Science.gov

Sample records for approx constant applicable

  1. A CONSTANT LIMITING MASS SCALE FOR FLAT EARLY-TYPE GALAXIES FROM z {approx} 1 TO z = 0: DENSITY EVOLVES BUT SHAPES DO NOT

    SciTech Connect

    Holden, Bradford P.; Franx, Marijn E-mail: vdwel@mpia.de E-mail: franx@strw.leidenuniv.nl

    2012-04-20

    We measure the evolution in the intrinsic shape distribution of early-type galaxies from z {approx} 1 to z {approx} 0 by analyzing their projected axis-ratio distributions. We extract a low-redshift sample (0.04 < z < 0.08) of early-type galaxies with very low star formation rates from the Sloan Digital Sky Survey, based on a color-color selection scheme and verified through the absence of emission lines in the spectra. The inferred intrinsic shape distribution of these early-type galaxies is strongly mass dependent: the typical short-to-long intrinsic axis ratio of high-mass early-type galaxies (>10{sup 11} M{sub Sun }) is 2:3, whereas at masses below 10{sup 11} M{sub Sun} this ratio narrows to 1:3, or more flattened galaxies. In an entirely analogous manner, we select a high-redshift sample (0.6 < z < 0.8) from two deep-field surveys with multi-wavelength and Hubble Space Telescope/Advanced Camera for Surveys imaging: GEMS and COSMOS. We find a seemingly universal mass of {approx}10{sup 11} M{sub Sun} for highly flattened early-type systems at all redshifts. This implies that the process that grows an early-type galaxy above this ceiling mass, irrespective of cosmic epoch, involves forming round systems. Using both parametric and non-parametric tests, we find no evolution in the projected axis-ratio distribution for galaxies with masses >3 Multiplication-Sign 10{sup 10} M{sub Sun} with redshift. At the same time, our samples imply an increase of 2-3 Multiplication-Sign in comoving number density for early-type galaxies at masses >3 Multiplication-Sign 10{sup 10} M{sub Sun }, in agreement with previous studies. Given the direct connection between the axis-ratio distribution and the underlying bulge-to-disk ratio distribution, our findings imply that the number density evolution of early-type galaxies is not exclusively driven by the emergence of either bulge- or disk-dominated galaxies, but rather by a balanced mix that depends only on the stellar mass of the

  2. High dielectric constant polymer nanocomposites for embedded capacitor applications

    NASA Astrophysics Data System (ADS)

    Lu, Jiongxin

    Driven by ever growing demands of miniaturization, increased functionality, high performance and low cost for microelectronic products and packaging, embedded passives will be one of the key emerging techniques for realizing the system integration which offer various advantages over traditional discrete components. Novel materials for embedded capacitor applications are in great demand, for which a high dielectric constant ( k), low dielectric loss and process compatibility with printed circuit boards are the most important prerequisites. To date, no available material satisfies all these prerequisites and research is needed to develop materials for embedded capacitor applications. Conductive filler/polymer composites are likely candidate material because they show a dramatic increase in their dielectric constant close to the percolation threshold. One of the major hurdles for this type of high-k composites is the high dielectric loss inherent in these systems. In this research, material and process innovations were explored to design and develop conductive filler/polymer nanocomposites based on nanoparticles with controlled parameters to fulfill the balance between sufficiently high-k and low dielectric loss, which satisfied the requirements for embedded capacitor applications. This work involved the synthesis of the metal nanoparticles with different parameters including size, size distribution, aggregation and surface properties, and an investigation on how these varied parameters impact the dielectric properties of the high-k nanocomposites incorporated with these metal nanoparticles. The dielectric behaviors of the nanocomposites were studied systematically over a range of frequencies to determine the dependence of dielectric constant, dielectric loss tangent and dielectric strength on these parameters.

  3. IMPACT OF CHANDRA CALIBRATION UNCERTAINTIES ON GALAXY CLUSTER TEMPERATURES: APPLICATION TO THE HUBBLE CONSTANT

    SciTech Connect

    Reese, Erik D.; Kawahara, Hajime; Suto, Yasushi; Kitayama, Tetsu; Ota, Naomi; Sasaki, Shin

    2010-09-20

    We perform a uniform, systematic X-ray spectroscopic analysis of a sample of 38 galaxy clusters with three different Chandra calibrations. The temperatures change systematically between calibrations. Cluster temperatures change on average by roughly {approx}6% for the smallest changes and roughly {approx}13% for the more extreme changes between calibrations. We explore the effects of the Chandra calibration on cluster spectral properties and the implications on Sunyaev-Zel'dovich effect (SZE) and X-ray determinations of the Hubble constant. The Hubble parameter changes by +10% and -13% between the current calibration and two previous Chandra calibrations, indicating that changes in the cluster temperature basically explain the entire change in H{sub 0}. Although this work focuses on the difference in spectral properties and resultant Hubble parameters between the calibrations, it is intriguing to note that the newer calibrations favor a lower value of the Hubble constant, H{sub 0} {approx} 60 km s{sup -1} Mpc{sup -1}, typical of results from SZE/X-ray distances. Both galaxy clusters themselves and the details of the instruments must be known precisely to enable reliable precision cosmology with clusters, which will be feasible with combined efforts from ongoing observations and planned missions and observatories covering a wide range of wavelengths.

  4. A New Application for Radioimmunoassay: Measurement of Thermodynamic Constants.

    ERIC Educational Resources Information Center

    Angstadt, Carol N.; And Others

    1983-01-01

    Describes a laboratory experiment in which an equilibrium radioimmunoassay (RIA) is used to estimate thermodynamic parameters such as equilibrium constants. The experiment is simple and inexpensive, and it introduces a technique that is important in the clinical chemistry and research laboratory. Background information, procedures, and results are…

  5. Application of dielectric constant measurements to radar imagery interpretation

    NASA Technical Reports Server (NTRS)

    Bryan, M. L.; Larson, R. W.

    1973-01-01

    The author has identified the following significant results. Although it is readily recognized that there is a need for ground truth to provide adequate guidance for remote sensing data interpretation, it is noted that, in terms of radar remote sensing, this ground truth is often inadequate. It is necessary to make basic electrical and physical measurements of the surface and to some depth below it. A brief outline is presented of a ground truth scheme which uses measurements of the dielectric constant. Two portable instruments were designed specifically for this purpose; these were: (1) a Q-meter for measurement of dielectric constant and loss tangent; and (2) an instrument to measure electrical properties of the two operating frequencies of the imaging radar. Although extensive data are lacking, several general cases of radar-earth surface and interaction are described; also, examples of radar imagery and some data on ice and snow are presented. It is concluded that the next logical step is to begin to quantify the radar ground truth in preparation for machine interpretation and automatic data processing of the radar imagery.

  6. Effect of the distribution of anisotropy constants on hysteresis losses for magnetic hyperthermia applications

    NASA Astrophysics Data System (ADS)

    Vallejo-Fernandez, G.; O'Grady, K.

    2013-09-01

    Magnetic hyperthermia using magnetic nanoparticles is a potential remedial therapy for the reduction of cancer and other tumours. The dominant heating mechanism is hysteresis heating. This means that control of the particle size distribution is essential. However, control of the anisotropy dispersion is also required. We have calculated the effect of the anisotropy distribution on the hysteresis heating in magnetic nanoparticles for hyperthermia applications. Where there is a wide distribution of anisotropy constants the heat output is controlled by the distribution of anisotropy constants. This effect is significant in systems such as magnetite particles where shape anisotropy dominates.

  7. Quantum theory of the dielectric constant of a magnetized plasma and astrophysical applications. I.

    NASA Technical Reports Server (NTRS)

    Canuto, V.; Ventura, J.

    1972-01-01

    A quantum mechanical treatment of an electron plasma in a constant and homogeneous magnetic field is considered, with the aim of (1) defining the range of validity of the magnetoionic theory (2) studying the deviations from this theory, in applications involving high densities, and intense magnetic field. While treating the magnetic field exactly, a perturbation approach in the photon field is used to derive general expressions for the dielectric tensor. Numerical estimates on the range of applicability of the magnetoionic theory are given for the case of the 'one-dimensional' electron gas, where only the lowest Landau level is occupied.

  8. rp Process and Masses of N{approx_equal}Z{approx_equal}34 Nuclides

    SciTech Connect

    Savory, J.; Schury, P.; Bachelet, C.; Block, M.; Bollen, G.; Facina, M.; Folden, C. M. III; Guenaut, C.; Kwan, E.; Kwiatkowski, A. A.; Morrissey, D. J.; Pang, G. K.; Prinke, A.; Ringle, R.; Schatz, H.; Schwarz, S.; Sumithrarachchi, C. S.

    2009-04-03

    High-precision Penning-trap mass measurements of the N{approx_equal}Z{approx_equal}34 nuclides {sup 68}Se, {sup 70}Se, {sup 70m}Br, and {sup 71}Br were performed, reaching experimental uncertainties of 0.5-15 keV. The new and improved mass data together with theoretical Coulomb displacement energies were used as input for rp process network calculations. An increase in the effective lifetime of the waiting point nucleus {sup 68}Se was found, and more precise information was obtained on the luminosity during a type I x-ray burst along with the final elemental abundances after the burst.

  9. Second order rate constants for intramolecular conversions: Application to gas-phase NMR relaxation times

    NASA Astrophysics Data System (ADS)

    Bauer, S. H.; Lazaar, K. I.

    1983-09-01

    The usually quoted expression for the second order rate constant, for a unimolecular reaction at the low pressure limit, is valid only for strictly irreversible processes. Its application to isomerization reactions (which are to some extent reversible) is demonstrably in error; corrected expressions have been published. Attention is directed to intramolecular conversions over low barriers, for which the inappropriateness of the unidirectional expression becomes obvious. For such isomerizations we propose a model which incorporates only operationally observable states, so that an essential conceptual ambiguity is avoided. Use of this model is illustrated for the syn⇄anti conversions of methyl nitrite, derived from a gas phase NMR coalescence curve (Mc:Tc). The present data suggest that during isomerization the alkyl nitrites may not be completely ergodic on a time scale of 10-9 s. A regional phase-space model is proposed which has the appropriate formalism to account for this behavior.

  10. Pure Silica Zeolite Beta Membrane: A Potential Low Dielectric Constant Material For Microprocessor Application

    NASA Astrophysics Data System (ADS)

    Fong, Yeong Yin; Bhatia, Subhash

    The semiconductor industry needs low dielectric constant (low k-value) materials for more advance microprocessor and chips by reducing the size of the device features. In fabricating these contents, a new material with lower k-value than conventional silica (k = 3.9-4.2) is needed in order to improve the circuit performance. The choice of the inorganic zeolite membrane is an attractive option for low k material and suitable for microprocessor applications. A pure silica zeolite beta membrane was synthesized and coated on non-porous stainless steel support using insitu crystallization in the presence of tetraethylammonium hydroxide, TEA (OH), as structure directing agent, fumed silica, HF and deionized water at pH value of 9. The crystallization was carried out for the duration of 14 days under hydrothermal conditions at 130°C. The membrane was characterized by thermogravimetric analysis (TGA), nitrogen adsorption and Scanning Electron Microscope (SEM). SEM results show a highly crystalline; with a truncated square bipyramidal morphology of pure silica zeolite beta membrane strongly adhered on the non-porous stainless steel support. In the present work, the k-value of the membrane was measured as 2.64 which make it suitable for the microprocessor applications.

  11. The application of constant recycle solids concentration in activated sludge process.

    PubMed

    Bonotan-Dura, F M; Yang, P Y

    1976-02-01

    The applicability of the model derived by Ramanathan and Gaudy (Biotechnol. Bioeng., 11, 207, (1969)) for completely mixed activated sludge treatment holding the recycle solids concentration as a system constant was investigated using an actual industrial organic wastewater. Short-term experiments were conducted at various dilution rates (1/8, 1/6, 1/4, 1/2, 1/1.5 hr-1) for two recycle solids concentration values (5000 and 7000 mg/liter). The influent substrate concentration was maintained at 1000 mg/liter COD and the hydraulic recycle ratio- alpha, was kept at 0.3. It was found that for bottling plant (Pepsi Cola) wastewaters, a steady state with respect to reactor biological solids and effluent COD, at different dilution rates, could be attained, lending experimental evidence to the assumption that a steady state could be reached in developing the model and also affecting the applicability of the model in industrial organic wastewater. The reactor biological solids and effluent COD calculated from the model closely agreed with the observed values at dilution rates lower than 0.5 hr-1. Operation at dilution rates higher than 0.5 hr-1 will washout the biological solids from the reactor and the recycle substrate concentration will be apparent if the concentration of XR were not increased.

  12. The application of constant recycle solids concentration in activated sludge process.

    PubMed

    Bonotan-Dura, F M; Yang, P Y

    1976-02-01

    The applicability of the model derived by Ramanathan and Gaudy (Biotechnol. Bioeng., 11, 207, (1969)) for completely mixed activated sludge treatment holding the recycle solids concentration as a system constant was investigated using an actual industrial organic wastewater. Short-term experiments were conducted at various dilution rates (1/8, 1/6, 1/4, 1/2, 1/1.5 hr-1) for two recycle solids concentration values (5000 and 7000 mg/liter). The influent substrate concentration was maintained at 1000 mg/liter COD and the hydraulic recycle ratio- alpha, was kept at 0.3. It was found that for bottling plant (Pepsi Cola) wastewaters, a steady state with respect to reactor biological solids and effluent COD, at different dilution rates, could be attained, lending experimental evidence to the assumption that a steady state could be reached in developing the model and also affecting the applicability of the model in industrial organic wastewater. The reactor biological solids and effluent COD calculated from the model closely agreed with the observed values at dilution rates lower than 0.5 hr-1. Operation at dilution rates higher than 0.5 hr-1 will washout the biological solids from the reactor and the recycle substrate concentration will be apparent if the concentration of XR were not increased. PMID:1252608

  13. Calibration of the k- ɛ model constants for use in CFD applications

    NASA Astrophysics Data System (ADS)

    Glover, Nina; Guillias, Serge; Malki-Epshtein, Liora

    2011-11-01

    The k- ɛ turbulence model is a popular choice in CFD modelling due to its robust nature and the fact that it has been well validated. However it has been noted in previous research that the k- ɛ model has problems predicting flow separation as well as unconfined and transient flows. The model contains five empirical model constants whose values were found through data fitting for a wide range of flows (Launder 1972) but ad-hoc adjustments are often made to these values depending on the situation being modeled. Here we use the example of flow within a regular street canyon to perform a Bayesian calibration of the model constants against wind tunnel data. This allows us to assess the sensitivity of the CFD model to changes in these constants, find the most suitable values for the constants as well as quantifying the uncertainty related to the constants and the CFD model as a whole.

  14. Application of an Artificial Neural Network to the Prediction of OH Radical Reaction Rate Constants for Evaluating Global Warming Potential.

    PubMed

    Allison, Thomas C

    2016-03-01

    Rate constants for reactions of chemical compounds with hydroxyl radical are a key quantity used in evaluating the global warming potential of a substance. Experimental determination of these rate constants is essential, but it can also be difficult and time-consuming to produce. High-level quantum chemistry predictions of the rate constant can suffer from the same issues. Therefore, it is valuable to devise estimation schemes that can give reasonable results on a variety of chemical compounds. In this article, the construction and training of an artificial neural network (ANN) for the prediction of rate constants at 298 K for reactions of hydroxyl radical with a diverse set of molecules is described. Input to the ANN consists of counts of the chemical bonds and bends present in the target molecule. The ANN is trained using 792 (•)OH reaction rate constants taken from the NIST Chemical Kinetics Database. The mean unsigned percent error (MUPE) for the training set is 12%, and the MUPE of the testing set is 51%. It is shown that the present methodology yields rate constants of reasonable accuracy for a diverse set of inputs. The results are compared to high-quality literature values and to another estimation scheme. This ANN methodology is expected to be of use in a wide range of applications for which (•)OH reaction rate constants are required. The model uses only information that can be gathered from a 2D representation of the molecule, making the present approach particularly appealing, especially for screening applications.

  15. Application of an Artificial Neural Network to the Prediction of OH Radical Reaction Rate Constants for Evaluating Global Warming Potential.

    PubMed

    Allison, Thomas C

    2016-03-01

    Rate constants for reactions of chemical compounds with hydroxyl radical are a key quantity used in evaluating the global warming potential of a substance. Experimental determination of these rate constants is essential, but it can also be difficult and time-consuming to produce. High-level quantum chemistry predictions of the rate constant can suffer from the same issues. Therefore, it is valuable to devise estimation schemes that can give reasonable results on a variety of chemical compounds. In this article, the construction and training of an artificial neural network (ANN) for the prediction of rate constants at 298 K for reactions of hydroxyl radical with a diverse set of molecules is described. Input to the ANN consists of counts of the chemical bonds and bends present in the target molecule. The ANN is trained using 792 (•)OH reaction rate constants taken from the NIST Chemical Kinetics Database. The mean unsigned percent error (MUPE) for the training set is 12%, and the MUPE of the testing set is 51%. It is shown that the present methodology yields rate constants of reasonable accuracy for a diverse set of inputs. The results are compared to high-quality literature values and to another estimation scheme. This ANN methodology is expected to be of use in a wide range of applications for which (•)OH reaction rate constants are required. The model uses only information that can be gathered from a 2D representation of the molecule, making the present approach particularly appealing, especially for screening applications. PMID:26684219

  16. DASCH ON KU Cyg: A {approx} 5 YEAR DUST ACCRETION EVENT IN {approx} 1900

    SciTech Connect

    Tang Sumin; Grindlay, Jonathan; Los, Edward; Servillat, Mathieu

    2011-09-01

    KU Cyg is an eclipsing binary consisting of an F-type star accreting through a large accretion disk from a K5III red giant. Here we present the discovery of a 5 year dip around 1900 found from its 100 year DASCH light curve. It showed a {approx}0.5 mag slow fading from 1899 to 1903 and brightened back around 1904 on a relatively shorter timescale. The light curve shape of the 1899-1904 fading-brightening event differs from the dust production and dispersion process observed in R Coronae Borealis stars, which usually has a faster fading and slower recovery, and for KU Cyg is probably related to the accretion disk surrounding the F star. The slow fading in KU Cyg is probably caused by increases in dust extinction in the disk, and the subsequent quick brightening may be due to the evaporation of dust transported inward through the disk. The extinction excess which caused the fading may arise from increased mass transfer rate in the system or from dust clump ejections from the K giant.

  17. Volatility dependence of Henry's law constants of condensable organics: Application to estimate depositional loss of secondary organic aerosols

    NASA Astrophysics Data System (ADS)

    Hodzic, A.; Aumont, B.; Knote, C.; Lee-Taylor, J.; Madronich, S.; Tyndall, G.

    2014-07-01

    The water solubility of oxidation intermediates of volatile organic compounds that can condense to form secondary organic aerosol (SOA) is largely unconstrained in current chemistry-climate models. We apply the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere to calculate Henry's law constants for these intermediate species. Results show a strong negative correlation between Henry's law constants and saturation vapor pressures. Details depend on precursor species, extent of photochemical processing, and NOx levels. Henry's law constants as a function of volatility are made available over a wide range of vapor pressures for use in 3-D models. In an application using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) over the U.S. in summer, we find that dry (and wet) deposition of condensable organic vapors leads to major reductions in SOA, decreasing surface concentrations by ~50% (10%) for biogenic and ~40% (6%) for short chain anthropogenic precursors under the considered volatility conditions.

  18. The 'Densitometric Image Analysis Software' and its application to determine stepwise equilibrium constants from electrophoretic mobility shift assays.

    PubMed

    van Oeffelen, Liesbeth; Peeters, Eveline; Nguyen Le Minh, Phu; Charlier, Daniël

    2014-01-01

    Current software applications for densitometric analysis, such as ImageJ, QuantityOne (BioRad) and the Intelligent or Advanced Quantifier (Bio Image) do not allow to take the non-linearity of autoradiographic films into account during calibration. As a consequence, quantification of autoradiographs is often regarded as problematic, and phosphorimaging is the preferred alternative. However, the non-linear behaviour of autoradiographs can be described mathematically, so it can be accounted for. Therefore, the 'Densitometric Image Analysis Software' has been developed, which allows to quantify electrophoretic bands in autoradiographs, as well as in gels and phosphorimages, while providing optimized band selection support to the user. Moreover, the program can determine protein-DNA binding constants from Electrophoretic Mobility Shift Assays (EMSAs). For this purpose, the software calculates a chosen stepwise equilibrium constant for each migration lane within the EMSA, and estimates the errors due to non-uniformity of the background noise, smear caused by complex dissociation or denaturation of double-stranded DNA, and technical errors such as pipetting inaccuracies. Thereby, the program helps the user to optimize experimental parameters and to choose the best lanes for estimating an average equilibrium constant. This process can reduce the inaccuracy of equilibrium constants from the usual factor of 2 to about 20%, which is particularly useful when determining position weight matrices and cooperative binding constants to predict genomic binding sites. The MATLAB source code, platform-dependent software and installation instructions are available via the website http://micr.vub.ac.be.

  19. Computing the Kirkwood g-Factor by Combining Constant Maxwell Electric Field and Electric Displacement Simulations: Application to the Dielectric Constant of Liquid Water.

    PubMed

    Zhang, Chao; Hutter, Jürg; Sprik, Michiel

    2016-07-21

    In his classic 1939 paper, Kirkwood linked the macroscopic dielectric constant of polar liquids to the local orientational order as measured by the g-factor (later named after him) and suggested that the corresponding dielectric constant at short-range is effectively equal to the macroscopic value just after "a distance of molecular magnitude" [ Kirkwood, J. Chem. Phys., 1939, 7, 911 ]. Here, we show a simple approach to extract the short-ranged Kirkwood g-factor from molecular dynamics (MD) simulation by superposing the outcomes of constant electric field E and constant electric displacement D simulations [ Zhang and Sprik, Phys. Rev. B: Condens. Matter Mater. Phys., 2016, 93, 144201 ]. Rather than from the notoriously slow fluctuations of the dipole moment of the full MD cell, the dielectric constant can now be estimated from dipole fluctuations at short-range, accelerating the convergence. Exploiting this feature, we computed the bulk dielectric constant of liquid water modeled in the generalized gradient approximation (PBE) to density functional theory and found it to be at least 40% larger than the experimental value.

  20. Efficient quantum-classical method for computing thermal rate constant of recombination: application to ozone formation.

    PubMed

    Ivanov, Mikhail V; Babikov, Dmitri

    2012-05-14

    Efficient method is proposed for computing thermal rate constant of recombination reaction that proceeds according to the energy transfer mechanism, when an energized molecule is formed from reactants first, and is stabilized later by collision with quencher. The mixed quantum-classical theory for the collisional energy transfer and the ro-vibrational energy flow [M. Ivanov and D. Babikov, J. Chem. Phys. 134, 144107 (2011)] is employed to treat the dynamics of molecule + quencher collision. Efficiency is achieved by sampling simultaneously (i) the thermal collision energy, (ii) the impact parameter, and (iii) the incident direction of quencher, as well as (iv) the rotational state of energized molecule. This approach is applied to calculate third-order rate constant of the recombination reaction that forms the (16)O(18)O(16)O isotopomer of ozone. Comparison of the predicted rate vs. experimental result is presented.

  1. Spherical steady accretion flows: Dependence on the cosmological constant, exact isothermal solutions, and applications to cosmology

    NASA Astrophysics Data System (ADS)

    Mach, Patryk; Malec, Edward; Karkowski, Janusz

    2013-10-01

    We investigate spherical, isothermal and polytropic steady accretion models in the presence of the cosmological constant. Exact solutions are found for three classes of isothermal fluids, assuming the test gas approximation. The cosmological constant damps the mass accretion rate and—above a certain limit—completely stops the steady accretion onto black holes. A “homoclinic-type” accretion flow of polytropic gas has been discovered in anti-de Sitter spacetimes in the test-gas limit. These results can have cosmological connotation, through the Einstein-Straus vacuole model of embedding local structures into Friedman-Lemaitre-Robertson-Walker spacetimes. In particular, one infers that steady accretion would not exist in the late phases of Penrose’s scenario of the evolution of the Universe, known as the Weyl curvature hypothesis.

  2. Optical constants of sulfuric acid - Application to the clouds of Venus

    NASA Technical Reports Server (NTRS)

    Palmer, K. F.; Williams, D.

    1975-01-01

    Young (1973) and Sill (1972) have independently suggested that the clouds of Venus may well consist of particles composed of sulfuric acid molecules with attached water molecules. For a further study of this hypothesis an investigation has been conducted with the objective to supply the needed laboratory data for a wide range of sulfuric acid concentrations. Optical constants have been determined for the visible, near infrared, and intermediate infrared wavelength regions.

  3. Applicability of body composition techniques and constants for children and youths.

    PubMed

    Lohman, T G

    1986-01-01

    This review has focused on the chemical immaturity of children and the implications for body composition estimates. Prepubescent and pubescent children deviate considerably in fat-free body composition from the adult reference male, and this has lead investigators to overestimate body fatness in this population using conventional body composition formulas. The use of multicomponent approaches to body composition to obtain more accurate estimates of body fatness in children has provided new information on the body composition of this population. Sex- and age-specific constants, to replace those derived from the reference male, are suggested for further testing and verification as well as for use in the clinical setting. The chemical immaturity in children has its greatest effect on estimating the extent of obesity in children 6 to 11 years of age and in estimating body fatness in the lean, athletic, prepubescent population. Previous estimates of the growth rate of fat and fat-free body are also affected by chemical immaturity. Further research is needed to study the impact of physical activity and inactivity on the composition of the fat-free body during growth, to develop constants for more accurate estimates of fatness in physically active samples of all ages and to validate the constants presented in the less active populations. Future research with multicomponent body composition systems in all populations of children and youth is essential for progress in this area. Results will have an important contribution to the estimation of childhood obesity, prediction of minimal weight in the athletic population and estimates of growth rate of fat and fat-free body mass. The development of body composition methodologies which more accurately measure the growth of muscle and bone as well as fat is a major challenge ahead.

  4. Developmental Times of Chrysomya megacephala (Fabricius) (Diptera: Calliphoridae) at Constant Temperatures and Applications in Forensic Entomology.

    PubMed

    Yang, Yong-Qiang; Li, Xue-Bo; Shao, Ru-Yue; Lyu, Zhou; Li, Hong-Wei; Li, Gen-Ping; Xu, Lyu-Zi; Wan, Li-Hua

    2016-09-01

    The characteristic life stages of infesting blowflies (Calliphoridae) such as Chrysomya megacephala (Fabricius) are powerful evidence for estimating the death time of a corpse, but an established reference of developmental times for local blowfly species is required. We determined the developmental rates of C. megacephala from southwest China at seven constant temperatures (16-34°C). Isomegalen and isomorphen diagrams were constructed based on the larval length and time for each developmental event (first ecdysis, second ecdysis, wandering, pupariation, and eclosion), at each temperature. A thermal summation model was constructed by estimating the developmental threshold temperature D0 and the thermal summation constant K. The thermal summation model indicated that, for complete development from egg hatching to eclosion, D0 = 9.07 ± 0.54°C and K = 3991.07 ± 187.26 h °C. This reference can increase the accuracy of estimations of postmortem intervals in China by predicting the growth of C. megacephala.

  5. Developmental Times of Chrysomya megacephala (Fabricius) (Diptera: Calliphoridae) at Constant Temperatures and Applications in Forensic Entomology.

    PubMed

    Yang, Yong-Qiang; Li, Xue-Bo; Shao, Ru-Yue; Lyu, Zhou; Li, Hong-Wei; Li, Gen-Ping; Xu, Lyu-Zi; Wan, Li-Hua

    2016-09-01

    The characteristic life stages of infesting blowflies (Calliphoridae) such as Chrysomya megacephala (Fabricius) are powerful evidence for estimating the death time of a corpse, but an established reference of developmental times for local blowfly species is required. We determined the developmental rates of C. megacephala from southwest China at seven constant temperatures (16-34°C). Isomegalen and isomorphen diagrams were constructed based on the larval length and time for each developmental event (first ecdysis, second ecdysis, wandering, pupariation, and eclosion), at each temperature. A thermal summation model was constructed by estimating the developmental threshold temperature D0 and the thermal summation constant K. The thermal summation model indicated that, for complete development from egg hatching to eclosion, D0 = 9.07 ± 0.54°C and K = 3991.07 ± 187.26 h °C. This reference can increase the accuracy of estimations of postmortem intervals in China by predicting the growth of C. megacephala. PMID:27581209

  6. Microwave dielectric constant of liquid hydrocarbons: Application to the depth estimation of Titan's lakes

    NASA Astrophysics Data System (ADS)

    Paillou, Philippe; Mitchell, Karl; Wall, Stephen; Ruffié, Gilles; Wood, Charles; Lorenz, Ralph; Stofan, Ellen; Lunine, Jonathan; Lopes, Rosaly; Encrenaz, Pierre

    2008-03-01

    Cassini RADAR reveals the surface of Titan since flyby Ta acquired on October 2004. The RADAR instrument discovered volcanic structures, craters, dunes, channels, lakes and seas. In particular, flyby T16 realized in July 2006 imaged tens of radar-dark features close to Titan's north pole. They are interpreted as lakes filled with liquid hydrocarbons - mainly methane, a key material in the geologic and climatic history of Titan. In order to perform quantitative analysis and modeling of the radar response of Titan's lakes, the dielectric constant of liquid hydrocarbons is a crucial parameter, in particular to estimate the radar wave attenuation. We present here first measurements of the dielectric constant of LNG (Liquefied Natural Gas), mainly composed of methane, at Ku-band (10-13 GHz): we obtained a value $\\varepsilon$ = 1.75 - 0.002j. This value is used to model the radar backscattering of lakes observed during T16 flyby. Using a two-layer scattering model, we derive a relationship that is used to estimate a minimum depth for Titan's lakes. The proposed relationship is also coherent with the observation that the larger and then the deeper lakes are also the darker in radar images.

  7. Application of potential constants: Empirical determination of molecular energy components for diatomic molecules—II

    NASA Astrophysics Data System (ADS)

    Ohwada, Ken

    The harmonic and anharmonic potential (force) constants which are usually available from a normal coordinate analysis for a diatomic molecule are applied to determine the molecular energy components such as the electronic kinetic energy, the total electrostatic potential energy, the electron—nuclear attraction energy, the electron—electron repulsion energy, the nuclear—nuclear repulsion energy, and the Hartree—Fock eigen-value sum. The method developed here is based on an inhomogeneous linear third-order differential equation derived from the quantum mechanical virial theorem, and a homogeneity hypothesis of the molecular energy with respect to the atomic number. To confirm the utility of the method, the calculated molecular energy components of diatomic molecules are compared with available Hartree—Fock data. It is concluded from this data that the present method is simple and useful for evaluating the molecular energy components of various diatomic molecules.

  8. Application of POCIS for exposure assessment of munitions constituents during constant and fluctuating exposure.

    PubMed

    Belden, Jason B; Lotufo, Guilherme R; Biedenbach, James M; Sieve, Kristal K; Rosen, Gunther

    2015-05-01

    The present study examined the potential use of polar organic chemical integrative samplers (POCIS) for exposure assessment of munitions constituents, including 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and their breakdown products (aminodinitrotoluenes [ADNTs], diaminonitrotoluenes [DANTs], and hexahydro-1,3,5-trinitroso-1,3,5-triazine [TNX]). Loss of munitions constituents from the sorbent phase after uptake was observed for the "pesticide" POCIS configuration but not for the "pharmaceutical" configuration. Therefore, the latter was selected for further investigation. Under constant exposure conditions, TNT, ADNTs, DANT, RDX, and atrazine (a common environmental contaminant) accumulated at a linear rate for at least 14 d, with sampling rates between 34 mL/d and 215 mL/d. When POCIS were exposed to fluctuating concentrations, analyte accumulation values were similar to values found during constant exposure, indicating that the sampler was indeed integrative. In contrast, caffeine (a common polar contaminant) and TNX did not accumulate at a linear rate and had a reduction in accumulation of greater than 50% on the POCIS during fluctuating exposures, demonstrating that POCIS did not sample those chemicals in an integrative manner. Moreover, in a flow-through microcosm containing the explosive formulation Composition B, TNT and RDX were readily measured using POCIS, despite relatively high turnover rates and thus reduced water concentrations. Mean water concentrations estimated from POCIS were ± 37% of mean water concentrations measured by traditional grab sample collection. Thus, POCIS were found to have high utility for quantifying exposure to most munitions constituents evaluated (TNT, ADNTs, and RDX) and atrazine. PMID:25475692

  9. The 'Densitometric Image Analysis Software' and its application to determine stepwise equilibrium constants from electrophoretic mobility shift assays.

    PubMed

    van Oeffelen, Liesbeth; Peeters, Eveline; Nguyen Le Minh, Phu; Charlier, Daniël

    2014-01-01

    Current software applications for densitometric analysis, such as ImageJ, QuantityOne (BioRad) and the Intelligent or Advanced Quantifier (Bio Image) do not allow to take the non-linearity of autoradiographic films into account during calibration. As a consequence, quantification of autoradiographs is often regarded as problematic, and phosphorimaging is the preferred alternative. However, the non-linear behaviour of autoradiographs can be described mathematically, so it can be accounted for. Therefore, the 'Densitometric Image Analysis Software' has been developed, which allows to quantify electrophoretic bands in autoradiographs, as well as in gels and phosphorimages, while providing optimized band selection support to the user. Moreover, the program can determine protein-DNA binding constants from Electrophoretic Mobility Shift Assays (EMSAs). For this purpose, the software calculates a chosen stepwise equilibrium constant for each migration lane within the EMSA, and estimates the errors due to non-uniformity of the background noise, smear caused by complex dissociation or denaturation of double-stranded DNA, and technical errors such as pipetting inaccuracies. Thereby, the program helps the user to optimize experimental parameters and to choose the best lanes for estimating an average equilibrium constant. This process can reduce the inaccuracy of equilibrium constants from the usual factor of 2 to about 20%, which is particularly useful when determining position weight matrices and cooperative binding constants to predict genomic binding sites. The MATLAB source code, platform-dependent software and installation instructions are available via the website http://micr.vub.ac.be. PMID:24465496

  10. Optical constants of sulfuric Acid; application to the clouds of venus?

    PubMed

    Palmer, K F; Williams, D

    1975-01-01

    With the purpose of obtaining the real and imaginary parts of the complex refractive index N; = n + ik, we have made quantitative measurements of spectral transmission and reflection of sulfuric acid solutions in the visible and near infrared. On the basis of the results, we have obtained values for n throughout the entire region and values of k in the near infrared together with upper limits for k in the visible region. These optical constants can be used to interpret the results of polarization studies of solar radiation that has been scattered by the clouds of Venus. We have Kramers-Kronig phase-shift analysis to obtain values of n and k from reflection measurements in the intermediate infrared region (400-4000 cm(-1)). Our measurements were made at 300 K on sulfuric acid solutions having concentrations by weight of 95.6, 84.5, 75, 50, 38, and 25%. If the particles in the Venus clouds consist of liquid droplets of sulfuric acid at a temperature of 250 K, comparison of existing Venus data with our data suggests that the acid concentration is probably higher than 70%. Various possibilities are discussed.

  11. Spectroscopic ellipsometry of anisotropic materials: application to the optical constants of HgI2.

    PubMed

    En Naciri, A; Johann, L; Kleim, R; Sieskind, M; Amann, M

    1999-02-01

    A variable angle-of-incidence spectroscopic fixed-polarizer, rotating-polarizer, fixed-analyzer ellipsometer (PRPSE) across a spectral range from 300 to 800 nm is used to determine the optical properties of anisotropic uniaxial tetragonal red mercuric iodide (HgI(2)). For the first time, to our knowledge, the bulk crystal HgI(2) surface measured by ellipsometry was not subjected to potassium iodide cutting or etching. Measurements were made at an air-HgI(2) interface with the optic axis parallel to the sample surface. To determine the optical constants, we varied both the angle of incidence and the azimuth of the optic axis with the plane of incidence. The detailed formulas needed for reliable procedures for analyzing the data are presented. The ordinary and extraordinary complex indices of refraction, (n(o)--ik(o)) and (n(e)--ik(e)), respectively, are determined. Good agreement between PRPSE and the prism technique for the refractive index is observed. The surface aging effects of the ellipsometric parameters of HgI(2), during 30 h of exposure to air, were detected by PRPSE. PMID:18305658

  12. Application of cavity ring-down spectroscopy to the Boltzmann constant determination.

    PubMed

    Sun, Y R; Pan, H; Cheng, C-F; Liu, A-W; Zhang, J-T; Hu, S-M

    2011-10-10

    The Boltzmann constant can be optically determined by measuring the Doppler width of an absorption line of molecules at gas phase. We propose to apply a near infrared cavity ring-down (CRD) spectrometer for this purpose. The superior sensitivity of CRD spectroscopy and the good performance of the near-ir lasers can provide ppm (part-per-million) accuracy which will be competitive to present most accurate result obtained from the speed of sound in argon measurement. The possible influence to the uncertainty of the determined Doppler width from different causes are investigated, which includes the signal-to-noise level, laser frequency stability, detecting nonlinearity, and pressure broadening effect. The analysis shows that the CRD spectroscopy has some remarkable advantages over the direct absorption method proposed before. The design of the experimental setup is presented and the measurement of C2H2 line near 0.8 μm at room temperature has been carried out as a test of the instrument. PMID:21997009

  13. A promising method to derive the temperature coefficients of material constants of SAW and BAW materials. first application to LGS.

    PubMed

    Nicolay, Pascal; Aubert, Thierry

    2014-08-01

    Langasite (LGS) is a promising material for SAW applications at high temperature. However, the temperature coefficients of LGS material constants are not accurate enough to perform reliable simulations, and therefore to make good use of available design tools, above 300°C. In the first part of the paper, we describe a new possible way to derive these coefficients in a wider temperature range. The method is based on Simulated Annealing, a well-known optimization algorithm. The algorithm converges toward a set of optimized temperature coefficients of the stiffness constants which are used to perform accurate simulations up to at least 800°C. In the second part, a deeper analysis of the algorithm outputs demonstrates some of its strengths but also some of its main limitations. Possible solutions are described to predict and then improve the accuracy of the optimized coefficient values. In particular, one solution making use of additional BAW target curves is tested. A promising solution to extend the optimization to the temperature coefficients of piezoelectric constants is also discussed.

  14. Technical note: Development of Hemipyrellia ligurriens (Wiedemann) (Diptera: Calliphoridae) at constant temperatures: Applications in estimating postmortem interval.

    PubMed

    Yang, Yong-qiang; Lyu, Zhou; Li, Xue-bo; Li, Kui; Yao, Lan; Wan, Li-hua

    2015-08-01

    Blowflies (Calliphoridae) are recognized as a powerful tool for estimating the minimum postmortem interval (PMImin). The times for blowflies to develop from oviposition to eclosion is mainly controlled by temperature, which can differ between even closely related species. Hemipyrellia ligurriens (Wiedemann) (Diptera: Calliphoridae) is a blowfly distributed throughout Asia and Australia. However, a systematic determination of the developmental times of H. ligurriens under constant temperature, necessary for estimating the PMImin, is lacking. Such an examination would broaden the forensic importance of the species. Thus, this study explored the growth curves of larval H. ligurriens at 7 constant temperatures (16, 19, 22, 25, 28, 31, and 34°C). Isomegalen and isomorphen diagrams were successfully constructed, depicting the time of larval length or developmental event, respectively, at different temperatures. A thermal summation model was also constructed via regression analysis, by estimating the developmental threshold temperature t and thermal summation constant K. The thermal summation model indicated that t at 8.3°C and K at 5747.5 degree-hours (°Ch) are required for complete development from oviposition to eclosion, and suggested an optimum temperature range of 16-28°C for the development of H. ligurriens. These data establish for the first time the temperature-dependent developmental time of H. ligurriens for forensic entomology application. The 3 developmental models are provided.

  15. Technical note: Development of Hemipyrellia ligurriens (Wiedemann) (Diptera: Calliphoridae) at constant temperatures: Applications in estimating postmortem interval.

    PubMed

    Yang, Yong-qiang; Lyu, Zhou; Li, Xue-bo; Li, Kui; Yao, Lan; Wan, Li-hua

    2015-08-01

    Blowflies (Calliphoridae) are recognized as a powerful tool for estimating the minimum postmortem interval (PMImin). The times for blowflies to develop from oviposition to eclosion is mainly controlled by temperature, which can differ between even closely related species. Hemipyrellia ligurriens (Wiedemann) (Diptera: Calliphoridae) is a blowfly distributed throughout Asia and Australia. However, a systematic determination of the developmental times of H. ligurriens under constant temperature, necessary for estimating the PMImin, is lacking. Such an examination would broaden the forensic importance of the species. Thus, this study explored the growth curves of larval H. ligurriens at 7 constant temperatures (16, 19, 22, 25, 28, 31, and 34°C). Isomegalen and isomorphen diagrams were successfully constructed, depicting the time of larval length or developmental event, respectively, at different temperatures. A thermal summation model was also constructed via regression analysis, by estimating the developmental threshold temperature t and thermal summation constant K. The thermal summation model indicated that t at 8.3°C and K at 5747.5 degree-hours (°Ch) are required for complete development from oviposition to eclosion, and suggested an optimum temperature range of 16-28°C for the development of H. ligurriens. These data establish for the first time the temperature-dependent developmental time of H. ligurriens for forensic entomology application. The 3 developmental models are provided. PMID:26046676

  16. DISCOVERY OF A RADIO-SELECTED z {approx} 6 QUASAR

    SciTech Connect

    Zeimann, Gregory R.; Becker, Robert H.; Hodge, Jacqueline A.; Stanford, Spencer A.; White, Richard L.; Richards, Gordon T.

    2011-07-20

    We present the discovery of only the second radio-selected z {approx} 6 quasar. We identified SDSS J222843.54+011032.2 (z = 5.95) by matching the optical detections of the deep Sloan Digital Sky Survey Stripe 82 with their radio counterparts in the Stripe 82 Very Large Array Survey. We also matched the Canadian-France-Hawaiian Telescope Legacy Survey Wide with the Faint Images of the Radio Sky at Twenty cm survey but have yet to find any z {approx} 6 quasars in this survey area. The discovered quasar is optically faint, z = 22.3 and M{sub 1450} {approx} -24.5, but radio bright, with a flux density of f{sub 1.4GHz,peak} = 0.31 mJy and a radio loudness of R {approx} 1100 (where R {identical_to} f{sub 5GHz}/f{sub 2500}). The i - z color of the discovered quasar places it outside the color selection criteria for existing optical surveys. We conclude by discussing the need for deeper wide-area radio surveys in the context of high-redshift quasars.

  17. Are Fundamental Constants Really Constant?

    ERIC Educational Resources Information Center

    Swetman, T. P.

    1972-01-01

    Dirac's classical conclusions, that the values of e2, M and m are constants and the quantity of G decreases with time. Evoked considerable interest among researchers and traces historical development by which further experimental evidence points out that both e and G are constant values. (PS)

  18. Spectral editing of weakly coupled spins using variable flip angles in PRESS constant echo time difference spectroscopy: Application to GABA

    NASA Astrophysics Data System (ADS)

    Snyder, Jeff; Hanstock, Chris C.; Wilman, Alan H.

    2009-10-01

    A general in vivo magnetic resonance spectroscopy editing technique is presented to detect weakly coupled spin systems through subtraction, while preserving singlets through addition, and is applied to the specific brain metabolite γ-aminobutyric acid (GABA) at 4.7 T. The new method uses double spin echo localization (PRESS) and is based on a constant echo time difference spectroscopy approach employing subtraction of two asymmetric echo timings, which is normally only applicable to strongly coupled spin systems. By utilizing flip angle reduction of one of the two refocusing pulses in the PRESS sequence, we demonstrate that this difference method may be extended to weakly coupled systems, thereby providing a very simple yet effective editing process. The difference method is first illustrated analytically using a simple two spin weakly coupled spin system. The technique was then demonstrated for the 3.01 ppm resonance of GABA, which is obscured by the strong singlet peak of creatine in vivo. Full numerical simulations, as well as phantom and in vivo experiments were performed. The difference method used two asymmetric PRESS timings with a constant total echo time of 131 ms and a reduced 120° final pulse, providing 25% GABA yield upon subtraction compared to two short echo standard PRESS experiments. Phantom and in vivo results from human brain demonstrate efficacy of this method in agreement with numerical simulations.

  19. Interacting boson models for N{approx}Z nuclei

    SciTech Connect

    Van Isacker, P.

    2011-05-06

    This contribution discusses the use of boson models in the description of N{approx}Z nuclei. A brief review is given of earlier attempts, initiated by Elliott and co-workers, to extend the interacting boson model of Arima and Iachello by the inclusion of neutron-proton s and d bosons with T = 1 (IBM-3) as well as T = 0 (IBM-4). It is argued that for the N{approx}Z nuclei that are currently studied experimentally, a different approach is needed which invokes aligned neutron-proton pairs with angular momentum J = 2j and isospin T = 0. This claim is supported by an analysis of shell-model wave functions in terms of pair states. Results of this alternative version of the interacting boson model are compared with shell-model calculations in the 1g{sub 9/2} shell.

  20. Optical constants of materials in the EUV/soft x-ray region for multilayer mirror applications

    SciTech Connect

    Soufli, R

    1997-12-01

    The response of a given material to an incident electromagnetic wave is described by the energy dependent complex index of refraction n = 1 {minus} {delta} + i{beta}. In the extreme ultraviolet (EUV)/soft x-ray spectral region, the need for accurate determination of n is driven by activity in areas such as synchrotron based research, EUV/x-ray lithography, x-ray astronomy and plasma applications. Knowledge of the refractive index is essential for the design of the optical components of instruments used in experiments and applications. Moreover, measured values of n may be used to evaluate solid state models for the optical behavior of materials. The refractive index n of Si, Mo and Be is investigated in the EUV/soft x-ray region. In the case of Si, angle dependent reflectance measurements are performed in the energy range 50--180 eV. The optical constants {delta}, {beta} are both determined by fitting to the Fresnel equations. The results of this method are compared to the values in the 1993 atomic tables. Photoabsorption measurements for the optical constants of Mo are performed on C/Mo/C foils, in the energy range 60--930 eV. Photoabsorption measurements on Be thin films supported on silicon nitride membranes are performed, and the results are applied in the determination of the absorption coefficient of Be in the energy region 111.5--250 eV. The new results for Si and Mo are applied to the calculation of normal incidence reflectivities of Mo/Si and Mo/Be multilayer mirrors. These calculations show the importance of accurate knowledge of {delta} and {beta} in the prediction and modeling of the performance of multilayer optics.

  1. Neutron Orbital Occupancies in the A{approx}100 Region

    SciTech Connect

    Borello-Lewin, T.; Duarte, J. L. M.; Horodynski-Matsushigue, L. B.; Rodrigues, C. L.; Rodrigues, M. R. D.; Ukita, G. M.

    2009-06-03

    The evolutive behavior of the experimental neutron orbital occupancies, along isotopic chains in the A{approx}100, is taken as a microscopic indicator of the transition. No increase of the vlg{sub 7/2} orbital occupancy was revealed for N>55, contrary previous expectations that interpreted the increase of deformation as due mainly to the n-p interaction in the SOP orbitals.

  2. Astrophysics to z approx. 10 with Gravitational Waves

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin; Hughes, Scott; Lang, Ryan

    2007-01-01

    The most useful characterization of a gravitational wave detector's performance is the accuracy with which astrophysical parameters of potential gravitational wave sources can be estimated. One of the most important source types for the Laser Interferometer Space Antenna (LISA) is inspiraling binaries of black holes. LISA can measure mass and spin to better than 1% for a wide range of masses, even out to high redshifts. The most difficult parameter to estimate accurately is almost always luminosity distance. Nonetheless, LISA can measure luminosity distance of intermediate-mass black hole binary systems (total mass approx.10(exp 4) solar mass) out to z approx.10 with distance accuracies approaching 25% in many cases. With this performance, LISA will be able to follow the merger history of black holes from the earliest mergers of proto-galaxies to the present. LISA's performance as a function of mass from 1 to 10(exp 7) solar mass and of redshift out to z approx. 30 will be described. The re-formulation of LISA's science requirements based on an instrument sensitivity model and parameter estimation will be described.

  3. THE CURIOUS CASE OF Ly{alpha} EMITTERS: GROWING YOUNGER FROM z {approx} 3 to z {approx} 2?

    SciTech Connect

    Acquaviva, Viviana; Vargas, Carlos; Gawiser, Eric; Guaita, Lucia

    2012-06-01

    Ly{alpha} emitting (LAE) galaxies are thought to be progenitors of present-day L* galaxies. Clustering analyses have suggested that LAEs at z {approx} 3 might evolve into LAEs at z {approx} 2, but it is unclear whether the physical nature of these galaxies is compatible with this hypothesis. Several groups have investigated the properties of LAEs using spectral energy distribution (SED) fitting, but direct comparison of their results is complicated by inconsistencies in the treatment of the data and in the assumptions made in modeling the stellar populations, which are degenerate with the effects of galaxy evolution. By using the same data analysis pipeline and SED fitting software on two stacked samples of LAEs at z = 3.1 and z = 2.1, and by eliminating several systematic uncertainties that might cause a discrepancy, we determine that the physical properties of these two samples of galaxies are dramatically different. LAEs at z = 3.1 are found to be old (age {approx}1 Gyr) and metal-poor (Z < 0.2 Z{sub Sun }), while LAEs at z = 2.1 appear to be young (age {approx}50 Myr) and metal-rich (Z > Z{sub Sun }). The difference in the observed stellar ages makes it very unlikely that z 3.1 LAEs evolve directly into z = 2.1 LAEs. Larger samples of galaxies, studies of individual objects, and spectroscopic measurements of metallicity at these redshifts are needed to confirm this picture, which is difficult to reconcile with the effects of 1 Gyr of cosmological evolution.

  4. A Virtual Mixture Approach to the Study of Multistate Equilibrium: Application to Constant pH Simulation in Explicit Water

    PubMed Central

    Wu, Xiongwu; Brooks, Bernard R.

    2015-01-01

    Chemical and thermodynamic equilibrium of multiple states is a fundamental phenomenon in biology systems and has been the focus of many experimental and computational studies. This work presents a simulation method to directly study the equilibrium of multiple states. This method constructs a virtual mixture of multiple states (VMMS) to sample the conformational space of all chemical states simultaneously. The VMMS system consists of multiple subsystems, one for each state. The subsystem contains a solute and a solvent environment. The solute molecules in all subsystems share the same conformation but have their own solvent environments. Transition between states is implicated by the change of their molar fractions. Simulation of a VMMS system allows efficient calculation of relative free energies of all states, which in turn determine their equilibrium molar fractions. For systems with a large number of state transition sites, an implicit site approximation is introduced to minimize the cost of simulation. A direct application of the VMMS method is for constant pH simulation to study protonation equilibrium. Applying the VMMS method to a heptapeptide of 3 ionizable residues, we calculated the pKas of those residues both with all explicit states and with implicit sites and obtained consistent results. For mouse epidermal growth factor of 9 ionizable groups, our VMMS simulations with implicit sites produced pKas of all 9 ionizable groups and the results agree qualitatively with NMR measurement. This example demonstrates the VMMS method can be applied to systems of a large number of ionizable groups and the computational cost scales linearly with the number of ionizable groups. For one of the most challenging systems in constant pH calculation, SNase Δ+PHS/V66K, our VMMS simulation shows that it is the state-dependent water penetration that causes the large deviation in lysine66’s pKa. PMID:26506245

  5. A Virtual Mixture Approach to the Study of Multistate Equilibrium: Application to Constant pH Simulation in Explicit Water.

    PubMed

    Wu, Xiongwu; Brooks, Bernard R

    2015-10-01

    Chemical and thermodynamic equilibrium of multiple states is a fundamental phenomenon in biology systems and has been the focus of many experimental and computational studies. This work presents a simulation method to directly study the equilibrium of multiple states. This method constructs a virtual mixture of multiple states (VMMS) to sample the conformational space of all chemical states simultaneously. The VMMS system consists of multiple subsystems, one for each state. The subsystem contains a solute and a solvent environment. The solute molecules in all subsystems share the same conformation but have their own solvent environments. Transition between states is implicated by the change of their molar fractions. Simulation of a VMMS system allows efficient calculation of relative free energies of all states, which in turn determine their equilibrium molar fractions. For systems with a large number of state transition sites, an implicit site approximation is introduced to minimize the cost of simulation. A direct application of the VMMS method is for constant pH simulation to study protonation equilibrium. Applying the VMMS method to a heptapeptide of 3 ionizable residues, we calculated the pKas of those residues both with all explicit states and with implicit sites and obtained consistent results. For mouse epidermal growth factor of 9 ionizable groups, our VMMS simulations with implicit sites produced pKas of all 9 ionizable groups and the results agree qualitatively with NMR measurement. This example demonstrates the VMMS method can be applied to systems of a large number of ionizable groups and the computational cost scales linearly with the number of ionizable groups. For one of the most challenging systems in constant pH calculation, SNase Δ+PHS/V66K, our VMMS simulation shows that it is the state-dependent water penetration that causes the large deviation in lysine66's pKa.

