to adjust the coefficients up to n = 63. For the new least squares adjustment to n = 50 a condition number of 115 was obtained for the solution matrix, with a resulting precision of 11 significant figures. The M102189 model shows a lower and more Gaussian residual distribution than did M07AV6, though the Gaussian envelope fits to the residual distributions, even for the scalar field, gives "standard deviations' never lower than 6 nT, a factor of three higher than the estimated Magsat observational errors. Ionospheric currents are noted to have a significant effect on the coefficients of the internal potential functions.
Numerical Modeling of Nanoelectronic Devices
NASA Technical Reports Server (NTRS)
Klimeck, Gerhard; Oyafuso, Fabiano; Bowen, R. Chris; Boykin, Timothy
2003-01-01
Nanoelectronic Modeling 3-D (NEMO 3-D) is a computer program for numerical modeling of the electronic structure properties of a semiconductor device that is embodied in a crystal containing as many as 16 million atoms in an arbitrary configuration and that has overall dimensions of the order of tens of nanometers. The underlying mathematical model represents the quantummechanical behavior of the device resolved to the atomistic level of granularity. The system of electrons in the device is represented by a sparse Hamiltonian matrix that contains hundreds of millions of terms. NEMO 3-D solves the matrix equation on a Beowulf-class cluster computer, by use of a parallel-processing matrix vector multiplication algorithm coupled to a Lanczos and/or Rayleigh-Ritz algorithm that solves for eigenvalues. In a recent update of NEMO 3-D, a new strain treatment, parameterized for bulk material properties of GaAs and InAs, was developed for two tight-binding submodels. The utility of the NEMO 3-D was demonstrated in an atomistic analysis of the effects of disorder in alloys and, in particular, in bulk In(x)Ga(l-x)As and in In0.6Ga0.4As quantum dots.
NASA Astrophysics Data System (ADS)
Wolter, A.; Gischig, V.; Stead, D.; Clague, J. J.
2016-06-01
We present an integrated approach to investigate the seismically triggered Madison Canyon landslide (volume = 20 Mm3), which killed 26 people in Montana, USA, in 1959. We created engineering geomorphological maps and conducted field surveys, long-range terrestrial digital photogrammetry, and preliminary 2D numerical modelling with the objective of determining the conditioning factors, mechanisms, movement behaviour, and evolution of the failure. We emphasise the importance of both endogenic (i.e. seismic) and exogenic (i.e. geomorphic) processes in conditioning the slope for failure and hypothesise a sequence of events based on the morphology of the deposit and seismic modelling. A section of the slope was slowly deforming before a magnitude-7.5 earthquake with an epicentre 30 km away triggered the catastrophic failure in August 1959. The failed rock mass rapidly fragmented as it descended the slope towards Madison River. Part of the mass remained relatively intact as it moved on a layer of pulverised debris. The main slide was followed by several debris slides, slumps, and rockfalls. The slide debris was extensively modified soon after the disaster by the US Army Corps of Engineers to provide a stable outflow channel from newly formed Earthquake Lake. Our modelling and observations show that the landslide occurred as a result of long-term damage of the slope induced by fluvial undercutting, erosion, weathering, and past seismicity, and due to the short-term triggering effect of the 1959 earthquake. Static models suggest the slope was stable prior to the 1959 earthquake; failure would have required a significant reduction in material strength. Preliminary dynamic models indicate that repeated seismic loading was a critical process for catastrophic failure. Although the ridge geometry and existing tension cracks in the initiation zone amplified ground motions, the most important factors in initiating failure were pre-existing discontinuities and seismically induced
Lattice Boltzmann model for numerical relativity.
Ilseven, E; Mendoza, M
2016-02-01
In the Z4 formulation, Einstein equations are written as a set of flux conservative first-order hyperbolic equations that resemble fluid dynamics equations. Based on this formulation, we construct a lattice Boltzmann model for numerical relativity and validate it with well-established tests, also known as "apples with apples." Furthermore, we find that by increasing the relaxation time, we gain stability at the cost of losing accuracy, and by decreasing the lattice spacings while keeping a constant numerical diffusivity, the accuracy and stability of our simulations improve. Finally, in order to show the potential of our approach, a linear scaling law for parallelization with respect to number of CPU cores is demonstrated. Our model represents the first step in using lattice kinetic theory to solve gravitational problems.
Lattice Boltzmann model for numerical relativity
NASA Astrophysics Data System (ADS)
Ilseven, E.; Mendoza, M.
2016-02-01
In the Z4 formulation, Einstein equations are written as a set of flux conservative first-order hyperbolic equations that resemble fluid dynamics equations. Based on this formulation, we construct a lattice Boltzmann model for numerical relativity and validate it with well-established tests, also known as "apples with apples." Furthermore, we find that by increasing the relaxation time, we gain stability at the cost of losing accuracy, and by decreasing the lattice spacings while keeping a constant numerical diffusivity, the accuracy and stability of our simulations improve. Finally, in order to show the potential of our approach, a linear scaling law for parallelization with respect to number of CPU cores is demonstrated. Our model represents the first step in using lattice kinetic theory to solve gravitational problems.
Simplified method for numerical modeling of fiber lasers.
Shtyrina, O V; Yarutkina, I A; Fedoruk, M P
2014-12-29
A simplified numerical approach to modeling of dissipative dispersion-managed fiber lasers is examined. We present a new numerical iteration algorithm for finding the periodic solutions of the system of nonlinear ordinary differential equations describing the intra-cavity dynamics of the dissipative soliton characteristics in dispersion-managed fiber lasers. We demonstrate that results obtained using simplified model are in good agreement with full numerical modeling based on the corresponding partial differential equations.
Multiscale numerical modeling of the spherically symmetric cryosurgery problem
NASA Astrophysics Data System (ADS)
Kudryashov, N. A.; Shilnikov, K. E.
2017-01-01
The work is concerned with the numerical studying of the cryogenic biotissue destruction by a spherically symmetric tip. The multiscale bioheat transfer model is used for the describing of the biological solutions crystallization features. An explicit finite volume based approximation is applied for the numerical modeling of the processes taking place during the cryosurgery. The phase averaging method is applied as an computationally economic approach for the numerical modeling of the problem under study.
Equivalent beam modeling using numerical reduction techniques
NASA Technical Reports Server (NTRS)
Chapman, J. M.; Shaw, F. H.
1987-01-01
Numerical procedures that can accomplish model reductions for space trusses were developed. Three techniques are presented that can be implemented using current capabilities within NASTRAN. The proposed techniques accomplish their model reductions numerically through use of NASTRAN structural analyses and as such are termed numerical in contrast to the previously developed analytical techniques. Numerical procedures are developed that permit reductions of large truss models containing full modeling detail of the truss and its joints. Three techniques are presented that accomplish these model reductions with various levels of structural accuracy. These numerical techniques are designated as equivalent beam, truss element reduction, and post-assembly reduction methods. These techniques are discussed in detail.
Raja, Muhammad Asif Zahoor; Zameer, Aneela; Khan, Aziz Ullah; Wazwaz, Abdul Majid
2016-01-01
In this study, a novel bio-inspired computing approach is developed to analyze the dynamics of nonlinear singular Thomas-Fermi equation (TFE) arising in potential and charge density models of an atom by exploiting the strength of finite difference scheme (FDS) for discretization and optimization through genetic algorithms (GAs) hybrid with sequential quadratic programming. The FDS procedures are used to transform the TFE differential equations into a system of nonlinear equations. A fitness function is constructed based on the residual error of constituent equations in the mean square sense and is formulated as the minimization problem. Optimization of parameters for the system is carried out with GAs, used as a tool for viable global search integrated with SQP algorithm for rapid refinement of the results. The design scheme is applied to solve TFE for five different scenarios by taking various step sizes and different input intervals. Comparison of the proposed results with the state of the art numerical and analytical solutions reveals that the worth of our scheme in terms of accuracy and convergence. The reliability and effectiveness of the proposed scheme are validated through consistently getting optimal values of statistical performance indices calculated for a sufficiently large number of independent runs to establish its significance.
Numerical homogenization on approach for stokesian suspensions.
Haines, B. M.; Berlyand, L. V.; Karpeev, D. A.
2012-01-20
swimming resulting from bacterial alignment can significantly alter other macroscopic properties of the suspension, such as the oxygen diffusivity and mixing rates. In order to understand the unique macroscopic properties of active suspensions the connection between microscopic swimming and alignment dynamics and the mesoscopic pattern formation must be clarified. This is difficult to do analytically in the fully general setting of moderately dense suspensions, because of the large number of bacteria involved (approx. 10{sup 10} cm{sup -3} in experiments) and the complex, time-dependent geometry of the system. Many reduced analytical models of bacterial have been proposed, but all of them require validation. While comparison with experiment is the ultimate test of a model's fidelity, it is difficult to conduct experiments matched to these models assumptions. Numerical simulation of the microscopic dynamics is an acceptable substitute, but it runs into the problem of having to discretize the fluid domain with a fine-grained boundary (the bacteria) and update the discretization as the domain evolves (bacteria move). This leads to a prohibitively high number of degrees of freedom and prohibitively high setup costs per timestep of simulation. In this technical report we propose numerical methods designed to alleviate these two difficulties. We indicate how to (1) construct an optimal discretization in terms of the number of degrees of freedom per digit of accuracy and (2) optimally update the discretization as the simulation evolves. The technical tool here is the derivation of rigorous error bounds on the error in the numerical solution when using our proposed discretization at the initial time as well as after a given elapsed simulation time. These error bounds should guide the construction of practical discretization schemes and update strategies. Our initial construction is carried out by using a theoretically convenient, but practically prohibitive spectral basis, which
Avoiding numerical pitfalls in social force models
NASA Astrophysics Data System (ADS)
Köster, Gerta; Treml, Franz; Gödel, Marion
2013-06-01
The social force model of Helbing and Molnár is one of the best known approaches to simulate pedestrian motion, a collective phenomenon with nonlinear dynamics. It is based on the idea that the Newtonian laws of motion mostly carry over to pedestrian motion so that human trajectories can be computed by solving a set of ordinary differential equations for velocity and acceleration. The beauty and simplicity of this ansatz are strong reasons for its wide spread. However, the numerical implementation is not without pitfalls. Oscillations, collisions, and instabilities occur even for very small step sizes. Classic solution ideas from molecular dynamics do not apply to the problem because the system is not Hamiltonian despite its source of inspiration. Looking at the model through the eyes of a mathematician, however, we realize that the right hand side of the differential equation is nondifferentiable and even discontinuous at critical locations. This produces undesirable behavior in the exact solution and, at best, severe loss of accuracy in efficient numerical schemes even in short range simulations. We suggest a very simple mollified version of the social force model that conserves the desired dynamic properties of the original many-body system but elegantly and cost efficiently resolves several of the issues concerning stability and numerical resolution.
Numerical modeling of the acoustic guitar
NASA Astrophysics Data System (ADS)
Chaigne, Antoine; Derveaux, Grégoire; Joly, Patrick; Bécache, Eliane
2003-10-01
An interactive DVD has been created, based on a numerical model of the acoustic guitar. In a first chapter, the retained physical model is described and illustrated, from the pluck to the 3D radiation field. The second chapter is devoted to the presentation of the numerical tools used for solving the equations of the model. Numerical simulations of plate vibrations and radiated sound pressure are shown in the third chapter. A number of simulated sounds are presented and analyzed in the fourth chapter. In addition, the DVD includes a discussion between a guitar maker, an acoustician, a guitar player and a mathematician. This discussion is entitled ``towards a common language.'' Its aim is to show the interest of simulations with respect to complementary professional approaches of the instrument. This DVD received the Henri Poincaré Prize from the 8th Research Film Festival of Nancy (June 2003), sponsored by the CNRS, in the category ``Documents for the scientific community and illustrations of the research for teaching purpose.''
Modeling Biodegradation and Reactive Transport: Analytical and Numerical Models
Sun, Y; Glascoe, L
2005-06-09
The computational modeling of the biodegradation of contaminated groundwater systems accounting for biochemical reactions coupled to contaminant transport is a valuable tool for both the field engineer/planner with limited computational resources and the expert computational researcher less constrained by time and computer power. There exists several analytical and numerical computer models that have been and are being developed to cover the practical needs put forth by users to fulfill this spectrum of computational demands. Generally, analytical models provide rapid and convenient screening tools running on very limited computational power, while numerical models can provide more detailed information with consequent requirements of greater computational time and effort. While these analytical and numerical computer models can provide accurate and adequate information to produce defensible remediation strategies, decisions based on inadequate modeling output or on over-analysis can have costly and risky consequences. In this chapter we consider both analytical and numerical modeling approaches to biodegradation and reactive transport. Both approaches are discussed and analyzed in terms of achieving bioremediation goals, recognizing that there is always a tradeoff between computational cost and the resolution of simulated systems.
Chimera: a hybrid approach to numerical loop quantum cosmology
NASA Astrophysics Data System (ADS)
Diener, Peter; Gupt, Brajesh; Singh, Parampreet
2014-01-01
The existence of a quantum bounce in isotropic spacetimes is a key result in loop quantum cosmology (LQC), which has been demonstrated to arise in all the models studied so far. In most of the models, the bounce has been studied using numerical simulations involving states which are sharply peaked and which bounce at volumes much larger than the Planck volume. An important issue is to confirm the existence of the bounce for states which have a wide spread, or which bounce closer to the Planck volume. Numerical simulations with such states demand large computational domains, making them very expensive and practically infeasible with the techniques which have been implemented so far. To overcome these difficulties, we present an efficient hybrid numerical scheme using the property that at the small spacetime curvature, the quantum Hamiltonian constraint in LQC, which is a difference equation with uniform discretization in volume, can be approximated by a Wheeler-DeWitt differential equation. By carefully choosing a hybrid spatial grid allowing the use of partial differential equations at large volumes, and with a simple change of geometrical coordinate, we obtain a surprising reduction in the computational cost. This scheme enables us to explore regimes which were so far unachievable for the isotropic model in LQC. Our approach also promises to significantly reduce the computational cost for numerical simulations in anisotropic LQC using high performance computing.
Numerical approaches for multidimensional simulations of stellar explosions
NASA Astrophysics Data System (ADS)
Chen, Ke-Jung; Heger, Alexander; Almgren, Ann S.
2013-11-01
We introduce numerical algorithms for initializing multidimensional simulations of stellar explosions with 1D stellar evolution models. The initial mapping from 1D profiles onto multidimensional grids can generate severe numerical artifacts, one of the most severe of which is the violation of conservation laws for physical quantities. We introduce a numerical scheme for mapping 1D spherically-symmetric data onto multidimensional meshes so that these physical quantities are conserved. We verify our scheme by porting a realistic 1D Lagrangian stellar profile to the new multidimensional Eulerian hydro code CASTRO. Our results show that all important features in the profiles are reproduced on the new grid and that conservation laws are enforced at all resolutions after mapping. We also introduce a numerical scheme for initializing multidimensional supernova simulations with realistic perturbations predicted by 1D stellar evolution models. Instead of seeding 3D stellar profiles with random perturbations, we imprint them with velocity perturbations that reproduce the Kolmogorov energy spectrum expected for highly turbulent convective regions in stars. Our models return Kolmogorov energy spectra and vortex structures like those in turbulent flows before the modes become nonlinear. Finally, we describe approaches to determining the resolution for simulations required to capture fluid instabilities and nuclear burning. Our algorithms are applicable to multidimensional simulations besides stellar explosions that range from astrophysics to cosmology.
NASA Astrophysics Data System (ADS)
Pickett, Leon, Jr.
Past research has conclusively shown that long fiber structural composites possess superior specific energy absorption characteristics as compared to steel and aluminum structures. However, destructive physical testing of composites is very costly and time consuming. As a result, numerical solutions are desirable as an alternative to experimental testing. Up until this point, very little numerical work has been successful in predicting the energy absorption of composite crush structures. This research investigates the ability to use commercially available numerical modeling tools to approximate the energy absorption capability of long-fiber composite crush tubes. This study is significant because it provides a preliminary analysis of the suitability of LS-DYNA to numerically characterize the crushing behavior of a dynamic axial impact crushing event. Composite crushing theory suggests that there are several crushing mechanisms occurring during a composite crush event. This research evaluates the capability and suitability of employing, LS-DYNA, to simulate the dynamic crush event of an E-glass/epoxy cylindrical tube. The model employed is the composite "progressive failure model", a much more limited failure model when compared to the experimental failure events which naturally occur. This numerical model employs (1) matrix cracking, (2) compression, and (3) fiber breakage failure modes only. The motivation for the work comes from the need to reduce the significant cost associated with experimental trials. This research chronicles some preliminary efforts to better understand the mechanics essential in pursuit of this goal. The immediate goal is to begin to provide deeper understanding of a composite crush event and ultimately create a viable alternative to destructive testing of composite crush tubes.
Testing Numerical Dynamo Models Against Experimental Results
NASA Astrophysics Data System (ADS)
Gissinger, C. J.; Fauve, S.; Dormy, E.
2007-12-01
Significant progress has been achieved over the past few years in describing the geomagnetic field using computer models for dynamo action. Such models are so far limited to parameter regimes which are very remote from actual values relevant to the Earth core or any liquid metal (the magnetic Prandtl number is always over estimated by a factor at least 104). While existing models successfully reproduce many of the magnetic observations, it is difficult to assert their validity. The recent success of an experimental homogeneous unconstrained dynamo (VKS) provides a new way to investigate dynamo action in turbulent conducting flows, but it also offers a chance to test the validity of exisiting numerical models. We use a code originaly written for the Geodynamo (Parody) and apply it to the experimental configuration. The direct comparison of simulations and experiments is of great interest to test the predictive value of numerical simulations for dynamo action. These turbulent simulations allow us to approach issues which are very relevant for geophysical dynamos, especially the competition between different magnetic modes and the dynamics of reversals.
An Efficient Numerical Approach for Nonlinear Fokker-Planck equations
NASA Astrophysics Data System (ADS)
Otten, Dustin; Vedula, Prakash
2009-03-01
Fokker-Planck equations which are nonlinear with respect to their probability densities that occur in many nonequilibrium systems relevant to mean field interaction models, plasmas, classical fermions and bosons can be challenging to solve numerically. To address some underlying challenges in obtaining numerical solutions, we propose a quadrature based moment method for efficient and accurate determination of transient (and stationary) solutions of nonlinear Fokker-Planck equations. In this approach the distribution function is represented as a collection of Dirac delta functions with corresponding quadrature weights and locations, that are in turn determined from constraints based on evolution of generalized moments. Properties of the distribution function can be obtained by solution of transport equations for quadrature weights and locations. We will apply this computational approach to study a wide range of problems, including the Desai-Zwanzig Model (for nonlinear muscular contraction) and multivariate nonlinear Fokker-Planck equations describing classical fermions and bosons, and will also demonstrate good agreement with results obtained from Monte Carlo and other standard numerical methods.
NASA Technical Reports Server (NTRS)
Aune, Robert M.; Uccellini, Louis W.; Peterson, Ralph A.; Tuccillo, James J.
1987-01-01
Numerical experiments to assess the impact of incorporating temperature data from the VISSR Atmospheric Sounder (VAS) using the assimilation technique developed by Gal-Chen (1986) modified for use in the Mesoscale Atmospheric Simulation System (MASS) model were conducted. The scheme is designed to utilize the high temporal and horizontal resolution of satellite retrievals while maintaining the fine vertical structure generated by the model. This is accomplished by adjusting the model lapse rates to reflect thicknesses retrieved from VAS and applying a three-dimensional variational that preserves the distribution of the geopotential fields in the model. A nudging technique whereby the model temperature fields are gradually adjusted toward the updated temperature fields during model integration is also tested. An adiabatic version of MASS is used in all experiments to better isolate mass-momentum imbalances. The method has a sustained impact over an 18 hr model simulation.
NASA Technical Reports Server (NTRS)
Aune, Robert M.; Uccellini, Louis W.; Peterson, Ralph A.; Tuccillo, James J.
1987-01-01
Numerical experiments to assess the impact of incorporating temperature data from the VISSR Atmospheric Sounder (VAS) using the assimilation technique developed by Gal-Chen (1986) modified for use in the Mesoscale Atmospheric Simulation System (MASS) model were conducted. The scheme is designed to utilize the high temporal and horizontal resolution of satellite retrievals while maintaining the fine vertical structure generated by the model. This is accomplished by adjusting the model lapse rates to reflect thicknesses retrieved from VAS and applying a three-dimensional variational that preserves the distribution of the geopotential fields in the model. A nudging technique whereby the model temperature fields are gradually adjusted toward the updated temperature fields during model integration is also tested. An adiabatic version of MASS is used in all experiments to better isolate mass-momentum imbalances. The method has a sustained impact over an 18 hr model simulation.
Conceptual and Numerical Models for UZ Flow and Transport
H. Liu
2000-03-03
The purpose of this Analysis/Model Report (AMR) is to document the conceptual and numerical models used for modeling of unsaturated zone (UZ) fluid (water and air) flow and solute transport processes. This is in accordance with ''AMR Development Plan for U0030 Conceptual and Numerical Models for Unsaturated Zone (UZ) Flow and Transport Processes, Rev 00''. The conceptual and numerical modeling approaches described in this AMR are used for models of UZ flow and transport in fractured, unsaturated rock under ambient and thermal conditions, which are documented in separate AMRs. This AMR supports the UZ Flow and Transport Process Model Report (PMR), the Near Field Environment PMR, and the following models: Calibrated Properties Model; UZ Flow Models and Submodels; Mountain-Scale Coupled Processes Model; Thermal-Hydrologic-Chemical (THC) Seepage Model; Drift Scale Test (DST) THC Model; Seepage Model for Performance Assessment (PA); and UZ Radionuclide Transport Models.
Numerical Modelling of Electrical Discharges
NASA Astrophysics Data System (ADS)
Durán-Olivencia, F. J.; Pontiga, F.; Castellanos, A.
2014-03-01
The problem of the propagation of an electrical discharge between a spherical electrode and a plane has been solved by means of finite element methods (FEM) using a fluid approximation and assuming weak ionization and local equilibrium with the electric field. The numerical simulation of this type of problems presents the usual difficulties of convection-diffusion-reaction problems, in addition to those associated with the nonlinearities of the charged species velocities, the formation of steep gradients of the electric field and particle densities, and the coexistence of very different temporal scales. The effect of using different temporal discretizations for the numerical integration of the corresponding system of partial differential equations will be here investigated. In particular, the so-called θ-methods will be used, which allows to implement implicit, semi-explicit and fully explicit schemes in a simple way.
Numerical modelling of hydration reactions
NASA Astrophysics Data System (ADS)
Vrijmoed, Johannes C.; John, Timm
2017-04-01
Mineral reactions are generally accompanied by volume changes. Observations in rocks and thin section indicate that this often occurred by replacement reactions involving a fluid phase. Frequently, the volume of the original rock or mineral seems to be conserved. If the density of the solid reaction products is higher than the reactants, the associated solid volume decrease generates space for a fluid phase. In other words, porosity is created. The opposite is true for an increase in solid volume during reaction, which leads to a porosity reduction. This slows down and may even stop the reaction if it needs fluid as a reactant. Understanding the progress of reactions and their rates is important because reaction generally changes geophysical and rock mechanical properties which will therefore affect geodynamical processes and seismic properties. We studied the case of hydration of eclogite to blueschist in a subduction zone setting. Eclogitized pillow basalt structures from the Tian-Shan orogeny are transformed to blueschist on the rims of the pillow (van der Straaten et al., 2008). Fluid pathways existed between the pillow structures. The preferred hypothesis of blueschist formation is to supply the fluid for hydration from the pillow margins progressing inward. Using numerical modelling we simulate this coupled reaction-diffusion process. Porosity and fluid pressure evolution are coupled to local thermodynamic equilibrium and density changes. The first rim of blueschist that forms around the eclogite pillow increases volume to such a degree that the system is clogged and the reaction stops. Nevertheless, the field evidence suggests the blueschist formation continued. To prevent the system from clogging, a high incoming pore fluid pressure on the pillow boundaries is needed along with removal of mass from the system to accommodate the volume changes. The only other possibility is to form blueschist from any remaining fluid stored in the core of the pillow
Numerical modelling of mixed-sediment consolidation
NASA Astrophysics Data System (ADS)
Grasso, Florent; Le Hir, Pierre; Bassoullet, Philippe
2015-04-01
Sediment transport modelling in estuarine environments, characterised by cohesive and non-cohesive sediment mixtures, has to consider a time variation of erodibility due to consolidation. Generally, validated by settling column experiments, mud consolidation is now fairly well simulated; however, numerical models still have difficulty to simulate accurately the sedimentation and consolidation of mixed sediments for a wide range of initial conditions. This is partly due to the difficulty to formulate the contribution of sand in the hindered settling regime when segregation does not clearly occur. Based on extensive settling experiments with mud-sand mixtures, the objective of this study was to improve the numerical modelling of mixed-sediment consolidation by focusing on segregation processes. We used constitutive relationships following the fractal theory associated with a new segregation formulation based on the relative mud concentration. Using specific sets of parameters calibrated for each test—with different initial sediment concentration and sand content—the model achieved excellent prediction skills for simulating sediment height evolutions and concentration vertical profiles. It highlighted the model capacity to simulate properly the segregation occurrence for mud-sand mixtures characterised by a wide range of initial conditions. Nevertheless, calibration parameters varied significantly, as the fractal number ranged from 2.64 to 2.77. This study investigated the relevance of using a common set of parameters, which is generally required for 3D sediment transport modelling. Simulations were less accurate but remained satisfactory in an operational approach. Finally, a specific formulation for natural estuarine environments was proposed, simulating correctly the sedimentation-consolidation processes of mud-sand mixtures through 3D sediment transport modelling.
Numerical propulsion system simulation: An interdisciplinary approach
NASA Technical Reports Server (NTRS)
Nichols, Lester D.; Chamis, Christos C.
1991-01-01
The tremendous progress being made in computational engineering and the rapid growth in computing power that is resulting from parallel processing now make it feasible to consider the use of computer simulations to gain insights into the complex interactions in aerospace propulsion systems and to evaluate new concepts early in the design process before a commitment to hardware is made. Described here is a NASA initiative to develop a Numerical Propulsion System Simulation (NPSS) capability.
Numerical propulsion system simulation - An interdisciplinary approach
NASA Technical Reports Server (NTRS)
Nichols, Lester D.; Chamis, Christos C.
1991-01-01
The tremendous progress being made in computational engineering and the rapid growth in computing power that is resulting from parallel processing now make it feasible to consider the use of computer simulations to gain insights into the complex interactions in aerospace propulsion systems and to evaluate new concepts early in the design process before a commitment to hardware is made. Described here is a NASA initiative to develop a Numerical Propulsion System Simulation (NPSS) capability.
On numerical modeling of one-dimensional geothermal histories
Haugerud, R.A.
1989-01-01
Numerical models of one-dimensional geothermal histories are one way of understanding the relations between tectonics and transient thermal structure in the crust. Such models can be powerful tools for interpreting geochronologic and thermobarometric data. A flexible program to calculate these models on a microcomputer is available and examples of its use are presented. Potential problems with this approach include the simplifying assumptions that are made, limitations of the numerical techniques, and the neglect of convective heat transfer. ?? 1989.
Objective calibration of numerical weather prediction models
NASA Astrophysics Data System (ADS)
Voudouri, A.; Khain, P.; Carmona, I.; Bellprat, O.; Grazzini, F.; Avgoustoglou, E.; Bettems, J. M.; Kaufmann, P.
2017-07-01
Numerical weather prediction (NWP) and climate models use parameterization schemes for physical processes, which often include free or poorly confined parameters. Model developers normally calibrate the values of these parameters subjectively to improve the agreement of forecasts with available observations, a procedure referred as expert tuning. A practicable objective multi-variate calibration method build on a quadratic meta-model (MM), that has been applied for a regional climate model (RCM) has shown to be at least as good as expert tuning. Based on these results, an approach to implement the methodology to an NWP model is presented in this study. Challenges in transferring the methodology from RCM to NWP are not only restricted to the use of higher resolution and different time scales. The sensitivity of the NWP model quality with respect to the model parameter space has to be clarified, as well as optimize the overall procedure, in terms of required amount of computing resources for the calibration of an NWP model. Three free model parameters affecting mainly turbulence parameterization schemes were originally selected with respect to their influence on the variables associated to daily forecasts such as daily minimum and maximum 2 m temperature as well as 24 h accumulated precipitation. Preliminary results indicate that it is both affordable in terms of computer resources and meaningful in terms of improved forecast quality. In addition, the proposed methodology has the advantage of being a replicable procedure that can be applied when an updated model version is launched and/or customize the same model implementation over different climatological areas.
Tidal Dissipation Within the Jupiter Moon Io - A Numerical Approach
NASA Astrophysics Data System (ADS)
Steinke, Teresa; van der Wal, Wouter; Hu, Haiyang; Vermeersen, Bert
2017-04-01
Satellite images and recent Earth-based observations of the innermost of the Galilean moons reveal a conspicuous pattern of volcanic hotspots and paterae on its surface. This pattern is associated with the heat flux originating from tidal dissipation in Io's mantle and asthenosphere. As shown by many analytical studies [e.g. Segatz et al. 1988], the local heat flux pattern depends on the rheology and structure of the satellite's interior and therefore could reveal constraints on Io's present interior. However, non-linear processes, different rheologies, and in particular lateral variations arising from the spatial heating pattern are difficult to incorporate in analytical 1D models but might be crucial. This motivates the development of a 3D finite element model of a layered body disturbed by a tidal potential. As a first step of this project we present a 3D finite element model of a spherically stratified body of linear viscoelastic rheology. For validation, we compare the resulting tidal deformation and local heating patterns with the results obtained by analytical models. Numerical errors increase with lower values of the asthenosphere viscosity. Currently, the numerical model allows realistic simulation down to viscosities of 1018 Pa s. Furthermore, we investigate an adequate way to deal with the relaxation of false modes that arise at the onset of the periodic tidal potential series in the numerical approach. Segatz, M., Spohn, T., Ross, M. N., Schubert, G. (1988). Tidal dissipation, surface heat flow, and figure of viscoelastic models of Io. Icarus, 75(2), 187-206.
NASA Astrophysics Data System (ADS)
Wibowo, Supardi
2017-03-01
Reinforced concrete members strengthened in bending by externally bonding of Carbon Fiber Reinforced Polymer (CFRP) may present several failure modes: failure of material or failure of the interface between concrete-CFRP. Nevertheless, experience gained from testing confirms that in most cases delamination prevails over the other possible rupture modes. Delamination in CFRP strengthened sections is difficult to model because it involves multiple parameters such as FRP stiffness, adhesive material properties, presence of cracks in concrete, among others. A simplified numerical model to predict flexural capacity of reinforced concrete beam strengthened by CFRP at failure is presented in this paper. The experimental validation is presented as well. Based on the result of the proposed model, an equation for the prediction of ultimate flexural capacity to prevent CFRP debonding is proposed.
Survey of numerical electrostimulation models
NASA Astrophysics Data System (ADS)
Reilly, J. Patrick
2016-06-01
This paper evaluates results of a survey of electrostimulation models of myelinated nerve. Participants were asked to determine thresholds of excitation for 18 cases involving different characteristics of the neuron, the stimulation waveform, and the electrode arrangement. Responses were received from 7 investigators using 10 models. Excitation thresholds differed significantly among these models. For example, with a 2 ms monophasic stimulus pulse and an electrode/fiber distance of 1 cm, thresholds from the least to greatest value differed by a factor of 8.3; with a 5 μs pulse, thresholds differed by the factor 3.8. Significant differences in reported simulations point to the need for experimental validation. Additional efforts are needed to develop computational models for unmyelinated C-fibers, A-delta fibers, CNS neurons, and CNS Synapses.
Survey of numerical electrostimulation models.
Reilly, J Patrick
2016-06-21
This paper evaluates results of a survey of electrostimulation models of myelinated nerve. Participants were asked to determine thresholds of excitation for 18 cases involving different characteristics of the neuron, the stimulation waveform, and the electrode arrangement. Responses were received from 7 investigators using 10 models. Excitation thresholds differed significantly among these models. For example, with a 2 ms monophasic stimulus pulse and an electrode/fiber distance of 1 cm, thresholds from the least to greatest value differed by a factor of 8.3; with a 5 μs pulse, thresholds differed by the factor 3.8. Significant differences in reported simulations point to the need for experimental validation. Additional efforts are needed to develop computational models for unmyelinated C-fibers, A-delta fibers, CNS neurons, and CNS Synapses.
Numerical tsunami modeling and the bottom relief
NASA Astrophysics Data System (ADS)
Kulikov, E. A.; Gusiakov, V. K.; Ivanova, A. A.; Baranov, B. V.
2016-11-01
The effect of the quality of bathymetric data on the accuracy of tsunami-wave field calculation is considered. A review of the history of the numerical tsunami modeling development is presented. Particular emphasis is made on the World Ocean bottom models. It is shown that the modern digital bathymetry maps, for example, GEBCO, do not adequately simulate the sea bottom in numerical models of wave propagation, leading to considerable errors in estimating the maximum tsunami run-ups on the coast.
Problem-Reduction Approach To Handwritten Numeral Recognition
NASA Astrophysics Data System (ADS)
Xie, Hu-chen; Hua, Xiaoming; Jing, Dia; Xiong, Fanlun; Hu, Fupei; Hua, Lu-lin; Hruschka, W. R.
1988-03-01
In this paper a problem-reduction approach is applied to handwritten numeral recognition and a recognition system is built. A problem-reduction representation (PRR) is used as the structural model for the character into which the semantics is injected. A powerful feature point extraction technique is designed to extract turnabouts on the strokes of a character with the windows of variable size. In terms of this point, a character is segmented into a series of line segments, each with one head and one tail. A nondirection analysis algorithm in problem-reduction approach is used to analyze characters. A heuristic ordered search method according to attributes is developed. A high recognition rate is obtained.
Iwasaki, Shinsuke; Isobe, Atsuhiko; Kako, Shin'ichiro; Uchida, Keiichi; Tokai, Tadashi
2017-08-15
A numerical model was established to reproduce the oceanic transport processes of microplastics and mesoplastics in the Sea of Japan. A particle tracking model, where surface ocean currents were given by a combination of a reanalysis ocean current product and Stokes drift computed separately by a wave model, simulated particle movement. The model results corresponded with the field survey. Modeled results indicated the micro- and mesoplastics are moved northeastward by the Tsushima Current. Subsequently, Stokes drift selectively moves mesoplastics during winter toward the Japanese coast, resulting in increased contributions of mesoplastics south of 39°N. Additionally, Stokes drift also transports micro- and mesoplastics out to the sea area south of the subpolar front where the northeastward Tsushima Current carries them into the open ocean via the Tsugaru and Soya straits. Average transit time of modeled particles in the Sea of Japan is drastically reduced when including Stokes drift in the model. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Numerical modelling of torn boudinage
NASA Astrophysics Data System (ADS)
Dabrowski, Marcin; Grasemann, Bernhard
2017-04-01
The seminal text book by J.G. Ramsay outlines the importance of the progressive development of torn boudinage structures because the shape of boudins may vary greatly and is mainly dependent on the viscosity contrast between the more competent layer and the enclosing material and the values of the principal extensions of the finite strain ellipsoid. In this work we demonstrate that another parameter, the initial boudin separation, has a significant influence on the progressive development of the finite boudin shape. We use finite element simulations to study the shape evolution of torn boudins under pure and simple shear. The boudins are initially rectangular and the gaps between them are prescribed. The boudin interfaces are resolved with high-resolution, body-fitting, unstructured computational meshes and a second-order ODE integrator is used to ensure the numerical accuracy of the results. Both the boudins and the host are treated as either linear or non-linear viscous fluids. We neglect any recrystallization processes and the boudin interfaces are considered as fully coherent. We were able to reproduce the typical shape of fish-mouth boudins for a wide range of viscosity ratios between the highly viscous boudins and the host. We have systematically studied the effects due to the boudin-host viscosity ratio and the fluid stress exponents. Our results show that the initial separation can have a profound effect on the final shape of the boudins and we document the formation of hitherto undescribed complex boudin shapes for an initially narrow gap width.
Minimum-time running: a numerical approach.
Maroński, Ryszard; Rogowski, Krzysztof
2011-01-01
The article deals with the minimum-time running problem. The time of covering a given distance is minimized. The Hill-Keller model of running employed is based on Newton's second law and the equation of power balance. The problem is formulated in optimal control. The unknown function is the runner's velocity that varies with the distance. The problem is solved applying the direct Chebyshev's pseudospectral method.
Impact of numerical models on fragmentation processes
NASA Astrophysics Data System (ADS)
Renouf, Mathieu; Gezahengn, Belien; Abbas, Micheline; Bourgeois, Florent
2013-06-01
Simulated fragmentation process in granular assemblies is a challenging problem which date back the beginning of the 90'. If first approaches have focus on the fragmentation on a single particle, with the development of robust, fast numerical method is is possible today to simulated such process in a large collection of particles. But the question of the fragmentation problem is still open: should the fragmentation be done dynamically (one particle becoming two fragments) and according which criterion or should the fragment paths be defined initially and which is the impact of the discretization and the model of fragments? The present contribution proposes to investigate the second aspect i.e. the impact of fragment modeling on the fragmentation processes. First to perform such an analysis, the geometry of fragments (disks/sphere or polygon/polyhedra), their behavior (rigid/deformable) and the law governing their interactions are investigated. Then such model will be used in a grinding application where the evolution of fragments and impact on the behavior of the whole packing are investigate.
Numerical modelling of ion transport in flames
NASA Astrophysics Data System (ADS)
Han, Jie; Belhi, Memdouh; Bisetti, Fabrizio; Mani Sarathy, S.
2015-11-01
This paper presents a modelling framework to compute the diffusivity and mobility of ions in flames. The (n, 6, 4) interaction potential is adopted to model collisions between neutral and charged species. All required parameters in the potential are related to the polarizability of the species pair via semi-empirical formulas, which are derived using the most recently published data or best estimates. The resulting framework permits computation of the transport coefficients of any ion found in a hydrocarbon flame. The accuracy of the proposed method is evaluated by comparing its predictions with experimental data on the mobility of selected ions in single-component neutral gases. Based on this analysis, the value of a model constant available in the literature is modified in order to improve the model's predictions. The newly determined ion transport coefficients are used as part of a previously developed numerical approach to compute the distribution of charged species in a freely propagating premixed lean CH4/O2 flame. Since a significant scatter of polarizability data exists in the literature, the effects of changes in polarizability on ion transport properties and the spatial distribution of ions in flames are explored. Our analysis shows that changes in polarizability propagate with decreasing effect from binary transport coefficients to species number densities. We conclude that the chosen polarizability value has a limited effect on the ion distribution in freely propagating flames. We expect that the modelling framework proposed here will benefit future efforts in modelling the effect of external voltages on flames. Supplemental data for this article can be accessed at http://dx.doi.org/10.1080/13647830.2015.1090018.
Numerical Computation of Sensitivities and the Adjoint Approach
NASA Technical Reports Server (NTRS)
Lewis, Robert Michael
1997-01-01
We discuss the numerical computation of sensitivities via the adjoint approach in optimization problems governed by differential equations. We focus on the adjoint problem in its weak form. We show how one can avoid some of the problems with the adjoint approach, such as deriving suitable boundary conditions for the adjoint equation. We discuss the convergence of numerical approximations of the costate computed via the weak form of the adjoint problem and show the significance for the discrete adjoint problem.
Numerical Solutions for Bayes Sequential Decision Approach to Bioequivalence Problem
1991-03-01
ADA3 707 2T1 -r Numerical Solutions for Bayes Sequential Decision Approach to Bioequivalence Problem Jing-Shiang Hwang Department of Statistics...Decision Approach to Bioequivalence Problem Jing-Shiang Hwang Department of Statistics Harvard University March 20, 1991 Abstract Bioequivalence is an...literatures. We address stop- ping rules for testing bioequivalence from a decision-theoretic point of view. The numerical techniques for Bayes
BOOK REVIEW Analytical and Numerical Approaches to Mathematical Relativity
NASA Astrophysics Data System (ADS)
Stewart, John M.
2007-08-01
The 319th Wilhelm-and-Else-Heraeus Seminar 'Mathematical Relativity: New Ideas and Developments' took place in March 2004. Twelve of the invited speakers have expanded their one hour talks into the papers appearing in this volume, preceded by a foreword by Roger Penrose. The first group consists of four papers on 'differential geometry and differential topology'. Paul Ehrlich opens with a very witty review of global Lorentzian geometry, which caused this reviewer to think more carefully about how he uses the adjective 'generic'. Robert Low addresses the issue of causality with a description of the 'space of null geodesics' and a tentative proposal for a new definition of causal boundary. The underlying review of global Lorentzian geometry is continued by Antonio Masiello, looking at variational approaches (actually valid for more general semi-Riemannian manifolds). This group concludes with a very clear review of pp-wave spacetimes from José Flores and Miguel Sánchez. (This reviewer was delighted to see a reproduction of Roger Penrose's seminal (1965) picture of null geodesics in plane wave spacetimes which attracted him into the subject.) Robert Beig opens the second group 'analytic methods and differential equations' with a brief but careful discussion of symmetric (regular) hyperbolicity for first (second) order systems, respectively, of partial differential equations. His description is peppered with examples, many specific to relativstic continuum mechanics. There follows a succinct review of linear elliptic boundary value problems with applications to general relativity from Sergio Dain. The numerous examples he provides are thought-provoking. The 'standard cosmological model' has been well understood for three quarters of a century. However recent observations suggest that the expansion in our Universe may be accelerating. Alan Rendall provides a careful discussion of the changes, both mathematical and physical, to the standard model which might be needed
Advanced numerical methods and software approaches for semiconductor device simulation
CAREY,GRAHAM F.; PARDHANANI,A.L.; BOVA,STEVEN W.
2000-03-23
In this article the authors concisely present several modern strategies that are applicable to drift-dominated carrier transport in higher-order deterministic models such as the drift-diffusion, hydrodynamic, and quantum hydrodynamic systems. The approaches include extensions of upwind and artificial dissipation schemes, generalization of the traditional Scharfetter-Gummel approach, Petrov-Galerkin and streamline-upwind Petrov Galerkin (SUPG), entropy variables, transformations, least-squares mixed methods and other stabilized Galerkin schemes such as Galerkin least squares and discontinuous Galerkin schemes. The treatment is representative rather than an exhaustive review and several schemes are mentioned only briefly with appropriate reference to the literature. Some of the methods have been applied to the semiconductor device problem while others are still in the early stages of development for this class of applications. They have included numerical examples from the recent research tests with some of the methods. A second aspect of the work deals with algorithms that employ unstructured grids in conjunction with adaptive refinement strategies. The full benefits of such approaches have not yet been developed in this application area and they emphasize the need for further work on analysis, data structures and software to support adaptivity. Finally, they briefly consider some aspects of software frameworks. These include dial-an-operator approaches such as that used in the industrial simulator PROPHET, and object-oriented software support such as those in the SANDIA National Laboratory framework SIERRA.
Advanced Numerical Methods and Software Approaches for Semiconductor Device Simulation
Carey, Graham F.; Pardhanani, A. L.; Bova, S. W.
2000-01-01
In this article we concisely present several modern strategies that are applicable to driftdominated carrier transport in higher-order deterministic models such as the driftdiffusion, hydrodynamic, and quantum hydrodynamic systems. The approaches include extensions of “upwind” and artificial dissipation schemes, generalization of the traditional Scharfetter – Gummel approach, Petrov – Galerkin and streamline-upwind Petrov Galerkin (SUPG), “entropy” variables, transformations, least-squares mixed methods and other stabilized Galerkin schemes such as Galerkin least squares and discontinuous Galerkin schemes. The treatment is representative rather than an exhaustive review and several schemes are mentioned only briefly with appropriate reference to the literature. Some of themore » methods have been applied to the semiconductor device problem while others are still in the early stages of development for this class of applications. We have included numerical examples from our recent research tests with some of the methods. A second aspect of the work deals with algorithms that employ unstructured grids in conjunction with adaptive refinement strategies. The full benefits of such approaches have not yet been developed in this application area and we emphasize the need for further work on analysis, data structures and software to support adaptivity. Finally, we briefly consider some aspects of software frameworks. These include dial-an-operator approaches such as that used in the industrial simulator PROPHET, and object-oriented software support such as those in the SANDIA National Laboratory framework SIERRA.« less
Liu, Yanhui; Zhang, Peihua
2016-09-01
This paper presents a study of the compression behaviors of fully covered biodegradable polydioxanone biliary stents (FCBPBs) developed for human body by finite element method. To investigate the relationship between the compression force and structure parameter (monofilament diameter and braid-pin number), nine numerical models based on actual biliary stent were established, the simulation and experimental results are in good agreement with each other when calculating the compression force derived from both experiment and simulation results, indicating that the simulation results can be provided a useful reference to the investigation of biliary stents. The stress distribution on FCBPBSs was studied to optimize the structure of FCBPBSs. In addition, the plastic dissipation analysis and plastic strain of FCBPBSs were obtained via the compression simulation, revealing the structure parameter effect on the tolerance.
Chimera: A hybrid numerical approach for isotropic loop quantum cosmology
NASA Astrophysics Data System (ADS)
Diener, Peter; Gupt, Brajesh; Singh, Parampreet
2013-04-01
Loop quantum cosmology (LQC) is one approach to the resolution of the problem of singularities in classical cosmologies. The evolution of a cosmological model in LQC is governed by a set difference equations. In the isotropic cosmology (1+1 dimensions) the discretization is uniform in the spatial dimension. The stable simulation of a widely spread semi-classical state requires a very large computational domain and would therefore be computationally very expensive. In this talk we present an efficient hybrid numerical scheme based on the fact that the difference equations can be approximated by a set of partial differential equations (PDE's) in the limit of large spatial volume. We therefore introduce a hybrid scheme where we solve the LQC difference equations in the small volume and the PDE's in the large volume regime. By a simple change of coordinates in the large volume regime, we can significantly reduce the computational cost and explore regions of parameter space previously unachievable. We will describe the numerical implementation, present selected results and discuss the extension of the scheme to other models.
NASA Astrophysics Data System (ADS)
Tateno, Takashi
In this study, I aim to understand morphological changes in dopaminergic neurons of the rat midbrain during early developmental stages and their computational properties in the dendrites. To this end, firstly, I measured morphological details of dopaminergic neurons using an immunochemical double-staining technique. In the viewpoint of the Rall's equivalent-cylinder model, secondly, I tested if the data satisfied one of conditions (3/2 power law) of the Rall's model. On the basis of the experimental data, I next investigated if some branches in the individual dendrites had special selectivity in efficient passive propagation of membrane potentials between the branches of individual cells and different cells. The results show that the Rall's 3/2 power law was not satisfied in many branch points and that among branches of each dendrite, specific selectivity in efficient propagation was not found. In addition, I note an implementation method in which the finite element method is applied to one-dimensional cable model of dendrites and give some numerical examples.
Validation of Modeling Flow Approaching Navigation Locks
2013-08-01
instrumentation, direction vernier . ........................................................................ 8 Figure 11. Plan A lock approach, upstream approach...13-9 8 Figure 9. Tools and instrumentation, bracket attached to rail. Figure 10. Tools and instrumentation, direction vernier . Numerical model
NASA Astrophysics Data System (ADS)
Bartzke, Gerhard; Huhn, Katrin
2015-06-01
In mixed sediment beds, erosion resistance can change relative to that of beds composed of a uniform sediment because of varying textural and/or other grain-size parameters, with effects on pore water flow that are difficult to quantify by means of analogue techniques. To overcome this difficulty, a three-dimensional numerical model was developed using a finite difference method (FDM) flow model coupled with a distinct element method (DEM) particle model. The main aim was to investigate, at a high spatial resolution, the physical processes occurring during the initiation of motion of single grains at the sediment-water interface and in the shallow subsurface of simplified sediment beds under different flow velocities. Increasing proportions of very fine sand (D50=0.08 mm) were mixed into a coarse sand matrix (D50=0.6 mm) to simulate mixed sediment beds, starting with a pure coarse sand bed in experiment 1 (0 wt% fines), and proceeding through experiment 2 (6.5 wt% fines), experiment 3 (10.5 wt% fines), and experiment 4 (28.7 wt% fines). All mixed beds were tested for their erosion behavior at predefined flow velocities varying in the range of U 1-5=10-30 cm/s. The experiments show that, with increasing fine content, the smaller particles increasingly fill the spaces between the larger particles. As a consequence, pore water inflow into the sediment is increasingly blocked, i.e., there is a decrease in pore water flow velocity and, hence, in the flow momentum available to entrain particles. These findings are portrayed in a new conceptual model of enhanced sediment bed stabilization.