  6. ULTRA-DEEP MID-INFRARED SPECTROSCOPY OF LUMINOUS INFRARED GALAXIES AT z{approx} 1 AND z {approx} 2

    SciTech Connect

    Fadda, Dario; Yan Lin; Frayer, David T.; Helou, George; Lagache, Guilaine; Marcillac, Delphine; Sajina, Anna; Lutz, Dieter; Wuyts, Stijn; Le Floc'h, Emeric; Caputi, Karina; Spoon, Henrik W. W.; Veilleux, Sylvain; Blain, Andrew E-mail: lyan@ipac.caltech.ed

    2010-08-10

    We present ultra-deep mid-infrared spectra of 48 infrared-luminous galaxies in the GOODS-south field obtained with the Infrared Spectrograph on the Spitzer Space Telescope. These galaxies are selected among faint infrared sources (0.14-0.5 mJy at 24 {mu}m) in two redshift bins (0.76-1.05 and 1.75-2.4) to sample the major contributors to the cosmic infrared background at the most active epochs. We estimate redshifts for 92% of the sample using polycyclic aromatic (PAH) and Si absorption features obtaining, in particular, eight new redshifts difficult to measure from ground-based observations. Only a few of these galaxies (5% at z {approx} 1 and 12% at z {approx} 2) have their total infrared luminosity dominated by emission from active galactic nuclei (AGNs). The averaged mid-IR spectrum of the z {approx} 1 luminous infrared galaxies (LIRGs) is a very good match to the averaged spectrum of local starbursts. The averaged spectrum of the z {approx} 2 ultra-luminous infrared galaxies (ULIRGs), because of a deeper Si absorption, is better fitted by the averaged spectrum of H II-like local ULIRGs. Combining this sample with other published data, we find that 6.2 {mu}m PAH equivalent widths (EW) reach a plateau of {approx} 1 {mu}m for L {sub 24{mu}m} {approx}< 10{sup 11} L{sub sun}. At higher luminosities, EW{sub 6.2{mu}m} anti-correlates with L{sub 24{mu}m}. Intriguingly, high-z ULIRGs and sub-millimeter galaxies (SMGs) lie above the local EW{sub 6.2{mu}m}-L{sub 24{mu}m} relationship suggesting that, at a given luminosity, high-z ULIRGs have AGN contributions to their dust emission lower than those of local counterparts. A quantitative analysis of their morphology shows that most of the luminous IR galaxies have morphologies similar to those of IR-quiet galaxies at the same redshift. All z {approx} 2 ULIRGs of our sample are IR-excess BzK galaxies and most of them have L{sub FIR}/L{sub 1600A} ratios higher than those of starburst galaxies at a given UV slope. The 'IR

  7. STRONG POLYCYCLIC AROMATIC HYDROCARBON EMISSION FROM z {approx} 2 ULIRGs

    SciTech Connect

    Desai, Vandana; Soifer, B. T.; Melbourne, Jason; Dey, Arjun; Brand, Kate; Brodwin, Mark; Jannuzi, Buell T.; Le Floc'h, Emeric; Armus, Lee; Teplitz, Harry; Brown, Michael J. I.; Houck, James R.; Weedman, Daniel W.; Ashby, Matthew L. N.; Huang Jiasheng; Smith, Howard A.; Willner, Steve P.; Gonzalez, Anthony

    2009-08-01

    Using the Infrared Spectrograph on board the Spitzer Space Telescope, we present low-resolution (64 < {lambda}/{delta}{lambda} < 124), mid-infrared (20-38 {mu}m) spectra of 23 high-redshift ULIRGs detected in the Booetes field of the NOAO Deep Wide-Field Survey. All of the sources were selected to have (1) f {sub {nu}}(24 {mu}m)>0.5 mJy; (2) R - [24]>14 Vega mag; and (3) a prominent rest frame 1.6 {mu}m stellar photospheric feature redshifted into Spitzer's 3-8 {mu}m IRAC bands. Of these, 20 show emission from polycyclic aromatic hydrocarbons (PAHs), usually interpreted as signatures of star formation. The PAH features indicate redshifts in the range 1.5 < z < 3.0, with a mean of (z) = 1.96 and a dispersion of 0.30. Based on local templates, these sources have extremely large infrared luminosities, comparable to that of submillimeter galaxies. Our results confirm previous indications that the rest-frame 1.6 {mu}m stellar bump can be efficiently used to select highly obscured star-forming galaxies at z {approx} 2, and that the fraction of starburst-dominated ULIRGs increases to faint 24 {mu}m flux densities. Using local templates, we find that the observed narrow redshift distribution is due to the fact that the 24 {mu}m detectability of PAH-rich sources peaks sharply at z = 1.9. We can analogously use observed spectral energy distributions to explain the broader redshift distribution of Spitzer-detected ULIRGs that are dominated by an active galactic nucleus (AGN). Finally, we conclude that z {approx} 2 sources with a detectable 1.6 {mu}m stellar opacity feature lack sufficient AGN emission to veil the 7.7 {mu}m PAH band.

  8. Tailoring the optical constants in single-crystal silicon with embedded silver nanostructures for advanced silicon photonics applications

    SciTech Connect

    Akhter, Perveen; Huang, Mengbing Spratt, William; Kadakia, Nirag; Amir, Faisal

    2015-03-28

    Plasmonic effects associated with metal nanostructures are expected to hold the key to tailoring light emission/propagation and harvesting solar energy in materials including single crystal silicon which remains the backbone in the microelectronics and photovoltaics industries but unfortunately, lacks many functionalities needed for construction of advanced photonic and optoelectronics devices. Currently, silicon plasmonic structures are practically possible only in the configuration with metal nanoparticles or thin film arrays on a silicon surface. This does not enable one to exploit the full potential of plasmonics for optical engineering in silicon, because the plasmonic effects are dominant over a length of ∼50 nm, and the active device region typically lies below the surface much beyond this range. Here, we report on a novel method for the formation of silver nanoparticles embedded within a silicon crystal through metal gettering from a silver thin film deposited at the surface to nanocavities within the Si created by hydrogen ion implantation. The refractive index of the Ag-nanostructured layer is found to be 3–10% lower or higher than that of silicon for wavelengths below or beyond ∼815–900 nm, respectively. Around this wavelength range, the optical extinction values increase by a factor of 10–100 as opposed to the pure silicon case. Increasing the amount of gettered silver leads to an increased extinction as well as a redshift in wavelength position for the resonance. This resonance is attributed to the surface plasmon excitation of the resultant silver nanoparticles in silicon. Additionally, we show that the profiles for optical constants in silicon can be tailored by varying the position and number of nanocavity layers. Such silicon crystals with embedded metal nanostructures would offer novel functional base structures for applications in silicon photonics, optoelectronics, photovoltaics, and plasmonics.

  9. Latitude dependence of solar wind velocity observed > or approx. =1 AU

    SciTech Connect

    Mitchell, D.G.; Roelof, E.C.; Wolfe, J.H.

    1981-01-01

    The large-scale solar wind velocity structure in the outer heliosphere has been systematically analyzed for Carrington rotations 1587-1541 (March 1972 to April 1976). Spacecraft data were taken from Imp 7/8 at earth, Pioneer 6, 8, and 9 near 1AU, and Pioneer 10 and 11 between 1.6 and 5 AU. Using the constant radial velocity solar wind approximation to map all of the velocity data to its high coronal emission heliolongitude, we examined the velocity structure observed at different spacecraft for latitudinal dependence and compared it with coronal structure in soft X rays and Ha absorption features. The constant radial velocity approximation usually remains self-consistent in decreasing or constant velocity solar wind out to 5 AU, enabling us to separate radial from latitudinal propagation effects. We found several examples of sharp nonmeridional stream boundaries in interplanetary space (approx.5/sup 0/ latitude in width), often directly associated with features in coronal X rays and Ha. In one structure there is evidence for significant (up to 40/sup 0/) nonradial flow of the plasma in the corona below the altitude of transition to super-Alfvenic flow.

  10. An initial-abstraction, constant-loss model for unit hydrograph modeling for applicable watersheds in Texas

    USGS Publications Warehouse

    Asquith, William H.; Roussel, Meghan C.

    2007-01-01

    Estimation of representative hydrographs from design storms, which are known as design hydrographs, provides for cost-effective, riskmitigated design of drainage structures such as bridges, culverts, roadways, and other infrastructure. During 2001?07, the U.S. Geological Survey (USGS), in cooperation with the Texas Department of Transportation, investigated runoff hydrographs, design storms, unit hydrographs,and watershed-loss models to enhance design hydrograph estimation in Texas. Design hydrographs ideally should mimic the general volume, peak, and shape of observed runoff hydrographs. Design hydrographs commonly are estimated in part by unit hydrographs. A unit hydrograph is defined as the runoff hydrograph that results from a unit pulse of excess rainfall uniformly distributed over the watershed at a constant rate for a specific duration. A time-distributed, watershed-loss model is required for modeling by unit hydrographs. This report develops a specific time-distributed, watershed-loss model known as an initial-abstraction, constant-loss model. For this watershed-loss model, a watershed is conceptualized to have the capacity to store or abstract an absolute depth of rainfall at and near the beginning of a storm. Depths of total rainfall less than this initial abstraction do not produce runoff. The watershed also is conceptualized to have the capacity to remove rainfall at a constant rate (loss) after the initial abstraction is satisfied. Additional rainfall inputs after the initial abstraction is satisfied contribute to runoff if the rainfall rate (intensity) is larger than the constant loss. The initial abstraction, constant-loss model thus is a two-parameter model. The initial-abstraction, constant-loss model is investigated through detailed computational and statistical analysis of observed rainfall and runoff data for 92 USGS streamflow-gaging stations (watersheds) in Texas with contributing drainage areas from 0.26 to 166 square miles. The analysis is

  11. ENVIRONMENTAL EFFECTS ON THE STAR FORMATION ACTIVITY IN GALAXIES AT z {approx_equal} 1.2 IN THE COSMOS FIELD

    SciTech Connect

    Ideue, Y.; Nagao, T.; Sasaki, S.; Taniguchi, Y.; Shioya, Y.; Saito, T.; Murayama, T.; Trump, J. R.; Koekemoer, A. M.; Aussel, H.; Ilbert, O.; Sanders, D. B.; McCracken, H.; Mobasher, B.

    2009-08-01

    We investigate the relation between the star formation activity in galaxies and environment at z {approx_equal} 1.2 in the Cosmic Evolution Survey field, using the fraction of [O II] emitters and the local galaxy density. The fraction of [O II] emitters appears to be almost constant over the surface density of galaxies between 0.2 and 10 Mpc{sup -2}. This trend is different from that seen in the local universe where the star formation activity is weaker in higher density regions. To understand this difference between z {approx} 1 and z {approx} 0, we study the fraction of non-isolated galaxies as a function of local galaxy density. We find that the fraction of non-isolated galaxies increases with increasing density. Our results suggest that the star formation in galaxies at z {approx} 1 is triggered by galaxy interaction and/or mergers.

  12. XrayOpticsConstants

    2005-06-20

    This application (XrayOpticsConstants) is a tool for displaying X-ray and Optical properties for a given material, x-ray photon energy, and in the case of a gas, pressure. The display includes fields such as the photo-electric absorption attenuation length, density, material composition, index of refraction, and emission properties (for scintillator materials).

  13. THE UDF05 FOLLOW-UP OF THE HUBBLE ULTRA DEEP FIELD. III. THE LUMINOSITY FUNCTION AT z {approx} 6

    SciTech Connect

    Su Jian; Stiavelli, Massimo; Bergeron, Eddie; Bradley, Larry; Dahlen, Tomas; Ferguson, Henry C.; Koekemoer, Anton; Lucas, Ray A.; Panagia, Nino; Pavlovsky, Cheryl; Oesch, Pascal; Carollo, Marcella; Lilly, Simon; Trenti, Michele; Giavalisco, Mauro; Mobasher, Bahram

    2011-09-10

    In this paper, we present a derivation of the rest-frame 1400 A luminosity function (LF) at redshift six from a new application of the maximum likelihood method by exploring the five deepest Hubble Space Telescope/Advanced Camera for Surveys (HST/ACS) fields, i.e., the Hubble Ultra Deep Field, two UDF05 fields, and two Great Observatories Origins Deep Survey fields. We work on the latest improved data products, which makes our results more robust than those of previous studies. We use unbinned data and thereby make optimal use of the information contained in the data set. We focus on the analysis to a magnitude limit where the completeness is larger than 50% to avoid possibly large errors in the faint end slope that are difficult to quantify. We also take into account scattering in and out of the dropout sample due to photometric errors by defining for each object a probability that it belongs to the dropout sample. We find the best-fit Schechter parameters to the z {approx} 6 LF are {alpha} = 1.87 {+-} 0.14, M{sub *} = -20.25 {+-} 0.23, and {phi}{sub *} = 1.77{sup +0.62}{sub -0.49} x 10{sup -3} Mpc{sup -3}. Such a steep slope suggests that galaxies, especially the faint ones, are possibly the main sources of ionizing photons in the universe at redshift six. We also combine results from all studies at z {approx} 6 to reach an agreement in the 95% confidence level that -20.45 < M{sub *} < -20.05 and -1.90 < {alpha} < -1.55. The luminosity density has been found not to evolve significantly between z {approx} 6 and z {approx} 5, but considerable evolution is detected from z {approx} 6 to z {approx} 3.

  14. THE HETDEX PILOT SURVEY. IV. THE EVOLUTION OF [O II] EMITTING GALAXIES FROM z {approx} 0.5 TO z {approx} 0

    SciTech Connect

    Ciardullo, Robin; Gronwall, Caryl; Schneider, Donald P.; Zeimann, Gregory R. E-mail: caryl@astro.psu.edu E-mail: grzeimann@psu.edu; and others

    2013-05-20

    We present an analysis of the luminosities and equivalent widths of the 284 z < 0.56 [O II]-emitting galaxies found in the 169 arcmin{sup 2} pilot survey for the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX). By combining emission-line fluxes obtained from the Mitchell spectrograph on the McDonald 2.7 m telescope with deep broadband photometry from archival data, we derive each galaxy's dereddened [O II] {lambda}3727 luminosity and calculate its total star formation rate. We show that over the last {approx}5 Gyr of cosmic time, there has been substantial evolution in the [O II] emission-line luminosity function, with L* decreasing by {approx}0.6 {+-} 0.2 dex in the observed function, and by {approx}0.9 {+-} 0.2 dex in the dereddened relation. Accompanying this decline is a significant shift in the distribution of [O II] equivalent widths, with the fraction of high equivalent-width emitters declining dramatically with time. Overall, the data imply that the relative intensity of star formation within galaxies has decreased over the past {approx}5 Gyr, and that the star formation rate density of the universe has declined by a factor of {approx}2.5 between z {approx} 0.5 and z {approx} 0. These observations represent the first [O II]-based star formation rate density measurements in this redshift range, and foreshadow the advancements which will be generated by the main HETDEX survey.

  15. Enhanced effects of variation of the fundamental constants in laser interferometers and application to dark-matter detection

    NASA Astrophysics Data System (ADS)

    Stadnik, Y. V.; Flambaum, V. V.

    2016-06-01

    We outline laser interferometer measurements to search for variation of the electromagnetic fine-structure constant α and particle masses (including a nonzero photon mass). We propose a strontium optical lattice clock—silicon single-crystal cavity interferometer as a small-scale platform for these measurements. Our proposed laser interferometer measurements, which may also be performed with large-scale gravitational-wave detectors, such as LIGO, Virgo, GEO600, or TAMA300, may be implemented as an extremely precise tool in the direct detection of scalar dark matter that forms an oscillating classical field or topological defects.

  16. On the processing pf piecewise-constant signals by hierarchical models with application to single ion channel currents

    SciTech Connect

    Djuric, P.M.; Fwu, Jong-Kae; Jovanovic, S.; Lynn, K.

    1996-03-01

    A new approach for processing of piecewise-constant signals is proposed. It is based on modeling the observed data as a sum of a random signal and noise. The random signal has a Gibbs distribution, and the noise is Gaussian. A MAP criterion in derived for joint estimation of the number of signal levels and reconstruction of signal. The criterion comprises of three terms, one corresponding to the likelihood of the data and two to penalties. One penalty term penalizes for unnecessary transitions, and the other, for unnecessary levels. The method has been tested on synthesized data and applied to single ion channel recording.

  17. FTIR quantitative analysis of calcium carbonate (calcite) and silica (quartz) mixtures using the constant ratio method. Application to geological samples.

    PubMed

    Reig, F Bosch; Adelantado, J V Gimeno; Moya Moreno, M C M

    2002-10-16

    A methodology for quantifying calcium carbonate (875 and 712 cm(-1)) and silica (798 and 779 cm(-1)) by FTIR spectroscopy applying the constant ratio method is proposed. The studied method is applied for quantitative analysis of calcite and quartz in geological samples. The suggested method uses potassium ferricyanide (2115 cm(-1)) as standard and samples are prepared as potassium bromide pellets, with statistically satisfactory results (relative standard deviation less than 5%). The influence of particle size (pulverised samples) on the accuracy of the results found by FTIR spectroscopy applying the constant ratio method has been studied. The granulometric study suggests that the homogeneity of particle size is important. An absorbances correction method is proposed to correct spectral interferences. Due to the fact that most spectra are characterised by a high number of absorbance peaks, spectral interferences may occur so that some peaks cannot be used for quantitative analysis. These interferences can be evaluated and eliminated with the proposed method and the peaks can be used in the analysis.

  18. Association constants and distribution functions for ion pairs in binary solvent mixtures: Application to a cyanine dye system

    NASA Astrophysics Data System (ADS)

    Odinokov, A. V.; Basilevsky, M. V.; Nikitina, E. A.

    2011-10-01

    The computations of the association constants Kass were performed at the microscopic level for the ion pair Cy+I- composed of the complex cyanine dye cation Cy+ coupled to the negative iodine counterion. The wide array of Kass values is arranged by a variation of the composition of the binary solvent mixtures toluene/dimethylsulfoxide with the accompanying change of the solvent polarity. The potentials of mean force (PMFs) are calculated for a set of interionic separations R in the Cy+I- by a methodology which combines the quantum-chemical techniques for the treatment of the electronic structure of the Cy+I- system with the recent dielectric continuum approach which accounts for the solvation effects. For a given solute/solvent system the probability function P(R), which describes the distribution of interionic separations, is constructed in terms of the PMFs and implemented for the evaluation of the Kass.

  19. Measuring the Hubble constant from Ryle Telescope and X-ray observations, with application to Abell 1413

    NASA Astrophysics Data System (ADS)

    Grainge, Keith; Jones, Michael E.; Pooley, Guy; Saunders, Richard; Edge, Alastair; Grainger, William F.; Kneissl, Rüdiger

    2002-06-01

    We describe our methods for measuring the Hubble constant from Ryle Telescope (RT) interferometric observations of the Sunyaev-Zel'dovich (SZ) effect from a galaxy cluster and observation of the cluster X-ray emission. We analyse the error budget in this method: as well as radio and X-ray random errors, we consider the effects of clumping and temperature differences in the cluster gas, of the kinetic SZ effect, of bremsstrahlung emission at radio wavelengths, of the gravitational lensing of background radio sources and of primary calibration error. Using RT, ASCA and ROSAT observations of the Abell 1413, we find that random errors dominate over systematic ones, and estimate H0=57- 16+23kms- 1Mpc- 1 for a an ΩM=1.0, ΩΛ=0.0 cosmology.

  20. Application of a Constant Gain Extended Kalman Filter for In-Flight Estimation of Aircraft Engine Performance Parameters

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.; Litt, Jonathan S.

    2005-01-01

    An approach based on the Constant Gain Extended Kalman Filter (CGEKF) technique is investigated for the in-flight estimation of non-measurable performance parameters of aircraft engines. Performance parameters, such as thrust and stall margins, provide crucial information for operating an aircraft engine in a safe and efficient manner, but they cannot be directly measured during flight. A technique to accurately estimate these parameters is, therefore, essential for further enhancement of engine operation. In this paper, a CGEKF is developed by combining an on-board engine model and a single Kalman gain matrix. In order to make the on-board engine model adaptive to the real engine s performance variations due to degradation or anomalies, the CGEKF is designed with the ability to adjust its performance through the adjustment of artificial parameters called tuning parameters. With this design approach, the CGEKF can maintain accurate estimation performance when it is applied to aircraft engines at offnominal conditions. The performance of the CGEKF is evaluated in a simulation environment using numerous component degradation and fault scenarios at multiple operating conditions.

  1. Damn You, Little h! (Or, Real-World Applications of the Hubble Constant Using Observed and Simulated Data)

    NASA Astrophysics Data System (ADS)

    Croton, Darren J.

    2013-10-01

    The Hubble constant, H 0, or its dimensionless equivalent, "little h", is a fundamental cosmological property that is now known to an accuracy better than a few per cent. Despite its cosmological nature, little h commonly appears in the measured properties of individual galaxies. This can pose unique challenges for users of such data, particularly with survey data. In this paper we show how little h arises in the measurement of galaxies, how to compare like-properties from different datasets that have assumed different little h cosmologies, and how to fairly compare theoretical data with observed data, where little h can manifest in vastly different ways. This last point is particularly important when observations are used to calibrate galaxy formation models, as calibrating with the wrong (or no) little h can lead to disastrous results when the model is later converted to the correct h cosmology. We argue that in this modern age little h is an anachronism, being one of least uncertain parameters in astrophysics, and we propose that observers and theorists instead treat this uncertainty like any other. We conclude with a `cheat sheet' of nine points that should be followed when dealing with little h in data analysis.

  2. Calculation of generalized spin stiffness constant of strongly correlated doped quantum antiferromagnet on two-dimensional lattice and it's application to effective exchange constant for semi-itinerant systems

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Suraka; Chaudhury, Ranjan

    2016-11-01

    The generalized spin stiffness constant for a doped quantum antiferromagnet has been investigated both analytically and numerically as a function of doping concentration at zero temperature, based on the strongly correlated t-J model on two-dimensional square lattice. The nature of the theoretical dependence of the stiffness constant on doping shows a striking similarity with that of the effective exchange constant, obtained from the combination of other theoretical and experimental techniques in the low doping region. This correspondence once again establishes that spin stiffness can very well play the role of an effective exchange constant even in the strongly correlated semi-itinerant systems. Our theoretical plot of the stiffness constant against doping concentration in the whole doping region exhibits the various characteristic features like a possible crossover in the higher doping regions and persistence of short range ordering even for very high doping with the complete vanishing of spin stiffness occurring only close to 100% doping. Our results receive very good support from various other theoretical approaches and also brings out a few limitations of some of them. Our detailed analysis highlights the crucial importance of the study of spin stiffness for the proper understanding of magnetic correlations in a semi-itinerant magnetic system described by the strongly correlated t-J model. Moreover, our basic formalism can also be utilized for determination of the effective exchange constant and magnetic correlations for itinerant magnetic systems, in general in a novel way.

  3. The inhibition of demineralization of human enamel after fluoride varnish application as a function of the fluoride content. An in vitro study under constant composition demineralizing conditions.

    PubMed

    de Bruyn, H; Buskes, J A; Arends, J

    1986-06-01

    The inhibiting effect of a 24 hours application of a fluoridated varnish with various fluoride contents on demineralization of human sound enamel was evaluated in vitro. The varnishes used had the same polyurethane base (Fluor Protector) and contained 0.7; 0.1; 0.05 and 0 wt% fluoride, resp. A constant composition technique was used to demineralize varnished and non-varnished specimens at a pH of 5 for periods upto 2 weeks. Microhardness measurements were carried out after several time intervals to follow mineral loss in time longitudinally. At the end of each experimental run microradiography was carried out to investigate 1) lesion type, 2) lesion depth and 3) mineral loss. It is shown in this study that the fluoride releasing varnishes applied on the enamel for 24 hours can inhibit demineralization completely. No demineralization inhibition with the 0% fluoride varnish application was observed.

  4. Testable solution of the cosmological constant and coincidence problems

    SciTech Connect

    Shaw, Douglas J.; Barrow, John D.

    2011-02-15

    We present a new solution to the cosmological constant (CC) and coincidence problems in which the observed value of the CC, {Lambda}, is linked to other observable properties of the Universe. This is achieved by promoting the CC from a parameter that must be specified, to a field that can take many possible values. The observed value of {Lambda}{approx_equal}(9.3 Gyrs){sup -2}[{approx_equal}10{sup -120} in Planck units] is determined by a new constraint equation which follows from the application of a causally restricted variation principle. When applied to our visible Universe, the model makes a testable prediction for the dimensionless spatial curvature of {Omega}{sub k0}=-0.0056({zeta}{sub b}/0.5), where {zeta}{sub b}{approx}1/2 is a QCD parameter. Requiring that a classical history exist, our model determines the probability of observing a given {Lambda}. The observed CC value, which we successfully predict, is typical within our model even before the effects of anthropic selection are included. When anthropic selection effects are accounted for, we find that the observed coincidence between t{sub {Lambda}={Lambda}}{sup -1/2} and the age of the Universe, t{sub U}, is a typical occurrence in our model. In contrast to multiverse explanations of the CC problems, our solution is independent of the choice of a prior weighting of different {Lambda} values and does not rely on anthropic selection effects. Our model includes no unnatural small parameters and does not require the introduction of new dynamical scalar fields or modifications to general relativity, and it can be tested by astronomical observations in the near future.

  5. DISCOVERY OF LYMAN BREAK GALAXIES AT z {approx} 7 FROM THE zFourGE SURVEY

    SciTech Connect

    Tilvi, V.; Papovich, C.; Tran, K.-V. H.; Labbe, I.; Straatman, C. M. S.; Spitler, L. R.; Glazebrook, K.; Kacprzak, G. G.; Persson, S. E.; Monson, A.; Quadri, R. F.; Kelson, D. D.; Van Dokkum, P.; Ashby, M. L. N.; Fazio, G. G.; Faber, S. M.; Ferguson, H. C.; Grogin, N. A.; Koekemoer, A. M.; and others

    2013-05-01

    Star-forming galaxies at redshifts z > 6 are likely responsible for the reionization of the universe, and it is important to study the nature of these galaxies. We present three candidates for z {approx} 7 Lyman break galaxies (LBGs) from a 155 arcmin{sup 2} area in the CANDELS/COSMOS field imaged by the deep FourStar Galaxy Evolution (zFourGE) survey. The FourStar medium-band filters provide the equivalent of R {approx} 10 spectroscopy, which cleanly distinguishes between z {approx} 7 LBGs and brown dwarf stars. The distinction between stars and galaxies based on an object's angular size can become unreliable even when using Hubble Space Telescope imaging; there exists at least one very compact z {approx} 7 candidate (FWHM {approx} 0.5-1 kpc) that is indistinguishable from a point source. The medium-band filters provide narrower redshift distributions compared with broadband-derived redshifts. The UV luminosity function derived using the three z {approx} 7 candidates is consistent with previous studies, suggesting an evolution at the bright end (M{sub UV} {approx} -21.6 mag) from z {approx} 7 to z {approx} 5. Fitting the galaxies' spectral energy distributions, we predict Ly{alpha} equivalent widths for the two brightest LBGs, and find that the presence of a Ly{alpha} line affects the medium-band flux thereby changing the constraints on stellar masses and UV spectral slopes. This illustrates the limitations of deriving LBG properties using only broadband photometry. The derived specific star-formation rates for the bright LBGs are {approx}13 Gyr{sup -1}, slightly higher than the lower-luminosity LBGs, implying that the star-formation rate increases with stellar mass for these galaxies.

  6. Application of constant-current coulometry for estimation of plasma total antioxidant capacity and its relationship with transition metal contents.

    PubMed

    Ziyatdinova, Guzel K; Voloshin, Alexandr V; Gilmutdinov, Albert Kh; Budnikov, Herman C; Ganeev, Talgat S

    2006-03-01

    Simple and express coulometric method for the evaluation of the total antioxidant capacity (TAC) of human plasma based on the reaction with electrogenerated bromine is applied. TAC of plasma from patients with different ethiology of chronic renal failure was observed. The levels of antioxidant capacity for venous and arterial plasma are authentically different (15+/-1 kCl/L versus 11.7+/-0.7 kCl/L, p<0.01). The application of Vitamin E and ximedon as an antioxidant treatment significantly increase TAC level of plasma. Free liposoluble antioxidants in plasma in alpha-tocopherol units was determined. Redox potential of plasma is measured and its correlation with lg(TAC) is obtained. Transition metal contents of Fe, Cu, Mn, Ni, and Cr in plasma of patients with chronic renal failure is significantly higher than that for a control group. Correlation analysis has shown negative linear regression between TAC value and transition metals concentration in plasma. This confirms interrelation of processes with participation of free radicals, antioxidants and transition metals as donors of electrons in chain radical processes. Moreover, it shows utility of common parameters, TAC for example, for estimation of efficiency of antioxidant defense system in living organism, in particular its antioxidant status.

  7. Capacitive Cells for Dielectric Constant Measurement

    ERIC Educational Resources Information Center

    Aguilar, Horacio Munguía; Maldonado, Rigoberto Franco

    2015-01-01

    A simple capacitive cell for dielectric constant measurement in liquids is presented. As an illustrative application, the cell is used for measuring the degradation of overheated edible oil through the evaluation of their dielectric constant.

  8. The mechanical first law of black hole spacetimes with a cosmological constant and its application to the Schwarzschild-de Sitter spacetime

    NASA Astrophysics Data System (ADS)

    Urano, Miho; Tomimatsu, Akira; Saida, Hiromi

    2009-05-01

    The mechanical first law (MFL) of black hole spacetimes is a geometrical relation which relates variations of the mass parameter and horizon area. While it is well known that the MFL of an asymptotic flat black hole is equivalent to its thermodynamical first law, however we do not know the detail of the MFL of black hole spacetimes with a cosmological constant which possess a black hole and cosmological event horizons. This paper aims to formulate an MFL of the two-horizon spacetimes. For this purpose, we try to include the effects of two horizons in the MFL. To do so, we make use of the Iyer-Wald formalism and extend it to regard the mass parameter and the cosmological constant as two independent variables which make it possible to treat the two horizons on the same footing. Our extended Iyer-Wald formalism preserves the existence of the conserved Noether current and its associated Noether charge, and gives an abstract form of the MFL of black hole spacetimes with a cosmological constant. Then, as a representative application of this formalism, we derive the MFL of the Schwarzschild-de Sitter (SdS) spacetime. Our MFL of the SdS spacetime relates the variations of three quantities: the mass parameter, the total area of the two horizons and the volume enclosed by the two horizons. If our MFL is regarded as a thermodynamical first law of the SdS spacetime, it offers a thermodynamically consistent description of the SdS black hole evaporation process: the mass decreases while the volume and the entropy increase. In our suggestion, a generalized second law is not needed to ensure the second law of SdS thermodynamics for its evaporation process.

  9. The near field/far field model with constant application of chemical mass and exponentially decreasing emission of the mass applied.

    PubMed

    Nicas, Mark

    2016-07-01

    The near field/far field (NF/FF) model is a contaminant dispersion construct that permits making airborne contaminant exposure estimates for an individual located close to an emission source. In the present analysis, chemical emission involves a constant mass rate of chemical application to surfaces, denoted I (mg/min), and an exponentially decreasing rate of emission of the chemical from the surfaces with rate constant α (min(-1)). The time-dependent emission rate function is: G(t), mg/min = I - I exp(- αt), where time t is in minutes. The exact time-dependent equations for the contaminant concentration in the NF and the FF are presented. These equations are used to revise a previous analysis of a study in which a penetrant liquid containing benzene was applied to parts on a work table in a test room. The previous analysis assumed that the benzene was applied as a bolus at the start of a 15-min use period, whereas the present analysis assumes the same total benzene mass was applied at a uniform rate over the 15-min use period, but with the same evaporation rate constant α. The new G(t) function leads to a lower 15-min time weighted average NF benzene concentration that better matches the experimental data. It is also shown that the exact equation for the NF concentration is well approximated by combining two well-mixed single-zone equations. The approximation method is mathematically simpler and obviates the need to derive the exact NF equation. PMID:26861562

  10. MOIRCS DEEP SURVEY. IV. EVOLUTION OF GALAXY STELLAR MASS FUNCTION BACK TO z {approx} 3

    SciTech Connect

    Kajisawa, M.; Ichikawa, T.; Yamada, T.; Akiyama, M.; Tokoku, C.; Yoshikawa, T.; Tanaka, I.; Suzuki, R.; Konishi, M.; Uchimoto, Y. K.; Ouchi, M.; Iwata, I.; Hamana, T.; Onodera, M.

    2009-09-10

    We use very deep near-infrared (NIR) imaging data obtained in MOIRCS Deep Survey (MODS) to investigate the evolution of the galaxy stellar mass function back to z {approx} 3. The MODS data reach J = 24.2, H = 23.1, and K = 23.1 (5{sigma}, Vega magnitude) over 103 arcmin{sup 2} (wide) and J = 25.1, H = 23.7, and K = 24.1 over 28 arcmin{sup 2} (deep) in the GOODS-North region. The wide and very deep NIR data allow us to measure the number density of galaxies down to low stellar mass (10{sup 9}-10{sup 10} M{sub sun}) even at high redshift with high statistical accuracy. The normalization of the mass function decreases with redshift, and the integrated stellar mass density becomes {approx}8%-18% of the local value at z {approx} 2 and {approx}4%-9% at z {approx} 3, which are consistent with results of previous studies in general fields. Furthermore, we found that the low-mass slope becomes steeper with redshift from {alpha} {approx} -1.3 at z {approx} 1 to {alpha} {approx} -1.6 at z {approx} 3 and that the evolution of the number density of low-mass (10{sup 9}-10{sup 10} M{sub sun}) galaxies is weaker than that of M* ({approx}10{sup 11} M{sub sun}) galaxies. This indicates that the contribution of low-mass galaxies to the total stellar mass density has been significant at high redshift. The steepening of the low-mass slope with redshift is an opposite trend expected from the stellar mass dependence of the specific star formation rate reported in previous studies. The present result suggests that the hierarchical merging process overwhelmed the effect of the stellar mass growth by star formation and was very important for the stellar mass assembly of these galaxies at 1 {approx}< z {approx}< 3.

  11. MOIRCS DEEP SURVEY. VIII. EVOLUTION OF STAR FORMATION ACTIVITY AS A FUNCTION OF STELLAR MASS IN GALAXIES SINCE z {approx} 3

    SciTech Connect

    Kajisawa, M.; Ichikawa, T.; Yamada, T.; Akiyama, M.; Uchimoto, Y. K.; Yoshikawa, T.; Onodera, M.

    2010-11-01

    We study the evolution of star formation activity of galaxies at 0.5 < z < 3.5 as a function of stellar mass, using very deep NIR data taken with the Multi-Object Infrared Camera and Spectrograph on the Subaru telescope in the GOODS-North region. The NIR imaging data reach K{approx} 23-24 Vega magnitude and they allow us to construct a nearly stellar-mass-limited sample down to {approx}10{sup 9.5-10} M{sub sun} even at z {approx} 3. We estimated star formation rates (SFRs) of the sample with two indicators, namely, the Spitzer/MIPS 24 {mu}m flux and the rest-frame 2800 A luminosity. The SFR distribution at a fixed M{sub star} shifts to higher values with increasing redshift at 0.5 < z < 3.5. More massive galaxies show stronger evolution of SFR at z {approx}> 1. We found galaxies at 2.5 < z < 3.5 show a bimodality in their SSFR distribution, which can be divided into two populations by a constant SSFR of {approx}2 Gyr{sup -1}. Galaxies in the low-SSFR group have SSFRs of {approx}0.5-1.0 Gyr{sup -1}, while the high-SSFR population shows {approx}10 Gyr{sup -1}. The cosmic SFR density (SFRD) is dominated by galaxies with M{sub star} = 10{sup 10-11} M{sub sun} at 0.5 < z < 3.5, while the contribution of massive galaxies with M{sub star} = 10{sup 11-11.5} M{sub sun} shows a strong evolution at z>1 and becomes significant at z {approx} 3, especially in the case with the SFR based on MIPS 24 {mu}m. In galaxies with M{sub star} = 10{sup 10-11.5} M{sub sun}, those with a relatively narrow range of SSFR ({approx}<1 dex) dominates the cosmic SFRD at 0.5 < z < 3.5. The SSFR of galaxies that dominate the SFRD systematically increases with redshift. At 2.5 < z < 3.5, the high-SSFR population, which is relatively small in number, dominates the SFRD. Major star formation in the universe at higher redshift seems to be associated with a more rapid growth of stellar mass of galaxies.

  12. Application of chemometrics in determination of the acid dissociation constants (pKa) of several benzodiazepine derivatives as poorly soluble drugs in the presence of ionic surfactants.

    PubMed

    Shayesteh, Tavakol Heidary; Radmehr, Moojan; Khajavi, Farzad; Mahjub, Reza

    2015-03-10

    In this study, the acid dissociation constants (pKa) of some benzodiazepine derivatives including chlordiazepoxide, clonazepam, lorazepam, and oxazepam in aqueous micellar solution were determined spectrophotometrically at an ionic strength of 0.1M at 25°C. The effect of cetyl trimethylammonium bromide (CTAB) as a cationic and sodium n-dodecyl sulfate(SDS) as an anionic surfactant on the absorption spectra of benzodiazepine drugs at different pH values were studied. The acidity constants of all related species are estimated by considering the surfactant concept and the application of chemometric methods using the whole spectral fitting of the collected data to an established factor analysis model. DATAN® software (Ver. 5.0, Multid Analyses AB, and Goteborg, Sweden) was applied to determine the acidity constants. In this study, a simple and fast method to determine the ionization constant (pKa) of poorly soluble drugs was developed using surfactants. The acidity constant (i.e. pKa) for chlordiazepoxide, clonazepam, lorazepam, and oxazepam were reported as 4.62, pKa1 value of 1.52 and pKa2 value of 10.51, pKa1 value of 1.53 and pKa2 value of 10.92 and pKa1 value 1.63 and pKa2 value of 11.21 respectively. The results showed that the peak values in the spectrophotometric absorption spectra of drugs are influenced by the presence of anionic and cationic surfactants. According to the results, by changing the SDS concentration from 0 to 0.05M, the pKa of chlordiazepoxide was increased to 5.9, the pKa1 of lorazepam was decreased to 0.1 while the pKa2 was increased to 11.5. Increase in SDS concentration has not shown significant alteration in pKa of clonazepam and oxazepam. Results indicate that by Changing the CTAB concentration from 0 to 0.05M, the pKa of chlordiazepoxide was reduced to 4.4, the pKa1 of clonazepam was decreased to 0.1 and the pKa2 was decreased to 9.1, the pKa1 of lorazepam was decreased to 0.4 and the pKa2 was decreased to 9.4, the pKa1 of oxazepam was

  13. GOODS-HERSCHEL AND CANDELS: THE MORPHOLOGIES OF ULTRALUMINOUS INFRARED GALAXIES AT z {approx} 2

    SciTech Connect

    Kartaltepe, Jeyhan S.; Dickinson, Mark; Alexander, David M.; Bell, Eric F.; Dahlen, Tomas; Lotz, Jennifer; Elbaz, David; Wiklind, Tommy; Faber, S. M.; Aussel, Herve; Bethermin, Matthieu; Bournaud, Frederic; Dannerbauer, Helmut; Charmandaris, Vassilis; Conselice, Christopher J.; Cooray, Asantha; Dave, Romeel; Dunlop, James; and others

    2012-09-20

    Using deep 100 and 160 {mu}m observations in GOODS-South from GOODS-Herschel, combined with high-resolution HST/WFC3 near-infrared imaging from CANDELS, we present the first detailed morphological analysis of a complete, far-infrared (FIR) selected sample of 52 ultraluminous infrared galaxies (ULIRGs; L{sub IR} > 10{sup 12} L{sub Sun }) at z {approx} 2. We also make use of a comparison sample of galaxies with lower IR luminosities but with the same redshift and H-band magnitude distribution. Our visual classifications of these two samples indicate that the fractions of objects with disk and spheroid morphologies are roughly the same but that there are significantly more mergers, interactions, and irregular galaxies among the ULIRGs (72{sup +5}{sub -7}% versus 32 {+-} 3%). The combination of disk and irregular/interacting morphologies suggests that early-stage interactions, minor mergers, and disk instabilities could play an important role in ULIRGs at z {approx} 2. We compare these fractions with those of a z {approx} 1 sample selected from GOODS-H and COSMOS across a wide luminosity range and find that the fraction of disks decreases systematically with L{sub IR} while the fraction of mergers and interactions increases, as has been observed locally. At comparable luminosities, the fraction of ULIRGs with various morphological classifications is similar at z {approx} 2 and z {approx} 1, though there are slightly fewer mergers and slightly more disks at higher redshift. We investigate the position of the z {approx} 2 ULIRGs, along with 70 z {approx} 2 LIRGs, on the specific star formation rate versus redshift plane, and find 52 systems to be starbursts (i.e., they lie more than a factor of three above the main-sequence relation). We find that many of these systems are clear interactions and mergers ({approx}50%) compared to only 24% of systems on the main sequence relation. If irregular disks are included as potential minor mergers, then we find that up to {approx

  14. Constant attitude orbit transfer

    NASA Astrophysics Data System (ADS)

    Cress, Peter; Evans, Michael

    A two-impulse orbital transfer technique is described in which the spacecraft attitude remains constant for both burns, eliminating the need for attitude maneuvers between the burns. This can lead to significant savings in vehicle weight, cost and complexity. Analysis is provided for a restricted class of applications of this transfer between circular orbits. For those transfers with a plane change less than 30 deg, the total velocity cost of the maneuver is less than twelve percent greater than that of an optimum plane split Hohmann transfer. While this maneuver does not minimize velocity requirement, it does provide a means of achieving necessary transfer while substantially reducing the cost and complexity of the spacecraft.

  15. A Constant Pressure Bomb

    NASA Technical Reports Server (NTRS)

    Stevens, F W

    1924-01-01

    This report describes a new optical method of unusual simplicity and of good accuracy suitable to study the kinetics of gaseous reactions. The device is the complement of the spherical bomb of constant volume, and extends the applicability of the relationship, pv=rt for gaseous equilibrium conditions, to the use of both factors p and v. The method substitutes for the mechanical complications of a manometer placed at some distance from the seat of reaction the possibility of allowing the radiant effects of reaction to record themselves directly upon a sensitive film. It is possible the device may be of use in the study of the photoelectric effects of radiation. The method makes possible a greater precision in the measurement of normal flame velocities than was previously possible. An approximate analysis shows that the increase of pressure and density ahead of the flame is negligible until the velocity of the flame approaches that of sound.

  16. HERSCHEL DETECTION OF DUST EMISSION FROM UV-LUMINOUS STAR-FORMING GALAXIES AT 3.3 {approx}< z {approx}< 4.3

    SciTech Connect

    Lee, Kyoung-Soo; Alberts, Stacey; Pope, Alexandra; Atlee, David; Dey, Arjun; Jannuzi, Buell T.; Reddy, Naveen; Brown, Michael J. I.

    2012-10-20

    We report the Herschel/SPIRE detection of dust emission arising from UV-luminous (L {approx}> L*) star-forming galaxies at 3.3 {approx}< z {approx}< 4.3. Our sample of 1913 Lyman break galaxy (LBG) candidates is selected over an area of 5.3 deg{sup 2} in the Booetes field of the NOAO Deep Wide-Field Survey. This is one of the largest samples of UV-luminous galaxies at this epoch and enables an investigation of the bright end of the galaxy luminosity function. We divide our sample into three luminosity bins and stack the Herschel/SPIRE data to measure the average spectral energy distribution (SED) of LBGs at far-infrared (FIR) wavelengths. We find that these galaxies have average IR luminosities of (3-5) Multiplication-Sign 10{sup 11} L{sub Sun} and 60%-70% of their star formation obscured by dust. The FIR SEDs peak at {lambda}{sub rest} {approx}> 100 {mu}m suggesting dust temperatures (T{sub d} = 27-30 K) significantly colder than that of local galaxies of comparable IR luminosities. The observed IR-to-UV luminosity ratio (IRX {identical_to} L{sub IR}/L{sub UV}) is low ( Almost-Equal-To 3-4) compared with that observed for z Almost-Equal-To 2 LBGs (IRX{sub z{approx}2} Almost-Equal-To 7.1 {+-} 1.1). The correlation between the slope of the UV continuum and IRX for galaxies in the two lower luminosity bins suggests dust properties similar to those of local starburst galaxies. However, the galaxies in the highest luminosity bin appear to deviate from the local relation, suggesting that their dust properties may differ from those of their lower-luminosity and low-redshift counterparts. We speculate that the most UV-luminous galaxies at this epoch are being observed in a short-lived and young evolutionary phase.

  17. IMPROVED DARK ENERGY CONSTRAINTS FROM {approx}100 NEW CfA SUPERNOVA TYPE Ia LIGHT CURVES

    SciTech Connect

    Hicken, Malcolm; Challis, Peter; Kirshner, Robert P.; Wood-Vasey, W. Michael; Blondin, Stephane; Jha, Saurabh; Kelly, Patrick L.; Rest, Armin E-mail: kirshner@cfa.harvard.edu

    2009-08-01

    We combine the CfA3 supernovae Type Ia (SN Ia) sample with samples from the literature to calculate improved constraints on the dark energy equation of state parameter, w. The CfA3 sample is added to the Union set of Kowalski et al. to form the Constitution set and, combined with a BAO prior, produces 1 + w = 0.013{sup +0.066} {sub -0.068} (0.11 syst), consistent with the cosmological constant. The CfA3 addition makes the cosmologically useful sample of nearby SN Ia between 2.6 and 2.9 times larger than before, reducing the statistical uncertainty to the point where systematics play the largest role. We use four light-curve fitters to test for systematic differences: SALT, SALT2, MLCS2k2 (R{sub V} = 3.1), and MLCS2k2 (R{sub V} = 1.7). SALT produces high-redshift Hubble residuals with systematic trends versus color and larger scatter than MLCS2k2. MLCS2k2 overestimates the intrinsic luminosity of SN Ia with 0.7 < {delta} < 1.2. MLCS2k2 with R{sub V} = 3.1 overestimates host-galaxy extinction while R{sub V} {approx} 1.7 does not. Our investigation is consistent with no Hubble bubble. We also find that, after light-curve correction, SN Ia in Scd/Sd/Irr hosts are intrinsically fainter than those in E/S0 hosts by 2{sigma}, suggesting that they may come from different populations. We also find that SN Ia in Scd/Sd/Irr hosts have low scatter (0.1 mag) and reddening. Current systematic errors can be reduced by improving SN Ia photometric accuracy, by including the CfA3 sample to retrain light-curve fitters, by combining optical SN Ia photometry with near-infrared photometry to understand host-galaxy extinction, and by determining if different environments give rise to different intrinsic SN Ia luminosity after correction for light-curve shape and color.

  18. HST/WFC3 CONFIRMATION OF THE INSIDE-OUT GROWTH OF MASSIVE GALAXIES AT 0 < z < 2 AND IDENTIFICATION OF THEIR STAR-FORMING PROGENITORS AT z {approx} 3

    SciTech Connect

    Patel, Shannon G.; Franx, Marijn; Muzzin, Adam; Van Dokkum, Pieter G.; Quadri, Ryan F.; Williams, Rik J.; Marchesini, Danilo; Holden, Bradford P.

    2013-03-20

    We study the structural evolution of massive galaxies by linking progenitors and descendants at a constant cumulative number density of n{sub c} = 1.4 Multiplication-Sign 10{sup -4} Mpc{sup -3} to z {approx} 3. Structural parameters were measured by fitting Sersic profiles to high-resolution CANDELS HST WFC3 J{sub 125} and H{sub 160} imaging in the UKIDSS-UDS at 1 < z < 3 and ACS I{sub 814} imaging in COSMOS at 0.25 < z < 1. At a given redshift, we selected the HST band that most closely samples a common rest-frame wavelength so as to minimize systematics from color gradients in galaxies. At fixed n{sub c}, galaxies grow in stellar mass by a factor of {approx}3 from z {approx} 3 to z {approx} 0. The size evolution is complex: galaxies appear roughly constant in size from z {approx} 3 to z {approx} 2 and then grow rapidly to lower redshifts. The evolution in the surface mass density profiles indicates that most of the mass at r < 2 kpc was in place by z {approx} 2, and that most of the new mass growth occurred at larger radii. This inside-out mass growth is therefore responsible for the larger sizes and higher Sersic indices of the descendants toward low redshift. At z < 2, the effective radius evolves with the stellar mass as r{sub e} {proportional_to}M {sup 2.0}, consistent with scenarios that find dissipationless minor mergers to be a key driver of size evolution. The progenitors at z {approx} 3 were likely star-forming disks with r{sub e} {approx} 2 kpc, based on their low Sersic index of n {approx} 1, low median axis ratio of b/a {approx} 0.52, and typical location in the star-forming region of the U - V versus V - J diagram. By z {approx} 1.5, many of these star-forming disks disappeared, giving rise to compact quiescent galaxies. Toward lower redshifts, these galaxies continued to assemble mass at larger radii and became the local ellipticals that dominate the high-mass end of the mass function at the present epoch.

  19. Electron transport and electron energy distributions within the wurtzite and zinc-blende phases of indium nitride: Response to the application of a constant and uniform electric field

    SciTech Connect

    Siddiqua, Poppy; Hadi, Walid A.; Salhotra, Amith K.; O'Leary, Stephen K.; Shur, Michael S.

    2015-03-28

    Within the framework of an ensemble semi-classical three-valley Monte Carlo electron transport simulation approach, we critically contrast the nature of the electron transport that occurs within the wurtzite and zinc-blende phases of indium nitride in response to the application of a constant and uniform electric field. We use the electron energy distribution and its relationship with the electron transport characteristics in order to pursue this analysis. For the case of zinc-blende indium nitride, only a peak corresponding to the electrons within the lowest energy conduction band valley is observed, this peak being seen to broaden and shift to higher energies in response to increases in the applied electric field strength, negligible amounts of upper energy conduction band valley occupancy being observed. In contrast, for the case of wurtzite indium nitride, in addition to the aforementioned lowest energy conduction band valley peak in the electron energy distribution, and its broadening and shifting to higher energies in response to increases in the applied electric field strength, beyond a certain critical electric field strength, 30 kV/cm for the case of this particular material, upper energy conduction band valley occupancy is observed, this occupancy being further enhanced in response to further increases in the applied electric field strength. Reasons for these results are provided. The potential for device consequences is then commented upon.

  20. EARLY-TYPE GALAXIES AT z {approx} 1.3. IV. SCALING RELATIONS IN DIFFERENT ENVIRONMENTS

    SciTech Connect

    Raichoor, A.; Mei, S.; Huertas-Company, M.; Stanford, S. A.; Rettura, A.; Jee, M. J.; Holden, B. P.; Illingworth, G.; Rosati, P.; Shankar, F.; Tanaka, M.; Ford, H.; Postman, M.; White, R. L.; Blakeslee, J. P.; Demarco, R.

    2012-02-01

    We present the Kormendy and mass-size relations (MSR) for early-type galaxies (ETGs) as a function of environment at z {approx} 1.3. Our sample includes 76 visually classified ETGs with masses 10{sup 10} < M/M{sub Sun} < 10{sup 11.5}, selected in the Lynx supercluster and in the Great Observatories Origins Deep Survey/Chandra Deep Field South field; 31 ETGs in clusters, 18 in groups, and 27 in the field, all with multi-wavelength photometry and Hubble Space Telescope/Advanced Camera for Surveys observations. The Kormendy relation, in place at z {approx} 1.3, does not depend on the environment. The MSR reveals that ETGs overall appear to be more compact in denser environments: cluster ETGs have sizes on average around 30%-50% smaller than those of the local universe and a distribution with a smaller scatter, whereas field ETGs show an MSR with a similar distribution to the local one. Our results imply that (1) the MSR in the field did not evolve overall from z {approx} 1.3 to present; this is interesting and in contrast to the trend found at higher masses from previous works; (2) in denser environments, either ETGs have increased in size by 30%-50% on average and spread their distributions, or more ETGs have been formed within the dense environment from non-ETG progenitors, or larger galaxies have been accreted to a pristine compact population to reproduce the MSR observed in the local universe. Our results are driven by galaxies with masses M {approx}< 2 Multiplication-Sign 10{sup 11} M{sub Sun} and those with masses M {approx} 10{sup 11} M{sub Sun} follow the same trends as that of the entire sample. Following the Valentinuzzi et al. definition of superdense ETGs, {approx}35%-45% of our cluster sample is made up of superdense ETGs.

  1. THE STRUCTURE OF THE MERGING RCS 231953+00 SUPERCLUSTER AT z {approx} 0.9

    SciTech Connect

    Faloon, A. J.; Webb, T. M. A.; Geach, J. E.; Noble, A. G.; Ellingson, E.; Yan, R.; Gilbank, David G.; Barrientos, L. F.; Yee, H. K. C.; Gladders, M.; Richard, J.

    2013-05-10

    The RCS 2319+00 supercluster is a massive supercluster at z = 0.9 comprising three optically selected, spectroscopically confirmed clusters separated by <3 Mpc on the plane of the sky. This supercluster is one of a few known examples of the progenitors of present-day massive clusters (10{sup 15} M{sub Sun} by z {approx} 0.5). We present an extensive spectroscopic campaign carried out on the supercluster field resulting, in conjunction with previously published data, in 1961 high-confidence galaxy redshifts. We find 302 structure members spanning three distinct redshift walls separated from one another by {approx}65 Mpc ({Delta} z = 0.03). The component clusters have spectroscopic redshifts of 0.901, 0.905, and 0.905. The velocity dispersions are consistent with those predicted from X-ray data, giving estimated cluster masses of {approx}10{sup 14.5}-10{sup 14.9} M{sub Sun }. The Dressler-Shectman test finds evidence of substructure in the supercluster field and a friends-of-friends analysis identified five groups in the supercluster, including a filamentary structure stretching between two cluster cores previously identified in the infrared by Coppin et al. The galaxy colors further show this filamentary structure to be a unique region of activity within the supercluster, comprised mainly of blue galaxies compared to the {approx}43%-77% red-sequence galaxies present in the other groups and cluster cores. Richness estimates from stacked luminosity function fits result in average group mass estimates consistent with {approx}10{sup 13} M{sub Sun} halos. Currently, 22% of our confirmed members reside in {approx}> 10{sup 13} M{sub Sun} groups/clusters destined to merge onto the most massive cluster, in agreement with the massive halo galaxy fractions important in cluster galaxy pre-processing in N-body simulation merger tree studies.

  2. PROBING THE DAWN OF GALAXIES AT z {approx} 9-12: NEW CONSTRAINTS FROM HUDF12/XDF AND CANDELS DATA

    SciTech Connect

    Oesch, P. A.; Illingworth, G. D.; Magee, D.; Van Dokkum, P. G.; Trenti, M.; Stiavelli, M.; Gonzalez, V.

    2013-08-10

    We present a comprehensive analysis of z > 8 galaxies based on ultra-deep WFC3/IR data. We exploit all the WFC3/IR imaging over the Hubble Ultra-Deep Field from the HUDF09 and the new HUDF12 program, in addition to the HUDF09 parallel field data, as well as wider area imaging over GOODS-South. Galaxies are selected based on the Lyman break technique in three samples centered around z {approx} 9, z {approx} 10, and z {approx} 11, with seven z {approx} 9 galaxy candidates, and one each at z {approx} 10 and z {approx} 11. We confirm a new z {approx} 10 candidate (with z = 9.8 {+-} 0.6) that was not convincingly identified in our first z {approx} 10 sample. Using these candidates, we perform one of the first estimates of the z {approx} 9 UV luminosity function (LF) and improve our previous constraints at z {approx} 10. Extrapolating the lower redshift UV LF evolution should have revealed 17 z {approx} 9 and 9 z {approx} 10 sources, i.e., a factor {approx}3 Multiplication-Sign and 9 Multiplication-Sign larger than observed. The inferred star formation rate density (SFRD) in galaxies above 0.7 M{sub Sun} yr{sup -1} decreases by 0.6 {+-} 0.2 dex from z {approx} 8 to z {approx} 9, in excellent agreement with previous estimates. From a combination of all current measurements, we find a best estimate of a factor 10 Multiplication-Sign decrease in the SFRD from z {approx} 8 to z {approx} 10, following (1 + z){sup -11.4{+-}3.1}. Our measurements thus confirm our previous finding of an accelerated evolution beyond z {approx} 8, and signify a very rapid build-up of galaxies with M{sub UV} < -17.7 mag within only {approx}200 Myr from z {approx} 10 to z {approx} 8, in the heart of cosmic reionization.

  3. STELLAR POPULATIONS OF ULTRAVIOLET-SELECTED ACTIVE GALACTIC NUCLEI HOST GALAXIES AT z {approx} 2-3

    SciTech Connect

    Hainline, Kevin N.; Shapley, Alice E.; Greene, Jenny E.; Steidel, Charles C.; Reddy, Naveen A.; Erb, Dawn K.