Evaluation of wave runup predictions from numerical and parametric models
Stockdon, Hilary F.; Thompson, David M.; Plant, Nathaniel G.; Long, Joseph W.
2014-01-01
Wave runup during storms is a primary driver of coastal evolution, including shoreline and dune erosion and barrier island overwash. Runup and its components, setup and swash, can be predicted from a parameterized model that was developed by comparing runup observations to offshore wave height, wave period, and local beach slope. Because observations during extreme storms are often unavailable, a numerical model is used to simulate the storm-driven runup to compare to the parameterized model and then develop an approach to improve the accuracy of the parameterization. Numerically simulated and parameterized runup were compared to observations to evaluate model accuracies. The analysis demonstrated that setup was accurately predicted by both the parameterized model and numerical simulations. Infragravity swash heights were most accurately predicted by the parameterized model. The numerical model suffered from bias and gain errors that depended on whether a one-dimensional or two-dimensional spatial domain was used. Nonetheless, all of the predictions were significantly correlated to the observations, implying that the systematic errors can be corrected. The numerical simulations did not resolve the incident-band swash motions, as expected, and the parameterized model performed best at predicting incident-band swash heights. An assimilated prediction using a weighted average of the parameterized model and the numerical simulations resulted in a reduction in prediction error variance. Finally, the numerical simulations were extended to include storm conditions that have not been previously observed. These results indicated that the parameterized predictions of setup may need modification for extreme conditions; numerical simulations can be used to extend the validity of the parameterized predictions of infragravity swash; and numerical simulations systematically underpredict incident swash, which is relatively unimportant under extreme conditions.
Numerical modeling of polar mesocyclones generation mechanisms
NASA Astrophysics Data System (ADS)
Sergeev, Dennis; Stepanenko, Victor
2013-04-01
parameters, lateral boundary conditions are varied in the typically observed range. The approach is fully nonlinear: we use a three-dimensional non-hydrostatic mesoscale model NH3D_MPI [1] coupled with one-dimensional water body model LAKE. A key method used in the present study is the analysis of eddy kinetic and available potential energy budgets. References 1. Mikushin, D.N., and Stepanenko, V.M., The implementation of regional atmospheric model numerical algorithms for CBEA-based clusters. Lecture Notes in Computer Science, Parallel Processing and Applied Mathematics, 2010, vol. 6067, p. 525-534. 2. Rasmussen, E., and Turner, J. (eds), Polar Lows: Mesoscale Weather Systems in the Polar Regions. Cambridge: Cambridge University Press, 2003, 612 pp. 3. Yanase, W., and Niino, H., Dependence of Polar Low Development on Baroclinicity and Physical Processes: An Idealized High-Resolution Experiment, J. Atmos. Sci., 2006, vol. 64, p. 3044-3067.
NASA Astrophysics Data System (ADS)
Kavvas, M. L.; Trinh, T. Q.; Ishida, K.; Fischer, I.; Nosacka, J.; Brown, K.
2015-12-01
Effect of climate change on hydrologic flow regimes, particularly extreme events, necessitates modeling of future flows in order to best inform water resources management. The presented modeling approach simulated future flows in the Cache Creek watershed in California, over the 21st century using a hydro-climate model (WEHY-HCM) forced by future climate projections. The future climate projections, based on four emission scenarios, simulated by two GCMs (ECHAM5 and CCSM3) under several initial conditions, were dynamically downscaled using MM5, a regional climate model. The downscaled future precipitation data were bias-corrected before being input into the fully physically-based WEHY watershed hydrology model to simulate the flows at hourly intervals along the main Cache Creek branch and its tributaries during 2010-2099. The results suggest an increasing trend in flood peak discharge magnitudes at the outlet of the studied watershed throughout the 21st century. Similarly, estimates of the 100 and 200-year flood discharge magnitudes increase throughout the study period toward future in the 21st century. The differences among the historical flood frequency, and the flood frequencies during the first half and second half of the 21st century are indicative of the ongoing non-stationarity in the 21st century hydro-climate regime of the study region.
NASA Astrophysics Data System (ADS)
Mather, B.; Moresi, L. N.; Cruden, A. R.
2014-12-01
Uncertainty of the lithospheric thermal regime greatly increases with depth. Measurements of temperature gradient and crustal rheology are concentrated in the upper crust, whereas the majority of the lithospheric measurements are approximated using empirical depth-dependent functions. We have applied a Monte Carlo approach to test the variation of crustal heat flow with temperature-dependent conductivity and the redistribution of heat-producing elements. The dense population of precision heat flow data in Victoria, Southeast Australia offers the ideal environment to test the variation of heat flow. A stochastically consistent anomalous zone of impossibly high Moho temperatures in the 3D model (> 900°C) correlates well with a zone of low teleseismic velocity and high electrical conductivity. This indicates that transient heat transfer has perturbed the thermal gradient and therefore a steady-state approach to 3D modelling is inappropriate in this zone. A spatial correlation between recent intraplate volcanic eruption points (< 5 Ma) and elevated Moho temperatures is a potential origin for additional latent heat in the crust.
Reduced-order modelling numerical homogenization.
Abdulle, A; Bai, Y
2014-08-06
A general framework to combine numerical homogenization and reduced-order modelling techniques for partial differential equations (PDEs) with multiple scales is described. Numerical homogenization methods are usually efficient to approximate the effective solution of PDEs with multiple scales. However, classical numerical homogenization techniques require the numerical solution of a large number of so-called microproblems to approximate the effective data at selected grid points of the computational domain. Such computations become particularly expensive for high-dimensional, time-dependent or nonlinear problems. In this paper, we explain how numerical homogenization method can benefit from reduced-order modelling techniques that allow one to identify offline and online computational procedures. The effective data are only computed accurately at a carefully selected number of grid points (offline stage) appropriately 'interpolated' in the online stage resulting in an online cost comparable to that of a single-scale solver. The methodology is presented for a class of PDEs with multiple scales, including elliptic, parabolic, wave and nonlinear problems. Numerical examples, including wave propagation in inhomogeneous media and solute transport in unsaturated porous media, illustrate the proposed method.
Numerical modeling techniques for flood analysis
NASA Astrophysics Data System (ADS)
Anees, Mohd Talha; Abdullah, K.; Nawawi, M. N. M.; Ab Rahman, Nik Norulaini Nik; Piah, Abd. Rahni Mt.; Zakaria, Nor Azazi; Syakir, M. I.; Mohd. Omar, A. K.
2016-12-01
Topographic and climatic changes are the main causes of abrupt flooding in tropical areas. It is the need to find out exact causes and effects of these changes. Numerical modeling techniques plays a vital role for such studies due to their use of hydrological parameters which are strongly linked with topographic changes. In this review, some of the widely used models utilizing hydrological and river modeling parameters and their estimation in data sparse region are discussed. Shortcomings of 1D and 2D numerical models and the possible improvements over these models through 3D modeling are also discussed. It is found that the HEC-RAS and FLO 2D model are best in terms of economical and accurate flood analysis for river and floodplain modeling respectively. Limitations of FLO 2D in floodplain modeling mainly such as floodplain elevation differences and its vertical roughness in grids were found which can be improve through 3D model. Therefore, 3D model was found to be more suitable than 1D and 2D models in terms of vertical accuracy in grid cells. It was also found that 3D models for open channel flows already developed recently but not for floodplain. Hence, it was suggested that a 3D model for floodplain should be developed by considering all hydrological and high resolution topographic parameter's models, discussed in this review, to enhance the findings of causes and effects of flooding.
NASA Astrophysics Data System (ADS)
Gharasoo, M. G.; Centler, F.; Fetzer, I.; Thullner, M.
2010-12-01
Reactive processes, for example nutrient cycling or degradation of organic contaminants, in subsurface environments like soils or aquifers are driven by microorganisms residing in these porous environments. These natural porous media are characterized by heterogeneities at various scales and the heterogeneous structure of the medium shapes both the transport of chemical species and the distribution of microorganisms, both of which are altering the accessibility and availability of the chemical species to the located microorganisms within the medium. Effective reaction rates that describe the biodegradation of contaminants and resulted microbial distribution patterns thus depend not only on the growth and degradation capacity of the indigenous microbial population but also on the pore-scale heterogeneities of a medium and on the ability of microorganisms to relocate within the medium. The interaction of these properties will control the bacterial distribution patterns and in consequence the bioavailability and realized biodegradation rate of chemical species. To obtain a better and quantitative understanding of the bioavailability of biodegradable compounds in porous media, a numerical pore-network model has been developed, which is capable of considering the transport of an arbitrary number of chemical species, as well as their consumption/production by an arbitrary number of (bio)geochemical reactions. These simulations are further combined with the individual-based simulation of the growth and chemotactic mobility of microbial cells within the pore network. The model allows for considering various ranges of heterogeneities as well as pore-specific limitations of intra-pore bioavailability. Simulations are performed for studying the link between pore-scale heterogeneity and the distribution of bacteria, which will allow assess the bioavailability of biodegradable species and their effective biodegradation rates in such media.
Benchmarking numerical models of brittle thrust wedges
NASA Astrophysics Data System (ADS)
Buiter, Susanne J. H.; Schreurs, Guido; Albertz, Markus; Gerya, Taras V.; Kaus, Boris; Landry, Walter; le Pourhiet, Laetitia; Mishin, Yury; Egholm, David L.; Cooke, Michele; Maillot, Bertrand; Thieulot, Cedric; Crook, Tony; May, Dave; Souloumiac, Pauline; Beaumont, Christopher
2016-11-01
We report quantitative results from three brittle thrust wedge experiments, comparing numerical results directly with each other and with corresponding analogue results. We first test whether the participating codes reproduce predictions from analytical critical taper theory. Eleven codes pass the stable wedge test, showing negligible internal deformation and maintaining the initial surface slope upon horizontal translation over a frictional interface. Eight codes participated in the unstable wedge test that examines the evolution of a wedge by thrust formation from a subcritical state to the critical taper geometry. The critical taper is recovered, but the models show two deformation modes characterised by either mainly forward dipping thrusts or a series of thrust pop-ups. We speculate that the two modes are caused by differences in effective basal boundary friction related to different algorithms for modelling boundary friction. The third experiment examines stacking of forward thrusts that are translated upward along a backward thrust. The results of the seven codes that run this experiment show variability in deformation style, number of thrusts, thrust dip angles and surface slope. Overall, our experiments show that numerical models run with different numerical techniques can successfully simulate laboratory brittle thrust wedge models at the cm-scale. In more detail, however, we find that it is challenging to reproduce sandbox-type setups numerically, because of frictional boundary conditions and velocity discontinuities. We recommend that future numerical-analogue comparisons use simple boundary conditions and that the numerical Earth Science community defines a plasticity test to resolve the variability in model shear zones.
Numerical models for the evaluation of geothermal systems
Bodvarsson, G.S.; Pruess, K.; Lippmann, M.J.
1986-08-01
We have carried out detailed simulations of various fields in the USA (Bada, New Mexico; Heber, California); Mexico (Cerro Prieto); Iceland (Krafla); and Kenya (Olkaria). These simulation studies have illustrated the usefulness of numerical models for the overall evaluation of geothermal systems. The methodology for modeling the behavior of geothermal systems, different approaches to geothermal reservoir modeling and how they can be applied in comprehensive evaluation work are discussed.
Preliminary 2D numerical modeling of common granular problems
NASA Astrophysics Data System (ADS)
Wyser, Emmanuel; Jaboyedoff, Michel
2017-04-01
Granular studies received an increasing interest during the last decade. Many scientific investigations were successfully addressed to acknowledge the ubiquitous behavior of granular matter. We investigate liquid impacts onto granular beds, i.e. the influence of the packing and compaction-dilation transition. However, a physically-based model is still lacking to address complex microscopic features of granular bed response during liquid impacts such as compaction-dilation transition or granular bed uplifts (Wyser et al. in review). We present our preliminary 2D numerical modeling based on the Discrete Element Method (DEM) using nonlinear contact force law (the Hertz-Mindlin model) for disk shape particles. The algorithm is written in C programming language. Our 2D model provides an analytical tool to address granular problems such as i) granular collapses and ii) static granular assembliy problems. This provides a validation framework of our numerical approach by comparing our numerical results with previous laboratory experiments or numerical works. Inspired by the work of Warnett et al. (2014) and Staron & Hinch (2005), we studied i) the axisymetric collapse of granular columns. We addressed the scaling between the initial aspect ratio and the final runout distance. Our numerical results are in good aggreement with the previous studies of Warnett et al. (2014) and Staron & Hinch (2005). ii) Reproducing static problems for regular and randomly stacked particles provides a valid comparison to results of Egholm (2007). Vertical and horizontal stresses within the assembly are quite identical to stresses obtained by Egholm (2007), thus demonstating the consistency of our 2D numerical model. Our 2D numerical model is able to reproduce common granular case studies such as granular collapses or static problems. However, a sufficient small timestep should be used to ensure a good numerical consistency, resulting in higher computational time. The latter becomes critical
NASA Astrophysics Data System (ADS)
Wichura, Henry; Quinteros, Javier; Melnick, Daniel; Brune, Sascha; Schwanghart, Wolfgang; Strecker, Manfred R.
2015-04-01
Over the last four years sedimentologic and thermochronologic studies in the western and eastern branches of the Cenozoic East African Rift System (EARS) have supported the notion of a broadly contemporaneous onset of normal faulting and rift-basin formation in both segments. These studies support previous interpretations based on geophysical investigations from which an onset of rifting during the Paleogene had been postulated. In light of these studies we explore the evolution of the Lake Victoria basin, a shallow, unfaulted sedimentary basin centered between both branches of the EARS and located in the interior of the East African Plateau (EAP). We quantify the fluvial catchment evolution of the Lake Victoria basin and assess the topographic response of African crust to the onset of rifting in both branches. Furthermore, we evaluate and localize the nature of strain and flexural rift-flank uplift in both branches. We use a 3D numerical forward model that includes nonlinear temperature- and stress-dependent elasto-visco-plastic rheology. The model is able to reproduce the flexural response of variably thick lithosphere to rift-related deformation processes such as lithospheric thinning and asthenospheric upwelling. The model domain covers the entire EAP and integrates extensional processes in a heterogeneous, yet cold and thick cratonic block (Archean Tanzania craton), which is surrounded by mechanically weaker Proterozoic mobile belts, which are characterized by thinner lithosphere ("thin spots"). The lower limits of the craton (170 km) and the mobile belts (120 km) are simulated by different depths of the 1300 °C lithosphere-asthenosphere boundary. We assume a constant extension rate of 4 mm/a throughout the entire simulation of 30 Ma and neglect the effect of dynamic topography and magmatism. Even though the model setup is very simple and the resolution is not high enough to calculate realistic rift-flank uplift, it intriguingly reveals important topographic
Teaching ANOVA Models via Miniature Numerical Samples
ERIC Educational Resources Information Center
Bolton, Brian
1975-01-01
On the premise that the more formal algebraic presentation of statistics must be placed in a concrete context to facilitate student understanding, the author presents a pedagogical device involving the construction of miniature numerical examples that illustrate how the statistical model imposes structure on empirical data. (JT)
Numerical modeling of eastern connecticut's visual resources
Daniel L. Civco
1979-01-01
A numerical model capable of accurately predicting the preference for landscape photographs of selected points in eastern Connecticut is presented. A function of the social attitudes expressed toward thirty-two salient visual landscape features serves as the independent variable in predicting preferences. A technique for objectively assigning adjectives to landscape...
Numerical modelling of new rockfall interception nets
NASA Astrophysics Data System (ADS)
von Boetticher, Albrecht; Volkwein, Axel; Wendeler, Corinna
2010-05-01
The design and certification of effective rockfall protection barriers is mainly achieved through 1:1 prototype testing. In order to reduce development costs of a prototype it is recommended that pre-studies using numerical simulations are performed. A large component to modelling rockfall protection systems is the numerical simulation of the nets. To date there exist several approaches to model the different mesh types such as ring nets or diagonal meshes (Nicot 1999, Cazzani et al. 2002, Volkwein 2004). However, the consideration of chain link meshes has not yet been realised. Chain link meshes are normally found as standard fence structures. However, they also exist in setups using high-strength steel and wire bundles. These variants show an enormous capacity to retain loads e.g. rockfalls, and at the same time are very efficient due to their low demand of steel material. The increasing application of chain link mesh in barrier systems requires an accurate model is available to complete prototype studies. A new approach now aims to perform a Finite Element simulation of such chain link meshes. The main challenge herein is to achieve the net deformation behaviour that is observed in field tests also in the simulation. A simulation using simple truss elements would not work since it neglects the out-of-plane-height of the mesh construction providing important reserves for local and global high deformations. Thus addressing this, a specially developed Discrete Element is able to reconstruct the mechanical behaviour of the single chain wire (bundles). As input parameters it utilises typical properties such as longitudinal and transversal mesh widths, and break loads resulting from in-plane-tension tests and steel strength. The single chain elements then can be combined to a complete mesh (e.g. 130 x 65 mm, 3 - 4 mm wire with a strength of 1770 N-mm2). Combining these elements with a supporting structure consisting of posts, ropes and energy absorbers, enables the
Microplastics elutriation system. Part A: Numerical modeling.
Kedzierski, Mikaël; Le Tilly, Véronique; Bourseau, Patrick; Bellegou, Hervé; César, Guy; Sire, Olivier; Bruzaud, Stéphane
2017-06-30
The elutriation process has shown its efficiency to extract microplastics from sand and began to spread in the scientific community. This extraction technic requires knowing with accuracy the extraction velocities of particles. This study aims to test whether numerical modeling could help to calculate these velocities. From hydrodynamic equations, a numerical model has been developed and the outputs are compared to experimental extraction data. The results show, for the calculated velocities, the experimental plastic extraction yields will be higher than 90% for <10% of sand contamination. The model also allows determining that, with the actual protocol, the maximum plastic density which can be extracted is about 1450kg·m(-3) whereas the detrimental resuspension, which may occur during the column filling step, is highlighted. From model calculations, it arises that changes in the column dimensioning and the protocol operations need to be considered. Copyright © 2017 Elsevier Ltd. All rights reserved.
Numerical modeling tools for chemical vapor deposition
NASA Technical Reports Server (NTRS)
Jasinski, Thomas J.; Childs, Edward P.
1992-01-01
Development of general numerical simulation tools for chemical vapor deposition (CVD) was the objective of this study. Physical models of important CVD phenomena were developed and implemented into the commercial computational fluid dynamics software FLUENT. The resulting software can address general geometries as well as the most important phenomena occurring with CVD reactors: fluid flow patterns, temperature and chemical species distribution, gas phase and surface deposition. The physical models are documented which are available and examples are provided of CVD simulation capabilities.
Numerical modeling of the solar wind turbulence
Kryukov, I.A.; Pogorelov, N.V.; Zank, G.P.; ...
2012-05-21
Here we describe an extension of the Multi-Scale Fluid-Kinetic Simulation Suite (MSFLUKSS) by adding a solar wind turbulence model and a fluid treatment of pickup ions. Numerical results are presented of the time-dependent solar wind modeling with the boundary conditions provided by the OMNI data. The distributions of plasma properties and interplanetary magnetic field are compared with the Voyager 2 observations in the distant solar wind.
Numerical modeling of nonintrusive inspection systems
Hall, J.; Morgan, J.; Sale, K.
1992-12-01
A wide variety of nonintrusive inspection systems have been proposed in the past several years for the detection of hidden contraband in airline luggage and shipping containers. The majority of these proposed techniques depend on the interaction of radiation with matter to produce a signature specific to the contraband of interest, whether drugs or explosives. In the authors` role as diagnostic specialists in the Underground Test Program over the past forty years, L-Division of the Lawrence Livermore National Laboratory has developed a technique expertise in the combined numerical and experimental modeling of these types of system. Based on their experience, they are convinced that detailed numerical modeling provides a much more accurate estimate of the actual performance of complex experiments than simple analytical modeling. Furthermore, the construction of detailed numerical prototypes allows experimenters to explore the entire region of parameter space available to them before committing their ideas to hardware. This sort of systematic analysis has often led to improved experimental designs and reductions in fielding costs. L-Division has developed an extensive suite of computer codes to model proposed experiments and possible background interactions. These codes allow one to simulate complex radiation sources, model 3-dimensional system geometries with {open_quotes}real world{close_quotes} complexity, specify detailed elemental distributions, and predict the response of almost any type of detector. In this work several examples are presented illustrating the use of these codes in modeling experimental systems at LLNL and their potential usefulness in evaluating nonintrusive inspection systems is discussed.
Numerical Modeling of Weld Joint Corrosion
NASA Astrophysics Data System (ADS)
Lu, Yongxin; Jing, Hongyang; Han, Yongdian; Xu, Lianyong
2016-03-01
A numerical model is presented in this work that predicts the corrosion rate of weld joint. The model is able to track moving boundary of the corroding constituent of weld joint. The corrosion rates obtained from the model are compared with those estimated from mixed potential theory and two experimental techniques, namely immersion test and constant potential polarization test. The corrosion rate predicted using the model is within 10% of the estimate from the mixed potential theory, within 20% of that got from the immersion experiment and within 10% of that got from the constant potential polarization experiment for weld joint.
Unsteady flow phenomena in human undulatory swimming: a numerical approach.
Pacholak, Steffen; Hochstein, Stefan; Rudert, Alexander; Brücker, Christoph
2014-06-01
The undulatory underwater sequence is one of the most important phases in competitive swimming. An understanding of the recurrent vortex dynamics around the human body and their generation could therefore be used to improve swimming techniques. In order to produce a dynamic model, we applied human joint kinematics to three-dimensional (3D) body scans of a female swimmer. The flow around this dynamic model was then calculated using computational fluid dynamics with the aid of moving 3D meshes. Evaluation of the numerical results delivered by the various motion cycles identified characteristic vortex structures for each of the cycles, which exhibited increasing intensity and drag influence. At maximum thrust, drag forces appear to be 12 times higher than those of a passive gliding swimmer. As far as we know, this is the first disclosure of vortex rings merging into vortex tubes in the wake after vortex recapturing. All unsteady structures were visualized using a modified Q-criterion also incorporated into our methods. At the very least, our approach is likely to be suited to further studies examining swimmers engaging in undulatory swimming during training or competition.
Theoretical Modeling for Numerical Weather Prediction
NASA Technical Reports Server (NTRS)
Somerville, R. C. J.
1984-01-01
The goal is to utilize predictability theory and numerical experimentation to identify and understand some of the dynamical processes which must be modeled more realistically if large-scale numerical weather predictions are to be improved. The emphasis is on the use of relatively simple models to exlore the properties of physically comprehensive general circulation models (GCM's). A global linear quasi-geostrophic model and the Goddard Laboratory for Atmospheric Sciences (GLAS) GCM were used to investigate several mechanisms which are responsible for the decay of large-scale forecast skill in mid-latitude numerical weather predictions. Five-day forecasts for an ensemble of cases were made using First GARP Global Experiment data. It was found that forecast skill depends crucially on the specification of the stationary forcing. A lack of stationary forcing leads to spurious westwad propagation of the ultralong waves. Forecasts made with stationary forcings derived from climatological data are superior to those using forcings inferred from observations immediately preceding the forecast period. Interhemispheric forecast differences were analyzed, and the model errors were compared to errors of a simple persistence-damped-to-climatology scheme and to errors of the GLAS GCM.
NASA Astrophysics Data System (ADS)
Wang, Jiajia; Ward, Steven N.; Xiao, Lili
2015-06-01
Flow-like landslides are rapidly moving fluid-solid mixtures that can cause significant destruction along paths that run far from their original sources. Existing models for run out prediction and motion simulation of flow-like landslides have many limitations. In this paper, we develop a new method named `Tsunami Squares' to simulate the generation, propagation and stoppage of flow-like landslides based on conservation of volume and momentum. Landslide materials in the new method form divisible squares that are displaced, then further fractured. The squares move under the influence of gravity-driven acceleration and suffer decelerations due to basal and dynamic frictions. Distinctively, this method takes into account solid and fluid mechanics, particle interactions and flow regime transitions. We apply this approach to simulate the 1982 El Picacho landslide in San Salvador, capital city of El Salvador. Landslide products from Tsunami Squares such as run out distance, velocities, erosion and deposition depths and impacted area agree well with field investigated and eyewitness data.
Probing modified gravity with atom-interferometry: A numerical approach
NASA Astrophysics Data System (ADS)
Schlögel, Sandrine; Clesse, Sébastien; Füzfa, André
2016-05-01
Refined constraints on chameleon theories are calculated for atom-interferometry experiments, using a numerical approach consisting in solving for a four-region model the static and spherically symmetric Klein-Gordon equation for the chameleon field. By modeling not only the test mass and the vacuum chamber but also its walls and the exterior environment, the method allows one to probe new effects on the scalar field profile and the induced acceleration of atoms. In the case of a weakly perturbing test mass, the effect of the wall is to enhance the field profile and to lower the acceleration inside the chamber by up to 1 order of magnitude. In the thin-shell regime, results are found to be in good agreement with the analytical estimations, when measurements are realized in the immediate vicinity of the test mass. Close to the vacuum chamber wall, the acceleration becomes negative and potentially measurable. This prediction could be used to discriminate between fifth-force effects and systematic experimental uncertainties, by doing the experiment at several key positions inside the vacuum chamber. For the chameleon potential V (ϕ )=Λ4 +α/ϕα and a coupling function A (ϕ )=exp (ϕ /M ), one finds M ≳7 ×1016 GeV , independently of the power-law index. For V (ϕ )=Λ4(1 +Λ /ϕ ), one finds M ≳1014 GeV . A sensitivity of a ˜10-11 m /s2 would probe the model up to the Planck scale. Finally, a proposal for a second experimental setup, in a vacuum room, is presented. In this case, Planckian values of M could be probed provided that a ˜10-10 m /s2 , a limit reachable by future experiments. Our method can easily be extended to constrain other models with a screening mechanism, such as symmetron, dilaton and f(R) theories.
Quantitative comparisons of numerical models of brittle wedge dynamics
NASA Astrophysics Data System (ADS)
Buiter, Susanne
2010-05-01
Numerical and laboratory models are often used to investigate the evolution of deformation processes at various scales in crust and lithosphere. In both approaches, the freedom in choice of simulation method, materials and their properties, and deformation laws could affect model outcomes. To assess the role of modelling method and to quantify the variability among models, we have performed a comparison of laboratory and numerical experiments. Here, we present results of 11 numerical codes, which use finite element, finite difference and distinct element techniques. We present three experiments that describe shortening of a sand-like, brittle wedge. The material properties of the numerical ‘sand', the model set-up and the boundary conditions are strictly prescribed and follow the analogue setup as closely as possible. Our first experiment translates a non-accreting wedge with a stable surface slope of 20 degrees. In agreement with critical wedge theory, all models maintain the same surface slope and do not deform. This experiment serves as a reference that allows for testing against analytical solutions for taper angle, root-mean-square velocity and gravitational rate of work. The next two experiments investigate an unstable wedge in a sandbox-like setup, which deforms by inward translation of a mobile wall. The models accommodate shortening by formation of forward and backward shear zones. We compare surface slope, rate of dissipation of energy, root-mean-square velocity, and the location, dip angle and spacing of shear zones. We show that we successfully simulate sandbox-style brittle behaviour using different numerical modelling techniques and that we obtain the same styles of deformation behaviour in numerical and laboratory experiments at similar levels of variability. The GeoMod2008 Numerical Team: Markus Albertz, Michelle Cooke, Tony Crook, David Egholm, Susan Ellis, Taras Gerya, Luke Hodkinson, Boris Kaus, Walter Landry, Bertrand Maillot, Yury Mishin
Quantifying Numerical Model Accuracy and Variability
NASA Astrophysics Data System (ADS)
Montoya, L. H.; Lynett, P. J.
2015-12-01
The 2011 Tohoku tsunami event has changed the logic on how to evaluate tsunami hazard on coastal communities. Numerical models are a key component for methodologies used to estimate tsunami risk. Model predictions are essential for the development of Tsunami Hazard Assessments (THA). By better understanding model bias and uncertainties and if possible minimizing them, a more accurate and reliable THA will result. In this study we compare runup height, inundation lines and flow velocity field measurements between GeoClaw and the Method Of Splitting Tsunami (MOST) predictions in the Sendai plain. Runup elevation and average inundation distance was in general overpredicted by the models. However, both models agree relatively well with each other when predicting maximum sea surface elevation and maximum flow velocities. Furthermore, to explore the variability and uncertainties in numerical models, MOST is used to compare predictions from 4 different grid resolutions (30m, 20m, 15m and 12m). Our work shows that predictions of particular products (runup and inundation lines) do not require the use of high resolution (less than 30m) Digital Elevation Maps (DEMs). When predicting runup heights and inundation lines, numerical convergence was achieved using the 30m resolution grid. On the contrary, poor convergence was found in the flow velocity predictions, particularly the 1 meter depth maximum flow velocities. Also, runup height measurements and elevations from the DEM were used to estimate model bias. The results provided in this presentation will help understand the uncertainties in model predictions and locate possible sources of errors within a model.
Automated Calibration For Numerical Models Of Riverflow
NASA Astrophysics Data System (ADS)
Fernandez, Betsaida; Kopmann, Rebekka; Oladyshkin, Sergey
2017-04-01
Calibration of numerical models is fundamental since the beginning of all types of hydro system modeling, to approximate the parameters that can mimic the overall system behavior. Thus, an assessment of different deterministic and stochastic optimization methods is undertaken to compare their robustness, computational feasibility, and global search capacity. Also, the uncertainty of the most suitable methods is analyzed. These optimization methods minimize the objective function that comprises synthetic measurements and simulated data. Synthetic measurement data replace the observed data set to guarantee an existing parameter solution. The input data for the objective function derivate from a hydro-morphological dynamics numerical model which represents an 180-degree bend channel. The hydro- morphological numerical model shows a high level of ill-posedness in the mathematical problem. The minimization of the objective function by different candidate methods for optimization indicates a failure in some of the gradient-based methods as Newton Conjugated and BFGS. Others reveal partial convergence, such as Nelder-Mead, Polak und Ribieri, L-BFGS-B, Truncated Newton Conjugated, and Trust-Region Newton Conjugated Gradient. Further ones indicate parameter solutions that range outside the physical limits, such as Levenberg-Marquardt and LeastSquareRoot. Moreover, there is a significant computational demand for genetic optimization methods, such as Differential Evolution and Basin-Hopping, as well as for Brute Force methods. The Deterministic Sequential Least Square Programming and the scholastic Bayes Inference theory methods present the optimal optimization results. keywords: Automated calibration of hydro-morphological dynamic numerical model, Bayesian inference theory, deterministic optimization methods.
Numerical Modelling Of Pumpkin Balloon Instability
NASA Astrophysics Data System (ADS)
Wakefield, D.
Tensys have been involved in the numerical formfinding and load analysis of architectural stressed membrane structures for 15 years. They have recently broadened this range of activities into the `lighter than air' field with significant involvement in aerostat and heavy-lift hybrid airship design. Since early 2004 they have been investigating pumpkin balloon instability on behalf of the NASA ULDB programme. These studies are undertaken using inTENS, an in-house finite element program suite based upon the Dynamic Relaxation solution method and developed especially for the non-linear analysis and patterning of membrane structures. The paper describes the current state of an investigation that started with a numerical simulation of the lobed cylinder problem first studied by Calladine. The influence of material properties and local geometric deformation on stability is demonstrated. A number of models of complete pumpkin balloons have then been established, including a 64-gore balloon with geometry based upon Julian Nott's Endeavour. This latter clefted dramatically upon initial inflation, a phenomenon that has been reproduced in the numerical model. Ongoing investigations include the introduction of membrane contact modelling into inTENS and correlation studies with the series of large-scale ULDB models currently in preparation.
Review of Methods and Approaches for Deriving Numeric ...
EPA will propose numeric criteria for nitrogen/phosphorus pollution to protect estuaries, coastal areas and South Florida inland flowing waters that have been designated Class I, II and III , as well as downstream protective values (DPVs) to protect estuarine and marine waters. In accordance with the formal determination and pursuant to a subsequent consent decree, these numeric criteria are being developed to translate and implement Florida’s existing narrative nutrient criterion, to protect the designated use that Florida has previously set for these waters, at Rule 62-302.530(47)(b), F.A.C. which provides that “In no case shall nutrient concentrations of a body of water be altered so as to cause an imbalance in natural populations of aquatic flora or fauna.” Under the Clean Water Act and EPA’s implementing regulations, these numeric criteria must be based on sound scientific rationale and reflect the best available scientific knowledge. EPA has previously published a series of peer reviewed technical guidance documents to develop numeric criteria to address nitrogen/phosphorus pollution in different water body types. EPA recognizes that available and reliable data sources for use in numeric criteria development vary across estuarine and coastal waters in Florida and flowing waters in South Florida. In addition, scientifically defensible approaches for numeric criteria development have different requirements that must be taken into consider
Numerical approach to differential equations of fractional order
NASA Astrophysics Data System (ADS)
Momani, Shaher; Odibat, Zaid
2007-10-01
In this paper, the variational iteration method and the Adomian decomposition method are implemented to give approximate solutions for linear and nonlinear systems of differential equations of fractional order. The two methods in applied mathematics can be used as alternative methods for obtaining analytic and approximate solutions for different types of differential equations. In these schemes, the solution takes the form of a convergent series with easily computable components. This paper presents a numerical comparison between the two methods for solving systems of fractional differential equations. Numerical results show that the two approaches are easy to implement and accurate when applied to differential equations of fractional order.
Direct numerical approach to one-loop amplitudes
NASA Astrophysics Data System (ADS)
Duplančić, G.; Klajn, B.
2017-01-01
We present a completely numerical method of calculating one-loop amplitudes. Our approach is built upon two different existing methods: the contour deformation and the extrapolation methods. Taking the best features of each of them, we devise an intuitive, stable and robust procedure which circumvents the problem of large cancellations and related numerical instabilities by calculating the complete amplitude at once. As a proof of concept, we use our method to calculate the 2 γ →(N -2 )γ benchmark process, as well as the Higgs decay amplitude H →γ γ .
An Ensemble-type Approach to Numerical Error Estimation
NASA Astrophysics Data System (ADS)
Ackmann, J.; Marotzke, J.; Korn, P.
2015-12-01
The estimation of the numerical error in a specific physical quantity of interest (goal) is of key importance in geophysical modelling. Towards this aim, we have formulated an algorithm that combines elements of the classical dual-weighted error estimation with stochastic methods. Our algorithm is based on the Dual-weighted Residual method in which the residual of the model solution is weighed by the adjoint solution, i.e. by the sensitivities of the goal towards the residual. We extend this method by modelling the residual as a stochastic process. Parameterizing the residual by a stochastic process was motivated by the Mori-Zwanzig formalism from statistical mechanics.Here, we apply our approach to two-dimensional shallow-water flows with lateral boundaries and an eddy viscosity parameterization. We employ different parameters of the stochastic process for different dynamical regimes in different regions. We find that for each region the temporal fluctuations of local truncation errors (discrete residuals) can be interpreted stochastically by a Laplace-distributed random variable. Assuming that these random variables are fully correlated in time leads to a stochastic process that parameterizes a problem-dependent temporal evolution of local truncation errors. The parameters of this stochastic process are estimated from short, near-initial, high-resolution simulations. Under the assumption that the estimated parameters can be extrapolated to the full time window of the error estimation, the estimated stochastic process is proven to be a valid surrogate for the local truncation errors.Replacing the local truncation errors by a stochastic process puts our method within the class of ensemble methods and makes the resulting error estimator a random variable. The result of our error estimator is thus a confidence interval on the error in the respective goal. We will show error estimates for two 2D ocean-type experiments and provide an outlook for the 3D case.
Numerical Modelling of Wave Interaction with Porous Structures
NASA Astrophysics Data System (ADS)
Gao, F.; M., D.; M., D.; G., C.
This paper presents a numerical model for simulating wave interaction with porous structures. By using the free surface-capturing approach together with a novel Cartesian cut cell treatment, the Finite Volume Model calculates the two phase flows out side of porous structure based on the Navier-Stokes equations, while the flow in the porous structure is described by Navier-Stokes type model equations. The free surface of water is treated as a contact discontinuity in the density field which is captured automatically as part of the numerical solution by using a time-accurate artificial compressibility method and high resolution Godunov-type scheme. The numerical model is first calibrated by simple test for a steady flow passing through a porous block. Reasonably good agreements with other numerical results are obtained. After that, the numerical model is used to simulate the breaking wave overtopping a caisson breakwater, protected by a layer of armor units. The results show that the porous armor layer is effective in reducing the overtopping rate as well as in protecting the stability of the caisson breakwater.
Advanced Numerical Model for Irradiated Concrete
Giorla, Alain B.
2015-03-01
In this report, we establish a numerical model for concrete exposed to irradiation to address these three critical points. The model accounts for creep in the cement paste and its coupling with damage, temperature and relative humidity. The shift in failure mode with the loading rate is also properly represented. The numerical model for creep has been validated and calibrated against different experiments in the literature [Wittmann, 1970, Le Roy, 1995]. Results from a simplified model are shown to showcase the ability of numerical homogenization to simulate irradiation effects in concrete. In future works, the complete model will be applied to the analysis of the irradiation experiments of Elleuch et al. [1972] and Kelly et al. [1969]. This requires a careful examination of the experimental environmental conditions as in both cases certain critical information are missing, including the relative humidity history. A sensitivity analysis will be conducted to provide lower and upper bounds of the concrete expansion under irradiation, and check if the scatter in the simulated results matches the one found in experiments. The numerical and experimental results will be compared in terms of expansion and loss of mechanical stiffness and strength. Both effects should be captured accordingly by the model to validate it. Once the model has been validated on these two experiments, it can be applied to simulate concrete from nuclear power plants. To do so, the materials used in these concrete must be as well characterized as possible. The main parameters required are the mechanical properties of each constituent in the concrete (aggregates, cement paste), namely the elastic modulus, the creep properties, the tensile and compressive strength, the thermal expansion coefficient, and the drying shrinkage. These can be either measured experimentally, estimated from the initial composition in the case of cement paste, or back-calculated from mechanical tests on concrete. If some
Nonlinear dispersion effects in elastic plates: numerical modelling and validation
NASA Astrophysics Data System (ADS)
Kijanka, Piotr; Radecki, Rafal; Packo, Pawel; Staszewski, Wieslaw J.; Uhl, Tadeusz; Leamy, Michael J.
2017-04-01
Nonlinear features of elastic wave propagation have attracted significant attention recently. The particular interest herein relates to complex wave-structure interactions, which provide potential new opportunities for feature discovery and identification in a variety of applications. Due to significant complexity associated with wave propagation in nonlinear media, numerical modeling and simulations are employed to facilitate design and development of new measurement, monitoring and characterization systems. However, since very high spatio- temporal accuracy of numerical models is required, it is critical to evaluate their spectral properties and tune discretization parameters for compromise between accuracy and calculation time. Moreover, nonlinearities in structures give rise to various effects that are not present in linear systems, e.g. wave-wave interactions, higher harmonics generation, synchronism and | recently reported | shifts to dispersion characteristics. This paper discusses local computational model based on a new HYBRID approach for wave propagation in nonlinear media. The proposed approach combines advantages of the Local Interaction Simulation Approach (LISA) and Cellular Automata for Elastodynamics (CAFE). The methods are investigated in the context of their accuracy for predicting nonlinear wavefields, in particular shifts to dispersion characteristics for finite amplitude waves and secondary wavefields. The results are validated against Finite Element (FE) calculations for guided waves in copper plate. Critical modes i.e., modes determining accuracy of a model at given excitation frequency - are identified and guidelines for numerical model parameters are proposed.
Numerical modeling of bacteria propelled micromotors
NASA Astrophysics Data System (ADS)
Angelani, L.; Di Leonardo, R.
2011-09-01
We describe a numerical model for simulating micro-objects immersed in a bath of self-propelled organisms. By using simplified models for swimming cells (2 beads rigidly connected and subject to a self-propelling force) and taking into account various interaction terms (collisions, hydrodynamics), we simulate different shaped devices immersed in the bacterial bath. Considering rotating cog-wheels and translating shuttles we demonstrate the emergence of unidirectional motions, whose efficiency depends on the object shape as well as on bacterial properties. The role of tumbling mechanism and hydrodynamic interactions is analyzed.
Numerical modeling and simulation of flow through porous fabric surface
NASA Astrophysics Data System (ADS)
Gao, Zheng; Li, Xiaolin
We designed a numerical scheme to model the permeability of the fabric surface in an incompressible fluid by coupling the projection method with the Ghost Fluid Method in the front tracking framework. The pressure jump condition is obtained by adding a source term to the Poisson's equation in the projection step without modifications on its coefficients. The numerical results suggest that this approach has the ability to reproduce the relationship between pressure drop and relative velocity observed in the experiments. We use this algorithm to study the effects of porosity on the drag force and stability of parachutes during its inflation and deceleration.
a Numerical Model for Subsonic Acoustic Choking.
NASA Astrophysics Data System (ADS)
Walkington, Noel John
In aircraft turbofan inlets, fan generated noise is observed experimentally to be significantly attenuated at high subsonic inlet Mach numbers. This phenomenon cannot be predicted by linear acoustic theory. In order to study the physical process by which this may occur, a numerical algorithm has been developed to solve a related nonlinear problem in one dimensional gas dynamics. The nonlinear solution admits the possibility of wave steepening and shock waves. Approximate solutions are obtained using several finite difference schemes. The boundary conditions required to model an acoustic source and an anechoic termination are developed. The numerical solutions agree closely with those obtained using the method of matched asymptotic expansions. Solutions involving shock waves exhibit a large reduction in the ratio of transmitted to incident power. This offers an explanation for acoustic choking. The results indicate that more power is dissipated as the Mach number, sound amplitude and frequency are increased. These observations are in agreement with those observed experimentally.
Numerical models for fluid-grains interactions: opportunities and limitations
NASA Astrophysics Data System (ADS)
Esteghamatian, Amir; Rahmani, Mona; Wachs, Anthony
2017-06-01
In the framework of a multi-scale approach, we develop numerical models for suspension flows. At the micro scale level, we perform particle-resolved numerical simulations using a Distributed Lagrange Multiplier/Fictitious Domain approach. At the meso scale level, we use a two-way Euler/Lagrange approach with a Gaussian filtering kernel to model fluid-solid momentum transfer. At both the micro and meso scale levels, particles are individually tracked in a Lagrangian way and all inter-particle collisions are computed by a Discrete Element/Soft-sphere method. The previous numerical models have been extended to handle particles of arbitrary shape (non-spherical, angular and even non-convex) as well as to treat heat and mass transfer. All simulation tools are fully-MPI parallel with standard domain decomposition and run on supercomputers with a satisfactory scalability on up to a few thousands of cores. The main asset of multi scale analysis is the ability to extend our comprehension of the dynamics of suspension flows based on the knowledge acquired from the high-fidelity micro scale simulations and to use that knowledge to improve the meso scale model. We illustrate how we can benefit from this strategy for a fluidized bed, where we introduce a stochastic drag force model derived from micro-scale simulations to recover the proper level of particle fluctuations. Conversely, we discuss the limitations of such modelling tools such as their limited ability to capture lubrication forces and boundary layers in highly inertial flows. We suggest ways to overcome these limitations in order to enhance further the capabilities of the numerical models.
Constraining Numerical Geodynamo Modeling with Surface Observations
NASA Technical Reports Server (NTRS)
Kuang, Weijia; Tangborn, Andrew
2006-01-01
Numerical dynamo solutions have traditionally been generated entirely by a set of self-consistent differential equations that govern the spatial-temporal variation of the magnetic field, velocity field and other fields related to dynamo processes. In particular, those solutions are obtained with parameters very different from those appropriate for the Earth s core. Geophysical application of the numerical results therefore depends on correct understanding of the differences (errors) between the model outputs and the true states (truth) in the outer core. Part of the truth can be observed at the surface in the form of poloidal magnetic field. To understand these differences, or errors, we generate new initial model state (analysis) by assimilating sequentially the model outputs with the surface geomagnetic observations using an optimal interpolation scheme. The time evolution of the core state is then controlled by our MoSST core dynamics model. The final outputs (forecasts) are then compared with the surface observations as a means to test the success of the assimilation. We use the surface geomagnetic data back to year 1900 for our studies, with 5-year forecast and 20-year analysis periods. We intend to use the result; to understand time variation of the errors with the assimilation sequences, and the impact of the assimilation on other unobservable quantities, such as the toroidal field and the fluid velocity in the core.
A new numerical approach for compressible viscous flows
NASA Technical Reports Server (NTRS)
Wu, J. C.; Lekoudis, S. G.
1982-01-01
A numerical approach for computing unsteady compressible viscous flows was developed. This approach offers the capability of confining the region of computation to the viscous region of the flow. The viscous region is defined as the region where the vorticity is nonnegligible and the difference in dilatation between the potential flow and the real flow around the same geometry is also nonnegligible. The method was developed and tested. Also, an application of the procedure to the solution of the steady Navier-Stokes equations for incompressible internal flows is presented.
A Numerical Optimization Approach for Tuning Fuzzy Logic Controllers
NASA Technical Reports Server (NTRS)
Woodard, Stanley E.; Garg, Devendra P.
1998-01-01
This paper develops a method to tune fuzzy controllers using numerical optimization. The main attribute of this approach is that it allows fuzzy logic controllers to be tuned to achieve global performance requirements. Furthermore, this approach allows design constraints to be implemented during the tuning process. The method tunes the controller by parameterizing the membership functions for error, change-in-error and control output. The resulting parameters form a design vector which is iteratively changed to minimize an objective function. The minimal objective function results in an optimal performance of the system. A spacecraft mounted science instrument line-of-sight pointing control is used to demonstrate results.
Naviglio, Daniele; Formato, Andrea; Gallo, Monica
2014-09-01
The purpose of this study is to compare the extraction process for the production of China elixir starting from the same vegetable mixture, as performed by conventional maceration or a cyclically pressurized extraction process (rapid solid-liquid dynamic extraction) using the Naviglio Extractor. Dry residue was used as a marker for the kinetics of the extraction process because it was proportional to the amount of active principles extracted and, therefore, to their total concentration in the solution. UV spectra of the hydroalcoholic extracts allowed for the identification of the predominant chemical species in the extracts, while the organoleptic tests carried out on the final product provided an indication of the acceptance of the beverage and highlighted features that were not detectable by instrumental analytical techniques. In addition, a numerical simulation of the process has been performed, obtaining useful information about the timing of the process (time history) as well as its mathematical description.
Feedbacks Between Numerical and Analytical Models in Hydrogeology
NASA Astrophysics Data System (ADS)
Zlotnik, V. A.; Cardenas, M. B.; Toundykov, D.; Cohn, S.
2012-12-01
Hydrogeology is a relatively young discipline which combines elements of Earth science and engineering. Mature fundamental disciplines (e.g., physics, chemistry, fluid mechanics) have centuries-long history of mathematical modeling even prior to discovery of Darcy's law. Thus, in hydrogeology, relatively few classic analytical models (such those by Theis, Polubarinova-Kochina, Philip, Toth, Henry, Dagan, Neuman) were developed by the early 1970's. The advent of computers and practical demands refocused mathematical models towards numerical techniques. With more diverse but less mathematically-oriented training, most hydrogeologists shifted from analytical methods to use of standardized computational software. Spatial variability in internal properties and external boundary conditions and geometry, and the added complexity of chemical and biological processes will remain major challenges for analytical modeling. Possibly, analytical techniques will play a subordinate role to numerical approaches in many applications. On the other hand, the rise of analytical element modeling of groundwater flow is a strong alternative to numerical models when data demand and computational efficiency is considered. The hallmark of analytical models - transparency and accuracy - will remain indispensable for scientific exploration of complex phenomena and for benchmarking numerical models. Therefore, there will always be feedbacks and complementarities between numerical and analytical techniques, as well as a certain ideological schism among various views to modeling. We illustrate the idea of feedbacks by reviewing evolution of Joszef Toth's analytical model of gravity driven flow systems. Toth's (1963) approach was to reduce the flow domain to a rectangle which allowed for closed-form solution of the governing equations. Succeeding numerical finite-element models by Freeze and Witherspoon (1966-1968) explored the effects of geometry and heterogeneity on regional groundwater flow
Comparison and numerical treatment of generalised Nernst-Planck models
NASA Astrophysics Data System (ADS)
Fuhrmann, Jürgen
2015-11-01
In its most widespread, classical formulation, the Nernst-Planck-Poisson system for ion transport in electrolytes fails to take into account finite ion sizes. As a consequence, it predicts unphysically high ion concentrations near electrode surfaces. Historical and recent approaches to an appropriate modification of the model are able to fix this problem. Several appropriate formulations are compared in this paper. The resulting equations are reformulated using absolute activities as basic variables describing the species amounts. This reformulation allows to introduce a straightforward generalisation of the Scharfetter-Gummel finite volume discretisation scheme for drift-diffusion equations. It is shown that it is thermodynamically consistent in the sense that the solution of the corresponding discretised generalised Poisson-Boltzmann system describing the thermodynamical equilibrium is a stationary state of the discretised time-dependent generalised Nernst-Planck system. Numerical examples demonstrate the improved physical correctness of the generalised models and the feasibility of the numerical approach.
Numerical integration of population models satisfying conservation laws: NSFD methods.
Mickens, Ronald E
2007-10-01
Population models arising in ecology, epidemiology and mathematical biology may involve a conservation law, i.e. the total population is constant. In addition to these cases, other situations may occur for which the total population, asymptotically in time, approach a constant value. Since it is rarely the situation that the equations of motion can be analytically solved to obtain exact solutions, it follows that numerical techniques are needed to provide solutions. However, numerical procedures are only valid if they can reproduce fundamental properties of the differential equations modeling the phenomena of interest. We show that for population models, involving a dynamical conservation law the use of nonstandard finite difference (NSFD) methods allows the construction of discretization schemes such that they are dynamically consistent (DC) with the original differential equations. The paper will briefly discuss the NSFD methodology, the concept of DC, and illustrate their application to specific problems for population models.
Posttraumatic orbital emphysema: a numerical model.
Skorek, Andrzej; Kłosowski, Paweł; Plichta, Lukasz; Raczyńska, Dorota; Zmuda Trzebiatowski, Marcin; Lemski, Paweł
2014-01-01
Orbital emphysema is a common symptom accompanying orbital fracture. The pathomechanism is still not recognized and the usually assumed cause, elevated pressure in the upper airways connected with sneezing or coughing, does not always contribute to the occurrence of this type of fracture. Observations based on the finite model (simulating blowout type fracture) of the deformations of the inferior orbital wall after a strike in its lower rim. Authors created a computer numeric model of the orbit with specified features-thickness and resilience modulus. During simulation an evenly spread 14400 N force was applied to the nodular points in the inferior rim (the maximal value not causing cracking of the outer rim, but only ruptures in the inferior wall). The observation was made from 1 · 10(-3) to 1 · 10(-2) second after a strike. Right after a strike dislocations of the inferior orbital wall toward the maxillary sinus were observed. Afterwards a retrograde wave of the dislocation of the inferior wall toward the orbit was noticed. Overall dislocation amplitude reached about 6 mm. Based on a numeric model of the orbit submitted to a strike in the inferior wall an existence of a retrograde shock wave causing orbital emphysema has been found.
Posttraumatic Orbital Emphysema: A Numerical Model
Skorek, Andrzej; Kłosowski, Paweł; Plichta, Łukasz; Zmuda Trzebiatowski, Marcin; Lemski, Paweł
2014-01-01
Orbital emphysema is a common symptom accompanying orbital fracture. The pathomechanism is still not recognized and the usually assumed cause, elevated pressure in the upper airways connected with sneezing or coughing, does not always contribute to the occurrence of this type of fracture. Observations based on the finite model (simulating blowout type fracture) of the deformations of the inferior orbital wall after a strike in its lower rim. Authors created a computer numeric model of the orbit with specified features—thickness and resilience modulus. During simulation an evenly spread 14400 N force was applied to the nodular points in the inferior rim (the maximal value not causing cracking of the outer rim, but only ruptures in the inferior wall). The observation was made from 1 · 10−3 to 1 · 10−2 second after a strike. Right after a strike dislocations of the inferior orbital wall toward the maxillary sinus were observed. Afterwards a retrograde wave of the dislocation of the inferior wall toward the orbit was noticed. Overall dislocation amplitude reached about 6 mm. Based on a numeric model of the orbit submitted to a strike in the inferior wall an existence of a retrograde shock wave causing orbital emphysema has been found. PMID:25309749
Numerical modeling of two-dimensional confined flows
NASA Technical Reports Server (NTRS)
Greywall, M. S.
1979-01-01
A numerical model of two-dimensional confined flows is presented. The flow in the duct is partitioned into finite streams. The difference equations are then obtained by applying conservation principles directly to the individual streams. A listing of a computer code based on this approach in FORTRAN 4 language is presented. The code computes two dimensional compressible turbulent flows in ducts when the duct area along the flow is specified and the pressure gradient is unknown.
Numerical modeling of turbulent supersonic reacting coaxial jets
NASA Technical Reports Server (NTRS)
Eklund, Dean R.; Hassan, H. A.; Drummond, J. Philip
1989-01-01
The paper considers the mixing and subsequent combustion within turbulent reacting shear layers. A computer program was developed to solve the axisymmetric Reynolds averaged Navier-Stokes equations. The numerical method integrates the Reynolds averaged Navier-Stokes equations using a finite volume approach while advancing the solution forward in time using a Runge-Kutta scheme. Three separate flowfields are investigated and it is found that no single turbulence model considered could accurately predict the degree of mixing for all three cases.
A numerical method to model excitable cells.
Joyner, R W; Westerfield, M; Moore, J W; Stockbridge, N
1978-01-01
We have extended a fast, stable, and accurate method for the numerical solution of cable equations to include changes in geometry and membrane properties in order to model a single excitable cell realistically. In addition, by including the provision that the radius may be a function of distance along an axis, we have achieved a general and powerful method for simulating a cell with any number of branched processes, any or all of which may be nonuniform in diameter, and with no restriction on the branching pattern. PMID:656539
Dynamical Approach Study of Spurious Numerics in Nonlinear Computations
NASA Technical Reports Server (NTRS)
Yee, H. C.; Mansour, Nagi (Technical Monitor)
2002-01-01
The last two decades have been an era when computation is ahead of analysis and when very large scale practical computations are increasingly used in poorly understood multiscale complex nonlinear physical problems and non-traditional fields. Ensuring a higher level of confidence in the predictability and reliability (PAR) of these numerical simulations could play a major role in furthering the design, understanding, affordability and safety of our next generation air and space transportation systems, and systems for planetary and atmospheric sciences, and in understanding the evolution and origin of life. The need to guarantee PAR becomes acute when computations offer the ONLY way of solving these types of data limited problems. Employing theory from nonlinear dynamical systems, some building blocks to ensure a higher level of confidence in PAR of numerical simulations have been revealed by the author and world expert collaborators in relevant fields. Five building blocks with supporting numerical examples were discussed. The next step is to utilize knowledge gained by including nonlinear dynamics, bifurcation and chaos theories as an integral part of the numerical process. The third step is to design integrated criteria for reliable and accurate algorithms that cater to the different multiscale nonlinear physics. This includes but is not limited to the construction of appropriate adaptive spatial and temporal discretizations that are suitable for the underlying governing equations. In addition, a multiresolution wavelets approach for adaptive numerical dissipation/filter controls for high speed turbulence, acoustics and combustion simulations will be sought. These steps are corner stones for guarding against spurious numerical solutions that are solutions of the discretized counterparts but are not solutions of the underlying governing equations.
Dynamical Approach Study of Spurious Numerics in Nonlinear Computations
NASA Technical Reports Server (NTRS)
Yee, H. C.; Mansour, Nagi (Technical Monitor)
2002-01-01
The last two decades have been an era when computation is ahead of analysis and when very large scale practical computations are increasingly used in poorly understood multiscale complex nonlinear physical problems and non-traditional fields. Ensuring a higher level of confidence in the predictability and reliability (PAR) of these numerical simulations could play a major role in furthering the design, understanding, affordability and safety of our next generation air and space transportation systems, and systems for planetary and atmospheric sciences, and in understanding the evolution and origin of life. The need to guarantee PAR becomes acute when computations offer the ONLY way of solving these types of data limited problems. Employing theory from nonlinear dynamical systems, some building blocks to ensure a higher level of confidence in PAR of numerical simulations have been revealed by the author and world expert collaborators in relevant fields. Five building blocks with supporting numerical examples were discussed. The next step is to utilize knowledge gained by including nonlinear dynamics, bifurcation and chaos theories as an integral part of the numerical process. The third step is to design integrated criteria for reliable and accurate algorithms that cater to the different multiscale nonlinear physics. This includes but is not limited to the construction of appropriate adaptive spatial and temporal discretizations that are suitable for the underlying governing equations. In addition, a multiresolution wavelets approach for adaptive numerical dissipation/filter controls for high speed turbulence, acoustics and combustion simulations will be sought. These steps are corner stones for guarding against spurious numerical solutions that are solutions of the discretized counterparts but are not solutions of the underlying governing equations.
NASA Astrophysics Data System (ADS)
Mahady, K.; Afkhami, S.; Kondic, L.
2016-06-01
In this paper, we present a computationally efficient method for including fluid-solid interactions into direct numerical simulations of the Navier-Stokes equations. This method is found to be as powerful as our earlier formulation [K. Mahady et al., "A volume of fluid method for simulating fluid/fluid interfaces in contact with solid boundaries," J. Comput. Phys. 294, 243 (2015)], while outperforming the earlier method in terms of computational efficiency. The performance and efficacy of the presented method are demonstrated by computing contact angles of droplets at equilibrium. Furthermore, we study the instability of films due to destabilizing fluid-solid interactions, and discuss the influence of contact angle and inertial effects on film breakup. In particular, direct simulation results show an increase in the final characteristic length scales when compared to the predictions of a linear stability analysis, suggesting significant influence of nonlinear effects. Our results also show that emerging length scales differ, depending on a number of physical dimensions considered.
Modern Perspectives on Numerical Modeling of Cardiac Pacemaker Cell
Maltsev, Victor A.; Yaniv, Yael; Maltsev, Anna V.; Stern, Michael D.; Lakatta, Edward G.
2015-01-01
Cardiac pacemaking is a complex phenomenon that is still not completely understood. Together with experimental studies, numerical modeling has been traditionally used to acquire mechanistic insights in this research area. This review summarizes the present state of numerical modeling of the cardiac pacemaker, including approaches to resolve present paradoxes and controversies. Specifically we discuss the requirement for realistic modeling to consider symmetrical importance of both intracellular and cell membrane processes (within a recent “coupled-clock” theory). Promising future developments of the complex pacemaker system models include the introduction of local calcium control, mitochondria function, and biochemical regulation of protein phosphorylation and cAMP production. Modern numerical and theoretical methods such as multi-parameter sensitivity analyses within extended populations of models and bifurcation analyses are also important for the definition of the most realistic parameters that describe a robust, yet simultaneously flexible operation of the coupled-clock pacemaker cell system. The systems approach to exploring cardiac pacemaker function will guide development of new therapies, such as biological pacemakers for treating insufficient cardiac pacemaker function that becomes especially prevalent with advancing age. PMID:24748434
Numerical insight of a variational smeared approach to cohesive fracture
NASA Astrophysics Data System (ADS)
Freddi, F.; Iurlano, F.
2017-01-01
In the present paper we numerically investigate and validate a variational smeared model for cohesive crack, recently proposed and theoretically justified by Γ-convergence. To achieve this main goal, we first analyze the response of a bar subjected to traction. Possible solutions are discussed, reconstructing the classical cohesive fracture energy and its related stress-crack opening law through a backtracking procedure. Preliminary 2D investigations are also conducted by using a regularized version of the adopted formulation. This permits to explore the transition phase of the damage evolution and to determine the peculiarities of the model, such as mesh-objectivity and Γ-convergence as damage concentration is forced. Therefore, the numerical simulations confirm the analytical results and put the basis for further engineering applications and possible improvements of the model.
Numerical modeling of shallow magma intrusions with finite element method
NASA Astrophysics Data System (ADS)
Chen, Tielin; Cheng, Shaozhen; Fang, Qian; Zhou, Cheng
2017-03-01
A numerical approach for simulation of magma intrusion process, considering the couplings of the stress distribution, the viscous fluid flow of magma, and the fracturing of host rock, has been developed to investigate the mechanisms of fracture initiation and propagation in host rock during magma intrusion without pre-placing a set of fractures. The study focused on the dike intrusions filled with injected viscous magma in shallow sediments. A series of numerical modellings were carried out to simulate the process of magma intrusion in host rocks, with particular attention on the magma propagation processes and the formation of intrusion shapes. The model materials were Mohr-Coulomb materials with tension failure and shear failure. The scenarios of both stochastically heterogeneous host rocks and layered host rocks were analyzed. The injected magma formed intrusions shapes of (a) dyke, (b) sill, (c) cup-shaped intrusion, (d) saucer-shaped intrusion. The numerical results were in agreement with the experimental and field observed results, which confirmed the adequacy and the power of the numerical approach.
NUMERICAL MODELING OF CATHODE CONTACT MATERIAL DENSIFICATION
Koeppel, Brian J.; Liu, Wenning N.; Stephens, Elizabeth V.; Khaleel, Mohammad A.
2011-11-01
Numerical modeling was used to simulate the constrained sintering process of the cathode contact layer during assembly of solid oxide fuel cells (SOFCs). A finite element model based on the continuum theory for sintering of porous bodies was developed and used to investigate candidate low-temperature cathode contact materials. Constitutive parameters for various contact materials under investigation were estimated from dilatometry screening tests, and the influence of processing time, processing temperature, initial grain size, and applied compressive stress on the free sintering response was predicted for selected candidate materials. The densification behavior and generated stresses within a 5-cell planar SOFC stack during sintering, high temperature operation, and room temperature shutdown were predicted. Insufficient constrained densification was observed in the stack at the proposed heat treatment, but beneficial effects of reduced grain size, compressive stack preload, and reduced thermal expansion coefficient on the contact layer densification and stresses were observed.
Convecting reference frames and invariant numerical models
NASA Astrophysics Data System (ADS)
Bihlo, Alexander; Nave, Jean-Christophe
2014-09-01
In the recent paper by Bernardini et al. [1] the discrepancy in the performance of finite difference and spectral models for simulations of flows with a preferential direction of propagation was studied. In a simplified investigation carried out using the viscous Burgers equation the authors attributed the poorer numerical results of finite difference models to a violation of Galilean invariance in the discretization and propose to carry out the computations in a reference frame moving with the bulk velocity of the flow. Here we further discuss this problem and relate it to known results on invariant discretization schemes. Non-invariant and invariant finite difference discretizations of Burgers equation are proposed and compared with the discretization using the remedy proposed by Bernardini et al.
NASA Astrophysics Data System (ADS)
Dwivedi, R.; McIntosh, J. C.; Meixner, T.; Ferré, T. P. A.; Chorover, J.
2016-12-01
Mountain systems are critical sources of recharge to adjacent alluvial basins in dryland regions. Yet, mountain systems face poorly defined threats due to climate change in terms of reduced snowpack, precipitation changes, and increased temperatures. Fundamentally, the climate risks to mountain systems are uncertain due to our limited understanding of natural recharge processes. Our goal is to combine measurements and models to provide improved spatial and temporal descriptions of groundwater flow paths and transit times in a headwater catchment located in a sub-humid region. This information is important to quantifying groundwater age and, thereby, to providing more accurate assessments of the vulnerability of these systems to climate change. We are using: (a) combination of geochemical composition, along with 2H/18O and 3H isotopes to improve an existing conceptual model for mountain block recharge (MBR) for the Marshall Gulch Catchment (MGC) located within the Santa Catalina Mountains. The current model only focuses on shallow flow paths through the upper unconfined aquifer with no representation of the catchment's fractured-bedrock aquifer. Groundwater flow, solute transport, and groundwater age will be modeled throughout MGC using COMSOL Multiphysics® software. Competing models in terms of spatial distribution of required hydrologic parameters, e.g. hydraulic conductivity and porosity, will be proposed and these models will be used to design discriminatory data collection efforts based on multi-tracer methods. Initial end-member mixing results indicate that baseflow in MGC, if considered the same as the streamflow during the dry periods, is not represented by the chemistry of deep groundwater in the mountain system. In the ternary mixing space, most of the samples plot outside the mixing curve. Therefore, to further constrain the contributions of water from various reservoirs we are collecting stable water isotopes, tritium, and solute chemistry of
NASA Astrophysics Data System (ADS)
Lien, Fue-Sang; Yee, Eugene
A modified k- model is used for the simulation of the mean wind speed and turbulence for a neutrally-stratified flow through and over a building array, where the array is treated as a porous medium with the drag on the unresolved buildings in the array represented by a distributed momentum sink. More specifically, this model is based on time averaging the spatially averaged Navier-Stokes equation, in which the effects of the obstacle-atmosphere interaction are included through the introduction of a distributed mean-momentum sink (representing drag on the unresolved buildings in the array). In addition, closure of the time-averaged, spatially averaged Navier-Stokes equation requires two additional prognostic equations, namely one for the time-averaged resolved-scale kinetic energy of turbulence,, and another for its dissipation rate, . The performance of the proposed model and some simplified versions derived from it is compared with the spatially averaged, time-mean velocity and various spatially averaged Reynolds stresses diagnosed from a high-resolution computational fluid dynamics (CFD) simulation of the flow within and over an aligned array of sharp-edged cubes with a plan area density of 0.25. Four different methods for diagnosis of the drag coefficient CDfor the aligned cube array, required for the volumetric drag force representation of the cubes, are investigated here. We found that the model predictions for mean wind speed and turbulence in the building array were not sensitive to the differing treatments of the source and sink terms in the and equations (e.g., inclusion of only the `zeroth-order'' approximation for the source/sink terms compared with inclusion of a higher-order approximation for the source/sink terms in the and equations), implying that the higher-order approximations of these source/sink terms did not offer any predictive advantage. A possible explanation for this is the utilization of the Boussinesq linear stress-strain constitutive
Adaptive Numerical Algorithms in Space Weather Modeling
NASA Technical Reports Server (NTRS)
Toth, Gabor; vanderHolst, Bart; Sokolov, Igor V.; DeZeeuw, Darren; Gombosi, Tamas I.; Fang, Fang; Manchester, Ward B.; Meng, Xing; Nakib, Dalal; Powell, Kenneth G.; Stout, Quentin F.; Glocer, Alex; Ma, Ying-Juan; Opher, Merav
2010-01-01
Space weather describes the various processes in the Sun-Earth system that present danger to human health and technology. The goal of space weather forecasting is to provide an opportunity to mitigate these negative effects. Physics-based space weather modeling is characterized by disparate temporal and spatial scales as well as by different physics in different domains. A multi-physics system can be modeled by a software framework comprising of several components. Each component corresponds to a physics domain, and each component is represented by one or more numerical models. The publicly available Space Weather Modeling Framework (SWMF) can execute and couple together several components distributed over a parallel machine in a flexible and efficient manner. The framework also allows resolving disparate spatial and temporal scales with independent spatial and temporal discretizations in the various models. Several of the computationally most expensive domains of the framework are modeled by the Block-Adaptive Tree Solar wind Roe Upwind Scheme (BATS-R-US) code that can solve various forms of the magnetohydrodynamics (MHD) equations, including Hall, semi-relativistic, multi-species and multi-fluid MHD, anisotropic pressure, radiative transport and heat conduction. Modeling disparate scales within BATS-R-US is achieved by a block-adaptive mesh both in Cartesian and generalized coordinates. Most recently we have created a new core for BATS-R-US: the Block-Adaptive Tree Library (BATL) that provides a general toolkit for creating, load balancing and message passing in a 1, 2 or 3 dimensional block-adaptive grid. We describe the algorithms of BATL and demonstrate its efficiency and scaling properties for various problems. BATS-R-US uses several time-integration schemes to address multiple time-scales: explicit time stepping with fixed or local time steps, partially steady-state evolution, point-implicit, semi-implicit, explicit/implicit, and fully implicit numerical
Adaptive numerical algorithms in space weather modeling
NASA Astrophysics Data System (ADS)
Tóth, Gábor; van der Holst, Bart; Sokolov, Igor V.; De Zeeuw, Darren L.; Gombosi, Tamas I.; Fang, Fang; Manchester, Ward B.; Meng, Xing; Najib, Dalal; Powell, Kenneth G.; Stout, Quentin F.; Glocer, Alex; Ma, Ying-Juan; Opher, Merav
2012-02-01
Space weather describes the various processes in the Sun-Earth system that present danger to human health and technology. The goal of space weather forecasting is to provide an opportunity to mitigate these negative effects. Physics-based space weather modeling is characterized by disparate temporal and spatial scales as well as by different relevant physics in different domains. A multi-physics system can be modeled by a software framework comprising several components. Each component corresponds to a physics domain, and each component is represented by one or more numerical models. The publicly available Space Weather Modeling Framework (SWMF) can execute and couple together several components distributed over a parallel machine in a flexible and efficient manner. The framework also allows resolving disparate spatial and temporal scales with independent spatial and temporal discretizations in the various models. Several of the computationally most expensive domains of the framework are modeled by the Block-Adaptive Tree Solarwind Roe-type Upwind Scheme (BATS-R-US) code that can solve various forms of the magnetohydrodynamic (MHD) equations, including Hall, semi-relativistic, multi-species and multi-fluid MHD, anisotropic pressure, radiative transport and heat conduction. Modeling disparate scales within BATS-R-US is achieved by a block-adaptive mesh both in Cartesian and generalized coordinates. Most recently we have created a new core for BATS-R-US: the Block-Adaptive Tree Library (BATL) that provides a general toolkit for creating, load balancing and message passing in a 1, 2 or 3 dimensional block-adaptive grid. We describe the algorithms of BATL and demonstrate its efficiency and scaling properties for various problems. BATS-R-US uses several time-integration schemes to address multiple time-scales: explicit time stepping with fixed or local time steps, partially steady-state evolution, point-implicit, semi-implicit, explicit/implicit, and fully implicit
Physical and numerical modeling of Joule-heated melters
NASA Astrophysics Data System (ADS)
Eyler, L. L.; Skarda, R. J.; Crowder, R. S., III; Trent, D. S.; Reid, C. R.; Lessor, D. L.
1985-10-01
The Joule-heated ceramic-lined melter is an integral part of the high level waste immobilization process under development by the US Department of Energy. Scaleup and design of this waste glass melting furnace requires an understanding of the relationships between melting cavity design parameters and the furnace performance characteristics such as mixing, heat transfer, and electrical requirements. Developing empirical models of these relationships through actual melter testing with numerous designs would be a very costly and time consuming task. Additionally, the Pacific Northwest Laboratory (PNL) has been developing numerical models that simulate a Joule-heated melter for analyzing melter performance. This report documents the method used and results of this modeling effort. Numerical modeling results are compared with the more conventional, physical modeling results to validate the approach. Also included are the results of numerically simulating an operating research melter at PNL. Physical Joule-heated melters modeling results used for qualiying the simulation capabilities of the melter code included: (1) a melter with a single pair of electrodes and (2) a melter with a dual pair (two pairs) of electrodes. The physical model of the melter having two electrode pairs utilized a configuration with primary and secondary electrodes. The principal melter parameters (the ratio of power applied to each electrode pair, modeling fluid depth, electrode spacing) were varied in nine tests of the physical model during FY85. Code predictions were made for five of these tests. Voltage drops, temperature field data, and electric field data varied in their agreement with the physical modeling results, but in general were judged acceptable.
Physical and numerical modeling of Joule-heated melters
Eyler, L.L.; Skarda, R.J.; Crowder, R.S. III; Trent, D.S.; Reid, C.R.; Lessor, D.L.
1985-10-01
The Joule-heated ceramic-lined melter is an integral part of the high level waste immobilization process under development by the US Department of Energy. Scaleup and design of this waste glass melting furnace requires an understanding of the relationships between melting cavity design parameters and the furnace performance characteristics such as mixing, heat transfer, and electrical requirements. Developing empirical models of these relationships through actual melter testing with numerous designs would be a very costly and time consuming task. Additionally, the Pacific Northwest Laboratory (PNL) has been developing numerical models that simulate a Joule-heated melter for analyzing melter performance. This report documents the method used and results of this modeling effort. Numerical modeling results are compared with the more conventional, physical modeling results to validate the approach. Also included are the results of numerically simulating an operating research melter at PNL. Physical Joule-heated melters modeling results used for qualiying the simulation capabilities of the melter code included: (1) a melter with a single pair of electrodes and (2) a melter with a dual pair (two pairs) of electrodes. The physical model of the melter having two electrode pairs utilized a configuration with primary and secondary electrodes. The principal melter parameters (the ratio of power applied to each electrode pair, modeling fluid depth, electrode spacing) were varied in nine tests of the physical model during FY85. Code predictions were made for five of these tests. Voltage drops, temperature field data, and electric field data varied in their agreement with the physical modeling results, but in general were judged acceptable. 14 refs., 79 figs., 17 tabs.
Numerical modeling of LCD electro-optical performance
NASA Astrophysics Data System (ADS)
Woehler, Henning; Becker, Michael E.
2002-06-01
Realization of complex high information density LCDs and systematic optimization of their electro-optical and ergonomic performance would not be possible in the required time-frame without reliable numerical modeling of the electro-optical performance of such display devices. In this paper we outline the history of numerical LDC modeling starting with Berreman and van Doorn, finally arriving at modern state-of-the-art LCD-modeling in two and three dimensions. Numerical modeling of LCDs is carried out in two steps: first, the effect of the electrical field on the orientation of the liquid crystalline alignment has to be evaluated before the corresponding optical properties can be computed. Starting from LC-elasticity theory we present suitable numerical methods for computing various states of LC-deformation (stable, metastable, bistable, etc.) in one- dimensional problems Light propagation in layered anisotropic absorbing media is evaluated with methods that are based on Maxwell's equations (Berreman 4 X 4-matrix approach). This approach can be simplified to yield methods with reduced computing time and sufficient accuracy for many problems (e.g. extended Jones 2 X 2-matrix formalism). A finite element method with automatic mesh generation and refinement for computing accurate solutions in two- dimensional problems is presented and its application illustrated with examples (e.g. IPS-effect, VAN-cells, etc.). In two- and three-dimensional problems, i.e. in cells with lateral dimensions comparable to the cell thickness, a variety of different director configurations are possible for a given geometry and electrical driving and addressing, making the modeling more complicated. Moreover, local defects can occur, which should also be considered in the simulation. Suitable approaches for the director field calculation, i.e. the vector and the tensor approach, are discussed. The complexity of the problem increases considerably when a third dimension is added, e.g. the
Global Tectonics of Enceladus: Numerical Model
NASA Astrophysics Data System (ADS)
Czechowski, Leszek
2016-10-01
Introduction: Enceladus, a satellite of Saturn, is the smallest celestial body in the Solar System where volcanic and tectonic activities are observed. Every second, the mass of 200 kg is ejected into space from the South Polar Terrain (SPT) - [1]. The loss of matter from the body's interior should lead to global compression of the crust. Typical effects of compression are: thrust faults, folding and subduction. However, such forms are not dominant on Enceladus. We propose here special tectonic process that could explain this paradox. Our hypotheses states that the mass loss from SPT is the main driving mechanism of the following tectonic processes: subsidence of SPT, flow in the mantle and motion of adjacent tectonic plates. The hypotheses is presented in [2], [3] and[4].We suggest that the loss of the volatiles results in a void, an instability, and motion of solid matter to fill the void. The motion is presented at the Fig.1 and includes:Subsidence of the 'lithosphere' of SPT.Flow of the matter in the mantle.Motion of plates adjacent to SPT towards the active regionMethods and results: The numerical model of processes presented is developed. It is based on the equations of continuous media..If emerging void is being filled by the subsidence of SPT only, then the velocity of subsidence is 0.05 mmyr-1. However, numerical calculations indicate that all three types of motion are usually important. The role of a given motion depends on the viscosity distribution. Generally, for most of the models the subsidence is 0.02 mmyr-1, but mantle flow and plates' motion also play a role in filling the void. The preliminary results of the numerical model indicate also that the velocity of adjacent plates could be 0.02 mmyr-1 for the Newtonian rheology.Note that in our model the reduction of the crust area is not a result of compression but it is a result of the plate sinking. Therefore the compressional surface features do not have to be dominant. The SPT does not have to be
Approach to developing numeric water quality criteria for ...
Human activities on land increase nutrient loads to coastal waters, which can increase phytoplankton production and biomass and potentially cause harmful ecological effects. States can adopt numeric water quality criteria into their water quality standards to protect the designated uses of their coastal waters from eutrophication impacts. The first objective of this study was to provide an approach for developing numeric water quality criteria for coastal waters based on archived SeaWiFS ocean color satellite data. The second objective was to develop an approach for transferring water quality criteria assessments to newer ocean color satellites such as MODIS and MERIS. Spatial and temporal measures of SeaWiFS, MODIS, and MERIS chlorophyll-a (ChlRS-a, mg m-3) were resolved across Florida’s coastal waters between 1998 and 2009. Annual geometric means of SeaWiFS ChlRS-a were evaluated to determine a quantitative reference baseline from the 90th percentile of the annual geometric means. A method for transferring to multiple ocean color sensors was implemented with SeaWiFS as the reference instrument. The ChlRS-a annual geometric means for each coastal segment from MODIS and MERIS were regressed against SeaWiFS to provide a similar response among all three satellites. Standardization factors for each coastal segment were calculated based on differences between 90th percentiles from SeaWiFS to MODIS and SeaWiFS to MERIS. This transfer approach allowed for futu
Numerical modeling of pulsatile turbulent flow in stenotic vessels.
Varghese, Sonu S; Frankel, Steven H
2003-08-01
Pulsatile turbulent flow in stenotic vessels has been numerically modeled using the Reynolds-averaged Navier-Stokes equation approach. The commercially available computational fluid dynamics code (CFD), FLUENT, has been used for these studies. Two different experiments were modeled involving pulsatile flow through axisymmetric stenoses. Four different turbulence models were employed to study their influence on the results. It was found that the low Reynolds number k-omega turbulence model was in much better agreement with previous experimental measurements than both the low and high Reynolds number versions of the RNG (renormalization-group theory) k-epsilon turbulence model and the standard k-epsilon model, with regard to predicting the mean flow distal to the stenosis including aspects of the vortex shedding process and the turbulent flow field. All models predicted a wall shear stress peak at the throat of the stenosis with minimum values observed distal to the stenosis where flow separation occurred.
Numerical modeling of volcanic arc development
NASA Astrophysics Data System (ADS)
Gerya, T.; Gorczyk, W.; Nikolaeva, K.
2007-05-01
We have created a new coupled geochemical-petrological-thermomechanical numerical model of subduction associated with volcanic arc development. The model includes spontaneous slab bending, subducted crust dehydration, aqueous fluid transport, mantle wedge melting and melt extraction resulting in crustal growth. Two major volcanic arc settings are modeled so far: active continental margins, and intraoceanic subduction. In case of Pacific-type continental margin two fundamentally different regimes of melt productivity are observed in numerical experiments which are in line with natural observations: (1) During continuous convergence with coupled plates highest amounts of melts are formed immediately after the initiation of subduction and then decrease rapidly with time due to the steepening of the slab inclination angle precluding formation of partially molten mantle wedge plumes; (2) During subduction associated with slab delamination and trench retreat resulting in the formation of a pronounced back arc basin with a spreading center in the middle melt production increases with time due to shallowing/stabilization of slab inclination associated with upward asthenospheric mantle flow toward the extension region facilitating propagation of hydrous partially molten plumes from the slab. In case of spontaneous nucleation of retreating oceanic subduction two scenarios of tecono-magmatic evolution are distinguished: (1) decay and, ultimately, the cessation of subduction and related magmatic activity, (2) increase in subduction rate (to up to ~12 cm/yr) and stabilization of subduction and magmatic arc growth. In the first case the duration of subduction correlates positively with the intensity of melt extraction: the period of continued subduction increases from 15,4 Myrs to 47,6 Myrs with the increase of melt extraction threshold from 1% to 9%. In scenario (1) the magmatic arc crust includes large amounts of rocks formed by melting of subducted crust atop the thermally
Modeling and numerical simulations of the influenced Sznajd model
NASA Astrophysics Data System (ADS)
Karan, Farshad Salimi Naneh; Srinivasan, Aravinda Ramakrishnan; Chakraborty, Subhadeep
2017-08-01
This paper investigates the effects of independent nonconformists or influencers on the behavioral dynamic of a population of agents interacting with each other based on the Sznajd model. The system is modeled on a complete graph using the master equation. The acquired equation has been numerically solved. Accuracy of the mathematical model and its corresponding assumptions have been validated by numerical simulations. Regions of initial magnetization have been found from where the system converges to one of two unique steady-state PDFs, depending on the distribution of influencers. The scaling property and entropy of the stationary system in presence of varying level of influence have been presented and discussed.
Numerical modeling of spray combustion with an advanced VOF method
NASA Technical Reports Server (NTRS)
Chen, Yen-Sen; Shang, Huan-Min; Shih, Ming-Hsin; Liaw, Paul
1995-01-01
This paper summarizes the technical development and validation of a multiphase computational fluid dynamics (CFD) numerical method using the volume-of-fluid (VOF) model and a Lagrangian tracking model which can be employed to analyze general multiphase flow problems with free surface mechanism. The gas-liquid interface mass, momentum and energy conservation relationships are modeled by continuum surface mechanisms. A new solution method is developed such that the present VOF model can be applied for all-speed flow regimes. The objectives of the present study are to develop and verify the fractional volume-of-fluid cell partitioning approach into a predictor-corrector algorithm and to demonstrate the effectiveness of the present approach by simulating benchmark problems including laminar impinging jets, shear coaxial jet atomization and shear coaxial spray combustion flows.
Numerical and Experimental Approach for the Optimal Design of a Dual Plate Under Ballistic Impact
NASA Astrophysics Data System (ADS)
Yoo, Jeonghoon; Chung, Dong-Teak; Park, Myung Soo
To predict the behavior of a dual plate composed of 5052-aluminum and 1002-cold rolled steel under ballistic impact, numerical and experimental approaches are attempted. For the accurate numerical simulation of the impact phenomena, the appropriate selection of the key parameter values based on numerical or experimental tests are critical. This study is focused on not only the optimization technique using the numerical simulation but also numerical and experimental procedures to obtain the required parameter values in the simulation. The Johnson-Cook model is used to simulate the mechanical behaviors, and the simplified experimental and the numerical approaches are performed to obtain the material properties of the model. The element erosion scheme for the robust simulation of the ballistic impact problem is applied by adjusting the element erosion criteria of each material based on numerical and experimental results. The adequate mesh size and the aspect ratio are chosen based on parametric studies. Plastic energy is suggested as a response representing the strength of the plate for the optimization under dynamic loading. Optimized thickness of the dual plate is obtained to resist the ballistic impact without penetration as well as to minimize the total weight.
Numerical Modeling of Glaciers in Martian Paleoclimates
NASA Technical Reports Server (NTRS)
Colaprete, A.; Haberle, R. M.; Montmessin, F.; Scheaffer, J.
2004-01-01
Numerous geologic features suggest the presence of ice flow on the surface of mars. These features include lobate debris aprons, concentric crater fill, and lineated valley fill. The lateral extent of these features can range from 100 meters to over 20 km. Previous work has demonstrated that these features could not have formed in current Martian conditions. It has long been speculated that changes in Mars orbital properties, namely its obliquity, eccentricity, and argument of perihelion, can result in dramatic changes to climate. Recent climate model studies have shown that at periods of increased obliquity north polar water ice is mobilized southward and deposited at low ad mid latitudes. Mid latitude accumulation of ice would provide the necessary conditions for rock glaciers to form. A time-marching, finite element glacier model is used to demonstrate the ability of ice and ice-rock mixtures to flow under Martian paleoclimate conditions. Input to this model is constrained by the NASA Ames Mars General Circulation Model (MGCM).
Oblique Impact and Its Ejecta: Numerical Modeling
NASA Astrophysics Data System (ADS)
Artemieva, N.; Pierazzo, E.
2003-01-01
It is well known that impact events strike planetary surfaces at an angle from the surface. Assuming an isotropic flux of projectiles, probability theory indicates that the most likely angle of impact is 45 regardless of the body's gravitational field. While crater rims appear circular down to low impact angles, the distribution of ejecta around the crater is sensitive to the angle of impact and currently serves as the best guide to obliquity of impacts. A fair amount of numerical modeling of vertical impacts has been carried out from the early 60-s to the present time and references herein]. In vertical impacts, the axial symmetry of the process allows the simplification of the model to two dimensions (2D). Oblique impact modeling requires 3D hydro-codes and, hence, much more powerful computers. The first documented detailed oblique impact studies were carried out at Sandia National Labs' supercomputers less than 10 years ago to describe the 1994 collision of comet SL9 with Jupiter. Since then, substantial progress in computer science has made 3D modeling a reachable objective for the scientific community.
Anisotropic halo model: implementation and numerical results
NASA Astrophysics Data System (ADS)
Sgró, Mario A.; Paz, Dante J.; Merchán, Manuel
2013-07-01
In the present work, we extend the classic halo model for the large-scale matter distribution including a triaxial model for the halo profiles and their alignments. In particular, we derive general expressions for the halo-matter cross-correlation function. In addition, by numerical integration, we obtain instances of the cross-correlation function depending on the directions given by halo shape axes. These functions are called anisotropic cross-correlations. With the aim of comparing our theoretical results with the simulations, we compute averaged anisotropic correlations in cones with their symmetry axis along each shape direction of the centre halo. From these comparisons we characterize and quantify the alignment of dark matter haloes on the Λcold dark matter context by means of the presented anisotropic halo model. Since our model requires multidimensional integral computation we implement a Monte Carlo method on GPU hardware which allows us to increase the precision of the results and it improves the performance of the computation.
Numerical Modeling of Glaciers in Martian Paleoclimates
NASA Technical Reports Server (NTRS)
Colaprete, A.; Haberle, R. M.; Montmessin, F.; Scheaffer, J.
2004-01-01
Numerous geologic features suggest the presence of ice flow on the surface of mars. These features include lobate debris aprons, concentric crater fill, and lineated valley fill. The lateral extent of these features can range from 100 meters to over 20 km. Previous work has demonstrated that these features could not have formed in current Martian conditions. It has long been speculated that changes in Mars orbital properties, namely its obliquity, eccentricity, and argument of perihelion, can result in dramatic changes to climate. Recent climate model studies have shown that at periods of increased obliquity north polar water ice is mobilized southward and deposited at low ad mid latitudes. Mid latitude accumulation of ice would provide the necessary conditions for rock glaciers to form. A time-marching, finite element glacier model is used to demonstrate the ability of ice and ice-rock mixtures to flow under Martian paleoclimate conditions. Input to this model is constrained by the NASA Ames Mars General Circulation Model (MGCM).
Numerical Modeling of Ocular Dysfunction in Space
NASA Technical Reports Server (NTRS)
Nelson, Emily S.; Mulugeta, Lealem; Vera, J.; Myers, J. G.; Raykin, J.; Feola, A. J.; Gleason, R.; Samuels, B.; Ethier, C. R.
2014-01-01
Upon introduction to microgravity, the near-loss of hydrostatic pressure causes a marked cephalic (headward) shift of fluid in an astronaut's body. The fluid shift, along with other factors of spaceflight, induces a cascade of interdependent physiological responses which occur at varying time scales. Long-duration missions carry an increased risk for the development of the Visual Impairment and Intracranial Pressure (VIIP) syndrome, a spectrum of ophthalmic changes including posterior globe flattening, choroidal folds, distension of the optic nerve sheath, kinking of the optic nerve and potentially permanent degradation of visual function. In the cases of VIIP found to date, the initial onset of symptoms occurred after several weeks to several months of spaceflight, by which time the gross bodily fluid distribution is well established. We are developing a suite of numerical models to simulate the effects of fluid shift on the cardiovascular, central nervous and ocular systems. These models calculate the modified mean volumes, flow rates and pressures that are characteristic of the altered quasi-homeostatic state in microgravity, including intracranial and intraocular pressures. The results of the lumped models provide initial and boundary data to a 3D finite element biomechanics simulation of the globe, optic nerve head and retrobulbar subarachnoid space. The integrated set of models will be used to investigate the evolution of the biomechanical stress state in the ocular tissues due to long-term exposure to microgravity.
Numerical modeling of bubble dynamics in viscoelastic media with relaxation
Warnez, M. T.; Johnsen, E.
2015-01-01
Cavitation occurs in a variety of non-Newtonian fluids and viscoelastic materials. The large-amplitude volumetric oscillations of cavitation bubbles give rise to high temperatures and pressures at collapse, as well as induce large and rapid deformation of the surroundings. In this work, we develop a comprehensive numerical framework for spherical bubble dynamics in isotropic media obeying a wide range of viscoelastic constitutive relationships. Our numerical approach solves the compressible Keller–Miksis equation with full thermal effects (inside and outside the bubble) when coupled to a highly generalized constitutive relationship (which allows Newtonian, Kelvin–Voigt, Zener, linear Maxwell, upper-convected Maxwell, Jeffreys, Oldroyd-B, Giesekus, and Phan-Thien-Tanner models). For the latter two models, partial differential equations (PDEs) must be solved in the surrounding medium; for the remaining models, we show that the PDEs can be reduced to ordinary differential equations. To solve the general constitutive PDEs, we present a Chebyshev spectral collocation method, which is robust even for violent collapse. Combining this numerical approach with theoretical analysis, we simulate bubble dynamics in various viscoelastic media to determine the impact of relaxation time, a constitutive parameter, on the associated physics. Relaxation time is found to increase bubble growth and permit rebounds driven purely by residual stresses in the surroundings. Different regimes of oscillations occur depending on the relaxation time. PMID:26130967
Numerical modeling of bubble dynamics in viscoelastic media with relaxation
NASA Astrophysics Data System (ADS)
Warnez, M. T.; Johnsen, E.
2015-06-01
Cavitation occurs in a variety of non-Newtonian fluids and viscoelastic materials. The large-amplitude volumetric oscillations of cavitation bubbles give rise to high temperatures and pressures at collapse, as well as induce large and rapid deformation of the surroundings. In this work, we develop a comprehensive numerical framework for spherical bubble dynamics in isotropic media obeying a wide range of viscoelastic constitutive relationships. Our numerical approach solves the compressible Keller-Miksis equation with full thermal effects (inside and outside the bubble) when coupled to a highly generalized constitutive relationship (which allows Newtonian, Kelvin-Voigt, Zener, linear Maxwell, upper-convected Maxwell, Jeffreys, Oldroyd-B, Giesekus, and Phan-Thien-Tanner models). For the latter two models, partial differential equations (PDEs) must be solved in the surrounding medium; for the remaining models, we show that the PDEs can be reduced to ordinary differential equations. To solve the general constitutive PDEs, we present a Chebyshev spectral collocation method, which is robust even for violent collapse. Combining this numerical approach with theoretical analysis, we simulate bubble dynamics in various viscoelastic media to determine the impact of relaxation time, a constitutive parameter, on the associated physics. Relaxation time is found to increase bubble growth and permit rebounds driven purely by residual stresses in the surroundings. Different regimes of oscillations occur depending on the relaxation time.
Numerical modeling of bubble dynamics in viscoelastic media with relaxation.
Warnez, M T; Johnsen, E
2015-06-01
Cavitation occurs in a variety of non-Newtonian fluids and viscoelastic materials. The large-amplitude volumetric oscillations of cavitation bubbles give rise to high temperatures and pressures at collapse, as well as induce large and rapid deformation of the surroundings. In this work, we develop a comprehensive numerical framework for spherical bubble dynamics in isotropic media obeying a wide range of viscoelastic constitutive relationships. Our numerical approach solves the compressible Keller-Miksis equation with full thermal effects (inside and outside the bubble) when coupled to a highly generalized constitutive relationship (which allows Newtonian, Kelvin-Voigt, Zener, linear Maxwell, upper-convected Maxwell, Jeffreys, Oldroyd-B, Giesekus, and Phan-Thien-Tanner models). For the latter two models, partial differential equations (PDEs) must be solved in the surrounding medium; for the remaining models, we show that the PDEs can be reduced to ordinary differential equations. To solve the general constitutive PDEs, we present a Chebyshev spectral collocation method, which is robust even for violent collapse. Combining this numerical approach with theoretical analysis, we simulate bubble dynamics in various viscoelastic media to determine the impact of relaxation time, a constitutive parameter, on the associated physics. Relaxation time is found to increase bubble growth and permit rebounds driven purely by residual stresses in the surroundings. Different regimes of oscillations occur depending on the relaxation time.
Transient Numerical Modeling of Catalytic Channels
NASA Technical Reports Server (NTRS)
Struk, Peter M.; Dietrich, Daniel L.; Miller, Fletcher J.; T'ien, James S.
2007-01-01
This paper presents a transient model of catalytic combustion suitable for isolated channels and monolith reactors. The model is a lumped two-phase (gas and solid) model where the gas phase is quasi-steady relative to the transient solid. Axial diffusion is neglected in the gas phase; lateral diffusion, however, is accounted for using transfer coefficients. The solid phase includes axial heat conduction and external heat loss due to convection and radiation. The combustion process utilizes detailed gas and surface reaction models. The gas-phase model becomes a system of stiff ordinary differential equations while the solid phase reduces, after discretization, into a system of stiff ordinary differential-algebraic equations. The time evolution of the system came from alternating integrations of the quasi-steady gas and transient solid. This work outlines the numerical model and presents some sensitivity studies on important parameters including internal transfer coefficients, catalytic surface site density, and external heat-loss (if applicable). The model is compared to two experiments using CO fuel: (1) steady-state conversion through an isothermal platinum (Pt) tube and (2) transient propagation of a catalytic reaction inside a small Pt tube. The model requires internal mass-transfer resistance to match the experiments at lower residence times. Under mass-transport limited conditions, the model reasonably predicted exit conversion using global mass-transfer coefficients. Near light-off, the model results did not match the experiment precisely even after adjustment of mass-transfer coefficients. Agreement improved for the first case after adjusting the surface kinetics such that the net rate of CO adsorption increased compared to O2. The CO / O2 surface mechanism came from a sub-set of reactions in a popular CH4 / O2 mechanism. For the second case, predictions improved for lean conditions with increased external heat loss or adjustment of the kinetics as in the
Numerical linearized MHD model of flapping oscillations
NASA Astrophysics Data System (ADS)
Korovinskiy, D. B.; Ivanov, I. B.; Semenov, V. S.; Erkaev, N. V.; Kiehas, S. A.