    2012-11-20

    We use stellar population synthesis modeling to analyze the host-galaxy properties of a sample of 33 UV-selected, narrow-lined active galactic nuclei (AGNs) at z {approx} 2-3. In order to quantify the contribution of AGN emission to host galaxy broadband spectral energy distributions (SEDs), we use the subsample of 11 AGNs with photometric coverage spanning from rest-frame UV through near-IR wavelengths. Modeling the SEDs of these objects with a linear combination of stellar population and AGN templates, we infer the effect of the AGN on derived stellar population parameters. We also estimate the typical bias in derived stellar populations for AGNs lacking rest-frame near-IR wavelength coverage, and develop a method for inferring the true host-galaxy properties. We compare AGN host-galaxy properties to those of a sample of UV-selected, star-forming non-AGNs in the same redshift range, including a subsample carefully matched in stellar mass. Although the AGNs have higher masses and star-formation rates than the full non-active sample, their stellar population properties are consistent with those of the mass-selected sample, suggesting that the presence of an AGN is not connected with the cessation of star formation activity in star-forming galaxies at z {approx} 2-3. We suggest that a correlation between M {sub BH} and galaxy stellar mass is already in place at this epoch. Assuming a roughly constant Eddington ratio for AGNs at all stellar masses, we are unable to detect the AGNs in low-mass galaxies because they are simply too faint.

  4. On the Khinchin Constant

    NASA Technical Reports Server (NTRS)

    Bailey, David H.; Borwein, Jonathan M.; Crandall, Richard E.; Craw, James M. (Technical Monitor)

    1995-01-01

    We prove known identities for the Khinchin constant and develop new identities for the more general Hoelder mean limits of continued fractions. Any of these constants can be developed as a rapidly converging series involving values of the Riemann zeta function and rational coefficients. Such identities allow for efficient numerical evaluation of the relevant constants. We present free-parameter, optimizable versions of the identities, and report numerical results.

  5. The hubble constant.

    PubMed

    Huchra, J P

    1992-04-17

    The Hubble constant is the constant of proportionality between recession velocity and distance in the expanding universe. It is a fundamental property of cosmology that sets both the scale and the expansion age of the universe. It is determined by measurement of galaxy The Hubble constant is the constant of proportionality between recession velocity and development of new techniques for the measurements of galaxy distances, both calibration uncertainties and debates over systematic errors remain. Current determinations still range over nearly a factor of 2; the higher values favored by most local measurements are not consistent with many theories of the origin of large-scale structure and stellar evolution. PMID:17743107

  6. The cosmological constant

    NASA Technical Reports Server (NTRS)

    Carroll, Sean M.; Press, William H.; Turner, Edwin L.

    1992-01-01

    The cosmological constant problem is examined in the context of both astronomy and physics. Effects of a nonzero cosmological constant are discussed with reference to expansion dynamics, the age of the universe, distance measures, comoving density of objects, growth of linear perturbations, and gravitational lens probabilities. The observational status of the cosmological constant is reviewed, with attention given to the existence of high-redshift objects, age derivation from globular clusters and cosmic nuclear data, dynamical tests of Omega sub Lambda, quasar absorption line statistics, gravitational lensing, and astrophysics of distant objects. Finally, possible solutions to the physicist's cosmological constant problem are examined.

  7. The application of the Modified Band Approach for the calculation of on-line photodissociation rate constants in TM5: implications for oxidative capacity

    NASA Astrophysics Data System (ADS)

    Williams, J. E.; Strunk, A.; Huijnen, V.; van Weele, M.

    2011-09-01

    A flexible and explicit on-line parameterization for the calculation of tropospheric photodissociation rate constants (J-values) has been integrated into the global Chemistry Transport Model TM5. Here we provide a comprehensive description of this Modified Band Approach (MBA) including details of the optimization procedure employed, the methodology applied for calculating actinic fluxes, the photochemical reaction data used for each chemical species and the parameterizations adopted for improving the description of scattering and absorption by clouds and aerosols. The resulting J-values change markedly throughout the troposphere when compared to the offline approach used to date, with significant increases in the boundary layer and upper troposphere. Conversely, for the middle troposphere a reduction in the actinic flux results in a decrease in J-values. Integrating effects shows that application of the MBA introduces seasonal dependent differences in important trace gas oxidants. Tropospheric ozone changes by ±5% in the seasonal mean mixing ratios throughout the troposphere, which induces changes of ±15% in tropospheric OH. In part this is due to an increase in the re-cycling efficiency of nitrogen oxides. The overall increase in northern hemispheric tropospheric ozone strengthens the oxidizing capacity of the troposphere significantly and reduces the lifetime of CO and CH4 by ~5% and ~4%, respectively. Changes in the tropospheric CO burden, however, are limited to a few percent due to competing effects. Comparing the distribution of tropospheric ozone in the boundary layer and middle troposphere against observations in Europe shows there are improvements in the model performance during boreal winter in the Northern Hemisphere near regions affected by high nitrogen oxide emissions. Monthly mean total columns of nitrogen dioxide and formaldehyde also compare more favorably against OMI and SCIAMACHY total column observations.

  8. The application of the Modified Band Approach for the calculation of on-line photodissociation rate constants in TM5: implications for oxidative capacity

    NASA Astrophysics Data System (ADS)

    Williams, J. E.; Strunk, A.; Huijnen, V.; van Weele, M.

    2012-01-01

    A flexible and explicit on-line parameterization for the calculation of tropospheric photodissociation rate constants (J-values) has been integrated into the global Chemistry Transport Model TM5. Here we provide a comprehensive description of this Modified Band Approach (MBA) including details of the optimization procedure employed, the methodology applied for calculating actinic fluxes, the photochemical reaction data used for each chemical species, the aerosol climatology which is adopted and the parameterizations adopted for improving the description of scattering and absorption by clouds. The resulting J-values change markedly throughout the troposphere when compared to the offline approach used to date, with significant increases in the boundary layer and upper troposphere. Conversely, for the middle troposphere a reduction in the actinic flux results in a decrease in J-values. Integrating effects shows that application of the MBA introduces seasonal dependent differences in important trace gas oxidants. Tropospheric ozone (O3) changes by ±10% in the seasonal mean mixing ratios throughout the troposphere, especially over land. These changes and the perturbations in the photolysis rate of O3 induce changes of ±15% in tropospheric OH. In part this is due to an increase in the re-cycling efficiency of nitrogen oxides. The overall increase in northern hemispheric tropospheric ozone strengthens the oxidizing capacity of the troposphere significantly and reduces the lifetime of CO and CH4 by ~5 % and ~4%, respectively. Changes in the tropospheric CO burden, however, are limited to a few percent due to competing effects. Comparing the distribution of tropospheric ozone in the boundary layer and middle troposphere against observations in Europe shows there are improvements in the model performance during boreal winter in the Northern Hemisphere near regions affected by high nitrogen oxide emissions. Monthly mean total columns of nitrogen dioxide and formaldehyde

  9. An investigation of accelerating mode and decelerating mode constant-momentum mass spectrometry and their application to a residual gas analyzer

    NASA Technical Reports Server (NTRS)

    Ng, Y. S.

    1977-01-01

    A theoretical analysis of constant momentum mass spectrometry was made. A maximum resolving power for the decelerating mode constant momentum mass spectrometer was shown theoretically to exist for a beam of ions of known energy. A vacuum system and an electron beam ionization source was constructed. Supporting electronics for a residual gas analyzer were built. Experimental investigations of various types of accelerating and decelerating impulsive modes of a constant momentum mass spectrometer as applied to a residual gas analyzer were made. The data indicate that the resolving power for the decelerating mode is comparable to that of the accelerating mode.

  10. HOST GALAXIES OF LUMINOUS TYPE 2 QUASARS AT z {approx} 0.5

    SciTech Connect

    Liu Xin; Greene, Jenny E.; Strauss, Michael A.; Zakamska, Nadia L.; Krolik, Julian H.; Heckman, Timothy M.

    2009-09-10

    We present deep Gemini GMOS optical spectroscopy of nine luminous quasars at redshifts z {approx} 0.5, drawn from the Sloan Digital Sky Survey type 2 quasar sample. Our targets were selected to have high intrinsic luminosities (M{sub V} < -26 mag) as indicated by the [O III] {lambda}5007 A emission-line luminosity (L[{sub OIII}]). Our sample has a median black hole mass of {approx}10{sup 8.8} M{sub sun} inferred assuming the local M {sub BH}-{sigma}{sub *} relation and a median Eddington ratio of {approx}0.7, using stellar velocity dispersions {sigma}{sub *} measured from the G band. We estimate the contamination of the stellar continuum from scattered quasar light based on the strength of broad H{beta}, and provide an empirical calibration of the contamination as a function of L {sub [OIII]}; the scattered-light fraction is {approx}30% of L{sub 5100} for objects with L {sub [OIII]} = 10{sup 9.5} L{sub sun}. Population synthesis indicates that young poststarburst populations (<0.1 Gyr) are prevalent in luminous type 2 quasars, in addition to a relatively old population (>1 Gyr) which dominates the stellar mass. Broad emission complexes around He II {lambda}4686 A with luminosities up to 10{sup 8.3} L{sub sun} are unambiguously detected in three out of the nine targets, indicative of Wolf-Rayet (WR) populations. Population synthesis shows that {approx}5 Myr poststarburst populations contribute substantially to the luminosities (>50% of L{sub 5100}) of all three objects with WR detections. We find two objects with double cores and four with close companions. Our results may suggest that luminous type 2 quasars trace an early stage of galaxy interaction, perhaps responsible for both the quasar and the starburst activity.

  11. Analytical continuation in coupling constant method; application to the calculation of resonance energies and widths for organic molecules: Glycine, alanine and valine and dimer of formic acid

    NASA Astrophysics Data System (ADS)

    Papp, P.; Matejčík, Š.; Mach, P.; Urban, J.; Paidarová, I.; Horáček, J.

    2013-06-01

    The method of analytic continuation in the coupling constant (ACCC) in combination with use of the statistical Padé approximation is applied to the determination of resonance energy and width of some amino acids and formic acid dimer. Standard quantum chemistry codes provide accurate data which can be used for analytic continuation in the coupling constant to obtain the resonance energy and width of organic molecules with a good accuracy. The obtained results are compared with the existing experimental ones.

  12. Fundamental Physical Constants

    National Institute of Standards and Technology Data Gateway

    SRD 121 CODATA Fundamental Physical Constants (Web, free access)   This site, developed in the Physics Laboratory at NIST, addresses three topics: fundamental physical constants, the International System of Units (SI), which is the modern metric system, and expressing the uncertainty of measurement results.

  13. Calculation of magnetostriction constants

    NASA Astrophysics Data System (ADS)

    Tatebayashi, T.; Ohtsuka, S.; Ukai, T.; Mori, N.

    1986-02-01

    The magnetostriction constants h1 and h2 for Ni and Fe metals and the anisotropy constants K1 and K2 for Fe metal are calculated on the basis of the approximate d bands obtained by Deegan's prescription, by using Gilat-Raubenheimer's method. The obtained results are compared with the experimental ones.

  14. DEEP NEAR-INFRARED SPECTROSCOPY OF PASSIVELY EVOLVING GALAXIES AT z {approx}> 1.4

    SciTech Connect

    Onodera, M.; Carollo, M.; Lilly, S.; Renzini, A.; Mancini, C.; Cappellari, M.; Strazzullo, V.; Daddi, E.; Gobat, R.; McCracken, H. J.; Ilbert, O.; Capak, P.; Cimatti, A.; Giavalisco, M.; Koekemoer, A. M.; Kong, X.; Motohara, K.; Ohta, K.; and others

    2012-08-10

    We present the results of new near-IR spectroscopic observations of passive galaxies at z {approx}> 1.4 in a concentration of BzK-selected galaxies in the COSMOS field. The observations have been conducted with Subaru/MOIRCS, and have resulted in absorption lines and/or continuum detection for 18 out of 34 objects. This allows us to measure spectroscopic redshifts for a sample that is almost complete to K{sub AB} = 21. COSMOS photometric redshifts are found in fair agreement overall with the spectroscopic redshifts, with a standard deviation of {approx}0.05; however, {approx}30% of objects have photometric redshifts systematically underestimated by up to {approx}25%. We show that these systematic offsets in photometric redshifts can be removed by using these objects as a training set. All galaxies fall in four distinct redshift spikes at z = 1.43, 1.53, 1.67, and 1.82, with this latter one including seven galaxies. SED fits to broadband fluxes indicate stellar masses in the range of {approx}4-40 Multiplication-Sign 10{sup 10} M{sub Sun} and that star formation was quenched {approx}1 Gyr before the cosmic epoch at which they are observed. The spectra of several individual galaxies have allowed us to measure their H{delta}{sub F} indices and the strengths of the 4000 A break, which confirms their identification as passive galaxies, as does a composite spectrum resulting from the co-addition of 17 individual spectra. The effective radii of the galaxies have been measured on the COSMOS HST/ACS i{sub F814W}-band image, confirming the coexistence at these redshifts of passive galaxies, which are substantially more compact than their local counterparts with others that follow the local effective radius-stellar mass relation. For the galaxy with the best signal-to-noise spectrum we were able to measure a velocity dispersion of 270 {+-} 105 km s{sup -1} (error bar including systematic errors), indicating that this galaxy lies closely on the virial relation given its stellar

  15. LOW-METALLICITY STAR FORMATION IN HIGH-REDSHIFT GALAXIES AT z {approx} 8

    SciTech Connect

    Taniguchi, Y.; Shioya, Y.; Trump, J. R.

    2010-12-01

    Based on the recent very deep near-infrared imaging of the Hubble Ultra Deep Field with WFC3 on the Hubble Space Telescope, five groups published the most probable samples of galaxies at z {approx} 8, selected by the so-called dropout method or photometric redshift; e.g., Y{sub 105}-dropouts (Y{sub 105} - J{sub 125} > 0.8). These studies are highly useful for investigating both the early star formation history of galaxies and the sources of cosmic re-ionization. In order to better understand these issues, we carefully examine whether there are low-z interlopers in the samples of z {approx} 8 galaxy candidates. We focus on the strong emission-line galaxies at z {approx} 2 in this paper. Such galaxies may be selected as Y{sub 105}-dropouts since the [O III] {lambda}5007 emission line is redshifted into the J{sub 125} band. We have found that the contamination from such low-z interlopers is negligibly small. Therefore, all objects found by the five groups are free from this type of contamination. However, it remains difficult to extract real z {approx} 8 galaxies because all the sources are very faint and the different groups have found different candidates. With this in mind, we construct a robust sample of eight galaxies at z {approx} 8 from the objects found by the five groups: each of these eight objects has been selected by at least two groups. Using this sample, we discuss their UV continuum slope. We also discuss the escape fraction of ionizing photons adopting various metallicities. Our analysis suggests that massive stars forming in low-metallicity gas (Z {approx} 5 x 10{sup -4} Z{sub sun}) can be responsible for the completion of cosmic re-ionization if the escape fraction of the ionizing continuum from galaxies is as large as 0.5, and this is consistent with the observed blue UV continua.

  16. CANDELS: THE PROGENITORS OF COMPACT QUIESCENT GALAXIES AT z {approx} 2

    SciTech Connect

    Barro, Guillermo; Faber, S. M.; Koo, David C.; Kocevski, Dale D.; Trump, Jonathan R.; Mozena, Mark; McGrath, Elizabeth; Cheung, Edmond; Fang, Jerome; Williams, Christina C.; Van der Wel, Arjen; Wuyts, Stijn; Bell, Eric F.; Croton, Darren J.; Ceverino, Daniel; Dekel, Avishai; Ashby, M. L. N.; Ferguson, Henry C.; Fontana, Adriano; and others

    2013-03-10

    We combine high-resolution Hubble Space Telescope/WFC3 images with multi-wavelength photometry to track the evolution of structure and activity of massive (M{sub *} > 10{sup 10} M{sub Sun }) galaxies at redshifts z = 1.4-3 in two fields of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey. We detect compact, star-forming galaxies (cSFGs) whose number densities, masses, sizes, and star formation rates (SFRs) qualify them as likely progenitors of compact, quiescent, massive galaxies (cQGs) at z = 1.5-3. At z {approx}> 2, cSFGs present SFR = 100-200 M{sub Sun} yr{sup -1}, yet their specific star formation rates (sSFR {approx} 10{sup -9} yr{sup -1}) are typically half that of other massive SFGs at the same epoch, and host X-ray luminous active galactic nuclei (AGNs) 30 times ({approx}30%) more frequently. These properties suggest that cSFGs are formed by gas-rich processes (mergers or disk-instabilities) that induce a compact starburst and feed an AGN, which, in turn, quench the star formation on dynamical timescales (few 10{sup 8} yr). The cSFGs are continuously being formed at z = 2-3 and fade to cQGs down to z {approx} 1.5. After this epoch, cSFGs are rare, thereby truncating the formation of new cQGs. Meanwhile, down to z = 1, existing cQGs continue to enlarge to match local QGs in size, while less-gas-rich mergers and other secular mechanisms shepherd (larger) SFGs as later arrivals to the red sequence. In summary, we propose two evolutionary tracks of QG formation: an early (z {approx}> 2), formation path of rapidly quenched cSFGs fading into cQGs that later enlarge within the quiescent phase, and a late-arrival (z {approx}< 2) path in which larger SFGs form extended QGs without passing through a compact state.

  17. THE AVERAGE PHYSICAL PROPERTIES AND STAR FORMATION HISTORIES OF THE UV-BRIGHTEST STAR-FORMING GALAXIES AT z {approx} 3.7

    SciTech Connect

    Lee, Kyoung-Soo; Glikman, Eilat; Dey, Arjun; Reddy, Naveen; Jannuzi, Buell T.; Brown, Michael J. I.; Gonzalez, Anthony H.; Cooper, Michael C.; Fan Xiaohui; Bian Fuyan; Stern, Daniel; Brodwin, Mark; Cooray, Asantha

    2011-06-01

    We investigate the average physical properties and star formation histories (SFHs) of the most UV-luminous star-forming galaxies at z {approx} 3.7. Our results are based on the average spectral energy distributions (SEDs), constructed from stacked optical-to-infrared photometry, of a sample of the 1913 most UV-luminous star-forming galaxies found in 5.3 deg{sup 2} of the NOAO Deep Wide-Field Survey. We find that the shape of the average SED in the rest optical and infrared is fairly constant with UV luminosity, i.e., more UV-luminous galaxies are, on average, also more luminous at longer wavelengths. In the rest UV, however, the spectral slope {beta} ({identical_to} dlogF{sub {lambda}}/dlog{lambda}; measured at 0.13 {mu}m < {lambda}{sub rest} < 0.28 {mu}m) rises steeply with the median UV luminosity from -1.8 at L {approx} L* to -1.2 (L {approx} 4-5L*). We use population synthesis analyses to derive their average physical properties and find that (1) L{sub UV} and thus star formation rates (SFRs) scale closely with stellar mass such that more UV-luminous galaxies are also more massive, (2) the median ages indicate that the stellar populations are relatively young (200-400 Myr) and show little correlation with UV luminosity, and (3) more UV-luminous galaxies are dustier than their less-luminous counterparts, such that L {approx} 4-5L* galaxies are extincted up to A(1600) = 2 mag while L {approx} L* galaxies have A(1600) = 0.7-1.5 mag. We argue that the average SFHs of UV-luminous galaxies are better described by models in which SFR increases with time in order to simultaneously reproduce the tight correlation between the UV-derived SFR and stellar mass and their universally young ages. We demonstrate the potential of measurements of the SFR-M{sub *} relation at multiple redshifts to discriminate between simple models of SFHs. Finally, we discuss the fate of these UV-brightest galaxies in the next 1-2 Gyr and their possible connection to the most massive galaxies at

  18. QUIET-TIME INTERPLANETARY {approx}2-20 keV SUPERHALO ELECTRONS AT SOLAR MINIMUM

    SciTech Connect

    Wang, Linghua; Lin, Robert P.; Salem, Chadi; Pulupa, Marc; Larson, Davin E.; Luhmann, Janet G.; Yoon, Peter H.

    2012-07-01

    We present a statistical survey of {approx}2-20 keV superhalo electrons in the solar wind measured by the SupraThermal Electron instrument on board the two STEREO spacecraft during quiet-time periods from 2007 March through 2009 March at solar minimum. The observed superhalo electrons have a nearly isotropic angular distribution and a power-law spectrum, f{proportional_to}v{sup -{gamma}}, with {gamma} ranging from 5 to 8.7, with nearly half between 6.5 and 7.5, and an average index of 6.69 {+-} 0.90. The observed power-law spectrum varies significantly on a spatial scale of {approx}>0.1 AU and a temporal scale of {approx}>several days. The integrated density of quiet-time superhalo electrons at 2-20 keV ranges from {approx}10{sup -8} cm{sup -3} to 10{sup -6} cm{sup -3}, about 10{sup -9}-10{sup -6} of the solar wind density, and, as well as the power-law spectrum, shows no correlation with solar wind proton density, velocity, or temperature. The density of superhalo electrons appears to show a solar-cycle variation at solar minimum, while the power-law spectral index {gamma} has no solar-cycle variation. These quiet-time superhalo electrons are present even in the absence of any solar activity-e.g., active regions, flares or microflares, type III radio bursts, etc.-suggesting that they may be accelerated by processes such as resonant wave-particle interactions in the interplanetary medium, or possibly by nonthermal processes related to the acceleration of the solar wind such as nanoflares, or by acceleration at the CIR forward shocks.

  19. CANDELS: THE CORRELATION BETWEEN GALAXY MORPHOLOGY AND STAR FORMATION ACTIVITY AT z {approx} 2

    SciTech Connect

    Lee, Bomee; Giavalisco, Mauro; Williams, Christina C.; Guo Yicheng; Faber, S. M.; Van der Wel, Arjen; Kocevski, Dale; Conselice, Christopher J.; Wuyts, Stijn; Dekel, Avishai; Kartaltepe, Jeyhan; Bell, Eric F.

    2013-09-01

    We discuss the state of the assembly of the Hubble sequence in the mix of bright galaxies at redshift 1.4 < z {<=} 2.5 with a large sample of 1671 galaxies down to H{sub AB} {approx} 26, selected from the HST/ACS and WFC3 images of the GOODS-South field obtained as part of the GOODS and CANDELS observations. We investigate the relationship between the star formation properties and morphology using various parametric diagnostics, such as the Sersic light profile, Gini (G), M{sub 20}, concentration (C), asymmetry (A), and multiplicity ({Psi}) parameters. Our sample clearly separates into massive, red, and passive galaxies versus less massive, blue, and star-forming ones, and this dichotomy correlates very well with the galaxies' morphological properties. Star-forming galaxies show a broad variety of morphological features, including clumpy structures and bulges mixed with faint low surface brightness features, generally characterized by disky-type light profiles. Passively evolving galaxies, on the other hand, very often have compact light distribution and morphology typical of today's spheroidal systems. We also find that artificially redshifted local galaxies have a similar distribution with z {approx} 2 galaxies in a G-M{sub 20} plane. Visual inspection between the rest-frame optical and UV images show that there is a generally weak morphological k-correction for galaxies at z {approx} 2, but the comparison with non-parametric measures show that galaxies in the rest-frame UV are somewhat clumpier than rest-frame optical. Similar general trends are observed in the local universe among massive galaxies, suggesting that the backbone of the Hubble sequence was already in place at z {approx} 2.

  20. THE SINS/zC-SINF SURVEY of z {approx} 2 GALAXY KINEMATICS: OUTFLOW PROPERTIES

    SciTech Connect

    Newman, Sarah F.; Genzel, Reinhard; Foerster-Schreiber, Natascha M.; Buschkamp, Peter; Davies, Ric; Eisenhauer, Frank; Kurk, Jaron; Lutz, Dieter; Griffin, Kristen Shapiro; Mancini, Chiara; Renzini, Alvio; Lilly, Simon J.; Carollo, C. Marcella; Peng, Yingjie; Bouche, Nicolas; Burkert, Andreas; Cresci, Giovanni; Genel, Shy; Hicks, Erin K. S.; Naab, Thorsten; and others

    2012-12-10

    Using SINFONI H{alpha}, [N II], and [S II] AO data of 27 z {approx} 2 star-forming galaxies (SFGs) from the SINS and zC-SINF surveys, we explore the dependence of outflow strength (via the broad flux fraction) on various galaxy parameters. For galaxies that have evidence for strong outflows, we find that the broad emission is spatially extended to at least the half-light radius ({approx}a few kpc). Decomposition of the [S II] doublet into broad and narrow components suggests that this outflowing gas probably has a density of {approx}10-100 cm{sup -3}, less than that of the star-forming gas (600 cm{sup -3}). There is a strong correlation of the H{alpha} broad flux fraction with the star formation surface density of the galaxy, with an apparent threshold for strong outflows occurring at 1 M{sub Sun} yr{sup -1} kpc{sup -2}. Above this threshold, we find that SFGs with log m{sub *} > 10 have similar or perhaps greater wind mass-loading factors ({eta} = M-dot{sub out}/SFR) and faster outflow velocities than lower mass SFGs, suggesting that the majority of outflowing gas at z {approx} 2 may derive from high-mass SFGs. The mass-loading factor is also correlated with the star formation rate (SFR), galaxy size, and inclination, such that smaller, more star-forming, and face-on galaxies launch more powerful outflows. We propose that the observed threshold for strong outflows and the observed mass loading of these winds can be explained by a simple model wherein break-out of winds is governed by pressure balance in the disk.

  1. THE GALAXY ENVIRONMENT OF A QSO AT z {approx} 5.7

    SciTech Connect

    Banados, Eduardo; Venemans, Bram; Walter, Fabian; Kurk, Jaron; Overzier, Roderik; Ouchi, Masami

    2013-08-20

    High-redshift quasars are believed to reside in massive halos in the early universe and should therefore be located in fields with overdensities of galaxies, which are thought to evolve into galaxy clusters seen in the local universe. However, despite many efforts, the relationship between galaxy overdensities and z {approx} 6 quasars is ambiguous. This can possibly be attributed to the difficulty of finding galaxies with accurate redshifts in the vicinity of z {approx} 6 quasars. So far, overdensity searches around z {approx} 6 quasars have been based on studies of Lyman break galaxies (LBGs), which probe a redshift range of {Delta}z Almost-Equal-To 1. This range is large enough to select galaxies that may not be physically related to the quasar. We use deep narrow- and broadband imaging to study the environment of the z = 5.72 quasar ULAS J0203+0012. The redshift range probed by our narrow-band selection of Lyman alpha emitters (LAEs) is {Delta}z Almost-Equal-To 0.1, which is significantly narrower than the LBG searches. This is the first time that LAEs were searched for near a z {approx} 6 quasar, in an effort to provide clues about the environments of quasars at the end of the epoch of reionization. We find no enhancement of LAEs in the surroundings of ULAS J0203+0012 in comparison with blank fields. We explore different explanations and interpretations for this non-detection of a galaxy overdensity, including that (1) the strong ionization from the quasar may prevent galaxy formation in its immediate vicinity and (2) high-redshift quasars may not reside in the center of the most massive dark matter halos.

  2. Development of procedures for calculating stiffness and damping properties of elastomers in engineering applications. Part 2: Elastomer characteristics at constant temperature

    NASA Technical Reports Server (NTRS)

    Gupta, P. K.; Tessarzik, J. M.; Cziglenyi, L.

    1974-01-01

    Dynamic properties of a commerical polybutadiene compound were determined at a constant temperature of 32 C by a forced-vibration resonant mass type of apparatus. The constant thermal state of the elastomer was ensured by keeping the ambient temperature constant and by limiting the power dissipation in the specimen. Experiments were performed with both compression and shear specimens at several preloads (nominal strain varying from 0 to 5 percent), and the results are reported in terms of a complex stiffness as a function of frequency. Very weak frequency dependence is observed and a simple power law type of correlation is shown to represent the data well. Variations in the complex stiffness as a function of preload are also found to be small for both compression and shear specimens.

  3. ON THE SPECTRAL HARDENING AT {approx}>300 keV IN SOLAR FLARES

    SciTech Connect

    Li, G.; Kong, X.; Zank, G.; Chen, Y.

    2013-05-20

    It has long been noted that the spectra of observed continuum emissions in many solar flares are consistent with double power laws with a hardening at energies {approx}>300 keV. It is now widely believed that at least in electron-dominated events, the hardening in the photon spectrum reflects an intrinsic hardening in the source electron spectrum. In this paper, we point out that a power-law spectrum of electrons with a hardening at high energies can be explained by the diffusive shock acceleration of electrons at a termination shock with a finite width. Our suggestion is based on an early analytical work by Drury et al., where the steady-state transport equation at a shock with a tanh profile was solved for a p-independent diffusion coefficient. Numerical simulations with a p-dependent diffusion coefficient show hardenings in the accelerated electron spectrum that are comparable with observations. One necessary condition for our proposed scenario to work is that high-energy electrons resonate with the inertial range of the MHD turbulence and low-energy electrons resonate with the dissipation range of the MHD turbulence at the acceleration site, and the spectrum of the dissipation range {approx}k {sup -2.7}. A {approx}k {sup -2.7} dissipation range spectrum is consistent with recent solar wind observations.

  4. BINARY QUASARS AT HIGH REDSHIFT. I. 24 NEW QUASAR PAIRS AT z {approx} 3-4

    SciTech Connect

    Hennawi, Joseph F.; Myers, Adam D.; Shen, Yue; Strauss, Michael A.; Djorgovski, S. G.; Glikman, Eilat; Mahabal, Ashish; Fan Xiaohui; Martin, Crystal L.; Richards, Gordon T.; Schneider, Donald P.; Shankar, Francesco

    2010-08-20

    The clustering of quasars on small scales yields fundamental constraints on models of quasar evolution and the buildup of supermassive black holes. This paper describes the first systematic survey to discover high-redshift binary quasars. Using color-selection and photometric redshift techniques, we searched 8142 deg{sup 2} of Sloan Digital Sky Survey imaging data for binary quasar candidates, and confirmed them with follow-up spectroscopy. Our sample of 27 high-redshift binaries (24 of them new discoveries) at redshifts 2.9 < z < 4.3 with proper transverse separations 10 kpc < R{sub perpendicular} < 650 kpc increases the number of such objects known by an order of magnitude. Eight members of this sample are very close pairs with R{sub perpendicular} < 100 kpc, and of these close systems four are at z>3.5. The completeness and efficiency of our well-defined selection algorithm are quantified using simulated photometry and we find that our sample is {approx}50% complete. Our companion paper uses this knowledge to make the first measurement of the small-scale clustering (R < 1 h {sup -1} Mpc comoving) of high-redshift quasars. High-redshift binaries constitute exponentially rare coincidences of two extreme (M {approx}> 10{sup 9} M {sub sun}) supermassive black holes. At z {approx} 4, there is about one close binary per 10 Gpc{sup 3}, thus these could be the highest sigma peaks, the analogs of superclusters, in the early universe.

  5. A Probable Approx. 2400 Year Solar Quasi-cycle in Atmospheric Delta C-14

    NASA Technical Reports Server (NTRS)

    Hood, L. L.; Jirikowic, J. L.

    1990-01-01

    A 2200 to 2600 year quasi-periodicity is present in atmospheric delta C-14 records after removal of long-term trends due to the geomagnetic dipole amplitude variation. This periodicity consists of both a long-term variation of the mean and a superposed, approximately recurring pattern of century-scale variations. The strongest of these latter variations occur near maxima of the approx. 2400 year delta C-14 cycles. The residual record can be modeled to first order as an amplitude modulation of a century-scale periodic forcing function by a approx. 2400 year periodic forcing function. During the last millennium, the largest century-scale variations (occurring near the most recent 2400 year delta C-14 maximum) are known to be mainly a consequence of the pronounced Maunder, Sporer, and Wolf solar activity minima, as verified by independent proxy solar activity records. Therefore, during this period, amplitude modulation has been occurring primarily in the sun and not in the terrestrial radiocarbon system. It is therefore inferred that the approx. 2400 year forcing function is mainly solar although some secondary terrestrial feedback into the delta C-14 record is likely. This conclusion has implications for the predictability of future pronounced solar activity minima and for the interpretation of certain minor Holocene climatic variations.

  6. Space Shuttle astrodynamical constants

    NASA Technical Reports Server (NTRS)

    Cockrell, B. F.; Williamson, B.

    1978-01-01

    Basic space shuttle astrodynamic constants are reported for use in mission planning and construction of ground and onboard software input loads. The data included here are provided to facilitate the use of consistent numerical values throughout the project.

  7. The cosmological constant problem

    SciTech Connect

    Dolgov, A.D.

    1989-05-01

    A review of the cosmological term problem is presented. Baby universe model and the compensating field model are discussed. The importance of more accurate data on the Hubble constant and the Universe age is stressed. 18 refs.

  8. Constant potential pulse polarography

    USGS Publications Warehouse

    Christie, J.H.; Jackson, L.L.; Osteryoung, R.A.

    1976-01-01

    The new technique of constant potential pulse polarography, In which all pulses are to be the same potential, is presented theoretically and evaluated experimentally. The response obtained is in the form of a faradaic current wave superimposed on a constant capacitative component. Results obtained with a computer-controlled system exhibit a capillary response current similar to that observed In normal pulse polarography. Calibration curves for Pb obtained using a modified commercial pulse polarographic instrument are in good accord with theoretical predictions.

  9. CANDELS: CONSTRAINING THE AGN-MERGER CONNECTION WITH HOST MORPHOLOGIES AT z {approx} 2

    SciTech Connect

    Kocevski, Dale D.; Faber, S. M.; Mozena, Mark; Trump, Jonathan R.; Koo, David C.; Nandra, Kirpal; Brusa, Marcella; Wuyts, Stijn; Rangel, Cyprian; Laird, Elise S.; Bell, Eric F.; Alexander, David M.; Bournaud, Frederic; Conselice, Christopher J.; Dekel, Avishai; and others

    2012-01-10

    Using Hubble Space Telescope/WFC3 imaging taken as part of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey, we examine the role that major galaxy mergers play in triggering active galactic nucleus (AGN) activity at z {approx} 2. Our sample consists of 72 moderate-luminosity (L{sub X} {approx} 10{sup 42-44} erg s{sup -1}) AGNs at 1.5 < z < 2.5 that are selected using the 4 Ms Chandra observations in the Chandra Deep Field South, the deepest X-ray observations to date. Employing visual classifications, we have analyzed the rest-frame optical morphologies of the AGN host galaxies and compared them to a mass-matched control sample of 216 non-active galaxies at the same redshift. We find that most of the AGNs reside in disk galaxies (51.4{sup +5.8}{sub -5.9}%), while a smaller percentage are found in spheroids (27.8{sup +5.8}{sub -4.6}%). Roughly 16.7{sup +5.3}{sub -3.5}% of the AGN hosts have highly disturbed morphologies and appear to be involved in a major merger or interaction, while most of the hosts (55.6{sup +5.6}{sub -5.9}%) appear relatively relaxed and undisturbed. These fractions are statistically consistent with the fraction of control galaxies that show similar morphological disturbances. These results suggest that the hosts of moderate-luminosity AGNs are no more likely to be involved in an ongoing merger or interaction relative to non-active galaxies of similar mass at z {approx} 2. The high disk fraction observed among the AGN hosts also appears to be at odds with predictions that merger-driven accretion should be the dominant AGN fueling mode at z {approx} 2, even at moderate X-ray luminosities. Although we cannot rule out that minor mergers are responsible for triggering these systems, the presence of a large population of relatively undisturbed disk-like hosts suggests that the stochastic accretion of gas plays a greater role in fueling AGN activity at z {approx} 2 than previously thought.

  10. THE DUST PROPERTIES OF z {approx} 3 MIPS-LBGs FROM PHOTOCHEMICAL MODELS

    SciTech Connect

    Fan, X. L.; Pipino, A.; Matteucci, F.

    2013-05-10

    The stacked spectral energy distribution (SED) 24 {mu}m Lyman break galaxies (MIPS-LBGs) detected by the Multiband Imaging Photometer for Spitzer (MIPS) is fitted by means of the spectrophotometric model GRASIL with an ''educated'' fitting approach which benefits from the results of chemical evolution models. The star formation rate-age-metallicity degeneracies of SED modeling are broken by using star formation history (SFH) and chemical enrichment history suggested by chemical models. The dust mass, dust abundance, and chemical pattern of elements locked in the dust component are also directly provided by chemical models. Using our new ''fitting'' approach, we derive the total mass M{sub tot}, stellar mass M{sub *}, gas mass M{sub g} , dust mass M{sub d} , age, and star formation rate (SFR) of the stacked MIPS-LBG in a self-consistent way. Our estimate of M{sub *} = 8 Multiplication-Sign 10{sup 10} of the stacked MIPS-LBG agrees with other works based on UV-optical SED fitting. We suggest that the MIPS-LBGs at z {approx} 3 are young (0.3-0.6 Gyr), massive (M{sub tot} {approx} 10{sup 11} M{sub Sun }), dusty (M{sub d} {approx} 10{sup 8} M{sub Sun }), and metal-rich (Z {approx} Z{sub Sun }) progenitors of elliptical galaxies undergoing a strong burst of star formation (SFR {approx} 200 M{sub Sun} yr{sup -1}). Our estimate of M{sub d} = 7 Multiplication-Sign 10{sup 7} M{sub Sun} of the stacked MIPS-LBG is about a factor of eight lower than the estimated value based on single temperature graybody fitting, suggesting that self-consistent SED models are needed to estimate dust mass. By comparing with Milky Way molecular cloud and dust properties, we suggest that denser and dustier environments and flatter dust size distribution are likely in high-redshift massive star-forming galaxies. These dust properties, as well as the different types of SFHs, can cause different SED shapes between high-redshift star-forming ellipticals and local starburst templates. This discrepancy

  11. Smoluchowski Equations for Agglomeration in Conditions of Variable Temperature and Pressure and a New Scaling of Rate Constants: Application to Nozzle-Beam Expansion.

    PubMed

    Chaiken, J; Goodisman, J; Kornilov, O

    2015-07-01

    The Smoluchowski equations provide a rigorous and efficient means for including multiple kinetic pathways when modeling coalescence growth systems. Originally written for a constant temperature and volume system, the equations must be modified if temperature and pressure vary during the coalescence time. In this paper, the equations are generalized, and adaptations appropriate to the situation presented by supersonic nozzle beam expansions are described. Given rate constants for all the cluster-cluster reactions, solution of the Smoluchowski equations would yield the abundances of clusters of all sizes at all times. This is unlikely, but we show that if these rate constants scale with the sizes of the reacting partners, the asymptotic (large size and large time) form of the cluster size distribution can be predicted. Experimentally determined distributions for He fit the predicted asymptotic distribution very well. Deviations between predicted and observed distributions allow identification of special cluster sizes that is, magic numbers. Furthermore, fitting an observed distribution to the theoretical form yields the base agglomeration cross section, from which all cluster-cluster rate constants may be obtained by scaling. Comparing the base cross section to measures of size and reactivity gives information about the coalescence process.

  12. The effect of PECVD plasma decomposition on the wettability and dielectric constant changes in silicon modified DLC films for potential MEMS and low stiction applications

    SciTech Connect

    Ogwu, A. A.; Okpalugo, T. I. T.; McLaughlin, J. A. D.

    2012-09-15

    We have carried out investigations aimed at understanding the mechanism responsible for a water contact angle increase of up to ten degrees and a decrease in dielectric constant in silicon modified hydrogenated amorphous carbon films compared to unmodified hydrogenated amorphous carbon films. Our investigations based on surface chemical constituent analysis using Raman spectroscopy, x-ray photoelectron spectroscopy (XPS), SIMS, FTIR, contact angle / surface energy measurements and spectroscopic ellipsometry suggests the presence of hydrophobic chemical entities on the surface of the films. This observation is consistent with earlier theoretical plasma chemistry predictions and observed Raman peak shifts in the films. These surface hydrophobic entities also have a lower polarizability than the bonds in the un-modified films thereby reducing the dielectric constant of the silicon modified films measured by spectroscopic ellipsometry. Ellipsometric dielectric constant measurement is directly related to the surface energy through Hamaker's constant. Our current finding is expected to be of benefit to understanding stiction, friction and lubrication in areas that range from nano-tribology to microfluidics.

  13. Salting Constants of Small Organic Molecules in Aerosol-Relevant Salts and Application to Aerosol Formation in the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Waxman, E.; Carlton, A. M. G.; Ziemann, P. J.; Volkamer, R. M.

    2014-12-01

    Secondary organic aerosol (SOA) formation from small water-soluble molecules such as glyoxal and methyl glyoxal is a topic of emerging interest. Results from recent field campaigns, e.g. Waxman et al. (2013, GRL) and Knote et al. (2014, ACP), show that these molecules can form significant SOA mass as a result of 'salting-in'. Salting-in happens when a molecule's solubility increases with salt concentration and salting-out is the reverse. Salting effects modify the solubility exponentially with increasing salt concentration, and thus the effective Henry's law constant can strongly modify partitioning, and multiphase chemical reaction rates in aerosol water. Moreover, the solubility in aerosol water cannot easily inferred based on the solubility in cloud water, as the salting effects could change the solubility by a factor of 104 or more. In this work, we have devised and applied a novel experimental setup to measure salting constants using an ion trap mass spectrometer. We focus on small, water soluble molecules like methyl glyoxal and similar compounds and measure salting constants for aerosol-relevant salts including ammonium sulfate, ammonium nitrate, and sodium chloride. The Setschenow salting-constant values are then used to parameterize the effects of salting in CMAQ. We present a series of sensitivity studies of the effects that inorganic aerosols have on the SOA formation from small soluble molecules in the southeastern United States.

  14. Constant-energetics physical-space forcing methods for improved convergence to homogeneous-isotropic turbulence with application to particle-laden flows

    NASA Astrophysics Data System (ADS)

    Bassenne, Maxime; Urzay, Javier; Park, George I.; Moin, Parviz

    2016-03-01

    This study investigates control-based forcing methods for incompressible homogeneous-isotropic turbulence forced linearly in physical space which result in constant turbulent kinetic energy, constant turbulent dissipation (also constant enstrophy), or a combination of the two based on a least-squares error minimization. The methods consist of proportional controllers embedded in the forcing coefficients. During the transient, the controllers adjust the forcing coefficients such that the controlled quantity achieves very early a minimal relative error with respect to its target stationary value. Comparisons of these forcing methods are made with the non-controlled approaches of Rosales and Meneveau ["Linear forcing in numerical simulations of isotropic turbulence: Physical space implementations and convergence properties," Phys. Fluids 17, 095106 (2005)] and Carroll and Blanquart ["A proposed modification to Lundgren's physical space velocity forcing method for isotropic turbulence," Phys. Fluids 25, 105114 (2013)], using direct numerical simulations (DNS) and large-eddy simulations (LES). The results indicate that the proposed constant-energetics forcing methods shorten the transient period from a user-defined artificial flow field to Navier-Stokes turbulence while maintaining steadier statistics. Additionally, the proposed method of constant kinetic-energy forcing behaves more robustly in coarse LES when initial conditions are employed that favor the occurrence of subgrid-scale backscatter, whereas the other approaches fail to provide physical turbulent flow fields. For illustration, the proposed forcing methods are applied to dilute particle-laden homogeneous-isotropic turbulent flows; the results serve to highlight the influences of the forcing strategies on the disperse-phase statistics.

  15. Variation of Fundamental Constants

    NASA Astrophysics Data System (ADS)

    Flambaum, V. V.

    2006-11-01

    Theories unifying gravity with other interactions suggest temporal and spatial variation of the fundamental ``constants'' in expanding Universe. The spatial variation can explain a fine tuning of the fundamental constants which allows humans (and any life) to appear. We appeared in the area of the Universe where the values of the fundamental constants are consistent with our existence. We present a review of recent works devoted to the variation of the fine structure constant α, strong interaction and fundamental masses. There are some hints for the variation in quasar absorption spectra. Big Bang nucleosynthesis, and Oklo natural nuclear reactor data. A very promising method to search for the variation of the fundamental constants consists in comparison of different atomic clocks. Huge enhancement of the variation effects happens in transition between accidentally degenerate atomic and molecular energy levels. A new idea is to build a ``nuclear'' clock based on the ultraviolet transition between very low excited state and ground state in Thorium nucleus. This may allow to improve sensitivity to the variation up to 10 orders of magnitude! Huge enhancement of the variation effects is also possible in cold atomic and molecular collisions near Feshbach resonance.

  16. From Cavendish to PLANCK: Constraining Newton's gravitational constant with CMB temperature and polarization anisotropy

    SciTech Connect

    Galli, Silvia; Melchiorri, Alessandro; Smoot, George F.; Zahn, Oliver

    2009-07-15

    We present new constraints on cosmic variations of Newton's gravitational constant by making use of the latest CMB data from WMAP, BOOMERANG, CBI and ACBAR experiments and independent constraints coming from big bang nucleosynthesis. We found that current CMB data provide constraints at the {approx}10% level, that can be improved to {approx}3% by including big bang nucleosynthesis data. We show that future data expected from the Planck satellite could constrain G at the {approx}1.5% level while an ultimate, cosmic variance limited, CMB experiment could reach a precision of about 0.4%, competitive with current laboratory measurements.

  17. Elastic constants of calcite

    USGS Publications Warehouse

    Peselnick, L.; Robie, R.A.

    1962-01-01

    The recent measurements of the elastic constants of calcite by Reddy and Subrahmanyam (1960) disagree with the values obtained independently by Voigt (1910) and Bhimasenachar (1945). The present authors, using an ultrasonic pulse technique at 3 Mc and 25??C, determined the elastic constants of calcite using the exact equations governing the wave velocities in the single crystal. The results are C11=13.7, C33=8.11, C44=3.50, C12=4.82, C13=5.68, and C14=-2.00, in units of 1011 dyncm2. Independent checks of several of the elastic constants were made employing other directions and polarizations of the wave velocities. With the exception of C13, these values substantially agree with the data of Voigt and Bhimasenachar. ?? 1962 The American Institute of Physics.

  18. Quaternions as astrometric plate constants

    NASA Technical Reports Server (NTRS)

    Jefferys, William H.

    1987-01-01

    A new method for solving problems in relative astrometry is proposed. In it, the relationship between the measured quantities and the components of the position vector of a star is modeled using quaternions, in effect replacing the plate constants of a standard four-plate-constant solution with the four components of a quaternion. The method allows a direct solution for the position vectors of the stars, and hence for the equatorial coordinates. Distortions, magnitude, and color effects are readily incorporated into the formalism, and the method is directly applicable to overlapping-plate problems. The advantages of the method include the simplicity of the resulting equations, their freedom from singularities, and the fact that trigonometric functions and tangential point transformations are not needed to model the plate material. A global solution over the entire sky is possible.

  19. The Hubble constant

    NASA Technical Reports Server (NTRS)

    Huchra, John P.

    1992-01-01

    The Hubble constant is the constant of proportionality between recession velocity and distance in the expanding universe. It is a fundamental property of cosmology that sets both the scale and the expansion age of the universe. It is determined by measurement of galaxy radial velocities and distances. Although there has been considerable progress in the development of new techniques for the measurements of galaxy distances, both calibration uncertainties and debates over systematic errors remain. Current determinations still range over nearly a factor of 2; the higher values favored by most local measurements are not consistent with many theories of the origin of large-scale structure and stellar evolution.

  20. Study of the hydrolysis and ionization constants of Schiff base from pyridoxal 5'-phosphate and n-hexylamine in partially aqueous solvents. An application to phosphorylase b.

    PubMed Central

    Donoso, J; Muñoz, F; García Del Vado, A; Echevarría, G; García Blanco, F

    1986-01-01

    Formation and hydrolysis rate constants as well as equilibrium constants of the Schiff base derived from pyridoxal 5'-phosphate and n-hexylamine were determined between pH 3.5 and 7.5 in ethanol/water mixtures (3:17, v/v, and 49:1, v/v). The results indicate that solvent polarity scarcely alters the values of these constants but that they are dependent on the pH. Spectrophotometric titration of this Schiff base was also carried out. We found that a pKa value of 6.1, attributed in high-polarity media to protonation of the pyridine nitrogen atom, is independent of solvent polarity, whereas the pKa of the monoprotonated form of the imine falls from 12.5 in ethanol/water (3:17) to 11.3 in ethanol/water (49:1). Fitting of the experimental results for the hydrolysis to a theoretical model indicates the existence of a group with a pKa value of 6.1 that is crucial in the variation of kinetic constant of hydrolysis with pH. Studies of the reactivity of the coenzyme (pyridoxal 5'-phosphate) of glycogen phosphorylase b with hydroxylamine show that this reaction only occurs when the pH value of solution is below 6.5 and the hydrolysis of imine bond has started. We propose that the decrease in activity of phosphorylase b when the pH value is less than 6.2 must be caused by the cleavage of enzyme-coenzyme binding and that this may be related with protonation of the pyridine nitrogen atom of pyridoxal 5'-phosphate. PMID:3099764

  1. STAR FORMATION IN LINER HOST GALAXIES AT z {approx} 0.3

    SciTech Connect

    Tommasin, Silvia; Netzer, Hagai; Sternberg, Amiel; Nordon, Raanan; Lutz, Dieter; Berta, Stefano; Magnelli, Benjamin; Bongiorno, Angela; Le Floc'h, Emeric; Riguccini, Laurie

    2012-07-10

    We present the results of a Herschel-PACS study of a sample of 97 low-ionization nuclear emission-line regions (LINERs) at redshift z {approx} 0.3 selected from the zCOSMOS survey. Of these sources, 34 are detected in at least one PACS band, enabling reliable estimates of the far-infrared L{sub FIR} luminosities, and a comparison to the FIR luminosities of local LINERs. Many of our PACS-detected LINERs are also UV sources detected by GALEX. Assuming that the FIR is produced in young dusty star-forming regions, the typical star formation rates (SFRs) for the host galaxies in our sample are {approx}10 M{sub Sun} yr{sup -1}, 1-2 orders of magnitude larger than in many local LINERs. Given stellar masses inferred from optical/NIR photometry of the (unobscured) evolved stellar populations, we find that the entire sample lies close to the star-forming 'main sequence' for galaxies at redshift 0.3. For young star-forming regions, the H{alpha}- and UV-based estimates of the SFRs are much smaller than the FIR-based estimates, by factors {approx}30, even assuming that all of the H{alpha} emission is produced by O-star ionization rather than by the active galactic nuclei (AGNs). These discrepancies may be due to large (and uncertain) extinctions toward the young stellar systems. Alternatively, the H{alpha} and UV emissions could be tracing residual star formation in an older, less obscured population with decaying star formation. We also compare L{sub SF} and L(AGN) in local LINERs and in our sample. Finally, we comment on the problematic use of several line diagnostic diagrams in cases with an estimated obscuration similar to that in the sample under study.

  2. METALLICITY EVOLUTION OF DAMPED Ly{alpha} SYSTEMS OUT TO z {approx} 5

    SciTech Connect

    Rafelski, Marc; Wolfe, Arthur M.; Neeleman, Marcel; Mendez, Alexander J.; Prochaska, J. Xavier

    2012-08-20

    We present chemical abundance measurements for 47 damped Ly{alpha} (DLA) systems, 30 at z > 4, observed with the Echellette Spectrograph and Imager and the High Resolution Echelle Spectrometer on the Keck telescopes. H I column densities of the DLAs are measured with Voigt profile fits to the Ly{alpha} profiles, and we find an increased number of false DLA identifications with Sloan Digital Sky Survey at z > 4 due to the increased density of the Ly{alpha} forest. Ionic column densities are determined using the apparent optical depth method, and we combine our new metallicity measurements with 195 from previous surveys to determine the evolution of the cosmic metallicity of neutral gas. We find the metallicity of DLAs decreases with increasing redshift, improving the significance of the trend and extending it to higher redshifts, with a linear fit of -0.22 {+-} 0.03 dex per unit redshift from z = 0.09-5.06. The metallicity 'floor' of Almost-Equal-To 1/600 solar continues out to z {approx} 5, despite our sensitivity for finding DLAs with much lower metallicities. However, this floor is not statistically different from a steep tail to the distribution. We also find that the intrinsic scatter of metallicity among DLAs of {approx}0.5 dex continues out to z {approx} 5. In addition, the metallicity distribution and the {alpha}/Fe ratios of z > 2 DLAs are consistent with being drawn from the same parent population with those of halo stars. It is therefore possible that the halo stars in the Milky Way formed out of gas that commonly exhibits DLA absorption at z > 2.

  3. Inclusive electron scattering from nuclei at {ital x}{approx_equal}1

    SciTech Connect

    Arrington, J.; Anthony, P.; Arnold, R.G.; Beise, E.J.; Belz, J.E.; Bosted, P.E.; Bulten, H.; Chapman, M.S.; Coulter, K.P.; Dietrich, F.; Ent, R.; Epstein, M.; Filippone, B.W.; Gao, H.; Gearhart, R.A.; Geesaman, D.F.; Hansen, J.; Holt, R.J.; Jackson, H.E.; Jones, C.E.; Keppel, C.E.; Kinney, E.R.; Kuhn, S.; Lee, K.; Lorenzon, W.; Lung, A.; Makins, N.C.; Margaziotis, D.J.; McKeown, R.D.; Milner, R.G.; Mueller, B.; Napolitano, J.; Nelson, J.; ONeill, T.G.; Papavassiliou, V.; Petratos, G.G.; Potterveld, D.H.; Rock, S.E.; Spengos, M.; Szalata, Z.M.; Tao, L.H.; van Bibber, K.; van den Brand, J.F.; White, J.L.; Winter, D.; Zeidman, B. ||||

    1996-05-01

    The inclusive {ital A}({ital e},{ital e}{sup {prime}}) cross section for {ital x}{approx_equal}1 was measured on {sup 2}H, C, Fe, and Au for momentum transfers {ital Q}{sup 2} from 1 to 6.8 (GeV/{ital c}){sup 2}. The scaling behavior of the data was examined in the region of transition from {ital y} scaling to {ital x} scaling. Throughout this transitional region, the data exhibit {xi} scaling, reminiscent of the Bloom-Gilman duality seen in free nucleon scattering. {copyright} {ital 1996 The American Physical Society.}

  4. New supersymmetric quartet of nuclei in the A{approx}190 mass region

    SciTech Connect

    Barea, J.; Bijker, R.; Frank, A.; Graw, G.; Hertenberger, R.; Wirth, H.-F.; Christen, S.; Jolie, J.; Tonev, D.; Balodis, M.; Berzins, J.; Kramere, N.; Egidy, T. von

    2009-03-15

    We present evidence for a new supersymmetric quartet in the A{approx}190 region of the nuclear mass table. New experimental information on transfer and neutron capture reactions to the odd-odd nucleus {sup 194}Ir strongly suggests the existence of a new supersymmetric quartet, consisting of the {sup 192,193}Os and {sup 193,194}Ir nuclei. We make explicit predictions for the odd-neutron nucleus {sup 193}Os and suggest that its spectroscopic properties be measured in dedicated experiments.

  5. INFRARED LUMINOSITIES AND DUST PROPERTIES OF z approx 2 DUST-OBSCURED GALAXIES

    SciTech Connect

    Bussmann, R. S.; Dey, Arjun; Jannuzi, B. T.; Borys, C.; Desai, V.; Sheth, K.; Soifer, B. T.; Le Floc'h, E.; Melbourne, J.