2016-06-01
Kink-like magnetotail flapping oscillations in a Harris-like current sheet with earthward growing normal magnetic field component Bz are studied by means of time-dependent 2D linearized MHD numerical simulations. The dispersion relation and two-dimensional eigenfunctions are obtained. The results are compared with analytical estimates of the double-gradient model, which are found to be reliable for configurations with small Bz up to values ˜ 0.05 of the lobe magnetic field. Coupled with previous results, present simulations confirm that the earthward/tailward growth direction of the Bz component acts as a switch between stable/unstable regimes of the flapping mode, while the mode dispersion curve is the same in both cases. It is confirmed that flapping oscillations may be triggered by a simple Gaussian initial perturbation of the Vz velocity.
Numerical Modeling of Supra-Arcade Downflows
NASA Astrophysics Data System (ADS)
Huang, Y. M.; Bhattacharjee, A.; Guo, L.; Innes, D.
2015-12-01
Abstract Supra-arcade downflows (SADs) are elongated features usually observed above post-eruption flare arcades, with low emission, low density, and high temperature. Although SADs have been observed and studied extensively, their physical interpretation and mechanism remain not well understood and controversial. In our recent numerical and observational studies, we suggest that SADs may be due to Rayleigh-Taylor type instabilities occurring at the front of reconnection outflow jets as they encounter the underlying arcades (Innes et al. Astrophys. J. 796, 27; Guo et al. Astrophys. J. Lett., 796, L29). In this work, we further improve our three-dimensional magnetohydrodynamic model of SADs by incorporating viscous and resistive heating, anisotropic heat conduction, as well as line-tied lower boundary conditions. Synthetic SDO AIA emission measure profiles are calculated from simulation data and compared with observations.
Benchmarking numerical freeze/thaw models
NASA Astrophysics Data System (ADS)
Rühaak, Wolfram; Anbergen, Hauke; Molson, John; Grenier, Christophe; Sass, Ingo
2015-04-01
The modeling of freezing and thawing of water in porous media is of increasing interest, and for which very different application areas exist. For instance, the modeling of permafrost regression with respect to climate change issues is one area, while others include geotechnical applications in tunneling and for borehole heat exchangers which operate at temperatures below the freezing point. The modeling of these processes requires the solution of a coupled non-linear system of partial differential equations for flow and heat transport in space and time. Different code implementations have been developed in the past. Analytical solutions exist only for simple cases. Consequently, an interest has arisen in benchmarking different codes with analytical solutions, experiments and purely numerical results, similar to the long-standing DECOVALEX and the more recent "Geothermal Code Comparison" activities. The name for this freezing/ thawing benchmark consortium is INTERFROST. In addition to the well-known so-called Lunardini solution for a 1D case (case T1), two different 2D problems will be presented, one which represents melting of a frozen inclusion (case TH2) and another which represents the growth or thaw of permafrost around a talik (case TH3). These talik regions are important for controlling groundwater movement within a mainly frozen ground. First results of the different benchmark results will be shown and discussed.
A numerical forecast model for road meteorology
NASA Astrophysics Data System (ADS)
Meng, Chunlei
2017-05-01
A fine-scale numerical model for road surface parameters prediction (BJ-ROME) is developed based on the Common Land Model. The model is validated using in situ observation data measured by the ROSA road weather stations of Vaisala Company, Finland. BJ-ROME not only takes into account road surface factors, such as imperviousness, relatively low albedo, high heat capacity, and high heat conductivity, but also considers the influence of urban anthropogenic heat, impervious surface evaporation, and urban land-use/land-cover changes. The forecast time span and the update interval of BJ-ROME in vocational operation are 24 and 3 h, respectively. The validation results indicate that BJ-ROME can successfully simulate the diurnal variation of road surface temperature both under clear-sky and rainfall conditions. BJ-ROME can simulate road water and snow depth well if the artificial removing was considered. Road surface energy balance in rainy days is quite different from that in clear-sky conditions. Road evaporation could not be neglected in road surface water cycle research. The results of sensitivity analysis show solar radiation correction coefficient, asphalt depth, and asphalt heat conductivity are important parameters in road interface temperatures simulation. The prediction results could be used as a reference of maintenance decision support system to mitigate the traffic jam and urban water logging especially in large cities.
Foehn wind detection using numerical modelling
NASA Astrophysics Data System (ADS)
Irimescu, A.; Caian, M.
2010-09-01
In Romania, foehn is a short-lived atmospheric phenomenon, of a low to average intensity, not always highlighted by weather station observations. When such situations occur additional data are resorted to, rendering a continuous, aggregate image, in comparison to the punctual information yielded by weather stations. This paper aims to describe how foehn is detected in northern Oltenia (the Inner Carpathian-Balkan Curvature), using numerical modelling. Results generated by the RegCM3 Regional Climatic Model thus represent an undisputed tool, their most important advantage being the 10-km spatial resolution. The presence of foehn in northern Oltenia and its climatic peculiarities have been disclosed through the analysis in time and space of the meteorological elements specific to the phenomenon (air temperature, wind speed and direction etc) over a 40-year interval (1961-2000). The paper presents a new methodology that can be used to estimate the probability of production and the foehn characteristics (intensity, duration etc.). Interpretation of the RegCM3 model results has led to the statistical analysis of foehn occurrences within the studied area during the cold season (December, January and February). The resulted climatology, with fine resolution, can be used in foehn forecast of predictability.
Numerical Modeling of Suspension HVOF Spray
NASA Astrophysics Data System (ADS)
Jadidi, M.; Moghtadernejad, S.; Dolatabadi, A.
2016-02-01
A three-dimensional two-way coupled Eulerian-Lagrangian scheme is used to simulate suspension high-velocity oxy-fuel spraying process. The mass, momentum, energy, and species equations are solved together with the realizable k-ɛ turbulence model to simulate the gas phase. Suspension is assumed to be a mixture of solid particles [mullite powder (3Al2O3·2SiO2)], ethanol, and ethylene glycol. The process involves premixed combustion of oxygen-propylene, and non-premixed combustion of oxygen-ethanol and oxygen-ethylene glycol. One-step global reaction is used for each mentioned reaction together with eddy dissipation model to compute the reaction rate. To simulate the droplet breakup, Taylor Analogy Breakup model is applied. After the completion of droplet breakup, and solvent evaporation/combustion, the solid suspended particles are tracked through the domain to determine the characteristics of the coating particles. Numerical simulations are validated against the experimental results in the literature for the same operating conditions. Seven or possibly eight shock diamonds are captured outside the nozzle. In addition, a good agreement between the predicted particle temperature, velocity, and diameter, and the experiment is obtained. It is shown that as the standoff distance increases, the particle temperature and velocity reduce. Furthermore, a correlation is proposed to determine the spray cross-sectional diameter and estimate the particle trajectories as a function of standoff distance.
SToRM: A numerical model for environmental surface flows
Simoes, Francisco J.
2009-01-01
SToRM (System for Transport and River Modeling) is a numerical model developed to simulate free surface flows in complex environmental domains. It is based on the depth-averaged St. Venant equations, which are discretized using unstructured upwind finite volume methods, and contains both steady and unsteady solution techniques. This article provides a brief description of the numerical approach selected to discretize the governing equations in space and time, including important aspects of solving natural environmental flows, such as the wetting and drying algorithm. The presentation is illustrated with several application examples, covering both laboratory and natural river flow cases, which show the model’s ability to solve complex flow phenomena.
Numerical Modeling of Table-Top X-Ray Lasers
Shlyaptsev, V N; Dunn, J; Moon, S; Osterheld, A L; Rocca, J J; Detering, F; Rozmus, W; Matte, J P; Fiedorowicz, H; Bartnik, A; Kanouff, M
2002-04-29
In this work we report numerical modeling results of laser-generated transient inversion and capillary discharge X-ray lasers. We have found the importance of plasma kinetics approaches in transient X-ray lasers physics by expanding the physical model beyond hydrodynamics approximation. Using Particle and Fokker-Planck codes the clear evidence of the Langdon effect was inferred from the recent experimental data obtained with the Ni-like Pd X-ray laser. In the search for more efficient X-ray lasers we looked closely at alternative target designs utilizing low density targets. In conjunction with recent experiments at LLNL the numerical investigations of gas puff targets has been performed.
A Numerical Model of Viscoelastic Flow in Microchannels
Trebotich, D; Colella, P; Miller, G; Liepmann, D
2002-11-14
The authors present a numerical method to model non-Newtonian, viscoelastic flow at the microscale. The equations of motion are the incompressible Navier-Stokes equations coupled with the Oldroyd-B constitutive equation. This constitutive equation is chosen to model a Boger fluid which is representative of complex biological solutions exhibiting elastic behavior due to macromolecules in the solution (e.g., DNA solution). The numerical approach is a projection method to impose the incompressibility constraint and a Lax-Wendroff method to predict velocities and stresses while recovering both viscous and elastic limits. The method is second-order accurate in space and time, free-stream preserving, has a time step constraint determined by the advective CFL condition, and requires the solution of only well-behaved linear systems amenable to the use of fast iterative methods. They demonstrate the method for viscoelastic incompressible flow in simple microchannels (2D) and microducts (3D).
FEM numerical model analysis of magnetic nanoparticle tumor heating experiments.
Pearce, John A; Petyk, Alicia A; Hoopes, P Jack
2014-01-01
Iron oxide nanoparticles are currently under investigation as heating agents for hyperthermic treatment of tumors. Major determinants of effective heating include the biodistribution of magnetic materials, the minimum iron oxide loading required to achieve adequate heating, and practically achievable magnetic field strengths. These are inter-related criteria that ultimately determine the practicability of this approach to tumor treatment. Currently, we lack fundamental engineering design criteria that can be used in treatment planning and assessment. Coupling numerical models to experimental studies illuminate the underlying physical processes and can separate physical processes to determine their relative importance. Further, adding thermal damage and cell death process to the models provides valuable perspective on the likelihood of successful treatment. FEM numerical models were applied to increase the understanding of a carefully calibrated series of experiments in mouse mammary carcinoma. The numerical models results indicate that tumor loadings equivalent to approximately 1 mg of Fe3O4 per gram of tumor tissue are required to achieve adequate heating in magnetic field strengths of 34 kA/m (rms) at 160 kHz. Further, the models indicate that direct intratumoral injection of the nanoparticles results in between 1 and 20% uptake in the tissues.
Numerical modelling of the shoulder for clinical applications.
Favre, Philippe; Snedeker, Jess G; Gerber, Christian
2009-05-28
Research activity involving numerical models of the shoulder is dramatically increasing, driven by growing rates of injury and the need to better understand shoulder joint pathologies to develop therapeutic strategies. Based on the type of clinical question they can address, existing models can be broadly categorized into three groups: (i) rigid body models that can simulate kinematics, collisions between entities or wrapping of the muscles over the bones, and which have been used to investigate joint kinematics and ergonomics, and are often coupled with (ii) muscle force estimation techniques, consisting mainly of optimization methods and electromyography-driven models, to simulate muscular action and joint reaction forces to address issues in joint stability, muscular rehabilitation or muscle transfer, and (iii) deformable models that account for stress-strain distributions in the component structures to study articular degeneration, implant failure or muscle/tendon/bone integrity. The state of the art in numerical modelling of the shoulder is reviewed, and the advantages, limitations and potential clinical applications of these modelling approaches are critically discussed. This review concentrates primarily on muscle force estimation modelling, with emphasis on a novel muscle recruitment paradigm, compared with traditionally applied optimization methods. Finally, the necessary benchmarks for validating shoulder models, the emerging technologies that will enable further advances and the future challenges in the field are described.
HABITAT MODELING APPROACHES FOR RESTORATION SITE SELECTION
Numerous modeling approaches have been used to develop predictive models of species-environment and species-habitat relationships. These models have been used in conservation biology and habitat or species management, but their application to restoration efforts has been minimal...
Numerical Models of Ophiolite Genesis and Obduction
NASA Astrophysics Data System (ADS)
Guilmette, C.; Beaumont, C.; Jamieson, R.
2013-12-01
Ophiolites are relics of oceanic lithosphere tectonically emplaced in continental settings. They are diagnostic features of continental suture zones, where they mark past plate boundaries. Even after having been studied for more than 40 years, the mechanisms involved in the genesis and subsequent obduction of ophiolites over continental margins are still debated. We present the results of 2D thermal-mechanical numerical models that successfully reproduce characteristics of natural examples like the Semail, Bay of Islands, Yarlung-Zangbo, and Coast Range ophiolites. The numerical models are upper mantle scale and use pressure-, temperature- and strain-dependent viscous-plastic rheologies. Both divergent and convergent velocity boundary conditions are used and tectonic boundary forces are monitored. The models start with the rifting of a stable continent, followed by development of an ocean ridge and accretion of oceanic lithosphere at a total rate of 3 cm/y. Once a specified ocean size/age is achieved, the velocity boundary conditions are reversed leading to convergence and the spontaneous inception of a suduction zone at the mid-ocean ridge. We present results for models including different ages of oceans (40 to 90 Ma) and different convergence velocities (5 to 15 cm/y). The interaction between the lower plate passive margin and the oceanic upper plate results in 5 different tectonic styles. These differ mainly by the presence or absence of oceanic spreading in the upper plate (back-arc basin), leading to supra-subduction zone ophiolites vs. MORB-type, and by the behaviour of the oceanic slab, e.g., slab rollback vs. breakoff. The evolution of effective slab pull is interpreted to be the major control on the resulting tectonic style. Low effective slab pull models (young oceans and fast convergence rates) fail to obduct an ophiolite. Strong effective slab pull models (old oceans and lower convergence rates) result in subduction zone retreat and spontaneous oceanic
Numerical modeling of landslide generated seismic waves
NASA Astrophysics Data System (ADS)
Favreau, P.; Mangeney, A.; Lucas, A.; Shapiro, N. M.; Crosta, G. B.; Bouchut, F.; Hungr, O.
2009-12-01
Gravitational instabilities such as debris flows, landslides or avalanches play a key role in erosion processes at the surface of the Earth and other telluric planets. On Earth, they represent one of the major natural hazards threatening population and infrastructure in volcanic, mountainous, seismic and coastal areas. One of the main issues in terms of risk assessment is to produce tools for detection of natural instabilities and for prediction of velocity and runout extent of rapid landslides. The lack of field measurements of the dynamics of natural landslides due to their unpredictability and destructive power, prevents investigating the mechanical properties of the flowing material that appears to be very different from experimental granular flows in the laboratory. In this context, the analysis of the seismic signal generated by natural instabilities provides a unique paradigm to study flow dynamics and discriminate the physical processes at play during their emplacement along the slope. Potentially, it is possible to infer information about the “landslide source” from the seismic signal produced during the initial collapse and the subsequent flow along the natural terrain. However, the process of reverse dynamic analysis is complex and must take into consideration the role of topography, mass of the landslide, flow dynamics, and wave propagation on the recorded signal. We use here numerical modeling of the landslide and of the generated seismic waves to address this issue. We show that (i) numerical simulation of landslide and generated seismic waves well match the observed low frequency seismic signal, (ii) topography effects on landslide dynamics play a key role in the observed seismic signal, (iii) simulation of the seismic wave makes it possible to discriminate between the alternative possible scenario of flow dynamics and to provide estimates of the rheological parameters during the flow. As a result, unique data on natural flow dynamics could be
Numerical Modelling of Seismic Slope Stability
NASA Astrophysics Data System (ADS)
Bourdeau, Céline; Havenith, Hans-Balder; Fleurisson, Jean-Alain; Grandjean, Gilles
Earthquake ground-motions recorded worldwide have shown that many morphological and geological structures (topography, sedimentary basin) are prone to amplify the seismic shaking (San Fernando, 1971 [Davis and West 1973] Irpinia, 1980 [Del Pezzo et al. 1983]). This phenomenon, called site effects, was again recently observed in El Salvador when, on the 13th of January 2001, the country was struck by a M = 7.6 earthquake. Indeed, while horizontal accelerations on a rock site at Berlin, 80 km from the epicentre, did not exceed 0.23 g, they reached 0.6 g at Armenia, 110 km from the epicentre. Armenia is located on a small hill underlaid by a few meters thick pyroclastic deposits. Both the local topography and the presence of surface layers are likely to have caused the observed amplification effects, which are supposed to have contributed to the triggering of some of the hundreds of landslides related to this seismic event (Murphy et al. 2002). In order to better characterize the way site effects may influence the triggering of landslides along slopes, 2D numerical elastic and elasto-plastic models were developed. Various geometrical, geological and seismic conditions were analysed and the dynamic behaviour of the slope under these con- ditions was studied in terms of creation and location of a sliding surface. Preliminary results suggest that the size of modelled slope failures is dependent on site effects.
Frustration in model glass systems: Numerical investigations
NASA Astrophysics Data System (ADS)
Jullien, Rémi; Jund, Philippe; Caprion, Didier; Sadoc, Jean-François
1999-11-01
Numerical Voronoï tessellation is used to investigate the mechanisms of frustration in some model glass systems. First, random packings of 8192 hard spheres of increasing volume fraction c are built using an efficient computer algorithm. Their Voronoï statistics evolves with c as if the system would like to reach a pure icosahedral order when extrapolating the volume fraction above the Bernal limit cb≃0.645. Second, super-cooled liquid and glass samples of 1000 atoms are generated at different temperatures T after a quench from the liquid state, using classical micro-canonical molecular dynamics with a simple soft-sphere potential. When decreasing T, the ideal icosahedral order appears again as an extrapolated situation which cannot be realized due to geometrical frustration. Third, a model silica glass of 648 atoms is studied using the potential of van Beest, Kramer and van Santen and a quite similar quenching procedure is performed. As in the soft-sphere case the structural freezing following upon the glass transition is noticeable in all the geometrical characteristics of the Voronoï cells and again a possible interpretation in terms of geometrical frustration is proposed.
Numerical Modeling of a Magnetic Nozzle
NASA Astrophysics Data System (ADS)
Tushentsov, Mikhail; Breizman, Boris; Arefiev, Alexey
2007-11-01
We present computational study of a magnetic nozzle, which is a component of the VASIMR (Variable Specific Impulse Magnetoplasma Rocket) plasma-based propulsion system for a space vehicle. The magnetic nozzle transforms ion gyromotion into directed axial motion, adiabatically accelerating the plasma, and enabling plasma detachment from the spaceship via self-consistent magnetic field modification. VASIMR employs ion cyclotron resonance heating to deposit rf-power directly to the plasma ions created by the low energy plasma source. We have developed a numerical code to model the axisymmetric nozzle within the framework of collisionless MHD with an azimuthal ion velocity spread. The code implements a reduced model that consists of truncated steady-state equations for the velocity space moments of the ion distribution function and takes advantage of the plasma flow paraxiality. This makes it possible to study the conversion of the ion gyro-energy at the nozzle entrance into the energy of the directed flow at the exhaust. The magnetic field in the vacuum, which is not assumed to be paraxial, is calculated using a given magnetic coil configuration in the presence of plasma. From the computed steady-state flow configuration, the code evaluates magnetic nozzle efficiency, defined as the ratio of the axial momentum flux in the outgoing flow to the axial momentum flux in the incoming flow.
Numerical modeling of the Amazon River plume
NASA Astrophysics Data System (ADS)
Nikiema, Oumarou; Devenon, Jean-Luc; Baklouti, Malika
2007-04-01
Marine circulation above the northern Brazilian continental shelf is subject to energetic forcing factors of various origins: high water buoyancy fluxes induced by the Amazon River freshwater discharge, a strong coastal current associated with a mesoscale current (North Brazil Current (NBC)), a forcing by semidiurnal tide and by Northeast or Southeast trade winds according to the season. Using a three-dimensional (3-D) hydrodynamic numerical model (MOBEEHDYCS), and realistic bathymetry and coastline of the northern Brazilian shelf, this paper aims at studying the influence of some specific physical processes on the morphology of the Amazon plume. The very large volume discharge (180 000 m 3/s on average) and the weak effect of Coriolis force are additional characteristics of the studied system, which induce a particular dynamics. The various forcing factors are successively introduced into the model in order to simulate and to determine their respective influences upon the plume extent and the hydrodynamics at the shelf scale. Simulation reveal that the coastal current is at the origin of the permanent northwestward Amazon plume extension while wind effect can either reinforce or moderate this situation. The tide intervenes also to modify the position of the salinity front: a horizontal migration of salinity front is observed under its action.
Numerical models of wind-driven circulation in lakes
Cheng, R.T.; Powell, T.M.; Dillon, T.M.
1976-01-01
The state-of-the-art of numerical modelling of large-scale wind-driven circulation in lakes is presented. The governing equations which describe this motion are discussed along with the appropriate numerical techniques necessary to solve them in lakes. The numerical models are categorized into three large primary groups: the layered models, the Ekman-type models, and the other three-dimensional models. Discussions and comparison of models are given and future research directions are suggested. ?? 1976.
Rajaraman, Prathish K; Manteuffel, T A; Belohlavek, M; Heys, Jeffrey J
2017-01-01
A new approach has been developed for combining and enhancing the results from an existing computational fluid dynamics model with experimental data using the weighted least-squares finite element method (WLSFEM). Development of the approach was motivated by the existence of both limited experimental blood velocity in the left ventricle and inexact numerical models of the same flow. Limitations of the experimental data include measurement noise and having data only along a two-dimensional plane. Most numerical modeling approaches do not provide the flexibility to assimilate noisy experimental data. We previously developed an approach that could assimilate experimental data into the process of numerically solving the Navier-Stokes equations, but the approach was limited because it required the use of specific finite element methods for solving all model equations and did not support alternative numerical approximation methods. The new approach presented here allows virtually any numerical method to be used for approximately solving the Navier-Stokes equations, and then the WLSFEM is used to combine the experimental data with the numerical solution of the model equations in a final step. The approach dynamically adjusts the influence of the experimental data on the numerical solution so that more accurate data are more closely matched by the final solution and less accurate data are not closely matched. The new approach is demonstrated on different test problems and provides significantly reduced computational costs compared with many previous methods for data assimilation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Comparison between analytical and numerical solution of mathematical drying model
NASA Astrophysics Data System (ADS)
Shahari, N.; Rasmani, K.; Jamil, N.
2016-02-01
Drying is often related to the food industry as a process of shifting heat and mass inside food, which helps in preserving food. Previous research using a mass transfer equation showed that the results were mostly concerned with the comparison between the simulation model and the experimental data. In this paper, the finite difference method was used to solve a mass equation during drying using different kinds of boundary condition, which are equilibrium and convective boundary conditions. The results of these two models provide a comparison between the analytical and the numerical solution. The result shows a close match between the two solution curves. It is concluded that the two proposed models produce an accurate solution to describe the moisture distribution content during the drying process. This analysis indicates that we have confidence in the behaviour of moisture in the numerical simulation. This result demonstrated that a combined analytical and numerical approach prove that the system is behaving physically. Based on this assumption, the model of mass transfer was extended to include the temperature transfer, and the result shows a similar trend to those presented in the simpler case.
Understanding Etna flank instability through numerical models
NASA Astrophysics Data System (ADS)
Apuani, Tiziana; Corazzato, Claudia; Merri, Andrea; Tibaldi, Alessandro
2013-02-01
As many active volcanoes, Mount Etna shows clear evidence of flank instability, and different mechanisms were suggested to explain this flank dynamics, based on the recorded deformation pattern and character. Shallow and deep deformations, mainly associated with both eruptive and seismic events, are concentrated along recognised fracture and fault systems, mobilising the eastern and south-eastern flank of the volcano. Several interacting causes were postulated to control the phenomenon, including gravity force, magma ascent along the feeding system, and a very complex local and/or regional tectonic activity. Nevertheless, the complexity of such dynamics is still an open subject of research and being the volcano flanks heavily urbanised, the comprehension of the gravitative dynamics is a major issue for public safety and civil protection. The present research explores the effects of the main geological features (in particular the role of the subetnean clays, interposed between the Apennine-Maghrebian flysch and the volcanic products) and the role of weakness zones, identified by fracture and fault systems, on the slope instability process. The effects of magma intrusions are also investigated. The problem is addressed by integrating field data, laboratory tests and numerical modelling. A bi- and tri-dimensional stress-strain analysis was performed by a finite difference numerical code (FLAC and FLAC3D), mainly aimed at evaluating the relationship among geological features, volcano-tectonic structures and magmatic activity in controlling the deformation processes. The analyses are well supported by dedicated structural-mechanical field surveys, which allowed to estimate the rock mass strength and deformability parameters. To take into account the uncertainties which inevitably occur in a so complicated model, many efforts were done in performing a sensitivity analysis along a WNW-ESE section crossing the volcano summit and the Valle del Bove depression. This was
Numerical model of circumpolar Antarctic ice shelves
Johnson, R.C.
1985-01-01
Extensive floating ice shelves in the Antarctic have been proposed to explain the discrepancies between Pleistocene high sea levels shown by dated coral reefs and coeval low sea levels inferred from glacial ice volumes calculated from oxygen isotope ratios in deep sea cores. A numerical model using the floating shelf creep analysis of Weertman (1957) has provided a plausible basis for the acceptance of such shelves. Shelf outer limits were set at 55/sup 0/S in East Antarctica and 58/sup 0/S in West Antarctica, based in part on diatom-deficient deep sea sediments deposited prior to the Holocene. Precipitation varied from 10 gm cm/sup -2/yr/sup -1/ at 75/sup 0/S to 80 gm cm/sup -2/yr/sup -1/ at 55/sup 0/S. Mean air temperatures varied from -35/sup 0/C at the 75/sup 0/S coast to -17/sup 0/C at the outer limits. Isotope ratios were those of present Antarctic precipitation at corresponding model shelf temperatures. In the calculation, a steady state is assumed. Integration begins at the coast with summation over successive years as creep and continental ice discharge move the integration element to the outer limits. The oceanic oxygen isotope ratio change required by the discrepancies in the record is 0.40 to 0.50 ppmil. Using the flow law constant of 4.2 and a creep activation energy of 134 kjoules mol/sup -1/, the resulting change is 0.44 ppmil. Difference results reflect the uncertainties associated with the critical creep constants used in the modeling. Nevertheless, the results suggest that a quantity of Antarctic shelf ice comparable to ice volumes in major Northern glacial areas existed at times during the Pleistocene.
Numerical modeling of atoll island hydrogeology.
Bailey, R T; Jenson, J W; Olsen, A E
2009-01-01
We implemented Ayers and Vachers' (1986) inclusive conceptual model for atoll island aquifers in a comprehensive numerical modeling study to evaluate the response of the fresh water lens to selected controlling climatic and geologic variables. Climatic factors include both constant and time-varying recharge rates, with particular attention paid to the effects of El Niño and the associated drought it brings to the western Pacific. Geologic factors include island width; hydraulic conductivity of the uppermost Holocene-age aquifer, which contains the fresh water lens; the depth to the contact with the underlying, and much more conductive, Pleistocene karst aquifer, which transmits tidal signals to the base of the lens; and the presence or absence of a semiconfining reef flat plate on the ocean side. Sensitivity analyses of steady-steady simulations show that lens thickness is most strongly sensitive to the depth to the Holocene-Pleistocene contact and to the hydraulic conductivity of the Holocene aquifer, respectively. Comparisons between modeling results and published observations of atoll island lens thicknesses suggest a hydraulic conductivity of approximately 50 m/d for leeward islands and approximately 400 m/d for windward islands. Results of transient simulations show that lens thickness fluctuations during average seasonal conditions and El Niño events are quite sensitive to island width, recharge rate, and hydraulic conductivity of the Holocene aquifer. In general, the depletion of the lens during drought conditions is most drastic for small, windward islands. Simulation results suggest that recovery from a 6-month drought requires about 1.5 years.
Numerical Modeling of Fracture Propagation in Naturally Fractured Formations
NASA Astrophysics Data System (ADS)
Wang, W.; Prodanovic, M.; Olson, J. E.; Schultz, R.
2015-12-01
Hydraulic fracturing consists of injecting fluid at high pressure and high flowrate to the wellbore for the purpose of enhancing production by generating a complex fracture network. Both tensile failure and shear failure occur during the hydraulic fracturing treatment. The shear event can be caused by slip on existing weak planes such as faults or natural fractures. From core observation, partially cemented and fully cemented opening mode natural fractures, often with considerable thickness are widely present. Hydraulic fractures can propagate either within the natural fracture (tensile failure) or along the interface between the natural fracture and the rock matrix (tensile/shear failure), depending on the relative strength of cement and rock matrix materials, the bonding strength of interface, as well as the presence of any heterogeneities. In this study, we evaluate the fracture propagation both experimentally and numerically. We embed one or multiple inclusions of different mechanical properties within synthetic hydrostone samples in order to mimic cemented natural fractures and rock. A semi-circular bending test is performed for each set of properties. A finite element model built with ABAQUS is used to mimic the semi-circular bending test and study the fracture propagation path, as well as the matrix-inclusion bonding interface status. Mechanical properties required for the numerical model are measured experimentally. The results indicate that the match between experiment and modeling fracture path are extremely sensitive to the chosen interface (bonding) model and related parameters. The semi-circular bending test is dry and easily conducted, providing a good platform for validating numerical approaches. A validated numerical model will enable us to add pressurized fluid within the crack and simulate hydraulic fracture-natural fracture interaction in the reservoir conditions, ultimately providing insights into the extent of the fracture network.
NASA Technical Reports Server (NTRS)
Beers, B. L.; Pine, V. W.; Hwang, H. C.; Bloomberg, H. W.; Lin, D. L.; Schmidt, M. J.; Strickland, D. J.
1979-01-01
The model consists of four phases: single electron dynamics, single electron avalanche, negative streamer development, and tree formation. Numerical algorithms and computer code implementations are presented for the first three phases. An approach to developing a code description of fourth phase is discussed. Numerical results are presented for a crude material model of Teflon.
Numerical modeling of confined liquid crystal systems
NASA Astrophysics Data System (ADS)
Mkaddem, Sami
There has been much research interest in fine structures and defects of equilibrium configurations of nematic liquid crystal droplets subject to strong homeotropic anchoring and modeled by Landau-de Gennes free-energy functionals. In particular, two configurations are the center of attention. The first one is the radial hedgehog, which has an isotropic core and a spherically symmetric structure. The second one is the ring disclination, which has a ring disclination of strength 1/2 and a cylindrically symmetric structure. In this dissertation, we undertake a detailed numerical study of the two described equilibrium configurations using the imposed symmetries to simplify the problem and utilizing a high order finite element discretization to solve it. In addition to the radial hedgehog and the ring disclination, we found a new, metastable configuration, which also is axially symmetric and consists of two isotropic points along its symmetry axis narrowly separated by a line disclination. We generate phase and bifurcation diagrams of the equilibrium configurations. We also investigate the qualitative behavior and the stability of the radial hedgehog. Using a perturbation against the radial hedgehog, we show that such configurations must become unstable at sufficiently low temperatures or in sufficiently large droplets.
Quantitative comparisons of numerical models of brittle deformation
NASA Astrophysics Data System (ADS)
Buiter, S.
2009-04-01
Numerical modelling of brittle deformation in the uppermost crust can be challenging owing to the requirement of an accurate pressure calculation, the ability to achieve post-yield deformation and localisation, and the choice of rheology (plasticity law). One way to approach these issues is to conduct model comparisons that can evaluate the effects of different implementations of brittle behaviour in crustal deformation models. We present a comparison of three brittle shortening experiments for fourteen different numerical codes, which use finite element, finite difference, boundary element and distinct element techniques. Our aim is to constrain and quantify the variability among models in order to improve our understanding of causes leading to differences between model results. Our first experiment of translation of a stable sand-like wedge serves as a reference that allows for testing against analytical solutions (e.g., taper angle, root-mean-square velocity and gravitational rate of work). The next two experiments investigate an unstable wedge in a sandbox-like setup which deforms by inward translation of a mobile wall. All models accommodate shortening by in-sequence formation of forward shear zones. We analyse the location, dip angle and spacing of thrusts in detail as previous comparisons have shown that these can be highly variable in numerical and analogue models of crustal shortening and extension. We find that an accurate implementation of boundary friction is important for our models. Our results are encouraging in the overall agreement in their dynamic evolution, but show at the same time the effort that is needed to understand shear zone evolution. GeoMod2008 Team: Markus Albertz, Michele Cooke, Susan Ellis, Taras Gerya, Luke Hodkinson, Kristin Hughes, Katrin Huhn, Boris Kaus, Walter Landry, Bertrand Maillot, Christophe Pascal, Anton Popov, Guido Schreurs, Christopher Beaumont, Tony Crook, Mario Del Castello and Yves Leroy
Numerical Modeling of Inclusion Behavior in Liquid Metal Processing
NASA Astrophysics Data System (ADS)
Bellot, Jean-Pierre; Descotes, Vincent; Jardy, Alain
2013-09-01
Thermomechanical performance of metallic alloys is directly related to the metal cleanliness that has always been a challenge for metallurgists. During liquid metal processing, particles can grow or decrease in size either by mass transfer with the liquid phase or by agglomeration/fragmentation mechanisms. As a function of numerical density of inclusions and of the hydrodynamics of the reactor, different numerical modeling approaches are proposed; in the case of an isolated particle, the Lagrangian technique coupled with a dissolution model is applied, whereas in the opposite case of large inclusion phase concentration, the population balance equation must be solved. Three examples of numerical modeling studies achieved at Institut Jean Lamour are discussed. They illustrate the application of the Lagrangian technique (for isolated exogenous inclusion in titanium bath) and the Eulerian technique without or with the aggregation process: for precipitation and growing of inclusions at the solidification front of a Maraging steel, and for endogenous inclusions in the molten steel bath of a gas-stirred ladle, respectively.
A numerical model for edge waves on a compound slope
NASA Astrophysics Data System (ADS)
Lu, Yang; Feng, Wei-bing; Zhang, Yu; Feng, Xi
2017-04-01
An edge wave is a kind of surface gravity wave basically travelling along a shoaling beach. Based on the periodic assumption in the longshore direction, a second order ordinary differential equation is obtained for numerical simulation of the cross-shore surface elevation. Given parameters at the shoreline, a cross-shore elevation profile is obtained through integration with fourth-order Runge-Kutta technique. For a compound slope, a longshore wavenumber is obtained by following a geometrical approach and solving a transcendental equation with an asymptotic method. Numerical results on uniform and compound sloping beaches with different wave periods, slope angles, modes and turning point positions are presented. Some special scenarios, which cannot be predicted by analytical models are also discussed.
Determining Heterogeneous Bottom Friction Distributions using a Numerical Wave Model
2007-08-11
8217 J. M. Kaihatu.’ and K. T. Holland 2 Recci cd 22 September 2(005; rc ised 15 March 2007; accepted I June 2007. published I1 August 2007. It] This...dependencies in the numerical wave model for this procedure to be effective. Citation: Keen, T. R., W. E. Rogers, J. Dykes, J. M. Kaihatu, and K. T. Holland ...grid ( lop of page). similar to traditional data assimilation approaches but there are important differences. For example, this work is focused on the
Impact activation of Martian permafrost: Numerical modeling
NASA Astrophysics Data System (ADS)
Ivanov, B.; Melosh, H. J.
2011-12-01
For the last decade the team of Dr. Elisabetta (Betty) Pierazzo (LPL+PSI) study physical and mechanical processes involved in impact melting of Martian permafrost. The idea is that on Mars large enough impact craters would start substantial hydrothermal activity underneath the crater for thousands of years (possibly for >1 Myr, if a crater is larger than about 200 km in diameter). Numerical efforts to predict the extent and time scale of hydrothermal activity in Martian impact craters have mostly relied on numerical simulations of impact cratering into uniform or layered ice-rock targets. We conduct a case modeling study of impact melting of permafrost on Mars to investigate the general thermal state of the rock layers modified in the formation of hyper-velocity impact craters. We model the formation of a mid-size crater, about 30 km in diameter, formed on target consisting of a mixture of large particles of H2O-ice and rock (something like ice lenses in rock fractures) and fine mix equilibrated in temperature with an ice/water content variable with depth. The model results indicate that for craters larger than about 30 km in diameter the onset of post-impact hydrothermal circulation is characterized by two stages: first, the formation of a mostly dry, hot central uplift, followed by water beginning to flow in and circulate through the initially dry and hot uplifted crustal rocks. The post-impact thermal field in the periphery of the crater is dependent on crater size: in mid-size craters, 30-50 km in diameter, crater walls are not strongly heated in the impact event, and even though ice present in the rock may initially be heated enough to melt, overall temperatures in the rock remain below melting, undermining the development of a crater-wide hydrothermal circulation. We speculate that salt deposition from supercritical water may occur immediately after impact in some locations before the normal water circulation starts. In larger craters, crater walls are heated
Numerical and Experimental Approaches Toward Understanding Lava Flow Heat Transfer
NASA Astrophysics Data System (ADS)
Rumpf, M.; Fagents, S. A.; Hamilton, C.; Crawford, I. A.
2013-12-01
We have performed numerical modeling and experimental studies to quantify the heat transfer from a lava flow into an underlying particulate substrate. This project was initially motivated by a desire to understand the transfer of heat from a lava flow into the lunar regolith. Ancient regolith deposits that have been protected by a lava flow may contain ancient solar wind, solar flare, and galactic cosmic ray products that can give insight into the history of our solar system, provided the records were not heated and destroyed by the overlying lava flow. In addition, lava-substrate interaction is an important aspect of lava fluid dynamics that requires consideration in lava emplacement models Our numerical model determines the depth to which the heat pulse will penetrate beneath a lava flow into the underlying substrate. Rigorous treatment of the temperature dependence of lava and substrate thermal conductivity and specific heat capacity, density, and latent heat release are imperative to an accurate model. Experiments were conducted to verify the numerical model. Experimental containers with interior dimensions of 20 x 20 x 25 cm were constructed from 1 inch thick calcium silicate sheeting. For initial experiments, boxes were packed with lunar regolith simulant (GSC-1) to a depth of 15 cm with thermocouples embedded at regular intervals. Basalt collected at Kilauea Volcano, HI, was melted in a gas forge and poured directly onto the simulant. Initial lava temperatures ranged from ~1200 to 1300 °C. The system was allowed to cool while internal temperatures were monitored by a thermocouple array and external temperatures were monitored by a Forward Looking Infrared (FLIR) video camera. Numerical simulations of the experiments elucidate the details of lava latent heat release and constrain the temperature-dependence of the thermal conductivity of the particulate substrate. The temperature-dependence of thermal conductivity of particulate material is not well known
Precise numerical modeling of next generation multimode fiber based links
NASA Astrophysics Data System (ADS)
Maksymiuk, L.; Stepniak, G.
2015-12-01
In order to numerically model modern multimode fiber based links we are required to take into account modal and chromatic dispersion, profile dispersion and spectral dependent coupling. In this paper we propose a complete numerical model which not only is precise but also versatile. Additionally to the detailed mathematical description of the model we provide also a bunch of numerical calculations performed with the use of the model.
Numerical models for high beta magnetohydrodynamic flow
Brackbill, J.U.
1987-01-01
The fundamentals of numerical magnetohydrodynamics for highly conducting, high-beta plasmas are outlined. The discussions emphasize the physical properties of the flow, and how elementary concepts in numerical analysis can be applied to the construction of finite difference approximations that capture these features. The linear and nonlinear stability of explicit and implicit differencing in time is examined, the origin and effect of numerical diffusion in the calculation of convective transport is described, and a technique for maintaining solenoidality in the magnetic field is developed. Many of the points are illustrated by numerical examples. The techniques described are applicable to the time-dependent, high-beta flows normally encountered in magnetically confined plasmas, plasma switches, and space and astrophysical plasmas. 40 refs.
Numerical approaches to isolated many-body quantum systems
NASA Astrophysics Data System (ADS)
Kolodrubetz, Michael H.
Ultracold atoms have revolutionized atomic and condensed matter physics. In addition to having clean, controllable Hamiltonians, ultracold atoms are near-perfect realizations of isolated quantum systems, in which weak environmental coupling can be neglected on experimental time scales. This opens new opportunities to explore these systems not just in thermal equilibrium, but out of equilibrium as well. In this dissertation, we investigate some properties of closed quantum systems, utilizing a combination of numerical and analytical techniques. We begin by applying full configuration-interaction quantum Monte Carlo (FCIQMC) to the Fermi polaron, which we use as a test bed to improve the algorithm. In addition to adapting standard QMC techniques, we introduce novel controlled approximations that allow mitigation of the sign problem and simulation directly in the thermodynamic limit. We also contrast the sign problem of FCIQMC with that of more standard techniques, focusing on FCIQMC's capacity to work in a second quantized determinant space. Next, we discuss nonequilibrium dynamics near a quantum critical point, focusing on the one-dimensional transverse-field Ising (TFI) chain. We show that the TFI dynamics exhibit critical scaling, within which the spin correlations exhibit qualitatively athermal behavior. We provide strong numerical evidence for the universality of dynamic scaling by utilizing time-dependent matrix product states to simulate a non-integrable model in the same equilibrium universality class. As this non-integrable model has been realized experimentally, we investigate the robustness of our predictions against the presence of open boundary conditions and disorder. We find that the qualitatively athermal correlations remain visible, although other phenomena such as even/odd effects become relevant within the finite size scaling theory. Finally, we investigate the properties of the integrable TFI model upon varying the strength of a non
Heat transfer enhancement in nanofluids. A numerical approach
NASA Astrophysics Data System (ADS)
Fariñas Alvariño, P.; Sáiz Jabardo, J. M.; Arce, A.; Lamas Galdo, M. I.
2012-11-01
The aim of the reported investigation is to asses the effect of brownian and thermophoretic diffusion in nanofluids convective heat transfer. In order to capture these effects, a new equation for particles distribution had to be consider. Momentum and energy equations have been reformulated in order to include brownian and thermophretic diffusion. These modes of diffusion have been suggested extensively in the literature but their effect on momentum and energy transport has not yet been numerically analyzed. In order to obtain a solution for the modified set of governing equations, a new CFD solver had to be devised. The new solver has been applied to a case study involving hydrodynamic and thermally developing laminar flow regime in a pipe. Pure base fluid solutions have been used to asses the accuracy of the model. Numerical nanofluid solutions compare reasonably well with both experimental results obtained elsewhere and the Churchill and Ozoe correlation. The observed heat transfer enhancement by the nanofluid has been attributed to its transport properties rather than to another transport mechanism.
Numerical modeling of tunneling-induced seismicity
NASA Astrophysics Data System (ADS)
Rinaldi, Antonio Pio; Urpi, Luca
2017-04-01
Removal of rock mass in mining environment has been associated since long-time with seismic event of magnitude 3 and above, with the potential to cause damage to the infrastructures or even loss of human life. Although with similarities with mining, relatively unknown up to now are seismic events induced by tunneling. However with modern mechanized tunneling techniques, making possible to digging deeper and longer underground infrastructure, the risk is not negligible. As an example, the excavation of the 57km long Gotthard Base Tunnel has been associated more than hundred seismic events, with the largest one having magnitude of ML 2.4, damaging the tunnel infrastructures. For future scenario of deep geological storage of nuclear waste, tunneling will constitute the primary activity during site construction. Hence, it will be crucial to understand the risk associated with the underground construction operation that can reactivate seismogenic features nearby the future location of emplacement tunnels. Here we present numerical simulation aimed at understanding the potential for inducing seismicity during tunnel construction. The stress changes and their evolution during the excavation are evaluated with a finite element solver (FLAC3d). A strain-softening friction model is then used to simulate the occurrence of a sudden slip on a fault zone (if critical conditions for reactivation are reached). We also present a sensitivity analysis of the potential for inducing different seismic events by different tunnel sizes at varying distance from a nearby failure plane, with the final purpose of evaluating safety of a potential nuclear repository site on the short- and long-term.
Numerical Simulation of Transit-Time Ultrasonic Flowmeters by a Direct Approach.
Luca, Adrian; Marchiano, Regis; Chassaing, Jean-Camille
2016-03-23
This paper deals with the development of a computational code for the numerical simulation of wave propagation through domains with a complex geometry consisting in both solids and moving fluids. The emphasis is on the numerical simulation of ultrasonic flowmeters (UFMs) by modeling the wave propagation in solids with the equations of linear elasticity and in fluids with the linearized Euler equations. This approach requires high performance computing because of the high number of degrees of freedom and the long propagation distances. Therefore, the numerical method should be chosen with care. In order to minimize the numerical dissipation which may occur in this kind of configurations, the numerical method employed here is the nodal discontinuous Galerkin method. Also, this method is well suited for parallel computing. To speed up the code, almost all the computational stages have been implemented to run on GPU by using the CUDA programming model from NVIDIA. This approach has been validated and then used for the two-dimensional simulation of gas UFMs. The large contrast of acoustic impedance characteristic to gas UFMs makes their simulation a real challenge.
Numerical Simulation of Transit-Time Ultrasonic Flowmeters by a Direct Approach.
Luca, Adrian; Marchiano, Regis; Chassaing, Jean-Camille
2016-06-01
This paper deals with the development of a computational code for the numerical simulation of wave propagation through domains with a complex geometry consisting in both solids and moving fluids. The emphasis is on the numerical simulation of ultrasonic flowmeters (UFMs) by modeling the wave propagation in solids with the equations of linear elasticity (ELE) and in fluids with the linearized Euler equations (LEEs). This approach requires high performance computing because of the high number of degrees of freedom and the long propagation distances. Therefore, the numerical method should be chosen with care. In order to minimize the numerical dissipation which may occur in this kind of configuration, the numerical method employed here is the nodal discontinuous Galerkin (DG) method. Also, this method is well suited for parallel computing. To speed up the code, almost all the computational stages have been implemented to run on graphical processing unit (GPU) by using the compute unified device architecture (CUDA) programming model from NVIDIA. This approach has been validated and then used for the two-dimensional simulation of gas UFMs. The large contrast of acoustic impedance characteristic to gas UFMs makes their simulation a real challenge.
How to produce flat slabs: insights from numeric modeling
NASA Astrophysics Data System (ADS)
Constantin Manea, Vlad; Perez-Gussinye, Marta; Manea, Marina
2010-05-01
Flat slab subduction occurs at ~10% of the active convergent margins and it is assumed that subduction of oceanic aseismic ridges or seamount chains is the main mechanism to produce very low angle subduction slabs. However, recent numeric and analog modeling showed that ridges alone of moderate dimensions subducted perpendicular to the trench are not sufficient to produce flat-slab geometries. Therefore an alternative mechanism able to produce flat-slabs is required. In this paper we present dynamic numeric modeling results of subduction in the vicinity of thick continental lithosphere, as a craton for example. We tailored our modeling setup for the Chilean margins at ~31° and our models are integrated back in time 30 Myr. Modeling results show that a craton thickness of 200 km or more when approaching the trench is capable of blocking the asthenospheric flow in the mantle wedge and increasing considerably the suction force. We were able to produce a flat slab that fits well the flat slab geometry in Chile (based on seismicity) and stress distribution. We conclude that thick cratons located in the vicinity of subduction zones, are capable to produce very low angle slabs, and probable a combination of buoyant ridge subduction with a neighbor thick craton represent a better mechanism to produce flat slabs.
Numerical modeling of capillary electrophoresis - electrospray mass spectrometry interface design.
Jarvas, Gabor; Guttman, Andras; Foret, Frantisek
2015-01-01
Capillary electrophoresis hyphenated with electrospray mass spectrometry (CE-ESI-MS) has emerged in the past decade as one of the most powerful bioanalytical techniques. As the sensitivity and efficiency of new CE-ESI-MS interface designs are continuously improving, numerical modeling can play important role during their development. In this review, different aspects of computer modeling and simulation of CE-ESI-MS interfaces are comprehensively discussed. Relevant essentials of hydrodynamics as well as state-of-the-art modeling techniques are critically evaluated. Sheath liquid-, sheathless-, and liquid-junction interfaces are reviewed from the viewpoint of multidisciplinary numerical modeling along with details of single and multiphase models together with electric field mediated flows, electrohydrodynamics, and free fluid-surface methods. Practical examples are given to help non-specialists to understand the basic principles and applications. Finally, alternative approaches like air amplifiers are also included. © 2014 Wiley Periodicals, Inc. Mass Spec Rev 34: 558-569, 2015. © 2014 Wiley Periodicals, Inc.
Starting laminar plumes: Comparison of laboratory and numerical modeling
NASA Astrophysics Data System (ADS)
Vatteville, Judith; van Keken, Peter E.; Limare, Angela; Davaille, Anne
2009-12-01
A detailed comparison of starting laminar plumes in viscous fluids is provided using the complementary approaches of laboratory modeling and numerical simulation. In the laboratory experiments the plumes are started in a nearly isoviscous silicone oil with heat supplied through a fixed circular source. The temperature field is measured by differential interferometry and thermochromic liquid crystals. The velocity field is determined by particle image velocimetry. Numerical simulations of the laboratory experiments are performed using a finite element method that employs the measured properties of the physical oil and the heating history. No further adjustments are made to match the laboratory results. For fluids at two different viscosities and for variable power supplied to the plume there is excellent agreement in the temporal evolution and fine spatial detail of the plume. Minor differences remain, particulary in the transient stage of the plume in the low-viscosity fluid, but the differences are within the experimental uncertainties. In contrast, the assumption of constant viscosity in the numerical models leads to differences that are larger than the experimental uncertainties, demonstrating that these near-isoviscous fluids should not be considered to have constant viscosity.
A numerical 4D Collision Risk Model
NASA Astrophysics Data System (ADS)
Schmitt, Pal; Culloch, Ross; Lieber, Lilian; Kregting, Louise
2017-04-01
With the growing number of marine renewable energy (MRE) devices being installed across the world, some concern has been raised about the possibility of harming mobile, marine fauna by collision. Although physical contact between a MRE device and an organism has not been reported to date, these novel sub-sea structures pose a challenge for accurately estimating collision risks as part of environmental impact assessments. Even if the animal motion is simplified to linear translation, ignoring likely evasive behaviour, the mathematical problem of establishing an impact probability is not trivial. We present a numerical algorithm to obtain such probability distributions using transient, four-dimensional simulations of a novel marine renewable device concept, Deep Green, Minesto's power plant and hereafter referred to as the 'kite' that flies in a figure-of-eight configuration. Simulations were carried out altering several configurations including kite depth, kite speed and kite trajectory while keeping the speed of the moving object constant. Since the kite assembly is defined as two parts in the model, a tether (attached to the seabed) and the kite, collision risk of each part is reported independently. By comparing the number of collisions with the number of collision-free simulations, a probability of impact for each simulated position in the cross- section of the area is considered. Results suggest that close to the bottom, where the tether amplitude is small, the path is always blocked and the impact probability is 100% as expected. However, higher up in the water column, the collision probability is twice as high in the mid line, where the tether passes twice per period than at the extremes of its trajectory. The collision probability distribution is much more complex in the upper end of the water column, where the kite and tether can simultaneously collide with the object. Results demonstrate the viability of such models, which can also incorporate empirical
Numerical modelling and image reconstruction in diffuse optical tomography
Dehghani, Hamid; Srinivasan, Subhadra; Pogue, Brian W.; Gibson, Adam
2009-01-01
The development of diffuse optical tomography as a functional imaging modality has relied largely on the use of model-based image reconstruction. The recovery of optical parameters from boundary measurements of light propagation within tissue is inherently a difficult one, because the problem is nonlinear, ill-posed and ill-conditioned. Additionally, although the measured near-infrared signals of light transmission through tissue provide high imaging contrast, the reconstructed images suffer from poor spatial resolution due to the diffuse propagation of light in biological tissue. The application of model-based image reconstruction is reviewed in this paper, together with a numerical modelling approach to light propagation in tissue as well as generalized image reconstruction using boundary data. A comprehensive review and details of the basis for using spatial and structural prior information are also discussed, whereby the use of spectral and dual-modality systems can improve contrast and spatial resolution. PMID:19581256
Numerical modeling of fish passage at the Lower Granite dam
NASA Astrophysics Data System (ADS)
Weber, Larry; Li, Songheng; Hansen, Ken
2005-11-01
Being the first collector dam on the Snake River, the Lower Granite Dam is important to juvenile fish downstream passage. To improve the performance of the Behavioral-Guidance-Structure(BGS), Surface-Bypass-Collector(SBC), and Removable-Spillway-Weir (RSW) on fish passage, numerical simulations have been conducted using the 3D CFD model developed at IIHR-Hydroscience & Engineering. The code solves the RANS equations with two-equation turbulence models. Multi-block structured grids were generated. The model was first compared in the total force and distribution on the BGS wall with the prototype data and the comparison gave a satisfactory agreement. Then runs with combinations of the BGS, SBC, RSW, trash boom, and loading of the units and spillway were conducted, and the primary flow patterns, pressure distribution on the BGS wall, velocity, and acceleration status of flow approaching the RSW were analyzed and compared.
An Object Model for a Rocket Engine Numerical Simulator
NASA Technical Reports Server (NTRS)
Mitra, D.; Bhalla, P. N.; Pratap, V.; Reddy, P.
1998-01-01
Rocket Engine Numerical Simulator (RENS) is a packet of software which numerically simulates the behavior of a rocket engine. Different parameters of the components of an engine is the input to these programs. Depending on these given parameters the programs output the behaviors of those components. These behavioral values are then used to guide the design of or to diagnose a model of a rocket engine "built" by a composition of these programs simulating different components of the engine system. In order to use this software package effectively one needs to have a flexible model of a rocket engine. These programs simulating different components then should be plugged into this modular representation. Our project is to develop an object based model of such an engine system. We are following an iterative and incremental approach in developing the model, as is the standard practice in the area of object oriented design and analysis of softwares. This process involves three stages: object modeling to represent the components and sub-components of a rocket engine, dynamic modeling to capture the temporal and behavioral aspects of the system, and functional modeling to represent the transformational aspects. This article reports on the first phase of our activity under a grant (RENS) from the NASA Lewis Research center. We have utilized Rambaugh's object modeling technique and the tool UML for this purpose. The classes of a rocket engine propulsion system are developed and some of them are presented in this report. The next step, developing a dynamic model for RENS, is also touched upon here. In this paper we will also discuss the advantages of using object-based modeling for developing this type of an integrated simulator over other tools like an expert systems shell or a procedural language, e.g., FORTRAN. Attempts have been made in the past to use such techniques.
An Object Model for a Rocket Engine Numerical Simulator
NASA Technical Reports Server (NTRS)
Mitra, D.; Bhalla, P. N.; Pratap, V.; Reddy, P.
1998-01-01
Rocket Engine Numerical Simulator (RENS) is a packet of software which numerically simulates the behavior of a rocket engine. Different parameters of the components of an engine is the input to these programs. Depending on these given parameters the programs output the behaviors of those components. These behavioral values are then used to guide the design of or to diagnose a model of a rocket engine "built" by a composition of these programs simulating different components of the engine system. In order to use this software package effectively one needs to have a flexible model of a rocket engine. These programs simulating different components then should be plugged into this modular representation. Our project is to develop an object based model of such an engine system. We are following an iterative and incremental approach in developing the model, as is the standard practice in the area of object oriented design and analysis of softwares. This process involves three stages: object modeling to represent the components and sub-components of a rocket engine, dynamic modeling to capture the temporal and behavioral aspects of the system, and functional modeling to represent the transformational aspects. This article reports on the first phase of our activity under a grant (RENS) from the NASA Lewis Research center. We have utilized Rambaugh's object modeling technique and the tool UML for this purpose. The classes of a rocket engine propulsion system are developed and some of them are presented in this report. The next step, developing a dynamic model for RENS, is also touched upon here. In this paper we will also discuss the advantages of using object-based modeling for developing this type of an integrated simulator over other tools like an expert systems shell or a procedural language, e.g., FORTRAN. Attempts have been made in the past to use such techniques.
Numerical Aspects of Solving Differential Equations: Laboratory Approach for Students.
ERIC Educational Resources Information Center
Witt, Ana
1997-01-01
Describes three labs designed to help students in a first course on ordinary differential equations with three of the most common numerical difficulties they might encounter when solving initial value problems with a numerical software package. The goal of these labs is to help students advance to independent work on common numerical anomalies.…
Numerical modeling of infrasound propagation at very long distance
NASA Astrophysics Data System (ADS)
Piserchia, Pierre-Franck; Roche, Roger
2004-05-01
Compliance with the CTBT in the atmosphere will be monitored by a world-wide network of infrasound stations consisting of 60 stations equipped with microbarographs in order to measure small changes in the air pressure in the frequency range 0.02 to 4 Hz. They are characterized by a good sensitivity, and by a large dynamic. By the application of array techniques, it is possible to determine the direction of pressure pulses caused by small explosions in the atmosphere, as well as shock waves caused by supersonic aircraft or meteorites. To take into account the nonlinear phenomena at the source and during the propagation, we are developing a numerical approach to solve the Euler nonlinear equation. In a first step, in the linear domain, this method is compared with two other numerical modeling approaches based on the ray tracing technique and the parabolic approach. In our test case, the source is on the ground and generates a 1-Pa pressure pulse centered at the frequency of 0.1 Hz. We considered an infrasound propagation over a distance of 500 km and an atmosphere height of 200 km. In a further step, the source level will be increased to study nonlinear phenomena.
Aspects and Strategies of Numerical Modelling of Underground Coal Fires
NASA Astrophysics Data System (ADS)
Wuttke, M. W.; Han, J.; Liu, G.; Kessels, W.; Schmidt, M.; Gusat, D.; Fischer, Chr.; Hirner, A.; Meyer, U.
2009-04-01
Numerical modelling of underground coal fires has become a valuable tool even for practical fire extinction work. The approaches, methods and finally codes that are used depend on the targets that are aimed at by the particular modelling task. The most general one is to fully understand the processes that sustain or suppress the fire. Another purpose is to produce realistic data for regions that are not accessible (e . g. underneath a burning coal seam) or couldn't be investigated (e.g due to limited resources) to estimate the complete energy budget of the fire. Last but not least one would like to forecast the fire dynamics to predict the future damage or to assess the effectivenees of extinction work. These purposes require the consideration of all aspects with respect to thermal, hydraulic, mechanical and chemical (THMC) processes. At the moment there is no single code that completely covers all these aspects with every degree of complexity. Within the Sino-German project "Innovative Technologies for Exploration, Extinction and Monitoring of Coal Fires in North China" we apply existing codes with different foci with respect to THMC processes and try to combine all codes to one comprehensive model. Besides the sophisticated academic modelling approach we also pursue the concept of "Onsite" modelling to enable fire fighting personnel to perform simplified modelling tasks even by means of web-based applications.
Mathematical and Numerical Analyses of Peridynamics for Multiscale Materials Modeling
Du, Qiang
2014-11-12
The rational design of materials, the development of accurate and efficient material simulation algorithms, and the determination of the response of materials to environments and loads occurring in practice all require an understanding of mechanics at disparate spatial and temporal scales. The project addresses mathematical and numerical analyses for material problems for which relevant scales range from those usually treated by molecular dynamics all the way up to those most often treated by classical elasticity. The prevalent approach towards developing a multiscale material model couples two or more well known models, e.g., molecular dynamics and classical elasticity, each of which is useful at a different scale, creating a multiscale multi-model. However, the challenges behind such a coupling are formidable and largely arise because the atomistic and continuum models employ nonlocal and local models of force, respectively. The project focuses on a multiscale analysis of the peridynamics materials model. Peridynamics can be used as a transition between molecular dynamics and classical elasticity so that the difficulties encountered when directly coupling those two models are mitigated. In addition, in some situations, peridynamics can be used all by itself as a material model that accurately and efficiently captures the behavior of materials over a wide range of spatial and temporal scales. Peridynamics is well suited to these purposes because it employs a nonlocal model of force, analogous to that of molecular dynamics; furthermore, at sufficiently large length scales and assuming smooth deformation, peridynamics can be approximated by classical elasticity. The project will extend the emerging mathematical and numerical analysis of peridynamics. One goal is to develop a peridynamics-enabled multiscale multi-model that potentially provides a new and more extensive mathematical basis for coupling classical elasticity and molecular dynamics, thus enabling next
Tidal effects in differentiated viscoelastic bodies: a numerical approach
NASA Astrophysics Data System (ADS)
Walterová, M.; Běhounková, M.
2017-09-01
The majority of confirmed terrestrial exoplanets orbits close to their host stars and their evolution was likely altered by tidal interaction. Nevertheless, due to their viscoelastic properties on the tidal frequencies, their response cannot be described exactly by standardly employed constant-lag models. We therefore introduce a tidal model based on the numerical evaluation of a continuum mechanics problem describing the deformation of viscoelastic (Maxwell or Andrade) planetary mantles subjected to external force. We apply the method on a model Earth-size planet orbiting a low-mass star and study the effect of the orbital eccentricity, the mantle viscosity and the chosen rheology on the tidal dissipation, the complex Love numbers and the tidal torque. The number of stable spin states (i.e., zero tidal torque) grows with increasing mantle viscosity, similarly to the analytical model of Correia et al. (Astron Astrophys 571:A50, 2014) for homogeneous bodies. This behavior is only slightly influenced by the rheology used. Similarly, the Love numbers do not distinctly depend on the considered rheological model. The increase in viscosity affects the amplitude of their variations. The tidal heating described by the Maxwell rheology attains local minima associated with low spin-orbit resonances, with depth and shape depending on both the eccentricity and the viscosity. For the Andrade rheology, the minima at low resonances are very shallow and the tidal heating for all viscosities resembles a "fluid limit." The tidal heating is the quantity influenced the most by the rheology, having thus possible impact on the internal thermal evolution.
Validation of Numerical Shallow Water Models for Tidal Lagoons
Eliason, D.; Bourgeois, A.
1999-11-01
An analytical solution is presented for the case of a stratified, tidally forced lagoon. This solution, especially its energetics, is useful for the validation of numerical shallow water models under stratified, tidally forced conditions. The utility of the analytical solution for validation is demonstrated for a simple finite difference numerical model. A comparison is presented of the energetics of the numerical and analytical solutions in terms of the convergence of model results to the analytical solution with increasing spatial and temporal resolution.
USDA-ARS?s Scientific Manuscript database
When Lagrangian stochastic models for turbulent dispersion are applied to complex flows, some type of ad hoc intervention is almost always necessary to eliminate unphysical behavior in the numerical solution. This paper discusses numerical considerations when solving the Langevin-based particle velo...
Numerical modelling of collapsing volcanic edifices
NASA Astrophysics Data System (ADS)
Costa, Ana; Marques, Fernando; Kaus, Boris
2017-04-01
The flanks of Oceanic Volcanic Edifice's (OVEs) can occasionally become unstable. If that occurs, they can deform in two different modes: either slowly along localization failure zones (slumps) or catastrophically as debris avalanches. Yet the physics of this process is incompletely understood, and the role of factors such as the OVE's strength (viscosity, cohesion, friction angle), dimensions, geometry, and existence of weak layers remain to be addressed. Here we perform numerical simulations to study the interplay between viscous and plastic deformation on the gravitational collapse of an OVE (diffuse deformation vs. localization of failure along discrete structures). We focus on the contribution of the edifice's strength parameters for the mode of deformation, as well as on the type of basement. Tests were performed for a large OVE (7.5 km high, 200 km long) and either purely viscous (overall volcano edifice viscosities between 1019-1023 Pa.s), or viscoplastic rheology (within a range of cohesion and friction angle values). Results show that (a) for a strong basement (no slip basal boundary condition), the deformation pattern suggests wide/diffuse "listric" deformation within the volcanic edifice, without the development of discrete plastic failure zones; (b) for a weak basement (free slip basal boundary condition), rapid collapse of the edifice through the propagation of plastic failure structures within the edifice occurs. Tests for a smaller OVE (4.5 km by 30 km) show that failure localization along large-scale listric structures occurs more readily for different combinations of cohesion and friction angles. In these tests, high cohesion values combined with small friction angles lead to focusing of deformation along a narrower band. Tests with a weak layer underlying part of the volcanic edifice base show deformation focused along discrete structures mainly dipping towards the distal sector of the volcano. These tests for a small OVE constitute a promising
Advanced in turbulence physics and modeling by direct numerical simulations
NASA Technical Reports Server (NTRS)
Reynolds, W. C.
1987-01-01
The advent of direct numerical simulations of turbulence has opened avenues for research on turbulence physics and turbulence modeling. Direct numerical simulation provides values for anything that the scientist or modeler would like to know about the flow. An overview of some recent advances in the physical understanding of turbulence and in turbulence modeling obtained through such simulations is presented.
Krasnopolsky, Vladimir M; Fox-Rabinovitz, Michael S
2006-03-01
A new practical application of neural network (NN) techniques to environmental numerical modeling has been developed. Namely, a new type of numerical model, a complex hybrid environmental model based on a synergetic combination of deterministic and machine learning model components, has been introduced. Conceptual and practical possibilities of developing hybrid models are discussed in this paper for applications to climate modeling and weather prediction. The approach presented here uses NN as a statistical or machine learning technique to develop highly accurate and fast emulations for time consuming model physics components (model physics parameterizations). The NN emulations of the most time consuming model physics components, short and long wave radiation parameterizations or full model radiation, presented in this paper are combined with the remaining deterministic components (like model dynamics) of the original complex environmental model--a general circulation model or global climate model (GCM)--to constitute a hybrid GCM (HGCM). The parallel GCM and HGCM simulations produce very similar results but HGCM is significantly faster. The speed-up of model calculations opens the opportunity for model improvement. Examples of developed HGCMs illustrate the feasibility and efficiency of the new approach for modeling complex multidimensional interdisciplinary systems.
Noise reduction in a Raman ring laser driven by a chaotic pump: numerical approach
Teubel, A.; Rza-cedillaz-dotewski, K.
1989-04-01
The theory of a single-mode, ring-cavity Raman laser is investigated for a broadband, chaotic pump. The numerical simulations are performed with a realistic model of the noisy pump. A significant reduction of the fluctuations, found in an approximate approach of an earlier paper (M. Lewenstein and K. Rza-cedillaz-dotewski, Opt. Commun. 63, 174 (1987)), is confirmed. In addition we find a dramatic narrowing of the spectral line.
Formation and evolution of galaxies: Analytical and numerical approaches
NASA Astrophysics Data System (ADS)
Zhang, Bing
2001-08-01
The effects of viscosity and clumpiness are investigated in the context of the formation and the dynamical evolution of galaxies by analytical models and numerical simulations. The major motivation of this investigation is to study how these two factors can alter the angular momentum behavior of the galaxies formed in the bottom-up formation scenario as indicated by the hierarchical CDM cosmology. We analytically modify the standard disk formation model to incorporate the effect of viscous evolution. We derive generic analytic solutions for the disk-halo system after adiabatic compression of the dark halo, with free choice of the input virialized dark halo density profile and of the specific angular momentum distribution. We derive limits on the final density profile of the halo in the central regions due to the condensation of gas. The viscous evolution can redistribute angular momentum distribution by driving material inwards to form a proto- bulge which can be formed by the bar instability in the proto-disk, and by spreading gas to large radius to form pure exponential stellar disk if the viscous evolution timescale and star formation timescale are similar. The `disk-halo' conspiracy is found to be formed better by the disk-halo interaction during the viscous evolution of disk. We investigate the relationship between the assumed initial conditions, such as halo `formation', or assembly, redshift zf, spin parameter λ, baryonic fraction F, and final disk properties such as global star formation timescale, gas fraction, and bulge-to-disk ratio. We find that the present properties of disks, such as the scale length, are compatible with a higher initial formation redshift if the re-distribution by viscous evolution is included than if it is ignored. The numerical simulations confirm many results derived in the analytical model. Further it is found that pure viscous evolution can be unstable. Possibly feedback from star formation is required to maintain a stable
Numerical simulation and modeling of combustion in scramjets
NASA Astrophysics Data System (ADS)
Clark, Ryan James
In the last fifteen years the development of a viable scramjet has quickly approached the following long term goals: responsive sub-orbital space access; long-range, prompt global strike; and high-speed transportation. Nonetheless, there are significant challenges that need to be resolved. These challenges include high skin friction drag and high heat transfer rates, inherent to vehicles in sustained, hypersonic flight. Another challenge is sustaining combustion. Numerical simulation and modeling was performed to provide insight into reducing skin friction drag and sustaining combustion. Numerical simulation was used to investigate boundary layer combustion, which has been shown to reduce skin friction drag. The objective of the numerical simulations was to quantify the effect of fuel injection parameters on boundary layer combustion and ultimately on the change in the skin friction coefficient and heat transfer rate. A qualitative analysis of the results suggest that the reduction in the skin friction coefficient depends on multiple parameters and potentially an interaction between parameters. Sustained combustion can be achieved through a stabilized detonation wave. Additionally, stabilizing a detonation wave will yield rapid combustion. This will allow for a shorter and lighter-weight engine system, resulting in less required combustor cooling. A stabilized detonation wave was numerically modeled for various inlet and geometric cases. The effect of fuel concentration, inlet Mach number, and geometric configuration on the stability of a detonation wave was quantified. Correlations were established between fuel concentration, inlet speed, geometric configuration and parameters characterizing the detonation wave. A linear relationship was quantified between the fuel concentration and the parameters characterizing the detonation wave.
Electrokinetic spontaneous polarization in porous media: petrophysics and numerical modelling
NASA Astrophysics Data System (ADS)
Titov, K.; Ilyin, Yu.; Konosavski, P.; Levitski, A.
2002-10-01
The behaviour of streaming potential is directly related to movement of groundwater. The responses for typical subsurface flows are modelled to investigate possibilities of spontaneous polarization (SP) when performing quantitative data interpretation. The physical properties of geomaterials related to streaming potential are described. A magnitude range of streaming current coefficient is assessed for geomaterials and found to be from -10-10 to -10-8 A/Pa m, depending on water salinity and rock composition. The electrical sources of SP caused by groundwater flow in saturated media are theoretically described. It is shown that SP is completely defined by three types of electrical sources situated (1) on boundaries where water enters or quits porous media, (2) in areas with transient regime, and (3) on the boundaries of rocks with different properties (hydraulic conductivity, streaming current coefficients and electrical conductivity). A 2D-computer program based on the method of finite difference was created to provide numerical successive modelling of both groundwater flow and SP. Using Sill's [Geophysics 48 (1983) 76] approach, first the water heads are calculated. Then, electrical sources of SP are obtained on the basis of the calculated heads and coefficient of streaming current. Finally, the SP is obtained on the basis of calculated electrical sources and subsurface electrical conductivity. Numerical examples illustrating SP responses of infiltration, of barrage with different electrical conductivity, and of well pumping are discussed. Field data obtained at the site containing the dam between superficial artificial reservoir and the river are interpreted on the basis of numerical modelling. The discussed method can be mainly used for additional calibration of groundwater flow models.
Numerical Analysis of Electromagnetic Fields in Multiscale Model
NASA Astrophysics Data System (ADS)
Ma, Ji; Fang, Guang-You; Ji, Yi-Cai
2015-04-01
Modeling technique for electromagnetic fields excited by antennas is an important topic in computational electromagnetics, which is concerned with the numerical solution of Maxwell's equations. In this paper, a novel hybrid technique that combines method of moments (MoM) with finite-difference time-domain (FDTD) method is presented to handle the problem. This approach employed Huygen's principle to realize the hybridization of the two classical numerical algorithms. For wideband electromagnetic data, the interpolation scheme is used in the MoM based on the dyadic Green's function. On the other hand, with the help of equivalence principle, the scattered electric and magnetic fields on the Huygen's surface calculated by MoM are taken as the sources for FDTD. Therefore, the electromagnetic fields in the environment can be obtained by employing finite-difference time-domain method. Finally, numerical results show the validity of the proposed technique by analyzing two canonical samples. Supported in part by China Postdoctoral Science Foundation under Grant No. 201M550839, and in part by the Key Research Program of the Chinese Academy of Sciences under Grant No. KGZD-EW-603
Finite-element numerical modeling of atmospheric turbulent boundary layer
NASA Technical Reports Server (NTRS)
Lee, H. N.; Kao, S. K.
1979-01-01
A dynamic turbulent boundary-layer model in the neutral atmosphere is constructed, using a dynamic turbulent equation of the eddy viscosity coefficient for momentum derived from the relationship among the turbulent dissipation rate, the turbulent kinetic energy and the eddy viscosity coefficient, with aid of the turbulent second-order closure scheme. A finite-element technique was used for the numerical integration. In preliminary results, the behavior of the neutral planetary boundary layer agrees well with the available data and with the existing elaborate turbulent models, using a finite-difference scheme. The proposed dynamic formulation of the eddy viscosity coefficient for momentum is particularly attractive and can provide a viable alternative approach to study atmospheric turbulence, diffusion and air pollution.
NUMERICAL MODELING OF FINE SEDIMENT PHYSICAL PROCESSES.
Schoellhamer, David H.
1985-01-01
Fine sediment in channels, rivers, estuaries, and coastal waters undergo several physical processes including flocculation, floc disruption, deposition, bed consolidation, and resuspension. This paper presents a conceptual model and reviews mathematical models of these physical processes. Several general fine sediment models that simulate some of these processes are reviewed. These general models do not directly simulate flocculation and floc disruption, but the conceptual model and existing functions are shown to adequately model these two processes for one set of laboratory data.
Numerical Simulation Approaches to Evaluating the Electromagnetic Loads on the EAST Vacuum Vessel
NASA Astrophysics Data System (ADS)
Li, Jun; Xu, Weiwei; Song, Yuntao; Lu, Mingxuan
2013-12-01
Numerical simulation approaches are developed to compute the electromagnetic forces on the EAST vacuum vessel during major disruptions and vertical displacement events, with the halo current also considered. The finite element model built with ANSYS includes the vacuum vessel, the plasma facing components and their support structure, and the toroidal and poloidal field coils. The numerical methods are explained to convince of its validity. The eddy current induced by the magnetic flux variation and the conducting current caused by the halo current are also presented for discussion. The electromagnetic forces resulting from the numerical simulation are proven to be useful for structure design optimization. Similar methods can be applied in the upgrades of the EAST device.
Numerical modeling of dish-Stirling reflux solar receivers
Hogan, R.E.
1990-01-01
Using reflux solar receivers to collect solar energy for dish-Stirling electric power generation systems is currently being investigated by several organizations, including Sandia National Laboratories, Albuquerque, New Mexico. In support of this program, Sandia has developed two numerical models describing the energy transfer within and thermal performance of pool-boiler and heat-pipe receivers. Both models are applicable to axisymmetric geometries and they both consider the radiative and convective energy transfer within the receiver cavity, the conductive and convective energy transfer within the receiver cavity, the conductive and convective energy transfer from the receiver housing, and the energy transfer to the receiver working fluid. In these models, the radiative transfer within the receiver is analyzed using a two-band (solar and infrared) net-radiation formulation for enclosure radiation. Empirical convective correlations describe the convective heat transfer from the cavity to the surroundings. The primary difference between the models is the level of detail in modeling the heat conduction through the receiver walls. The more detailed model uses a two-dimensional finite control volume method, whereas the simpler model uses a one-dimensional thermal resistance approach. 20 refs., 7 figs., 2 tabs.
Cloud-Scale Numerical Modeling of the Arctic Boundary Layer
NASA Technical Reports Server (NTRS)
Kruegen, Steven K.; Delnore, Victor E. (Technical Monitor)
2002-01-01
The research objective of this NASA grant-funded project was to determine in detail how large-scale processes. in combination with cloud-scale radiative, microphysical, and dynamical processes, govern the formation and multi-layered structure of Arctic stratus clouds. This information will be useful for developing and improving 1D (one dimensional) boundary layer models for the Arctic. Also, to quantitatively determine the effects of leads on the large-scale budgets of sensible heat, water vapor, and condensate in a variety of Arctic winter conditions. This information will be used to identify the most important lead-flux processes that require parameterization in climate models. Our approach was to use a high-resolution numerical model, the 2D (two dimensional) University of Utah Cloud Resolving Model (UU CRM), and its 1D version, the University of Utah Turbulence Closure Model (UU TCM), a boundary layer model based on third-moment turbulence closure, as well as a large-eddy simulation (LES) model originally developed by C.H. Moeng.
An encoding-complex approach to numerical cognition in Chinese-English bilinguals.
Campbell, Jamie I D; Epp, Lynette J
2004-12-01
We present a model of the cognitive architecture of basic numerical skills in adult Chinese-English bilinguals. The model is based on data reported by Campbell, Kanz, and Xue (1999) and combines Dehaene and Cohen's triple-code theory with Campbell and Clark's encoding-complex approach to modeling number processing. Participants were required to name, add or multiply Arabic or Mandarin numerals and to respond in English or Chinese. They also performed magnitude comparisons on pairs of Arabic or Mandarin numerals. The proposed model of their performance on this set of tasks assumes 1) that number processing is modular with respect to representational code (e.g., visual, visuo-spatial, verbal) rather than with respect to numerical function, 2) task-specific communication between representational codes is interactive rather than additive, and 3) memory for arithmetic facts is at least partially language-based and our Chinese-English bilinguals possessed both Chinese and English-language number-fact representations. We provide new analyses of the arithmetic data and a review of research on the role of language in simple arithmetic to substantiate our claims about linguistic codes for number-fact memory.
Numerical Modeling in Geodynamics: Success, Failure and Perspective
NASA Astrophysics Data System (ADS)
Ismail-Zadeh, A.
2005-12-01
A real success in numerical modeling of dynamics of the Earth can be achieved only by multidisciplinary research teams of experts in geodynamics, applied and pure mathematics, and computer science. The success in numerical modeling is based on the following basic, but simple, rules. (i) People need simplicity most, but they understand intricacies best (B. Pasternak, writer). Start from a simple numerical model, which describes basic physical laws by a set of mathematical equations, and move then to a complex model. Never start from a complex model, because you cannot understand the contribution of each term of the equations to the modeled geophysical phenomenon. (ii) Study the numerical methods behind your computer code. Otherwise it becomes difficult to distinguish true and erroneous solutions to the geodynamic problem, especially when your problem is complex enough. (iii) Test your model versus analytical and asymptotic solutions, simple 2D and 3D model examples. Develop benchmark analysis of different numerical codes and compare numerical results with laboratory experiments. Remember that the numerical tool you employ is not perfect, and there are small bugs in every computer code. Therefore the testing is the most important part of your numerical modeling. (iv) Prove (if possible) or learn relevant statements concerning the existence, uniqueness and stability of the solution to the mathematical and discrete problems. Otherwise you can solve an improperly-posed problem, and the results of the modeling will be far from the true solution of your model problem. (v) Try to analyze numerical models of a geological phenomenon using as less as possible tuning model variables. Already two tuning variables give enough possibilities to constrain your model well enough with respect to observations. The data fitting sometimes is quite attractive and can take you far from a principal aim of your numerical modeling: to understand geophysical phenomena. (vi) If the number of
On composite-structure weaknesses: Part I. Simulation, properties, and numerical approach
NASA Astrophysics Data System (ADS)
Li, Xu-Dong
2002-07-01
Composite material samples were created by means of computer simulation to duplicate short-fiber-reinforced metal-matrix composites (MMCs). Each sample contains a fairly large number of Voronoi grains and ellipsoidal short fibers, which orient and distribute in a random manner, to mimic composite microstructures for investigating the coherent interconnections of composite-structure weaknesses (CSWs) with local microstructure. It is supposed that the samples are subjected to coupled boundary traction due to mechanical loading and thermal cycling. A Kröner-Kneer structure-based model and Waldvogel-Rodin algorithm were used for numerical computations of the mesoscopic stress distribution in constituent grains. The computations are based on the grain-volume average of local fields. Polycrystal elastic/thermal properties and effective elastic/thermal properties of simulated MMC samples were predicted, respectively, in terms of micromechanics models, in favor of incorporating the influences of macroscopic material properties on the formation of CSWs. An analytically-numerically-based approach is proposed for analyzing peak mesoscopic stress and strain distributions in short fibers. Three crucial aspects constitute a kernel of the approach, i.e., (1) segmentation of short fibers, (2) establishment of the geometric relations of a short fiber to the surrounding grains, and (3) the local nature of micromechanics. The analytically-numerically-based approach takes into account the grain orientation, fiber orientation, grain geometry, fiber geometry, and macroscopic properties of simulated MMC samples. The Numerical Assessment of Computer-Imitated Weaknesses-MMCs (NACIW-MMCs) software program has been developed for performing simulation of the microstructure of short-fiber-reinforced MMCs and executing all involved numerical computations.
Numerical modeling of geothermal systems with applications to Krafla, Iceland and Olkaria, Kenya
Bodvarsson, G.S.
1987-08-01
The use of numerical models for the evaluation of the generating potential of high temperature geothermal fields has increased rapidly in recent years. In the present paper a unified numerical approach to the modeling of geothermal systems is discussed and the results of recent modeling of the Krafla geothermal field in Iceland and the Olkaria, Kenya, are described. Emphasis is placed on describing the methodology using examples from the two geothermal fields.
Numerical and Analytic Studies of Random-Walk Models.
NASA Astrophysics Data System (ADS)
Li, Bin
We begin by recapitulating the universality approach to problems associated with critical systems, and discussing the role that random-walk models play in the study of phase transitions and critical phenomena. As our first numerical simulation project, we perform high-precision Monte Carlo calculations for the exponents of the intersection probability of pairs and triplets of ordinary random walks in 2 dimensions, in order to test the conformal-invariance theory predictions. Our numerical results strongly support the theory. Our second numerical project aims to test the hyperscaling relation dnu = 2 Delta_4-gamma for self-avoiding walks in 2 and 3 dimensions. We apply the pivot method to generate pairs of self-avoiding walks, and then for each pair, using the Karp-Luby algorithm, perform an inner -loop Monte Carlo calculation of the number of different translates of one walk that makes at least one intersection with the other. Applying a least-squares fit to estimate the exponents, we have obtained strong numerical evidence that the hyperscaling relation is true in 3 dimensions. Our great amount of data for walks of unprecedented length(up to 80000 steps), yield a updated value for the end-to-end distance and radius of gyration exponent nu = 0.588 +/- 0.001 (95% confidence limit), which comes out in good agreement with the renormalization -group prediction. In an analytic study of random-walk models, we introduce multi-colored random-walk models and generalize the Symanzik and B.F.S. random-walk representations to the multi-colored case. We prove that the zero-component lambdavarphi^2psi^2 theory can be represented by a two-color mutually -repelling random-walk model, and it becomes the mutually -avoiding walk model in the limit lambda to infty. However, our main concern and major break-through lies in the study of the two-point correlation function for the lambda varphi^2psi^2 theory with N > 0 components. By representing it as a two-color random-walk expansion
Numerical bifurcation analysis of immunological models with time delays
NASA Astrophysics Data System (ADS)
Luzyanina, Tatyana; Roose, Dirk; Bocharov, Gennady
2005-12-01
In recent years, a large number of mathematical models that are described by delay differential equations (DDEs) have appeared in the life sciences. To analyze the models' dynamics, numerical methods are necessary, since analytical studies can only give limited results. In turn, the availability of efficient numerical methods and software packages encourages the use of time delays in mathematical modelling, which may lead to more realistic models. We outline recently developed numerical methods for bifurcation analysis of DDEs and illustrate the use of these methods in the analysis of a mathematical model of human hepatitis B virus infection.
An approach to solving large reliability models
NASA Technical Reports Server (NTRS)
Boyd, Mark A.; Veeraraghavan, Malathi; Dugan, Joanne Bechta; Trivedi, Kishor S.
1988-01-01
This paper describes a unified approach to the problem of solving large realistic reliability models. The methodology integrates behavioral decomposition, state trunction, and efficient sparse matrix-based numerical methods. The use of fault trees, together with ancillary information regarding dependencies to automatically generate the underlying Markov model state space is proposed. The effectiveness of this approach is illustrated by modeling a state-of-the-art flight control system and a multiprocessor system. Nonexponential distributions for times to failure of components are assumed in the latter example. The modeling tool used for most of this analysis is HARP (the Hybrid Automated Reliability Predictor).
An approach to solving large reliability models
NASA Technical Reports Server (NTRS)
Boyd, Mark A.; Veeraraghavan, Malathi; Dugan, Joanne Bechta; Trivedi, Kishor S.
1988-01-01
This paper describes a unified approach to the problem of solving large realistic reliability models. The methodology integrates behavioral decomposition, state trunction, and efficient sparse matrix-based numerical methods. The use of fault trees, together with ancillary information regarding dependencies to automatically generate the underlying Markov model state space is proposed. The effectiveness of this approach is illustrated by modeling a state-of-the-art flight control system and a multiprocessor system. Nonexponential distributions for times to failure of components are assumed in the latter example. The modeling tool used for most of this analysis is HARP (the Hybrid Automated Reliability Predictor).
Recent developments in three-dimensional numerical estuarine models
Cheng, Ralph T.; Smith, Peter E.; Casulli, Vincenzo
1993-01-01
For a fixed cost, computing power increases 5 to 10 times every five years. The readily available computing resources have inspired new modal formulations and innovative model applications. Significant progress has been advanced in three-dimensional numerical estuarine modeling within the past three or four years. This paper attempts to review and summarize properties of new 3-D estuarine hydrodynamic models. The emphasis of the review is placed on the formulation, numerical methods. The emphasis of the review is placed on the formulation, numerical methods, spatial and temporal resolution, computational efficiency, and turbulence closure of new models. Recent research has provided guidelines for the proper use of 3-D models involving in the σ-transformation. Other models resort to a fixed level discretization in the vertical. The semi-implicit treatment in time-stepping models appears to have gained momentum. Future research in three-dimensional numerical modeling remains to be on computational efficiency and turbulent closure.
Numerically Controlled Machining Of Wind-Tunnel Models
NASA Technical Reports Server (NTRS)
Kovtun, John B.
1990-01-01
New procedure for dynamic models and parts for wind-tunnel tests or radio-controlled flight tests constructed. Involves use of single-phase numerical control (NC) technique to produce highly-accurate, symmetrical models in less time.
Experimental & Numerical Modeling of Non-combusting Model Firebrands' Transport
NASA Astrophysics Data System (ADS)
Tohidi, Ali; Kaye, Nigel
2016-11-01
Fire spotting is one of the major mechanisms of wildfire spread. Three phases of this phenomenon are firebrand formation and break-off from burning vegetation, lofting and downwind transport of firebrands through the velocity field of the wildfire, and spot fire ignition upon landing. The lofting and downwind transport phase is modeled by conducting large-scale wind tunnel experiments. Non-combusting rod-like model firebrands with different aspect ratios are released within the velocity field of a jet in a boundary layer cross-flow that approximates the wildfire velocity field. Characteristics of the firebrand dispersion are quantified by capturing the full trajectory of the model firebrands using the developed image processing algorithm. The results show that the lofting height has a direct impact on the maximum travel distance of the model firebrands. Also, the experimental results are utilized for validation of a highly scalable coupled stochastic & parametric firebrand flight model that, couples the LES-resolved velocity field of a jet-in-nonuniform-cross-flow (JINCF) with a 3D fully deterministic 6-degrees-of-freedom debris transport model. The validation results show that the developed numerical model is capable of estimating average statistics of the firebrands' flight. Authors would like to thank support of the National Science Foundation under Grant No. 1200560. Also, the presenter (Ali Tohid) would like to thank Dr. Michael Gollner from the University of Maryland College Park for the conference participation support.
Numerical modelling of floating debris-associated flash flood processes
NASA Astrophysics Data System (ADS)
Mahaffey, S. H.; Liang, Q.
2016-12-01
Flash floods are characterised by high velocity `walls of water' and rapidly varying flow regimes, which are notoriously difficult to replicate through numerical modelling. Flow dynamics may be complicated further by the transport and subsequent build-up of a variety of floating debris arising from natural and anthropogenic sources. These may lead to blockage and potential damage of channel structures, flow rerouting and altered flood extents. However conventional modelling techniques do not intrinsically incorporate debris processes and the varied nature of debris shape, size and density make a widely applicable modelling scheme difficult to achieve. Here a new tool has been developed using an emerging approach, which incorporates debris transport through the coupling of two existing modelling techniques. A hydrodynamic scheme has here been coupled with the discrete element method to predict the motion and flow-interaction of floating debris. Hydraulic forces arising from flow around the debris are applied to instigate its motion and an equivalent opposing force is applied to fluid cells, enabling backwater effects to be simulated. The methodology used in shape representation allows the modelling tool to be applied to a diverse range of debris sources. In this work the modelling scheme has been applied to experimental case studies where cylindrical wooden dowels are transported in a hydraulic flume. The scheme adequately replicates water depth and depth-averaged velocity as well as the position of cylindrical wooden dowels within the flume.
A numerical oil spill model based on a hybrid method.
Guo, W J; Wang, Y X
2009-05-01
The purpose of this paper is the development of a hybrid particle tracking/Eulerian-Lagrangian approach for the simulation of spilled oil in coastal areas. Oil discharge from the source is modeled by the release of particles. When the oil slick thickness or the oil concentration reaches a critical value, particles are mapped on slick thickness or node concentrations, and the calculations proceed in the Eulerian-Lagrangian mode. To acquire accurate environment information, the model is coupled with the 3-D free-surface hydrodynamics model (POM) and the third-generation wave model (SWAN). By simulating the oil processes of spreading, advection, turbulent diffusion, evaporation, emulsification, dissolution and shoreline deposition, it has the ability to predict the horizontal movement of surface oil slick, the vertical distribution of oil particles, the concentration in the water column and the mass balance of spilled oil. An accidental oil release near Dalian coastal waters is simulated to validate the developed model. Compared with the satellite images of oil slicks on the surface, the numerical results indicate that the model has a reasonable accuracy.
Software Simplifies the Sharing of Numerical Models
NASA Technical Reports Server (NTRS)
2014-01-01
To ease the sharing of climate models with university students, Goddard Space Flight Center awarded SBIR funding to Reston, Virginia-based Parabon Computation Inc., a company that specializes in cloud computing. The firm developed a software program capable of running climate models over the Internet, and also created an online environment for people to collaborate on developing such models.
Considering digits in a current model of numerical development.
Roesch, Stephanie; Moeller, Korbinian
2014-01-01
Numerical cognition has long been considered the perfect example of abstract information processing. Nevertheless, there is accumulating evidence in recent years suggesting that the representation of number magnitude may not be entirely abstract but may present a specific case of embodied cognition rooted in the sensory and bodily experiences of early finger counting and calculating. However, so far none of the existing models of numerical development considers the influence of finger-based representations. Therefore, we make first suggestions on (i) how finger-based representations may be integrated into a current model of numerical development; and (ii) how they might corroborate the acquisition of basic numerical competencies at different development levels.
Numerical modeling of multiphase flow in rough and propped fractures
NASA Astrophysics Data System (ADS)
Dabrowski, Marcin; Dzikowski, Michał; Jasinski, Lukasz; Olkiewicz, Piotr
2017-04-01
crystalline rocks. The detailed pattern of flow paths and effective fracture conductivity are largely dependent on the level of confining stresses and fracture wall roughness, which both determine the shape and distribution of fracture apertures and contact areas. The distribution of proppant grains, which are used to maintain apertures of hydraulic fractures, is a key factor governing fracture flow in industrial applications. The flow of multiphase fluids in narrow apertures of rock fractures may substantially differ from the flow of a single-phase fluid. For example, multiphase flow effects play an important role during all stages of unconventional reservoir life cycle. Multiphase flow conditions are also expected to prevail in high temperature geothermal fields and during the transport of non aqueous phase liquid contaminants in groundwaters. We use direct numerical simulations to study single- and multiphase flow in rough and propped fractures. We compute the fluid flow using either the finite element or the lattice Boltzmann method. Body-fitting, unstructured computational meshes are used to improve the numerical accuracy. The fluid-fluid and fluid-solid interfaces are directly resolved and an implicit approach to surface tension is used to alleviate restrictions due to capillary CFL condition. In FEM simulations, the Beltrami-Laplace operator is integrated by parts to avoid interface curvature computation during evaluation of the surface tension term. We derive and validate an upscaled approach to Stokes flow in propped and rough fractures. Our upscaled 2.5D fracture flow model features a Brinkman term and is capable of treating no-slip boundary conditions on the rims of proppant grains and fracture wall contact areas. The Stokes-Brinkman fracture flow model provides an improvement over the Reynolds model, both in terms of the effective fracture permeability and the local flow pattern. We present numerical and analytical models for the propped fracture
Numerical MHD codes for modeling astrophysical flows
NASA Astrophysics Data System (ADS)
Koldoba, A. V.; Ustyugova, G. V.; Lii, P. S.; Comins, M. L.; Dyda, S.; Romanova, M. M.; Lovelace, R. V. E.
2016-05-01
We describe a Godunov-type magnetohydrodynamic (MHD) code based on the Miyoshi and Kusano (2005) solver which can be used to solve various astrophysical hydrodynamic and MHD problems. The energy equation is in the form of entropy conservation. The code has been implemented on several different coordinate systems: 2.5D axisymmetric cylindrical coordinates, 2D Cartesian coordinates, 2D plane polar coordinates, and fully 3D cylindrical coordinates. Viscosity and diffusivity are implemented in the code to control the accretion rate in the disk and the rate of penetration of the disk matter through the magnetic field lines. The code has been utilized for the numerical investigations of a number of different astrophysical problems, several examples of which are shown.
Numerical modeling of alkali vapor lasers.
Shu, Hong; Chen, Ying; Bass, Michael; Monjardin, J Fernando; Deile, Jochen
2011-10-10
Detailed numerical analyses are presented of a continuous wave (cw), single spatial mode alkali vapor laser pumped by a diffraction-limited Ti: Sapphire laser. These analyses provide insight into the operation of alkali vapor lasers to aid in the development of high power, diode laser pumped alkali vapor lasers. It is demonstrated that in the laser considered the laser spatial pattern is significantly changed after each pass through the gain medium, and the laser spatial pattern in steady state operation is also very different from that of the passive cavity mode. According to the calculation, lasing significantly improves the pump absorption efficiency and changes the absorbed pump distribution. The effect of varying the transverse size of the pumped region is also analyzed and an optimum pump beam waist radius is demonstrated. In addition, the shift of the pump beam waist location is also studied. The computation method and its convergence behavior are also described in detail.
NASA Astrophysics Data System (ADS)
Turco, Emilio; dell'Isola, Francesco; Cazzani, Antonio; Rizzi, Nicola Luigi
2016-08-01
Hencky (Über die angenäherte Lösung von Stabilitätsproblemen im Raum mittels der elastischen Gelenkkette. Ph.D. thesis, Engelmann, 1921) proposed a discrete model for elasticae by introducing rigid bars and rotational springs. Hencky (Proc R Soc Lond A Math Phys Eng Sci 472(2185), 2016) approach has been introduced to heuristically motivate the need of second gradient continua. Here, we present a novel numerical code implementing directly the discrete Hencky-type model which is robust enough to solve the problem of the determination of equilibrium configurations in the large deformation and displacement regimes. We apply this model to study some potentially applicable problems, and we compare its performances with those of the second gradient continuum model. The numerical evidence presented supports the conjecture that Hencky-type converges to second gradient model.
MODELING COLLISIONAL CASCADES IN DEBRIS DISKS: THE NUMERICAL METHOD
Gaspar, Andras; Psaltis, Dimitrios; Oezel, Feryal; Rieke, George H.; Cooney, Alan E-mail: dpsaltis@as.arizona.edu E-mail: grieke@as.arizona.edu
2012-04-10
We develop a new numerical algorithm to model collisional cascades in debris disks. Because of the large dynamical range in particle masses, we solve the integro-differential equations describing erosive and catastrophic collisions in a particle-in-a-box approach, while treating the orbital dynamics of the particles in an approximate fashion. We employ a new scheme for describing erosive (cratering) collisions that yields a continuous set of outcomes as a function of colliding masses. We demonstrate the stability and convergence characteristics of our algorithm and compare it with other treatments. We show that incorporating the effects of erosive collisions results in a decay of the particle distribution that is significantly faster than with purely catastrophic collisions.