    2009-11-01

    We present SHARC-II 350 mum imaging of twelve 24 mum bright (F{sub 24m}u{sub m} > 0.8 mJy) Dust-Obscured Galaxies (DOGs) and Combined Array for Research in Millimeter-wave Astronomy (CARMA) 1 mm imaging of a subset of two DOGs. These objects are selected from the Booetes field of the NOAO Deep Wide-Field Survey. Detections of four DOGs at 350 mum imply infrared (IR) luminosities which are consistent to within a factor of 2 of expectations based on a warm-dust spectral energy distribution (SED) scaled to the observed 24 mum flux density. The 350 mum upper limits for the 8 non-detected DOGs are consistent with both Mrk 231 and M82 (warm-dust SEDs), but exclude cold dust (Arp 220) SEDs. The two DOGs targeted at 1 mm were not detected in our CARMA observations, placing strong constraints on the dust temperature: T{sub dust} > 35-60 K. Assuming these dust properties apply to the entire sample, we find dust masses of approx3 x 10{sup 8} M{sub sun}. In comparison to other dusty z approx 2 galaxy populations such as submillimeter galaxies (SMGs) and other Spitzer-selected high-redshift sources, this sample of DOGs has higher IR luminosities (2 x 10{sup 13} L{sub sun} versus 6 x 10{sup 12} L{sub sun} for the other galaxy populations) that are driven by warmer dust temperatures (>35-60 K versus approx30 K) and lower inferred dust masses (3 x 10{sup 8} M{sub sun} versus 3 x 10{sup 9} M{sub sun}). Wide-field Herschel and Submillimeter Common-User Bolometer Array-2 surveys should be able to detect hundreds of these power-law-dominated DOGs. We use the existing Hubble Space Telescope and Spitzer/InfraRed Array Camera data to estimate stellar masses of these sources and find that the stellar to gas mass ratio may be higher in our 24 mum bright sample of DOGs than in SMGs and other Spitzer-selected sources. Although much larger sample sizes are needed to provide a definitive conclusion, the data are consistent with an evolutionary trend in which the formation of massive galaxies

  6. SHOCKED SUPERWINDS FROM THE z {approx} 2 CLUMPY STAR-FORMING GALAXY, ZC406690

    SciTech Connect

    Newman, Sarah F.; Genzel, Reinhard; Shapiro Griffin, Kristen; Davies, Ric; Foerster-Schreiber, Natascha M.; Tacconi, Linda J.; Kurk, Jaron; Wuyts, Stijn; Genel, Shy; Buschkamp, Peter; Eisenhauer, Frank; Lutz, Dieter; Lilly, Simon J.; Carollo, C. Marcella; Renzini, Alvio; Mancini, Chiara; Bouche, Nicolas; Burkert, Andreas; Cresci, Giovanni; Hicks, Erin; and others

    2012-06-20

    We have obtained high-resolution data of the z {approx} 2 ring-like, clumpy star-forming galaxy (SFG) ZC406690 using the VLT/SINFONI with adaptive optics (in K band) and in seeing-limited mode (in H and J bands). Our data include all of the main strong optical emission lines: [O II], [O III], H{alpha}, H{beta}, [N II], and [S II]. We find broad, blueshifted H{alpha} and [O III] emission line wings in the spectra of the galaxy's massive, star-forming clumps ({sigma} {approx} 85 km s{sup -1}) and even broader wings (up to 70% of the total H{alpha} flux, with {sigma} {approx} 290 km s{sup -1}) in regions spatially offset from the clumps by {approx}2 kpc. The broad emission likely originates from large-scale outflows with mass outflow rates from individual clumps that are 1-8 Multiplication-Sign the star formation rate (SFR) of the clumps. Based on emission line ratio diagnostics ([N II]/H{alpha} and [S II]/H{alpha}) and photoionization and shock models, we find that the emission from the clumps is due to a combination of photoionization from the star-forming regions and shocks generated in the outflowing component, with 5%-30% of the emission deriving from shocks. In terms of the ionization parameter (6 Multiplication-Sign 10{sup 7} to 10{sup 8} cm s{sup -1}, based on both the SFR and the O{sub 32} ratio), density (local electron densities of 300-1800 cm{sup -3} in and around the clumps, and ionized gas column densities of 1200-8000 M{sub Sun }pc{sup -2}), and SFR (10-40 M{sub Sun} yr{sup -1}), these clumps more closely resemble nuclear starburst regions of local ultraluminous infrared galaxies and dwarf irregulars than H II regions in local galaxies. However, the star-forming clumps are not located in the nucleus as in local starburst galaxies but instead are situated in a ring several kpc from the center of their high-redshift host galaxy, and have an overall disk-like morphology. The two brightest clumps are quite different in terms of their internal properties

  7. Compassion is a constant.

    PubMed

    Scott, Tricia

    2015-11-01

    Compassion is a powerful word that describes an intense feeling of commiseration and a desire to help those struck by misfortune. Most people know intuitively how and when to offer compassion to relieve another person's suffering. In health care, compassion is a constant; it cannot be rationed because emergency nurses have limited time or resources to manage increasing demands.

  8. Compassion is a constant.

    PubMed

    Scott, Tricia

    2015-11-01

    Compassion is a powerful word that describes an intense feeling of commiseration and a desire to help those struck by misfortune. Most people know intuitively how and when to offer compassion to relieve another person's suffering. In health care, compassion is a constant; it cannot be rationed because emergency nurses have limited time or resources to manage increasing demands. PMID:26542898

  9. THE KINEMATICS OF IONIZED GAS IN LYMAN-BREAK ANALOGS AT z {approx} 0.2

    SciTech Connect

    Goncalves, Thiago S.; Martin, D. Christopher; Wyder, Ted K.; Basu-Zych, Antara; Overzier, Roderik; Law, David R.; Mallery, Ryan; Rich, R. Michael; Schiminovich, David; Heckman, Timothy H.

    2010-12-01

    We present results for 19 'Lyman-break analogs' observed with Keck/OSIRIS with an adaptive-optics-assisted spatial resolution of less than 200 pc. We detect satellites/companions, diffuse emission, and velocity shear, all with high signal-to-noise ratios. These galaxies present remarkably high velocity dispersion along the line of sight ({approx}70 km s{sup -1}), much higher than standard star-forming spirals in the low-redshift universe. We artificially redshift our data to z {approx} 2.2 to allow for a direct comparison with observations of high-z Lyman-break galaxies and find striking similarities between both samples. This suggests that either similar physical processes are responsible for their observed properties, or, alternatively, that it is very difficult to distinguish between different mechanisms operating in the low- versus high-redshift starburst galaxies based on the available data. The comparison between morphologies in the UV/optical continuum and our kinemetry analysis often shows that neither is by itself sufficient to confirm or completely rule out the contribution from recent merger events. We find a correlation between the kinematic properties and stellar mass, in that more massive galaxies show stronger evidence for a disk-like structure. This suggests a co-evolutionary process between the stellar mass buildup and the formation of morphological and dynamical substructure within the galaxy.

  10. THE EARLY EARLY TYPE: DISCOVERY OF A PASSIVE GALAXY AT z{sub spec} {approx} 3

    SciTech Connect

    Gobat, R.; Strazzullo, V.; Daddi, E.; Bethermin, M.; Renzini, A.; Dickinson, M.; Cimatti, A.

    2012-11-10

    We present the discovery of a massive, quiescent galaxy at z = 2.99. We have obtained an Hubble Space Telescope WFC3 spectrum of this object and measured its redshift from the detection of a deep 4000 A break consistent with an old population and a high metallicity. By stellar population modeling of both its grism spectrum and broadband photometry, we derive an age of {approx}0.7 Gyr, implying a formation redshift of z > 4, and a mass >10{sup 11} M{sub Sun }. Although this passive galaxy is the most distant confirmed so far, we find that it is slightly less compact than other z > 2 early types of similar mass, being overall more analogous to those z {approx} 1.6 field early-type galaxies. The discovery of this object shows that early-type galaxies are detectable to at least z = 3 and suggests that the diversity of structural properties found in z = 1.4-2 ellipticals to earlier epochs could have its origin in a variety of formation histories among their progenitors.

  11. Confirmation of Small Dynamical and Stellar Masses for Extreme Emission Line Galaxies at z Approx. 2

    NASA Technical Reports Server (NTRS)

    Maseda, Michael V.; van Der Wel, Arjen; da Cunha, Elisabete; Rix, Hans-Walter; Pacifici, Camilla; Momcheva, Ivelina; Brammer, Gabriel B.; Franx, Marijn; van Dokkum, Pieter; Bell, Eric F.; Fumagalli, Mattia; Grogin, Norman A.; Kocevski, Dale D.; Koekemoer, Anton M.; Lundgren, Britt F.; Marchesini, Danilo; Nelson, Eric J.; Patel, Shannon G.; Skelton, Rosalind E.; Straughn, Amber N.; Trump. Jonathan R.; Weiner, Benjamin J.; Whitaker, Katherine E.; Wuyts, Stijn

    2013-01-01

    Spectroscopic observations from the Large Binocular Telescope and the Very Large Telescope reveal kinematically narrow lines (approx. 50 km/s) for a sample of 14 extreme emission line galaxies at redshifts 1.4 < z < 2.3. These measurements imply that the total dynamical masses of these systems are low (< or approx. 3 × 10(exp 9) M). Their large [O III] (lambda)5007 equivalent widths (500-1100 Angstroms) and faint blue continuum emission imply young ages of 10-100 Myr and stellar masses of 10(exp 8)-10(exp 9)M, confirming the presence of a violent starburst. The dynamical masses represent the first such determinations for low-mass galaxies at z > 1. The stellar mass formed in this vigorous starburst phase represents a large fraction of the total (dynamical) mass, without a significantly massive underlying population of older stars. The occurrence of such intense events in shallow potentials strongly suggests that supernova-driven winds must be of critical importance in the subsequent evolution of these systems.

  12. MEASUREMENT OF 21 cm BRIGHTNESS FLUCTUATIONS AT z {approx} 0.8 IN CROSS-CORRELATION

    SciTech Connect

    Masui, K. W.; Switzer, E. R.; Calin, L.-M.; Pen, U.-L.; Shaw, J. R.; Banavar, N.; Bandura, K.; Blake, C.; Chang, T.-C.; Liao, Y.-W.; Chen, X.; Li, Y.-C.; Natarajan, A.; Peterson, J. B.; Voytek, T. C.

    2013-01-20

    In this Letter, 21 cm intensity maps acquired at the Green Bank Telescope are cross-correlated with large-scale structure traced by galaxies in the WiggleZ Dark Energy Survey. The data span the redshift range 0.6 < z < 1 over two fields totaling {approx}41 deg. sq. and 190 hr of radio integration time. The cross-correlation constrains {Omega}{sub HI} b{sub HI} r = [0.43 {+-} 0.07(stat.) {+-} 0.04(sys.)] Multiplication-Sign 10{sup -3}, where {Omega}{sub HI} is the neutral hydrogen (H I) fraction, r is the galaxy-hydrogen correlation coefficient, and b{sub HI} is the H I bias parameter. This is the most precise constraint on neutral hydrogen density fluctuations in a challenging redshift range. Our measurement improves the previous 21 cm cross-correlation at z {approx} 0.8 both in its precision and in the range of scales probed.

  13. THE ASSEMBLY OF MILKY-WAY-LIKE GALAXIES SINCE z {approx} 2.5

    SciTech Connect

    Van Dokkum, Pieter G.; Leja, Joel; Nelson, Erica June; Skelton, Rosalind E.; Momcheva, Ivelina; Patel, Shannon; Fumagalli, Mattia; Franx, Marijn; Labbe, Ivo; Brammer, Gabriel; Whitaker, Katherine E.; Lundgren, Britt; Conroy, Charlie; Foerster Schreiber, Natascha; Wuyts, Stijn; Kriek, Mariska; Marchesini, Danilo; Rix, Hans-Walter; Van der Wel, Arjen

    2013-07-10

    Galaxies with the mass of the Milky Way dominate the stellar mass density of the universe but it is uncertain how and when they were assembled. Here we study progenitors of these galaxies out to z = 2.5, using data from the 3D-HST and CANDELS Treasury surveys. We find that galaxies with present-day stellar masses of log (M) Almost-Equal-To 10.7 built {approx}90% of their stellar mass since z = 2.5, with most of the star formation occurring before z = 1. In marked contrast to the assembly history of massive elliptical galaxies, mass growth is not limited to large radii: the mass in the central 2 kpc of the galaxies increased by a factor of 3.2{sup +0.8}{sub -0.7} between z = 2.5 and z = 1. We therefore rule out simple models in which bulges were fully assembled at high redshift and disks gradually formed around them. Instead, bulges (and black holes) likely formed in lockstep with disks, through bar instabilities, migration, or other processes. We find that after z = 1 the growth in the central regions gradually stopped and the disk continued to be built up, consistent with recent studies of the gas distributions in z {approx} 1 galaxies and the properties of many spiral galaxies today.

  14. Ab initio rate constants from hyperspherical quantum scattering: application to H+C2H6 and H+CH3OH.

    PubMed

    Kerkeni, Boutheïna; Clary, David C

    2004-10-01

    The dynamics and kinetics of the abstraction reactions of H atoms with ethane and methanol have been studied using a quantum mechanical procedure. Bonds being broken and formed are treated with explicit hyperspherical quantum dynamics. The ab initio potential energy surfaces for these reactions have been developed from a minimal number of grid points (average of 48 points) and are given by analytical functionals. All the degrees of freedom except the breaking and forming bonds are optimized using the second order perturbation theory method with a correlation consistent polarized valence triple zeta basis set. Single point energies are calculated on the optimized geometries with the coupled cluster theory and the same basis set. The reaction of H with C2H6 is endothermic by 1.5 kcal/mol and has a vibrationally adiabatic barrier of 12 kcal/mol. The reaction of H with CH3OH presents two reactive channels: the methoxy and the hydroxymethyl channels. The former is endothermic by 0.24 kcal/mol and has a vibrationally adiabatic barrier of 13.29 kcal/mol, the latter reaction is exothermic by 7.87 kcal/mol and has a vibrationally adiabatic barrier of 8.56 kcal/mol. We report state-to-state and state-selected cross sections together with state-to-state rate constants for the title reactions. Thermal rate constants for these reactions exhibit large quantum tunneling effects when compared to conventional transition state theory results. For H+CH3OH, it is found that the CH2OH product is the dominant channel, and that the CH3O channel contributes just 2% at 500 K. For both reactions, rate constants are in good agreement with some measurements. PMID:15473738

  15. New Measurement of the Electron Magnetic Moment and the Fine Structure Constant: A First Application of a One-Electron Quantum Cyclotron

    ScienceCinema

    Gabrielse, Gerald [Harvard University, Cambridge, Massachusetts, United States

    2016-07-12

    Remarkably, the famous UW measurement of the electron magnetic moment has stood since 1987. With QED theory, this measurement has determined the accepted value of the fine structure constant. This colloquium is about a new Harvard measurement of these fundamental constants. The new measurement has an uncertainty that is about six times smaller, and it shifts the values by 1.7 standard deviations. One electron suspended in a Penning trap is used for the new measurement, like in the old measurement. What is different is that the lowest quantum levels of the spin and cyclotron motion are resolved, and the cyclotron as well as spin frequencies are determined using quantum jump spectroscopy. In addition, a 0.1 mK Penning trap that is also a cylindrical microwave cavity is used to control the radiation field, to suppress spontaneous emission by more than a factor of 100, to control cavity shifts, and to eliminate the blackbody photons that otherwise stimulate excitations from the cyclotron ground state. Finally, great signal-to-noise for one-quantum transitions is obtained using electronic feedback to realize the first one-particle self-excited oscillator. The new methods may also allow a million times improved measurement of the 500 times small antiproton magnetic moment.

  16. THE SINS SURVEY OF z {approx} 2 GALAXY KINEMATICS: PROPERTIES OF THE GIANT STAR-FORMING CLUMPS

    SciTech Connect

    Genzel, R.; Foerster Schreiber, N. M.; Genel, S.; Tacconi, L. J.; Buschkamp, P.; Davies, R.; Eisenhauer, F.; Kurk, J.; Newman, S.; Jones, T.; Shapiro, K.; Lilly, S. J.; Carollo, C. M.; Renzini, A.; Bouche, N.; Burkert, A.; Cresci, G.; Ceverino, D.; Dekel, A.; Hicks, E.

    2011-06-01

    We have studied the properties of giant star-forming clumps in five z {approx} 2 star-forming disks with deep SINFONI AO spectroscopy at the ESO VLT. The clumps reside in disk regions where the Toomre Q-parameter is below unity, consistent with their being bound and having formed from gravitational instability. Broad H{alpha}/[N II] line wings demonstrate that the clumps are launching sites of powerful outflows. The inferred outflow rates are comparable to or exceed the star formation rates, in one case by a factor of eight. Typical clumps may lose a fraction of their original gas by feedback in a few hundred million years, allowing them to migrate into the center. The most active clumps may lose much of their mass and disrupt in the disk. The clumps leave a modest imprint on the gas kinematics. Velocity gradients across the clumps are 10-40 km s{sup -1} kpc{sup -1}, similar to the galactic rotation gradients. Given beam smearing and clump sizes, these gradients may be consistent with significant rotational support in typical clumps. Extreme clumps may not be rotationally supported; either they are not virialized or they are predominantly pressure supported. The velocity dispersion is spatially rather constant and increases only weakly with star formation surface density. The large velocity dispersions may be driven by the release of gravitational energy, either at the outer disk/accreting streams interface, and/or by the clump migration within the disk. Spatial variations in the inferred gas phase oxygen abundance are broadly consistent with inside-out growing disks, and/or with inward migration of the clumps.

  17. Wall of fundamental constants

    SciTech Connect

    Olive, Keith A.; Peloso, Marco; Uzan, Jean-Philippe

    2011-02-15

    We consider the signatures of a domain wall produced in the spontaneous symmetry breaking involving a dilatonlike scalar field coupled to electromagnetism. Domains on either side of the wall exhibit slight differences in their respective values of the fine-structure constant, {alpha}. If such a wall is present within our Hubble volume, absorption spectra at large redshifts may or may not provide a variation in {alpha} relative to the terrestrial value, depending on our relative position with respect to the wall. This wall could resolve the contradiction between claims of a variation of {alpha} based on Keck/Hires data and of the constancy of {alpha} based on Very Large Telescope data. We derive the properties of the wall and the parameters of the underlying microscopic model required to reproduce the possible spatial variation of {alpha}. We discuss the constraints on the existence of the low-energy domain wall and describe its observational implications concerning the variation of the fundamental constants.

  18. Varying constants quantum cosmology

    SciTech Connect

    Leszczyńska, Katarzyna; Balcerzak, Adam; Dabrowski, Mariusz P. E-mail: abalcerz@wmf.univ.szczecin.pl

    2015-02-01

    We discuss minisuperspace models within the framework of varying physical constants theories including Λ-term. In particular, we consider the varying speed of light (VSL) theory and varying gravitational constant theory (VG) using the specific ansätze for the variability of constants: c(a) = c{sub 0} a{sup n} and G(a)=G{sub 0} a{sup q}. We find that most of the varying c and G minisuperspace potentials are of the tunneling type which allows to use WKB approximation of quantum mechanics. Using this method we show that the probability of tunneling of the universe ''from nothing'' (a=0) to a Friedmann geometry with the scale factor a{sub t} is large for growing c models and is strongly suppressed for diminishing c models. As for G varying, the probability of tunneling is large for G diminishing, while it is small for G increasing. In general, both varying c and G change the probability of tunneling in comparison to the standard matter content (cosmological term, dust, radiation) universe models.

  19. CONSTRAINING DUST AND MOLECULAR GAS PROPERTIES IN Ly{alpha} BLOBS AT z {approx} 3

    SciTech Connect

    Yang Yujin; Decarli, Roberto; Walter, Fabian; Leipski, Christian; Dannerbauer, Helmut; Le Floc'h, Emeric; Dey, Arjun; Chapman, Scott C.; Prescott, Moire K. M.; Neri, Roberto; Borys, Colin; Matsuda, Yuichi; Yamada, Toru; Hayashino, Tomoki; Tapken, Christian

    2012-01-10

    In order to constrain the bolometric luminosities, dust properties, and molecular gas content of giant Ly{alpha} nebulae, the so-called Ly{alpha} blobs, we have carried out a study of dust continuum and CO line emission in two well-studied representatives of this population at z {approx} 3: an Ly{alpha} blob discovered by its strong Spitzer Multiband Infrared Photometer 24 {mu}m detection (LABd05) and the Steidel blob 1 (SSA22-LAB01). We find that the spectral energy distribution of LABd05 is well described by an active-galactic-nucleus-starburst composite template with L{sub FIR} = (4.0 {+-} 0.5) Multiplication-Sign 10{sup 12} L{sub Sun }, comparable to high-z submillimeter galaxies and ultraluminous infrared galaxies. New Large APEX Bolometer Camera 870 {mu}m measurements rule out the reported Submillimeter Common-User Bolometer Array detection of the SSA22-LAB01 (S{sub 850{mu}m} = 16.8 mJy) at the >4{sigma} level. Consistent with this, ultradeep Plateau de Bure Interferometer observations with {approx}2'' spatial resolution also fail to detect any 1.2 mm continuum source down to Almost-Equal-To 0.45 mJy beam{sup -1} (3{sigma}). Combined with the existing (sub)millimeter observations in the literature, we conclude that the FIR luminosity of SSA22-LAB01 remains uncertain. No CO line is detected in either case down to integrated flux limits of S{sub {nu}}{Delta}V {approx}< 0.25-1.0 Jy km s{sup -1}, indicating a modest molecular gas reservoir, M(H{sub 2}) < (1-3) Multiplication-Sign 10{sup 10} M{sub Sun }. The non-detections exclude, with high significance (12{sigma}), the previous tentative detection of a CO J = 4-3 line in the SSA22-LAB01. The increased sensitivity afforded by the Atacama Large Millimeter/submillimeter Array will be critical in studying molecular gas and dust in these interesting systems.

  20. ON STAR FORMATION RATES AND STAR FORMATION HISTORIES OF GALAXIES OUT TO z {approx} 3

    SciTech Connect

    Wuyts, Stijn; Foerster Schreiber, Natascha M.; Lutz, Dieter; Nordon, Raanan; Berta, Stefano; Genzel, Reinhard; Magnelli, Benjamin; Poglitsch, Albrecht; Altieri, Bruno; Andreani, Paola; Aussel, Herve; Daddi, Emanuele; Elbaz, David; Cimatti, Andrea; Koekemoer, Anton M.; Maiolino, Roberto; McGrath, Elizabeth J.

    2011-09-01

    We compare multi-wavelength star formation rate (SFR) indicators out to z {approx} 3 in the GOODS-South field. Our analysis uniquely combines U to 8 {mu}m photometry from FIREWORKS, MIPS 24 {mu}m and PACS 70, 100, and 160 {mu}m photometry from the PEP, and H{alpha} spectroscopy from the SINS survey. We describe a set of conversions that lead to a continuity across SFR indicators. A luminosity-independent conversion from 24 {mu}m to total infrared luminosity yields estimates of L{sub IR} that are in the median consistent with the L{sub IR} derived from PACS photometry, albeit with significant scatter. Dust correction methods perform well at low-to-intermediate levels of star formation. They fail to recover the total amount of star formation in systems with large SFR{sub IR}/SFR{sub UV} ratios, typically occuring at the highest SFRs (SFR{sub UV+IR} {approx}> 100 M{sub sun} yr{sup -1}) and redshifts (z {approx}> 2.5) probed. Finally, we confirm that H{alpha}-based SFRs at 1.5 < z < 2.6 are consistent with SFR{sub SED} and SFR{sub UV+IR} provided extra attenuation toward H II regions is taken into account (A{sub V,neb} = A{sub V,continuum}/0.44). With the cross-calibrated SFR indicators in hand, we perform a consistency check on the star formation histories inferred from spectral energy distribution (SED) modeling. We compare the observed SFR-M relations and mass functions at a range of redshifts to equivalents that are computed by evolving lower redshift galaxies backward in time. We find evidence for underestimated stellar ages when no stringent constraints on formation epoch are applied in SED modeling. We demonstrate how resolved SED modeling, or alternatively deep UV data, may help to overcome this bias. The age bias is most severe for galaxies with young stellar populations and reduces toward older systems. Finally, our analysis suggests that SFHs typically vary on timescales that are long (at least several 100 Myr) compared to the galaxies' dynamical time.

  1. LBT/LUCIFER OBSERVATIONS OF THE z {approx} 2 LENSED GALAXY J0900+2234

    SciTech Connect

    Bian Fuyan; Fan Xiaohui; Bechtold, Jill; McGreer, Ian D.; Just, Dennis W.; Sand, David J.; Green, Richard F.; Thompson, David; Peng, Chien Y.; Seifert, Walter; Ageorges, Nancy; Buschkamp, Peter; Juette, Marcus; Knierim, Volker

    2010-12-20

    We present rest-frame optical images and spectra of the gravitationally lensed, star-forming galaxy J0900+2234 (z = 2.03). The observations were performed with the newly commissioned LUCIFER1 near-infrared (NIR) instrument mounted on the Large Binocular Telescope. We fitted lens models to the rest-frame optical images and found that the galaxy has an intrinsic effective radius of 7.4 {+-} 0.8 kpc with a lens magnification factor of about 5 for the A and B components. We also discovered a new arc belonging to another lensed high-z source galaxy, which makes this lens system a potential double Einstein ring system. Using the high signal-to-noise ratio rest-frame spectra covered by the H + K band, we detected H{beta}, [O III], H{alpha}, [N II], and [S II] emission lines. Detailed physical properties of this high-z galaxy were derived. The extinction toward the ionized H II regions (E{sub g} (B - V)) was computed from the flux ratio of H{alpha} and H{beta} and appears to be much higher than that toward the stellar continuum (E{sub s} (B - V)), derived from the optical and NIR broadband photometry fitting. The metallicity was estimated using N2 and O3N2 indices. It is in the range of 1/5 - 1/3 solar abundance, which is much lower than for typical z {approx} 2 star-forming galaxies. From the flux ratio of [S II]{lambda}6717 and [S II]{lambda}6732, we found that the electron number density of the H II regions in the high-z galaxy was {approx_equal}1000 cm{sup -3}, consistent with other z {approx} 2 galaxies but much higher than that in local H II regions. The star formation rate was estimated via the H{alpha} luminosity, after correction for the lens magnification, to be about 365 {+-} 69 M{sub sun} yr{sup -1}. Combining the FWHM of H{alpha} emission lines and the half-light radius, we found that the dynamical mass of the lensed galaxy is (5.8 {+-} 0.9) x 10{sup 10} M{sub sun}. The gas mass is (5.1 {+-} 1.1) x 10{sup 10} M{sub sun} from the H{alpha} flux surface density

  2. CONSTRAINTS ON THE FAINT END OF THE QUASAR LUMINOSITY FUNCTION AT z {approx} 5 IN THE COSMOS FIELD

    SciTech Connect

    Ikeda, H.; Matsuoka, K.; Kajisawa, M.; Nagao, T.; Taniguchi, Y.; Shioya, Y.; Enoki, M.; Capak, P.; Masters, D.; Scoville, N. Z.; Civano, F.; Koekemoer, A. M.; Morokuma, T.; Salvato, M.; Schinnerer, E.

    2012-09-10

    We present the result of our low-luminosity quasar survey in the redshift range of 4.5 {approx}< z {approx}< 5.5 in the COSMOS field. Using the COSMOS photometric catalog, we selected 15 quasar candidates with 22 < i' < 24 at z {approx} 5 that are {approx}3 mag fainter than the Sloan Digital Sky Survey quasars in the same redshift range. We obtained optical spectra for 14 of the 15 candidates using FOCAS on the Subaru Telescope and did not identify any low-luminosity type-1 quasars at z {approx} 5, while a low-luminosity type-2 quasar at z {approx} 5.07 was discovered. In order to constrain the faint end of the quasar luminosity function at z {approx} 5, we calculated the 1{sigma} confidence upper limits of the space density of type-1 quasars. As a result, the 1{sigma} confidence upper limits on the quasar space density are {Phi} < 1.33 Multiplication-Sign 10{sup -7} Mpc{sup -3} mag{sup -1} for -24.52 < M{sub 1450} < -23.52 and {Phi} < 2.88 Multiplication-Sign 10{sup -7} Mpc{sup -3} mag{sup -1} for -23.52 < M{sub 1450} < -22.52. The inferred 1{sigma} confidence upper limits of the space density are then used to provide constraints on the faint-end slope and the break absolute magnitude of the quasar luminosity function at z {approx} 5. We find that the quasar space density decreases gradually as a function of redshift at low luminosity (M{sub 1450} {approx} -23), being similar to the trend found for quasars with high luminosity (M{sub 1450} < -26). This result is consistent with the so-called downsizing evolution of quasars seen at lower redshifts.

  3. Magnetic Rotation in {sup 106}Ag and Systematics of A{approx}110 Mass Region

    SciTech Connect

    He, C. Y.; Zhu, L. H.; Wu, X. G.; Wen, S. X.; Li, G. S.; Liu, Y.; Wang, Z. M.; Li, X. Q.; Ma, R. G.; Yang, C. X.; Cui, X. Z.

    2008-11-11

    The high spin states of {sup 106}Ag were populated via the fusion-evaporation reaction {sup 100}Mo({sup 11}B,5n){sup 106}Ag at a beam energy of 60 MeV. A new level scheme of {sup 106}Ag is built on basis of the present experiment. The positive parity band with the configuration of {pi}g{sub 9/2} x V[h{sub 11/2}{sup 2}(g{sub 7/2}/d{sub 5/2})] is discussed on the ground of shears mechanism. Theoretical calculation of the effective interaction performed by TAC model agrees well with the experimental value. Systematics study shows that Ag isotopes are probably at the boundary of magnetic rotation in A{approx}110 mass region.

  4. Measurement of a release adiabat from {approx}8 Mbar in lead using magnetically driven flyer impact

    SciTech Connect

    Rothman, S.D.; Parker, K.; Robinson, C.; Knudson, M.D.

    2004-12-01

    Using magnetically driven aluminium flyers to generate {approx}8 Mbar shocks in lead, which were then transmitted into lower-impedance material samples, points on a lead release adiabat have been measured. The pressure-particle-velocity points were calculated from known sample principal Hugoniots and from shock velocities measured using arrays of fiber-optic active and passive shock breakout diagnostics, and point and line velocity interferometer for a surface of any reflectivity (VISARs). The measured points agree closely with adiabats calculated using models which do not include ionization, or do include it both with, and without, atomic shell effects. Though the data are not sufficient to discriminate between widely different models we may qualitatively identify errors within these models. This is the first attempt to measure a release adiabat from such high pressures.

  5. Microscopic analysis of nuclear quantum phase transitions in the N{approx_equal}90 region

    SciTech Connect

    Li, Z. P.; Niksic, T.; Vretenar, D.; Meng, J.; Lalazissis, G. A.; Ring, P.

    2009-05-15

    The analysis of shape transitions in Nd isotopes, based on the framework of relativistic energy-density functionals and restricted to axially symmetric shapes in T. Niksic, D. Vretenar, G. A. Lalazissis, and P. Ring [Phys. Rev. Lett. 99, 092502 (2007)], is extended to the region Z=60,62,64 with N{approx_equal}90 and includes both {beta} and {gamma} deformations. Collective excitation spectra and transition probabilities are calculated starting from a five-dimensional Hamiltonian for quadrupole vibrational and rotational degrees of freedom, with parameters determined by constrained self-consistent relativistic mean-field calculations for triaxial shapes. The results reproduce available data and show that there is an abrupt change of structure at N=90 that can be approximately characterized by the X(5) analytic solution at the critical point of the first-order quantum phase transition between spherical and axially deformed shapes.

  6. Separation of a group of N-phenylpyrazole derivatives by micellar electrokinetic chromatography: application to the determination of solute-micelle association constants and estimation of the hydrophobicity.

    PubMed

    García-Ruiz, C; García, M A; Marina, M L

    2000-07-01

    Micellar electrokinetic chromatography (MEKC) was applied to the separation of a group of N-phenylpyrazole derivatives. Sodium dodecyl sulfate (SDS) as micellar system and 2-(N-cyclohexylamino)ethanesulfonic acid (CHES) as separation buffer (pH 10) were employed in the absence and presence of different percentages of medium chain alcohols (n-propanol or n-butanol). The separation of multicomponent mixtures of the solutes studied enabled the rapid determination of their retention factors which, in turn, allowed the study of the separation selectivity of compounds and the determination of their solute-micelle association constants (from the linear variation of the retention factors as a function of the total surfactant concentration in the separation buffer). Separation selectivity was studied according to the elution range and number of solutes separated in all the electrolyte solutions employed (45 micellar phases). The effect of the buffer concentration (0.05, 0.08 and 0.10 M), the alcohol nature (n-propanol or n-butanol) and the alcohol percentage (1, 3 or 5%) of the values obtained for the solute-micelle association constants was also studied. The best separation (12 solutes) was performed when a 0.08 M CHES buffer, pH 10, 0.02 M SDS modified by 5% n-butanol was used. The possibilities of using MEKC for evaluating the hydrophobicity of compounds was investigated through the study of the correlation between the logarithm of the retention factors of N-phenylpyrazole derivatives and their logarithm of the octanol-water distribution coefficients estimated by high performance liquid chromatography (HPLC).

  7. STELLAR KINEMATICS OF z {approx} 2 GALAXIES AND THE INSIDE-OUT GROWTH OF QUIESCENT GALAXIES {sup ,}

    SciTech Connect

    Van de Sande, Jesse; Franx, Marijn; Bouwens, Rychard J.; Kriek, Mariska; Van Dokkum, Pieter G.; Bezanson, Rachel; Skelton, Rosalind E.; Quadri, Ryan F.; Rix, Hans-Walter

    2013-07-10

    Using stellar kinematics measurements, we investigate the growth of massive, quiescent galaxies from z {approx} 2 to today. We present X-Shooter spectra from the UV to NIR and dynamical mass measurements of five quiescent massive (>10{sup 11} M{sub Sun }) galaxies at z {approx} 2. This triples the sample of z > 1.5 galaxies with well-constrained ({delta}{sigma} < 100 km s{sup -1}) velocity dispersion measurements. From spectral population synthesis modeling we find that these galaxies have stellar ages that range from 0.5 to 2 Gyr, with no signs of ongoing star formation. We measure velocity dispersions (290-450 km s{sup -1}) from stellar absorption lines and find that they are 1.6-2.1 times higher than those of galaxies in the Sloan Digital Sky Survey at the same mass. Sizes are measured using GALFIT from Hubble Space Telescope Wide Field Camera 3 H{sub 160} and UDS K-band images. The dynamical masses correspond well to the spectral energy distribution based stellar masses, with dynamical masses that are {approx}15% higher. We find that M{sub *}/M{sub dyn} may decrease slightly with time, which could reflect the increase of the dark matter fraction within an increasing effective radius. We combine different stellar kinematic studies from the literature and examine the structural evolution from z {approx} 2 to z {approx} 0: we confirm that at fixed dynamical mass, the effective radius increases by a factor of {approx}2.8, and the velocity dispersion decreases by a factor of {approx}1.7. The mass density within one effective radius decreases by a factor of {approx}20, while within a fixed physical radius (1 kpc) it decreases only mildly (factor of {approx}2). When we allow for an evolving mass limit by selecting a population of galaxies at fixed number density, a stronger size growth with time is found (factor of {approx}4), velocity dispersion decreases by a factor of {approx}1.4, and interestingly, the mass density within 1 kpc is consistent with no evolution

  8. PLANET ENGULFMENT BY {approx}1.5-3 M{sub sun} RED GIANTS

    SciTech Connect

    Kunitomo, M.; Ikoma, M.; Sato, B.; Ida, S.; Katsuta, Y.

    2011-08-20

    Recent radial-velocity surveys for GK clump giants have revealed that planets also exist around {approx}1.5-3 M{sub sun} stars. However, no planets have been found inside 0.6 AU around clump giants, in contrast to solar-type main-sequence stars, many of which harbor short-period planets such as hot Jupiters. In this study, we examine the possibility that planets were engulfed by host stars evolving on the red-giant branch (RGB). We integrate the orbital evolution of planets in the RGB and helium-burning phases of host stars, including the effects of stellar tide and stellar mass loss. Then we derive the critical semimajor axis (or the survival limit) inside which planets are eventually engulfed by their host stars after tidal decay of their orbits. Specifically, we investigate the impact of stellar mass and other stellar parameters on the survival limit in more detail than previous studies. In addition, we make detailed comparisons with measured semimajor axes of planets detected so far, which no previous study has done. We find that the critical semimajor axis is quite sensitive to stellar mass in the range between 1.7 and 2.1 M{sub sun}, which suggests a need for careful comparison between theoretical and observational limits of the existence of planets. Our comparison demonstrates that all planets orbiting GK clump giants that have been detected are beyond the survival limit, which is consistent with the planet-engulfment hypothesis. However, on the high-mass side (>2.1M{sub sun}), the detected planets are orbiting significantly far from the survival limit, which suggests that engulfment by host stars may not be the main reason for the observed lack of short-period giant planets. To confirm our conclusion, the detection of more planets around clump giants, especially with masses {approx}> 2.5M{sub sun}, is required.

  9. ON INFERRING EXTINCTION LAWS IN z {approx} 6 QUASARS AS SIGNATURES OF SUPERNOVA DUST

    SciTech Connect

    Hjorth, Jens; Vreeswijk, Paul M.; Gall, Christa; Watson, Darach E-mail: paul.vreeswijk@weizmann.ac.il E-mail: darach@dark-cosmology.dk

    2013-05-10

    Unusual extinction curves of high-redshift QSOs have been taken as evidence that dust is primarily produced by supernovae at high redshift. In particular, the 3000 A Todini-Ferrara-Maiolino kink in the extinction curve of the z = 6.20 SDSS J1048+4637 has been attributed to supernova dust. Here we discuss the challenges in inferring robust extinction curves of high-redshift QSOs and critically assess previous claims of detection of supernova dust. In particular, we address the sensitivity to the choice of intrinsic QSO spectrum, the need for a long wavelength baseline, and the drawbacks in fitting theoretical extinction curves. In a sample of 21 QSOs at z {approx} 6 we detect significant ultraviolet extinction using existing broadband optical, near-infrared, and Spitzer photometry. The median extinction curve is consistent with a Small Magellanic Cloud curve with A{sub 1450} {approx} 0.7 mag and does not exhibit any conspicuous (rest frame) 2175 A or 3000 A features. For two QSOs, SDSS J1044-0125 at z = 5.78 and SDSS J1030+0524 at z = 6.31, we further present X-shooter spectra covering the wavelength range 0.9-2.5 {mu}m. The resulting non-parametric extinction curves do not exhibit the 3000 A kink. Finally, in a re-analysis of literature spectra of SDSS J1048+4637, we do not find evidence for a conspicuous kink. We conclude that the existing evidence for a 3000 A feature is weak and that the overall dust properties at high and low redshifts show no significant differences. This, however, does not preclude supernovae from dominating the dust budget at high redshift.

  10. SPATIALLY RESOLVED HST GRISM SPECTROSCOPY OF A LENSED EMISSION LINE GALAXY AT z {approx} 1

    SciTech Connect

    Frye, Brenda L.; Hurley, Mairead; Bowen, David V.; Meurer, Gerhardt; Sharon, Keren; Straughn, Amber; Coe, Dan; Broadhurst, Tom; Guhathakurta, Puragra

    2012-07-20

    We take advantage of gravitational lensing amplification by A1689 (z 0.187) to undertake the first space-based census of emission line galaxies (ELGs) in the field of a massive lensing cluster. Forty-three ELGs are identified to a flux of i{sub 775} = 27.3 via slitless grism spectroscopy. One ELG (at z = 0.7895) is very bright owing to lensing magnification by a factor of Almost-Equal-To 4.5. Several Balmer emission lines (ELs) detected from ground-based follow-up spectroscopy signal the onset of a major starburst for this low-mass galaxy (M{sub *} Almost-Equal-To 2 Multiplication-Sign 10{sup 9} M{sub Sun }) with a high specific star formation rate ( Almost-Equal-To 20 Gyr{sup -1}). From the blue ELs we measure a gas-phase oxygen abundance consistent with solar (12+log(O/H) = 8.8 {+-} 0.2). We break the continuous line-emitting region of this giant arc into seven {approx}1 kpc bins (intrinsic size) and measure a variety of metallicity-dependent line ratios. A weak trend of increasing metal fraction is seen toward the dynamical center of the galaxy. Interestingly, the metal line ratios in a region offset from the center by {approx}1 kpc have a placement on the blue H II region excitation diagram with f ([O III])/f (H{beta}) and f ([Ne III])/f (H{beta}) that can be fitted by an active galactic nucleus (AGN). This asymmetrical AGN-like behavior is interpreted as a product of shocks in the direction of the galaxy's extended tail, possibly instigated by a recent galaxy interaction.

  11. A PHYSICAL MODEL FOR THE 0 {approx}< z {approx}< 8 REDSHIFT EVOLUTION OF THE GALAXY ULTRAVIOLET LUMINOSITY AND STELLAR MASS FUNCTIONS

    SciTech Connect

    Tacchella, Sandro; Carollo, C. Marcella; Trenti, Michele

    2013-05-10

    We present a model to understand the redshift evolution of the UV luminosity and stellar mass functions of Lyman break galaxies. Our approach is based on the assumption that the luminosity and stellar mass of a galaxy is related to its dark-matter (DM) halo assembly and gas infall rate. Specifically, galaxies experience a burst of star formation at the halo assembly time, followed by a constant star formation rate, representing a secular star formation activity sustained by steady gas accretion. Star formation from steady gas accretion is the dominant contribution to the galaxy UV luminosity at all redshifts. The model is calibrated by constructing a galaxy luminosity versus halo mass relation at z = 4 via abundance matching. After this luminosity calibration, the model naturally fits the z = 4 stellar mass function, and correctly predicts the evolution of both luminosity and stellar mass functions from z = 0 to z = 8. While the details of star formation efficiency and feedback are hidden within our calibrated luminosity versus halo mass relation, our study highlights that the primary driver of galaxy evolution across cosmic time is the buildup of DM halos, without the need to invoke a redshift-dependent efficiency in converting gas into stars.

  12. NO EVIDENCE FOR EVOLUTION IN THE FAR-INFRARED-RADIO CORRELATION OUT TO z {approx} 2 IN THE EXTENDED CHANDRA DEEP FIELD SOUTH

    SciTech Connect

    Mao, Minnie Y.; Huynh, Minh T.; Helou, George; Norris, Ray P.; Dickinson, Mark; Frayer, Dave; Monkiewicz, Jacqueline A.

    2011-04-20

    We investigate the 70 {mu}m far-infrared-radio correlation (FRC) of star-forming galaxies in the Extended Chandra Deep Field South (ECDFS) out to z > 2. We use 70 {mu}m data from the Far-Infrared Deep Extragalactic Legacy Survey (FIDEL), which comprises the most sensitive ({approx}0.8 mJy rms) and extensive far-infrared deep field observations using MIPS on the Spitzer Space Telescope, and 1.4 GHz radio data ({approx}8 {mu}Jy beam{sup -1} rms) from the Very Large Array. In order to quantify the evolution of the FRC, we use both survival analysis and stacking techniques, which we find give similar results. We also calculate the FRC using total infrared luminosity and rest-frame radio luminosity, q{sub TIR}, and find that q{sub TIR} is constant (within 0.22) over the redshift range 0-2. We see no evidence for evolution in the FRC at 70 {mu}m, which is surprising given the many factors that are expected to change this ratio at high redshifts.

  13. Change is a Constant.

    PubMed

    Lubowitz, James H; Provencher, Matthew T; Brand, Jefferson C; Rossi, Michael J; Poehling, Gary G

    2015-06-01

    In 2015, Henry P. Hackett, Managing Editor, Arthroscopy, retires, and Edward A. Goss, Executive Director, Arthroscopy Association of North America (AANA), retires. Association is a positive constant, in a time of change. With change comes a need for continuing education, research, and sharing of ideas. While the quality of education at AANA and ISAKOS is superior and most relevant, the unique reason to travel and meet is the opportunity to interact with innovative colleagues. Personal interaction best stimulates new ideas to improve patient care, research, and teaching. Through our network, we best create innovation.

  14. Cosmology with varying constants.

    PubMed

    Martins, Carlos J A P

    2002-12-15

    The idea of possible time or space variations of the 'fundamental' constants of nature, although not new, is only now beginning to be actively considered by large numbers of researchers in the particle physics, cosmology and astrophysics communities. This revival is mostly due to the claims of possible detection of such variations, in various different contexts and by several groups. I present the current theoretical motivations and expectations for such variations, review the current observational status and discuss the impact of a possible confirmation of these results in our views of cosmology and physics as a whole.

  15. Glass tube of high dielectric constant and low dielectric loss for external electrode fluorescent lamps

    SciTech Connect

    Cho, Guangsup; Shin, Myeong-Ju; Jeong, Jong-Mun; Kim, Jung-Hyun; Hong, Byoung-Hee; Koo, Je-Huan; Kim, YunKi; Choi, Eun-Ha; Fechner, Joerg; Letz, Martin; Ott, Franz

    2007-12-01

    A glass tube of aluminosilicate glass, with high dielectric constant K{approx}6.0 and low dielectric loss tan {delta}{approx}8.0x10{sup -4}, was investigated for the external electrode fluorescent lamps (EEFLs) of a dielectric barrier discharge. Compared with conventional EEFLs made out of borosilicate glass tubes with K{approx}(4.9-5.3) and tan {delta}{approx}(2.3-2.4)x10{sup -3}, the efficiency of the aluminosilicate EEFL increases by 15%-25% even at high luminance above 20 000 cd/m{sup 2} and the pinhole stability of the aluminosilicate EEFL also improves remarkably. In a soda-lime glass EEFL with a high dielectric loss tan {delta}{approx}7.0x10{sup -3}, the luminance and pinhole stability deteriorate even with a high dielectric constant K{approx}7.2 at room temperature, because the value of tan {delta} escalates as the temperature on the external electrode increases due to the dielectric heat dissipation.

  16. THE DETECTION OF THE LARGE-SCALE ALIGNMENT OF MASSIVE GALAXIES AT z {approx} 0.6

    SciTech Connect

    Li Cheng; Jing, Y. P.; Faltenbacher, A.; Wang Jie

    2013-06-10

    We report on the detection of the alignment between galaxies and large-scale structure at z {approx} 0.6 based on the CMASS galaxy sample from the Baryon Oscillation Spectroscopy Survey Data Release 9. We use two statistics to quantify the alignment signal: (1) the alignment two-point correlation function that probes the dependence of galaxy clustering at a given separation in redshift space on the projected angle ({theta}{sub p}) between the orientation of galaxies and the line connecting to other galaxies, and (2) the cos (2{theta})-statistic that estimates the average of cos (2{theta}{sub p}) for all correlated pairs at a given separation s. We find a significant alignment signal out to about 70 h {sup -1} Mpc in both statistics. Applications of the same statistics to dark matter halos of mass above 10{sup 12} h {sup -1} M{sub Sun} in a large cosmological simulation show scale-dependent alignment signals similar to the observation, but with higher amplitudes at all scales probed. We show that this discrepancy may be partially explained by a misalignment angle between central galaxies and their host halos, though detailed modeling is needed in order to better understand the link between the orientations of galaxies and host halos. In addition, we find systematic trends of the alignment statistics with the stellar mass of the CMASS galaxies, in the sense that more massive galaxies are more strongly aligned with the large-scale structure.

  17. [111]-oriented PIN-PMN-PT crystals with ultrahigh dielectric permittivity and high frequency constant for high-frequency transducer applications

    NASA Astrophysics Data System (ADS)

    Li, Fei; Zhang, Shujun; Luo, Jun; Geng, Xuecang; Xu, Zhuo; Shrout, Thomas R.

    2016-08-01

    The electromechanical properties of [111]-oriented tetragonal Pb(In1/2Nb1/2O3)-Pb(Mg1/3Nb2/3O3)-PbTiO3 (PIN-PMN-PT) crystals were investigated for potential high frequency ultrasonic transducers. The domain-engineered tetragonal crystals exhibit an ultrahigh free dielectric permittivity ɛ33T > 10 000 with a moderate electromechanical coupling factor k33 ˜ 0.79, leading to a high clamped dielectric permittivity ɛ33S of 2800, significantly higher than those of the rhombohedral relaxor-PT crystals and high-K (dielectric permittivity) piezoelectric ceramics. Of particular significance is that the [111]-oriented tetragonal crystals were found to possess high elastic stiffness, with frequency constant N33 of ˜2400 Hz m, allowing relatively easy fabrication of high-frequency transducers. In addition, no scaling effect of piezoelectric and dielectric properties was observed down to thickness of 0.1 mm, corresponding to an operational frequency of ˜24 MHz. These advantages of [111]-oriented tetragonal PIN-PMN-PT crystals will benefit high-frequency ultrasonic array transducers, allowing for high sensitivity, broad bandwidth, and reduced noise/crosstalk.

  18. An efficient route to thermal rate constants in reduced dimensional quantum scattering simulations: Applications to the abstraction of hydrogen from alkanes

    NASA Astrophysics Data System (ADS)

    von Horsten, H. F.; Banks, S. T.; Clary, D. C.

    2011-09-01

    We present an efficient approach to the determination of two-dimensional potential energy surfaces for use in quantum reactive scattering simulations. Our method involves first determining the minimum energy path (MEP) for the reaction by means of an ab initio intrinsic reaction coordinate calculation. This one-dimensional potential is then corrected to take into account the zero point energies of the spectator modes. These are determined from Hessians in curvilinear coordinates after projecting out the modes to be explicitly treated in quantum scattering calculations. The final (1 + 1)-dimensional potential is constructed by harmonic expansion about each point along the MEP before transforming the whole surface to hyperspherical coordinates for use in the two-dimensional scattering simulations. This new method is applied to H-atom abstraction from methane, ethane and propane. For the latter, both reactive channels (producing i-C3H7 or n-C3H7) are investigated. For all reactions, electronic structure calculations are performed using an efficient, explicitly correlated, coupled cluster methodology (CCSD(T)-F12). Calculated thermal rate constants are compared to experimental and previous theoretical results.

  19. Application of a Genetic Algorithm to the Optimization of Rate Constants in Chemical Kinetic Models for Combustion Simulation of HCCI Engines

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Kyu; Ito, Kazuma; Yoshihara, Daisuke; Wakisaka, Tomoyuki

    For numerically predicting the combustion processes in homogeneous charge compression ignition (HCCI) engines, practical chemical kinetic models have been explored. A genetic algorithm (GA) has been applied to the optimization of the rate constants in detailed chemical kinetic models, and a detailed kinetic model (592 reactions) for gasoline reference fuels with arbitrary octane number between 60 and 100 has been obtained from the detailed reaction schemes for iso-octane and n-heptane proposed by Golovitchev. The ignition timing in a gasoline HCCI engine has been predicted reasonably well by zero-dimensional simulation using the CHEMKIN code with this detailed kinetic model. An original reduced reaction scheme (45 reactions) for dimethyl ether (DME) has been derived from Curran’s detailed scheme, and the combustion process in a DME HCCI engine has been predicted reasonably well in a practical computation time by three-dimensional simulation using the authors’ GTT code, which has been linked to the CHEMKIN subroutines with the proposed reaction scheme and also has adopted a modified eddy dissipation combustion model.

  20. Johnson-Cook Strength Model Constants for VascoMax 300 and 1080 Steels

    SciTech Connect

    Cinnamon, J. D.; Palazotto, A. N.; Kennan, Z.; Brar, N. S.; Bajaj, D.

    2006-07-28

    High strength steels, VascoMax 300 and 1080, are characterized under tension at strain rates of {approx}1/s, {approx}500/s, {approx}1000/s, and {approx}1500/s and at high temperatures using the quasi-static and split Hopkinson bar techniques. The data on 1080 steel exhibited a typical strain hardening response, whereas Vasco-Max 300 steel showed diminishing flow stress beyond yielding because of localized necking in gauge section of the tested specimens. The tension data are analyzed to determine the Johnson-Cook (J-C) strength model constants for the two steels. The flow stress values for VascoMax are adjusted to account for necking, and the corrected J-C model is developed.

  1. PROBING THE FAINT END OF THE QUASAR LUMINOSITY FUNCTION AT z{approx} 4 IN THE COSMOS FIELD

    SciTech Connect

    Ikeda, H.; Nagao, T.; Matsuoka, K.; Ideue, Y.; Taniguchi, Y.; Shioya, Y.; Trump, J. R.; Comastri, A.; Enoki, M.; Koekemoer, A. M.; Morokuma, T.; Murayama, T.; Saito, T.; Silverman, J. D.; Salvato, M.; Schinnerer, E.

    2011-02-20

    We searched for quasars that are {approx}3 mag fainter than the SDSS quasars in the redshift range 3.7 {approx}< z {approx}< 4.7 in the COSMOS field to constrain the faint end of the quasar luminosity function (QLF). Using optical photometric data, we selected 31 quasar candidates with 22 < i' < 24 at z {approx} 4. We obtained optical spectra for most of these candidates using FOCAS on the Subaru telescope and identified eight low-luminosity quasars at z {approx} 4. In order to derive the QLF based on our spectroscopic follow-up campaign, we estimated the photometric completeness of our quasar survey through detailed Monte Carlo simulations. Our QLF at z {approx} 4 has a much shallower faint-end slope ({beta} = -1.67{sup +0.11}{sub -0.17}) than that obtained by other recent surveys in the same redshift. Our result is consistent with the scenario of downsizing evolution of active galactic nuclei inferred by recent optical and X-ray quasar surveys at lower redshifts.

  2. About variable constants

    NASA Astrophysics Data System (ADS)

    Blichert-Toft, J.; Albarede, F.

    2011-12-01

    When only modern isotope compositions are concerned, the choice of normalization values is inconsequential provided that their values are universally accepted. No harm is done as long as large amounts of standard reference material with known isotopic differences with respect to the reference value ('anchor point') can be maintained under controlled conditions. For over five decades, the scientific community has been referring to an essentially unavailable SMOW for stable O and H isotopes and to a long-gone belemnite sample for carbon. For radiogenic isotopes, the isotope composition of the daughter element, the parent-daughter ratio, and a particular value of the decay constant are all part of the reference. For the Lu-Hf system, for which the physical measurements of the decay constant have been particularly defective, the reference includes the isotope composition of Hf and the Lu/Hf ratio of an unfortunately heterogeneous chondrite mix that has been successively refined by Patchett and Tatsumoto (1981), Blichert-Toft and Albarede (1997, BTA), and Bouvier et al. (2008, BVP). The \\varepsilonHf(T) difference created by using BTA and BVP is nearly within error (+0.45 epsilon units today and -0.36 at 3 Ga) and therefore of little or no consequence. A more serious issue arises when the chondritic reference is taken to represent the Hf isotope evolution of the Bulk Silicate Earth (BSE): the initial isotope composition of the Solar System, as determined by the indistinguishable intercepts of the external eucrite isochron (Blichert-Toft et al., 2002) and the internal angrite SAH99555 isochron (Thrane et al., 2010), differs from the chondrite value of BTA and BVP extrapolated to 4.56 Ga by ~5 epsilon units. This difference and the overestimated value of the 176Lu decay constant derived from the slopes of these isochrons, have been interpreted as reflecting irradiation of the solar nebula by either gamma (Albarede et al., 2006) or cosmic rays (Thrane et al., 2010) during

  3. Measurement of the solar constant

    NASA Technical Reports Server (NTRS)

    Crommelynck, D.

    1981-01-01

    The absolute value of the solar constant and the long term variations that exist in the absolute value of the solar constant were measured. The solar constant is the total irradiance of the Sun at a distance of one astronomical unit. An absolute radiometer removed from the effects of the atmosphere with its calibration tested in situ was used to measure the solar constant. The importance of an accurate knowledge of the solar constant is emphasized.