Modeling extracellular electrical stimulation: II. Computational validation and numerical results.
Tahayori, Bahman; Meffin, Hamish; Dokos, Socrates; Burkitt, Anthony N; Grayden, David B
2012-12-01
The validity of approximate equations describing the membrane potential under extracellular electrical stimulation (Meffin et al 2012 J. Neural Eng. 9 065005) is investigated through finite element analysis in this paper. To this end, the finite element method is used to simulate a cylindrical neurite under extracellular stimulation. Laplace's equations with appropriate boundary conditions are solved numerically in three dimensions and the results are compared to the approximate analytic solutions. Simulation results are in agreement with the approximate analytic expressions for longitudinal and transverse modes of stimulation. The range of validity of the equations describing the membrane potential for different values of stimulation and neurite parameters are presented as well. The results indicate that the analytic approach can be used to model extracellular electrical stimulation for realistic physiological parameters with a high level of accuracy.
Numerical modelling of dynamic sludge blanket behaviour in secondary clarifiers.
Armbruster, M; Krebs, P; Rodi, W
2001-01-01
New developments in numerical modelling of turbulent and density-affected flow in secondary clarifiers are reported. The sludge blanket is included in the computation domain which allows us to account for sedimentation and resuspension of sludge as well as the growth and diminution of the sludge blanket and at the same time respecting mass conservation. It is shown how strongly the prediction of the sludge-blanket height depends on the approaches to describe the settling behaviour of the sludge and the rheological properties within the sludge blanket. Further, an example of dynamic simulation is presented and discussed. This demonstrates how the sludge blanket behaves during load variation and that instabilities may occur at the interface of sludge blanket and supernatant, potentially resulting in sludge wash-off during transient phases, which is not only during load increase but also during load decrease.
Ziółkowski, Andrzej
2014-12-15
Nonlinear light propagation in photorefractive media can be analyzed by numerical methods. The presented numerical approach has regard to the effects of time nonlocality. Two algorithms are presented, and compared in terms of physical results and computing times. The possibility to address the issue of time nonlocality in two ways is attributed to the fact that, it is possible to completely separate carrier dynamics evaluation and wave equation calculation. This in turn, allows to choose a short integration time for carrier dynamics and a longer one to solve the wave equation. The tests of the methods were carried out for a one-carrier model that describes most of photorefractive media, and for a model with bipolar transport and hot electron effect, used in descriptions of semiconductor materials.
Cumulus clouds - Numerical models, observations and entrainment
NASA Technical Reports Server (NTRS)
Simpson, J.
1983-01-01
The first computer simulation of the organization phase of a buoyant atmospheric thermal is described. Although crude, it showed the spontaneous development of a rounded tight-gradient 'cap' and internal vortical circulation. The complexities involved in these 'field of motion' models in part motivated the development of entity models, based upon laboratory thermals. These one-dimensional models and their uses with observations are briefly described as well as their limitations. Finally, an application of Schlesinger's three-dimensional model to a GATE cumulus situation clarifies many apparently conflicting observations and postulates, thereby raising further challenging questions to be addressed jointly by the more sophisticated measuring and modeling tools available in the 1980's.
Numerical modeling, calibration, and validation of an ultrasonic separator.
Cappon, Hans; Keesman, Karel J
2013-03-01
Our overall goal is to apply acoustic separation technology for the recovery of valuable particulate matter from wastewater in industry. Such large-scale separator systems require detailed design and evaluation to optimize the system performance at the earliest stage possible. Numerical models can facilitate and accelerate the design of this application; therefore, a finite element (FE) model of an ultrasonic particle separator is a prerequisite. In our application, the particle separator consists of a glass resonator chamber with a piezoelectric transducer attached to the glass by means of epoxy adhesive. Separation occurs most efficiently when the system is operated at its main eigenfrequency. The goal of the paper is to calibrate and validate a model of a demonstrator ultrasonic separator, preserving known physical parameters and estimating the remaining unknown or less-certain parameters to allow extrapolation of the model beyond the measured system. A two-step approach was applied to obtain a validated model of the separator. The first step involved the calibration of the piezoelectric transducer. The second step, the subject of this paper, involves the calibration and validation of the entire separator using nonlinear optimization techniques. The results show that the approach lead to a fully calibrated 2-D model of the empty separator, which was validated with experiments on a filled separator chamber. The large sensitivity of the separator to small variations indicated that such a system should either be made and operated within tight specifications to obtain the required performance or the operation of the system should be adaptable to cope with a slightly off-spec system, requiring a feedback controller.
Statistical palaeomagnetic field modelling and dynamo numerical simulation
NASA Astrophysics Data System (ADS)
Bouligand, C.; Hulot, G.; Khokhlov, A.; Glatzmaier, G. A.
2005-06-01
By relying on two numerical dynamo simulations for which such investigations are possible, we test the validity and sensitivity of a statistical palaeomagnetic field modelling approach known as the giant gaussian process (GGP) modelling approach. This approach is currently used to analyse palaeomagnetic data at times of stable polarity and infer some information about the way the main magnetic field (MF) of the Earth has been behaving in the past and has possibly been influenced by core-mantle boundary (CMB) conditions. One simulation has been run with homogeneous CMB conditions, the other with more realistic non-homogeneous symmetry breaking CMB conditions. In both simulations, it is found that, as required by the GGP approach, the field behaves as a short-term memory process. Some severe non-stationarity is however found in the non-homogeneous case, leading to very significant departures of the Gauss coefficients from a Gaussian distribution, in contradiction with the assumptions underlying the GGP approach. A similar but less severe non-stationarity is found in the case of the homogeneous simulation, which happens to display a more Earth-like temporal behaviour than the non-homogeneous case. This suggests that a GGP modelling approach could nevertheless be applied to try and estimate the mean μ and covariance matrix γ(τ) (first- and second-order statistical moments) of the field produced by the geodynamo. A detailed study of both simulations is carried out to assess the possibility of detecting statistical symmetry breaking properties of the underlying dynamo process by inspection of estimates of μ and γ(τ). As expected (because of the role of the rotation of the Earth in the dynamo process), those estimates reveal spherical symmetry breaking properties. Equatorial symmetry breaking properties are also detected in both simulations, showing that such symmetry breaking properties can occur spontaneously under homogeneous CMB conditions. By contrast axial
a Numerical Study on Predator Prey Model
NASA Astrophysics Data System (ADS)
Laham, Mohamed Faris; Krishnarajah, Isthrinayagy; Jumaat, Abdul Kadir
Stochastic spatial models are becoming a popular tool for understand the ecological and evolution of ecosystem problems. We consider the predator prey interactions in term of stochastic representation of this Lotka-Volterra model and explore the use of stochastic processes to extinction behavior of the interacting populations. Here, we present simulation of stochastic processes of continuous time Lotka-Volterra model. Euler method has been used to solve the predator prey system. The trajectory spiral graph has been plotted based on obtained solution to show the population cycle of predator as a function of time.
Numerical Calculation of Model Rocket Trajectories.
ERIC Educational Resources Information Center
Keeports, David
1990-01-01
Discussed is the use of model rocketry to teach the principles of Newtonian mechanics. Included are forces involved; calculations for vertical launches; two-dimensional trajectories; and variations in mass, drag, and launch angle. (CW)
Modelling asteroid brightness variations. I - Numerical methods
NASA Technical Reports Server (NTRS)
Karttunen, H.
1989-01-01
A method for generating lightcurves of asteroid models is presented. The effects of the shape of the asteroid and the scattering law of a surface element are distinctly separable, being described by chosen functions that can easily be changed. The shape is specified by means of two functions that yield the length of the radius vector and the normal vector of the surface at a given point. The general shape must be convex, but spherical concavities producing macroscopic shadowing can also be modeled.
Mathematical and Numerical Modeling of Turbulent Flows.
Vedovoto, João M; Serfaty, Ricardo; Da Silveira Neto, Aristeu
2015-01-01
The present work is devoted to the development and implementation of a computational framework to perform numerical simulations of low Mach number turbulent flows over complex geometries. The algorithm under consideration is based on a classical predictor-corrector time integration scheme that employs a projection method for the momentum equations. The domain decomposition strategy is adopted for distributed computing, displaying very satisfactory levels of speed-up and efficiency. The Immersed Boundary Methodology is used to characterize the presence of a complex geometry. Such method demands two separate grids: An Eulerian, where the transport equations are solved with a Finite Volume, second order discretization and a Lagrangian domain, represented by a non-structured shell grid representing the immersed geometry. The in-house code developed was fully verified by the Method of Manufactured Solutions, in both Eulerian and Lagrangian domains. The capabilities of the resulting computational framework are illustrated on four distinct cases: a turbulent jet, the Poiseuille flow, as a matter of validation of the implemented Immersed Boundary methodology, the flow over a sphere covering a wide range of Reynolds numbers, and finally, with the intention of demonstrating the applicability of Large Eddy Simulations - LES - in an industrial problem, the turbulent flow inside an industrial fan.
Numerical approaches to simulation of multi-core fibers
NASA Astrophysics Data System (ADS)
Chekhovskoy, I. S.; Paasonen, V. I.; Shtyrina, O. V.; Fedoruk, M. P.
2017-04-01
We propose generalizations of two numerical algorithms to solve the system of linearly coupled nonlinear Schrödinger equations (NLSEs) describing the propagation of light pulses in multi-core optical fibers. An iterative compact dissipative second-order accurate in space and fourth-order accurate in time scheme is the first numerical method. This compact scheme has strong stability due to inclusion of the additional dissipative term. The second algorithm is a generalization of the split-step Fourier method based on Padé approximation of the matrix exponential. We compare a computational efficiency of both algorithms and show that the compact scheme is more efficient in terms of performance for solving a large system of coupled NLSEs. We also present the parallel implementation of the numerical algorithms for shared memory systems using OpenMP.
A numerical model for thermoelectric generator with the parallel-plate heat exchanger
NASA Astrophysics Data System (ADS)
Yu, Jianlin; Zhao, Hua
This paper presents a numerical model to predict the performance of thermoelectric generator with the parallel-plate heat exchanger. The model is based on an elemental approach and exhibits its feature in analyzing the temperature change in a thermoelectric generator and concomitantly its performance under operation conditions. The numerical simulated examples are demonstrated for the thermoelectric generator of parallel flow type and counter flow type in this paper. Simulation results show that the variations in temperature of the fluids in the thermoelectric generator are linear. The numerical model developed in this paper may be also applied to further optimization study for thermoelectric generator.
A hybrid (numerical-physical) model of the left ventricle.
Ferrari, G; Kozarski, M; De Lazzari, C; Clemente, F; Merolli, M; Tosti, G; Guaragno, M; Mimmo, R; Ambrosi, D; Glapinski, J
2001-07-01
Hydraulic models of the circulation are used to test mechanical devices and for training and research purposes; when compared to numerical models, however, they are not flexible enough and rather expensive. The solution proposed here is to merge the characteristics and the flexibility of numerical models with the functions of physical models. The result is a hybrid model with numerical and physical sections connected by an electro-hydraulic interface - which is to some extent the main problem since the numerical model can be easily changed or modified. The concept of hybrid model is applied to the representation of ventricular function by a variable elastance numerical model. This prototype is an open loop circuit and the physical section is built out of a reservoir (atrium) and a modified windkessel (arterial tree). The corresponding equations are solved numerically using the variables (atrial and arterial pressures) coming from the physical circuit. Ventricular output flow is the computed variable and is sent to a servo amplifier connected to a DC motor-gear pump system. The gear pump, behaving roughly as a flow source, is the interface to the physical circuit. Results obtained under different hemodynamic conditions demonstrate the behaviour of the ventricular model on the pressure-volume plane and the time course of output flow and arterial pressure.
NASA Astrophysics Data System (ADS)
Bailey, Brian N.
2017-01-01
When Lagrangian stochastic models for turbulent dispersion are applied to complex atmospheric flows, some type of ad hoc intervention is almost always necessary to eliminate unphysical behaviour in the numerical solution. Here we discuss numerical strategies for solving the non-linear Langevin-based particle velocity evolution equation that eliminate such unphysical behaviour in both Reynolds-averaged and large-eddy simulation applications. Extremely large or `rogue' particle velocities are caused when the numerical integration scheme becomes unstable. Such instabilities can be eliminated by using a sufficiently small integration timestep, or in cases where the required timestep is unrealistically small, an unconditionally stable implicit integration scheme can be used. When the generalized anisotropic turbulence model is used, it is critical that the input velocity covariance tensor be realizable, otherwise unphysical behaviour can become problematic regardless of the integration scheme or size of the timestep. A method is presented to ensure realizability, and thus eliminate such behaviour. It was also found that the numerical accuracy of the integration scheme determined the degree to which the second law of thermodynamics or `well-mixed condition' was satisfied. Perhaps more importantly, it also determined the degree to which modelled Eulerian particle velocity statistics matched the specified Eulerian distributions (which is the ultimate goal of the numerical solution). It is recommended that future models be verified by not only checking the well-mixed condition, but perhaps more importantly by checking that computed Eulerian statistics match the Eulerian statistics specified as inputs.
Numerical Modeling of the Evolving Stable Boundary Layer
NASA Astrophysics Data System (ADS)
Sorbjan, Z.
2013-12-01
A single-column model of the evolving stable boundary layer is tested for the consistency of turbulence parameterization, self-similar properties of the flow, and effects of ambient forcing. The turbulence closure of the model is based on the K-theory approach, with stability functions based on empirical data, and a semi-empirical form of the mixing length. The model has one internal, governing stability parameter, the Richardson number Ri, which dynamically adjusts to the boundary conditions and to external forcing. Model results, expressed in terms of local similarity scales, are universal functions of the Richardson number, i.e. they are satisfied in the entire stable boundary layer, for all instants of time, and all kinds of external forcing. Based on similarity expression, a realizability condition is derived for the minimum turbulent heat flux in the stable boundary layer. Numerical experiments show that the development of 'horse-shoe' shaped, 'fixed-elevation' wind hodographs in the interior of the stable boundary layer are solely caused by effects imposed by surface thermal forcing, and are not related to the inertial oscillation mechanism.
Numerical Modeling of Ophthalmic Response to Space
NASA Technical Reports Server (NTRS)
Nelson, E. S.; Myers, J. G.; Mulugeta, L.; Vera, J.; Raykin, J.; Feola, A.; Gleason, R.; Samuels, B.; Ethier, C. R.
2015-01-01
To investigate ophthalmic changes in spaceflight, we would like to predict the impact of blood dysregulation and elevated intracranial pressure (ICP) on Intraocular Pressure (IOP). Unlike other physiological systems, there are very few lumped parameter models of the eye. The eye model described here is novel in its inclusion of the human choroid and retrobulbar subarachnoid space (rSAS), which are key elements in investigating the impact of increased ICP and ocular blood volume. Some ingenuity was required in modeling the blood and rSAS compartments due to the lack of quantitative data on essential hydrodynamic quantities, such as net choroidal volume and blood flowrate, inlet and exit pressures, and material properties, such as compliances between compartments.
Approaches to the Hubbard Model
NASA Astrophysics Data System (ADS)
Maguire, Cary Mcilwaine, Jr.
This thesis analyzes several theoretical approaches to the one band Hubbard model in hopes of extracting selected physical quantities in limits most closely corresponding to real materials. Along the way, three rather remarkable theorems of a much broader scope are proven. It is hoped that these may be of general interest in a variety of related physical and mathematical disciplines. In chapter one, the well-known mean field theory developed by Affleck and Marston is studied in the presence of a magnetic field. Through a rather straightforward numerical procedure, phase diagrams in t/delta ^ace are generated as a function of field. The results of this study are then extended to a magnetic susceptibility calculation and to the analysis of the phase diagram of fan alternate mean field theory, the "generalized flux phases" proposed by Anderson. Several interesting properties and symmetries of the solutions are then briefly discussed. In chapter two, the Gutzwiller projector is analyzed both analytically and numerically, with the results being used to calculate the momentum density function for a trial wavefunction also proposed by Anderson. Two of the above mentioned theorems are developed in this chapter, the one prescribing the expansion of a general restricted sum in terms of its related unrestricted sums, and the other presenting the exact diagonilization of a component of the projector which is equivalent through a U(1) gauge transformation to the total spin operator. In chapter three, we discuss the exact solutions to the one dimensional Hubbard model first derived by Lieb and Wu. From their large U limiting behavior, we extract the phonon scattering matrix elements and first order single particle energies for some finite systems. The third potentially general theorem, which related charge determinants with an arbitrary number of "gaps" between their rows to a comparatively simple function of the corresponding van der Monde determinants, is proven here.
Impact of Metal Droplets: A Numerical Approach to Solidification
NASA Astrophysics Data System (ADS)
Koldeweij, Robin; Mandamparambil, Rajesh; Lohse, Detlef
2016-11-01
Layer-wise deposition of material to produce complex products is a subject of increasing technological relevance. Subsequent deposition of droplets is one of the possible 3d printing technologies to accomplish this. The shape of the solidified droplet is crucial for product quality. We employ the volume-of-fluid method (in the form of the open-source code Gerris) to study liquid metal (in particular tin) droplet impact. Heat transfer has been implemented based on the enthalpy approach for the liquid-solid phase. Solidification is modeled by adding a sink term to the momentum equations, reducing Navier-Stokes to Darcy's law for high solid fraction. Good agreement is found when validating the results against experimental data. We then map out a phase diagram in which we distinguish between solidification behavior based on Weber and Stefan number. In an intermediate impact regime impact, solidification due to a retracting phase occurs. In this regime the maximum spreading diameter almost exclusively depends on Weber number. Droplet shape oscillations lead to a broad variation of the morphology of the solidified droplet and determine the final droplet height. TNO.
Numerical modelling of blue mussel (Mytilus edulis) bacterial contamination
NASA Astrophysics Data System (ADS)
Dabrowski, Tomasz; Doré, William J.; Lyons, Kieran; Nolan, Glenn D.
2014-05-01
Bivalve shellfish such as oysters and mussels can concentrate human pathogens when grown in areas impacted by municipal wastewater. Under EU regulation this risk to consumers is controlled by determining the sanitary quality of bivalve shellfish production areas based on the concentration of Escherichia coli present in shellfish flesh. The authors present a modelling approach to simulate an uptake of E. coli from seawater and subsequent depuration by Mytilus edulis. The model that dynamically predicts E. coli concentration in the mussel tissue is embedded within a 3-D numerical modelling system comprising hydrodynamic, biogeochemical, shellfish ecophysiological and the newly proposed microbial modules. The microbial module has two state variables, namely, the concentrations of E. coli in water and in the mussel tissue. Novel formulations to calculate the filtration rates by mussels and the resulting uptake of bacteria are proposed; these rates are updated at every computational time step. Concentrations of E. coli in seawater are also updated accordingly taking into account the amounts ingested by mussels. The model has been applied to Bantry Bay in the south-west of Ireland. The results indicate that the model is capable of reproducing the official classification of shellfish waters in the bay based on monthly sampling at several stations. The predicted filtration rates and ratios of E. coli in water and mussels also compare well with the literature. The model thus forms a tool that may be used to assist in the classification of shellfish waters at much greater spatial and temporal detail than that offered by a field monitoring programme. Moreover, it can also aid in designing an efficient monitoring programme. The model can also be utilised to determine the contribution of individual point sources of pollution on the microbial loading in mussels and, when incorporated into an operational framework, it can provide a short-term forecasting of microbial
Numerical treatment of a mathematical model arising from a model of neuronal variability
NASA Astrophysics Data System (ADS)
Kadalbajoo, M. K.; Sharma, K. K.
2005-07-01
In this paper, we describe a numerical approach based on finite difference method to solve a mathematical model arising from a model of neuronal variability. The mathematical modelling of the determination of the expected time for generation of action potentials in nerve cells by random synaptic inputs in dendrites includes a general boundary-value problem for singularly perturbed differential-difference equation with small shifts. In the numerical treatment for such type of boundary-value problems, first we use Taylor approximation to tackle the terms containing small shifts which converts it to a boundary-value problem for singularly perturbed differential equation. A rigorous analysis is carried out to obtain priori estimates on the solution of the problem and its derivatives up to third order. Then a parameter uniform difference scheme is constructed to solve the boundary-value problem so obtained. A parameter uniform error estimate for the numerical scheme so constructed is established. Though the convergence of the difference scheme is almost linear but its beauty is that it converges independently of the singular perturbation parameter, i.e., the numerical scheme converges for each value of the singular perturbation parameter (however small it may be but remains positive). Several test examples are solved to demonstrate the efficiency of the numerical scheme presented in the paper and to show the effect of the small shift on the solution behavior.
Mathematical and Numerical Analyses of Peridynamics for Multiscale Materials Modeling
Gunzburger, Max
2015-02-17
We have treated the modeling, analysis, numerical analysis, and algorithmic development for nonlocal models of diffusion and mechanics. Variational formulations were developed and finite element methods were developed based on those formulations for both steady state and time dependent problems. Obstacle problems and optimization problems for the nonlocal models were also treated and connections made with fractional derivative models.
A numerical model for ground temperature determination
NASA Astrophysics Data System (ADS)
Jaszczur, M.; Polepszyc, I.; Biernacka, B.; Sapińska-Śliwa, A.
2016-09-01
The ground surface temperature and the temperature with respect to depth are one of the most important issues for geotechnical and environmental applications as well as for plants and other living organisms. In geothermal systems, temperature is directly related to the energy resources in the ground and it influences the efficiency of the ground source system. The ground temperature depends on a very large number of parameters, but it often needs to be evaluated with good accuracy. In the present work, models for the prediction of the ground temperature with a focus on the surface temperature at which all or selected important ground and environmental phenomena are taken into account have been analysed. It has been found that the simplest models and the most complex model may result in a similar temperature variation, yet at a very low depth and for specific cases only. A detailed analysis shows that taking into account different types of pavement or a greater depth requires more complex and advanced models.
Gulf of Mexico numerical model. Project summary
Blumberg, A. F.; Mellor, G. L.; Herring, H. J.
1981-02-01
An efficient three-dimensional, time dependent prognostic model of the Gulf of Mexico has been developed. The model is driven by winds and surface heat flux derived from climatological, atmospheric surface data, the result of an intensive data analysis study. Mean velocity, temperature, salinity, turbulence kinetic energy and turbulence macroscale are the prognostic variables. Lateral boundary conditions for temperature and salinity and geostrophically derived velocity at the Straits of Yucatan and Florida are obtained from climatological ocean data. An analytical second moment turbulence closure scheme embedded within the model provides realistic surface mixed layer dynamics. Free surface elevation distributions are calculated with an algorithm which calculates the external (tidal) mode separately from the internal mode. The external mode, an essentially two-dimensional calculation, requires a short integrating timestep whereas the more costly, three-dimensional, internal mode can be executed with a long step. The result is a fully three-dimensional code which includes a free surface at no sacrifice in computer cost compared to rigid lid models.
Numerical Modeling of Left-Handed Metamaterials
Burke, G J; Champagne, N J; Sharpe, R M
2001-11-06
The EIGER method of moments program with periodic Green's function was used to model a periodic array of strips and split-ring resonators. Left-handed propagation due to negative index of refraction is demonstrated in a frequency band. The effective material parameters versus frequency are extracted from the EIGER solution.
A numerical strategy for modelling rotating stall in core compressors
NASA Astrophysics Data System (ADS)
Vahdati, M.
2007-03-01
The paper will focus on one specific core-compressor instability, rotating stall, because of the pressing industrial need to improve current design methods. The determination of the blade response during rotating stall is a difficult problem for which there is no reliable procedure. During rotating stall, the blades encounter the stall cells and the excitation depends on the number, size, exact shape and rotational speed of these cells. The long-term aim is to minimize the forced response due to rotating stall excitation by avoiding potential matches between the vibration modes and the rotating stall pattern characteristics. Accurate numerical simulations of core-compressor rotating stall phenomena require the modelling of a large number of bladerows using grids containing several tens of millions of points. The time-accurate unsteady-flow computations may need to be run for several engine revolutions for rotating stall to get initiated and many more before it is fully developed. The difficulty in rotating stall initiation arises from a lack of representation of the triggering disturbances which are inherently present in aeroengines. Since the numerical model represents a symmetric assembly, the only random mechanism for rotating stall initiation is provided by numerical round-off errors. In this work, rotating stall is initiated by introducing a small amount of geometric mistuning to the rotor blades. Another major obstacle in modelling flows near stall is the specification of appropriate upstream and downstream boundary conditions. Obtaining reliable boundary conditions for such flows can be very difficult. In the present study, the low-pressure compression (LPC) domain is placed upstream of the core compressor. With such an approach, only far field atmospheric boundary conditions are specified which are obtained from aircraft speed and altitude. A chocked variable-area nozzle, placed after the last compressor bladerow in the model, is used to impose boundary
Numerical modelling of instantaneous plate tectonics
NASA Technical Reports Server (NTRS)
Minster, J. B.; Haines, E.; Jordan, T. H.; Molnar, P.
1974-01-01
Assuming lithospheric plates to be rigid, 68 spreading rates, 62 fracture zones trends, and 106 earthquake slip vectors are systematically inverted to obtain a self-consistent model of instantaneous relative motions for eleven major plates. The inverse problem is linearized and solved iteratively by a maximum-likelihood procedure. Because the uncertainties in the data are small, Gaussian statistics are shown to be adequate. The use of a linear theory permits (1) the calculation of the uncertainties in the various angular velocity vectors caused by uncertainties in the data, and (2) quantitative examination of the distribution of information within the data set. The existence of a self-consistent model satisfying all the data is strong justification of the rigid plate assumption. Slow movement between North and South America is shown to be resolvable.
Analytical and numerical modeling for flexible pipes
NASA Astrophysics Data System (ADS)
Wang, Wei; Chen, Geng
2011-12-01
The unbonded flexible pipe of eight layers, in which all the layers except the carcass layer are assumed to have isotropic properties, has been analyzed. Specifically, the carcass layer shows the orthotropic characteristics. The effective elastic moduli of the carcass layer have been developed in terms of the influence of deformation to stiffness. With consideration of the effective elastic moduli, the structure can be properly analyzed. Also the relative movements of tendons and relative displacements of wires in helical armour layer have been investigated. A three-dimensional nonlinear finite element model has been presented to predict the response of flexible pipes under axial force and torque. Further, the friction and contact of interlayer have been considered. Comparison between the finite element model and experimental results obtained in literature has been given and discussed, which might provide practical and technical support for the application of unbonded flexible pipes.
Geometry and Grid Modeling for Numerical Simulation
2005-06-01
three dimensional spatial region (a mesh) is a prerequisite of most computer aided engineering ( CAE ) software, including computational structural...Parasolid Parasolid [13] is a commercial solid-modeling kernel. It serves as the basis for Unigraphics and several other CAD/CAM/ CAE packages. It is...As mentioned earlier, 1D and 2D arrays of standard data types are the most complex data type permitted. This method has the advantage of
Advanced Numerical Methods for NWP Models
2008-09-30
including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the...used to study tropical wave instability with a prescribed heat source representing ITCZ near the equator. The model configuration of the experiments...understanding and improvement of the physical parameterizations. Tests of NSEAM with idealized initial conditions show the breakdown of an unstable ITCZ profile
Numerical modeling of the debris flows runout
NASA Astrophysics Data System (ADS)
Federico, Francesco; Cesali, Chiara
2017-06-01
Rapid debris flows are identified among the most dangerous of all landslides. Due to their destructive potential, the runout length has to be predicted to define the hazardous areas and design safeguarding measures. To this purpose, a continuum model to predict the debris flows mobility is developed. It is based on the well known depth-integrated avalanche model proposed by Savage and Hutter (S&H model) to simulate the dry granular materials flows. Conservation of mass and momentum equations, describing the evolving geometry and the depth averaged velocity distribution, are re-written taking into account the effects of the interstitial pressures and the possible variation of mass along the motion due to erosion/deposition processes. Furthermore, the mechanical behaviour of the debris flow is described by a recently developed rheological law, which allows to take into account the dissipative effects of the grain inelastic collisions and friction, simultaneously acting within a `shear layer', typically at the base of the debris flows. The governing PDEs are solved by applying the finite difference method. The analysis of a documented case is finally carried out.
Kramers problem: numerical Wiener-Hopf-like model characteristics.
Ezin, A N; Samgin, A L
2010-11-01
Since the Kramers problem cannot be, in general, solved in terms of elementary functions, various numerical techniques or approximate methods must be employed. We present a study of characteristics for a particle in a damped well, which can be considered as a discretized version of the Melnikov [Phys. Rev. E 48, 3271 (1993)] turnover theory. The main goal is to justify the direct computational scheme to the basic Wiener-Hopf model. In contrast to the Melnikov approach, which implements factorization through a Cauchy-theorem-based formulation, we employ the Wiener-Levy theorem to reduce the Kramers problem to a Wiener-Hopf sum equation written in terms of Toeplitz matrices. This latter can provide a stringent test for the reliability of analytic approximations for energy distribution functions occurring in the Kramers problems at arbitrary damping. For certain conditions, the simulated characteristics are compared well with those determined using the conventional Fourier-integral formulas, but sometimes may differ slightly depending on the value of a dissipation parameter. Another important feature is that, with our method, we can avoid some complications inherent to the Melnikov method. The calculational technique reported in the present paper may gain particular importance in situations where the energy losses of the particle to the bath are a complex-shaped function of the particle energy and analytic solutions of desired accuracy are not at hand. In order to appreciate more readily the significance and scope of the present numerical approach, we also discuss concrete aspects relating to the field of superionic conductors.
Collision and Break-off : Numerical models and surface observables
NASA Astrophysics Data System (ADS)
Bottrill, Andrew; van Hunen, Jeroen; Allen, Mark
2013-04-01
The process of continental collision and slab break-off has been explored by many authors using a number of different numerical models and approaches (Andrews and Billen, 2009; Gerya et al., 2004; van Hunen and Allen, 2011). One of the challenges of using numerical models to explore collision and break-off is relating model predictions to real observables from current collision zones. Part of the reason for this is that collision zones by their nature destroy a lot of potentially useful surface evidence of deep dynamics. One observable that offers the possibility for recording mantle dynamics at collision zones is topography. Here we present topography predictions from numerical models and show how these can be related to actual topography changes recoded in the sedimentary record. Both 2D and 3D numerical simulation of the closure of a small oceanic basin are presented (Bottrill et al., 2012; van Hunen and Allen, 2011). Topography is calculated from the normal stress at the surface applied to an elastic beam, to give a more realist prediction of topography by accounting for the expected elasticity of the lithosphere. Predicted model topography showed a number of interesting features on the overriding plate. The first is the formation of a basin post collision at around 300km from the suture. Our models also showed uplift postdating collision between the suture and this basin, caused by subduction of buoyant material. Once break-off has occurred we found that this uplift moved further into the overriding plate due to redistribution of stresses from the subducted plate. With our 3D numerical models we simulate a collision that propagates laterally along a subduction system. These models show that a basin forms, similar to that found in our 2D models, which propagates along the system at the same rate as collision. The apparent link between collision and basin formation leads to the investigation into the stress state in the overriding lithosphere. Preliminary
Role of numerical scheme choice on the results of mathematical modeling of combustion and detonation
NASA Astrophysics Data System (ADS)
Yakovenko, I. S.; Kiverin, A. D.; Pinevich, S. G.; Ivanov, M. F.
2016-11-01
The present study discusses capabilities of dissipation-free CABARET numerical method application to unsteady reactive gasdynamic flows modeling. In framework of present research the method was adopted for reactive flows governed by real gas equation of state and applied for several typical problems of unsteady gas dynamics and combustion modeling such as ignition and detonation initiation by localized energy sources. Solutions were thoroughly analyzed and compared with that derived by using of the modified Euler-Lagrange method of “coarse” particles. Obtained results allowed us to distinguish range of phenomena where artificial effects of numerical approach may counterfeit their physical nature and to develop guidelines for numerical approach selection appropriate for unsteady reactive gasdynamic flows numerical modeling.
NASA Astrophysics Data System (ADS)
Lenarcic, M.; Bauer, Ch.; Giese, M.; Jung, A.
2016-11-01
The prediction of characteristics and flow phenomena in reversible pump-turbines becomes increasingly important, since operations under off-design conditions are required to respond to frequency fluctuations within the electrical grid as fast as possible. Fulfilling the requirements of a stable and reliable operation under continuously expanding operating ranges challenges the hydraulic design and requires ambitious developments. Beyond that, precise estimations of occurring flow phenomena combined with a detailed understanding of their causes and mechanisms are essential. This study aims at predicting the S-shaped characteristics of two reversible pump-turbines by using different numerical approaches. Therefore, measurements at a constant wicket-gate opening of Δγ = 10° were done. Based on these experimental data, unsteady flow simulations are performed under steady and transient operating conditions respectively: Starting from the best efficiency point in generating mode, through the runaway, along the S-curve, down to operation in reverse pump mode. The hydraulic machines are spatially discretized in model size with a near-wall refinement of y + mean ≤ 5 and y + mean ≥ 30. The application of two different solvers discloses deviations in underlying methods. The turbulence modeling is basically executed by the k-ω-SST and the standard k-ɛ model. Focusing on higher order numerics, the Explicit Algebraic Reynolds Stress Model (EARSM) is selected in the commercial code and extended with an approach for curvature correction (EARSM- CC). In the open-source software, the four-equation v2-f model assumes the role of higher order numerics. The temporal discretization errors are observed using three different time-step sizes. As a supplement, experimental data obtained from the HydroDyna pump-turbine are used as additional validation, providing integral quantities and local pressure distributions at an operating point set on the S-curve. To sum this work up, a
Terrane accretion: Insights from numerical modelling
NASA Astrophysics Data System (ADS)
Vogt, Katharina; Gerya, Taras
2016-04-01
The oceanic crust is not homogenous, but contains significantly thicker crust than norm, i.e. extinct arcs, spreading ridges, detached continental fragments, volcanic piles or oceanic swells. These (crustal) fragments may collide with continental crust and form accretionary complexes, contributing to its growth. We analyse this process using a thermo-mechanical computer model (i2vis) of an ocean-continent subduction zone. In this model the oceanic plate can bend spontaneously under the control of visco-plastic rheologies. It moreover incorporates effects such as mineralogical phase changes, fluid release and consumption, partial melting and melt extraction. Based on our 2-D experiments we suggest that the lithospheric buoyancy of the downgoing slab and the rheological strength of crustal material may result in a variety of accretionary processes. In addition to terrane subduction, we are able to identify three distinct modes of terrane accretion: frontal accretion, basal accretion and underplating plateaus. We show that crustal fragments may dock onto continental crust and cease subduction, be scrapped off the downgoing plate, or subduct to greater depth prior to slab break off and subsequent exhumation. Direct consequences of these processes include slab break off, subduction zone transference, structural reworking, formation of high-pressure terranes, partial melting and crustal growth.
Numeric Modeling of Granular Asteroid Growth
NASA Astrophysics Data System (ADS)
Beaumont, Benjamin; Lazzati, D.
2014-01-01
It is believed that planetesimals and asteroids are created by the constructive collisions of smaller objects, loosely bound under the effect of self-gravity and/or contact forces. However, the internal dynamics of these collisions and whether they trigger growth or fragmentation are poorly understood. Prior research in the topic has established regimes for the results of constructive collisions of particles under contact forces, but neglects gravity, a critical component once particles are no longer touching, and force chains, an uneven distribution of force inherent to granular materials. We run simulations binary collisions of clusters of particles modeled as hard spheres. Our simulations take into account self-gravity, dissipation of energy, friction, and use a potential function for overlapping particles to study force chains. We present here the collision outcome for clusters with variable masses, particle counts, velocities, and impact parameter. We compare our results to other models and simulations, and find that the collisions remain constructive at higher energies than classically predicted.
Numerical analysis and modeling of atmospheric phenomena
NASA Technical Reports Server (NTRS)
Stone, Peter H.
1994-01-01
For the past 22 years Grant NGR 22-009-727 has been supporting research in the Center for Meteorology and Physical Oceanography (and its predecessors) in a wide variety of diagnostic and modeling studies of atmospheric and ocean phenomena. Professor Jule Charney was the initial Principal Investigator. Professor Peter Stone joined him as co-Principal Investigator in 1975 and became the sole Principal Investigator in 1981. During its lifetime the Grant has supported in whole or in part 11 Master's theses, 14 Ph.D. theses, and 45 papers published in refereed scientific journals. All of these theses and papers (with bibliographic references) are listed below. All but one of the theses were used to fulfill the requirements for MIT (Massachusetts Institute of Technology) degrees and are available from the MIT libraries. The one exception is F. Chen's Ph.D. thesis which was for a Harvard degree and is available from the Harvard libraries. In addition to the work described in the citations listed below, the Grant has supported Research Assistant Amy Solomon during the past two years to carry out a study of how baroclinic adjustment is affected by vertical resolution, vertical temperature structure, and dissipation. Ms. Solomon plans to use this project for her Ph.D. thesis. Support for this project will continue under NASA Grant NAG 5-2490, 'The Factors Controlling Poleward Heat Transport in Climate Models.'
In Marriage of Model and Numerics, Glimpses of the Future
NASA Astrophysics Data System (ADS)
Nejadmalayeri, Alireza; Vasilyev, Oleg V.; Vezolainen, Alexei
2012-11-01
A newly defined concept of m-refinement (model-refinement), which provides two-way coupling of physical models and numerical methods, is employed to study the Reynolds scaling of SCALES with constant levels of fidelity. Within the context of wavelet-based methods, this new hybrid methodology provides a hierarchical space/time dynamically adaptive automatic smooth transition from resolving the Kolmogorov length-scale (WDNS) to decomposing deterministic-coherent/stochastic-incoherent modes (CVS) to capturing more/less energetic structures (SCALES). This variable fidelity turbulence modeling approach utilizes a unified single solver framework by means of a Lagrangian spatially varying thresholding technique. The fundamental findings of this computational complexity study are summarized as follows: 1) SCALES can achieve the objective of ``controlling the captured flow-physics as desired'' by profoundly small number of spatial modes; 2) Reynolds scaling of constant-dissipation SCALES is the same regardless of fidelity of the simulations; 3) the number of energy containing structures at a fixed level of resolved turbulent kinetic energy scales linearly with Re; and 4) the fractal dimension of coherent energy containing structures is close to unity. This work was supported by NSF under grant No. CBET-0756046.
A Comprehensive Numerical Model for Simulating Fluid Transport in Nanopores
NASA Astrophysics Data System (ADS)
Zhang, Yuan; Yu, Wei; Sepehrnoori, Kamy; di, Yuan
2017-01-01
Since a large amount of nanopores exist in tight oil reservoirs, fluid transport in nanopores is complex due to large capillary pressure. Recent studies only focus on the effect of nanopore confinement on single-well performance with simple planar fractures in tight oil reservoirs. Its impacts on multi-well performance with complex fracture geometries have not been reported. In this study, a numerical model was developed to investigate the effect of confined phase behavior on cumulative oil and gas production of four horizontal wells with different fracture geometries. Its pore sizes were divided into five regions based on nanopore size distribution. Then, fluid properties were evaluated under different levels of capillary pressure using Peng-Robinson equation of state. Afterwards, an efficient approach of Embedded Discrete Fracture Model (EDFM) was applied to explicitly model hydraulic and natural fractures in the reservoirs. Finally, three fracture geometries, i.e. non-planar hydraulic fractures, non-planar hydraulic fractures with one set natural fractures, and non-planar hydraulic fractures with two sets natural fractures, are evaluated. The multi-well performance with confined phase behavior is analyzed with permeabilities of 0.01 md and 0.1 md. This work improves the analysis of capillarity effect on multi-well performance with complex fracture geometries in tight oil reservoirs.
A Comprehensive Numerical Model for Simulating Fluid Transport in Nanopores
Zhang, Yuan; Yu, Wei; Sepehrnoori, Kamy; Di, Yuan
2017-01-01
Since a large amount of nanopores exist in tight oil reservoirs, fluid transport in nanopores is complex due to large capillary pressure. Recent studies only focus on the effect of nanopore confinement on single-well performance with simple planar fractures in tight oil reservoirs. Its impacts on multi-well performance with complex fracture geometries have not been reported. In this study, a numerical model was developed to investigate the effect of confined phase behavior on cumulative oil and gas production of four horizontal wells with different fracture geometries. Its pore sizes were divided into five regions based on nanopore size distribution. Then, fluid properties were evaluated under different levels of capillary pressure using Peng-Robinson equation of state. Afterwards, an efficient approach of Embedded Discrete Fracture Model (EDFM) was applied to explicitly model hydraulic and natural fractures in the reservoirs. Finally, three fracture geometries, i.e. non-planar hydraulic fractures, non-planar hydraulic fractures with one set natural fractures, and non-planar hydraulic fractures with two sets natural fractures, are evaluated. The multi-well performance with confined phase behavior is analyzed with permeabilities of 0.01 md and 0.1 md. This work improves the analysis of capillarity effect on multi-well performance with complex fracture geometries in tight oil reservoirs. PMID:28091599
A Comprehensive Numerical Model for Simulating Fluid Transport in Nanopores.
Zhang, Yuan; Yu, Wei; Sepehrnoori, Kamy; Di, Yuan
2017-01-16
Since a large amount of nanopores exist in tight oil reservoirs, fluid transport in nanopores is complex due to large capillary pressure. Recent studies only focus on the effect of nanopore confinement on single-well performance with simple planar fractures in tight oil reservoirs. Its impacts on multi-well performance with complex fracture geometries have not been reported. In this study, a numerical model was developed to investigate the effect of confined phase behavior on cumulative oil and gas production of four horizontal wells with different fracture geometries. Its pore sizes were divided into five regions based on nanopore size distribution. Then, fluid properties were evaluated under different levels of capillary pressure using Peng-Robinson equation of state. Afterwards, an efficient approach of Embedded Discrete Fracture Model (EDFM) was applied to explicitly model hydraulic and natural fractures in the reservoirs. Finally, three fracture geometries, i.e. non-planar hydraulic fractures, non-planar hydraulic fractures with one set natural fractures, and non-planar hydraulic fractures with two sets natural fractures, are evaluated. The multi-well performance with confined phase behavior is analyzed with permeabilities of 0.01 md and 0.1 md. This work improves the analysis of capillarity effect on multi-well performance with complex fracture geometries in tight oil reservoirs.
Investigation of some numerical issues in a chemistry-transport model: Gas-phase simulations
NASA Astrophysics Data System (ADS)
Mallet, Vivien; Pourchet, AdéLaïDe; QuéLo, Denis; Sportisse, Bruno
2007-08-01
Many numerical strategies have been specifically developed for chemistry-transport models. Since no exact solutions are available for 3-D real problems, there are only few insights to choose between alternative numerical schemes and approximations, or to estimate the performance discrepancy between two approaches. However it is possible to assess the importance of numerical approximations through the comparison of different strategies. We estimated the impact of several numerical schemes for advection, diffusion and stiff chemistry. We also addressed operator splitting with different methods and operator orders. The study is performed with a gas-phase Eulerian model from the modeling platform Polyphemus. It is applied to ozone forecasts mainly over Europe, with focus on a few key species: ozone, nitric oxide, nitrogen dioxide, sulfur dioxide and hydroxy radical. The outcome is a ranking of the most sensitive numerical choices. It stresses the prominent impact of the advection scheme and of the splitting time step.
Multipath diffusion: A general numerical model
NASA Astrophysics Data System (ADS)
Lee, J. K. W.; Aldama, A. A.
1992-06-01
The effect of high-diffusivity pathways on bulk diffusion of a solute in a material has been modeled previously for simple geometries such as those in tracer diffusion experiments, but not for the geometries and boundary conditions appropriate for experiments involving bulk exchange. Using a coupled system of equations for simultaneous diffusion of a solute through two families of diffusion pathways with differing diffusivities, a general 1-D finite difference model written in FORTRAN has been developed which can be used to examine the effect of high-diffusivity paths on partial and total concentration profiles within a homogeneous isotropic sphere, infinite cylinder, and infinite slab. The partial differential equations are discretized using the θ-method/central-difference scheme, and an iterative procedure analogous to the Gauss-Seidel method is employed to solve the two systems of coupled equations. Using Fourier convergence analysis, the procedure is shown to be unconditionally convergent. Computer simulations demonstrate that a multipath diffusion mechanism can enhance significantly the bulk diffusivity of a diffusing solute species through a material. The amount of solute escaping from a material is dependent strongly on the exchange coefficients, which govern the transfer of solute from the crystal lattice to the high-diffusivity paths and vice versa. In addition, the exchange coefficients ( ϰ1, and ϰ2) seem to control not only the amount of solute that is lost, but also the shape of the concentration profile. If | K1| < | K2|, concentration profiles generally are non-Fickian in shape, typically having shallow concentration gradients near the center (radius r = 0) and steep gradients towards the outer boundary of the material ( r = R). When | K1| ⩾ | K2| a concentration profile is generated which resembles a Fickian (volume) diffusion profile with an apparent bulk diffusivity between that of the crystal lattice and that of the high-diffusivity pathways
Hypercritical accretion onto a magnetized neutron star surface: a numerical approach
NASA Astrophysics Data System (ADS)
Bernal, C. G.; Lee, W. H.; Page, D.
2010-10-01
The properties of a new-born neutron star, produced in a core-collapse supernova, can be strongly affected by the possible late fallback which occurs several hours after the explosion. This accretion occurs in the regime dominated by neutrino cooling, explored initially in this context by Chevalier (1989). Here we revisit this approach in a 1D spherically symmetric model and carry out numerical simulations in 2D in an accretion column onto a neutron star, considering detailed microphysics, neutrino cooling and the presence of magnetic fields in ideal MHD. We compare our numerical results with the analytic solutions and explore how the purely hydrodynamical as well as the MHD solutions differ from them, and begin to explore how this may affect the appearance of the remnant as a typical radio pulsar.
Soil remediation by heat injection: Experiments and numerical modelling
Betz, C.; Emmert, M.; Faerber, A.
1995-03-01
In order to understand physical processes of thermally enhanced soil vapor extraction methods in porous media the isothermal, multiphase formulation for the numerical model MUFTE will be extended by a non-isothermal, multiphase-multicomponent formulation. In order to verify the numerical model, comparison with analytical solutions for well defined problems will be carried out. To identify relevant processes and their interactions, the results of the simulation will be compared with well controlled experiments with sophisticated measurement equipment in three different scales. The aim is to compare the different numerical solution techniques namely Finite Element versus Integral Finite Difference technique as implemented in MUFTE and TOUGH2 [9] respectively.
Multidimensional numerical modeling of heat exchangers
NASA Astrophysics Data System (ADS)
Sha, W. T.; Yang, C. I.; Kao, T. T.; Cho, S. M.
A comprehensive, multidimensional, thermal-hydraulic model is developed for the analysis of shell-and-tube heat exchangers for liquid-metal services. For the shellside fluid, the conservation equations of mass, momentum, and energy for continuum fluids are modified using the concept of porosity, surface permeability and distributed resistance to account for the blockage effects due to the presence of heat-transfer tubes, flow baffles/shrouds, the support plates, etc. On the tubeside, the heat-transfer tubes are connected in parallel between the inlet and outlet plenums, and tubeside flow distribution is calculated based on the plenum-to-plenum pressure difference being equal for all tubes. It is assumed that the fluid remains single-phase on the shell side and may undergo phase-change on the tube side, thereby simulating the conditions of Liquid Metal Fast Breeder Reactor (LMFBR) intermediate heat exchangers (IHX) and steam generators (SG).