  4. The Hubble constant.

    PubMed

    Tully, R B

    1993-06-01

    Five methods of estimating distances have demonstrated internal reproducibility at the level of 5-20% rms accuracy. The best of these are the cepheid (and RR Lyrae), planetary nebulae, and surface-brightness fluctuation techniques. Luminosity-line width and Dn-sigma methods are less accurate for an individual case but can be applied to large numbers of galaxies. The agreement is excellent between these five procedures. It is determined that Hubble constant H0 = 90 +/- 10 km.s-1.Mpc-1 [1 parsec (pc) = 3.09 x 10(16) m]. It is difficult to reconcile this value with the preferred world model even in the low-density case. The standard model with Omega = 1 may be excluded unless there is something totally misunderstood about the foundation of the distance scale or the ages of stars. PMID:11607391

  5. When constants are important

    SciTech Connect

    Beiu, V.

    1997-04-01

    In this paper the authors discuss several complexity aspects pertaining to neural networks, commonly known as the curse of dimensionality. The focus will be on: (1) size complexity and depth-size tradeoffs; (2) complexity of learning; and (3) precision and limited interconnectivity. Results have been obtained for each of these problems when dealt with separately, but few things are known as to the links among them. They start by presenting known results and try to establish connections between them. These show that they are facing very difficult problems--exponential growth in either space (i.e. precision and size) and/or time (i.e., learning and depth)--when resorting to neural networks for solving general problems. The paper will present a solution for lowering some constants, by playing on the depth-size tradeoff.

  6. The Hubble constant.

    PubMed Central

    Tully, R B

    1993-01-01

    Five methods of estimating distances have demonstrated internal reproducibility at the level of 5-20% rms accuracy. The best of these are the cepheid (and RR Lyrae), planetary nebulae, and surface-brightness fluctuation techniques. Luminosity-line width and Dn-sigma methods are less accurate for an individual case but can be applied to large numbers of galaxies. The agreement is excellent between these five procedures. It is determined that Hubble constant H0 = 90 +/- 10 km.s-1.Mpc-1 [1 parsec (pc) = 3.09 x 10(16) m]. It is difficult to reconcile this value with the preferred world model even in the low-density case. The standard model with Omega = 1 may be excluded unless there is something totally misunderstood about the foundation of the distance scale or the ages of stars. PMID:11607391

  7. Unitaxial constant velocity microactuator

    DOEpatents

    McIntyre, Timothy J.

    1994-01-01

    A uniaxial drive system or microactuator capable of operating in an ultra-high vacuum environment. The mechanism includes a flexible coupling having a bore therethrough, and two clamp/pusher assemblies mounted in axial ends of the coupling. The clamp/pusher assemblies are energized by voltage-operated piezoelectrics therewithin to operatively engage the shaft and coupling causing the shaft to move along its rotational axis through the bore. The microactuator is capable of repeatably positioning to sub-manometer accuracy while affording a scan range in excess of 5 centimeters. Moreover, the microactuator generates smooth, constant velocity motion profiles while producing a drive thrust of greater than 10 pounds. The system is remotely controlled and piezoelectrically driven, hence minimal thermal loading, vibrational excitation, or outgassing is introduced to the operating environment.

  8. Unitaxial constant velocity microactuator

    DOEpatents

    McIntyre, T.J.

    1994-06-07

    A uniaxial drive system or microactuator capable of operating in an ultra-high vacuum environment is disclosed. The mechanism includes a flexible coupling having a bore therethrough, and two clamp/pusher assemblies mounted in axial ends of the coupling. The clamp/pusher assemblies are energized by voltage-operated piezoelectrics therewithin to operatively engage the shaft and coupling causing the shaft to move along its rotational axis through the bore. The microactuator is capable of repeatably positioning to sub-nanometer accuracy while affording a scan range in excess of 5 centimeters. Moreover, the microactuator generates smooth, constant velocity motion profiles while producing a drive thrust of greater than 10 pounds. The system is remotely controlled and piezoelectrically driven, hence minimal thermal loading, vibrational excitation, or outgassing is introduced to the operating environment. 10 figs.

  9. FAR-INFRARED AND MOLECULAR CO EMISSION FROM THE HOST GALAXIES OF FAINT QUASARS AT z {approx} 6

    SciTech Connect

    Wang Ran; Wagg, Jeff; Carilli, Chris L.; Neri, Roberto; Walter, Fabian; Omont, Alain; Riechers, Dominik A.; Bertoldi, Frank; Menten, Karl M.; Cox, Pierre; Strauss, Michael A.; Fan Xiaohui; Jiang Linhua

    2011-10-15

    We present new millimeter and radio observations of nine z {approx} 6 quasars discovered in deep optical and near-infrared surveys. We observed the 250 GHz continuum in eight of the nine objects and detected three of them. New 1.4 GHz radio continuum data have been obtained for four sources, and one has been detected. We searched for molecular CO (6-5) line emission in the three 250 GHz detections and detected two of them. Combined with previous millimeter and radio observations, we study the far-infrared (FIR) and radio emission and quasar-host galaxy evolution with a sample of 18 z {approx} 6 quasars that are faint at UV and optical wavelengths (rest-frame 1450 A magnitudes of m{sub 1450} {>=} 20.2). The average FIR-to-active galactic nucleus (AGN) UV luminosity ratio of this faint quasar sample is about two times higher than that of the bright quasars at z {approx} 6 (m{sub 1450} < 20.2). A fit to the average FIR and AGN bolometric luminosities of both the UV/optically faint and bright z {approx} 6 quasars, and the average luminosities of samples of submillimeter/millimeter-observed quasars at z {approx} 2-5, yields a relationship of L{sub FIR} {approx} L{sub bol}{sup 0.62}. Five of the 18 faint z {approx} 6 quasars have been detected at 250 GHz. These 250 GHz detections, as well as most of the millimeter-detected optically bright z {approx} 6 quasars, follow a shallower trend of L{sub FIR} {approx} L{sub bol}{sup 0.45} defined by the starburst-AGN systems in local and high-z universe. The millimeter continuum detections in the five objects and molecular CO detections in three of them reveal a few x 10{sup 8} M{sub sun} of FIR-emitting warm dust and 10{sup 10} M{sub sun} of molecular gas in the quasar host galaxies. All these results argue for massive star formation in the quasar host galaxies, with estimated star formation rates of a few hundred M{sub sun} yr{sup -1}. Additionally, the higher FIR-to-AGN luminosity ratio found in these 250 GHz detected faint

  10. Nonlinear dispersive Alfven waves in dusty plasma in the transition limit, {alpha}{approx}1

    SciTech Connect

    Sah, O. P.

    2011-10-15

    Localized nonlinear structures associated with dispersive Alfven waves are investigated in dusty plasma in the transition limit, i.e., {alpha}{identical_to}({beta}/2Q){approx}1, where {beta} is the ratio of thermal to magnetic pressure and Q is electron to ion mass ratio. Sagdeev pseudopotential is obtained from the basic governing equations, which is then numerically solved to study the existence and the behaviors of the nonlinear structures. It is found that both compressive and rarefactive solitons can coexist above and below certain critical {alpha}- values determined by the wave direction cosine (K{sub Z}) and the Mach number (M); and the compressive (rarefactive) solitons are much wider than the rarefactive ones for the case MK{sub Z}). In addition, the rarefactive solitons are found to be converted into rarefactive double layers, for the case M>K{sub Z}, if the dust grains are negatively charged and their density exceeds certain critical value.

  11. A POPULATION OF DUST-RICH QUASARS AT z {approx} 1.5

    SciTech Connect

    Dai, Y. Sophia; Elvis, Martin; Huang Jiasheng; Fazio, Giovanni; Trichas, Markos; Bergeron, Jacqueline; Omont, Alain; Bock, Jamie; Vieira, Joaquin D.; Cooray, Asantha; Hatziminaoglou, Evanthia; Ibar, Edo; Magdis, Georgios E.; Rigopoulou, Dimitra; Oliver, Seb J.; Page, Mathew J.; Symeonidis, Myrto; Perez-Fournon, Ismael; Roseboom, Isaac G.; Scott, Douglas; and others

    2012-07-01

    We report Herschel SPIRE (250, 350, and 500 {mu}m) detections of 32 quasars with redshifts 0.5 {<=}z < 3.6 from the Herschel Multi-tiered Extragalactic Survey (HerMES). These sources are from a MIPS 24 {mu}m flux-limited sample of 326 quasars in the Lockman Hole Field. The extensive multi-wavelength data available in the field permit construction of the rest-frame spectral energy distributions (SEDs) from ultraviolet to the mid-infrared for all sources, and to the far-infrared (FIR) for the 32 objects. Most quasars with Herschel FIR detections show dust temperatures in the range of 25-60 K, with a mean of 34 K. The FIR luminosities range from 10{sup 11.3} to 10{sup 13.5} L{sub Sun }, qualifying most of their hosts as ultra- or hyper-luminous infrared galaxies. These FIR-detected quasars may represent a dust-rich population, but with lower redshifts and fainter luminosities than quasars observed at {approx}1 mm. However, their FIR properties cannot be predicted from shorter wavelengths (0.3-20 {mu}m, rest frame), and the bolometric luminosities derived using the 5100 A index may be underestimated for these FIR-detected quasars. Regardless of redshift, we observed a decline in the relative strength of FIR luminosities for quasars with higher near-infrared luminosities.

  12. BLACK-HOLE-BULGE RELATIONSHIP OF POST-STARBURST QUASARS AT z {approx} 0.3

    SciTech Connect

    Hiner, Kyle D.; Canalizo, Gabriela; Wold, Margrethe; Brotherton, Michael S.; Cales, Sabrina L. E-mail: gabriela.canalizo@ucr.edu E-mail: mbrother@uwyo.edu

    2012-09-10

    The M{sub BH}-{sigma}{sub *} relation has been studied extensively for local galaxies, but to date there have been scarce few direct measurements of stellar velocity dispersions for systems beyond the local universe. We investigate black hole and host galaxy properties of six 'post-starburst quasars' (PSQs) at z {approx} 0.3. Spectra of these objects simultaneously display features from the active nucleus including broad emission lines and a host galaxy Balmer absorption series indicative of the post-starburst stellar population. These are the first measurements of {sigma}{sub *} in such objects, and we significantly increase the number of directly measured non-local objects on the M{sub BH}-{sigma}{sub *} diagram. The 'PSQs' of our sample fall on or above the locally defined M{sub BH}-{sigma}{sub *} relation, a result that is consistent with previous M{sub BH}-{sigma}{sub *} studies of samples at z > 0.1. However, they are generally consistent with the M{sub BH}-L{sub bulge} relation. Furthermore, their location on the Faber-Jackson relation suggests that some of the bulges may be dynamically peculiar.

  13. CHEMICAL COMPOSITION OF FAINT (I approx 21 mag) MICROLENSED BULGE DWARF OGLE-2007-BLG-514S

    SciTech Connect

    Epstein, Courtney R.; Johnson, Jennifer A.; Dong, Subo; Gould, Andrew; Udalski, Andrzej; Becker, George E-mail: jaj@astronomy.ohio-state.ed E-mail: dong@ias.ed E-mail: gdb@ast.cam.ac.u

    2010-01-20

    We present a high-resolution spectrum of a microlensed G dwarf in the Galactic bulge with spectroscopic temperature T{sub eff} = 5600 +- 180 K. This I approx 21 mag star was magnified by a factor ranging from 1160 to 1300 at the time of observation. Its high metallicity ([Fe/H] = 0.33 +- 0.15 dex) places this star at the upper end of the bulge giant metallicity distribution. Using a Kolmogorov-Smirnov test, we find a 1.6% probability that the published microlensed bulge dwarfs share an underlying distribution with bulge giants, properly accounting for a radial bulge metallicity gradient. We obtain abundance measurements for 15 elements and perform a rigorous error analysis that includes covariances between parameters. This star, like bulge giants with the same metallicity, shows no alpha enhancement. It confirms the chemical abundance trends observed in previously analyzed bulge dwarfs. At supersolar metallicities, we observe a discrepancy between bulge giant and bulge dwarf Na abundances.

  14. Exclusive charm production in pp collisions at {radical}(s) < or approx. 15 GeV

    SciTech Connect

    Titov, A. I.; Kaempfer, B.

    2008-08-15

    We discuss the open charm production in the peripheral reactions pp{yields}Y{sub c}Y{sub c} and pp{yields}M{sub c}M{sub c}, where Y{sub c} and M{sub c} stand for {lambda}{sub c}{sup +},{sigma}{sub c}{sup +} and D,D*, respectively, at {radical}(s) < or approx. 15 GeV, which corresponds to the energy range of FAIR. Our consideration is based on the topological decomposition of the planar quark and diquark diagrams, which allows us to estimate consistently meson and baryon exchange trajectories and energy scale parameters as well. The spin dependance is determined by the effective interaction of the lowest exchanged resonance. Unknown parameters are fixed by an independent analysis of open strangeness production in pp{yields}YY and pp{yields}KK reactions and of SU(4) symmetry. We present the corresponding cross sections and longitudinal double-spin asymmetries for exclusive binary reactions with open charm mesons and baryons in the final state. The polarization observables have a nontrivial t and s dependence that is sensitive to details of the open charm production mechanism.

  15. Classification of Superdeformed Bands in the Mass A{approx}60 Region

    SciTech Connect

    Andersson, L.-L.; Rudolph, D.; Fahlander, C.; Johansson, E. K.; Carlsson, B. G.; Ragnarsson, I.; Torres, D. A.

    2008-11-11

    The experimental knowledge of the {sub 29}{sup 61}Cu{sub 32} and {sub 30}{sup 61}Zn{sub 31} nuclei has been largely extended via the joint results from three experiments. The fusion-evaporation reaction used a {sup 36}Ar beam and a {sup 28}Si target foil to produce the two nuclei via the evaporation of either three protons ({sup 61}Cu) or two protons and a neutron ({sup 61}Zn). The experimental set-ups comprised the Ge-array GAMMASPHERE as well as neutron and charged-particle detectors placed around the target position.The resulting level schemes include around ten rotational superdeformed structures in each isotope. Most of them are linked to normally deformed states and in many cases spins and parities of the low-lying states in each structure have been determined.The collective structures are compared with results from configuration dependent Cranked Nilsson-Strutinsky calculations. The different structures are in general well understood from the calculation but the results do also suggest modifications of the standard Nilsson parameters in the mass A{approx}60 region.

  16. SATELLITES AROUND MASSIVE GALAXIES SINCE z {approx} 2: CONFRONTING THE MILLENNIUM SIMULATION WITH OBSERVATIONS

    SciTech Connect

    Quilis, Vicent; Trujillo, Ignacio

    2012-06-20

    Minor merging has been postulated as the most likely evolutionary path to produce the increase in size and mass observed in the massive galaxies since z {approx} 2. In this Letter, we directly test this hypothesis, comparing the population of satellites around massive galaxies in cosmological simulations versus the observations. We use state-of-the-art, publically available, Millennium I and II simulations, and the associated semi-analytical galaxy catalogs to explore the time evolution of the fraction of massive galaxies that have satellites, the number of satellites per galaxy, the projected distance at which the satellites locate from the host galaxy, and the mass ratio between the host galaxies and their satellites. The three virtual galaxy catalogs considered here overproduce the fraction of galaxies with satellites by a factor ranging between 1.5 and 6 depending on the epoch, whereas the mean projected distance and ratio of the satellite mass over host mass are in closer agreement with data. The larger pull of satellites in the semi-analytical samples could suggest that the size evolution found in previous hydrodynamical simulations is an artifact due to the larger number of infalling satellites compared to the real universe. These results advise us to revise the physical ingredients implemented in the semi-analytical models in order to reconcile the observed and computed fraction of galaxies with satellites, and eventually, it would leave some room for other mechanisms explaining the galaxy size growth not related to the minor merging.

  17. Effective cosmological constant from TeV-scale physics

    SciTech Connect

    Klinkhamer, F. R.

    2010-10-15

    It has been suggested previously that the observed cosmological constant {Lambda} corresponds to the remnant vacuum energy density of dynamical processes taking place at a cosmic age set by the mass scale M{approx}E{sub ew} of ultramassive particles with electroweak interactions. Here, a simple modification of the nondissipative dynamic equations of q-theory is presented, which produces a remnant vacuum energy density (effective cosmological constant) of the correct order of magnitude. Combined with the observed value of {Lambda}, a first estimate of the required value of the energy scale E{sub ew} ranges from 3 to 9 TeV, depending on the number of species of ultramassive particles and assuming a dissipative coupling constant of order unity. If correct, this estimate implies the existence of new TeV-scale physics beyond the standard model.

  18. Infrared optical constants of crystalline sodium chloride dihydrate: application to study the crystallization of aqueous sodium chloride solution droplets at low temperatures.

    PubMed

    Wagner, Robert; Möhler, Ottmar; Schnaiter, Martin

    2012-08-23

    Complex refractive indices of sodium chloride dihydrate, NaCl·2H(2)O, have been retrieved in the 6000-800 cm(-1) wavenumber regime from the infrared extinction spectra of crystallized aqueous NaCl solution droplets. The data set is valid in the temperature range from 235 to 216 K and was inferred from crystallization experiments with airborne particles performed in the large coolable aerosol and cloud chamber AIDA at the Karlsruhe Institute of Technology. The retrieval concept was based on the Kramers-Kronig relationship for a complex function of the optical constants n and k whose imaginary part is proportional to the optical depth of a small particle absorption spectrum in the Rayleigh approximation. The appropriate proportionality factor was inferred from a fitting algorithm applied to the extinction spectra of about 1 μm sized particles, which, apart from absorption, also featured a pronounced scattering contribution. NaCl·2H(2)O is the thermodynamically stable crystalline solid in the sodium chloride-water system below the peritectic at 273.3 K; above 273.3 K, the anhydrous NaCl is more stable. In contrast to anhydrous NaCl crystals, the dihydrate particles reveal prominent absorption signatures at mid-infrared wavelengths due to the hydration water molecules. Formation of NaCl·2H(2)O was only detected at temperatures clearly below the peritectic and was first evidenced in a crystallization experiment conducted at 235 K. We have employed the retrieved refractive indices of NaCl·2H(2)O to quantify the temperature dependent partitioning between anhydrous and dihydrate NaCl particles upon crystallization of aqueous NaCl solution droplets. It was found that the temperature range from 235 to 216 K represents the transition regime where the composition of the crystallized particle ensemble changes from almost only NaCl to almost only NaCl·2H(2)O particles. Compared to the findings on the NaCl/NaCl·2H(2)O partitioning from a recent study conducted with micron

  19. Infrared optical constants of crystalline sodium chloride dihydrate: application to study the crystallization of aqueous sodium chloride solution droplets at low temperatures.

    PubMed

    Wagner, Robert; Möhler, Ottmar; Schnaiter, Martin

    2012-08-23

    Complex refractive indices of sodium chloride dihydrate, NaCl·2H(2)O, have been retrieved in the 6000-800 cm(-1) wavenumber regime from the infrared extinction spectra of crystallized aqueous NaCl solution droplets. The data set is valid in the temperature range from 235 to 216 K and was inferred from crystallization experiments with airborne particles performed in the large coolable aerosol and cloud chamber AIDA at the Karlsruhe Institute of Technology. The retrieval concept was based on the Kramers-Kronig relationship for a complex function of the optical constants n and k whose imaginary part is proportional to the optical depth of a small particle absorption spectrum in the Rayleigh approximation. The appropriate proportionality factor was inferred from a fitting algorithm applied to the extinction spectra of about 1 μm sized particles, which, apart from absorption, also featured a pronounced scattering contribution. NaCl·2H(2)O is the thermodynamically stable crystalline solid in the sodium chloride-water system below the peritectic at 273.3 K; above 273.3 K, the anhydrous NaCl is more stable. In contrast to anhydrous NaCl crystals, the dihydrate particles reveal prominent absorption signatures at mid-infrared wavelengths due to the hydration water molecules. Formation of NaCl·2H(2)O was only detected at temperatures clearly below the peritectic and was first evidenced in a crystallization experiment conducted at 235 K. We have employed the retrieved refractive indices of NaCl·2H(2)O to quantify the temperature dependent partitioning between anhydrous and dihydrate NaCl particles upon crystallization of aqueous NaCl solution droplets. It was found that the temperature range from 235 to 216 K represents the transition regime where the composition of the crystallized particle ensemble changes from almost only NaCl to almost only NaCl·2H(2)O particles. Compared to the findings on the NaCl/NaCl·2H(2)O partitioning from a recent study conducted with micron

  20. QSAR model reproducibility and applicability: a case study of rate constants of hydroxyl radical reaction models applied to polybrominated diphenyl ethers and (benzo-)triazoles.

    PubMed

    Roy, Partha Pratim; Kovarich, Simona; Gramatica, Paola

    2011-08-01

    The crucial importance of the three central OECD principles for quantitative structure-activity relationship (QSAR) model validation is highlighted in a case study of tropospheric degradation of volatile organic compounds (VOCs) by OH, applied to two CADASTER chemical classes (PBDEs and (benzo-)triazoles). The application of any QSAR model to chemicals without experimental data largely depends on model reproducibility by the user. The reproducibility of an unambiguous algorithm (OECD Principle 2) is guaranteed by redeveloping MLR models based on both updated version of DRAGON software for molecular descriptors calculation and some freely available online descriptors. The Genetic Algorithm has confirmed its ability to always select the most informative descriptors independently on the input pool of variables. The ability of the GA-selected descriptors to model chemicals not used in model development is verified by three different splittings (random by response, K-ANN and K-means clustering), thus ensuring the external predictivity of the new models, independently of the training/prediction set composition (OECD Principle 5). The relevance of checking the structural applicability domain becomes very evident on comparing the predictions for CADASTER chemicals, using the new models proposed herein, with those obtained by EPI Suite.

  1. DEEP LBT/LUCI SPECTROSCOPY OF AN Ly{alpha} EMITTER CANDIDATE AT z {approx_equal} 7.7

    SciTech Connect

    Jiang Linhua; Bian Fuyan; Fan Xiaohui; McGreer, Ian D.; Stark, Daniel P.; Clement, Benjamin; Egami, Eiichi; Krug, Hannah B.

    2013-07-01

    We present deep spectroscopic observations of an Ly{alpha} emitter (LAE) candidate at z {approx_equal} 7.7 using the infrared spectrograph LUCI on the 2 Multiplication-Sign 8.4 m Large Binocular Telescope (LBT). The candidate is the brightest among the four z {approx_equal} 7.7 LAE candidates found in a narrowband imaging survey by Krug et al. Our spectroscopic data include a total of 7.5 hr of integration with LBT/LUCI and are deep enough to significantly (3.2{sigma}-4.9{sigma}) detect the Ly{alpha} emission line of this candidate based on its Ly{alpha} flux 1.2 Multiplication-Sign 10{sup -17} erg s{sup -1} cm{sup -2} estimated from the narrowband photometry. However, we do not find any convincing signal at the expected position of its Ly{alpha} emission line, suggesting that this source is not an LAE at z {approx_equal} 7.7. The non-detection in this work, together with the previous studies of z {approx_equal} 7.7 LAEs, puts a strong constraint on the bright-end Ly{alpha} luminosity function (LF) at z {approx_equal} 7.7. We find a rapid evolution of the Ly{alpha} LF from z {approx_equal} 6.5 to 7.7: the upper limit of the z {approx_equal} 7.7 LF is more than five times lower than the z {approx_equal} 6.5 LF at the bright end (f{>=} 1.0 Multiplication-Sign 10{sup -17} erg s{sup -1} cm{sup -2} or L{>=} 6.9 Multiplication-Sign 10{sup 42} erg s{sup -1}). This is likely caused by an increasing neutral fraction in the intergalactic medium that substantially attenuates Ly{alpha} emission at z {approx_equal} 7.7.

  2. THE FIRST Hi-GAL OBSERVATIONS OF THE OUTER GALAXY: A LOOK AT STAR FORMATION IN THE THIRD GALACTIC QUADRANT IN THE LONGITUDE RANGE 216. Degree-Sign 5 {approx}< l {approx}< 225. Degree-Sign 5

    SciTech Connect

    Elia, D.; Molinari, S.; Schisano, E.; Pestalozzi, M.; Benedettini, M.; Di Giorgio, A. M.; Pezzuto, S.; Rygl, K. L. J.; Fukui, Y.; Hayakawa, T.; Yamamoto, H.; Olmi, L.; Veneziani, M.; Schneider, N.; Piazzo, L.; Mizuno, A.; Onishi, T.; Polychroni, D.; Maruccia, Y.

    2013-07-20

    We present the first Herschel PACS and SPIRE photometric observations in a portion of the outer Galaxy (216. Degree-Sign 5 {approx}< l {approx}< 225. Degree-Sign 5 and -2 Degree-Sign {approx}< b {approx}< 0 Degree-Sign ) as a part of the Hi-GAL survey. The maps between 70 and 500 {mu}m, the derived column density and temperature maps, and the compact source catalog are presented. NANTEN CO(1-0) line observations are used to derive cloud kinematics and distances so that we can estimate distance-dependent physical parameters of the compact sources (cores and clumps) having a reliable spectral energy distribution that we separate into 255 proto-stellar and 688 starless sources. Both typologies are found in association with all the distance components observed in the field, up to {approx}5.8 kpc, testifying to the presence of star formation beyond the Perseus arm at these longitudes. Selecting the starless gravitationally bound sources, we identify 590 pre-stellar candidates. Several sources of both proto- and pre-stellar nature are found to exceed the minimum requirement for being compatible with massive star formation based on the mass-radius relation. For the pre-stellar sources belonging to the Local arm (d {approx}< 1.5 kpc) we study the mass function whose high-mass end shows a power law N(log M){proportional_to}M {sup -1.0{+-}0.2}. Finally, we use a luminosity versus mass diagram to infer the evolutionary status of the sources, finding that most of the proto-stellar sources are in the early accretion phase (with some cases compatible with a Class I stage), while for pre-stellar sources, in general, accretion has not yet started.

  3. Proposed production of a large (approx. 40. mu. g) sample of /sup 254/Es

    SciTech Connect

    Bigelow, J.E.; Alexander, C.W.; King, L.J.

    1985-01-01

    A recent workshop sponsored by the National Research Council has made it clear that the key to further substantial progress in heavy element research is the expanded use of 276-day /sup 254/Es as target material. Einsteinium-254 has the greatest mass and charge of any nuclide that can be produced in the required multimicrogram quantities in the foreseeable future. Four major laboratories (Lawrence Berkeley Laboratory, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, and Oak Ridge National Laboratory (ORNL)) active in transplutonium research have collaborated to propose a major new thrust in transplutonium research that will require an order of magnitude more /sup 254/Es than is normally available. This project, called LEAP (an acronym for Large Einsteinium Activation Program) has goals of determining the inorganic chemistry and nuclear chemistry and physics of the transeinsteinium elements through atomic number 109, plus a search for superheavy elements. LEAP is based on using approx.40-..mu..g of /sup 254/Es as a target for heavy-ion accelerators. The Tranuranium Processing Plant (TRU) of the Chemical Technology Division of ORNL has been given the task of determining the feasibility of producing a 40 ..mu..g sample of /sup 254/Es and, if later requested, of actually producing the sample. This task, which has been under way for several years, is directed toward three areas of investigation: (1) experimental determination of the neutron cross sections of certain transplutonium isotopes important to the production of /sup 254/Es; (2) selection of a /sup 254/Es production scheme; and (3) development of the necessary hardware, followed by an actual test irradiation. 12 refs., 9 figs., 2 tabs.

  4. EVIDENCE FOR WIDESPREAD ACTIVE GALACTIC NUCLEUS ACTIVITY AMONG MASSIVE QUIESCENT GALAXIES AT z {approx} 2

    SciTech Connect

    Olsen, Karen P.; Rasmussen, Jesper; Toft, Sune; Zirm, Andrew W.

    2013-02-10

    We quantify the presence of active galactic nuclei (AGNs) in a mass-complete (M {sub *} > 5 Multiplication-Sign 10{sup 10} M {sub Sun }) sample of 123 star-forming and quiescent galaxies at 1.5 {<=} z {<=} 2.5, using X-ray data from the 4 Ms Chandra Deep Field-South (CDF-S) survey. 41% {+-} 7% of the galaxies are detected directly in X-rays, 22% {+-} 5% with rest-frame 0.5-8 keV luminosities consistent with hosting luminous AGNs (L {sub 0.5-8keV} > 3 Multiplication-Sign 10{sup 42} erg s{sup -1}). The latter fraction is similar for star-forming and quiescent galaxies, and does not depend on galaxy stellar mass, suggesting that perhaps luminous AGNs are triggered by external effects such as mergers. We detect significant mean X-ray signals in stacked images for both the individually non-detected star-forming and quiescent galaxies, with spectra consistent with star formation only and/or a low-luminosity AGN in both cases. Comparing star formation rates inferred from the 2-10 keV luminosities to those from rest-frame IR+UV emission, we find evidence for an X-ray excess indicative of low-luminosity AGNs. Among the quiescent galaxies, the excess suggests that as many as 70%-100% of these contain low- or high-luminosity AGNs, while the corresponding fraction is lower among star-forming galaxies (43%-65%). Our discovery of the ubiquity of AGNs in massive, quiescent z {approx} 2 galaxies provides observational support for the importance of AGNs in impeding star formation during galaxy evolution.

  5. HUBBLE SPACE TELESCOPE MORPHOLOGIES OF z {approx} 2 DUST-OBSCURED GALAXIES. II. BUMP SOURCES

    SciTech Connect

    Bussmann, R. S.; Dey, Arjun; Lotz, J.; Jannuzi, B. T.; Armus, L.; Desai, V.; Soifer, B. T.; Brown, M. J. I.; Eisenhardt, P.; Higdon, J.; Higdon, S.; Le Floc'h, E.; Melbourne, J.; Weedman, D.

    2011-05-20

    We present Hubble Space Telescope imaging of 22 ultra-luminous infrared galaxies (ULIRGs) at z {approx} 2 with extremely red R - [24] colors (called dust-obscured galaxies, or DOGs) which have a local maximum in their spectral energy distribution (SED) at rest-frame 1.6 {mu}m associated with stellar emission. These sources, which we call 'bump DOGs', have star formation rates (SFRs) of 400-4000 M{sub sun} yr{sup -1} and have redshifts derived from mid-IR spectra which show strong polycyclic aromatic hydrocarbon emission-a sign of vigorous ongoing star formation. Using a uniform morphological analysis, we look for quantifiable differences between bump DOGs, power-law DOGs (Spitzer-selected ULIRGs with mid-IR SEDs dominated by a power law and spectral features that are more typical of obscured active galactic nuclei than starbursts), submillimeter-selected galaxies, and other less-reddened ULIRGs from the Spitzer Extragalactic First Look Survey. Bump DOGs are larger than power-law DOGs (median Petrosian radius of 8.4 {+-} 2.7 kpc versus 5.5 {+-} 2.3 kpc) and exhibit more diffuse and irregular morphologies (median M{sub 20} of -1.08 {+-} 0.05 versus -1.48 {+-} 0.05). These trends are qualitatively consistent with expectations from simulations of major mergers in which merging systems during the peak SFR period evolve from M{sub 20} = -1.0 to M{sub 20} = -1.7. Less-obscured ULIRGs (i.e., non-DOGs) tend to have more regular, centrally peaked, single-object morphologies rather than diffuse and irregular morphologies. This distinction in morphologies may imply that less-obscured ULIRGs sample the merger near the end of the peak SFR period. Alternatively, it may indicate that the intense star formation in these less-obscured ULIRGs is not the result of a recent major merger.

  6. Quantitative analysis of electrophoresis data: novel curve fitting methodology and its application to the determination of a protein-DNA binding constant.

    PubMed

    Shadle, S E; Allen, D F; Guo, H; Pogozelski, W K; Bashkin, J S; Tullius, T D

    1997-02-15

    A computer program, GelExplorer, which uses a new methodology for obtaining quantitative information about electrophoresis has been developed. It provides a straightforward, easy-to-use graphical interface, and includes a number of features which offer significant advantages over existing methods for quantitative gel analysis. The method uses curve fitting with a nonlinear least-squares optimization to deconvolute overlapping bands. Unlike most curve fitting approaches, the data is treated in two dimensions, fitting all the data across the entire width of the lane. This allows for accurate determination of the intensities of individual, overlapping bands, and in particular allows imperfectly shaped bands to be accurately modeled. Experiments described in this paper demonstrate empirically that the Lorentzian lineshape reproduces the contours of an individual gel band and provides a better model than the Gaussian function for curve fitting of electrophoresis bands. Results from several fitting applications are presented and a discussion of the sources and magnitudes of uncertainties in the results is included. Finally, the method is applied to the quantitative analysis of a hydroxyl radical footprint titration experiment to obtain the free energy of binding of the lambda repressor protein to the OR1 operator DNA sequence.

  7. An investigation on linear and non-linear optical constants of nano-spherical CuPc thin films for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Yahia, I. S.; Ganesh, V.; Shkir, M.; AlFaify, S.; Zahran, H. Y.; Algarni, H.; Abutalib, M. M.; Al-Ghamdi, Attieh A.; El-Naggar, A. M.; AlBassam, A. M.

    2016-09-01

    In the current work, the authors present the systematic study on linear and nonlinear optical properties of Copper-phathalocyanine thin film deposited by thermal evaporation system for the first time. The thickness of the prepared thin film was measured and found to be ~300 nm. X-ray diffraction and AFM study confirms that the prepared thin film possess good quality. The orientation of the grown thin film is found to be along (100). UV-vis-NIR study shows that the deposited thin film is highly transparent (>80%) in the wavelength range of 700-2500 nm. Further, the recorded optical data was used to determine the various linear and nonlinear optical parameters. The calculated value of refractive index is found to be in the range of 0.4-1.0. The direct and indirect band gap value is found to be 2.9 and 3.25 eV, respectively. The value of linear and nonlinear susceptibilities is found to be in order of 10-12. The higher value of linear and nonlinear parameters makes it suitable for optoelectronic applications.

  8. Beyond the Hubble Constant

    NASA Astrophysics Data System (ADS)

    1995-08-01

    about the distances to galaxies and thereby about the expansion rate of the Universe. A simple way to determine the distance to a remote galaxy is by measuring its redshift, calculate its velocity from the redshift and divide this by the Hubble constant, H0. For instance, the measured redshift of the parent galaxy of SN 1995K (0.478) yields a velocity of 116,000 km/sec, somewhat more than one-third of the speed of light (300,000 km/sec). From the universal expansion rate, described by the Hubble constant (H0 = 20 km/sec per million lightyears as found by some studies), this velocity would indicate a distance to the supernova and its parent galaxy of about 5,800 million lightyears. The explosion of the supernova would thus have taken place 5,800 million years ago, i.e. about 1,000 million years before the solar system was formed. However, such a simple calculation works only for relatively ``nearby'' objects, perhaps out to some hundred million lightyears. When we look much further into space, we also look far back in time and it is not excluded that the universal expansion rate, i.e. the Hubble constant, may have been different at earlier epochs. This means that unless we know the change of the Hubble constant with time, we cannot determine reliable distances of distant galaxies from their measured redshifts and velocities. At the same time, knowledge about such change or lack of the same will provide unique information about the time elapsed since the Universe began to expand (the ``Big Bang''), that is, the age of the Universe and also its ultimate fate. The Deceleration Parameter q0 Cosmologists are therefore eager to determine not only the current expansion rate (i.e., the Hubble constant, H0) but also its possible change with time (known as the deceleration parameter, q0). Although a highly accurate value of H0 has still not become available, increasing attention is now given to the observational determination of the second parameter, cf. also the Appendix at the

  9. Radium, Thorium and Radioactive Lead Isotopes in Groundwaters: Application to the in Situ Determination of Adsorption-Desorption Rate Constants and Retardation Factors

    NASA Astrophysics Data System (ADS)

    Krishnaswami, S.; Graustein, William C.; Turekian, Karl K.; Dowd, John F.

    1982-12-01

    Five groundwater samples taken from different Hydrogeologie settings in Connecticut were analyzed for major cation chemistry and the concentration of U and Th decay series nuclides 238U, 234Th, 226Ra, 222Rn, 210Pb, 210Po, 232Th, 228Ra, 228Th, and 224Ra. The concentration of 222Rn in the waters ranged between 103 and 104 dpm l-1 and was three to four orders of magnitude greater than that of the short-lived alpha daughters 224Ra, 228Ra, and 234Th, even though the rates of supply of these four nuclides to solution are expected to be similar. We infer that sorption removes radium and thorium from these groundwaters on a time scale of 3 minutes or less. The (224Ra/228Ra) and (234Th/228Th) activity ratios in these waters indicate that desorption of these nuclides occurs on a time scale of a week or less and that equilibrium between solution and surface phases is established. In situ retardation factors for radium, thorium, and lead may therefore be calculated directly from the isotopic data; values range from 4,500 to 200,000. Neither sorption time scales nor retardation factors are strongly dependent on the nuclide or on hydrogeology of the aquifer. Since our study includes nuclides with diverse chemical properties, we suggest that other uncomplexed heavy metals and transuranic elements will also behave in a manner similar to those measured here. The approach presented here should therefore find application in developing site-specific models of the transport of radioactive or stable elemental waste through water-saturated media.

  10. SDWFS-MT-1: A SELF-OBSCURED LUMINOUS SUPERNOVA AT z {approx_equal} 0.2

    SciTech Connect

    Kozlowski, Szymon; Kochanek, C. S.; Stanek, K. Z.; Thompson, T. A.; Assef, R. J.; Szczygiel, D. M.; Stern, D.; Griffith, R.; Prieto, J. L.; Drake, A. J.; Harrison, F.; Madsen, K.; Wozniak, P. R.; Nugent, P.; Ashby, M. L. N.; Beshore, E.; Larson, S.; Brown, M. J. I.; Dey, Arjun; Jannuzi, B. T.

    2010-10-20

    We report the discovery of a 6 month long mid-infrared transient, SDWFS-MT-1 (aka SN 2007va), in the Spitzer Deep, Wide-Field Survey of the NOAO Deep Wide-Field Survey Booetes field. The transient, located in a z = 0.19 low-luminosity (M{sub [4.5]} {approx_equal} -18.6 mag, L/L{sub *} {approx_equal} 0.01) metal-poor (12 + log(O/H) {approx_equal} 7.8) irregular galaxy, peaked at a mid-infrared absolute magnitude of M{sub [4.5]} {approx_equal} -24.2 in the 4.5 {mu}m Spitzer/IRAC band and emitted a total energy of at least 10{sup 51} erg. The optical emission was likely fainter than the mid-infrared, although our constraints on the optical emission are poor because the transient peaked when the source was 'behind' the Sun. The Spitzer data are consistent with emission by a modified blackbody with a temperature of {approx}1350 K. We rule out a number of scenarios for the origin of the transient such as a Galactic star, active galactic nucleus activity, {gamma}-ray burst, tidal disruption of a star by a black hole, and gravitational lensing. The most plausible scenario is a supernova (SN) exploding inside a massive, optically thick circumstellar medium, composed of multiple shells of previously ejected material. If the proposed scenario is correct, then a significant fraction ({approx}10%) of the most luminous SN may be self-enshrouded by dust not only before but also after the SN occurs. The spectral energy distribution of the progenitor of such an SN would be a slightly cooler version of {eta} Carinae peaking at 20-30 {mu}m.

  11. SPITZER EVIDENCE FOR A LATE-HEAVY BOMBARDMENT AND THE FORMATION OF UREILITES IN {eta} CORVI At {approx}1 Gyr

    SciTech Connect

    Lisse, C. M.; Wyatt, M. C.; Chen, C. H.; Morlok, A.; Watson, D. M.; Manoj, P.; Sheehan, P.; Currie, T. M.; Thebault, P.; Sitko, M. L. E-mail: wyatt@ast.cam.ac.uk E-mail: a.morlok@open.ac.uk E-mail: manoj@pas.rochester.edu E-mail: thayne.m.currie@nasa.gov E-mail: sitko@spacescience.org

    2012-03-10

    We have analyzed Spitzer and NASA/IRTF 2-35 {mu}m spectra of the warm, {approx}350 K circumstellar dust around the nearby MS star {eta} Corvi (F2V, 1.4 {+-} 0.3 Gyr). The spectra show clear evidence for warm, water- and carbon-rich dust at {approx}3 AU from the central star, in the system's terrestrial habitability zone. Spectral features due to ultra-primitive cometary material were found, in addition to features due to impact produced silica and high-temperature carbonaceous phases. At least 9 Multiplication-Sign 10{sup 18} kg of 0.1-100 {mu}m warm dust is present in a collisional equilibrium distribution with dn/da {approx} a{sup -3.5}, the equivalent of a 130 km radius Kuiper Belt object (KBO) of 1.0 g cm{sup 3} density and similar to recent estimates of the mass delivered to the Earth at 0.6-0.8 Gyr during the late-heavy bombardment. We conclude that the parent body was a Kuiper Belt body or bodies which captured a large amount of early primitive material in the first megayears of the system's lifetime and preserved it in deep freeze at {approx}150 AU. At {approx}1.4 Gyr they were prompted by dynamical stirring of their parent Kuiper Belt into spiraling into the inner system, eventually colliding at 5-10 km s{sup -1} with a rocky planetary body of mass {<=}M{sub Earth} at {approx}3 AU, delivering large amounts of water (>0.1% of M{sub Earth'sOceans}) and carbon-rich material. The Spitzer spectrum also closely matches spectra reported for the Ureilite meteorites of the Sudan Almahata Sitta fall in 2008, suggesting that one of the Ureilite parent bodies was a KBO.

  12. SPECTROSCOPIC CONFIRMATION OF z {approx} 7 LYMAN BREAK GALAXIES: PROBING THE EARLIEST GALAXIES AND THE EPOCH OF REIONIZATION

    SciTech Connect

    Pentericci, L.; Fontana, A.; Castellano, M.; Grazian, A.; Boutsia, K.; Giallongo, E.; Maiolino, R.; Paris, D.; Santini, P.; Vanzella, E.; Cristiani, S.; Dijkstra, M.; Dickinson, M.; Giavalisco, M.; Moorwood, A.

    2011-12-20

    We present the final results from our ultra-deep spectroscopic campaign with FORS2 at the ESO Very Large Telescope (VLT) for the confirmation of z {approx_equal} 7 'z-band dropout' candidates selected from our VLT/Hawk-I imaging survey over three independent fields. In particular, we report on two newly discovered galaxies at redshift {approx}6.7 in the New Technology Telescope Deep Field. Both galaxies show an Ly{alpha} emission line with rest-frame equivalent widths (EWs) of the order of 15-20 A and luminosities of (2-4) Multiplication-Sign 10{sup 42} erg s{sup -1}. We also present the results of ultra-deep observations of a sample of i-dropout galaxies, from which we set a solid upper limit on the fraction of interlopers. Out of the 20 z-dropouts observed we confirm 5 galaxies at 6.6 < z < 7.1. This is systematically below the expectations drawn on the basis of lower redshift observations: in particular, there is a significant lack of objects with intermediate Ly{alpha} EWs (between 20 and 55 A). We conclude that the observed trend for the rising fraction of Ly{alpha} emission in Lyman break galaxies from z {approx} 3 to z {approx} 6 is most probably reversed from z {approx} 6 to z {approx} 7. Explaining the observed rapid change in the Ly{alpha} emitter fraction among the dropout population with reionization requires a fast evolution of the neutral fraction of hydrogen in the universe. Assuming that the universe is completely ionized at z = 6 and adopting a set of semi-analytical models, we find that our data require a change of the neutral hydrogen fraction of the order of {Delta}{chi}{sub H{sub i}}{approx}0.6 in a time {Delta}z {approx} 1, provided that the escape fraction does not increase dramatically over the same redshift interval.

  13. THE FAINT END OF THE QUASAR LUMINOSITY FUNCTION AT z {approx} 4

    SciTech Connect

    Glikman, Eilat; Bogosavljevic, Milan; Djorgovski, S. G.; Mahabal, Ashish; Stern, Daniel; Dey, Arjun; Jannuzi, Buell T.

    2010-02-20

    The evolution of the quasar luminosity function (QLF) is one of the basic cosmological measures providing insight into structure formation and mass assembly in the universe. We have conducted a spectroscopic survey to find faint quasars (-26.0 < M{sub 1450} < -22.0) at redshifts z = 3.8-5.2 in order to measure the faint end of the QLF at these early times. Using available optical imaging data from portions of the NOAO Deep Wide-Field Survey and the Deep Lens Survey, we have color-selected quasar candidates in a total area of 3.76 deg{sup 2}. Thirty candidates have R <= 23 mag. We conducted spectroscopic follow-up for 28 of our candidates and found 23 QSOs, 21 of which are reported here for the first time, in the 3.74 < z < 5.06 redshift range. We estimate our survey completeness through detailed Monte Carlo simulations and derive the first measurement of the density of quasars in this magnitude and redshift interval. We find that the binned luminosity function (LF) is somewhat affected by the K-correction used to compute the rest-frame absolute magnitude at 1450 A. Considering only our R <= 23 sample, the best-fit single power law (PHI {proportional_to} L {sup beta}) gives a faint-end slope beta = -1.6 +- 0.2. If we consider our larger, but highly incomplete sample going 1 mag fainter, we measure a steeper faint-end slope -2 < beta < -2.5. In all cases, we consistently find faint-end slopes that are steeper than expected based on measurements at z {approx} 3. We combine our sample with bright quasars from the Sloan Digital Sky Survey to derive parameters for a double-power-law LF. Our best fit finds a bright-end slope, alpha = -2.4 +- 0.2, and faint-end slope, beta = -2.3 +- 0.2, without a well-constrained break luminosity. This is effectively a single power law, with beta = -2.7 +- 0.1. We use these results to place limits on the amount of ultraviolet radiation produced by quasars and find that quasars are able to ionize the intergalactic medium at these redshifts.

  14. z {approx} 7 GALAXY CANDIDATES FROM NICMOS OBSERVATIONS OVER THE HDF-SOUTH AND THE CDF-SOUTH AND HDF-NORTH GOODS FIELDS

    SciTech Connect

    Bouwens, Rychard J.; Illingworth, Garth D.; Gonzalez, Valentino; Holden, Brad; Magee, Dan; Labbe, Ivo; Franx, Marijn; Conselice, Christopher J.; Blakeslee, John; Van Dokkum, Pieter; Marchesini, Danilo; Zheng Wei

    2010-12-20

    We use {approx}88 arcmin{sup 2} of deep ({approx}>26.5 mag at 5{sigma}) NICMOS data over the two GOODS fields and the HDF-South to conduct a search for bright z {approx}> 7 galaxy candidates. This search takes advantage of an efficient preselection over 58 arcmin{sup 2} of NICMOS H{sub 160}-band data where only plausible z {approx}> 7 candidates are followed up with NICMOS J{sub 110}-band observations. {approx}248 arcmin{sup 2} of deep ground-based near-infrared data ({approx}>25.5 mag, 5{sigma}) are also considered in the search. In total, we report 15 z{sub 850}-dropout candidates over this area-7 of which are new to these search fields. Two possible z {approx} 9 J{sub 110}-dropout candidates are also found, but seem unlikely to correspond to z {approx} 9 galaxies (given the estimated contamination levels). The present z {approx} 9 search is used to set upper limits on the prevalence of such sources. Rigorous testing is undertaken to establish the level of contamination of our selections by photometric scatter, low-mass stars, supernovae, and spurious sources. The estimated contamination rate of our z {approx} 7 selection is {approx}24%. Through careful simulations, the effective volume available to our z {approx}> 7 selections is estimated and used to establish constraints on the volume density of luminous (L*{sub z{sub ={sub 3}}}, or {approx}-21 mag) galaxies from these searches. We find that the volume density of luminous star-forming galaxies at z {approx} 7 is 13{sup +8}{sub -5} times lower than at z {approx} 4 and >25 times lower (1{sigma}) at z {approx} 9 than at z {approx} 4. This is the most stringent constraint yet available on the volume density of {approx}>L*{sub z{sub ={sub 3}}} galaxies at z {approx} 9. The present wide-area, multi-field search limits cosmic variance to {approx}<20%. The evolution we find at the bright end of the UV LF is similar to that found from recent Subaru Suprime-Cam, HAWK-I or ERS WFC3/IR searches. The present paper also

  15. New Quasar Studies Keep Fundamental Physical Constant Constant

    NASA Astrophysics Data System (ADS)

    2004-03-01

    Very Large Telescope sets stringent limit on possible variation of the fine-structure constant over cosmological time Summary Detecting or constraining the possible time variations of fundamental physical constants is an important step toward a complete understanding of basic physics and hence the world in which we live. A step in which astrophysics proves most useful. Previous astronomical measurements of the fine structure constant - the dimensionless number that determines the strength of interactions between charged particles and electromagnetic fields - suggested that this particular constant is increasing very slightly with time. If confirmed, this would have very profound implications for our understanding of fundamental physics. New studies, conducted using the UVES spectrograph on Kueyen, one of the 8.2-m telescopes of ESO's Very Large Telescope array at Paranal (Chile), secured new data with unprecedented quality. These data, combined with a very careful analysis, have provided the strongest astronomical constraints to date on the possible variation of the fine structure constant. They show that, contrary to previous claims, no evidence exist for assuming a time variation of this fundamental constant. PR Photo 07/04: Relative Changes with Redshift of the Fine Structure Constant (VLT/UVES) A fine constant To explain the Universe and to represent it mathematically, scientists rely on so-called fundamental constants or fixed numbers. The fundamental laws of physics, as we presently understand them, depend on about 25 such constants. Well-known examples are the gravitational constant, which defines the strength of the force acting between two bodies, such as the Earth and the Moon, and the speed of light. One of these constants is the so-called "fine structure constant", alpha = 1/137.03599958, a combination of electrical charge of the electron, the Planck constant and the speed of light. The fine structure constant describes how electromagnetic forces hold

  16. THE RADIAL DISTRIBUTION OF STAR FORMATION IN GALAXIES AT z {approx} 1 FROM THE 3D-HST SURVEY

    SciTech Connect

    Nelson, Erica June; Van Dokkum, Pieter G.; Momcheva, Ivelina; Skelton, Rosalind E.; Leja, Joel; Brammer, Gabriel; Lundgren, Britt; Whitaker, Katherine E.; Da Cunha, Elisabete; Rix, Hans-Walter; Van der Wel, Arjen; Foerster Schreiber, Natascha; Wuyts, Stijn; Franx, Marijn; Fumagalli, Mattia; Labbe, Ivo; Patel, Shannon; Kriek, Mariska; Schmidt, Kasper B.

    2013-01-20

    The assembly of galaxies can be described by the distribution of their star formation as a function of cosmic time. Thanks to the WFC3 grism on the Hubble Space Telescope (HST) it is now possible to measure this beyond the local Universe. Here we present the spatial distribution of H{alpha} emission for a sample of 54 strongly star-forming galaxies at z {approx} 1 in the 3D-HST Treasury survey. By stacking the H{alpha} emission, we find that star formation occurred in approximately exponential distributions at z {approx} 1, with a median Sersic index of n = 1.0 {+-} 0.2. The stacks are elongated with median axis ratios of b/a = 0.58 {+-} 0.09 in H{alpha} consistent with (possibly thick) disks at random orientation angles. Keck spectra obtained for a subset of eight of the galaxies show clear evidence for rotation, with inclination corrected velocities of 90-330 km s{sup -1}. The most straightforward interpretation of our results is that star formation in strongly star-forming galaxies at z {approx} 1 generally occurred in disks. The disks appear to be 'scaled-up' versions of nearby spiral galaxies: they have EW(H{alpha}) {approx} 100 A out to the solar orbit and they have star formation surface densities above the threshold for driving galactic scale winds.

  17. THE BRIGHTEST OF REIONIZING GALAXIES SURVEY: CONSTRAINTS ON THE BRIGHT END OF THE z {approx} 8 LUMINOSITY FUNCTION

    SciTech Connect

    Bradley, L. D.; Stiavelli, M.; Pirzkal, N.; Trenti, M.; Oesch, P. A.; Bouwens, R. J.; Shull, J. M.; Holwerda, B. W.

    2012-12-01

    We report the discovery of 33 Lyman-break galaxy candidates at z {approx} 8 detected in Hubble Space Telescope Wide Field Camera 3 (WFC3) imaging as part of the Brightest of Reionizing Galaxies (BoRG) pure-parallel survey. The ongoing BoRG survey currently has the largest area (274 arcmin{sup 2}) with Y {sub 098} (or Y {sub 105}), J {sub 125}, and H {sub 160} band coverage needed to search for z {approx} 8 galaxies, about three times the current CANDELS area, and slightly larger than what will be the final CANDELS wide component with Y {sub 105} data (required to select z {approx} 8 sources). Our sample of 33 relatively bright Y {sub 098}-dropout galaxies have J {sub 125}-band magnitudes between 25.5 and 27.4 mag. This is the largest sample of bright (J {sub 125} {approx}< 27.4) z {approx} 8 galaxy candidates presented to date. Combining our data set with the Hubble Ultra-Deep Field data set, we constrain the rest-frame ultraviolet galaxy luminosity function at z {approx} 8 over the widest dynamic range currently available. The combined data sets are well fitted by a Schechter function, i.e., {phi} (L) = {phi}{sub *} (L/L{sub *}){sup {alpha}} e{sup -(}L{sup /L{sub *})}, without evidence for an excess of sources at the bright end. At 68% confidence, for h = 0.7 we derive {phi}{sub *} = (4.3{sup +3.5} {sub -2.1}) Multiplication-Sign 10{sup -4} Mpc{sup -3}, M {sub *} = -20.26{sup +0.29} {sub -0.34}, and a very steep faint-end slope {alpha} = -1.98{sup +0.23} {sub -0.22}. While the best-fit parameters still have a strong degeneracy, especially between {phi}{sub *} and M {sub *}, our improved coverage at the bright end has reduced the uncertainty of the faint-end power-law slope at z {approx} 8 compared to the best previous determination at {+-}0.4. With a future expansion of the BoRG survey, combined with planned ultradeep WFC3/IR observations, it will be possible to further reduce this uncertainty and clearly demonstrate the steepening of the faint-end slope compared

  18. THE DEPENDENCE OF STAR FORMATION RATES ON STELLAR MASS AND ENVIRONMENT AT z approx 0.8

    SciTech Connect

    Patel, Shannon G.; Holden, Bradford P.; Illingworth, Garth D.; Franx, Marijn

    2009-11-01

    We examine the star formation rates (SFRs) of galaxies in a redshift slice encompassing the z = 0.834 cluster RX J0152.7 - 1357. We used a low-dispersion prism in the Inamori Magellan Areal Camera and Spectrograph to identify galaxies with z {sub AB} < 23.3 mag in diverse environments around the cluster out to projected distances of approx8 Mpc from the cluster center. We utilize a mass-limited sample (M > 2 x 10{sup 10} M{sub sun}) of 330 galaxies that were imaged by Spitzer MIPS at 24 mum to derive SFRs and study the dependence of specific SFR (SSFR) on stellar mass and environment. We find that the SFR and SSFR show a strong decrease with increasing local density, similar to the relation at z approx 0. Our result contrasts with other work at z approx 1 that finds the SFR-density trend to reverse for luminosity-limited samples. These other results appear to be driven by star formation (SF) in lower mass systems (M approx 10{sup 10} M{sub sun}). Our results imply that the processes that shut down SF are present in groups and other dense regions in the field. Our data also suggest that the lower SFRs of galaxies in higher density environments may reflect a change in the ratio of star-forming to non-star-forming galaxies, rather than a change in SFRs. As a consequence, the SFRs of star-forming galaxies, in environments ranging from small groups to clusters, appear to be similar and largely unaffected by the local processes that truncate SF at z approx 0.8.

  19. PHYSICAL PROPERTIES OF Ly{alpha} EMITTERS AT z {approx} 0.3 FROM UV-TO-FIR MEASUREMENTS

    SciTech Connect

    Oteo, I.; Bongiovanni, A.; Perez Garcia, A. M.; Cepa, J.; Pintos-Castro, I.; Ederoclite, A.; Sanchez-Portal, M.; Altieri, B.; Perez-Martinez, R.; Andreani, P.; Aussel, H.; Daddi, E.; Elbaz, D.; Le Floc'h, E.; Cimatti, A.; and others

    2012-06-01

    The analysis of the physical properties of low-redshift Ly{alpha} emitters (LAEs) can provide clues in the study of their high-redshift analogs. At z {approx} 0.3, LAEs are bright enough to be detected over almost the entire electromagnetic spectrum and it is possible to carry out a more precise and complete study than at higher redshifts. In this work, we examine the UV and IR emission, dust attenuation, star formation rate (SFR), and morphology of a sample of 23 GALEX-discovered star-forming LAEs at z {approx} 0.3 with direct UV (GALEX), optical (ACS), and FIR (PACS and MIPS) data. Using the same UV and IR limiting luminosities, we find that LAEs at z {approx} 0.3 tend to be less dusty, have slightly higher total SFRs, have bluer UV continuum slopes, and are much smaller than other galaxies that do not exhibit Ly{alpha} emission in their spectrum (non-LAEs). These results suggest that at z {approx} 0.3, Ly{alpha} photons tend to escape from small galaxies with low dust attenuation. Regarding their morphology, LAEs belong to Irr/merger classes, unlike non-LAEs. Size and morphology represent the most noticeable difference between LAEs and non-LAEs at z {approx} 0.3. Furthermore, the comparison of our results with those obtained at higher redshifts indicates either that the Ly{alpha} technique picks up different kind of galaxies at different redshifts or that the physical properties of LAEs are evolving with redshift.

  20. Reconstructing the Gamma-Ray Photon Optical Depth of the Universe To Z Approx. 4 from Multiwavelength Galaxy Survey Data

    NASA Technical Reports Server (NTRS)

    Helgason, Kari; Kashlinsky, Alexander

    2012-01-01

    Reconstructing the Gamma-Ray Photon Optical Depth of the Universe To Z Approx. 4fFrom Multiwavelength Galaxy Survey Data We reconstruct the gamma-ray opacity of the universe out to z approx. < 3–4 using an extensive library of 342 observed galaxy luminosity function (LF) surveys extending to high redshifts .We cover the whole range from UV to mid-IR (0.15–25 micron ) providing for the first time a robust empirical calculation of the gamma gamma optical depth out to several TeV. Here, we use the same database as Helgason et al. where the extragalactic background light was reconstructed from LFs out to 4.5 micron and was shown to recover observed galaxy counts to high accuracy. We extend our earlier library Of LFs to 25micron such that it covers the energy range of pair production with gamma -rays (1) in the entire Fermi/LAT energy range, and (2) at higher TeV energies probed by ground-based Cherenkov telescopes. In the absence of significant contributions to the cosmic diffuse background from unknown populations, such as the putative Population III era sources, the universe appears to be largely transparent to gamma-rays at all Fermi/LAT energies out to z approx.. 2 whereas it becomes opaque to TeV photons already at z approx. < 0.2 and reaching tau approx 10 at z = 1. Comparing with the currently available Fermi/LAT gamma-ray burst and blazar data shows that there is room for significant emissions originating in the first stars era.

  1. EVIDENCE FOR A WIDE RANGE OF ULTRAVIOLET OBSCURATION IN z {approx} 2 DUSTY GALAXIES FROM THE GOODS-HERSCHEL SURVEY

    SciTech Connect

    Penner, Kyle; Dickinson, Mark; Dey, Arjun; Kartaltepe, Jeyhan; Pope, Alexandra; Magnelli, Benjamin; Pannella, Maurilio; Aussel, Herve; Daddi, Emanuele; Elbaz, David; Buat, Veronique; Bussmann, Shane; Hwang, Ho Seong; Charmandaris, Vassilis; Dannerbauer, Helmut; Lin Lihwai; Magdis, Georgios; Morrison, Glenn; and others

    2012-11-01

    Dusty galaxies at z {approx} 2 span a wide range of relative brightness between rest-frame mid-infrared (8 {mu}m) and ultraviolet wavelengths. We attempt to determine the physical mechanism responsible for this diversity. Dust-obscured galaxies (DOGs), which have rest-frame mid-IR to UV flux density ratios {approx}> 1000, might be abnormally bright in the mid-IR, perhaps due to prominent emission from active galactic nuclei and/or polycyclic aromatic hydrocarbons, or abnormally faint in the UV. We use far-infrared data from the GOODS-Herschel survey to show that most DOGs with 10{sup 12} L {sub Sun} {approx}< L {sub IR} {approx}< 10{sup 13} L {sub Sun} are not abnormally bright in the mid-IR when compared to other dusty galaxies with similar IR (8-1000 {mu}m) luminosities. We observe a relation between the median IR to UV luminosity ratios and the median UV continuum power-law indices for these galaxies, and we find that only 24% have specific star formation rates that indicate the dominance of compact star-forming regions. This circumstantial evidence supports the idea that the UV- and IR-emitting regions in these galaxies are spatially coincident, which implies a connection between the abnormal UV faintness of DOGs and dust obscuration. We conclude that the range in rest-frame mid-IR to UV flux density ratios spanned by dusty galaxies at z {approx} 2 is due to differing amounts of UV obscuration. Of galaxies with these IR luminosities, DOGs are the most obscured. We attribute differences in UV obscuration to either (1) differences in the degree of alignment between the spatial distributions of dust and massive stars or (2) differences in the total dust content.

  2. Constant-Pressure Hydraulic Pump

    NASA Technical Reports Server (NTRS)

    Galloway, C. W.

    1982-01-01

    Constant output pressure in gas-driven hydraulic pump would be assured in new design for gas-to-hydraulic power converter. With a force-multiplying ring attached to gas piston, expanding gas would apply constant force on hydraulic piston even though gas pressure drops. As a result, pressure of hydraulic fluid remains steady, and power output of the pump does not vary.

  3. COSMIC ORIGINS SPECTROGRAPH AND FUSE OBSERVATIONS OF T {approx} 10{sup 5} K GAS IN A NEARBY GALAXY FILAMENT

    SciTech Connect

    Narayanan, Anand; Wakker, Bart P.; Savage, Blair D.; Keeney, Brian A.; Shull, J. Michael; Stocke, John T.; Sembach, Kenneth R. E-mail: wakker@astro.wisc.ed

    2010-10-01

    We present a clear detection of a broad Ly{alpha} absorber (BLA) with a matching O VI line in the nearby universe. The BLA is detected at z(Ly{alpha})=0.01028 in the high signal-to-noise ratio spectrum of Mrk 290 obtained using the Cosmic Origins Spectrograph. The Ly{alpha} absorption has two components, with b(H i) = 55{+-}1 km s{sup -1} and b(H i) = 33{+-}1 km s{sup -1}, separated in velocity by v {approx} 115 km s{sup -1}. The O VI, detected by the Far-Ultraviolet Spectroscopic Explorer at z(O vi) = 0.01027, has a b(O vi) = 29{+-}3 km s{sup -1} and is kinematically well aligned with the broader H I component. The non-detection of other ions such as C II, Si II, Fe II, C III, Si III, C IV, Si IV, and N V at the same velocity as the BLA and the O VI implies that the absorber is tracing highly ionized gas. The different line widths of the BLA and O VI suggest a temperature of T = 1.4 x 10{sup 5} K in the absorber. Photoionization, collisional ionization equilibrium as well as non-equilibrium collisional ionization models do not explain the ion ratios at this temperature. The observed line strength ratios and line widths favor an ionization scenario in which both ion-electron collisions and UV photons contribute to the ionization in the gas. Such a model requires a low metallicity of {approx}-1.7 dex, ionization parameter of log U {approx} -1.4, a large total hydrogen column density of N(H) {approx} 4 x 10{sup 19} cm{sup -2}, and a path length of {approx}400 kpc. The line of sight to Mrk 290 intercepts at the redshift of the absorber, a megaparsec scale filamentary structure extending over {approx}20{sup 0} in the sky, with several luminous galaxies distributed within {approx}1.5 h {sup -1} Mpc projected distance from the absorber. The collisionally ionized gas phase of this absorber is most likely tracing a shock-heated gaseous structure, consistent with a few different scenarios for the origin including an overdense region of the warm-hot intergalactic medium in

  4. Reliability concerns with logical constants in Xilinx FPGA designs

    SciTech Connect

    Quinn, Heather M; Graham, Paul; Morgan, Keith; Ostler, Patrick; Allen, Greg; Swift, Gary; Tseng, Chen W

    2009-01-01

    In Xilinx Field Programmable Gate Arrays logical constants, which ground unused inputs and provide constants for designs, are implemented in SEU-susceptible logic. In the past, these logical constants have been shown to cause the user circuit to output bad data and were not resetable through off-line rcconfiguration. In the more recent devices, logical constants are less problematic, though mitigation should still be considered for high reliability applications. In conclusion, we have presented a number of reliability concerns with logical constants in the Xilinx Virtex family. There are two main categories of logical constants: implicit and explicit logical constants. In all of the Virtex devices, the implicit logical constants are implemented using half latches, which in the most recent devices are several orders of magnitudes smaller than configuration bit cells. Explicit logical constants are implemented exclusively using constant LUTs in the Virtex-I and Virtex-II, and use a combination of constant LUTs and architectural posts to the ground plane in the Virtex-4. We have also presented mitigation methods and options for these devices. While SEUs in implicit and some types of explicit logical constants can cause data corrupt, the chance of failure from these components is now much smaller than it was in the Virtex-I device. Therefore, for many cases, mitigation might not be necessary, except under extremely high reliability situations.

  5. Systematics of low-lying electric dipole excitations in the A{approx_equal}130{endash}200 mass region

    SciTech Connect

    Fransen, C.; von Brentano, P.; Herzberg, R.; Pietralla, N.; Zilges, A.; Beck, O.; Eckert, T.; Kneissl, U.; Maser, H.; Nord, A.; Pitz, H.H.; Zilges, A.

    1998-01-01

    The data from numerous high resolution photon scattering experiments allow an extensive survey of the lowest electric dipole excitations in the A{approx_equal}130{endash}200 mass region. In this mass region one can find spherical as well as transitional and strongly quadrupole deformed nuclei. The measured absolute E1 strengths are typically of the order of several milli Weisskopf units and exhibit in general a smooth variation with mass number. {copyright} {ital 1998} {ital The American Physical Society}

  6. THE MOST METAL-POOR STARS. IV. THE TWO POPULATIONS WITH [Fe/H] {approx}< -3.0

    SciTech Connect

    Norris, John E.; Yong, David; Bessell, M. S.; Asplund, M. E-mail: bessell@mso.anu.edu.au; and others

    2013-01-01

    We discuss the carbon-normal and carbon-rich populations of Galactic halo stars having [Fe/H] {approx}< -3.0, utilizing chemical abundances from high-resolution, high signal-to-noise model-atmosphere analyses. The C-rich population represents {approx}28% of stars below [Fe/H] = -3.1, with the present C-rich sample comprising 16 CEMP-no stars, and two others with [Fe/H] {approx} -5.5 and uncertain classification. The population is O-rich ([O/Fe] {approx}> +1.5); the light elements Na, Mg, and Al are enhanced relative to Fe in half the sample; and for Z > 20 (Ca) there is little evidence for enhancements relative to solar values. These results are best explained in terms of the admixing and processing of material from H-burning and He-burning regions as achieved by nucleosynthesis in zero-heavy-element models in the literature of 'mixing and fallback' supernovae (SNe); of rotating, massive, and intermediate-mass stars; and of Type II SNe with relativistic jets. The available (limited) radial velocities offer little support for the C-rich stars with [Fe/H] < -3.1 being binary. More data are required before one could conclude that binarity is key to an understanding of this population. We suggest that the C-rich and C-normal populations result from two different gas cooling channels in the very early universe of material that formed the progenitors of the two populations. The first was cooling by fine-structure line transitions of C II and O I (to form the C-rich population); the second, while not well defined (perhaps dust-induced cooling?), led to the C-normal group. In this scenario, the C-rich population contains the oldest stars currently observed.

  7. Constants and Variables of Nature

    SciTech Connect

    Sean Carroll

    2009-04-03

    It is conventional to imagine that the various parameters which characterize our physical theories, such as the fine structure constant or Newton’s gravitational constant, are truly “constant”, in the sense that they do not change from place to place or time to time. Recent developments in both theory and observation have led us to re-examine this assumption, and to take seriously the possibility that our supposed constants are actually gradually changing. I will discuss why we might expect these parameters to vary, and what observation and experiment have to say about the issue.

  8. THE WYOMING SURVEY FOR H{alpha}. III. A MULTI-WAVELENGTH LOOK AT ATTENUATION BY DUST IN GALAXIES OUT TO z {approx} 0.4

    SciTech Connect

    Moore, Carolynn A.; Dale, Daniel A.; Barlow, Rebecca J.; Cohen, Seth A.; Cook, David O.; Johnson, L. C.; Kattner, ShiAnne M.; Staudaher, Shawn M.; Lee, Janice C.

    2010-07-15

    We report results from the Wyoming Survey for H{alpha} (WySH), a comprehensive four-square degree survey to probe the evolution of star-forming galaxies over the latter half of the age of the universe. We have supplemented the H{alpha} data from WySH with infrared data from the Spitzer Wide-area Infrared Extragalactic Survey and ultraviolet data from the Galaxy Evolution Explorer Deep Imaging Survey. This data set provides a multi-wavelength look at the evolution of the attenuation by dust, and here we compare a traditional measure of dust attenuation (L(TIR)/L(FUV)) to a diagnostic based on a recently developed robust star formation rate (SFR) indicator, [Ha{sub obs}+24{mu}m]/Ha{sub obs}. With such data over multiple epochs, the evolution in the attenuation by dust with redshift can be assessed. We present results from the ELAIS-N1 and Lockman Hole regions at z {approx} 0.16, 0.24, 0.32, and 0.40. While the ensemble averages of both diagnostics are relatively constant from epoch to epoch, each epoch individually exhibits a larger attenuation by dust for higher SFRs. Hence, an epoch-to-epoch comparison at a fixed SFR suggests a mild decrease in dust attenuation with redshift.

  9. Laboratory measurement of the complex dielectric constant of soils

    NASA Technical Reports Server (NTRS)

    Wiebe, M. L.

    1971-01-01

    The dielectric constant of a material is an extremely important parameter when considering passive radiometric remote sensing applications. This is because the emitted energy measured by a microwave radiometer is dependent on the dielectric constant of the surface being scanned. Two techniques of measuring dielectric constants are described. The first method involves a dielectric located in air. The second method uses basically the same theoretical approach, but the dielectric under consideration is located inside a section of waveguide.

  10. Varying Constants, Gravitation and Cosmology

    NASA Astrophysics Data System (ADS)

    Uzan, Jean-Philippe

    2011-12-01

    Fundamental constants are a cornerstone of our physical laws. Any constant varying in space and/or time would reflect the existence of an almost massless field that couples to matter. This will induce a violation of the universality of free fall. Thus, it is of utmost importance for our understanding of gravity and of the domain of validity of general relativity to test for their constancy. We detail the relations between the constants, the tests of the local position invariance and of the universality of free fall. We then review the main experimental and observational constraints that have been obtained from atomic clocks, the Oklo phenomenon, solar system observations, meteorite dating, quasar absorption spectra, stellar physics, pulsar timing, the cosmic microwave background and big bang nucleosynthesis. At each step we describe the basics of each system, its dependence with respect to the constants, the known systematic effects and the most recent constraints that have been obtained. We then describe the main theoretical frameworks in which the low-energy constants may actually be varying and we focus on the unification mechanisms and the relations between the variation of different constants. To finish, we discuss the more speculative possibility of understanding their numerical values and the apparent fine-tuning that they confront us with.

  11. Damping constant estimation in magnetoresistive readers

    SciTech Connect

    Stankiewicz, Andrzej Hernandez, Stephanie

    2015-05-07

    The damping constant is a key design parameter in magnetic reader design. Its value can be derived from bulk or sheet film ferromagnetic resonance (FMR) line width. However, dynamics of nanodevices is usually defined by presence of non-uniform modes. It triggers new damping mechanisms and produces stronger damping than expected from traditional FMR. This work proposes a device-level technique for damping evaluation, based on time-domain analysis of thermally excited stochastic oscillations. The signal is collected using a high bandwidth oscilloscope, by direct probing of a biased reader. Recorded waveforms may contain different noise signals, but free layer FMR is usually a dominating one. The autocorrelation function is a reflection of the damped oscillation curve, averaging out stochastic contributions. The damped oscillator formula is fitted to autocorrelation data, producing resonance frequency and damping constant values. Restricting lag range allows for mitigation of the impact of other phenomena (e.g., reader instability) on the damping constant. For a micromagnetically modeled reader, the technique proves to be much more accurate than the stochastic FMR line width approach. Application to actual reader waveforms yields a damping constant of ∼0.03.

  12. Constant fields and constant gradients in open ionic channels.

    PubMed

    Chen, D P; Barcilon, V; Eisenberg, R S

    1992-05-01

    Ions enter cells through pores in proteins that are holes in dielectrics. The energy of interaction between ion and charge induced on the dielectric is many kT, and so the dielectric properties of channel and pore are important. We describe ionic movement by (three-dimensional) Nemst-Planck equations (including flux and net charge). Potential is described by Poisson's equation in the pore and Laplace's equation in the channel wall, allowing induced but not permanent charge. Asymptotic expansions are constructed exploiting the long narrow shape of the pore and the relatively high dielectric constant of the pore's contents. The resulting one-dimensional equations can be integrated numerically; they can be analyzed when channels are short or long (compared with the Debye length). Traditional constant field equations are derived if the induced charge is small, e.g., if the channel is short or if the total concentration gradient is zero. A constant gradient of concentration is derived if the channel is long. Plots directly comparable to experiments are given of current vs voltage, reversal potential vs. concentration, and slope conductance vs. concentration. This dielectric theory can easily be tested: its parameters can be determined by traditional constant field measurements. The dielectric theory then predicts current-voltage relations quite different from constant field, usually more linear, when gradients of total concentration are imposed. Numerical analysis shows that the interaction of ion and channel can be described by a mean potential if, but only if, the induced charge is negligible, that is to say, the electric field is spatially constant.

  13. Constant fields and constant gradients in open ionic channels.

    PubMed Central

    Chen, D P; Barcilon, V; Eisenberg, R S

    1992-01-01

    Ions enter cells through pores in proteins that are holes in dielectrics. The energy of interaction between ion and charge induced on the dielectric is many kT, and so the dielectric properties of channel and pore are important. We describe ionic movement by (three-dimensional) Nemst-Planck equations (including flux and net charge). Potential is described by Poisson's equation in the pore and Laplace's equation in the channel wall, allowing induced but not permanent charge. Asymptotic expansions are constructed exploiting the long narrow shape of the pore and the relatively high dielectric constant of the pore's contents. The resulting one-dimensional equations can be integrated numerically; they can be analyzed when channels are short or long (compared with the Debye length). Traditional constant field equations are derived if the induced charge is small, e.g., if the channel is short or if the total concentration gradient is zero. A constant gradient of concentration is derived if the channel is long. Plots directly comparable to experiments are given of current vs voltage, reversal potential vs. concentration, and slope conductance vs. concentration. This dielectric theory can easily be tested: its parameters can be determined by traditional constant field measurements. The dielectric theory then predicts current-voltage relations quite different from constant field, usually more linear, when gradients of total concentration are imposed. Numerical analysis shows that the interaction of ion and channel can be described by a mean potential if, but only if, the induced charge is negligible, that is to say, the electric field is spatially constant. Images FIGURE 1 PMID:1376159

  14. Effective cosmological constant induced by stochastic fluctuations of Newton's constant

    NASA Astrophysics Data System (ADS)

    de Cesare, Marco; Lizzi, Fedele; Sakellariadou, Mairi

    2016-09-01

    We consider implications of the microscopic dynamics of spacetime for the evolution of cosmological models. We argue that quantum geometry effects may lead to stochastic fluctuations of the gravitational constant, which is thus considered as a macroscopic effective dynamical quantity. Consistency with Riemannian geometry entails the presence of a time-dependent dark energy term in the modified field equations, which can be expressed in terms of the dynamical gravitational constant. We suggest that the late-time accelerated expansion of the Universe may be ascribed to quantum fluctuations in the geometry of spacetime rather than the vacuum energy from the matter sector.

  15. SPECTRAL PROPERTIES OF {approx}0.5-6 keV ENERGETIC NEUTRAL ATOMS MEASURED BY THE INTERSTELLAR BOUNDARY EXPLORER (IBEX) ALONG THE LINES OF SIGHT OF VOYAGER

    SciTech Connect

    Desai, M. I.; Allegrini, F. A.; Dayeh, M. A.; McComas, D. J.; Schwadron, N. A.; De Majistre, B.; Funsten, H.; Heerikhuisen, J.; Pogorelov, N.; Zank, G. P.

    2012-04-20

    Energetic neutral atoms (ENAs) observed by the Interstellar Boundary Explorer (IBEX) provide powerful diagnostics about the origin of the progenitor ion populations and the physical mechanisms responsible for their production. Here we survey the fluxes, energy spectra, and energy dependence of the spectral indices of {approx}0.5-6 keV ENAs measured by IBEX-Hi along the lines of sight of Voyager 1 and 2. We compare the ENA spectra observed at IBEX with predictions of Zank et al. who modeled the microphysics of the heliospheric termination shock to predict the shape and relative contributions of three distinct heliosheath ion populations. We show that (1) the ENA spectral indices exhibit similar energy dependence along V1 and V2 directions-the spectrum hardens to {gamma} {approx} 1 between {approx}1 and 2 keV and softens to {gamma} {approx} 2 below {approx}1 keV and above {approx}2 keV, (2) the observed ENA fluxes agree to within {approx}50% of the Zank et al. predictions and are unlikely to be produced by core solar wind (SW) ions, and (3) the ENA spectra do not exhibit sharp cutoffs at {approx}twice the SW speed as is typically observed for shell-like pickup ion (PUI) distributions in the heliosphere. We conclude that ENAs at IBEX are generated by at least two types of ion populations whose relative contributions depend on the ENA energy: transmitted PUIs in the {approx}0.5-5 keV energy range and reflected PUIs above {approx}5 keV energy. The {approx}0.5-5 keV PUI distribution is probably a superposition of Maxwellian or kappa distributions and partially filled shell distributions in velocity space.

  16. Optical constants of solid methane

    NASA Technical Reports Server (NTRS)

    Khare, Bishun N.; Thompson, W. R.; Sagan, C.; Arakawa, E. T.; Bruel, C.; Judish, J. P.; Khanna, R. K.; Pollack, J. B.

    1989-01-01

    Methane is the most abundant simple organic molecule in the outer solar system bodies. In addition to being a gaseous constituent of the atmospheres of the Jovian planets and Titan, it is present in the solid form as a constituent of icy surfaces such as those of Triton and Pluto, and as cloud condensate in the atmospheres of Titan, Uranus, and Neptune. It is expected in the liquid form as a constituent of the ocean of Titan. Cometary ices also contain solid methane. The optical constants for both solid and liquid phases of CH4 for a wide temperature range are needed for radiative transfer calculations, for studies of reflection from surfaces, and for modeling of emission in the far infrared and microwave regions. The astronomically important visual to near infrared measurements of solid methane optical constants are conspicuously absent from the literature. Preliminary results are presented of the optical constants of solid methane for the 0.4 to 2.6 micron region. K is reported for both the amorphous and the crystalline (annealed) states. Using the previously measured values of the real part of the refractive index, n, of liquid methane at 110 K n is computed for solid methane using the Lorentz-Lorentz relationship. Work is in progress to extend the measurements of optical constants n and k for liquid and solid to both shorter and longer wavelengths, eventually providing a complete optical constants database for condensed CH4.

  17. GALAXY EVOLUTION IN OVERDENSE ENVIRONMENTS AT HIGH REDSHIFT: PASSIVE EARLY-TYPE GALAXIES IN A CLUSTER AT z {approx} 2

    SciTech Connect

    Strazzullo, V.; Gobat, R.; Daddi, E.; Onodera, M.; Carollo, M.; Dickinson, M.; Renzini, A.; Arimoto, N.; Cimatti, A.; Finoguenov, A.; Chary, R.-R.

    2013-08-01

    We present a study of galaxy populations in the central region of the IRAC-selected, X-ray-detected galaxy cluster Cl J1449+0856 at z = 2. Based on a sample of spectroscopic and photometric cluster members, we investigate stellar populations and the morphological structure of cluster galaxies over an area of {approx}0.7 Mpc{sup 2} around the cluster core. The cluster stands out as a clear overdensity both in redshift space and in the spatial distribution of galaxies close to the center of the extended X-ray emission. The cluster core region (r < 200 kpc) shows a clearly enhanced passive fraction with respect to field levels. However, together with a population of massive, passive galaxies mostly with early-type morphologies, the cluster core also hosts massive, actively star-forming, often highly dust reddened sources. Close to the cluster center, a multi-component system of passive and star-forming galaxies could represent the future brightest cluster galaxy still forming. We observe a clear correlation between passive stellar populations and an early-type morphology, in agreement with field studies at similar redshift. Passive early-type galaxies in this cluster are typically a factor of 2-3 smaller than similarly massive early types at z {approx} 0. On the other hand, these same objects are on average larger by a factor of {approx}2 than field early-types at similar redshift, lending support to recent claims of an accelerated structural evolution in high-redshift dense environments. These results point toward the early formation of a population of massive galaxies, already evolved both in their structure and stellar populations, coexisting with still actively forming massive galaxies in the central regions of young clusters 10 billion years ago.

  18. THE IMPACT OF THE SUPERSONIC BARYON-DARK MATTER VELOCITY DIFFERENCE ON THE z {approx} 20 21 cm BACKGROUND

    SciTech Connect

    McQuinn, Matthew; O'Leary, Ryan M.

    2012-11-20

    Recently, Tseliakhovich and Hirata showed that during the cosmic Dark Ages the baryons were typically moving supersonically with respect to the dark matter with a spatially variable Mach number. Such supersonic motion may source shocks that inhomogeneously heat the universe. This motion may also suppress star formation in the first halos. Even a small amount of coupling of the 21 cm signal to this motion has the potential to vastly enhance the 21 cm brightness temperature fluctuations at 15 {approx}< z {approx}< 40, as well as to imprint distinctive acoustic oscillations in this signal. We present estimates for the size of this coupling, which we calibrate with a suite of cosmological simulations of the high-redshift universe using the GADGET and Enzo codes. Our simulations, discussed in detail in a companion paper, are initialized to self-consistently account for gas pressure and the dark matter-baryon relative velocity, v {sub bc} (in contrast to prior simulations). We find that the supersonic velocity difference dramatically suppresses structure formation on 10-100 comoving kpc scales, it sources shocks throughout the universe, and it impacts the accretion of gas onto the first star-forming minihalos (even for halo masses as large as 10{sup 7} M {sub Sun }). However, prior to reheating by astrophysical sources, we find that the v {sub bc}-sourced temperature fluctuations can contribute only as much as Almost-Equal-To 10% of the fluctuations in the 21 cm signal. We do find that v {sub bc} in certain scenarios could source an O(1) component in the power spectrum of the 21 cm background on observable scales via the X-ray (but not ultraviolet) backgrounds produced once the first stars formed. In a scenario in which {approx}10{sup 6} M {sub Sun} minihalos reheated the universe via their X-ray backgrounds, we find that the pre-reionization 21 cm signal would be larger than previously anticipated and exhibit more significant acoustic features. Such features would be a

  19. PHOTOMETRIC PROPERTIES OF Ly{alpha} EMITTERS AT z {approx} 4.86 IN THE COSMOS 2 SQUARE DEGREE FIELD

    SciTech Connect

    Shioya, Y.; Taniguchi, Y.; Nagao, T.; Saito, T.; Trump, J.; Sasaki, S. S.; Ideue, Y.; Nakajima, A.; Matsuoka, K.; Murayama, T.; Scoville, N. Z.; Capak, P.; Ellis, R. S.; Sanders, D. B.; Kartaltepe, J.; Mobasher, B.; Aussel, H.; Koekemoer, A.; Carilli, C.; Garilli, B.

    2009-05-01

    We present results of a survey for Ly{alpha} emitters at z {approx} 4.86 based on optical narrowband ({lambda} {sub c} = 7126 A, {delta}{lambda} = 73 A) and broadband (B, V, r', i', and z') observations of the Cosmic Evolution Survey field using Suprime-Cam on the Subaru Telescope. We find 79 Ly{alpha} emitter (LAE) candidates at z {approx} 4.86 over a contiguous survey area of 1.83 deg{sup 2}, down to the Ly{alpha} line flux of 1.47 x 10{sup -17} erg s{sup -1} cm{sup -2}. We obtain the Ly{alpha} luminosity function with a best-fit Schechter parameters of log L* = 42.9{sup +0.5} {sub -0.3} erg s{sup -1} and {phi}* = 1.2{sup +8.0} {sub -1.1} x 10{sup -4} Mpc{sup -3} for {alpha} = -1.5 (fixed). The two-point correlation function for our LAE sample is {xi}(r) = (r/4.4{sup +5.7} {sub -2.9} Mpc){sup -1.90{+-}}{sup 0.22}. In order to investigate the field-to-field variations of the properties of Ly{alpha} emitters, we divide the survey area into nine tiles of 0.{sup 0}5 x 0.{sup 0}5 each. We find that the number density varies with a factor of {approx_equal}2 from field to field with high statistical significance. However, we find no significant field-to-field variance when we divide the field into four tiles with 0.{sup 0}7 x 0.{sup 0}7 each. We conclude that at least 0.5 deg{sup 2} survey area is required to derive averaged properties of LAEs at z {approx} 5, and our survey field is wide enough to overcome the cosmic variance.

  20. Optical constants of liquid and solid methane

    NASA Technical Reports Server (NTRS)

    Martonchik, John V.; Orton, Glenn S.

    1994-01-01

    The optical constants n(sub r) + in(sub i) of liquid methane and phase 1 solid methane were determined over the entire spectral range by the use of various data sources published in the literature. Kramers-Kronig analyses were performed on the absorption spectra of liquid methane at the boiling point (111 K) and the melting point (90 K) and on the absorption spectra of phase 1 solid methane at the melting point and at 30 K. Measurements of the static dielectric constant at these temperatures and refractive indices determined over limited spectral ranges were used as constraints in the analyses. Applications of methane optical properties to studies of outer solar system bodies are described.

  1. A damped simple pendulum of constant amplitude

    NASA Astrophysics Data System (ADS)

    Abdelkader, Mostafa A.

    1984-03-01

    A simple pendulum acted on by gravity and subjected to a resistance proportional to the velocity of the bob is considered. If the length of the string and the mass of the bob are held constant, the amplitude of the bob decreases gradually because of the damping. We want to keep the maximum swing of the bob constant for all time; this we achieve by varying the length of the string, the mass of the bob or both. The key to the solution of our problem is a second-order nonlinear differential equation having arbitrary nonlinearity and an arbitrary coefficient function, for which we give the exact integral. We also give an application of this differential equation to a boundary-value problem for a nonlinear generalization of a hypergeometric equation.

  2. Optical constants of solid methane

    NASA Technical Reports Server (NTRS)

    Khare, Bishun N.; Thompson, W. R.; Sagan, C.; Arakawa, E. T.; Bruel, C.; Judish, J. P.; Khanna, R. K.; Pollack, J. B.

    1990-01-01

    Methane is the most abundant simple organic molecule in the outer solar system bodies. In addition to being a gaseous constituent of the atmospheres of the Jovian planets and Titan, it is present in the solid form as a constituent of icy surfaces such as those of Triton and Pluto, and as cloud condensate in the atmospheres of Titan, Uranus, and Neptune. It is expected in the liquid form as a constituent of the ocean of Titan. Cometary ices also contain solid methane. The optical constants for both solid and liquid phases of CH4 for a wide temperature range are needed for radiative transfer calculations, for studies of reflection from surfaces, and for modeling of emission in the far infrared and microwave regions. The astronomically important visual to near infrared measurements of solid methane optical constants are conspicuously absent from the literature. Preliminary results are presented on the optical constants of solid methane for the 0.4 to 2.6 micrometer region. Deposition onto a substrate at 10 K produces glassy (semi-amorphous) material. Annealing this material at approximately 33 K for approximately 1 hour results in a crystalline material as seen by sharper, more structured bands and negligible background extinction due to scattering. The constant k is reported for both the amorphous and the crystalline (annealed) states. Typical values (at absorption maxima) are in the .001 to .0001 range. Below lambda = 1.1 micrometers the bands are too weak to be detected by transmission through the films less than or equal to 215 micrometers in thickness, employed in the studies to date. Using previously measured values of the real part of the refractive index, n, of liquid methane at 110 K, n is computed for solid methane using the Lorentz-Lorenz relationship. Work is in progress to extend the measurements of optical constants n and k for liquid and solid to both shorter and longer wavelengths, eventually providing a complete optical constants database for

  3. 46 CFR 153.372 - Gauges and vapor return for cargo vapor pressures exceeding 100 kPa (approx. 14.7 psia).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Gauges and vapor return for cargo vapor pressures exceeding 100 kPa (approx. 14.7 psia). 153.372 Section 153.372 Shipping COAST GUARD, DEPARTMENT OF HOMELAND... return for cargo vapor pressures exceeding 100 kPa (approx. 14.7 psia). When table 1 references...

  4. 46 CFR 153.372 - Gauges and vapor return for cargo vapor pressures exceeding 100 kPa (approx. 14.7 psia).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Gauges and vapor return for cargo vapor pressures exceeding 100 kPa (approx. 14.7 psia). 153.372 Section 153.372 Shipping COAST GUARD, DEPARTMENT OF HOMELAND... return for cargo vapor pressures exceeding 100 kPa (approx. 14.7 psia). When table 1 references...

  5. Cosmologies with variable gravitational constant

    SciTech Connect

    Narkikar, J.V.

    1983-03-01

    In 1937 Dirac presented an argument, based on the socalled large dimensionless numbers, which led him to the conclusion that the Newtonian gravitational constant G changes with epoch. Towards the end of the last century Ernst Mach had given plausible arguments to link the property of inertia of matter to the large scale structure of the universe. Mach's principle also leads to cosmological models with a variable gravitational constant. Three cosmologies which predict a variable G are discussed in this paper both from theoretical and observational points of view.

  6. Elastic constants for 8-OCB

    NASA Astrophysics Data System (ADS)

    Czechowski, Grzegorz; Zywucki, B.; Jadzyn, Jan

    1993-10-01

    The Frederiks transitions for the n-octyloxycyanobiphenyl (8-OCB) placed in the external magnetic and electric field as a function of the temperature have been studied. On the basis of threshold values Bc and Uc, the elastic constants for splay, bend and twist modes are determined. The magnetic anisotropy of 8-OCB as a function of temperature has been determined. The K11 and K33 elastic constants show the pretransitional nematic- smectic A effect. The values of critical exponents obtained from the temperature dependence of K11 and K33 in the vicinity of N-SA phase transition are discussed.

  7. Note: Determination of torsional spring constant of atomic force microscopy cantilevers: combining normal spring constant and classical beam theory.

    PubMed

    Álvarez-Asencio, R; Thormann, E; Rutland, M W

    2013-09-01

    A technique has been developed for the calculation of torsional spring constants for AFM cantilevers based on the combination of the normal spring constant and plate/beam theory. It is easy to apply and allow the determination of torsional constants for stiff cantilevers where the thermal power spectrum is difficult to obtain due to the high resonance frequency and low signal/noise ratio. The applicability is shown to be general and this simple approach can thus be used to obtain torsional constants for any beam shaped cantilever.

  8. VELOCITY DISPERSIONS AND STELLAR POPULATIONS OF THE MOST COMPACT AND MASSIVE EARLY-TYPE GALAXIES AT REDSHIFT {approx}1

    SciTech Connect

    Martinez-Manso, Jesus; Guzman, Rafael; Barro, Guillermo; Cardiel, Nicolas; Gallego, Jesus; Cenarro, Javier; Perez-Gonzalez, Pablo; Sanchez-Blazquez, Patricia; Trujillo, Ignacio; Balcells, Marc; Hempel, Angela; Prieto, Mercedes

    2011-09-10

    We present Gran-Telescopio-Canarias/OSIRIS optical spectra of four of the most compact and massive early-type galaxies (ETGs) in the Groth Strip Survey at redshift z {approx} 1, with effective radii R{sub e} = 0.5-2.4 kpc and photometric stellar masses M{sub *} = (1.2-4) x 10{sup 11} M{sub sun}. We find that these galaxies have velocity dispersions {sigma} = 156-236 km s{sup -1}. The spectra are well fitted by single stellar population models with approximately 1 Gyr of age and solar metallicity. We find that (1) the dynamical masses of these galaxies are systematically smaller by a factor of {approx}6 than the published stellar masses using BRIJK photometry, and (2) when estimating stellar masses as 0.7x M{sub dyn}, a combination of passive luminosity fading with mass/size growth due to minor mergers can plausibly evolve our objects to match the properties of the local population of ETGs.

  9. THE SINS/zC-SINF SURVEY OF z {approx} 2GALAXY KINEMATICS: THE NATURE OF DISPERSION-DOMINATED GALAXIES

    SciTech Connect

    Newman, Sarah F.; Genzel, Reinhard; Foerster Schreiber, Natascha M.; Buschkamp, Peter; Davies, Ric; Eisenhauer, Frank; Kurk, Jaron; Lutz, Dieter; Shapiro Griffin, Kristen; Mancini, Chiara; Renzini, Alvio; Lilly, Simon J.; Carollo, C. Marcella; Peng, Yingjie; Bouche, Nicolas; Burkert, Andreas; Cresci, Giovanni; Genel, Shy; Hicks, Erin K. S.; Naab, Thorsten; and others

    2013-04-20

    We analyze the spectra, spatial distributions, and kinematics of H{alpha}, [N II], and [S II] emission in a sample of 38, z {approx} 2.2 UV/optically selected star-forming galaxies (SFGs) from the SINS and zC-SINF surveys, 34 of which were observed in the adaptive optics mode of SINFONI and 30 of those contain data presented for the first time here. This is supplemented by kinematic data from 43 z {approx} 1-2.5 galaxies from the literature. None of these 81 galaxies is an obvious major merger. We find that the kinematic classification of high-z SFGs as ''dispersion dominated'' or ''rotation dominated'' correlates most strongly with their intrinsic sizes. Smaller galaxies are more likely ''dispersion-dominated'' for two main reasons: (1) the rotation velocity scales linearly with galaxy size but intrinsic velocity dispersion does not depend on size or may even increase in smaller galaxies, and as such, their ratio is systematically lower for smaller galaxies, and (2) beam smearing strongly decreases large-scale velocity gradients and increases observed dispersion much more for galaxies with sizes at or below the resolution. Dispersion-dominated SFGs may thus have intrinsic properties similar to ''rotation-dominated'' SFGs, but are primarily more compact, lower mass, less metal enriched, and may have higher gas fractions, plausibly because they represent an earlier evolutionary state.

  10. DEEP 21 cm H I OBSERVATIONS AT z {approx} 0.1: THE PRECURSOR TO THE ARECIBO ULTRA DEEP SURVEY

    SciTech Connect

    Freudling, Wolfram; Zwaan, Martin; Staveley-Smith, Lister; Meyer, Martin; Catinella, Barbara; Minchin, Robert; Calabretta, Mark; Momjian, Emmanuel; O'Neil, Karen

    2011-01-20

    The 'ALFA Ultra Deep Survey' (AUDS) is an ongoing 21 cm spectral survey with the Arecibo 305 m telescope. AUDS will be the most sensitive blind survey undertaken with Arecibo's 300 MHz Mock spectrometer. The survey searches for 21 cm H I line emission at redshifts between 0 and 0.16. The main goals of the survey are to investigate the H I content and probe the evolution of H I gas within that redshift region. In this paper, we report on a set of precursor observations with a total integration time of 53 hr. The survey detected a total of eighteen 21 cm emission lines at redshifts between 0.07 and 0.15 in a region centered around {alpha}{sub 2000} {approx} 0{sup h}, {delta} {approx} 15{sup 0}42'. The rate of detection is consistent with the one expected from the local H I mass function. The derived relative H I density at the median redshift of the survey is {rho}{sub H{sub I}}[z = 0.125] = (1.0 {+-} 0.3){rho}{sub 0}, where {rho}{sub 0} is the H I density at zero redshift.

  11. A Luminosity Function of Ly(alpha)-Emitting Galaxies at Z [Approx. Equal to] 4.5(Sup 1),(Sup 2)

    NASA Technical Reports Server (NTRS)

    Dawson, Steve; Rhoads, James E.; Malhotra, Sangeeta; Stern, Daniel; Wang, JunXian; Dey, Arjun; Spinrad, Hyron; Jannuzi, Buell T.

    2007-01-01

    We present a catalog of 59 z [approx. equal to] 4:5 Ly(alpha)-emitting galaxies spectroscopically confirmed in a campaign of Keck DEIMOS follow-up observations to candidates selected in the Large Are (LALA) narrowband imaging survey.We targeted 97 candidates for spectroscopic follow-up; by accounting for the variety of conditions under which we performed spectroscopy, we estimate a selection reliability of approx.76%. Together with our previous sample of Keck LRIS confirmations, the 59 sources confirmed herein bring the total catalog to 73 spectroscopically confirmed z [approx. equal to] 4:5 Ly(alpha)- emitting galaxies in the [approx. equal to] 0.7 deg(exp 2) covered by the LALA imaging. As with the Keck LRIS sample, we find that a nonnegligible fraction of the co rest-frame equivalent widths (W(sub lambda)(sup rest)) that exceed the maximum predicted for normal stellar populations: 17%-31%(93%confidence) of the detected galaxies show (W(sub lambda)(sup rest)) 12%-27% (90% confidence) show (W(sub lambda)(sup rest)) > 240 A. We construct a luminosity function of z [approx. equal to] 4.5 Ly(alpha) emission lines for comparison to Ly(alpha) luminosity function < 6.6. We find no significant evidence for Ly(alpha) luminosity function evolution from z [approx. equal to] 3 to z [approx. equal to] 6. This result supports the conclusion that the intergalactic me largely reionized from the local universe out to z [approx. equal to] 6.5. It is somewhat at odds with the pronounced drop in the cosmic star formation rate density recently measured between z approx. 3 an z approx. 6 in continuum-selected Lyman-break galaxies, and therefore potentially sheds light on the relationship between the two populations.

  12. Boltzmann's constant: A laboratory experiment

    NASA Astrophysics Data System (ADS)

    Kruglak, Haym

    1989-03-01

    The mean-square displacement of a latex microsphere is determined from its projection on a TV monitor. The distribution of displacement is shown to be Gaussian. Boltzmann's constant, calculated from the pooled data of several observers, is in excellent agreement with the accepted value. The experiment is designed for one laboratory period in the advanced undergraduate laboratory.

  13. Ten Thousand Solar Constants Radiometer

    NASA Technical Reports Server (NTRS)

    Kendall, J. M., Sr.

    1985-01-01

    "Radiometer for Accurate (+ or - 1%) Measurement of Solar Irradiances Equal to 10,000 Solar Constants," gives additional information on radiometer described elsewhere. Self-calibrating, water-cooled, thermopile radiometer measures irradiance produced in solar image formed by parabolic reflector or by multiple-mirror solar installation.

  14. Superconductivity and cobalt oxidation state in metastable Na{sub x}CoO{sub 2-{delta}}{center_dot}yH{sub 2}O (x{approx_equal}1/3; y{approx_equal}4x)

    SciTech Connect

    Barnes, P.W.; Avdeev, M.; Jorgensen, J.D.; Hinks, D.G.; Claus, H.; Short, S.

    2005-10-01

    We report the synthesis and superconducting properties of a metastable form of the known superconductor Na{sub x}CoO{sub 2}{center_dot}yH{sub 2}O (x{approx_equal}1/3;y{approx_equal}4x). We obtained this metastable cobaltate superconductor due to the unique way it was synthesized. Instead of using the conventional bromine-acetonitrile mixture for the Na{sup +}-deintercalation reaction, we use an aqueous bromine solution. Using this method, we oxidize the sample to a point that the sodium cobaltate becomes unstable, leading to formation of other products if not controlled. This compound has the same structure as the reported superconductor, yet it exhibits a systematic variation of the superconducting transition temperature (T{sub c}) as a function of time. Immediately after synthesis, this compound is not a superconductor, even though it contains appropriate amounts of Na{sup +} and H{sub 2}O. The samples become superconducting with low T{sub c} values after {approx}90 h. T{sub c} continually increases until it reaches a maximum value (4.5 K) after about 260 h. Then T{sub c} drops drastically, becoming nonsuperconducting approximately 100 h later. Corresponding time-dependent neutron powder diffraction data shows that the changes in superconductivity exhibited by the metastable cobaltate correspond to slow formation of oxygen vacancies in the CoO{sub 2} layers. In effect, the formation of these defects continually reduces the cobalt oxidation state causing the sample to evolve through its superconducting life cycle. Thus, the dome-shaped superconducting phase diagram is mapped as a function of cobalt oxidation state using a single sample. The width of this dome based on the formal oxidation state of cobalt is very narrow--approximately 0.1 valence units wide. Interestingly, the maximum T{sub c} in Na{sub x}CoO{sub 2}{center_dot}yH{sub 2}O occurs when the cobalt oxidation state is near +3.5. Thus, we speculate that the maximum T{sub c} occurs near the charge ordered

  15. The 1% concordance Hubble constant

    SciTech Connect

    Bennett, C. L.; Larson, D.; Weiland, J. L.; Hinshaw, G.

    2014-10-20

    The determination of the Hubble constant has been a central goal in observational astrophysics for nearly a hundred years. Extraordinary progress has occurred in recent years on two fronts: the cosmic distance ladder measurements at low redshift and cosmic microwave background (CMB) measurements at high redshift. The CMB is used to predict the current expansion rate through a best-fit cosmological model. Complementary progress has been made with baryon acoustic oscillation (BAO) measurements at relatively low redshifts. While BAO data do not independently determine a Hubble constant, they are important for constraints on possible solutions and checks on cosmic consistency. A precise determination of the Hubble constant is of great value, but it is more important to compare the high and low redshift measurements to test our cosmological model. Significant tension would suggest either uncertainties not accounted for in the experimental estimates or the discovery of new physics beyond the standard model of cosmology. In this paper we examine in detail the tension between the CMB, BAO, and cosmic distance ladder data sets. We find that these measurements are consistent within reasonable statistical expectations and we combine them to determine a best-fit Hubble constant of 69.6 ± 0.7 km s{sup –1} Mpc{sup –1}. This value is based upon WMAP9+SPT+ACT+6dFGS+BOSS/DR11+H {sub 0}/Riess; we explore alternate data combinations in the text. The combined data constrain the Hubble constant to 1%, with no compelling evidence for new physics.

  16. Variation of fundamental constants: theory

    NASA Astrophysics Data System (ADS)

    Flambaum, Victor

    2008-05-01

    Theories unifying gravity with other interactions suggest temporal and spatial variation of the fundamental ``constants'' in expanding Universe. There are some hints for the variation of different fundamental constants in quasar absorption spectra and Big Bang nucleosynthesis data. A large number of publications (including atomic clocks) report limits on the variations. We want to study the variation of the main dimensionless parameters of the Standard Model: 1. Fine structure constant alpha (combination of speed of light, electron charge and Plank constant). 2. Ratio of the strong interaction scale (LambdaQCD) to a fundamental mass like electron mass or quark mass which are proportional to Higgs vacuum expectation value. The proton mass is propotional to LambdaQCD, therefore, the proton-to-electron mass ratio comes into this second category. We performed necessary atomic, nuclear and QCD calculations needed to study variation of the fundamental constants using the Big Bang Nucleosynthsis, quasar spectra, Oklo natural nuclear reactor and atomic clock data. The relative effects of the variation may be enhanced in transitions between narrow close levels in atoms, molecules and nuclei. If one will study an enhanced effect, the relative value of systematic effects (which are not enhanced) may be much smaller. Note also that the absolute magnitude of the variation effects in nuclei (e.g. in very narrow 7 eV transition in 229Th) may be 5 orders of magnitude larger than in atoms. A different possibility of enhancement comes from the inversion transitions in molecules where splitting between the levels is due to the quantum tunneling amplitude which has strong, exponential dependence on the electron to proton mass ratio. Our study of NH3 quasar spectra has already given the best limit on the variation of electron to proton mass ratio.

  17. Varying Fine-Structure Constant and the Cosmological Constant Problem

    NASA Astrophysics Data System (ADS)

    Fujii, Yasunori

    We start with a brief account of the latest analysis of the Oklo phenomenon providing the still most stringent constraint on time variability of the fine-structure constant α. Comparing this with the recent result from the measurement of distant QSO's appears to indicate a non-uniform time-dependence, which we argue to be related to another recent finding of the accelerating universe. This view is implemented in terms of the scalar-tensor theory, applied specifically to the small but nonzero cosmological constant. Our detailed calculation shows that these two phenomena can be understood in terms of a common origin, a particular behavior of the scalar field, dilaton. We also sketch how this theoretical approach makes it appropriate to revisit non-Newtonian gravity featuring small violation of Weak Equivalence Principle at medium distances.

  18. New Quasar Studies Keep Fundamental Physical Constant Constant

    NASA Astrophysics Data System (ADS)

    2004-03-01

    Very Large Telescope sets stringent limit on possible variation of the fine-structure constant over cosmological time Summary Detecting or constraining the possible time variations of fundamental physical constants is an important step toward a complete understanding of basic physics and hence the world in which we live. A step in which astrophysics proves most useful. Previous astronomical measurements of the fine structure constant - the dimensionless number that determines the strength of interactions between charged particles and electromagnetic fields - suggested that this particular constant is increasing very slightly with time. If confirmed, this would have very profound implications for our understanding of fundamental physics. New studies, conducted using the UVES spectrograph on Kueyen, one of the 8.2-m telescopes of ESO's Very Large Telescope array at Paranal (Chile), secured new data with unprecedented quality. These data, combined with a very careful analysis, have provided the strongest astronomical constraints to date on the possible variation of the fine structure constant. They show that, contrary to previous claims, no evidence exist for assuming a time variation of this fundamental constant. PR Photo 07/04: Relative Changes with Redshift of the Fine Structure Constant (VLT/UVES) A fine constant To explain the Universe and to represent it mathematically, scientists rely on so-called fundamental constants or fixed numbers. The fundamental laws of physics, as we presently understand them, depend on about 25 such constants. Well-known examples are the gravitational constant, which defines the strength of the force acting between two bodies, such as the Earth and the Moon, and the speed of light. One of these constants is the so-called "fine structure constant", alpha = 1/137.03599958, a combination of electrical charge of the electron, the Planck constant and the speed of light. The fine structure constant describes how electromagnetic forces hold

  19. Human mortality at very advanced age might be constant.

    PubMed

    Klemera, P; Doubal, S

    1997-11-01

    An attempt was made to identify the course of the mortality rate at the upper tail of human age. The only known data suitable for this purpose were published by Riggs and Millecchia (J.E. Riggs, R.J. Millecchia, Mech. Ageing Dev. 62 (1992) 191-199) and our analysis follows up their results. By means of mathematical elaboration it was proved that these data imply a constant mortality rate (approx. 25% per year) at ages above 113 years for men and above 116 years for women. Indirect arguments supporting the validity of the source data are discussed. Nevertheless, even if the source data are mistaken, we proved they cannot be the product of purely random errors and our results may contribute to the elucidation of the origin of those systematic errors. PMID:9379712

  20. Universal constant for heat production in protists.

    PubMed

    Johnson, Matthew D; Völker, Jens; Moeller, Holly V; Laws, Edward; Breslauer, Kenneth J; Falkowski, Paul G

    2009-04-21

    Using a high sensitivity differential scanning calorimeter in isothermal mode, we directly measured heat production in eukaryotic protists from 5 phyla spanning over 5 orders of magnitude in carbon biomass and 8 orders of magnitude in cell volume. Our results reveal that metabolic heat production normalized to cell mass is virtually constant in these organisms, with a median of 0.037 pW pg C(-1) (95% confidence interval = 0.022-0.061 pW pg C(-1)) at 5 degrees C. Contrary to allometric models, the relationship between heat production and cell carbon content or surface area is isometric (scaling exponents, 1.056 and 1.057, respectively). That heat production per unit cell surface area is constant suggests that heat flux through the cell surface is effectively instantaneous, and hence that cells are isothermal with their environment. The results further suggest that allometric models of metabolism based on metazoans are not applicable to protists, and that the underlying metabolic processes in the latter polyphyletic group are highly constrained by evolutionary selection. We propose that the evolutionary constraint leading to a universally constant heat production in single-celled eukaryotes is related to cytoplasmic packaging of organelles and surface area to volume relationships controlling diffusion of resources to these organelles.

  1. THE STAR FORMATION HISTORIES OF z {approx} 2 DUST-OBSCURED GALAXIES AND SUBMILLIMETER-SELECTED GALAXIES

    SciTech Connect

    Bussmann, R. S.; Dey, Arjun; Jannuzi, B. T.; Armus, L.; Desai, V.; Soifer, B. T.; Brown, M. J. I.; Gonzalez, A. H.; Melbourne, J.

    2012-01-10

    The Spitzer Space Telescope has identified a population of ultraluminous infrared galaxies (ULIRGs) at z {approx} 2 that may play an important role in the evolution of massive galaxies. We measure the stellar masses (M{sub *}) of two populations of Spitzer-selected ULIRGs that have extremely red R - [24] colors (dust-obscured galaxies, or DOGs) and compare our results with submillimeter-selected galaxies (SMGs). One set of 39 DOGs has a local maximum in their mid-infrared (mid-IR) spectral energy distribution (SED) at rest frame 1.6 {mu}m associated with stellar emission ({sup b}ump DOGs{sup )}, while the other set of 51 DOGs have power-law mid-IR SEDs that are typical of obscured active galactic nuclei ({sup p}ower-law DOGs{sup )}. We measure M{sub *} by applying Charlot and Bruzual stellar population synthesis models to broadband photometry in the rest-frame ultraviolet, optical, and near-infrared of each of these populations. Assuming a simple stellar population and a Chabrier initial mass function, we find that power-law DOGs and bump DOGs are on average a factor of 2 and 1.5 more massive than SMGs, respectively (median and inter-quartile M{sub *} values for SMGs, bump DOGs, and power-law DOGs are log(M{sub *}/M{sub Sun }) = 10.42{sup +0.42}{sub -0.36}, 10.62{sup +0.36}{sub -0.32}, and 10.71{sup +0.40}{sub -0.34}, respectively). More realistic star formation histories drawn from two competing theories for the nature of ULIRGs at z {approx} 2 (major merger versus smooth accretion) can increase these mass estimates by up to 0.5 dex. A comparison of our stellar masses with the instantaneous star formation rate (SFR) in these z {approx} 2 ULIRGs provides a preliminary indication supporting high SFRs for a given M{sub *}, a situation that arises more naturally in major mergers than in smooth accretion-powered systems.