Experimental, Numerical and Observational Models in Geodynamics
NASA Astrophysics Data System (ADS)
Lithgow-Bertelloni, Carolina
2015-04-01
Geodynamics, the study of the forces that drives all Earth's processes is a rich field that deeply connects all aspects of geological and geophysical studies, from surface observations of the sedimentary record to knowledge of deep Earth structure from mineral physics and seismology. In the context of the solid Earth geodynamics primarily focuses on lithosphere and mantle dynamics, while core dynamics is the purview of geomagnetism. I will focus this talk on the former, its historical context and future developments. We have known the equations of motion and mechanics for ~200 years, but only relatively recently can they be solved with enough accuracy and resolution to do geology. We have made great strides since Arthur Holmes conceptual models of mantle flow, thanks to computational and experimental advances. We can know model plate boundaries globally with resolutions in the order of a few kms and image temperature and velocity simultaneously in the laboratory in 3D and non-intrusively. We have also learned a great deal about the physics of the Earth, from composition to rheology. New theories on plate boundary rheology are paving the way for self-consistent generation of plates from mantle flow. New computational methods allow for adaptive meshing, fabric development and history, so we can study deformation and compare directly to geological observations in mountain ranges and continental rifts. We can use ever more sophisticated images of mantle structure from seismic and other geophysical data to probe the relationship between melting, flow and dynamical processes. We can reconstruct landscapes and relief, plate motions and sedimentation and ask how much the mantle has contributed to drainage reversal, sedimentation and climate change. The future of the field is ever brighter.
Seismoelectric numerical modeling on a grid
Haines, S.S.; Pride, S.R.
2006-01-01
Our finite-difference algorithm provides a new method for simulating how seismic waves in arbitrarily heterogeneous porous media generate electric fields through an electrokinetic mechanism called seismoelectric coupling. As the first step in our simulations, we calculate relative pore-fluid/grain-matrix displacement by using existing poroelastic theory. We then calculate the electric current resulting from the grain/fluid displacement by using seismoelectric coupling theory. This electrofiltration current acts as a source term in Poisson's equation, which then allows us to calculate the electric potential distribution. We can safely neglect induction effects in our simulations because the model area is within the electrostatic near field for the depth of investigation (tens to hundreds of meters) and the frequency ranges (10 Hz to 1 kHz) of interest for shallow seismoelectric surveys.We can independently calculate the electric-potential distribution for each time step in the poroelastic simulation without loss of accuracy because electro-osmotic feedback (fluid flow that is perturbed by generated electric fields) is at least 105 times smaller than flow that is driven by fluid-pressure gradients and matrix acceleration, and is therefore negligible. Our simulations demonstrate that, distinct from seismic reflections, the seismoelectric interface response from a thin layer (at least as thin as one-twentieth of the seismic wavelength) is considerably stronger than the response from a single interface. We find that the interface response amplitude decreases as the lateral extent of a layer decreases below the width of the first Fresnel zone. We conclude, on the basis of our modeling results and of field results published elsewhere, that downhole and/or crosswell survey geometries and time-lapse applications are particularly well suited to the seismoelectric method. ?? 2006 Society of Exploration Geophysicists.
Numerical modeling with application to tracking marine debris.
Potemra, James T
2012-01-01
This paper describes different numerical models of ocean circulation the output of which can be applied to study patterns and pathways of drifting marine debris. The paper focuses on model output that is readily available rather than on numerical models that could be configured and run locally. These include operational models from the US Navy (the Navy Layered Ocean Model (NLOM), Coastal Ocean Model (NCOM), and Hybrid Coordinate Ocean Model (HYCOM)), data assimilating reanalysis models (the Simple Ocean Data Assimilation (SODA), the Global Ocean Data Assimilation Experiment (GODAE) models), and the European Center for Medium-Range Weather Forecasts (ECMWF) ocean reanalysis (Ocean Reanalysis System, ECMWF/ORA-S3). The paper describes the underlying physics in each model system, limitations, and where to obtain the model output.
2007-11-01
planet : 3. A semianalytical and a purely numerical approach Pini Gurfil · Valéry Lainey · Michael Efroimsky Received: 12 January 2006 / Revised: 31 July...theory of orbits about a precessing and nutating oblate planet , in terms of osculating elements defined in a frame associated with the equator of...analytical machinery with numerical tools. Our model includes three factors: the J2 of the planet , its nonuniform equinoctial pre- cession described by the
Regularization of turbulence - a comprehensive modeling approach
NASA Astrophysics Data System (ADS)
Geurts, B. J.
2011-12-01
Turbulence readily arises in numerous flows in nature and technology. The large number of degrees of freedom of turbulence poses serious challenges to numerical approaches aimed at simulating and controlling such flows. While the Navier-Stokes equations are commonly accepted to precisely describe fluid turbulence, alternative coarsened descriptions need to be developed to cope with the wide range of length and time scales. These coarsened descriptions are known as large-eddy simulations in which one aims to capture only the primary features of a flow, at considerably reduced computational effort. Such coarsening introduces a closure problem that requires additional phenomenological modeling. A systematic approach to the closure problem, know as regularization modeling, will be reviewed. Its application to multiphase turbulent will be illustrated in which a basic regularization principle is enforced to physically consistently approximate momentum and scalar transport. Examples of Leray and LANS-alpha regularization are discussed in some detail, as are compatible numerical strategies. We illustrate regularization modeling to turbulence under the influence of rotation and buoyancy and investigate the accuracy with which particle-laden flow can be represented. A discussion of the numerical and modeling errors incurred will be given on the basis of homogeneous isotropic turbulence.
A General Framework for Multiphysics Modeling Based on Numerical Averaging
NASA Astrophysics Data System (ADS)
Lunati, I.; Tomin, P.
2014-12-01
In the last years, multiphysics (hybrid) modeling has attracted increasing attention as a tool to bridge the gap between pore-scale processes and a continuum description at the meter-scale (laboratory scale). This approach is particularly appealing for complex nonlinear processes, such as multiphase flow, reactive transport, density-driven instabilities, and geomechanical coupling. We present a general framework that can be applied to all these classes of problems. The method is based on ideas from the Multiscale Finite-Volume method (MsFV), which has been originally developed for Darcy-scale application. Recently, we have reformulated MsFV starting with a local-global splitting, which allows us to retain the original degree of coupling for the local problems and to use spatiotemporal adaptive strategies. The new framework is based on the simple idea that different characteristic temporal scales are inherited from different spatial scales, and the global and the local problems are solved with different temporal resolutions. The global (coarse-scale) problem is constructed based on a numerical volume-averaging paradigm and a continuum (Darcy-scale) description is obtained by introducing additional simplifications (e.g., by assuming that pressure is the only independent variable at the coarse scale, we recover an extended Darcy's law). We demonstrate that it is possible to adaptively and dynamically couple the Darcy-scale and the pore-scale descriptions of multiphase flow in a single conceptual and computational framework. Pore-scale problems are solved only in the active front region where fluid distribution changes with time. In the rest of the domain, only a coarse description is employed. This framework can be applied to other important problems such as reactive transport and crack propagation. As it is based on a numerical upscaling paradigm, our method can be used to explore the limits of validity of macroscopic models and to illuminate the meaning of
Multiscale modeling in the numerical computation of isothermal nonwetting
NASA Astrophysics Data System (ADS)
Smith, Marc K.
2005-11-01
A state of permanent, isothermal nonwetting of a solid surface by a normally wetting liquid may be achieved by having the surface move tangential to a liquid drop being pressed against it. Surrounding gas is swept into the space between the liquid and solid, creating a lubricating film that prevents wetting. The length scales of the drop and the film are typically three or more orders of magnitude different, making numerical simulation difficult from a resolution standpoint. A hybrid computational approach employing lubrication theory for the thinnest portions of the gas film and a finite element simulation for the liquid and outer gas phases is presented. The model problem is a steady, two-dimensional flow between parallel solid surfaces with the drop attached to the upper surface. Results are presented for a silicone oil drop with air as the surrounding gas. The drop shape, flow field, and forces on the drop are determined as functions of the Reynolds number, the flow rate through the system, and the solid surface separation distance. As the drop approaches the lower surface, both leftward-leaning and rightward-leaning drop shapes are possible, but there is a range of flow rates where steady solutions are not found. When the separation distance is less than the radius of the undisturbed hemispherical drop, only left-leaning drop shapes are found. The reasons for this behavior are explained in terms of the lubrication pressure field beneath the drop.
NASA Astrophysics Data System (ADS)
Herbin, H.; Pujol, O.; Hubert, P.; Petitprez, D.
2017-10-01
The knowledge of aerosol complex refractive indices on wide spectral range with high spectral resolution is important for many research fields and applications. Various combinations of experimental/theoretical/numerical approaches have been employed to determine the optical indices of aerosol particles. However, each approach has its own advantages and limitations that restrict its generalization. This article is first part of a work aimed at proposing a new technique for determining the optical constants of aerosols. Experimentally, the method is based on recording transmittance spectra of an aerosol flow from thermal infrared to UV-visible combined with the size distribution measurements. Herein, we present the theoretical and numerical bases of the algorithm developed to retrieve the imaginary and real parts of refractive indices. This model associates the Mie theory, the single subtractive Kramers-Kronig relations, and the optimal estimation method with an iterative process. In order to quantify the capabilities of the algorithm to retrieve complex refractive indices, inverse calculations are performed from simulated extinction spectra of Quartz particles whose some of optical properties are available in the literature. We have detailed each step of the procedure and performed some comparisons with the most currently employed methods. The impact of experimental accuracy and numerical simulation are investigated in terms of errors, and uncertainties on the retrieved real and imaginary parts of the complex optical index.
Numerical model for learning concepts of streamflow simulation
DeLong, L.L.; ,
1993-01-01
Numerical models are useful for demonstrating principles of open-channel flow. Such models can allow experimentation with cause-and-effect relations, testing concepts of physics and numerical techniques. Four PT is a numerical model written primarily as a teaching supplement for a course in one-dimensional stream-flow modeling. Four PT options particularly useful in training include selection of governing equations, boundary-value perturbation, and user-programmable constraint equations. The model can simulate non-trivial concepts such as flow in complex interconnected channel networks, meandering channels with variable effective flow lengths, hydraulic structures defined by unique three-parameter relations, and density-driven flow.The model is coded in FORTRAN 77, and data encapsulation is used extensively to simplify maintenance and modification and to enhance the use of Four PT modules by other programs and programmers.
Modelling surface water flood risk using coupled numerical and physical modelling techniques
NASA Astrophysics Data System (ADS)
Green, D. L.; Pattison, I.; Yu, D.
2015-12-01
Surface water (pluvial) flooding occurs due to intense precipitation events where rainfall cannot infiltrate into the sub-surface or drain via storm water systems. The perceived risk appears to have increased in recent years with pluvial flood events seeming more severe and frequent within the UK. Surface water flood risk currently accounts for one third of all UK flood risk, with approximately two million people living in urban areas being at risk of a 1 in 200 year flood event. Surface water flooding research often focuses upon using 1D, 2D or 1D-2D coupled numerical modelling techniques to understand the extent, depth and severity of actual or hypothetical flood scenarios. Although much research has been conducted using numerical modelling, field data available for model calibration and validation is limited due to the complexities associated with data collection in surface water flood conditions. Ultimately, the data which numerical models are based upon is often erroneous and inconclusive. Physical models offer an alternative and innovative environment to collect data within. A controlled, closed system allows independent variables to be altered individually to investigate cause and effect relationships. Despite this, physical modelling approaches are seldom used in surface water flooding research. Scaled laboratory experiments using a 9m2, two-tiered physical model consisting of: (i) a mist nozzle type rainfall simulator able to simulate a range of rainfall intensities similar to those observed within the United Kingdom, and; (ii) a fully interchangeable, scaled plot surface have been conducted to investigate and quantify the influence of factors such as slope, impermeability, building density/configuration and storm dynamics on overland flow and rainfall-runoff patterns within a range of terrestrial surface conditions. Results obtained within the physical modelling environment will be compared with numerical modelling results using FloodMap (Yu & Lane, 2006
Squeal noise in simple numerical brake models
NASA Astrophysics Data System (ADS)
Oberst, S.; Lai, J. C. S.
2015-09-01
Since the early 1920s, automotive disc brake squeal has caused warranty issues and customer dissatisfaction. Despite a good deal of progress achieved, predicting brake squeal propensity is as difficult as ever as not all mechanisms and interactions are known owing to their highly fugitive complex nature. In recent years, research has been focused on the prediction of unstable vibration modes by the complex eigenvalue analysis (CEA) for the mode-coupling type of instability. There has been very limited consideration given to the calculation of the acoustic radiation properties due to friction contact between a pad and a rotor. Recent analyses using a forced response analysis with harmonic contact pressure excitation indicates negative dissipated energy at some pad eigenfrequencies predicted to be stable by the CEA. A transient nonlinear time domain analysis with no external excitation indicates that squeal could develop at these eigenfrequencies. Here, the acoustic radiation characteristics of those pad modes are determined by analysing the acoustic power levels and radiation efficiencies of simplified brake models in the form of a pad rubbing on a plate or on a disc using the acoustic boundary element method based on velocities extracted from the forced response analysis. Results show that unstable pad modes trigger unstable disc vibrations resulting in instantaneous mode squeal similar to those observed experimentally. Changes in the radiation efficiency with pressure variations are smaller than those with friction coefficient variations and are caused by the phase difference of the velocities out-of-plane vibration between the pad and the disc.
Macroscopic analysis of gas-jet wiping: Numerical simulation and experimental approach
NASA Astrophysics Data System (ADS)
Lacanette, Delphine; Gosset, Anne; Vincent, Stéphane; Buchlin, Jean-Marie; Arquis, Éric
2006-04-01
Coating techniques are frequently used in industrial processes such as paper manufacturing, wire sleeving, and in the iron and steel industry. Depending on the application considered, the thickness of the resulting substrate is controlled by mechanical (scraper), electromagnetic (if the entrained fluid is appropriated), or hydrodynamic (gas-jet wiping) operations. This paper deals with the latter process, referred to as gas-jet wiping, in which a turbulent slot jet is used to wipe the coating film dragged by a moving substrate. This mechanism relies on the gas-jet-liquid film interaction taking place on the moving surface. The aim of this study is to compare the results obtained by a lubrication one-dimensional model, numerical volume of fluid-large eddy simulation (VOF-LES) modeling and an experimental approach. The investigation emphasizes the effect of the controlling wiping parameters, i.e., the pressure gradient and shear stress distributions induced by the jet, on the shape of the liquid film. Those profiles obtained experimentally and numerically for a jet impinging on a dry fixed surface are compared. The effect of the substrate motion and the presence of the dragged liquid film on these actuators are analyzed through numerical simulations. Good agreement is found between the film thickness profile in the wiping zone obtained from the VOF-LES simulations and with the analytical model, provided that a good model for the wiping actuators is used. The effect of the gas-jet nozzle to substrate standoff distance on the final coating thickness is analyzed; the experimental and predicted values are compared for a wide set of conditions. Finally, the occurrence of the splashing phenomenon, which is characterized by the ejection of droplets from the runback film flow at jet impingement, thus limiting the wiping process, is investigated through experiments and numerical simulations.
Quantitative analysis of numerical solvers for oscillatory biomolecular system models
Quo, Chang F; Wang, May D
2008-01-01
Background This article provides guidelines for selecting optimal numerical solvers for biomolecular system models. Because various parameters of the same system could have drastically different ranges from 10-15 to 1010, the ODEs can be stiff and ill-conditioned, resulting in non-unique, non-existing, or non-reproducible modeling solutions. Previous studies have not examined in depth how to best select numerical solvers for biomolecular system models, which makes it difficult to experimentally validate the modeling results. To address this problem, we have chosen one of the well-known stiff initial value problems with limit cycle behavior as a test-bed system model. Solving this model, we have illustrated that different answers may result from different numerical solvers. We use MATLAB numerical solvers because they are optimized and widely used by the modeling community. We have also conducted a systematic study of numerical solver performances by using qualitative and quantitative measures such as convergence, accuracy, and computational cost (i.e. in terms of function evaluation, partial derivative, LU decomposition, and "take-off" points). The results show that the modeling solutions can be drastically different using different numerical solvers. Thus, it is important to intelligently select numerical solvers when solving biomolecular system models. Results The classic Belousov-Zhabotinskii (BZ) reaction is described by the Oregonator model and is used as a case study. We report two guidelines in selecting optimal numerical solver(s) for stiff, complex oscillatory systems: (i) for problems with unknown parameters, ode45 is the optimal choice regardless of the relative error tolerance; (ii) for known stiff problems, both ode113 and ode15s are good choices under strict relative tolerance conditions. Conclusions For any given biomolecular model, by building a library of numerical solvers with quantitative performance assessment metric, we show that it is possible
Experimentation and numerical modeling of forging induced bending (FIB) process
NASA Astrophysics Data System (ADS)
Naseem, S.; van den Boogaard, A. H.
2016-10-01
Accurate prediction of the final shape using numerical modeling has been a top priority in the field of sheet and bulk forming. Better shape prediction is the result of a better estimation of the physical stress and strain state. For experimental and numerical investigations of such estimations, simple benchmark processes are used. In this paper a benchmark process involving forging (flattening) of sheet metal between punch and die with negative clearance is proposed. The introduced material flow results in bending. Easy measurability of the angle of this bend makes this process suitable for validation purpose. Physical experiments are performed to characterize this bending angle due to flattening. Furthermore a numerical model is developed to capture this phenomenon. The main focus of this paper is the validation of the numerical model in terms of accurate prediction of the physical results.
A numerical optimization approach to generate smoothing spherical splines
NASA Astrophysics Data System (ADS)
Machado, L.; Monteiro, M. Teresa T.
2017-01-01
Approximating data in curved spaces is a common procedure that is extremely required by modern applications arising, for instance, in aerospace and robotics industries. Here, we are particularly interested in finding smoothing cubic splines that best fit given data in the Euclidean sphere. To achieve this aim, a least squares optimization problem based on the minimization of a certain cost functional is formulated. To solve the problem a numerical algorithm is implemented using several routines from MATLAB toolboxes. The proposed algorithm is shown to be easy to implement, very accurate and precise for spherical data chosen randomly.
Numerical simulations of a reduced model for blood coagulation
NASA Astrophysics Data System (ADS)
Pavlova, Jevgenija; Fasano, Antonio; Sequeira, Adélia
2016-04-01
In this work, the three-dimensional numerical resolution of a complex mathematical model for the blood coagulation process is presented. The model was illustrated in Fasano et al. (Clin Hemorheol Microcirc 51:1-14, 2012), Pavlova et al. (Theor Biol 380:367-379, 2015). It incorporates the action of the biochemical and cellular components of blood as well as the effects of the flow. The model is characterized by a reduction in the biochemical network and considers the impact of the blood slip at the vessel wall. Numerical results showing the capacity of the model to predict different perturbations in the hemostatic system are discussed.
A numerical approach to finding general stationary vacuum black holes
NASA Astrophysics Data System (ADS)
Adam, Alexander; Kitchen, Sam; Wiseman, Toby
2012-08-01
The Harmonic Einstein equation is the vacuum Einstein equation supplemented by a gauge fixing term which we take to be that of DeTurck. For static black holes analytically continued to Riemannian manifolds without boundary at the horizon, this equation has previously been shown to be elliptic, and Ricci flow and Newton’s method provide good numerical algorithms to solve it. Here we extend these techniques to the arbitrary cohomogeneity stationary case which must be treated in Lorentzian signature. For stationary spacetimes with globally timelike Killing vector the Harmonic Einstein equation is elliptic. In the presence of horizons and ergo-regions it is less obviously so. Motivated by the Rigidity theorem we study a class of stationary black hole spacetimes which is general enough to include many interesting higher dimensional solutions. We argue the Harmonic Einstein equation consistently truncates to this class of spacetimes giving an elliptic problem. The Killing horizons and axes of rotational symmetry are boundaries for this problem and we determine boundary conditions there. As a simple example we numerically construct 4D rotating black holes in a cavity using Anderson’s boundary conditions. We demonstrate both Newton’s method and Ricci flow to find these Lorentzian solutions.
Axisymmetric Numerical Modeling of Pulse Detonation Rocket Engines
NASA Technical Reports Server (NTRS)
Morris, Christopher I.
2005-01-01
Pulse detonation rocket engines (PDREs) have generated research interest in recent years as a chemical propulsion system potentially offering improved performance and reduced complexity compared to conventional rocket engines. The detonative mode of combustion employed by these devices offers a thermodynamic advantage over the constant-pressure deflagrative combustion mode used in conventional rocket engines and gas turbines. However, while this theoretical advantage has spurred considerable interest in building PDRE devices, the unsteady blowdown process intrinsic to the PDRE has made realistic estimates of the actual propulsive performance problematic. The recent review article by Kailasanath highlights some of the progress that has been made in comparing the available experimental measurements with analytical and numerical models. In recent work by the author, a quasi-one-dimensional, finite rate chemistry CFD model was utilized to study the gasdynamics and performance characteristics of PDREs over a range of blowdown pressure ratios from 1-1000. Models of this type are computationally inexpensive, and enable first-order parametric studies of the effect of several nozzle and extension geometries on PDRE performance over a wide range of conditions. However, the quasi-one-dimensional approach is limited in that it cannot properly capture the multidimensional blast wave and flow expansion downstream of the PDRE, nor can it resolve nozzle flow separation if present. Moreover, the previous work was limited to single-pulse calculations. In this paper, an axisymmetric finite rate chemistry model is described and utilized to study these issues in greater detail. Example Mach number contour plots showing the multidimensional blast wave and nozzle exhaust plume are shown. The performance results are compared with the quasi-one-dimensional results from the previous paper. Both Euler and Navier-Stokes solutions are calculated in order to determine the effect of viscous
Experimental validation of a numerical model for subway induced vibrations
NASA Astrophysics Data System (ADS)
Gupta, S.; Degrande, G.; Lombaert, G.
2009-04-01
This paper presents the experimental validation of a coupled periodic finite element-boundary element model for the prediction of subway induced vibrations. The model fully accounts for the dynamic interaction between the train, the track, the tunnel and the soil. The periodicity or invariance of the tunnel and the soil in the longitudinal direction is exploited using the Floquet transformation, which allows for an efficient formulation in the frequency-wavenumber domain. A general analytical formulation is used to compute the response of three-dimensional invariant or periodic media that are excited by moving loads. The numerical model is validated by means of several experiments that have been performed at a site in Regent's Park on the Bakerloo line of London Underground. Vibration measurements have been performed on the axle boxes of the train, on the rail, the tunnel invert and the tunnel wall, and in the free field, both at the surface and at a depth of 15 m. Prior to these vibration measurements, the dynamic soil characteristics and the track characteristics have been determined. The Bakerloo line tunnel of London Underground has been modelled using the coupled periodic finite element-boundary element approach and free field vibrations due to the passage of a train at different speeds have been predicted and compared to the measurements. The correspondence between the predicted and measured response in the tunnel is reasonably good, although some differences are observed in the free field. The discrepancies are explained on the basis of various uncertainties involved in the problem. The variation in the response with train speed is similar for the measurements as well as the predictions. This study demonstrates the applicability of the coupled periodic finite element-boundary element model to make realistic predictions of the vibrations from underground railways.
2017-01-01
Category Theory, a branch of mathematics, has shown promise as a modeling framework for higher-level cognition. We introduce an algebraic model for analogy that uses the language of category theory to explore analogy-related cognitive phenomena. To illustrate the potential of this approach, we use this model to explore three objects of study in cognitive literature. First, (a) we use commutative diagrams to analyze an effect of playing particular educational board games on the learning of numbers. Second, (b) we employ a notion called coequalizer as a formal model of re-representation that explains a property of computational models of analogy called “flexibility” whereby non-similar representational elements are considered matches and placed in structural correspondence. Finally, (c) we build a formal learning model which shows that re-representation, language processing and analogy making can explain the acquisition of knowledge of rational numbers. These objects of study provide a picture of acquisition of numerical knowledge that is compatible with empirical evidence and offers insights on possible connections between notions such as relational knowledge, analogy, learning, conceptual knowledge, re-representation and procedural knowledge. This suggests that the approach presented here facilitates mathematical modeling of cognition and provides novel ways to think about analogy-related cognitive phenomena. PMID:28841643
Navarrete, Jairo A; Dartnell, Pablo
2017-08-01
Category Theory, a branch of mathematics, has shown promise as a modeling framework for higher-level cognition. We introduce an algebraic model for analogy that uses the language of category theory to explore analogy-related cognitive phenomena. To illustrate the potential of this approach, we use this model to explore three objects of study in cognitive literature. First, (a) we use commutative diagrams to analyze an effect of playing particular educational board games on the learning of numbers. Second, (b) we employ a notion called coequalizer as a formal model of re-representation that explains a property of computational models of analogy called "flexibility" whereby non-similar representational elements are considered matches and placed in structural correspondence. Finally, (c) we build a formal learning model which shows that re-representation, language processing and analogy making can explain the acquisition of knowledge of rational numbers. These objects of study provide a picture of acquisition of numerical knowledge that is compatible with empirical evidence and offers insights on possible connections between notions such as relational knowledge, analogy, learning, conceptual knowledge, re-representation and procedural knowledge. This suggests that the approach presented here facilitates mathematical modeling of cognition and provides novel ways to think about analogy-related cognitive phenomena.
Numerical modeling of Atlantic hurricanes moving into the middle latitudes
NASA Astrophysics Data System (ADS)
Fogarty, Christopher T.
Hurricanes that form over the Atlantic Ocean very frequently migrate into the middle latitudes where they encounter very different oceanic and atmospheric conditions than in the tropics. Cool sea surface temperatures (SSTs) cause these storms to weaken and become thermodynamically decoupled from the ocean, while baroclinic atmospheric environments often cause them to transform into extratropical storms---a process known as extratropical transition (ET). The changing structure of these storms in the middle latitudes presents many unique forecasting challenges related to the increasing asymmetry in moisture and wind fields, and their potentially destructive nature. An examination of three such events over Eastern Canada---using a combination of observations and a numerical model---forms the foundation of this work, with an emphasis on applying the research to weather forecasting. The case studies include Hurricane Michael (2000), Hurricane Karen (2001) and Hurricane Juan (2003). Hurricane Michael intensified in a strongly-baroclinc environment and evolved into an intense extratropical storm over Newfoundland. Karen also underwent ET, but weakened quickly during its approach to Nova Scotia, while Hurricane Juan struck the province as a category-two hurricane, experiencing only marginal weakening over anomalously warm SSTs. In essence, these cases represent a cross section of the behavior of many tropical cyclones in this part of the world. Hindcast simulations are conducted for each event using the Canadian Mesoscale Compressible Community (MC2) model with a synthetic, observationally-consistent hurricane vortex used in the model's initial conditions. Sensitivity experiments are run for each case by modifying initial specifications of the vortex, model physics parameterizations, and surface boundary conditions like SST. In the case of Hurricane Juan, it is determined that the anomalously-warm SSTs played a significant role in the landfall intensity, while Hurricane
On the time to steady state: insights from numerical modeling
NASA Astrophysics Data System (ADS)
Goren, L.; Willett, S.; McCoy, S. W.; Perron, J.
2013-12-01
How fast do fluvial landscapes approach steady state after an application of tectonic or climatic perturbation? While theory and some numerical models predict that the celerity of the advective wave (knickpoint) controls the response time for perturbations, experiments and other landscape evolution models demonstrate that the time to steady state is much longer than the theoretically predicted response time. We posit that the longevity of transient features and the time to steady state are controlled by the stability of the topology and geometry of channel networks. Evolution of a channel network occurs by a combination of discrete capture events and continuous migration of water divides, processes, which are difficult to represent accurately in landscape evolution models. We therefore address the question of the time to steady state using the DAC landscape evolution model that solves accurately for the location of water divides, using a combination of analytical solution for hillslopes and low-order channels together with a numerical solution for higher order channels. DAC also includes an explicit capture criterion. We have tested fundamental predictions from DAC and show that modeled networks reproduce natural network characteristics such as the Hack's exponent and coefficient and the fractal dimension. We define two steady-state criteria: a topographic steady state, defined by global, pointwise steady elevation, and a topological steady state defined as the state in which no further reorganization of the drainage network takes place. Analyzing block uplift simulations, we find that the time to achieve either topographic or topological steady state exceeds by an order of magnitude the theoretical response time of the fluvial network. The longevity of the transient state is the result of the area feedback, by which, migration of a divide changes the local contributing area. This change propagates downstream as a slope adjustment, forcing further divide migrations
Numerical and experimental approaches to study soil transport and clogging in granular filters
NASA Astrophysics Data System (ADS)
Kanarska, Y.; Smith, J. J.; Ezzedine, S. M.; Lomov, I.; Glascoe, L. G.
2012-12-01
Failure of a dam by erosion ranks among the most serious accidents in civil engineering. The best way to prevent internal erosion is using adequate granular filters in the transition areas where important hydraulic gradients can appear. In case of cracking and erosion, if the filter is capable of retaining the eroded particles, the crack will seal and the dam safety will be ensured. Numerical modeling has proved to be a cost-effective tool for improving our understanding of physical processes. Traditionally, the consideration of flow and particle transport in porous media has focused on treating the media as continuum. Practical models typically address flow and transport based on the Darcy's law as a function of a pressure gradient and a medium-dependent permeability parameter. Additional macroscopic constitutes describe porosity, and permeability changes during the migration of a suspension through porous media. However, most of them rely on empirical correlations, which often need to be recalibrated for each application. Grain-scale modeling can be used to gain insight into scale dependence of continuum macroscale parameters. A finite element numerical solution of the Navier-Stokes equations for fluid flow together with Lagrange multiplier technique for solid particles was applied to the simulation of soil filtration in the filter layers of gravity dam. The numerical approach was validated through comparison of numerical simulations with the experimental results of base soil particle clogging in the filter layers performed at ERDC. The numerical simulation correctly predicted flow and pressure decay due to particle clogging. The base soil particle distribution was almost identical to those measured in the laboratory experiment. It is believed that the agreement between simulations and experimental data demonstrates the applicability of the proposed approach for prediction of the soil transport and clogging in embankment dams. To get more precise understanding of
Numerical Modeling of Mixing and Venting from Explosions in Bunkers
NASA Astrophysics Data System (ADS)
Liu, Benjamin
2005-07-01
2D and 3D numerical simulations were performed to study the dynamic interaction of explosion products in a concrete bunker with ambient air, stored chemical or biological warfare (CBW) agent simulant, and the surrounding walls and structure. The simulations were carried out with GEODYN, a multi-material, Godunov-based Eulerian code, that employs adaptive mesh refinement and runs efficiently on massively parallel computer platforms. Tabular equations of state were used for all materials with the exception of any high explosives employed, which were characterized with conventional JWL models. An appropriate constitutive model was used to describe the concrete. Interfaces between materials were either tracked with a volume-of-fluid method that used high-order reconstruction to specify the interface location and orientation, or a capturing approach was employed with the assumption of local thermal and mechanical equilibrium. A major focus of the study was to estimate the extent of agent heating that could be obtained prior to venting of the bunker and resultant agent dispersal. Parameters investigated included the bunker construction, agent layout, energy density in the bunker and the yield-to-agent mass ratio. Turbulent mixing was found to be the dominant heat transfer mechanism for heating the agent.
Numerical modeling of pulse propagation in viscoelastic waveguide
NASA Astrophysics Data System (ADS)
Levitsky, S.; Bergman, R.
2017-07-01
Pressure pulse propagation in a viscoelastic cylindrical tube filled with polymeric liquid, is investigated. The tube is considered as a thin circular cylindrical shell, made of material following Kelvin-Voight rheological model. The liquid rheology is described by Oldroyd equation. Dynamic interaction of liquid with the tube wall in the wave is described within quasi-one-dimensional approach. The initial-boundary value problem, modeling pressure pulse propagation in the waveguide, is solved by operational method. The solution is presented in explicit form in the s-domain. Plots of pressure distribution along the pipe at different moments of time are calculated by numerical inversion of Laplace transform for initial finite pulse, generated at the tube end. Results of simulations illustrate the tube and liquid rheology effect on the wave propagation; they indicate that attenuation of the wave in a viscoelastic tube can exceed essentially that one for a corresponding pure elastic tube. Liquid viscoelasticity has an opposite effect on the pulse propagation.
Sheet Hydroforming Process Numerical Model Improvement Through Experimental Results Analysis
NASA Astrophysics Data System (ADS)
Gabriele, Papadia; Antonio, Del Prete; Alfredo, Anglani
2010-06-01
The increasing application of numerical simulation in metal forming field has helped engineers to solve problems one after another to manufacture a qualified formed product reducing the required time [1]. Accurate simulation results are fundamental for the tooling and the product designs. The wide application of numerical simulation is encouraging the development of highly accurate simulation procedures to meet industrial requirements. Many factors can influence the final simulation results and many studies have been carried out about materials [2], yield criteria [3] and plastic deformation [4,5], process parameters [6] and their optimization. In order to develop a reliable hydromechanical deep drawing (HDD) numerical model the authors have been worked out specific activities based on the evaluation of the effective stiffness of the blankholder structure [7]. In this paper after an appropriate tuning phase of the blankholder force distribution, the experimental activity has been taken into account to improve the accuracy of the numerical model. In the first phase, the effective capability of the blankholder structure to transfer the applied load given by hydraulic actuators to the blank has been explored. This phase ended with the definition of an appropriate subdivision of the blankholder active surface in order to take into account the effective pressure map obtained for the given loads configuration. In the second phase the numerical results obtained with the developed subdivision have been compared with the experimental data of the studied model. The numerical model has been then improved, finding the best solution for the blankholder force distribution.
Numerically pricing American options under the generalized mixed fractional Brownian motion model
NASA Astrophysics Data System (ADS)
Chen, Wenting; Yan, Bowen; Lian, Guanghua; Zhang, Ying
2016-06-01
In this paper, we introduce a robust numerical method, based on the upwind scheme, for the pricing of American puts under the generalized mixed fractional Brownian motion (GMFBM) model. By using portfolio analysis and applying the Wick-Itô formula, a partial differential equation (PDE) governing the prices of vanilla options under the GMFBM is successfully derived for the first time. Based on this, we formulate the pricing of American puts under the current model as a linear complementarity problem (LCP). Unlike the classical Black-Scholes (B-S) model or the generalized B-S model discussed in Cen and Le (2011), the newly obtained LCP under the GMFBM model is difficult to be solved accurately because of the numerical instability which results from the degeneration of the governing PDE as time approaches zero. To overcome this difficulty, a numerical approach based on the upwind scheme is adopted. It is shown that the coefficient matrix of the current method is an M-matrix, which ensures its stability in the maximum-norm sense. Remarkably, we have managed to provide a sharp theoretic error estimate for the current method, which is further verified numerically. The results of various numerical experiments also suggest that this new approach is quite accurate, and can be easily extended to price other types of financial derivatives with an American-style exercise feature under the GMFBM model.
A Fractional PDE Approach to Turbulent Mixing; Part II: Numerical Simulation
NASA Astrophysics Data System (ADS)
Samiee, Mehdi; Zayernouri, Mohsen
2016-11-01
We propose a generalizing fractional order transport model of advection-diffusion kind with fractional time- and space-derivatives, governing the evolution of passive scalar turbulence. This approach allows one to incorporate the nonlocal and memory effects in the underlying anomalous diffusion i.e., sub-to-standard diffusion to model the trapping of particles inside the eddied, and super-diffusion associated with the sudden jumps of particles from one coherent region to another. For this nonlocal model, we develop a high order numerical (spectral) method in addition to a fast solver, examined in the context of some canonical problems. PhD student, Department of Mechanical Engineering, & Department Computational Mathematics, Science, and Engineering.
Numerical modelling of river morphodynamics: Latest developments and remaining challenges
NASA Astrophysics Data System (ADS)
Siviglia, Annunziato; Crosato, Alessandra
2016-07-01
Numerical morphodynamic models provide scientific frameworks for advancing our understanding of river systems. The research on involved topics is an important and socially relevant undertaking regarding our environment. Nowadays numerical models are used for different purposes, from answering questions about basic morphodynamic research to managing complex river engineering problems. Due to increasing computer power and the development of advanced numerical techniques, morphodynamic models are now more and more used to predict the bed patterns evolution to a broad spectrum of spatial and temporal scales. The development and the success of application of such models are based upon a wide range of disciplines from applied mathematics for the numerical solution of the equations to geomorphology for the physical interpretation of the results. In this light we organized this special issue (SI) soliciting multidisciplinary contributions which encompass any aspect needed for the development and applications of such models. Most of the papers in the SI stem from contributions to session HS9.5/GM7.11 on numerical modelling and experiments in river morphodynamics at the European Geosciences Union (EGU) General Assembly held in Vienna, April 27th to May 2nd 2014.
Considering digits in a current model of numerical development
Roesch, Stephanie; Moeller, Korbinian
2015-01-01
Numerical cognition has long been considered the perfect example of abstract information processing. Nevertheless, there is accumulating evidence in recent years suggesting that the representation of number magnitude may not be entirely abstract but may present a specific case of embodied cognition rooted in the sensory and bodily experiences of early finger counting and calculating. However, so far none of the existing models of numerical development considers the influence of finger-based representations. Therefore, we make first suggestions on (i) how finger-based representations may be integrated into a current model of numerical development; and (ii) how they might corroborate the acquisition of basic numerical competencies at different development levels. PMID:25628559
Numerical modeling in induction heating for axisymmetric geometries
Chaboudez, C.; Glardon, R.; Mari, D.; Clain, S.; Rappaz, J.; Swierkosz, M.
1997-01-01
Induction heating is widely used in today`s industry, in operations such as metal hardening, preheating for forging operations, or brazing. It is a complex process, involving both electromagnetic and thermal phenomena. Since the design and the investigation of an induction heating system usually relies upon a series of tedious, expensive and long experiments, numerical simulation can be a valuable help in this field. This paper deals with numerical simulation of induction heating for axisymmetric geometries. A mathematical model is presented, together with a numerical scheme based on the Finite Element Method. A numerical simulation code was implemented using the model presented in this paper. A comparison between results given by the code and experimental measurements is provided.
Xu, Y.; Xia, J.; Miller, R.D.
2007-01-01
The need for incorporating the traction-free condition at the air-earth boundary for finite-difference modeling of seismic wave propagation has been discussed widely. A new implementation has been developed for simulating elastic wave propagation in which the free-surface condition is replaced by an explicit acoustic-elastic boundary. Detailed comparisons of seismograms with different implementations for the air-earth boundary were undertaken using the (2,2) (the finite-difference operators are second order in time and space) and the (2,6) (second order in time and sixth order in space) standard staggered-grid (SSG) schemes. Methods used in these comparisons to define the air-earth boundary included the stress image method (SIM), the heterogeneous approach, the scheme of modifying material properties based on transversely isotropic medium approach, the acoustic-elastic boundary approach, and an analytical approach. The method proposed achieves the same or higher accuracy of modeled body waves relative to the SIM. Rayleigh waves calculated using the explicit acoustic-elastic boundary approach differ slightly from those calculated using the SIM. Numerical results indicate that when using the (2,2) SSG scheme for SIM and our new method, a spatial step of 16 points per minimum wavelength is sufficient to achieve 90% accuracy; 32 points per minimum wavelength achieves 95% accuracy in modeled Rayleigh waves. When using the (2,6) SSG scheme for the two methods, a spatial step of eight points per minimum wavelength achieves 95% accuracy in modeled Rayleigh waves. Our proposed method is physically reasonable and, based on dispersive analysis of simulated seismographs from a layered half-space model, is highly accurate. As a bonus, our proposed method is easy to program and slightly faster than the SIM. ?? 2007 Society of Exploration Geophysicists.
Numerical modeling of mineral dissolution - precipitation kinetics integrating interfacial processes
NASA Astrophysics Data System (ADS)
Azaroual, M. M.
2016-12-01
The mechanisms of mineral dissolution/precipitation are complex and interdependent. Within a same rock, the geochemical modelling may have to manage kinetic reactions with high ratios between the most reactive minerals (i.e., carbonates, sulfate salts, etc.) and less reactive minerals (i.e., silica, alumino-silicates, etc.). These ratios (higher than 10+6) induce numerical instabilities for calculating mass and energy transfers between minerals and aqueous phases at the appropriate scales of time and space. The current scientific debate includes: i) changes (or not) of the mineral reactive surface with the progress of the dissolution/precipitation reactions; ii) energy jumps (discontinuity) in the thermodynamic affinity function of some dissolution/precipitation reactions and iii) integration of processes at the "mineral - aqueous solution" interfaces for alumino-silicates, silica and carbonates. In recent works dealing with the specific case of amorphous silica, measurements were performed on nano-metric cross-sections indicating the presence of surface layer between the bulk solution and the mineral. This thin layer is composed by amorphous silica and hydrated silica "permeable" to the transfer of water and ionic chemical constituents. The boundary/interface between the initial mineral and the silica layer is characterized by a high concentration jump of chemical products at the nanoscale and some specific interfacial dissolution/precipitation processes.In this study, the results of numerical simulations dealing with different mechanisms of silicate and carbonate dissolution/precipitation reactions and integrating interfacial processes will be discussed. The application of this approach to silica precipitation is based on laboratory experiments and it highlights the significant role of the "titration" surface induced by surface complexation reactions in the determination of the kinetics of precipitation.
Numerical modeling and experimental testing of a solar grill
Olwi, I.; Khalifa, A. )
1993-02-01
The sun provides a free, nonpolluting and everlasting source of energy. Considerable research has been carried out to utilize solar energy for purposes such as water heating, high temperature ovens, and conversion to electrical energy. One of the interesting forms for utilizing solar energy is cooking. The main disadvantage of solar energy systems has been the low efficiency attained in most of its practical applications. It is expected, however, that due to continuing decreases in the availability of other energy sources such as oil and coal, along with the safety problems associated with nuclear energy, man's need for utilization of solar energy will increase, thus leading him to find the ways and means to develop adequate and efficient solar-powered systems. In camps, where tents are used to accommodate people, cooking is done via conventional gas stoves. This usually takes place in extremely crowded areas which become highly fireprone. Solar oven cookers seem to be a viable alternative considering both economy and safety. Among the various forms of solar cookers, the oven-type solar cooker is known to be the best in terms of efficiency. One of the most practical and efficient forms of solar oven cookers is the outdoor portable solar grill (Bar-B-Q), developed by Khalifa et al. The solar grill is a light and portable unit that utilizes solar energy to grill meat. One of the best types of grilling with this cooker is the well-known Shish Kebab or Bar-B-Q. A detailed description for the design of the solar grill is provided as follows. This paper is aimed at providing experimental results and formulating a numerical model for the solar grill. Results of the two approaches are then compared to verify the validity of the numerical simulation. An experimental and theoretical investigation was conducted on the solar grill in order to study the factors that affect its design and performance.
Numerical modeling of fluid migration in subduction zones
NASA Astrophysics Data System (ADS)
Walter, M. J.; Quinteros, J.; Sobolev, S. V.
2015-12-01
It is well known that fluids play a crucial role in subduction evolution. For example, mechanical weakening along tectonic interfaces, due to high fluid pressure, may enable oceanic subduction. Hence, the fluid content seems to be a critical parameter for subduction initiation. Studies have also shown a correlation between the location of slab dehydration and intermediate seismic activity. Furthermore, expelled fluids from the subduction slab affect the melting temperature, consequently, contributing to partial melting in the wedge above the down-going plate and extensive volcanism. In summary, fluids have a great impact on tectonic processes and therefore should be incorporated into geodynamic numerical models. Here we use existing approaches to couple and solve fluid flow equations in the SLIM-3D thermo-mechanical code. SLIM-3D is a three-dimensional thermo-mechanical code capable of simulating lithospheric deformation with elasto-visco-plastic rheology. It has been successfully applied to model geodynamic processes at different tectonic settings, including subduction zones. However, although SLIM-3D already includes many features, fluid migration has not been incorporated into the model yet. To this end, we coupled solid and fluid flow assuming that fluids flow through a porous and deformable solid. Thereby, we introduce a two-phase flow into the model, in which the Stokes flow is coupled with the Darcy law for fluid flow. Ultimately, the evolution of porosity is governed by a compaction pressure and the advection of the porous solid. We show the details of our implementation of the fluid flow into the existing thermo-mechanical finite element code and present first results of benchmarks and experiments. We are especially interested in the coupling of subduction processes and the evolution of the magmatic arc. Thereby, we focus on the key factors controlling magma emplacement and its influence on subduction processes.
Numerical schemes for a model for nonlinear dispersive waves
NASA Technical Reports Server (NTRS)
Bona, J. L.; Pritchard, W. G.; Scott, L. R.
1985-01-01
A description is given of a number of numerical schemes to solve an evolution equation (Korteweg-deVries) that arises when modelling the propagation of water waves in a channel. The discussion also includes the results of numerical experiments made with each of the schemes. It is suggested, on the basis of these experiments, that one of the schemes may have (discrete) solitary-wave solutions.
The Rheasilvia Crater on Rotating Vesta: Numerical Modeling
NASA Astrophysics Data System (ADS)
Ivanov, B.; Kamyshenkov, D.
2012-12-01
The Dawn mission to the asteroid Vesta delivers valuable new data about this differentiated planetary body (see Russel ea., Jaumann ea., Schenk ea., Science, 11 May 2012). The youngest of giant impact craters on Vesta, Rheasilvia, is an important "window" into Vesta structure and history. Numerical SPH modeling of the Rheasilvia impact formation (Jutzi and Asphaug, 2010-12, Jutzi ea., 2012) revealed the main details of the event. We use alternatively 2D SALE-based code to study some details better resolved in the Eulerian hydrocodes (Ivanov ea., 2011-12). We continue the modeling and now the target rotation (centripetal accelerations) is added to the code (in 2D we can model only vertical impact at the pole). The problem of the initial rotating target shape is solving numerically: the liquid 3-layer sphere ("basalt" crust, "dunite" mantle, iron core) is gradually spin up and starts to oscillate around an equilibrium elliptic shape. At the moment of maximum average velocity all velocities are zeroed and the target approaches to its equilibrium more slowly. A few iterations allow us to reach the state where the model run, restarted with strength switched on, demonstrates only near boundaries material damage. After ~3000 s of this "dry" run the model restarts again with zeroed damage and velocities and the impacting projectile. For the 5 hours rotation period, 40 km crust and 100 km core the (a-c)/a flattening is about 0.165 v.s 0.196 for 285x229 km ellipsoid used for mapping (Jaumann ea., 2012). The core flattening is about 0.15. After the impact the crater is formed and flattening increases to ~0.168 for crust and mantle and to 0.156 for the core (crust and mantle ellipses are fitted for the uncratered hemisphere). Hence, the Rheasilvia-scale impact may slightly change the effective asteroid shape. Older large impacts visible on Vesta (Schenk ea., 2012) should be modeled in future to trace the shape evolution. The Rheasilvia-scale impact results in the mantle uplift
A survey of numerical models for wind prediction
NASA Technical Reports Server (NTRS)
Schonfeld, D.
1980-01-01
A literature review is presented of the work done in the numerical modeling of wind flows. Pertinent computational techniques are described, as well as the necessary assumptions used to simplify the governing equations. A steady state model is outlined, based on the data obtained at the Deep Space Communications complex at Goldstone, California.
Numerical Models of Broad Bandwidth Nanosecond Optical Parametric Oscillators
Bowers, M.S.; Gehr, R.J.; Smith, A.V.
1998-10-14
We describe results from three new methods of numerically modeling broad-bandwidth, nanosecond OPO's in the plane-wave approximate ion. They account for differences in group velocities among the three mixing waves, and also include a qutt~ttun noise model.
Numerical Modeling of Shatter Cones Development in Impact Craters
NASA Astrophysics Data System (ADS)
Baratoux, D.; Melosh, H. J.
2003-03-01
We present a new model for the formation of shatter cones in impact craters. Our model has been tested by means of numerical simulations. Our results are consistent with the observations of shatter cones in natural impact craters and explosions experiments.