  2. GAS MOTION STUDY OF Ly{alpha} EMITTERS AT z {approx} 2 USING FUV AND OPTICAL SPECTRAL LINES {sup ,}

    SciTech Connect

    Hashimoto, Takuya; Shimasaku, Kazuhiro; Nakajima, Kimihiko; Ouchi, Masami; Ono, Yoshiaki; Rauch, Michael; Janice Lee; Okamura, Sadanori

    2013-03-01

    We present the results of Magellan/MMIRS and Keck/NIRSPEC spectroscopy for five Ly{alpha} emitters (LAEs) at z {approx_equal} 2.2 for which high-resolution FUV spectra from Magellan/MagE are available. We detect nebular emission lines including H{alpha} on the individual basis and low-ionization interstellar (LIS) absorption lines in a stacked FUV spectrum, and measure average offset velocities of the Ly{alpha} line, {Delta}v {sub Ly{alpha}}, and LIS absorption lines, {Delta}v {sub abs}, with respect to the systemic velocity defined by the nebular lines. For a sample of eight z {approx} 2-3 LAEs without active galactic nucleus from our study and the literature, we obtain {Delta}v {sub Ly{alpha}} = 175 {+-} 35 km s{sup -1}, which is significantly smaller than that of Lyman-break Galaxies (LBGs), {Delta}v {sub Ly{alpha}} {approx_equal} 400 km s{sup -1}. The stacked FUV spectrum gives {Delta}v {sub abs} = -179 {+-} 73 km s{sup -1}, comparable to that of LBGs. These positive {Delta}v {sub Ly{alpha}} and negative {Delta}v {sub abs} suggest that LAEs also have outflows. In contrast to LBGs, however, the LAEs' {Delta}v {sub Ly{alpha}} is as small as |{Delta}v {sub abs}|, suggesting low neutral hydrogen column densities. Such a low column density with a small number of resonant scattering may cause the observed strong Ly{alpha} emission of LAEs. We find an anti-correlation between Ly{alpha} equivalent width (EW) and {Delta}v {sub Ly{alpha}} in a compilation of LAE and LBG samples. Although its physical origin is not clear, this anti-correlation result appears to challenge the hypothesis that a strong outflow, by means of a reduced number of resonant scattering, produces a large EW. If LAEs at z > 6 have similarly small {Delta}v {sub Ly{alpha}} values, constraints on the reionization history derived from the Ly{alpha} transmissivity may need to be revised.

  3. Three pion nucleon coupling constants

    NASA Astrophysics Data System (ADS)

    Ruiz Arriola, E.; Amaro, J. E.; Navarro Pérez, R.

    2016-08-01

    There exist four pion nucleon coupling constants, fπ0pp, - fπ0nn, fπ+pn/2 and fπ-np/2 which coincide when up and down quark masses are identical and the electron charge is zero. While there is no reason why the pion-nucleon-nucleon coupling constants should be identical in the real world, one expects that the small differences might be pinned down from a sufficiently large number of independent and mutually consistent data. Our discussion provides a rationale for our recent determination fp2 = 0.0759(4),f 02 = 0.079(1),f c2 = 0.0763(6), based on a partial wave analysis of the 3σ self-consistent nucleon-nucleon Granada-2013 database comprising 6713 published data in the period 1950-2013.

  4. Three pion nucleon coupling constants

    NASA Astrophysics Data System (ADS)

    Ruiz Arriola, E.; Amaro, J. E.; Navarro Pérez, R.

    2016-08-01

    There exist four pion nucleon coupling constants, fπ0pp, ‑ fπ0nn, fπ+pn/2 and fπ‑np/2 which coincide when up and down quark masses are identical and the electron charge is zero. While there is no reason why the pion-nucleon-nucleon coupling constants should be identical in the real world, one expects that the small differences might be pinned down from a sufficiently large number of independent and mutually consistent data. Our discussion provides a rationale for our recent determination fp2 = 0.0759(4),f 02 = 0.079(1),f c2 = 0.0763(6), based on a partial wave analysis of the 3σ self-consistent nucleon-nucleon Granada-2013 database comprising 6713 published data in the period 1950-2013.

  5. Time-Varying Fundamental Constants

    NASA Astrophysics Data System (ADS)

    Olive, Keith

    2003-04-01

    Recent data from quasar absorption systems can be interpreted as arising from a time variation in the fine-structure constant. However, there are numerous cosmological, astro-physical, and terrestrial bounds on any such variation. These includes bounds from Big Bang Nucleosynthesis (from the ^4He abundance), the Oklo reactor (from the resonant neutron capture cross-section of Sm), and from meteoretic lifetimes of heavy radioactive isotopes. The bounds on the variation of the fine-structure constant are significantly strengthened in models where all gauge and Yukawa couplings vary in a dependent manner, as would be expected in unified theories. Models which are consistent with all data are severly challenged when Equivalence Principle constraints are imposed.

  6. Methodology for extracting local constants from petroleum cracking flows

    DOEpatents

    Chang, Shen-Lin; Lottes, Steven A.; Zhou, Chenn Q.

    2000-01-01

    A methodology provides for the extraction of local chemical kinetic model constants for use in a reacting flow computational fluid dynamics (CFD) computer code with chemical kinetic computations to optimize the operating conditions or design of the system, including retrofit design improvements to existing systems. The coupled CFD and kinetic computer code are used in combination with data obtained from a matrix of experimental tests to extract the kinetic constants. Local fluid dynamic effects are implicitly included in the extracted local kinetic constants for each particular application system to which the methodology is applied. The extracted local kinetic model constants work well over a fairly broad range of operating conditions for specific and complex reaction sets in specific and complex reactor systems. While disclosed in terms of use in a Fluid Catalytic Cracking (FCC) riser, the inventive methodology has application in virtually any reaction set to extract constants for any particular application and reaction set formulation. The methodology includes the step of: (1) selecting the test data sets for various conditions; (2) establishing the general trend of the parametric effect on the measured product yields; (3) calculating product yields for the selected test conditions using coupled computational fluid dynamics and chemical kinetics; (4) adjusting the local kinetic constants to match calculated product yields with experimental data; and (5) validating the determined set of local kinetic constants by comparing the calculated results with experimental data from additional test runs at different operating conditions.

  7. PHIBSS: MOLECULAR GAS CONTENT AND SCALING RELATIONS IN z {approx} 1-3 MASSIVE, MAIN-SEQUENCE STAR-FORMING GALAXIES

    SciTech Connect

    Tacconi, L. J.; Genzel, R.; Wuyts, S.; Foerster Schreiber, N. M.; Gracia-Carpio, J.; Lutz, D.; Saintonge, A.; Neri, R.; Cox, P.; Combes, F.; Bolatto, A.; Cooper, M. C.; Bournaud, F.; Comerford, J.; Davis, M.; Newman, S.; Garcia-Burillo, S.; Naab, T.; Omont, A. E-mail: genzel@mpe.mpg.de; and others

    2013-05-01

    We present PHIBSS, the IRAM Plateau de Bure high-z blue sequence CO 3-2 survey of the molecular gas properties in massive, main-sequence star-forming galaxies (SFGs) near the cosmic star formation peak. PHIBSS provides 52 CO detections in two redshift slices at z {approx} 1.2 and 2.2, with log(M{sub *}(M{sub Sun })) {>=} 10.4 and log(SFR(M{sub Sun }/yr)) {>=} 1.5. Including a correction for the incomplete coverage of the M{sub *} -SFR plane, and adopting a ''Galactic'' value for the CO-H{sub 2} conversion factor, we infer average gas fractions of {approx}0.33 at z {approx} 1.2 and {approx}0.47 at z {approx} 2.2. Gas fractions drop with stellar mass, in agreement with cosmological simulations including strong star formation feedback. Most of the z {approx} 1-3 SFGs are rotationally supported turbulent disks. The sizes of CO and UV/optical emission are comparable. The molecular-gas-star-formation relation for the z = 1-3 SFGs is near-linear, with a {approx}0.7 Gyr gas depletion timescale; changes in depletion time are only a secondary effect. Since this timescale is much less than the Hubble time in all SFGs between z {approx} 0 and 2, fresh gas must be supplied with a fairly high duty cycle over several billion years. At given z and M{sub *}, gas fractions correlate strongly with the specific star formation rate (sSFR). The variation of sSFR between z {approx} 0 and 3 is mainly controlled by the fraction of baryonic mass that resides in cold gas.

  8. Polarization of signal wave radiation generated by parametric four-wave mixing in rubidium vapor: Ultrafast ({approx}150-fs) and nanosecond time scale excitation

    SciTech Connect

    Zhu, C.-J.; Senin, A.A.; Lu, Z.-H.; Gao, J.; Xiao, Y.; Eden, J.G.

    2005-08-15

    The polarization characteristics of the signal wave produced in Rb vapor by difference-frequency, parametric four-wave mixing (FWM) has been investigated for either ultrafast ({approx}150 fs) or nanosecond time-scale excitation of the 5s{yields}{yields}5d, 7s two photon transitions. The electronic configurations of the 5d {sup 2}D{sub 5/2} and 7s {sup 2}S{sub 1/2} states of Rb, as well as their energy separation ({approx}608 cm{sup -1}), offers the opportunity to examine separately the resonantly enhanced 5s{yields}{yields}7s, 5d{yields}6p{yields}5s FWM pathways on the nanosecond time scale and then to drive both channels simultaneously with an ultrafast pulse of sufficient spectral width. As expected, dye laser ({approx}10 ns) excitation of the 5s{yields}{yields}5d (J=5/2) transition produces a signal wave ({lambda}{sub s}{approx}420 nm) having the same ellipticity as the driving optical field. Two photon excitation of Rb (7s) on the same time scale, however, generates an elliptically polarized signal when the pump is linearly polarized ({epsilon}=1), a result attributed to 7s{yields}6p, 5p amplified spontaneous emission at {approx}4 {mu}m and {approx}741 nm, respectively. Simultaneous excitation of the 5s{yields}{yields}7s, 5d transitions with {approx}150 fs pulses centered at {approx}770 nm yields polarization characteristics that can be approximated as a superposition of those for the individual transitions, thus displaying weak coupling between the two FWM channels. Also, the influence of molecular contributions to the FWM signal is observed for Rb number densities above {approx}5x10{sup 14} cm{sup -3}.

  9. The October-November, 2003 Solar Activity and its Relationship to the "approx. 155 day" Solar Periodicity

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Cane, H. V.

    2004-01-01

    Periodicities of approx. 155 days in various solar and interplanetary phenomena were first discovered during solar cycle 21 and have been shown to be intermittently present in other solar cycles. In the current solar cycle (23), they have been reported in solar energetic particle events and interplanetary coronal mass ejections. We assess whether the "unexpected" October - November 2003 burst of solar activity during the late declining phase of the cycle may have been a manifestation of such a periodic behavior, and hence might have been to some extent "predictable". If the pattern were to continue, episodes of enhanced activity might be expected around April - May and October, 2004. There was a modest increase activity increase in mid-April, 2004 which may conform to this pattern.

  10. Patterning {approx}20 nm half-pitch lines on silicon using a self-assembled organosilicate etch mask

    SciTech Connect

    Sundstroem, Linnea; Krupp, Leslie; Delenia, Eugene; Rettner, Charles; Sanchez, Martha; Hart, Mark W.; Kim, Ho-Cheol; Zhang Ying

    2006-06-12

    Lines of {approx}20 nm half-pitch were generated on silicon surface using a self-assembled organosilicate nanostructure. A mixture of a poly(styrene-b-ethylene oxide) (PS-b-PEO) with an organosilicate precursor that is selectively miscible with PEO was used to create lamellar phase whose orientation was controlled perpendicular to the surface by tuning the surface energy of substrates. Thermal cross-linking of the organosilicate precursor followed by thermal decomposition of the PS-b-PEO leaves a robust organosilicate line pattern of sublithographic length scales on the surface. Line patterns on silicon substrate were created by transferring this self-assembled pattern into the underlying silicon substrate using anisotropic plasma etching.

  11. SEARCHING FOR z {approx} 7.7 Ly{alpha} EMITTERS IN THE COSMOS FIELD WITH NEWFIRM

    SciTech Connect

    Krug, Hannah B.; Veilleux, Sylvain; Tilvi, Vithal; Malhotra, Sangeeta; Rhoads, James; Hibon, Pascale; Swaters, Rob

    2012-02-01

    The study of Ly{alpha} emission in the high-redshift universe is a useful probe of the epoch of reionization, as the Ly{alpha} line should be attenuated by the intergalactic medium (IGM) at low to moderate neutral hydrogen fractions. Here we present the results of a deep and wide imaging search for Ly{alpha} emitters in the Cosmological Evolution Survey field. We have used two ultra-narrowband filters (filter width of {approx}8-9 A) on the NOAO Extremely Wide-Field Infrared Mosaic camera, installed on the Mayall 4 m telescope at Kitt Peak National Observatory, in order to isolate Ly{alpha} emitters at z = 7.7; such ultra-narrowband imaging searches have proved to be excellent at detecting Ly{alpha} emitters. We found 5{sigma} detections of four candidate Ly{alpha} emitters in a survey volume of 2.8 Multiplication-Sign 10{sup 4} Mpc{sup 3} (total survey area {approx}760 arcmin{sup 2}). Each candidate has a line flux greater than 8 Multiplication-Sign 10{sup -18} erg s{sup -1} cm{sup -2}. Using these results to construct a luminosity function and comparing to previously established Ly{alpha} luminosity functions at z = 5.7 and z = 6.5, we find no conclusive evidence for evolution of the luminosity function between z = 5.7 and z = 7.7. Statistical Monte Carlo simulations suggest that half of these candidates are real z = 7.7 targets, and spectroscopic follow-up will be required to verify the redshift of these candidates. However, our results are consistent with no strong evolution in the neutral hydrogen fraction of the IGM between z = 5.7 and z = 7.7, even if only one or two of the z = 7.7 candidates are spectroscopically confirmed.

  12. ON THE FORMATION TIMESCALE OF MASSIVE CLUSTER ELLIPTICALS BASED ON DEEP NEAR-INFRARED SPECTROSCOPY AT z {approx} 2

    SciTech Connect

    Tanaka, Masayuki; Kodama, Tadayuki; Koyama, Yusei; Toft, Sune; Zirm, Andrew; Marchesini, Danilo; De Breuck, Carlos; Kurk, Jaron; Tanaka, Ichi

    2013-08-01

    We present improved constraints on the formation timescale of massive cluster galaxies based on rest-frame optical spectra of galaxies in a forming cluster located at z = 2.16. The spectra are obtained with MOIRCS on the Subaru Telescope with an integration time of {approx}7 hr. We achieve accurate redshift measurements by fitting spectral energy distributions using the spectra and broadband photometry simultaneously, allowing us to identify probable cluster members. Clusters at low redshifts are dominated by quiescent galaxies, but we find that quiescent galaxies and star-forming galaxies coexist in this z = 2 system. Interestingly, the quiescent galaxies form a weak red sequence in the process of forming. By stacking the spectra of star-forming galaxies, we observe strong emission lines such as [O II] and [O III] and we obtain a tentative hint of active galactic nucleus activities in these galaxies. On the other hand, the stacked spectrum of the quiescent galaxies reveals a clear 4000 A break with a possible Ca II H+K absorption feature and strong emission lines such as [O II] are absent in the spectrum, confirming the quiescent nature of these galaxies. We then perform detailed spectral analyses of the stacked spectrum, which suggest that these massive quiescent galaxies formed at redshifts between 3 and 4 on a timescale of {approx}< 0.5 Gyr. This short formation timescale is not reproduced in recent numerical simulations. We discuss possible mechanisms for how these galaxies form 10{sup 11} M{sub Sun} stellar mass on a short timescale and become red and quiescent by z = 2.

  13. THE REST-FRAME ULTRAVIOLET SPECTRA OF UV-SELECTED ACTIVE GALACTIC NUCLEI AT z {approx} 2-3

    SciTech Connect

    Hainline, Kevin N.; Shapley, Alice E.; Greene, Jenny E.; Steidel, Charles C.

    2011-05-20

    We present new results for a sample of 33 narrow-lined UV-selected active galactic nuclei (AGNs), identified in the course of a spectroscopic survey for star-forming galaxies at z {approx} 2-3. The rest-frame UV composite spectrum for our AGN sample shows several emission lines characteristic of AGNs, as well as interstellar absorption features detected in star-forming Lyman break galaxies (LBGs). We report a detection of N IV] {lambda}1486, which has been observed in high-redshift radio galaxies, as well as in rare optically selected quasars. The UV continuum slope of the composite spectrum is significantly redder than that of a sample of non-AGN UV-selected star-forming galaxies. Blueshifted Si IV absorption provides evidence for outflowing highly ionized gas in these objects at speeds of {approx}10{sup 3} km s{sup -1}, quantitatively different from what is seen in the outflows of non-AGN LBGs. Grouping the individual AGNs by parameters such as the Ly{alpha} equivalent width, redshift, and UV continuum magnitude allows for an analysis of the major spectroscopic trends within the sample. Stronger Ly{alpha} emission is coupled with weaker low-ionization absorption, which is similar to what is seen in the non-AGN LBGs, and highlights the role that cool interstellar gas plays in the escape of Ly{alpha} photons. However, the AGN composite does not show the same trends between Ly{alpha} strength and extinction seen in the non-AGN LBGs. These results represent the first such comparison at high redshift between star-forming galaxies and similar galaxies that host AGN activity.

  14. Comparison of one-particle basis set extrapolation to explicitly correlated methods for the calculation of accurate quartic force fields, vibrational frequencies, and spectroscopic constants: application to H2O, N2H+, NO2+, and C2H2.

    PubMed

    Huang, Xinchuan; Valeev, Edward F; Lee, Timothy J

    2010-12-28

    One-particle basis set extrapolation is compared with one of the new R12 methods for computing highly accurate quartic force fields (QFFs) and spectroscopic data, including molecular structures, rotational constants, and vibrational frequencies for the H(2)O, N(2)H(+), NO(2)(+), and C(2)H(2) molecules. In general, agreement between the spectroscopic data computed from the best R12 and basis set extrapolation methods is very good with the exception of a few parameters for N(2)H(+) where it is concluded that basis set extrapolation is still preferred. The differences for H(2)O and NO(2)(+) are small and it is concluded that the QFFs from both approaches are more or less equivalent in accuracy. For C(2)H(2), however, a known one-particle basis set deficiency for C-C multiple bonds significantly degrades the quality of results obtained from basis set extrapolation and in this case the R12 approach is clearly preferred over one-particle basis set extrapolation. The R12 approach used in the present study was modified in order to obtain high precision electronic energies, which are needed when computing a QFF. We also investigated including core-correlation explicitly in the R12 calculations, but conclude that current approaches are lacking. Hence core-correlation is computed as a correction using conventional methods. Considering the results for all four molecules, it is concluded that R12 methods will soon replace basis set extrapolation approaches for high accuracy electronic structure applications such as computing QFFs and spectroscopic data for comparison to high-resolution laboratory or astronomical observations, provided one uses a robust R12 method as we have done here. The specific R12 method used in the present study, CCSD(T)(R12), incorporated a reformulation of one intermediate matrix in order to attain machine precision in the electronic energies. Final QFFs for N(2)H(+) and NO(2)(+) were computed, including basis set extrapolation, core-correlation, scalar

  15. WAVELENGTH ACCURACY OF THE KECK HIRES SPECTROGRAPH AND MEASURING CHANGES IN THE FINE STRUCTURE CONSTANT

    SciTech Connect

    Griest, Kim; Whitmore, Jonathan B.; Wolfe, Arthur M.; Prochaska, J. Xavier; Howk, J. Christopher; Marcy, Geoffrey W. E-mail: jonathan.b.whitmore@gmail.co

    2010-01-01

    We report on an attempt to accurately wavelength calibrate four nights of data taken with the Keck HIRES spectrograph on QSO PHL957, for the purpose of determining whether the fine structure constant was different in the past. Using new software and techniques, we measured the redshifts of various Ni II, Fe II, Si II, etc. lines in a damped Lyalpha system at z = 2.309. Roughly half the data were taken through the Keck iodine cell which contains thousands of well calibrated iodine lines. Using these iodine exposures to calibrate the normal Th-Ar Keck data pipeline output, we found absolute wavelength offsets of 500 m s{sup -1} to 1000 m s{sup -1} with drifts of more than 500 m s{sup -1} over a single night, and drifts of nearly 2000 m s{sup -1} over several nights. These offsets correspond to an absolute redshift of uncertainty of about DELTAz approx 10{sup -5}(DELTAlambda approx 0.02 A), with daily drifts of around DELTAz approx 5 x 10{sup -6} (DELTAlambda approx 0.01 A), and multiday drifts of nearly DELTAz approx 2 x 10{sup -5}(approx0.04 A). The causes of the wavelength offsets are not known, but since claimed shifts in the fine structure constant would result in velocity shifts of less than 100 m s{sup -1}, this level of systematic uncertainty may make it difficult to use Keck HIRES data to constrain the change in the fine structure constant. Using our calibrated data, we applied both our own fitting software and standard fitting software to measure DELTAalpha/alpha, but discovered that we could obtain results ranging from significant detection of either sign, to strong null limits, depending upon which sets of lines and which fitting method were used. We thus speculate that the discrepant results on DELTAalpha/alpha reported in the literature may be due to random fluctuations coming from underestimated systematic errors in wavelength calibration and fitting procedure.

  16. Millikan's measurement of Planck's constant

    NASA Astrophysics Data System (ADS)

    Franklin, Allan

    2013-12-01

    Robert Millikan is famous for measuring the charge of the electron. His result was better than any previous measurement and his method established that there was a fundamental unit of charge, or charge quantization. He is less well-known for his measurement of Planck's constant, although, as discussed below, he is often mistakenly given credit for providing significant evidence in support of Einstein's photon theory of light.1 His Nobel Prize citation was "for his work on the elementary electric charge of electricity and the photoelectric effect," an indication of the significance of his work on the photoelectric effect.

  17. Chandra Independently Determines Hubble Constant

    NASA Astrophysics Data System (ADS)

    2006-08-01

    A critically important number that specifies the expansion rate of the Universe, the so-called Hubble constant, has been independently determined using NASA's Chandra X-ray Observatory. This new value matches recent measurements using other methods and extends their validity to greater distances, thus allowing astronomers to probe earlier epochs in the evolution of the Universe. "The reason this result is so significant is that we need the Hubble constant to tell us the size of the Universe, its age, and how much matter it contains," said Max Bonamente from the University of Alabama in Huntsville and NASA's Marshall Space Flight Center (MSFC) in Huntsville, Ala., lead author on the paper describing the results. "Astronomers absolutely need to trust this number because we use it for countless calculations." Illustration of Sunyaev-Zeldovich Effect Illustration of Sunyaev-Zeldovich Effect The Hubble constant is calculated by measuring the speed at which objects are moving away from us and dividing by their distance. Most of the previous attempts to determine the Hubble constant have involved using a multi-step, or distance ladder, approach in which the distance to nearby galaxies is used as the basis for determining greater distances. The most common approach has been to use a well-studied type of pulsating star known as a Cepheid variable, in conjunction with more distant supernovae to trace distances across the Universe. Scientists using this method and observations from the Hubble Space Telescope were able to measure the Hubble constant to within 10%. However, only independent checks would give them the confidence they desired, considering that much of our understanding of the Universe hangs in the balance. Chandra X-ray Image of MACS J1149.5+223 Chandra X-ray Image of MACS J1149.5+223 By combining X-ray data from Chandra with radio observations of galaxy clusters, the team determined the distances to 38 galaxy clusters ranging from 1.4 billion to 9.3 billion

  18. Henry's law constants of polyols

    NASA Astrophysics Data System (ADS)

    Compernolle, S.; Müller, J.-F.

    2014-05-01

    Henry's law constants (HLC) are derived for several polyols bearing between 2 and 6 hydroxyl groups, based on literature data for water activity, vapour pressure and/or solubility. Depending on the case, infinite dilution activity coefficients (IDACs), solid state pressures or activity coefficient ratios are obtained as intermediary results. For most compounds, these are the first values reported, while others compare favourably with literature data in most cases. Using these values and those from a previous work (Compernolle and Müller, 2014), an assessment is made on the partitioning of polyols, diacids and hydroxy acids to droplet and aqueous aerosol.

  19. THE UV LUMINOSITY FUNCTION OF STAR-FORMING GALAXIES VIA DROPOUT SELECTION AT REDSHIFTS z {approx} 7 AND 8 FROM THE 2012 ULTRA DEEP FIELD CAMPAIGN

    SciTech Connect

    Schenker, Matthew A.; Ellis, Richard S.; Robertson, Brant E.; Schneider, Evan; Ono, Yoshiaki; Ouchi, Masami; Stark, Daniel P.; McLure, Ross J.; Dunlop, James S.; Bowler, Rebecca A. A.; Curtis-Lake, Emma; Rogers, Alexander B.; Cirasuolo, Michele; Koekemoer, Anton; Charlot, Stephane; Furlanetto, Steven R.

    2013-05-10

    We present a catalog of high-redshift star-forming galaxies selected to lie within the redshift range z {approx_equal} 7-8 using the Ultra Deep Field 2012 (UDF12), the deepest near-infrared (near-IR) exposures yet taken with the Hubble Space Telescope (HST). As a result of the increased near-IR exposure time compared to previous HST imaging in this field, we probe {approx}0.65 (0.25) mag fainter in absolute UV magnitude, at z {approx} 7 (8), which increases confidence in a measurement of the faint end slope of the galaxy luminosity function. Through a 0.7 mag deeper limit in the key F105W filter that encompasses or lies just longward of the Lyman break, we also achieve a much-refined color-color selection that balances high redshift completeness and a low expected contamination fraction. We improve the number of dropout-selected UDF sources to 47 at z {approx} 7 and 27 at z {approx} 8. Incorporating brighter archival and ground-based samples, we measure the z {approx_equal} 7 UV luminosity function to an absolute magnitude limit of M{sub UV} = -17 and find a faint end Schechter slope of {alpha}=-1.87{sup +0.18}{sub -0.17}. Using a similar color-color selection at z {approx_equal} 8 that takes our newly added imaging in the F140W filter into account, and incorporating archival data from the HIPPIES and BoRG campaigns, we provide a robust estimate of the faint end slope at z {approx_equal} 8, {alpha}=-1.94{sup +0.21}{sub -0.24}. We briefly discuss our results in the context of earlier work and that derived using the same UDF12 data but with an independent photometric redshift technique.

  20. Stellar Populations of Lyman Break Galaxies at z approx. to 1-3 in the HST/WFC3 Early Release Science Observations

    NASA Technical Reports Server (NTRS)

    Hathi, N. P.; Cohen, S. H.; Ryan, R. E., Jr.; Finkelstein, S. L.; McCarthy, P. J.; Windhorst, R. A.; Yan, H.; Koekemoer, A. M.; Rutkowski, M. J.; OConnell, R. W.; Straughn, A. N.; Balick, B.; Bond, H. E.; Calzetti, D.; Disney, M. J.; Dopita, M. A.; Frogel, Jay A.; Hall, D. N. B.; Holtzman, J. A.; Kimble, R. A.; Paresce, F.; Saha, A.; Silk, J. I.; Tauger, J. T.; Young, E. T.

    2012-01-01

    We analyze the spectral energy distributions (SEDs) of Lyman break galaxies . (LBGs) at z approx = 1-3 selected using the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) UVIS channel filters. These HST /WFC3 obse,rvations cover about 50 arcmin2 in the GOODS-South field as a part of the WFC3 Early Release Science program. These LBGs at z approx = 1-3 are selected using dropout selection criteria similar to high redshift LBGs. The deep multi-band photometry in this field is used to identify best-fit SED models, from which we infer the following results: (1) the photometric redshift estimate of these dropout selected LBGs is accurate to within few percent; (2) the UV spectral slope f3 is redder than at high redshift (z > 3), where LBGs are less dusty; (3) on average, LBGs at .z approx = 1-3 are massive, dustier and more highly star-forming, compared to LBGs at higher redshifts with similar luminosities, though their median values are similar within 1a uncertainties. This could imply that identical dropout selection technique, at all. redshifts, find physically similar galaxies; and (4) the stellar masses of these LBGs are directly proportional to their UV luminosities with a logarithmic slope of approx 0.46, and star-formation rates are proportional to their stellar masses with a logarithmic slope of approx 0.90. These relations hold true - within luminosities probed in this study - for LBGs from z approx = 1.5 to 5. The star-forming galaxies selected using other color-based techniques show similar correlations at z approx = 2, but to avoid any selection biases, and for direct comparison with LBGs at z > 3, a true Lyman break selection at z approx = 2 is essential. The future HST UV surveys,. both wider and deeper, covering a large luminosity range are important to better understand LBG properties, and their evolution.

  1. THE ROLE OF GALAXY INTERACTION IN ENVIRONMENTAL DEPENDENCE OF THE STAR FORMATION ACTIVITY AT z {approx_equal} 1.2

    SciTech Connect

    Ideue, Y.; Taniguchi, Y.; Shioya, Y.; Kajisawa, M.; Nagao, T.; Trump, J. R.; Iovino, A.; Koekemoer, A. M.; Le Fevre, O.; Ilbert, O.; Scoville, N. Z.

    2012-03-01

    In order to understand environmental effects on star formation in high-redshift galaxies, we investigate the physical relationships between the star formation activity, stellar mass, and environment for z {approx_equal} 1.2 galaxies in the 2 deg{sup 2} COSMOS field. We estimate star formation using the [O II]{lambda}3727 emission line and environment from the local galaxy density. Our analysis shows that for massive galaxies (M{sub *} {approx}> 10{sup 10} M{sub Sun }), the fraction of [O II] emitters in high-density environments ({Sigma}{sub 10th} {approx}> 3.9 Mpc{sup -2}) is 1.7 {+-} 0.4 times higher than in low-density environments ({Sigma}{sub 10th} {approx}< 1.5 Mpc{sup -2}), while the [O II] emitter fraction does not depend on environment for low-mass M{sub *} {approx}< 10{sup 10} M{sub Sun} galaxies. In order to understand what drives these trends, we investigate the role of companion galaxies in our sample. We find that the fraction of [O II] emitters in galaxies with companions is 2.4 {+-} 0.5 times as high as that in galaxies without companions at M{sub *} {approx}> 10{sup 10} M{sub Sun }. In addition, massive galaxies are more likely to have companions in high-density environments. However, although the number of star-forming galaxies increases for massive galaxies with close companions and in dense environments, the average star formation rate of star-forming galaxies at a given mass is independent of environment and the presence/absence of a close companion. These results suggest that interactions and/or mergers in a high-density environment could induce star formation in massive galaxies at z {approx} 1.2, increasing the fraction of star-forming galaxies with M{sub *} {approx}> 10{sup 10} M{sub Sun }.

  2. Theoretical calculations of stability constants and pKa values of metal complexes in solution: application to pyridoxamine-copper(II) complexes and their biological implications in AGE inhibition.

    PubMed

    Casasnovas, Rodrigo; Ortega-Castro, Joaquín; Donoso, Josefa; Frau, Juan; Muñoz, Francisco

    2013-10-14

    Accurate prediction of thermodynamic constants of chemical reactions in solution is one of the current challenges in computational chemistry. We report a scheme for predicting stability constants (log β) and pKa values of metal complexes in solution by means of calculating free energies of ligand- and proton-exchange reactions using Density Functional Theory calculations in combination with a continuum solvent model. The accuracy of the predicted log β and pKa values (mean absolute deviations of 1.4 and 0.2 units respectively) is equivalent to the experimental uncertainties. This theoretical methodology provides direct knowledge of log β and pKa values of major and minor species, so it is of potential use in combination with experimental techniques to obtain a detailed description of the microscopic equilibria. In particular, the proposed methodology is shown to be especially useful for obtaining the real acidity constants of those chelates where the metal-ligand coordination changes as a result of ligand deprotonation. The stability and acidity constants of pyridoxamine-Cu(2+) chelates calculated with the proposed methodology show that pyridoxamine is an efficient scavenging agent of Cu(2+) under physiological pH conditions. This is of special interest as Cu(2+) overload is involved in the formation of advanced glycation end-products (AGEs) and their associated degenerative medical conditions. PMID:23999915

  3. THE CIRCUMGALACTIC MEDIUM OF MASSIVE GALAXIES AT z {approx} 3: A TEST FOR STELLAR FEEDBACK, GALACTIC OUTFLOWS, AND COLD STREAMS

    SciTech Connect

    Shen Sijing; Madau, Piero; Prochaska, J. Xavier; Guedes, Javiera; Mayer, Lucio; Wadsley, James

    2013-03-10

    We present new results on the kinematics, thermal and ionization state, and spatial distribution of metal-enriched gas in the circumgalactic medium (CGM) of massive galaxies at redshift {approx}3, using the Eris suite of cosmological hydrodynamic ''zoom-in'' simulations. The reference run adopts a blastwave scheme for supernova feedback that produces large-scale galactic outflows, a star formation recipe based on a high gas density threshold, metal-dependent radiative cooling, and a model for the diffusion of metals and thermal energy. The effect of the local UV radiation field is added in post-processing. The CGM (defined as all gas at R > 0.2 R{sub vir} = 10 kpc, where R{sub vir} is the virial radius) contains multiple phases having a wide range of physical conditions, with more than half of its heavy elements locked in a warm-hot component at T > 10{sup 5} K. Synthetic spectra, generated by drawing sightlines through the CGM, produce interstellar absorption-line strengths of Ly{alpha}, C II, C IV, Si II, and Si IV as a function of the galactocentric impact parameter (scaled to the virial radius) that are in broad agreement with those observed at high redshift by Steidel et al. The covering factor of absorbing material declines less rapidly with impact parameter for Ly{alpha} and C IV compared to C II, Si IV, and Si II, with Ly{alpha} remaining strong (W{sub Ly{alpha}} > 300 mA) to {approx}> 5 R{sub vir} = 250 kpc. Only about one third of all the gas within R{sub vir} is outflowing. The fraction of sightlines within one virial radius that intercept optically thick, N{sub H{sub I}}>10{sup 17.2} cm{sup -2} material is 27%, in agreement with recent observations by Rudie et al. Such optically thick absorption is shown to trace inflowing ''cold'' streams that penetrate deep inside the virial radius. The streams, enriched to metallicities above 0.01 solar by previous episodes of star formation in the main host and in nearby dwarfs, are the origin of strong (N{sub C

  4. Stability constant estimator user`s guide

    SciTech Connect

    Hay, B.P.; Castleton, K.J.; Rustad, J.R.

    1996-12-01

    The purpose of the Stability Constant Estimator (SCE) program is to estimate aqueous stability constants for 1:1 complexes of metal ions with ligands by using trends in existing stability constant data. Such estimates are useful to fill gaps in existing thermodynamic databases and to corroborate the accuracy of reported stability constant values.

  5. CO J = 2-1 LINE EMISSION IN CLUSTER GALAXIES AT z {approx} 1: FUELING STAR FORMATION IN DENSE ENVIRONMENTS

    SciTech Connect

    Wagg, Jeff; Pope, Alexandra; Alberts, Stacey; Armus, Lee; Desai, Vandana; Brodwin, Mark; Bussmann, Robert S.; Dey, Arjun; Jannuzi, Buell; Le Floc'h, Emeric; Melbourne, Jason; Stern, Daniel

    2012-06-20

    We present observations of CO J = 2-1 line emission in infrared-luminous cluster galaxies at z {approx} 1 using the IRAM Plateau de Bure Interferometer. Our two primary targets are optically faint, dust-obscured galaxies (DOGs) found to lie within 2 Mpc of the centers of two massive (>10{sup 14} M{sub Sun }) galaxy clusters. CO line emission is not detected in either DOG. We calculate 3{sigma} upper limits to the CO J = 2-1 line luminosities, L'{sub CO} < 6.08 Multiplication-Sign 10{sup 9} and <6.63 Multiplication-Sign 10{sup 9} K km s{sup -1} pc{sup 2}. Assuming a CO-to-H{sub 2} conversion factor derived for ultraluminous infrared galaxies in the local universe, this translates to limits on the cold molecular gas mass of M{sub H{sub 2}}< 4.86 Multiplication-Sign 10{sup 9} M{sub Sun} and M{sub H{sub 2}}< 5.30 Multiplication-Sign 10{sup 9} M{sub Sun }. Both DOGs exhibit mid-infrared continuum emission that follows a power law, suggesting that an active galactic nucleus (AGN) contributes to the dust heating. As such, estimates of the star formation efficiencies in these DOGs are uncertain. A third cluster member with an infrared luminosity, L{sub IR} < 7.4 Multiplication-Sign 10{sup 11} L{sub Sun }, is serendipitously detected in CO J = 2-1 line emission in the field of one of the DOGs located roughly two virial radii away from the cluster center. The optical spectrum of this object suggests that it is likely an obscured AGN, and the measured CO line luminosity is L'{sub CO} = (1.94 {+-} 0.35) Multiplication-Sign 10{sup 10} K km s{sup -1} pc{sup 2}, which leads to an estimated cold molecular gas mass M{sub H{sub 2}}= (1.55{+-}0.28) Multiplication-Sign 10{sup 10} M{sub Sun }. A significant reservoir of molecular gas in a z {approx} 1 galaxy located away from the cluster center demonstrates that the fuel can exist to drive an increase in star formation and AGN activity at the outskirts of high-redshift clusters.

  6. On the Universality of the Kolmogorov Constant in Numerical Simulations of Turbulence

    NASA Technical Reports Server (NTRS)

    Yeung, P. K.; Zhou, Ye

    1997-01-01

    Motivated by a recent survey of experimental data, we examine data on the Kolmogorov spectrum constant in numerical simulations of isotropic turbulence, using results both from previous studies and from new direct numerical simulations over a range of Reynolds numbers (up to 240 on the Taylor scale) at grid resolutions up to 512(exp 3). It is noted that in addition to k(exp -5/3) scaling, identification of a true inertial range requires spectral isotropy in the same wavenumber range. We found that a plateau in the compensated three-dimensional energy spectrum at k(eta) approx. = 0.1 - -0.2, commonly used to infer the Kolmogorov constant from the compensated three-dimensional energy spectrum, actually does not represent proper inertial range behavior. Rather, a proper, if still approximate, inertial range emerges at k(eta) approx. = 0.02 - 0.05 when R(sub lambda) increases beyond 140. The new simulations indicate proportionality constants C(sub 1) and C in the one- and three-dimensional energy spectra respectively about 0.60 and 1.62. If the turbulence were perfectly isotropic then use of isotropy relations in wavenumber space (C(sub 1) = 18/55 C) would imply that C(sub 1) approx. = 0.53 for C = 1.62, in excellent agreement with experiments. However the one- and three-dimensional estimates are not fully consistent, because of departures (due to numerical and statistical limitations) from isotropy of the computed spectra at low wavenumbers. The inertial scaling of structure functions in physical space is briefly addressed. Since DNS is still restricted to moderate Reynolds numbers, an accurate evaluation of the Kolmogorov constant is very difficult. We focus on providing new insights on the interpretation of Kolmogorov 1941 similarity in the DNS literature and do not consider issues pertaining to the refined similarity hypotheses of Kolmogorov (K62).

  7. STELLAR POPULATIONS OF LYMAN BREAK GALAXIES AT z {approx_equal} 1-3 IN THE HST/WFC3 EARLY RELEASE SCIENCE OBSERVATIONS

    SciTech Connect

    Hathi, N. P.; McCarthy, P. J.; Cohen, S. H.; Windhorst, R. A.; Rutkowski, M. J.; Ryan, R. E. Jr.; Koekemoer, A. M.; Bond, H. E.; Finkelstein, S. L.; Yan, H.; O'Connell, R. W.; Straughn, A. N.; Kimble, R. A.; Balick, B.; Calzetti, D.; Disney, M. J.; Dopita, M. A.; Frogel, Jay A.; Hall, D. N. B.; Holtzman, J. A.; and others

    2013-03-10

    We analyze the spectral energy distributions (SEDs) of Lyman break galaxies (LBGs) at z {approx_equal} 1-3 selected using the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) UVIS channel filters. These HST/WFC3 observations cover about 50 arcmin{sup 2} in the GOODS-South field as a part of the WFC3 Early Release Science program. These LBGs at z {approx_equal} 1-3 are selected using dropout selection criteria similar to high-redshift LBGs. The deep multi-band photometry in this field is used to identify best-fit SED models, from which we infer the following results: (1) the photometric redshift estimate of these dropout-selected LBGs is accurate to within few percent; (2) the UV spectral slope {beta} is redder than at high redshift (z > 3), where LBGs are less dusty; (3) on average, LBGs at z {approx_equal} 1-3 are massive, dustier, and more highly star forming, compared to LBGs at higher redshifts with similar luminosities (0.1L* {approx}< L {approx}< 2.5L*), though their median values are similar within 1{sigma} uncertainties. This could imply that identical dropout selection technique, at all redshifts, finds physically similar galaxies; and (4) the stellar masses of these LBGs are directly proportional to their UV luminosities with a logarithmic slope of {approx}0.46, and star formation rates are proportional to their stellar masses with a logarithmic slope of {approx}0.90. These relations hold true-within luminosities probed in this study-for LBGs from z {approx_equal} 1.5 to 5. The star-forming galaxies selected using other color-based techniques show similar correlations at z {approx_equal} 2, but to avoid any selection biases, and for direct comparison with LBGs at z > 3, a true Lyman break selection at z {approx_equal} 2 is essential. The future HST UV surveys, both wider and deeper, covering a large luminosity range are important to better understand LBG properties and their evolution.

  8. Asympotics with positive cosmological constant

    NASA Astrophysics Data System (ADS)

    Bonga, Beatrice; Ashtekar, Abhay; Kesavan, Aruna

    2014-03-01

    Since observations to date imply that our universe has a positive cosmological constant, one needs an extension of the theory of isolated systems and gravitational radiation in full general relativity from the asymptotically flat to asymptotically de Sitter space-times. In current definitions, one mimics the boundary conditions used in asymptotically AdS context to conclude that the asymptotic symmetry group is the de Sitter group. However, these conditions severely restricts radiation and in fact rules out non-zero flux of energy, momentum and angular momentum carried by gravitational waves. Therefore, these formulations of asymptotically de Sitter space-times are uninteresting beyond non-radiative spacetimes. The situation is compared and contrasted with conserved charges and fluxes at null infinity in asymptotically flat space-times.

  9. Henry's law constants of polyols

    NASA Astrophysics Data System (ADS)

    Compernolle, S.; Müller, J.-F.

    2014-12-01

    Henry's law constants (HLC) are derived for several polyols bearing between 2 and 6 hydroxyl groups, based on literature data for water activity, vapour pressure and/or solubility. While deriving HLC and depending on the case, also infinite dilution activity coefficients (IDACs), solid state vapour pressures or activity coefficient ratios are obtained as intermediate results. An error analysis on the intermediate quantities and the obtained HLC is included. For most compounds, these are the first values reported, while others compare favourably with literature data in most cases. Using these values and those from a previous work (Compernolle and Müller, 2014), an assessment is made on the partitioning of polyols, diacids and hydroxy acids to droplet and aqueous aerosol.

  10. Philicities, Fugalities, and Equilibrium Constants.

    PubMed

    Mayr, Herbert; Ofial, Armin R

    2016-05-17

    The mechanistic model of Organic Chemistry is based on relationships between rate and equilibrium constants. Thus, strong bases are generally considered to be good nucleophiles and poor nucleofuges. Exceptions to this rule have long been known, and the ability of iodide ions to catalyze nucleophilic substitutions, because they are good nucleophiles as well as good nucleofuges, is just a prominent example for exceptions from the general rule. In a reaction series, the Leffler-Hammond parameter α = δΔG(⧧)/δΔG° describes the fraction of the change in the Gibbs energy of reaction, which is reflected in the change of the Gibbs energy of activation. It has long been considered as a measure for the position of the transition state; thus, an α value close to 0 was associated with an early transition state, while an α value close to 1 was considered to be indicative of a late transition state. Bordwell's observation in 1969 that substituent variation in phenylnitromethanes has a larger effect on the rates of deprotonation than on the corresponding equilibrium constants (nitroalkane anomaly) triggered the breakdown of this interpretation. In the past, most systematic investigations of the relationships between rates and equilibria of organic reactions have dealt with proton transfer reactions, because only for few other reaction series complementary kinetic and thermodynamic data have been available. In this Account we report on a more general investigation of the relationships between Lewis basicities, nucleophilicities, and nucleofugalities as well as between Lewis acidities, electrophilicities, and electrofugalities. Definitions of these terms are summarized, and it is suggested to replace the hybrid terms "kinetic basicity" and "kinetic acidity" by "protophilicity" and "protofugality", respectively; in this way, the terms "acidity" and "basicity" are exclusively assigned to thermodynamic properties, while "philicity" and "fugality" refer to kinetics

  11. GAS ACCRETION IS DOMINATED BY WARM IONIZED GAS IN MILKY WAY MASS GALAXIES AT z {approx} 0

    SciTech Connect

    Joung, M. Ryan; Putman, Mary E.; Bryan, Greg L.; Fernandez, Ximena; Peek, J. E. G.

    2012-11-10

    We perform high-resolution hydrodynamic simulations of a Milky Way mass galaxy in a fully cosmological setting using the adaptive mesh refinement code, Enzo, and study the kinematics of gas in the simulated galactic halo. We find that the gas inflow occurs mostly along filamentary structures in the halo. The warm-hot (10{sup 5} K 10{sup 6} K) ionized gases are found to dominate the overall mass accretion in the system (with M-dot = 3-5 M {sub Sun} yr{sup -1}) over a large range of distances, extending from the virial radius to the vicinity of the disk. Most of the inflowing gas (by mass) does not cool, and the small fraction that manages to cool does so primarily close to the galaxy (R {approx}< 100 kpc, with more pronounced cooling at smaller R), perhaps comprising the neutral gas that may be detectable as, e.g., high-velocity clouds. The neutral clouds are embedded within larger, accreting filamentary flows, and represent only a small fraction of the total mass inflow rate. The inflowing gas has relatively low metallicity (Z/Z {sub Sun} < 0.2). The outer layers of the filamentary inflows are heated due to compression as they approach the disk. In addition to the inflow, we find high-velocity, metal-enriched outflows of hot gas driven by supernova feedback. Our results are consistent with observations of halo gas at low z.

  12. Synthesis and structural characterization of Al{sub 7}C{sub 3}N{sub 3}-homeotypic aluminum silicon oxycarbonitride, (Al{sub 7-x}Si{sub x})(O{sub y}C{sub z}N{sub 6-y-z}) (x{approx}1.2, y{approx}1.0 and z{approx}3.5)

    SciTech Connect

    Urushihara, Daisuke; Kaga, Motoaki; Asaka, Toru; Nakano, Hiromi; Fukuda, Koichiro

    2011-08-15

    A new aluminum silicon oxycarbonitride, (Al{sub 5.8}Si{sub 1.2})(O{sub 1.0}C{sub 3.5}N{sub 1.5}), has been synthesized and characterized by X-ray powder diffraction (XRPD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX) and electron energy loss spectroscopy (EELS). The title compound is hexagonal with space group P6{sub 3}/mmc and unit-cell dimensions a=0.322508(4) nm, c=3.17193(4) nm and V=0.285717(6) nm{sup 3}. The atom ratios of Al:Si and those of O:C:N were, respectively, determined by EDX and EELS. The initial structural model was successfully derived from the XRPD data by the direct methods and further refined by the Rietveld method. The crystal is most probably composed of four types of domains with nearly the same fraction, each of which is isotypic to Al{sub 7}C{sub 3}N{sub 3} with space group P6{sub 3}mc. The existence of another new oxycarbonitride (Al{sub 6.6}Si{sub 1.4})(O{sub 0.7}C{sub 4.3}N{sub 2.0}), which must be homeotypic to Al{sub 8}C{sub 3}N{sub 4}, has been also demonstrated by XRPD and TEM. - Graphical abstract: A new oxycarbonitride discovered in the Al-Si-O-C-N system, (Al{sub 7-x}Si{sub x})(O{sub y}C{sub z}N{sub 6-y-z}) (x{approx}1.2, y{approx}1.0 and z{approx}3.5). The crystal is composed of four types of domains (I, II, III and IV), and hence the structure is represented by a split-atom model. Individual crystal structures can be regarded as layered structures, which consist of A-type [(Al, Si){sub 4}(O, C, N){sub 4}] unit layers and B-type [(Al, Si)(O, C, N){sub 2}] single layers. Highlights: > (Al{sub 5.8}Si{sub 1.2})(O{sub 1.0}C{sub 3.5}N{sub 1.5}) as a new aluminum silicon oxycarbonitride. > Crystal structure is determined and represented by a split-atom model. > Existence of another new oxycarbonitride (Al{sub 6.6}Si{sub 1.4})(O{sub 0.7}C{sub 4.3}N{sub 2.0}) is demonstrated. > Both new materials are formed by oxidation and nitridation of (Al, Si){sub 6}(O, C){sub 5}.

  13. Three applications of path integrals: equilibrium and kinetic isotope effects, and the temperature dependence of the rate constant of the [1,5] sigmatropic hydrogen shift in (Z)-1,3-pentadiene.

    PubMed

    Zimmermann, Tomáš; Vaníček, Jiří

    2010-11-01

    Recent experiments have confirmed the importance of nuclear quantum effects even in large biomolecules at physiological temperature. Here we describe how the path integral formalism can be used to describe rigorously the nuclear quantum effects on equilibrium and kinetic properties of molecules. Specifically, we explain how path integrals can be employed to evaluate the equilibrium (EIE) and kinetic (KIE) isotope effects, and the temperature dependence of the rate constant. The methodology is applied to the [1,5] sigmatropic hydrogen shift in pentadiene. Both the KIE and the temperature dependence of the rate constant confirm the importance of tunneling and other nuclear quantum effects as well as of the anharmonicity of the potential energy surface. Moreover, previous results on the KIE were improved by using a combination of a high level electronic structure calculation within the harmonic approximation with a path integral anharmonicity correction using a lower level method.

  14. Superintegrable systems on spaces of constant curvature

    SciTech Connect

    Gonera, Cezary Kaszubska, Magdalena

    2014-07-15

    Construction and classification of two-dimensional (2D) superintegrable systems (i.e. systems admitting, in addition to two global integrals of motion guaranteeing the Liouville integrability, the third global and independent one) defined on 2D spaces of constant curvature and separable in the so-called geodesic polar coordinates are presented. The method proposed is applicable to any value of curvature including the case of Euclidean plane, sphere and hyperbolic plane. The main result is a generalization of Bertrand’s theorem on 2D spaces of constant curvature and covers most of the known separable and superintegrable models on such spaces (in particular, the so-called Tremblay–Turbiner–Winternitz (TTW) and Post–Winternitz (PW) models which have recently attracted some interest). -- Highlights: •Classifying 2D superintegrable, separable (polar coordinates) systems on S{sup 2}, R{sup 2}, H{sup 2}. •Construction of radial, angular potentials leading to superintegrability. •Generalization of Bertrand’s theorem covering known models, e.g. Higgs, TTW, PW, and Coulomb.

  15. Exercise Device Would Exert Selectable Constant Resistance

    NASA Technical Reports Server (NTRS)

    Smith, Damon C.

    2003-01-01

    An apparatus called the resistive exercise device (RED) has been proposed to satisfy a requirement for exercise equipment aboard the International Space Station (ISS) that could passively exert a selectable constant load on both the outward and return strokes. The RED could be used alone; alternatively, the RED could be used in combination with another apparatus called the treadmill with vibration isolation and stabilization (TVIS), in which case the combination would be called the subject load device (SLD). The basic RED would be a passive device, but it could incorporate an electric motor to provide eccentric augmentation (augmentation to make the load during inward movement greater than the load during outward movement). The RED concept represents a unique approach to providing a constant but selectable resistive load for exercise for the maintenance and development of muscles. Going beyond the original ISS application, the RED could be used on Earth as resistive weight training equipment. The advantage of the RED over conventional weight-lifting equipment is that it could be made portable and lightweight.

  16. Identification of third-order (approx. 10{sup 6} yrs) and fourth-order (approx. 10{sup 5}/10{sup 4} yrs) stratigraphic cycles in the South Addition, West Cameron Lease Area, Louisiana offshore

    SciTech Connect

    Lowrie, A.; Meeks, P.; Hoffman, K.

    1996-09-01

    In the highly explored South Addition of the West Cameron Lease Area, Louisiana offshore, interpretation of a six-mile ({approx}10 km) seismic section across a single intraslope basin yielded 20 sediment packages. Several interpretive tools were necessary. Seismic stratigraphy indicated that the shallower zone was an outer shelf marked by 8 major sea level oscillations. In the portion between 1 and 3 seconds, seismic stratigraphy and paleontology led to the interpretation of depositional environments such as upper slope, and paleobathymetrically deeper intervals with descent through the section. The intraslope basin, while small, may be viewed as a micro-continental margin. Each sea level oscillation cycle apparently made a distinct progradational unit, decipherable in the seismic data. Fourth order cycles have been provisionally interpreted, throughout most of the entire 3.7 second section. Such precision is possible only in explored basins with excellent seismic data. The sequence thickness showed a seven-fold variability, from 0.08 to 0.58 seconds. The shallower section, deposited along an outer shelf, has an average individual sequence thickness of 0.13 seconds. Individual seismic sequences in the deeper section, interpreted to have been deposited on an upper slope, have average thicknesses of 0.25 seconds. The thinner sequences of the shallower section are compatible with the notion that the outer shelf was a bypass zone during a glacial epoch. The thicker sequences of the deeper section are the result of deposition onto an aggrading upper slope within an intraslope basin during a highstand.

  17. SPECTROSCOPIC CONFIRMATION OF THREE z-DROPOUT GALAXIES AT z = 6.844-7.213: DEMOGRAPHICS OF Ly{alpha} EMISSION IN z {approx} 7 GALAXIES

    SciTech Connect

    Ono, Yoshiaki; Shimasaku, Kazuhiro; Nakajima, Kimihiko; Ouchi, Masami; Mobasher, Bahram; Nayyeri, Hooshang; Dickinson, Mark; Kartaltepe, Jeyhan S.; Penner, Kyle; Weiner, Benjamin J.; Stern, Daniel; Kashikawa, Nobunari; Spinrad, Hyron

    2012-01-10

    We present the results of our ultra-deep Keck/DEIMOS spectroscopy of z-dropout galaxies in the Subaru Deep Field and Great Observatories Origins Deep Survey's northern field. For 3 out of 11 objects, we detect an emission line at {approx}1 {mu}m with a signal-to-noise ratio of {approx}10. The lines show asymmetric profiles with high weighted skewness values, consistent with being Ly{alpha}, yielding redshifts of z = 7.213, 6.965, and 6.844. Specifically, we confirm the z = 7.213 object in two independent DEIMOS runs with different spectroscopic configurations. The z = 6.965 object is a known Ly{alpha} emitter, IOK-1, for which our improved spectrum at a higher resolution yields a robust skewness measurement. The three z-dropouts have Ly{alpha} fluxes of 3 Multiplication-Sign 10{sup -17} erg s{sup -1} cm{sup -2} and rest-frame equivalent widths EW{sup Ly{alpha}}{sub 0} = 33-43 A. Based on the largest spectroscopic sample of 43 z-dropouts, which is the combination of our and previous data, we find that the fraction of Ly{alpha}-emitting galaxies (EW{sup Ly{alpha}}{sub 0} > 25 A) is low at z {approx} 7; 17% {+-} 10% and 24% {+-} 12% for bright (M{sub UV} {approx_equal} -21) and faint (M{sub UV} {approx_equal} -19.5) galaxies, respectively. The fractions of Ly{alpha}-emitting galaxies drop from z {approx} 6 to 7 and the amplitude of the drop is larger for faint galaxies than for bright galaxies. These two pieces of evidence would indicate that the neutral hydrogen fraction of the intergalactic medium increases from z {approx} 6 to 7 and that the reionization proceeds from high- to low-density environments, as suggested by an inside-out reionization model.