Hydroforming Of Patchwork Blanks — Numerical Modeling And Experimental Validation
NASA Astrophysics Data System (ADS)
Lamprecht, Klaus; Merklein, Marion; Geiger, Manfred
2005-08-01
In comparison to the commonly applied technology of tailored blanks the concept of patchwork blanks offers a number of additional advantages. Potential application areas for patchwork blanks in automotive industry are e.g. local reinforcements of automotive closures, structural reinforcements of rails and pillars as well as shock towers. But even if there is a significant application potential for patchwork blanks in automobile production, industrial realization of this innovative technique is decelerated due to a lack of knowledge regarding the forming behavior and the numerical modeling of patchwork blanks. Especially for the numerical simulation of hydroforming processes, where one part of the forming tool is replaced by a fluid under pressure, advanced modeling techniques are required to ensure an accurate prediction of the blanks' forming behavior. The objective of this contribution is to provide an appropriate model for the numerical simulation of patchwork blanks' forming processes. Therefore, different finite element modeling techniques for patchwork blanks are presented. In addition to basic shell element models a combined finite element model consisting of shell and solid elements is defined. Special emphasis is placed on the modeling of the weld seam. For this purpose the local mechanical properties of the weld metal, which have been determined by means of Martens-hardness measurements and uniaxial tensile tests, are integrated in the finite element models. The results obtained from the numerical simulations are compared to experimental data from a hydraulic bulge test. In this context the focus is laid on laser- and spot-welded patchwork blanks.
Numerical Simulation of Incremental Sheet Forming by Simplified Approach
NASA Astrophysics Data System (ADS)
Delamézière, A.; Yu, Y.; Robert, C.; Ayed, L. Ben; Nouari, M.; Batoz, J. L.
2011-01-01
The Incremental Sheet Forming (ISF) is a process, which can transform a flat metal sheet in a 3D complex part using a hemispherical tool. The final geometry of the product is obtained by the relative movement between this tool and the blank. The main advantage of that process is that the cost of the tool is very low compared to deep drawing with rigid tools. The main disadvantage is the very low velocity of the tool and thus the large amount of time to form the part. Classical contact algorithms give good agreement with experimental results, but are time consuming. A Simplified Approach for the contact management between the tool and the blank in ISF is presented here. The general principle of this approach is to imposed displacement of the nodes in contact with the tool at a given position. On a benchmark part, the CPU time of the present Simplified Approach is significantly reduced compared with a classical simulation performed with Abaqus implicit.
Numerical investigation of algebraic oceanic turbulent mixing-layer models
NASA Astrophysics Data System (ADS)
Chacón-Rebollo, T.; Gómez-Mármol, M.; Rubino, S.
2013-11-01
In this paper we investigate the finite-time and asymptotic behaviour of algebraic turbulent mixing-layer models by numerical simulation. We compare the performances given by three different settings of the eddy viscosity. We consider Richardson number-based vertical eddy viscosity models. Two of these are classical algebraic turbulence models usually used in numerical simulations of global oceanic circulation, i.e. the Pacanowski-Philander and the Gent models, while the other one is a more recent model (Bennis et al., 2010) proposed to prevent numerical instabilities generated by physically unstable configurations. The numerical schemes are based on the standard finite element method. We perform some numerical tests for relatively large deviations of realistic initial conditions provided by the Tropical Atmosphere Ocean (TAO) array. These initial conditions correspond to states close to mixing-layer profiles, measured on the Equatorial Pacific region called the West-Pacific Warm Pool. We conclude that mixing-layer profiles could be considered as kinds of "absorbing configurations" in finite time that asymptotically evolve to steady states under the application of negative surface energy fluxes.
Comparison of Numerical Approaches to a Steady-State Landscape Equation
NASA Astrophysics Data System (ADS)
Bachman, S.; Peckham, S.
2008-12-01
A mathematical model of an idealized fluvial landscape has been developed, in which a land surface will evolve to preserve dendritic channel networks as the surface is lowered. The physical basis for this model stems from the equations for conservation of mass for water and sediment. These equations relate the divergence of the 2D vector fields showing the unit-width discharge of water and sediment to the excess rainrate and tectonic uplift on the land surface. The 2D flow direction is taken to be opposite to the water- surface gradient vector. These notions are combined with a generalized Manning-type flow resistance formula and a generalized sediment transport law to give a closed mathematical system that can, in principle, be solved for all variables of interest: discharge of water and sediment, land surface height, vertically- averaged flow velocity, water depth, and shear stress. The hydraulic geometry equations (Leopold et. al, 1964, 1995) are used to incorporate width, depth, velocity, and slope of river channels as powers of the mean-annual river discharge. Combined, they give the unit- width discharge of the stream as a power, γ, of the water surface slope. The simplified steady-state model takes into account three components among those listed above: conservation of mass for water, flow opposite the gradient, and a slope-discharge exponent γ = -1 to reflect mature drainage networks. The mathematical representation of this model appears as a second-order hyperbolic partial differential equation (PDE) where the diffusivity is inversely proportional to the square of the local surface slope. The highly nonlinear nature of this PDE has made it very difficult to solve both analytically and numerically. We present simplistic analytic solutions to this equation which are used to test the validity of the numerical algorithms. We also present three such numerical approaches which have been used in solving the differential equation. The first is based on a
A Novel Numerical Approach for Generation and Propagation of Rotor-Stator Interaction Noise
NASA Astrophysics Data System (ADS)
Patel, Krishna
As turbofan engine designs move towards bypass ratios ≥12 and corresponding low pressure ratios, fan rotor blade tip Mach numbers are reduced, leading to rotor-stator interaction becoming an important contributor to tonal fan noise. For future aircraft configurations employing boundary layer ingestion, non-uniform flow enters the fan. The impact of such non-uniform flows on the generation and propagation of rotor-stator interaction tones has yet to be assessed. In this thesis, a novel approach is proposed to numerically predict the generation and propagation of rotor-stator interaction noise with distorted inflow. The approach enables a 42% reduction in computational cost compared to traditional approaches employing a sliding interface between the rotor and stator. Such an interface may distort rotor wakes and can cause non-physical acoustic wave reflections if time steps are not sufficiently small. Computational costs are reduced by modelling the rotor using distributed, volumetric body forces. This eliminates the need for a sliding interface and thus allows a larger time step size. The force model responds to local flow conditions and thus can capture the effects of long-wavelength flow distortions. Since interaction noise is generated by the incidence of the rotor wakes onto the stator vanes, the key challenge is to produce the wakes using a body force field since the rotor blades are not directly modelled. It is shown that such an approach can produce wakes by concentrating the viscous forces along streamtubes in the last 15% chord. The new approach to rotor wake generation is assessed on the GE R4 fan from NASA's Source Diagnostic Test, for which the computed overall aerodynamic performance matches the experiment to within 1%. The rotor blade wakes are generated with widths in excellent agreement and depths in fair agreement with the experiment. An assessment of modal sound power levels computed in the exhaust duct indicates that this approach can be used
Stratified flows with variable density: mathematical modelling and numerical challenges.
NASA Astrophysics Data System (ADS)
Murillo, Javier; Navas-Montilla, Adrian
2017-04-01
Stratified flows appear in a wide variety of fundamental problems in hydrological and geophysical sciences. They may involve from hyperconcentrated floods carrying sediment causing collapse, landslides and debris flows, to suspended material in turbidity currents where turbulence is a key process. Also, in stratified flows variable horizontal density is present. Depending on the case, density varies according to the volumetric concentration of different components or species that can represent transported or suspended materials or soluble substances. Multilayer approaches based on the shallow water equations provide suitable models but are not free from difficulties when moving to the numerical resolution of the governing equations. Considering the variety of temporal and spatial scales, transfer of mass and energy among layers may strongly differ from one case to another. As a consequence, in order to provide accurate solutions, very high order methods of proved quality are demanded. Under these complex scenarios it is necessary to observe that the numerical solution provides the expected order of accuracy but also converges to the physically based solution, which is not an easy task. To this purpose, this work will focus in the use of Energy balanced augmented solvers, in particular, the Augmented Roe Flux ADER scheme. References: J. Murillo , P. García-Navarro, Wave Riemann description of friction terms in unsteady shallow flows: Application to water and mud/debris floods. J. Comput. Phys. 231 (2012) 1963-2001. J. Murillo B. Latorre, P. García-Navarro. A Riemann solver for unsteady computation of 2D shallow flows with variable density. J. Comput. Phys.231 (2012) 4775-4807. A. Navas-Montilla, J. Murillo, Energy balanced numerical schemes with very high order. The Augmented Roe Flux ADER scheme. Application to the shallow water equations, J. Comput. Phys. 290 (2015) 188-218. A. Navas-Montilla, J. Murillo, Asymptotically and exactly energy balanced augmented flux
Rapid installation of numerical models in multiple parent codes
Brannon, R.M.; Wong, M.K.
1996-10-01
A set of``model interface guidelines``, called MIG, is offered as a means to more rapidly install numerical models (such as stress-strain laws) into any parent code (hydrocode, finite element code, etc.) without having to modify the model subroutines. The model developer (who creates the model package in compliance with the guidelines) specifies the model`s input and storage requirements in a standardized way. For portability, database management (such as saving user inputs and field variables) is handled by the parent code. To date, NUG has proved viable in beta installations of several diverse models in vectorized and parallel codes written in different computer languages. A NUG-compliant model can be installed in different codes without modifying the model`s subroutines. By maintaining one model for many codes, MIG facilitates code-to-code comparisons and reduces duplication of effort potentially reducing the cost of installing and sharing models.
Numerical Study of Nanophotolysis Approach for Breast Cancer
NASA Astrophysics Data System (ADS)
Ashiq, M. G. B.; Saeed, M. A.; Ibrahim, Noorddin; Shahid, M.; Tahir, B. A.
2012-11-01
Laser based cancer therapy of gold nanoparticles targeted breast tumor is an effective modality to kill cancer cells selectively without affecting healthy tissues. Nanophotolysis approach for selective smash up the breast cancer cells is used in the present study. Different parameters concerning nanophotolysis, such as the energy of nanobullets, velocity of the shock front, Coulomb pressure and nanosecond short pulse duration with absorption depth of gold foil have been discussed in detail. Results are suitable for breast tumor size 0.022 cm which approximately exists near the armpit of women.
Ensemble-type numerical uncertainty information from single model integrations
Rauser, Florian Marotzke, Jochem; Korn, Peter
2015-07-01
We suggest an algorithm that quantifies the discretization error of time-dependent physical quantities of interest (goals) for numerical models of geophysical fluid dynamics. The goal discretization error is estimated using a sum of weighted local discretization errors. The key feature of our algorithm is that these local discretization errors are interpreted as realizations of a random process. The random process is determined by the model and the flow state. From a class of local error random processes we select a suitable specific random process by integrating the model over a short time interval at different resolutions. The weights of the influences of the local discretization errors on the goal are modeled as goal sensitivities, which are calculated via automatic differentiation. The integration of the weighted realizations of local error random processes yields a posterior ensemble of goal approximations from a single run of the numerical model. From the posterior ensemble we derive the uncertainty information of the goal discretization error. This algorithm bypasses the requirement of detailed knowledge about the models discretization to generate numerical error estimates. The algorithm is evaluated for the spherical shallow-water equations. For two standard test cases we successfully estimate the error of regional potential energy, track its evolution, and compare it to standard ensemble techniques. The posterior ensemble shares linear-error-growth properties with ensembles of multiple model integrations when comparably perturbed. The posterior ensemble numerical error estimates are of comparable size as those of a stochastic physics ensemble.
NASA Astrophysics Data System (ADS)
Chen, Guang-Hao; Wang, Guo-Yu; Huang, Biao; Hu, Chang-Li; Wang, Zhi-Ying; Wang, Jian
2015-02-01
In this paper, a compressible fluid model is proposed to investigate dynamics of the turbulent cavitating flow over a Clark-Y hydrofoil. The numerical simulation is based on the homogeneous mixture approach coupled with filter-based density correction model (FBDCM) turbulence model and Zwart cavitation model. Considering the compressibility effect, the equation of state of each phase is introduced into the numerical model. The results show that the predicted results agree well with experimental data concerning the time-averaged lift/drag coefficient and shedding frequency. The quasi-periodic evolution of sheet/cloud cavitation and the resulting lift and drag are discussed in detail. Especially, the present compressible-mixture numerical model is capable of simulating the shock waves in the final stage of cavity collapse. It is found that the shock waves may cause the transient significant increase and decrease in lift and drag if the cavity collapses near the foil surface.
NASA Astrophysics Data System (ADS)
Hashemi, M. R.; Grilli, S. T.; Neill, S. P.
2016-02-01
Resource characterization studies at wave energy sites generally ignore the effect of tidal currents, due to the difficulties associated with running coupled wave-tide models. Further, there is a need to estimate the significance of wave-tide interaction effects on the wave power using simplified methods, before investing in time consuming and costly numerical models. Additionally, many wave buoy measurements are collected in deep waters, where wave-current interaction effects may not be significant; this makes validation of coupled models more challenging. Here, we give an overview of the application of simplified analytical methods as well as fully coupled wave-tide models to address this problem. Firstly, we present and validate a simplified analytical method, based on linear wave theory, to estimate the influence of tidal currents on the wave power resource. The method estimates the resulting increase (or decrease) in wave height and wavelength for opposing (or following) currents, as well as quantifying the change in wave power. Results demonstrate a high level of accuracy for the simplified analytical approach, which can thus be used as an efficient tool for making rapid estimates of likely tidal effects on the wave power resource. Secondly, we discuss the application of a coupled modelling system, COAWST (Coupled-Ocean-Atmosphere-Wave-Sediment Transport), and present issues such as computational cost, as well as the success of this approach in characterizing wave power in the presence of currents.
Numerical modelling of Glacial Lake Outburst Floods using physically based dam-breach models
NASA Astrophysics Data System (ADS)
Westoby, M. J.; Brasington, J.; Glasser, N. F.; Hambrey, M. J.; Reynolds, J. M.; Hassan, M. A. A. M.
2014-06-01
The rapid development and instability of moraine-dammed proglacial lakes is increasing the potential for the occurrence of catastrophic Glacial Lake Outburst Floods (GLOFs) in high-mountain regions. Advanced, physically-based numerical dam-breach models represent an improvement over existing methods for the derivation of breach outflow hydrographs. However, significant uncertainty surrounds the initial parameterisation of such models, and remains largely unexplored. We use a unique combination of numerical dam-breach and two-dimensional hydrodynamic modelling, employed with a Generalised Likelihood Uncertainty Estimation (GLUE) framework to quantify the degree of equifinality in dam-breach model output for the reconstruction of the failure of Dig Tsho, Nepal. Monte Carlo analysis was used to sample the model parameter space, and morphological descriptors of the moraine breach were used to evaluate model performance. Equifinal breach morphologies were produced by parameter ensembles associated with differing breach initiation mechanisms, including overtopping waves and mechanical failure of the dam face. The material roughness coefficient was discovered to exert a dominant influence over model performance. Percentile breach hydrographs derived from cumulative distribution function hydrograph data under- or overestimated total hydrograph volume and were deemed to be inappropriate for input to hydrodynamic modelling. Our results support the use of a Total Variation Diminishing solver for outburst flood modelling, which was found to be largely free of numerical instability and flow oscillation. Routing of scenario-specific optimal breach hydrographs revealed prominent differences in the timing and extent of inundation. A GLUE-based method for constructing likelihood-weighted maps of GLOF inundation extent, flow depth, and hazard is presented, and represents an effective tool for communicating uncertainty and equifinality in GLOF hazard assessment. However, future
Assessment of the MUSTA approach for numerical relativistic hydrodynamics
NASA Astrophysics Data System (ADS)
Blakely, P. M.; Nikiforakis, N.; Henshaw, W. D.
2015-03-01
Aims: We evaluate some approximations for solving the equations of special relativistic hydrodynamics within complex geometries. In particular, we assess the following schemes: the Generalized FORCE (GFORCE) and MUlti STAge (MUSTA) approaches which are used as the basis for a second-order-accurate Slope-LImited-Centred (SLIC) method. These do not require detailed knowledge of the characteristic structure of the system, but have the potential to be nearly as accurate as more expensive schemes which do require this knowledge. Methods: In order to treat complex geometries, we use multiple overlapping grids which allow the capturing of complex geometries while retaining the efficiencies associated with structured grids. Results: The schemes are evaluated using a suite of one dimensional problems some of which have known exact solutions, and it is shown that the schemes can be used at CFL numbers close to the theoretical stability limit. We compare the effects of the MUSTA approach when applied to two different schemes. The scheme is further validated on a number of problems involving complex geometries with overlapping grids.
A general numerical model for wave rotor analysis
NASA Technical Reports Server (NTRS)
Paxson, Daniel W.
1992-01-01
Wave rotors represent one of the promising technologies for achieving very high core temperatures and pressures in future gas turbine engines. Their operation depends upon unsteady gas dynamics and as such, their analysis is quite difficult. This report describes a numerical model which has been developed to perform such an analysis. Following a brief introduction, a summary of the wave rotor concept is given. The governing equations are then presented, along with a summary of the assumptions used to obtain them. Next, the numerical integration technique is described. This is an explicit finite volume technique based on the method of Roe. The discussion then focuses on the implementation of appropriate boundary conditions. Following this, some results are presented which first compare the numerical approximation to the governing differential equations and then compare the overall model to an actual wave rotor experiment. Finally, some concluding remarks are presented concerning the limitations of the simplifying assumptions and areas where the model may be improved.
A general numerical model for wave rotor analysis
NASA Astrophysics Data System (ADS)
Paxson, Daniel W.
1992-07-01
Wave rotors represent one of the promising technologies for achieving very high core temperatures and pressures in future gas turbine engines. Their operation depends upon unsteady gas dynamics and as such, their analysis is quite difficult. This report describes a numerical model which has been developed to perform such an analysis. Following a brief introduction, a summary of the wave rotor concept is given. The governing equations are then presented, along with a summary of the assumptions used to obtain them. Next, the numerical integration technique is described. This is an explicit finite volume technique based on the method of Roe. The discussion then focuses on the implementation of appropriate boundary conditions. Following this, some results are presented which first compare the numerical approximation to the governing differential equations and then compare the overall model to an actual wave rotor experiment. Finally, some concluding remarks are presented concerning the limitations of the simplifying assumptions and areas where the model may be improved.
Numerical Modelling of the Deep Impact Mission Experiment
NASA Technical Reports Server (NTRS)
Wuennemann, K.; Collins, G. S.; Melosh, H. J.
2005-01-01
NASA s Deep Impact Mission (launched January 2005) will provide, for the first time ever, insights into the interior of a comet (Tempel 1) by shooting a approx.370 kg projectile onto the surface of a comets nucleus. Although it is usually assumed that comets consist of a very porous mixture of water ice and rock, little is known about the internal structure and in particular the constitutive material properties of a comet. It is therefore difficult to predict the dimensions of the excavated crater. Estimates of the crater size are based on laboratory experiments of impacts into various target compositions of different densities and porosities using appropriate scaling laws; they range between 10 s of meters up to 250 m in diameter [1]. The size of the crater depends mainly on the physical process(es) that govern formation: Smaller sizes are expected if (1) strength, rather than gravity, limits crater growth; and, perhaps even more crucially, if (2) internal energy losses by pore-space collapse reduce the coupling efficiency (compaction craters). To investigate the effect of pore space collapse and strength of the target we conducted a suite of numerical experiments and implemented a novel approach for modeling porosity and the compaction of pores in hydrocode calculations.
Reinforced concrete structures loaded by snow avalanches : numerical and experimental approaches.
NASA Astrophysics Data System (ADS)
Ousset, I.; Bertrand, D.; Brun, M.; Limam, A.; Naaim, M.
2012-04-01
Today, due to the extension of occupied areas in mountainous regions, new strategies for risk mitigation have to be developed. In the framework of risk analysis, these latter have to take into account not only the natural hazard description but also the physical vulnerability of the exposed structures. From a civil engineering point of view, the dynamic behavior of column or portico was widely investigated especially in the case of reinforced concrete and steel. However, it is not the case of reinforced concrete walls for which only the in-plan dynamic behavior (shear behavior) has been studied in detail in the field of earthquake engineering. Therefore, the aim of this project is to study the behavior of reinforced concrete civil engineering structures submitted to out-of-plan dynamic loadings coming from snow avalanche interaction. Numerical simulations in 2D or 3D by the finite element method (FEM) are presented. The approach allows solving mechanical problems in dynamic condition involving none linearities (especially none linear materials). Thus, the structure mechanical response can be explored in controlled conditions. First, a reinforced concrete wall with a L-like shape is considered. The structure is supposed to represent a French defense structure dedicated to protect people against snow avalanches. Experimental pushover tests have been performed on a physical model. The experimental tests consisted to apply a uniform distribution of pressure until the total collapse of the wall. A 2D numerical model has been developed to simulate the mechanical response of the structure under quasi-static loading. Numerical simulations have been compared to experimental datas and results gave a better understanding of the failure mode of the wall. Moreover, the influence of several parameters (geometry and the mechanical properties) is also presented. Secondly, punching shear experimental tests have also been carried out. Reinforced concrete slabs simply supported have
Numerical modelling of steel tubes under oblique crushing forces
NASA Astrophysics Data System (ADS)
Ismail, A. E.; Rahman, M. Q. Abdul; Nezere, N.; Jamian, S.; Kamarudin, K. A.; Awang, M. K.; Nor, M. K. Mohd; Ibrahim, M. N.; Rasidi Ibrahim, M.; Zulafif Rahim, M.; Fahrul Hassan, Mohd; Nor, Nik Hisyamudin Muhd; Arifin, A. M. T.; Zaini Yunos, Muhamad
2017-08-01
This paper presents the numerical assessment of crushing responses of elliptical tubes under crushing forces. Based on the literature survey, tremendous amount of works on the axial crushing behaviour can be found. However, the studies on the oblique crushing responses are rarely found. Therefore, this work investigates numerically the elliptical tubes under compressions. The numerical model of the tubes are developed using ANSYS finite element program. Two important parameters are used such as elliptical ratios and oblique angles. The tubes are compressed quasi-statically and the force-displacement curves are extracted. Then, the area under the curves are calculated and it is represented the performances of energy absorptions. It is found numerically that the introductions of oblique angles during the crushing processes decrease the crushing performances. However, the elliptical-shaped tubes capable to enhance the energy absorption capabilities. On the other hand, the elliptical-shaped tubes produced the enhancement on the energy absorption capabilities.
Numerical Modeling of Large-Scale Rocky Coastline Evolution
NASA Astrophysics Data System (ADS)
Limber, P.; Murray, A. B.; Littlewood, R.; Valvo, L.
2008-12-01
, increases weathering and erosion around the headland, and eventually changes the headland into an embayment! Improvements to our modeling approach include refining the initial conditions. To create a fractal, immature rocky coastline, self-similar river networks with random side branches were drawn on the shoreline domain. River networks and side branches were scaled according to Horton's law and Tokunaga statistics, respectively, and each river pathway was assigned a simple exponential longitudinal profile. Topography was generated around the river networks to create drainage basins and, on a larger scale, represent a mountainous, fluvially-sculpted landscape. The resultant morphology was then flooded to a given elevation, leaving a fractal rocky coastline. In addition to the simulated terrain, actual digital elevation models will also be used to derive the initial conditions. Elevation data from different mountainous geomorphic settings such as the decaying Appalachian Mountains or actively uplifting Sierra Nevada can be effectively flooded to a given sea level, resulting in a fractal and immature coastline that can be input to the numerical model. This approach will offer insight into how rocky coastlines in different geomorphic settings evolve, and provide a useful complement to results using the simulated terrain.
Numerical hysteresis model for intermittent studies in unsaturated soils
NASA Astrophysics Data System (ADS)
Banerjee, M.
1986-07-01
In the present study, the use of one of the recent dependent domain models of capillary hysteresis in the numerical analysis of intermittent infiltration and redistribution of water in two types of soils (a sand and Rubicon Sandy Loam) has been shown. The numerical results for both the soils have been presented in terms of pressure head depth, moisture content depth and the pressure head-moisture content relationships. The capillary hysteresis model has been found to be very useful for the prediction of both wetting and drying scanning curves of various orders.
Numerical modeling of runback water on ice protected aircraft surfaces
NASA Technical Reports Server (NTRS)
Al-Khalil, Kamel M.; Keith, Theo G., Jr.; Dewitt, Kenneth J.
1992-01-01
A numerical simulation for 'running wet' aircraft anti-icing systems is developed. The model includes breakup of the water film, which exists in regions of direct impingement, into individual rivulets. The wetness factor distribution resulting from the film breakup and the rivulet configuration on the surface are predicted in the numerical solution procedure. The solid wall is modeled as a multilayer structure and the anti-icing system used is of the thermal type utilizing hot air and/or electrical heating elements embedded with the layers. Details of the calculation procedure and the methods used are presented.
Comparing Numerical Spall Simulations with a Nonlinear Spall Formation Model
NASA Astrophysics Data System (ADS)
Ong, L.; Melosh, H. J.
2012-12-01
Spallation accelerates lightly shocked ejecta fragments to speeds that can exceed the escape velocity of the parent body. We present high-resolution simulations of nonlinear shock interactions in the near surface. Initial results show the acceleration of near-surface material to velocities up to 1.8 times greater than the peak particle velocity in the detached shock, while experiencing little to no shock pressure. These simulations suggest a possible nonlinear spallation mechanism to produce the high-velocity, low show pressure meteorites from other planets. Here we pre-sent the numerical simulations that test the production of spall through nonlinear shock interactions in the near sur-face, and compare the results with a model proposed by Kamegai (1986 Lawrence Livermore National Laboratory Report). We simulate near-surface shock interactions using the SALES_2 hydrocode and the Murnaghan equation of state. We model the shock interactions in two geometries: rectangular and spherical. In the rectangular case, we model a planar shock approaching the surface at a constant angle phi. In the spherical case, the shock originates at a point below the surface of the domain and radiates spherically from that point. The angle of the shock front with the surface is dependent on the radial distance of the surface point from the shock origin. We model the target as a solid with a nonlinear Murnaghan equation of state. This idealized equation of state supports nonlinear shocks but is tem-perature independent. We track the maximum pressure and maximum velocity attained in every cell in our simula-tions and compare them to the Hugoniot equations that describe the material conditions in front of and behind the shock. Our simulations demonstrate that nonlinear shock interactions in the near surface produce lightly shocked high-velocity material for both planar and cylindrical shocks. The spall is the result of the free surface boundary condi-tion, which forces a pressure gradient
Numerical models of laser fusion of intestinal tissues.
Pearce, John A
2009-01-01
Numerical models of continuous wave Tm:YAG thermal fusion in rat intestinal tissues were compared to experiment. Optical and thermal FDM models that included tissue damage based on Arrhenius kinetics were used to predict birefringence loss in collagen as the standard of comparison. The models also predicted collagen shrinkage, jellification and water loss. The inclusion of variable optical and thermal properties is essential to achieve favorable agreement between predicted and measured damage boundaries.
Avedisian, C. T.; Presser, Cary; DesJardin, Paul Edward; Hewson, John C.; Yoon, Sam Sukgoo
2005-03-01
This study compares experimental measurements and numerical simulations of liquid droplets over heated (to a near surface temperature of 423 K) and unheated cylinders. The numerical model is based on an unsteady Reynolds-averaged Navier-Stokes (RANS) formulation using a stochastic separated flow (SSF) approach for the droplets that includes submodels for droplet dispersion, heat and mass transfer, and impact on a solid surface. The details of the droplet impact model are presented and the model is used to simulate water spray impingement on a cylinder. Computational results are compared with experimental measurements using phase Doppler interferometry (PDI).
Numerical modeling of wind turbine aerodynamic noise in the time domain.
Lee, Seunghoon; Lee, Seungmin; Lee, Soogab
2013-02-01
Aerodynamic noise from a wind turbine is numerically modeled in the time domain. An analytic trailing edge noise model is used to determine the unsteady pressure on the blade surface. The far-field noise due to the unsteady pressure is calculated using the acoustic analogy theory. By using a strip theory approach, the two-dimensional noise model is applied to rotating wind turbine blades. The numerical results indicate that, although the operating and atmospheric conditions are identical, the acoustical characteristics of wind turbine noise can be quite different with respect to the distance and direction from the wind turbine.
A numerical model and spreadsheet interface for pumping test analysis.
Johnson, G S; Cosgrove, D M; Frederick, D B
2001-01-01
Curve-matching techniques have been the standard method of aquifer test analysis for several decades. A variety of techniques provide the capability of evaluating test data from confined, unconfined, leaky aquitard, and other conditions. Each technique, however, is accompanied by a set of assumptions, and evaluation of a combination of conditions can be complicated or impossible due to intractable mathematics or nonuniqueness of the solution. Numerical modeling of pumping tests provides two major advantages: (1) the user can choose which properties to calibrate and what assumptions to make; and (2) in the calibration process the user is gaining insights into the conceptual model of the flow system and uncertainties in the analysis. Routine numerical modeling of pumping tests is now practical due to computer hardware and software advances of the last decade. The RADFLOW model and spreadsheet interface presented in this paper is an easy-to-use numerical model for estimation of aquifer properties from pumping test data. Layered conceptual models and their properties are evaluated in a trial-and-error estimation procedure. The RADFLOW model can treat most combinations of confined, unconfined, leaky aquitard, partial penetration, and borehole storage conditions. RADFLOW is especially useful in stratified aquifer systems with no identifiable lateral boundaries. It has been verified to several analytical solutions and has been applied in the Snake River Plain Aquifer to develop and test conceptual models and provide estimates of aquifer properties. Because the model assumes axially symmetrical flow, it is limited to representing multiple aquifer layers that are laterally continuous.
Development of Numerical Grids for UZ Flow and Transport Modeling
J. Hinds
2001-12-18
This Analysis/Model Report (AMR) describes the methods used to develop numerical grids of the unsaturated hydrogeologic system beneath Yucca Mountain. Numerical grid generation is an integral part of the development of a complex, three-dimensional (3-D) model, such as the Unsaturated-Zone Flow and Transport Model (UZ Model) of Yucca Mountain. The resulting numerical grids, developed using current geologic, hydrogeologic, and mineralogic data, provide the necessary framework to: (1) develop calibrated hydrogeologic property sets and flow fields, (2) test conceptual hypotheses of flow and transport, and (3) predict flow and transport behavior under a variety of climatic and thermal loading conditions. Revision 00 of the work described herein follows the planning and work direction outlined in the ''Development of Numerical Grids for UZ Flow and Transport Modeling'' (CRWMS M&O 1999c). The technical scope, content, and management of ICN 01 of this AMR is currently controlled by the planning document, ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (BSC 2001a). The scope for the TBV resolution actions in this ICN is described in the ''Technical Work Plan for: Integrated Management of Technical Product Input Department'' (BSC 2001 b, Addendum B, Section 4.1). The steps involved in numerical grid development include: (1) defining the location of important calibration features, (2) determining model grid layers and fault geometry based on the Geologic Framework Model (GFM), the Integrated Site Model (ISM), and definition of hydrogeologic units (HGUs), (3) analyzing and extracting GFM and ISM data pertaining to layer contacts and property distributions, (4) discretizing and refining the two-dimensional (2-D), plan-view numerical grid, (5) generating the 3-D grid with finer resolution at the repository horizon and within the Calico Hills nonwelded (CHn) hydrogeologic unit, and (6) formulating the dual-permeability mesh. The products
Accuracy evaluation of a numerical simulation model of nasal airflow.
Lu, Jiuxing; Han, Demin; Zhang, Luo
2014-05-01
Our numerical simulation model provides an accurate reflection of nasal airflow, and the results were validated by clinical measurements. To evaluate the accuracy of a numerical simulation model of nasal airflow. Ten volunteers with normal nasal cavities underwent CT, acoustic rhinometry, and rhinomanometry. CT data were uploaded into Mimics, ICEM-CFD, Fluent, and CFD-Post software for three-dimensional modeling, finite element grid division, transient calculations, and analysis, respectively. Velocity and pressure data of airflow were obtained during the normal respiratory cycle. The accuracy of the simulation was evaluated by two methods: acoustic rhinometry measurements were used to evaluate the accuracy of the anatomic model, and rhinomanometry measurements were used to evaluate the accuracy of the nasal resistance values obtained by numerical simulation. There were no significant differences between the values describing the model and the acoustic rhinometry measurements, the nasal resistance values obtained by numerical simulation. The airflow through the nasal cavity was mainly laminar. The maximum velocities were measured at the nasal valve, the amplitudes of all velocity curves at locations beyond the nasal valve were reduced. The amplitudes of the pressure curves increased from the front to the back of the airway.
Numerical Simulation and Cold Modeling experiments on Centrifugal Casting
NASA Astrophysics Data System (ADS)
Keerthiprasad, Kestur Sadashivaiah; Murali, Mysore Seetharam; Mukunda, Pudukottah Gopaliengar; Majumdar, Sekhar
2011-02-01
In a centrifugal casting process, the fluid flow eventually determines the quality and characteristics of the final product. It is difficult to study the fluid behavior here because of the opaque nature of melt and mold. In the current investigation, numerical simulations of the flow field and visualization experiments on cold models have been carried out for a centrifugal casting system using horizontal molds and fluids of different viscosities to study the effect of different process variables on the flow pattern. The effects of the thickness of the cylindrical fluid annulus formed inside the mold and the effects of fluid viscosity, diameter, and rotational speed of the mold on the hollow fluid cylinder formation process have been investigated. The numerical simulation results are compared with corresponding data obtained from the cold modeling experiments. The influence of rotational speed in a real-life centrifugal casting system has also been studied using an aluminum-silicon alloy. Cylinders of different thicknesses are cast at different rotational speeds, and the flow patterns observed visually in the actual castings are found to be similar to those recorded in the corresponding cold modeling experiments. Reasonable agreement is observed between the results of numerical simulation and the results of cold modeling experiments with different fluids. The visualization study on the hollow cylinders produced in an actual centrifugal casting process also confirm the conclusions arrived at from the cold modeling experiments and numerical simulation in a qualitative sense.
Numerical model of Fanuc AM100iB robot
NASA Astrophysics Data System (ADS)
Cholewa, A.; Świder, J.; Zbilski, A.
2016-08-01
The article presents a numerical model of Fanuc AM 100iB robot, prepared in the form of a block diagram in Simulink software, using the SimMechanics toolbox. The main task of the numerical model of Fanuc AM 100iB robot is to calculate the value of torques putting a load on motor shafts, and to calculate the values of kinematic parameters of the robot's arms in real time and in interactive mode. The values and format of torques putting a load on subsequent joints, and then on the motor shafts, resulted from the effect of the simultaneous action of all torques and the delay, resulting from the implementation of numerical calculations in real time. The numerical model developed is a result of design focused on recreating the effects of simultaneous action of all these factors, which are present in the actual drives and affect the consumption of electricity. A very important criterion, taken into account when designing the model, was also its computational efficiency. In addition, the model was used to visualise the work of the tested machine in three-dimensional space.
NASA Astrophysics Data System (ADS)
Graham, Jason; Meneveau, Charles
2012-12-01
Simulating turbulent flows over objects characterized by hierarchies of length-scales poses special challenges associated with the cost of resolving small-scale elements. If these are treated as subgrid-scale elements, their effects on the resolved scales must be captured realistically. Most importantly, the associated drag forces must be parameterized. Prior work [S. Chester, C. Meneveau, and M. B. Parlange, "Modeling turbulent flow over fractal trees with renormalized numerical simulation," J. Comput. Phys. 225, 427-448 (2007), 10.1016/j.jcp.2006.12.009] proposed a technique called renormalized numerical simulation (RNS), which is applicable to objects that display scale-invariant geometric (fractal) properties. The idea of RNS is similar to that of the dynamic model used in large eddy simulation to determine model parameters for the subgrid-stress tensor model in the bulk of the flow. In RNS, drag forces from the resolved elements that are obtained during the simulation are re-scaled appropriately by determining drag coefficients that are then applied to specify the drag forces associated with the subgrid-scale elements. The technique has already been applied to model turbulent flow over a canopy of fractal trees [S. Chester, C. Meneveau, and M. B. Parlange, "Modeling turbulent flow over fractal trees with renormalized numerical simulation," J. Comput. Phys. 225, 427-448 (2007), 10.1016/j.jcp.2006.12.009], using a particular set of assumptions in evaluating the drag coefficient. In the current work we introduce a generalized framework for describing and implementing the RNS methodology. Furthermore, we describe various other possible practical implementations of RNS that differ on important, technical aspects related to (1) time averaging, (2) spatial localization, and (3) numerical representation of the drag forces. As part of this study, several RNS formulations are presented and compared. The various models are first implemented and compared in simulations of
Numerical characterization and modeling of adiabatic slot film cooling
NASA Astrophysics Data System (ADS)
Voegele, Andrew
Film cooling is a technique used to protect critical surfaces in combustors, thrust chambers, turbines and nozzles from hot, chemically reacting gases. Accurately predicting the film's performance is especially challenging in the vicinity of the wall and the film injection plane due to the complex interactions of two highly turbulent, shearing, boundary layer flows. Properly characterizing the streams at the inlet of a numerical simulation and the choice of turbulence model are crucial to accurately predicting the decay of the film. To address these issues, this study employs a RANS solver that is used to model a film cooled wall. Menter's baseline model, and shear-stress transport model and the Spalart-Allmaras model are employed to determine the effect on film cooling predictions. Several methods for prescribing the inlet planes are explored. These numerical studies are compared with experimental data obtained in a UMD film cooling wind tunnel.
Numerical modeling of consolidation processes in hydraulically deposited soils
NASA Astrophysics Data System (ADS)
Brink, Nicholas Robert
Hydraulically deposited soils are encountered in many common engineering applications including mine tailing and geotextile tube fills, though the consolidation process for such soils is highly nonlinear and requires the use of advanced numerical techniques to provide accurate predictions. Several commercially available finite element codes poses the ability to model soil consolidation, and it was the goal of this research to assess the ability of two of these codes, ABAQUS and PLAXIS, to model the large-strain, two-dimensional consolidation processes which occur in hydraulically deposited soils. A series of one- and two-dimensionally drained rectangular models were first created to assess the limitations of ABAQUS and PLAXIS when modeling consolidation of highly compressible soils. Then, geotextile tube and TSF models were created to represent actual scenarios which might be encountered in engineering practice. Several limitations were discovered, including the existence of a minimum preconsolidation stress below which numerical solutions become unstable.
Numerical Model Studies of the Martian Mesoscale Circulations
NASA Technical Reports Server (NTRS)
Segal, Moti; Arritt, Raymond W.
1997-01-01
The study objectives were to evaluate by numerical modeling various possible mesoscale circulation on Mars and related atmospheric boundary layer processes. The study was in collaboration with J. Tillman of the University of Washington (who supported the study observationally). Interaction has been made with J. Prusa of Iowa State University in numerical modeling investigation of dynamical effects of topographically-influenced flow. Modeling simulations included evaluations of surface physical characteristics on: (i) the Martian atmospheric boundary layer and (ii) their impact on thermally and dynamically forced mesoscale flows. Special model evaluations were made in support of selection of the Pathfinder landing sites. J. Tillman's finding of VL-2 inter-annual temperature difference was followed by model simulations attempting to point out the forcing for this feature. Publication of the results in the reviewed literature in pending upon completion of the manuscripts in preparation as indicated later.
A numerical approach to controller design for the ACES facility
NASA Technical Reports Server (NTRS)
Frazier, W. Garth; Irwin, R. Dennis
1993-01-01
In recent years the employment of active control techniques for improving the performance of systems involving highly flexible structures has become a topic of considerable research interest. Most of these systems are quite complicated, using multiple actuators and sensors, and possessing high order models. The majority of analytical controller synthesis procedures capable of handling multivariable systems in a systematic way require considerable insight into the underlying mathematical theory to achieve a successful design. This insight is needed in selecting the proper weighting matrices or weighting functions to cast what is naturally a multiple constraint satisfaction problem into an unconstrained optimization problem. Although designers possessing considerable experience with these techniques have a feel for the proper choice of weights, others may spend a significant amount of time attempting to find an acceptable solution. Another disadvantage of such procedures is that the resulting controller has an order greater than or equal to that of the model used for the design. Of course, the order of these controllers can often be reduced, but again this requires a good understanding of the theory involved.
Teaching Modeling with Partial Differential Equations: Several Successful Approaches
ERIC Educational Resources Information Center
Myers, Joseph; Trubatch, David; Winkel, Brian
2008-01-01
We discuss the introduction and teaching of partial differential equations (heat and wave equations) via modeling physical phenomena, using a new approach that encompasses constructing difference equations and implementing these in a spreadsheet, numerically solving the partial differential equations using the numerical differential equation…
Teaching Modeling with Partial Differential Equations: Several Successful Approaches
ERIC Educational Resources Information Center
Myers, Joseph; Trubatch, David; Winkel, Brian
2008-01-01
We discuss the introduction and teaching of partial differential equations (heat and wave equations) via modeling physical phenomena, using a new approach that encompasses constructing difference equations and implementing these in a spreadsheet, numerically solving the partial differential equations using the numerical differential equation…
Development, validation and application of numerical space environment models
NASA Astrophysics Data System (ADS)
Honkonen, Ilja
2013-10-01
Currently the majority of space-based assets are located inside the Earth's magnetosphere where they must endure the effects of the near-Earth space environment, i.e. space weather, which is driven by the supersonic flow of plasma from the Sun. Space weather refers to the day-to-day changes in the temperature, magnetic field and other parameters of the near-Earth space, similarly to ordinary weather which refers to changes in the atmosphere above ground level. Space weather can also cause adverse effects on the ground, for example, by inducing large direct currents in power transmission systems. The performance of computers has been growing exponentially for many decades and as a result the importance of numerical modeling in science has also increased rapidly. Numerical modeling is especially important in space plasma physics because there are no in-situ observations of space plasmas outside of the heliosphere and it is not feasible to study all aspects of space plasmas in a terrestrial laboratory. With the increasing number of computational cores in supercomputers, the parallel performance of numerical models on distributed memory hardware is also becoming crucial. This thesis consists of an introduction, four peer reviewed articles and describes the process of developing numerical space environment/weather models and the use of such models to study the near-Earth space. A complete model development chain is presented starting from initial planning and design to distributed memory parallelization and optimization, and finally testing, verification and validation of numerical models. A grid library that provides good parallel scalability on distributed memory hardware and several novel features, the distributed cartesian cell-refinable grid (DCCRG), is designed and developed. DCCRG is presently used in two numerical space weather models being developed at the Finnish Meteorological Institute. The first global magnetospheric test particle simulation based on the
Numerical Techniques and Cloud-Scale Processes for High-Resolution Models
2009-09-30
Mesoscale Prediction System (COAMPS®1). It is anticipated that to meet future Navy requirements, next generation ap- proaches to numerical...Our approach is to follow a methodical plan in the development and testing of a nonhydrostatic micro- scale modeling system that will leverage the...processes for mesoscale and microscale models. Validation and evaluation of the modeling system will be per- formed using datasets of opportunity
Oscillation characteristics of endodontic files: numerical model and its validation.
Verhaagen, Bram; Lea, Simon C; de Bruin, Gerrit J; van der Sluis, Luc W M; Walmsley, A Damien; Versluis, Michel
2012-11-01
During a root canal treatment, an antimicrobial fluid is injected into the root canal to eradicate all bacteria from the root canal system. Agitation of the fluid using an ultrasonically vibrating miniature file results in a significant improvement in the cleaning efficacy over conventional syringe irrigation. Numerical analysis of the oscillation characteristics of the file, modeled as a tapered, driven rod, shows a sinusoidal wave pattern with an increase in amplitude and decrease in wavelength toward the free end of the file. Measurements of the file oscillation with a scanning laser vibrometer show good agreement with the numerical simulation. The numerical model of endodontic file oscillation has the potential for predicting the oscillation pattern and fracture likeliness of various file types and the acoustic streaming they induce during passive ultrasonic irrigation.
Numerical Techniques for Coupled Ring Current - Radiation Belts Modelling
NASA Astrophysics Data System (ADS)
Aseev, Nikita; Shprits, Yuri; Kellerman, Adam; Drozdov, Alexander
2016-04-01
The dynamics of electrons in the Earth's radiation belts can be described by the Fokker-Planck equation, which includes radial and local diffusion processes. The Versatile Electron Radiation Belt (VERB) code was developed to solve the Fokker-Planck equation for electron PSD. It incorporates a range of numerical techniques, which are appropriate for this purpose. The code has been recently extended to include convection and now solves the convection-diffusion problem in 4D. This report is devoted to several numerical algorithms for modeling of the Earth's radiation belts. We concentrate on a comparison of 3rd and 9th-order schemes for solution of an advection problem, and show some results on the basis of the numerical solution of the local diffusion problem including mixed terms in 2D. Recent 4D modeling of storm events using the VERB-4D code will be also presented.
Numerical model of sonic boom in 3D kinematic turbulence
NASA Astrophysics Data System (ADS)
Coulouvrat, François; Luquet, David; Marchiano, Régis
2015-10-01
Sonic boom is one of the key issues to be considered in the development of future supersonic or hypersonic civil aircraft concepts. The classical sonic boom, typical for Concorde with an N-wave shape and a ground amplitude of the order of 100 Pa, prevents overland flight. Future concepts target carefully shaped sonic booms with low amplitude weak shocks. However, sonic boom when perceived at the ground level is influenced not only by the aircraft characteristics, but also by atmospheric propagation. In particular, the effect of atmospheric turbulence on sonic boom propagation near the ground is not well characterized. Flight tests performed as early as the 1960s demonstrated that classical sonic booms are sensitive to atmospheric turbulence. However, this sensitivity remains only partially understood. This is related to the fact that i) turbulence is a random process that requires a statistical approach, ii) standard methods used to predict sonic booms, mainly geometrical acoustics based on ray tracing, are inadequate within the turbulent planetary boundary layer. Moreover, the ray theory fails to predict the acoustical field in many areas of interest, such as caustics or shadow zones. These zones are of major interest for sonic boom acceptability (highest levels, lateral extent of zone of impact). These limitations outline the need for a numerical approach that is sufficiently efficient to perform a large number of realizations for a statistical approach, but that goes beyond the limitations of ray theory. With this in view, a 3D one-way numerical method solving a nonlinear scalar wave equation established for heterogeneous, moving and absorbing atmosphere, is used to assess the effects of a 3D kinematic turbulence on sonic boom in various configurations. First, a plane N-wave is propagated in the free field through random realizations of kinematic fluctuations. Then the case of a more realistic Atmospheric Boundary Layer (ABL) is investigated, with a mean
An improved numerical model for wave rotor design and analysis
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.; Wilson, Jack
1992-01-01
A numerical model has been developed which can predict both the unsteady flows within a wave rotor and the steady averaged flows in the ports. The model is based on the assumptions of one-dimensional, unsteady, and perfect gas flow. Besides the dominant wave behavior, it is also capable of predicting the effects of finite tube opening time, leakage from the tube ends, and viscosity. The relative simplicity of the model makes it useful for design, optimization, and analysis of wave rotor cycles for any application. This paper discusses some details of the model and presents comparisons between the model and two laboratory wave rotor experiments.
An improved numerical model for wave rotor design and analysis
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.; Wilson, Jack
1993-01-01
A numerical model has been developed which can predict both the unsteady flows within a wave rotor and the steady averaged flows in the ports. The model is based on the assumptions of one-dimensional, unsteady, and perfect gas flow. Besides the dominant wave behavior, it is also capable of predicting the effects of finite tube opening time, leakage from the tube ends, and viscosity. The relative simplicity of the model makes it useful for design, optimization, and analysis of wave rotor cycles for any application. This paper discusses some details of the model and presents comparisons between the model and two laboratory wave rotor experiments.
Modified Numerical Simulation Model of Blood Flow in Bend
Liu, X; Zhou, X; Hao, X; Sang, X
2015-01-01
ABSTRACT The numerical simulation model of blood flow in bend is studied in this paper. The curvature modification is conducted for the blood flow model in bend to obtain the modified blood flow model in bend. The modified model is verified by U tube. By comparing the simulation results with the experimental results obtained by measuring the flow data in U tube, it was found that the modified blood flow model in bend can effectively improve the prediction accuracy of blood flow data affected by the curvature effect. PMID:27398727
Numerical study on the sequential Bayesian approach for radioactive materials detection