  18. SMALL-SCALE STRUCTURE IN THE SLOAN DIGITAL SKY SURVEY AND {Lambda}CDM: ISOLATED {approx}L{sub *} GALAXIES WITH BRIGHT SATELLITES

    SciTech Connect

    Tollerud, Erik J.; Boylan-Kolchin, Michael; Barton, Elizabeth J.; Bullock, James S.; Trinh, Christopher Q. E-mail: ebarton@uci.edu E-mail: bullock@uci.edu

    2011-09-01

    We use a volume-limited spectroscopic sample of isolated galaxies in the Sloan Digital Sky Survey to investigate the frequency and radial distribution of luminous (M{sub r} {approx}< -18.3) satellites like the Large Magellanic Cloud (LMC) around {approx}L{sub *} Milky Way (MW) analogs and compare our results object-by-object to {Lambda}CDM predictions based on abundance matching in simulations. We show that 12% of MW-like galaxies host an LMC-like satellite within 75 kpc (projected), and 42% within 250 kpc (projected). This implies {approx}10% have a satellite within the distance of the LMC, and {approx}40% of L{sub *} galaxies host a bright satellite within the virialized extent of their dark matter halos. Remarkably, the simulation reproduces the observed frequency, radial dependence, velocity distribution, and luminosity function of observed secondaries exceptionally well, suggesting that {Lambda}CDM provides an accurate reproduction of the observed universe to galaxies as faint as L {approx} 10{sup 9} L{sub sun} on {approx}50 kpc scales. When stacked, the observed projected pairwise velocity dispersion of these satellites is {sigma} {approx_equal} 160 km s{sup -1}, in agreement with abundance-matching expectations for their host halo masses. Finally, bright satellites around L{sub *} primaries are significantly redder than typical galaxies in their luminosity range, indicating that environmental quenching is operating within galaxy-size dark matter halos that typically contain only a single bright satellite. This redness trend is in stark contrast to the MW's LMC, which is unusually blue even for a field galaxy. We suggest that the LMC's discrepant color might be further evidence that it is undergoing a triggered star formation event upon first infall.

  19. Quantitative scanning near-field microwave microscopy for thin film dielectric constant measurement

    SciTech Connect

    Karbassi, A.; Ruf, D.; Bettermann, A. D.; Paulson, C. A.; Weide, Daniel W. van der; Tanbakuchi, H.; Stancliff, R.

    2008-09-15

    We combine a scanning near-field microwave microscope with an atomic force microscope for use in localized thin film dielectric constant measurement, and demonstrate the capabilities of our system through simultaneous surface topography and microwave reflection measurements on a variety of thin films grown on low resistivity silicon substrates. Reflection measurements clearly discriminate the interface between {approx}38 nm silicon nitride and dioxide thin films at 1.788 GHz. Finite element simulation was used to extract the dielectric constants showing the dielectric sensitivity to be {delta}{epsilon}{sub r}=0.1 at {epsilon}{sub r}=6.2, for the case of silicon nitride. These results illustrate the capability of our instrument for quantitative dielectric constant measurement at microwave frequencies.

  20. Is There a Cosmological Constant?

    NASA Technical Reports Server (NTRS)

    Kochanek, Christopher; Oliversen, Ronald J. (Technical Monitor)

    2002-01-01

    The grant contributed to the publication of 18 refereed papers and 5 conference proceedings. The primary uses of the funding have been for page charges, travel for invited talks related to the grant research, and the support of a graduate student, Charles Keeton. The refereed papers address four of the primary goals of the proposal: (1) the statistics of radio lenses as a probe of the cosmological model (#1), (2) the role of spiral galaxies as lenses (#3), (3) the effects of dust on statistics of lenses (#7, #8), and (4) the role of groups and clusters as lenses (#2, #6, #10, #13, #15, #16). Four papers (#4, #5, #11, #12) address general issues of lens models, calibrations, and the relationship between lens galaxies and nearby galaxies. One considered cosmological effects in lensing X-ray sources (#9), and two addressed issues related to the overall power spectrum and theories of gravity (#17, #18). Our theoretical studies combined with the explosion in the number of lenses and the quality of the data obtained for them is greatly increasing our ability to characterize and understand the lens population. We can now firmly conclude both from our study of the statistics of radio lenses and our survey of extinctions in individual lenses that the statistics of optically selected quasars were significantly affected by extinction. However, the limits on the cosmological constant remain at lambda < 0.65 at a 2-sigma confidence level, which is in mild conflict with the results of the Type la supernova surveys. We continue to find that neither spiral galaxies nor groups and clusters contribute significantly to the production of gravitational lenses. The lack of group and cluster lenses is strong evidence for the role of baryonic cooling in increasing the efficiency of galaxies as lenses compared to groups and clusters of higher mass but lower central density. Unfortunately for the ultimate objective of the proposal, improved constraints on the cosmological constant, the next

  1. NEAR-INFRARED SURVEY OF THE GOODS-NORTH FIELD: SEARCH FOR LUMINOUS GALAXY CANDIDATES AT z {approx}> 6.5 {sup ,}

    SciTech Connect

    Hathi, Nimish P.; Mobasher, Bahram; Capak, Peter; Wang, Wei-Hao; Ferguson, Henry C.

    2012-09-20

    We present near-infrared (NIR; J and K{sub s}) survey of the Great Observatories Origins Deep Survey-North (GOODS-N) field. The publicly available imaging data were obtained using the MOIRCS instrument on the 8.2 m Subaru and the WIRCam instrument on the 3.6 m Canada-France-Hawaii Telescope (CFHT). These observations fulfill a serious wavelength gap in the GOODS-N data, i.e., lack of deep NIR observations. We combine the Subaru/MOIRCS and CFHT/WIRCam archival data to generate deep J- and K{sub s}-band images, covering the full GOODS-N field ({approx}169 arcmin{sup 2}) to an AB magnitude limit of {approx}25 mag (3{sigma}). We applied z{sub 850}-band dropout color selection criteria, using the NIR data generated here. We have identified two possible Lyman break galaxy (LBG) candidates at z {approx}> 6.5 with J {approx}< 24.5. The first candidate is a likely LBG at z {approx_equal} 6.5 based on a weak spectral feature tentatively identified as Ly{alpha} line in the deep Keck/DEIMOS spectrum, while the second candidate is a possible LBG at z {approx_equal} 7 based on its photometric redshift. These z{sub 850}-dropout objects, if confirmed, are among the brightest such candidates found so far. At z {approx}> 6.5, their star formation rate is estimated as 100-200 M{sub Sun} yr{sup -1}. If they continue to form stars at this rate, they assemble a stellar mass of {approx}5 Multiplication-Sign 10{sup 10} M{sub Sun} after about 400 million years, becoming the progenitors of massive galaxies observed at z {approx_equal} 5. We study the implication of the z{sub 850}-band dropout candidates discovered here, in constraining the bright end of the luminosity function and understanding the nature of high-redshift galaxies.

  2. A DEEP SEARCH FOR CO J = 2-1 EMISSION FROM A Ly{alpha} BLOB AT z {approx} 6.595

    SciTech Connect

    Wagg, Jeff; Kanekar, Nissim

    2012-06-01

    We have used the Green Bank Telescope to carry out a deep search for redshifted CO J = 2-1 line emission from an extended (>17 kpc) Ly{alpha} blob (LAB), 'Himiko', at z {approx} 6.595. Our non-detection of CO J = 2-1 emission places the strong 3{sigma} upper limit of L'{sub CO} < 1.8 Multiplication-Sign 10{sup 10} Multiplication-Sign ({Delta}V/250){sup 1/2} K km s{sup -1} pc{sup 2} on the CO line luminosity. This is comparable to the best current limits on the CO line luminosity in LABs at z {approx} 3 and lower-luminosity Ly{alpha} emitters at z {approx}> 6.5. High-z LABs appear to have lower CO line luminosities than the host galaxies of luminous quasars and submillimeter galaxies at similar redshifts, despite their high stellar mass. Although the CO-to-H{sub 2} conversion factor is uncertain for galaxies in the early universe, we assume X{sub CO} = 0.8 M{sub Sun} (K km s{sup -1} pc{sup 2}){sup -1} to obtain the limit M(H{sub 2}) <1.4 Multiplication-Sign 10{sup 10} M{sub Sun} on Himiko's molecular gas mass; this is a factor of {approx}> 2.5 lower than the stellar mass in the z {approx} 6.595 LAB.

  3. A FLUX-LIMITED SAMPLE OF z {approx} 1 Ly{alpha} EMITTING GALAXIES IN THE CHANDRA DEEP FIELD SOUTH ,

    SciTech Connect

    Barger, A. J.; Wold, I. G. B.; Cowie, L. L.

    2012-04-20

    We describe a method for obtaining a flux-limited sample of Ly{alpha} emitters from Galaxy Evolution Explorer (GALEX) grism data. We show that the multiple GALEX grism images can be converted into a three-dimensional (two spatial axes and one wavelength axis) data cube. The wavelength slices may then be treated as narrowband images and searched for emission-line galaxies. For the GALEX NUV grism data, the method provides a Ly{alpha} flux-limited sample over the redshift range z = 0.67-1.16. We test the method on the Chandra Deep Field South field, where we find 28 Ly{alpha} emitters with faint continuum magnitudes (NUV > 22) that are not present in the GALEX pipeline sample. We measure the completeness by adding artificial emitters and measuring the fraction recovered. We find that we have an 80% completeness above a Ly{alpha} flux of 10{sup -15} erg cm{sup -2} s{sup -1}. We use the UV spectra and the available X-ray data and optical spectra to estimate the fraction of active galactic nuclei in the selection. We report the first detection of a giant Ly{alpha} blob at z < 1, though we find that these objects are much less common at z = 1 than at z = 3. Finally, we compute limits on the z {approx} 1 Ly{alpha} luminosity function and confirm that there is a dramatic evolution in the luminosity function over the redshift range z = 0-1.

  4. THE EXTENDED HUBBLE SPACE TELESCOPE SUPERNOVA SURVEY: THE RATE OF CORE COLLAPSE SUPERNOVAE TO z {approx} 1

    SciTech Connect

    Dahlen, Tomas; Riess, Adam G.; Strolger, Louis-Gregory; Mattila, Seppo; Kankare, Erkki; Mobasher, Bahram

    2012-09-20

    We use a sample of 45 core collapse supernovae detected with the Advanced Camera for Surveys on board the Hubble Space Telescope to derive the core collapse supernova rate in the redshift range 0.1 < z < 1.3. In redshift bins centered on (z) = 0.39, (z) = 0.73, and (z) = 1.11, we find rates of 3.00{sup +1.28}{sub -0.94} {sup +1.04}{sub -0.57}, 7.39{sup +1.86}{sub -1.52} {sup +3.20}{sub -1.60}, and 9.57{sup +3.76}{sub -2.80} {sup +4.96}{sub -2.80}, respectively, given in units of yr{sup -1} Mpc{sup -3} 10{sup -4} h {sup 3}{sub 70}. The rates have been corrected for host galaxy extinction, including supernovae missed in highly dust-enshrouded environments in infrared bright galaxies. The first errors are statistical while the second ones are the estimated systematic errors. We perform a detailed discussion of possible sources of systematic errors and note that these start to dominate over statistical errors at z > 0.5, emphasizing the need to better control the systematic effects. For example, a better understanding of the amount of dust extinction in the host galaxies and knowledge of the supernova luminosity function, in particular the fraction of faint M {approx}> -15 supernovae, is needed to better constrain the rates. When comparing our results with the core collapse supernova rate based on the star formation rate, we find a good agreement, consistent with the supernova rate following the star formation rate, as expected.

  5. Generating Constant Weight Binary Codes

    ERIC Educational Resources Information Center

    Knight, D.G.

    2008-01-01

    The determination of bounds for A(n, d, w), the maximum possible number of binary vectors of length n, weight w, and pairwise Hamming distance no less than d, is a classic problem in coding theory. Such sets of vectors have many applications. A description is given of how the problem can be used in a first-year undergraduate computational…

  6. Simulating Supercapacitors: Can We Model Electrodes As Constant Charge Surfaces?

    PubMed

    Merlet, Céline; Péan, Clarisse; Rotenberg, Benjamin; Madden, Paul A; Simon, Patrice; Salanne, Mathieu

    2013-01-17

    Supercapacitors based on an ionic liquid electrolyte and graphite or nanoporous carbon electrodes are simulated using molecular dynamics. We compare a simplified electrode model in which a constant, uniform charge is assigned to each carbon atom with a realistic model in which a constant potential is applied between the electrodes (the carbon charges are allowed to fluctuate). We show that the simulations performed with the simplified model do not provide a correct description of the properties of the system. First, the structure of the adsorbed electrolyte is partly modified. Second, dramatic differences are observed for the dynamics of the system during transient regimes. In particular, upon application of a constant applied potential difference, the increase in the temperature, due to the Joule effect, associated with the creation of an electric current across the cell follows Ohm's law, while unphysically high temperatures are rapidly observed when constant charges are assigned to each carbon atom. PMID:26283432

  7. Simulating Supercapacitors: Can We Model Electrodes As Constant Charge Surfaces?

    PubMed

    Merlet, Céline; Péan, Clarisse; Rotenberg, Benjamin; Madden, Paul A; Simon, Patrice; Salanne, Mathieu

    2013-01-17

    Supercapacitors based on an ionic liquid electrolyte and graphite or nanoporous carbon electrodes are simulated using molecular dynamics. We compare a simplified electrode model in which a constant, uniform charge is assigned to each carbon atom with a realistic model in which a constant potential is applied between the electrodes (the carbon charges are allowed to fluctuate). We show that the simulations performed with the simplified model do not provide a correct description of the properties of the system. First, the structure of the adsorbed electrolyte is partly modified. Second, dramatic differences are observed for the dynamics of the system during transient regimes. In particular, upon application of a constant applied potential difference, the increase in the temperature, due to the Joule effect, associated with the creation of an electric current across the cell follows Ohm's law, while unphysically high temperatures are rapidly observed when constant charges are assigned to each carbon atom.

  8. Determination of the 3He+α→7Be asymptotic normalization coefficients, the nuclear vertex constants, and their application for the extrapolation of the 3He(α,γ)7Be astrophysical S factors to the solar energy region

    NASA Astrophysics Data System (ADS)

    Tursunmahatov, Q. I.; Yarmukhamedov, R.

    2012-04-01

    A new analysis of the modern astrophysical S factors for the direct-capture 3He(α,γ)7Be reaction, precisely measured in recent works [B.S. Nara Singh , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.93.262503 93, 262503 (2004); D. Bemmerer , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.97.122502 97, 122502 (2006);F. Confortola , Phys. Rev. CPRVCAN0556-281310.1103/PhysRevC.75.065803 75, 065803 (2007), Gy. Gyürky , Phys. Rev. CPRVCAN0556-281310.1103/PhysRevC.75.035805 75, 035805 (2007), T. A. D. Brown , Phys. Rev. CPRVCAN0556-281310.1103/PhysRevC.76.055801 76, 055801 (2007), and A. Di Leva, , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.102.232502 102, 232502 (2009)], has been carried out within the modified two-body potential approach. New estimates are obtained for the “indirectly determined” values of the asymptotic normalization constants and the respective nuclear vertex constants for 3He+α→7Be(g.s.) and 3He+α→7Be(0.429 MeV) as well as the astrophysical S factors S34(E) at E≤90 keV, including E=0. The values of asymptotic normalization constants have been used to obtain the values of the ratio of the α-particle spectroscopic factors for the mirror (7Li7Be) pair.

  9. High voltage compliance constant current ballast

    NASA Technical Reports Server (NTRS)

    Rosenthal, L. A.

    1976-01-01

    A ballast circuit employing a constant current diode and a vacuum tube that can provide a constant current over a voltage range of 1000 volts. The simple circuit can prove useful in studying voltage breakdown characteristics.

  10. Temporal variation of coupling constants and nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Oberhummer, H.; Csótó, A.; Fairbairn, M.; Schlattl, H.; Sharma, M. M.

    2003-05-01

    We investigate the triple-alpha process and the Oklo phenomenon to obtain constraints on possible cosmological time variations of fundamental constants. Specifically we study cosmological temporal constraints for the fine structure constant and nucleon and meson masses.

  11. THE HALO MASSES AND GALAXY ENVIRONMENTS OF HYPERLUMINOUS QSOs AT z {approx_equal} 2.7 IN THE KECK BARYONIC STRUCTURE SURVEY

    SciTech Connect

    Trainor, Ryan F.; Steidel, Charles C.

    2012-06-10

    We present an analysis of the galaxy distribution surrounding 15 of the most luminous ({approx}> 10{sup 14} L{sub Sun }; M{sub 1450} {approx_equal} -30) QSOs in the sky with z {approx_equal} 2.7. Our data are drawn from the Keck Baryonic Structure Survey, which has been optimized to examine the small-scale interplay between galaxies and the intergalactic medium during the peak of the galaxy formation era at z {approx} 2-3. In this work, we use the positions and spectroscopic redshifts of 1558 galaxies that lie within {approx}3' (4.2 h{sup -1} comoving Mpc; cMpc) of the hyperluminous QSO (HLQSO) sight line in 1 of 15 independent survey fields, together with new measurements of the HLQSO systemic redshifts. By combining the spatial and redshift distributions, we measure the galaxy-HLQSO cross-correlation function, the galaxy-galaxy autocorrelation function, and the characteristic scale of galaxy overdensities surrounding the sites of exceedingly rare, extremely rapid, black hole accretion. On average, the HLQSOs lie within significant galaxy overdensities, characterized by a velocity dispersion {sigma}{sub v} {approx_equal} 200 km s{sup -1} and a transverse angular scale of {approx}25'' ({approx}200 physical kpc). We argue that such scales are expected for small groups with log (M{sub h}/M{sub Sun }) {approx_equal} 13. The galaxy-HLQSO cross-correlation function has a best-fit correlation length r{sup GQ}{sub 0} = (7.3 {+-} 1.3) h{sup -1} cMpc, while the galaxy autocorrelation measured from the spectroscopic galaxy sample in the same fields has r{sup GG}{sub 0} = (6.0 {+-} 0.5) h{sup -1} cMpc. Based on a comparison with simulations evaluated at z {approx} 2.6, these values imply that a typical galaxy lives in a host halo with log (M{sub h}/M{sub Sun }) = 11.9 {+-} 0.1, while HLQSOs inhabit host halos of log (M{sub h}/M{sub Sun }) = 12.3 {+-} 0.5. In spite of the extremely large black hole masses implied by their observed luminosities [log (M{sub BH}/M{sub Sun

  12. SPECTRAL ENERGY DISTRIBUTIONS OF LOW-LUMINOSITY RADIO GALAXIES AT z {approx}1-3: A HIGH-z VIEW OF THE HOST/AGN CONNECTION

    SciTech Connect

    Baldi, Ranieri D.; Chiaberge, Marco; Rodriguez-Zaurin, Javier; Deustua, Susana; Sparks, William B.; Capetti, Alessandro

    2013-01-01

    We study the spectral energy distributions, SEDs (from FUV to MIR bands), of the first sizeable sample of 34 low-luminosity radio galaxies at high redshifts, selected in the COSMOS field. To model the SEDs, we use two different template-fitting techniques: (1) the Hyperz code that only considers single stellar templates and (2) our own developed technique 2SPD that also includes the contribution from a young stellar population and dust emission. The resulting photometric redshifts range from z {approx} 0.7 to 3 and are in substantial agreement with measurements from earlier work, but significantly more accurate. The SED of most objects is consistent with a dominant contribution from an old stellar population with an age {approx}1-3 Multiplication-Sign 10{sup 9} years. The inferred total stellar mass range is {approx}10{sup 10}-10{sup 12} M {sub Sun }. Dust emission is needed to account for the 24 {mu}m emission in 15 objects. Estimates of the dust luminosity yield values in the range L {sub dust} {approx} 10{sup 43.5}-10{sup 45.5} erg s{sup -1}. The global dust temperature, crudely estimated for the sources with an MIR excess, is {approx}300-850 K. A UV excess is often observed with a luminosity in the range {approx}10{sup 42}-10{sup 44} erg s{sup -1} at 2000 A rest frame. Our results show that the hosts of these high-z low-luminosity radio sources are old massive galaxies, similar to the local FR Is. However, the UV and MIR excesses indicate the possible significant contribution from star formation and/or nuclear activity in such bands, not seen in low-z FR Is. Our sources display a wide variety of properties: from possible quasars at the highest luminosities to low-luminosity old galaxies.

  13. The Not so Constant Gravitational "Constant" G as a Function of Quantum Vacuum

    NASA Astrophysics Data System (ADS)

    Maxmilian Caligiuri, Luigi

    Gravitation is still the less understood among the fundamental forces of Nature. The ultimate physical origin of its ruling constant G could give key insights in this understanding. According to the Einstein's Theory of General Relativity, a massive body determines a gravitational potential that alters the speed of light, the clock's rate and the particle size as a function of the distance from its own center. On the other hand, it has been shown that the presence of mass determines a modification of Zero-Point Field (ZPF) energy density within its volume and in the space surrounding it. All these considerations strongly suggest that also the constant G could be expressed as a function of quantum vacuum energy density somehow depending on the distance from the mass whose presence modifies the ZPF energy structure. In this paper, starting from a constitutive medium-based picture of space, it has been formulated a model of gravitational constant G as a function of Planck's time and Quantum Vacuum energy density in turn depending on the radial distance from center of the mass originating the gravitational field, supposed as spherically symmetric. According to this model, in which gravity arises from the unbalanced physical vacuum pressure, gravitational "constant" G is not truly unchanging but slightly varying as a function of the distance from the mass source of gravitational potential itself. An approximate analytical form of such dependence has been discussed. The proposed model, apart from potentially having deep theoretical consequences on the commonly accepted picture of physical reality (from cosmology to matter stability), could also give the theoretical basis for unthinkable applications related, for example, to the field of gravity control and space propulsion.

  14. Development of low dielectric constant alumina-based ceramics for microelectronic substrates

    SciTech Connect

    Wu, S. J.

    1993-05-01

    The performance of high speed computers depends not only on IC chips, but also on the signal propagation speed between these chips. The signal propagation delay in a computer is determined by the dielectric constant of the substrate material to which the IC chips are attached. In this study, a ceramic substrate with a low dielectric constant (k {approx} 5.0) has been developed. When compared with the traditional alumina substrate (k {approx} 10.0), the new material corresponds to a 37% decrease in the signal propagation delay. Glass hollow spheres are used to introduce porosity (k = 1.0) to the alumina matrix in a controlled manner. A surface coating technique via heterogeneous nucleation in aqueous solution has been used to improve the high temperature stability of these spheres. After sintering at 1,400 C, isolated spherical pores are uniformly distributed in the almost fully dense alumina matrix; negligible amounts of matrix defects can be seen. All pores are isolated from each other. Detailed analyses of the chemical composition find that the sintered sample consists of {alpha}-alumina, mullite and residual glass. Mullite is the chemical reaction product of alumina and the glass spheres. Residual glass exists because current firing conditions do not complete the mullitization reaction. The dielectric constant of the sintered sample is measured and then compared with the predicted value using Maxwell`s model. Mechanical strength is evaluated by a four-point bending test. Although the flexural strength decreases exponentially with porosity, samples with 34% porosity (k {approx} 5.0) still maintain adequate mechanical strength for the proper operation of a microelectronic substrate.

  15. Dynamics of the quasielastic {sup 16}O(e,e{sup '}p) reaction at Q{sup 2}{approx_equal}0.8 (GeV/c){sup 2}

    SciTech Connect

    Fissum, K.G.; Liang, M.; Cardman, L.S.; Chen, J.-P.; Jager, C.W. de; Domingo, J.; Gomez, J.; LeRose, J.J.; Michaels, R.; Nanda, S.; Saha, A.; Wojtsekhowski, B.; Anderson, B.D.; Khayat, M.; Manley, D.M.; Petratos, G.G.; Prout, D.L.; Watson, J. W.; Aniol, K.A.; Auerbach, L.

    2004-09-01

    The physics program in Hall A at Jefferson Lab commenced in the summer of 1997 with a detailed investigation of the {sup 16}O(e,e{sup '}p) reaction in quasielastic, constant (q,{omega}) kinematics at Q{sup 2}{approx_equal}0.8 (GeV/c){sup 2}, q{approx_equal}1 GeV/c, and {omega}{approx_equal}445 MeV. Use of a self-calibrating, self-normalizing, thin-film waterfall target enabled a systematically rigorous measurement. Five-fold differential cross-section data for the removal of protons from the 1p-shell have been obtained for 0approx_equal}300 MeV/c. For 25approx_equal}50 MeV/c, proton knockout from the 1s{sub 1/2}-state dominates, and ROMEA calculations do an excellent job of explaining the data. However, as p{sub miss} increases, the single-particle behavior of the reaction is increasingly hidden by more complicated processes, and for 280

  16. Two-body problem with the cosmological constant and observational constraints

    SciTech Connect

    Jetzer, Philippe; Sereno, Mauro

    2006-02-15

    We discuss the influence of the cosmological constant on the gravitational equations of motion of bodies with arbitrary masses and eventually solve the two-body problem. Observational constraints are derived from measurements of the periastron advance in stellar systems, in particular, binary pulsars and the solar system. Up to now, Earth and Mars data give the best constraint, {lambda} < or approx. 10{sup -36} km{sup -2}; bounds from binary pulsars are potentially competitive with limits from interplanetary measurements. If properly accounting for the gravito-magnetic effect, this upper limit on {lambda} could greatly improve in the near future thanks to new data from planned or already operating space missions.

  17. Determination of Acidity Constants by Gradient Flow-Injection Titration

    ERIC Educational Resources Information Center

    Conceicao, Antonio C. L.; Minas da Piedade, Manuel E.

    2006-01-01

    A three-hour laboratory experiment, designed for an advanced undergraduate course in instrumental analysis that illustrates the application of the gradient chamber flow-injection titration (GCFIT) method with spectrophotometric detection to determine acidity constants is presented. The procedure involves the use of an acid-base indicator to obtain…

  18. Dielectric-constant-enhanced hall mobility in complex oxides.

    PubMed

    Siemons, Wolter; McGuire, Michael A; Cooper, Valentino R; Biegalski, Michael D; Ivanov, Ilia N; Jellison, Gerald E; Boatner, Lynn A; Sales, Brian C; Christen, Hans M

    2012-08-01

    The high dielectric constant of doped ferroelectric KTa(1-x)Nb(x)O(3) is shown to increase dielectric screening of electron scatterers, and thus to enhance the electronic mobility, overcoming one of the key limitations in the application of functional oxides. These observations are based on transport and optical measurements as well as band structure calculations.

  19. Apparatus producing constant cable tension for intermittent demand

    DOEpatents

    Lauritzen, T.

    1984-05-23

    This invention relates to apparatus for producing constant tension in cable or the like when it is unreeled and reeled from a drum or spool under conditions of intermittent demand. The invention is particularly applicable to the handling of superconductive cable, but the invention is also applicable to the unreeling and reeling of other strands, such as electrical cable, wire, cord, other cables, fish line, wrapping paper and numerous other materials.

  20. Application of the moiré deflectometry on divergent laser beam to the measurement of the angle of arrival fluctuations and the refractive index structure constant in the turbulent atmosphere.

    PubMed

    Rasouli, Saifollah; Tavassoly, M Taghi

    2008-05-01

    When a slightly divergent laser beam passes through a turbulent ground level atmosphere and strikes a linear grating, fluctuating self-images are formed at Talbot distances. By superimposing a similar grating on one of the self-images, even for the case of parallel gratings' lines, fluctuating moiré fringes are formed owing to the beam divergence. Recording the successive moiré patterns by a CCD camera and feeding them to a computer, after filtering the higher spatial frequencies, produces highly magnified fluctuations of the laser beam. Using moiré fringe fluctuations we have calculated the fluctuations of the angle of arrival and the atmospheric refractive index structure constant. The implementation of the technique is straightforward, a telescope is not required, fluctuations can be magnified more than ten times, and the precision of the technique is similar to that reported in our previous work.

  1. Closed-form expression for the magnetic shielding constant of the relativistic hydrogenlike atom in an arbitrary discrete energy eigenstate: Application of the Sturmian expansion of the generalized Dirac-Coulomb Green function

    NASA Astrophysics Data System (ADS)

    Stefańska, Patrycja

    2016-07-01

    We present analytical derivation of the closed-form expression for the dipole magnetic shielding constant of a Dirac one-electron atom being in an arbitrary discrete energy eigenstate. The external magnetic field, by which the atomic state is perturbed, is assumed to be weak, uniform, and time independent. With respect to the atomic nucleus we assume that it is pointlike, spinless, motionless, and of charge Z e . Calculations are based on the Sturmian expansion of the generalized Dirac-Coulomb Green function [R. Szmytkowski, J. Phys. B 30, 825 (1997), 10.1088/0953-4075/30/4/007; erratum R. Szmytkowski, J. Phys. B 30, 2747(E) (1997), 10.1088/0953-4075/30/11/023], combined with the theory of hypergeometric functions. The final result is of an elementary form and agrees with corresponding formulas obtained earlier by other authors for some particular states of the atom.

  2. Fundamental Constants and Tests with Simple Atoms

    NASA Astrophysics Data System (ADS)

    Tan, Joseph

    2015-05-01

    Precise measurements with simple atoms provide stringent tests of physical laws, improving the accuracy of fundamental constants--a set of which will be selected to fully define the proposed New International System of Units. This talk focuses on the atomic constants (namely, the Rydberg constant, the fine-structure constant, and the proton charge radius), discussing the impact of the proton radius obtained from the Lamb-shift measurements in muonic hydrogen. Significant discrepancies persist despite years of careful examination: the slightly smaller proton radius obtained from muonic hydrogen requires the Rydberg constant and the fine-structure constant to have values that disagree significantly with the CODATA recommendations. After giving a general overview, I will discuss our effort to produce one-electron ions in Rydberg states, to enable a different test of theory and measurement of the Rydberg constant.

  3. Recent advances in thermal desorption-gas chromatography-mass spectrometery method to eliminate the matrix effect between air and water samples: application to the accurate determination of Henry's law constant.

    PubMed

    Kim, Yong-Hyun; Kim, Ki-Hyun

    2014-05-16

    Accurate values for the Henry's law constants are essential to describe the environmental dynamics of a solute, but substantial errors are recognized in many reported data due to practical difficulties in measuring solubility and/or vapor pressure. Despite such awareness, validation of experimental approaches has scarcely been made. An experimental approach based on thermal desorption-gas chromatography-mass spectrometery (TD-GC-MS) method was developed to concurrently allow the accurate determination of target compounds from the headspace and aqueous samples in closed equilibrated system. The analysis of six aromatics and eight non-aromatic oxygenates was then carried out in a static headspace mode. An estimation of the potential bias and mass balance (i.e., sum of mass measured individually from gas and liquid phases vs. the mass initially added to the system) demonstrates compound-specific phase dependency so that the best results are obtained by aqueous (less soluble aromatics) and headspace analysis (more soluble non-aromatics). Accordingly, we were able to point to the possible sources of biases in previous studies and provide the best estimates for the Henry's constants (Matm(-1)): benzene (0.17), toluene (0.15), p-xylene (0.13), m-xylene (0.13), o-xylene (0.19), styrene (0.27); propionaldehyde (9.26), butyraldehyde (6.19), isovaleraldehyde (2.14), n-valeraldehyde (3.98), methyl ethyl ketone (10.5), methyl isobutyl ketone (3.93), n-butyl acetate (2.41), and isobutyl alcohol (22.2).

  4. Recent advances in thermal desorption-gas chromatography-mass spectrometery method to eliminate the matrix effect between air and water samples: application to the accurate determination of Henry's law constant.

    PubMed

    Kim, Yong-Hyun; Kim, Ki-Hyun

    2014-05-16

    Accurate values for the Henry's law constants are essential to describe the environmental dynamics of a solute, but substantial errors are recognized in many reported data due to practical difficulties in measuring solubility and/or vapor pressure. Despite such awareness, validation of experimental approaches has scarcely been made. An experimental approach based on thermal desorption-gas chromatography-mass spectrometery (TD-GC-MS) method was developed to concurrently allow the accurate determination of target compounds from the headspace and aqueous samples in closed equilibrated system. The analysis of six aromatics and eight non-aromatic oxygenates was then carried out in a static headspace mode. An estimation of the potential bias and mass balance (i.e., sum of mass measured individually from gas and liquid phases vs. the mass initially added to the system) demonstrates compound-specific phase dependency so that the best results are obtained by aqueous (less soluble aromatics) and headspace analysis (more soluble non-aromatics). Accordingly, we were able to point to the possible sources of biases in previous studies and provide the best estimates for the Henry's constants (Matm(-1)): benzene (0.17), toluene (0.15), p-xylene (0.13), m-xylene (0.13), o-xylene (0.19), styrene (0.27); propionaldehyde (9.26), butyraldehyde (6.19), isovaleraldehyde (2.14), n-valeraldehyde (3.98), methyl ethyl ketone (10.5), methyl isobutyl ketone (3.93), n-butyl acetate (2.41), and isobutyl alcohol (22.2). PMID:24704185

  5. 46 CFR 153.372 - Gauges and vapor return for cargo vapor pressures exceeding 100 kPa (approx. 14.7 psia).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Gauges and vapor return for cargo vapor pressures... COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Venting Systems § 153.372 Gauges and vapor return for cargo vapor pressures exceeding 100 kPa (approx. 14.7 psia). When table 1 references...

  6. 46 CFR 153.372 - Gauges and vapor return for cargo vapor pressures exceeding 100 kPa (approx. 14.7 psia).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Gauges and vapor return for cargo vapor pressures... COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Venting Systems § 153.372 Gauges and vapor return for cargo vapor pressures exceeding 100 kPa (approx. 14.7 psia). When table 1 references...

  7. 46 CFR 153.372 - Gauges and vapor return for cargo vapor pressures exceeding 100 kPa (approx. 14.7 psia).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Gauges and vapor return for cargo vapor pressures... COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Venting Systems § 153.372 Gauges and vapor return for cargo vapor pressures exceeding 100 kPa (approx. 14.7 psia). When table 1 references...

  8. STELLAR POPULATIONS OF Ly{alpha} EMITTERS AT z {approx} 6-7: CONSTRAINTS ON THE ESCAPE FRACTION OF IONIZING PHOTONS FROM GALAXY BUILDING BLOCKS

    SciTech Connect

    Ono, Yoshiaki; Shimasaku, Kazuhiro; Okamura, Sadanori; Masami Ouchi; Dunlop, James; Farrah, Duncan; McLure, Ross

    2010-12-01

    We investigate the stellar populations of Ly{alpha} emitters (LAEs) at z = 5.7 and 6.6 in a 0.65 deg{sup 2} sky of the Subaru/XMM-Newton Deep Survey (SXDS) Field, using deep images taken with the Subaru/Suprime-Cam, United Kingdom Infrared Telescope/Wide Field Infrared Camera, and Spitzer/Infrared Array Camera (IRAC). We produce stacked multiband images at each redshift from 165 (z = 5.7) and 91 (z = 6.6) IRAC-undetected objects to derive typical spectral energy distributions (SEDs) of z {approx} 6-7 LAEs for the first time. The stacked LAEs have as blue UV continua as the Hubble Space Telescope (HST)/Wide Field Camera 3 (WFC3) z-dropout galaxies of similar M{sub UV}, with a spectral slope {beta} {approx} -3, but at the same time they have red UV-to-optical colors with detection in the 3.6 {mu}m band. Using SED fitting we find that the stacked LAEs have low stellar masses of {approx}(3-10) x 10{sup 7} M{sub sun}, very young ages of {approx}1-3 Myr, negligible dust extinction, and strong nebular emission from the ionized interstellar medium, although the z = 6.6 object is fitted similarly well with high-mass models without nebular emission; inclusion of nebular emission reproduces the red UV-to-optical colors while keeping the UV colors sufficiently blue. We infer that typical LAEs at z {approx} 6-7 are building blocks of galaxies seen at lower redshifts. We find a tentative decrease in the Ly{alpha} escape fraction from z = 5.7 to 6.6, which may imply an increase in the intergalactic medium neutral fraction. From the minimum contribution of nebular emission required to fit the observed SEDs, we place an upper limit on the escape fraction of ionizing photons of f {sup ion}{sub esc} {approx} 0.6 at z = 5.7 and {approx}0.9 at z = 6.6. We also compare the stellar populations of our LAEs with those of stacked HST/WFC3 z-dropout galaxies.

  9. HST-WFC3 Near-Infrared Spectroscopy of Quenched Galaxies at zeta approx 1.5 from the WISP Survey: Stellar Populations Properties

    NASA Technical Reports Server (NTRS)

    Bedregal, A. G.; Scarlata, C.; Henry, A. L.; Atek, H.; Rafelski, M.; Teplitz, H. I.; Dominguez, A.; Siana, B.; Colbert, J. W.; Malkan, M.; Ross, N. R.; Martin, C. L.; Dressler, A.; Bridge, C.; Hathi, N. P.; Masters, D.; McCarthy, P. J.; Rutkowski, M. J.

    2013-01-01

    We combine Hubble Space Telescope (HST) G102 and G141 near-IR (NIR) grism spectroscopy with HST/WFC3- UVIS, HST/WFC3-IR, and Spitzer/IRAC [3.6 microns] photometry to assemble a sample of massive (log(Mstar/M solar mass) at approx 11.0) and quenched (specific star formation rate < 0.01 G/yr(exp -1) galaxies at zeta approx 1.5. Our sample of 41 galaxies is the largest with G102+G141 NIR spectroscopy for quenched sources at these redshifts. In contrast to the local universe, zeta approx 1.5 quenched galaxies in the high-mass range have a wide range of stellar population properties. We find that their spectral energy distributions (SEDs) are well fitted with exponentially decreasing star formation histories and short star formation timescales (tau less than or equal to 100 M/yr). Quenched galaxies also show a wide distribution in ages, between 1 and 4 G/yr. In the (u - r)0-versus-mass space quenched galaxies have a large spread in rest-frame color at a given mass. Most quenched galaxies populate the zeta appro. 1.5 red sequence (RS), but an important fraction of them (32%) have substantially bluer colors. Although with a large spread, we find that the quenched galaxies on the RS have older median ages (3.1 G/yr) than the quenched galaxies off the RS (1.5 G/yr). We also show that a rejuvenated SED cannot reproduce the observed stacked spectra of (the bluer) quenched galaxies off the RS. We derive the upper limit on the fraction of massive galaxies on the RS at zeta approx 1.5 to be <43%.We speculate that the young quenched galaxies off the RS are in a transition phase between vigorous star formation at zeta > 2 and the zeta approx 1.5 RS. According to their estimated ages, the time required for quenched galaxies off the RS to join their counterparts on the z approx. 1.5 RS is of the order of approx. 1G/yr.

  10. PHOTOMETRIC CONSTRAINTS ON THE REDSHIFT OF z {approx} 10 CANDIDATE UDFj-39546284 FROM DEEPER WFC3/IR+ACS+IRAC OBSERVATIONS OVER THE HUDF

    SciTech Connect

    Bouwens, R. J.; Labbe, I.; Franx, M.; Smit, R.; Oesch, P. A.; Illingworth, G. D.; Magee, D.; Gonzalez, V.; Brammer, G.; Spitler, L. R.; Trenti, M.; Carollo, C. M.

    2013-03-01

    Ultra-deep WFC3/IR observations on the HUDF from the HUDF09 program revealed just one plausible z {approx} 10 candidate, UDFj-39546284. UDFj-39546284 had all the properties expected of a galaxy at z {approx} 10 showing (1) no detection in the deep ACS+WFC3 imaging data blueward of the F160W band, exhibiting (2) a blue spectral slope redward of the break, and showing (3) no prominent detection in deep IRAC observations. The new, similarly deep WFC3/IR HUDF12 F160W observations over the HUDF09/XDF allow us to further assess this candidate. These observations show that this candidate, previously only detected at {approx}5.9{sigma} in a single band, clearly corresponds to a real source. It is detected at {approx}5.3{sigma} in the new H{sub 160}-band data and at {approx}7.8{sigma} in the full 85-orbit H{sub 160}-band stack. Interestingly, the non-detection of the source (<1{sigma}) in the new F140W observations suggests a higher redshift. Formally, the best-fit redshift of the source utilizing all the WFC3+ACS (and IRAC+K{sub s} -band) observations is 11.8 {+-} 0.3. However, we consider the z {approx} 12 interpretation somewhat unlikely, since the source would either need to be {approx}20 Multiplication-Sign more luminous than expected or show very high-EW Ly{alpha} emission (which seems improbable given the extensive neutral gas prevalent early in the reionization epoch). Lower-redshift solutions fail if only continuum models are allowed. Plausible lower-redshift solutions require that the H{sub 160}-band flux be dominated by line emission such as H{alpha} or [O III] with extreme EWs. The tentative detection of line emission at 1.6 {mu}m in UDFj-39546284 in a companion paper suggests that such emission may have already been found.

  11. THE ASSEMBLY HISTORY OF DISK GALAXIES. I. THE TULLY-FISHER RELATION TO z {approx_equal} 1.3 FROM DEEP EXPOSURES WITH DEIMOS

    SciTech Connect

    Miller, Sarah H.; Sullivan, Mark; Bundy, Kevin; Ellis, Richard S.; Treu, Tommaso

    2011-11-10

    We present new measures of the evolving scaling relations between stellar mass, luminosity and rotational velocity for a morphologically inclusive sample of 129 disk-like galaxies with z{sub AB} < 22.5 in the redshift range 0.2 approx}90% of our sample, and we model the HST-resolved bulge and disk components in order to accurately de-project our measured velocities, accounting for seeing and dispersion. We demonstrate the merit of these advances by recovering an intrinsic scatter on the stellar mass Tully-Fisher relation a factor of two to three less than in previous studies at intermediate redshift and comparable to that of locally determined relations. With our increased precision, we find that the relation is well established by (z) {approx} 1, with no significant evolution to (z) {approx} 0.3, {Delta}M{sub *} {approx} 0.04 {+-} 0.07 dex. A clearer trend of evolution is seen in the B-band Tully-Fisher relation corresponding to a decline in luminosity of {Delta}M{sub B} {approx} 0.85 {+-} 0.28 magnitudes at fixed velocity over the same redshift range, reflecting the changes in star formation over this period. As an illustration of the opportunities possible when gas masses are available for a sample such as ours, we show how our dynamical and stellar mass data can be used to evaluate the likely contributions of baryons and dark matter to the assembly history of spiral galaxies.

  12. A CANDELS WFC3 GRISM STUDY OF EMISSION-LINE GALAXIES AT z {approx} 2: A MIX OF NUCLEAR ACTIVITY AND LOW-METALLICITY STAR FORMATION

    SciTech Connect

    Trump, Jonathan R.; Kocevski, Dale D.; McGrath, Elizabeth J.; Koo, David C.; Faber, S. M.; Mozena, Mark; Yesuf, Hassen; Scarlata, Claudia; Bell, Eric F.; Laird, Elise S.; Rangel, Cyprian; Yan Renbin; Atek, Hakim; Dickinson, Mark; Donley, Jennifer L.; Ferguson, Henry C.; Grogin, Norman A.; Dunlop, James S.; Finkelstein, Steven L.; and others

    2011-12-20

    We present Hubble Space Telescope Wide Field Camera 3 (WFC3) slitless grism spectroscopy of 28 emission-line galaxies at z {approx} 2, in the GOODS-S region of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey. The high sensitivity of these grism observations, with >1{sigma} detections of emission lines to f > 2.5 Multiplication-Sign 10{sup -18} erg s{sup -1} cm{sup -2}, means that the galaxies in the sample are typically {approx}7 times less massive (median M{sub *} = 10{sup 9.5} M{sub Sun }) than previously studied z {approx} 2 emission-line galaxies. Despite their lower mass, the galaxies have [O III]/H{beta} ratios which are very similar to previously studied z {approx} 2 galaxies and much higher than the typical emission-line ratios of local galaxies. The WFC3 grism allows for unique studies of spatial gradients in emission lines, and we stack the two-dimensional spectra of the galaxies for this purpose. In the stacked data the [O III] emission line is more spatially concentrated than the H{beta} emission line with 98.1% confidence. We additionally stack the X-ray data (all sources are individually undetected), and find that the average L{sub [OIII]}/L{sub 0.5-10keV} ratio is intermediate between typical z {approx} 0 obscured active galaxies and star-forming galaxies. Together the compactness of the stacked [O III] spatial profile and the stacked X-ray data suggest that at least some of these low-mass, low-metallicity galaxies harbor weak active galactic nuclei.

  13. Statistical Modelling of the Soil Dielectric Constant

    NASA Astrophysics Data System (ADS)

    Usowicz, Boguslaw; Marczewski, Wojciech; Bogdan Usowicz, Jerzy; Lipiec, Jerzy

    2010-05-01

    the soil type, and that way it enables clear comparing to results from other soil type dependent models. The paper is focused on proper representing possible range of porosity in commonly existing soils. This work is done with aim of implementing the statistical-physical model of the dielectric constant to a use in the model CMEM (Community Microwave Emission Model), applicable to SMOS (Soil Moisture and Ocean Salinity ESA Mission) data. The input data to the model clearly accepts definition of soil fractions in common physical measures, and in opposition to other empirical models, does not need calibrating. It is not dependent on recognition of the soil by type, but instead it offers the control of accuracy by proper determination of the soil compound fractions. SMOS employs CMEM being funded only by the sand-clay-silt composition. Common use of the soil data, is split on tens or even hundreds soil types depending on the region. We hope that only by determining three element compounds of sand-clay-silt, in few fractions may help resolving the question of relevance of soil data to the input of CMEM, for SMOS. Now, traditionally employed soil types are converted on sand-clay-silt compounds, but hardly cover effects of other specific properties like the porosity. It should bring advantageous effects in validating SMOS observation data, and is taken for the aim in the Cal/Val project 3275, in the campaigns for SVRT (SMOS Validation and Retrieval Team). Acknowledgements. This work was funded in part by the PECS - Programme for European Cooperating States, No. 98084 "SWEX/R - Soil Water and Energy Exchange/Research".

  14. Determination of Optical Constants of Latex in Concentrated Suspensions

    NASA Astrophysics Data System (ADS)

    Khaĭrullina, A. Ya.; Oleĭnik, T. V.; Buĭ, L. M.

    2000-11-01

    The possibility of taking into account concentration effects in the determination of optical constants of latex in the visible and near IR regions of the spectrum is demonstrated, and the limits of applicability of the methods proposed for this purpose are determined. The limiting concentration of particles in suspensions for which these effects should be taken into account depend on the particle size. Using latex as an example, ways of increasing the accuracy of reconstruction of optical constants of weakly absorbing particles of micron and submicron size are shown. Similar concentration effects can take place in the study of blood substituents, proteins, and other weakly absorbing particles in weakly absorbing media.

  15. Functionalised graphene sheets as effective high dielectric constant fillers

    PubMed Central

    2011-01-01

    A new functionalised graphene sheet (FGS) filled poly(dimethyl)siloxane insulator nanocomposite has been developed with high dielectric constant, making it well suited for applications in flexible electronics. The dielectric permittivity increased tenfold at 10 Hz and 2 wt.% FGS, while preserving low dielectric losses and good mechanical properties. The presence of functional groups on the graphene sheet surface improved the compatibility nanofiller/polymer at the interface, reducing the polarisation process. This study demonstrates that functionalised graphene sheets are ideal nanofillers for the development of new polymer composites with high dielectric constant values. PACS: 78.20.Ci, 72.80.Tm, 62.23.Kn PMID:21867505

  16. Low power, constant-flow air pump systems

    SciTech Connect

    Polito, M.D.; Albert, B.

    1994-01-01

    A rugged, yet small and lightweight constant-flow air pump system has been designed. Flow control is achieved using a novel approach which is three times more power efficient than previous designs. The resultant savings in battery size and weight makes these pumps ideal for sampling air on balloon platforms. The pump package includes meteorological sensors and an onboard computer that stores time and sensor data and turns the constant-flow pump circuit on/off. Some applications of these systems are also presented in this report.

  17. Emergent cosmological constant from colliding electromagnetic waves

    SciTech Connect

    Halilsoy, M.; Mazharimousavi, S. Habib; Gurtug, O. E-mail: habib.mazhari@emu.edu.tr

    2014-11-01

    In this study we advocate the view that the cosmological constant is of electromagnetic (em) origin, which can be generated from the collision of em shock waves coupled with gravitational shock waves. The wave profiles that participate in the collision have different amplitudes. It is shown that, circular polarization with equal amplitude waves does not generate cosmological constant. We also prove that the generation of the cosmological constant is related to the linear polarization. The addition of cross polarization generates no cosmological constant. Depending on the value of the wave amplitudes, the generated cosmological constant can be positive or negative. We show additionally that, the collision of nonlinear em waves in a particular class of Born-Infeld theory also yields a cosmological constant.

  18. sup 13 C-enriched ribonucleosides: Synthesis and application of sup 13 C- sup 1 H and sup 13 C- sup 13 C spin-coupling constants to assess furanose and N-glycoside bond conformations

    SciTech Connect

    Kline, P.C.; Serianni, A.S. )

    1990-09-26

    Adenosine (1), cytidine (2), guanosine (3), and uridine (4) have been prepared chemically with {sup 13}C enrichment (99 atom %) at C1{prime} and C2{prime} of the ribose ring. Reliable synthetic protocols have been developed to permit access to millimole quantities of labeled ribonucleosides required for structural studies of stable isotopically labeled oligonucleotides and for in vivo metabolism studies. High-resolution {sup 1}H and {sup 13}C NMR spectra of the enriched ribonucleosides have been obtained, and {sup 13}C-{sup 13}C and {sup 13}C-{sup 1}H spin-coupling constants have been measured for pathways within the {beta}-D-ribofuranose ring and across the N-glycoside bond. Related couplings were determined in methyl {alpha}- and {beta}-D-riboruanosides (5,6), and in two conformationally constrained nucleosides, 2,2{prime}-anhydro-(1-{beta}-D-arabinofuranosyl)uracil (7) and 2{prime},3{prime}-O-isopropylidene-2,5{prime}-O-cyclouridine (8). The latter data were used to construct a crude Karplus curve for the {sup 13}C-C-N-{sup 13}C coupling pathway across the N-glycoside bond in 1-4. {sup 1}H-{sup 1}H, {sup 13}C-{sup 1}H, and {sup 13}C-{sup 13}C coupling data are used to evaluate current models describing the conformational dynamics of 1-4 in aqueous solution.

  19. Efficient Atomistic Simulation of Pathways and Calculation of Rate Constants for a Protein-Peptide Binding Process: Application to the MDM2 Protein and an Intrinsically Disordered p53 Peptide.

    PubMed

    Zwier, Matthew C; Pratt, Adam J; Adelman, Joshua L; Kaus, Joseph W; Zuckerman, Daniel M; Chong, Lillian T

    2016-09-01

    The characterization of protein binding processes - with all of the key conformational changes - has been a grand challenge in the field of biophysics. Here, we have used the weighted ensemble path sampling strategy to orchestrate molecular dynamics simulations, yielding atomistic views of protein-peptide binding pathways involving the MDM2 oncoprotein and an intrinsically disordered p53 peptide. A total of 182 independent, continuous binding pathways were generated, yielding a kon that is in good agreement with experiment. These pathways were generated in 15 days using 3500 cores of a supercomputer, substantially faster than would be possible with "brute force" simulations. Many of these pathways involve the anchoring of p53 residue F19 into the MDM2 binding cleft when forming the metastable encounter complex, indicating that F19 may be a kinetically important residue. Our study demonstrates that it is now practical to generate pathways and calculate rate constants for protein binding processes using atomistic simulation on typical computing resources. PMID:27532687

  20. Highly efficient perturbative + variational strategy based on orthogonal valence bond theory for the evaluation of magnetic coupling constants. Application to the trinuclear Cu(ii) site of multicopper oxidases.

    PubMed

    Tenti, Lorenzo; Maynau, Daniel; Angeli, Celestino; Calzado, Carmen J

    2016-07-21

    A new strategy based on orthogonal valence-bond analysis of the wave function combined with intermediate Hamiltonian theory has been applied to the evaluation of the magnetic coupling constants in two AF systems. This approach provides both a quantitative estimate of the J value and a detailed analysis of the main physical mechanisms controlling the coupling, using a combined perturbative + variational scheme. The procedure requires a selection of the dominant excitations to be treated variationally. Two methods have been employed: a brute-force selection, using a logic similar to that of the CIPSI approach, or entanglement measures, which identify the most interacting orbitals in the system. Once a reduced set of excitations (about 300 determinants) is established, the interaction matrix is dressed at the second-order of perturbation by the remaining excitations of the CI space. The diagonalization of the dressed matrix provides J values in good agreement with experimental ones, at a very low-cost. This approach demonstrates the key role of d → d* excitations in the quantitative description of the magnetic coupling, as well as the importance of using an extended active space, including the bridging ligand orbitals, for the binuclear model of the intermediates of multicopper oxidases. The method is a promising tool for dealing with complex systems containing several active centers, as an alternative to both pure variational and DFT approaches.

  1. Structure-property relationships based on Hammett constants in cyclometalated iridium(III) complexes: their application to the design of a fluorine-free FIrPic-like emitter.

    PubMed

    Frey, Julien; Curchod, Basile F E; Scopelliti, Rosario; Tavernelli, Ivano; Rothlisberger, Ursula; Nazeeruddin, Mohammad K; Baranoff, Etienne

    2014-04-21

    While phosphorescent cyclometalated iridium(iii) complexes have been widely studied, only correlations between oxidation potential EOX and Hammett constant σ, and between the redox gap (ΔEREDOX = EOX-ERED) and emission or absorption wavelength (λabs, λem) have been reported. We present now a quantitative model based on Hammett parameters that rationalizes the effect of the substituents on the properties of cyclometalated iridium(iii) complexes. This simple model allows predicting the apparent redox potentials as well as the electrochemical gap of homoleptic complexes based on phenylpyridine ligands with good accuracy. In particular, the model accounts for the unequal effect of the substituents on both the HOMO and the LUMO energy levels. Consequently, the model is used to anticipate the emission maxima of the corresponding complexes with improved reliability. We demonstrate in a series of phenylpyridine emitters that electron-donating groups can effectively replace electron-withdrawing substituents on the orthometallated phenyl to induce a blue shift of the emission. This result is in contrast with the common approach that uses fluorine to blue shift the emission maximum. Finally, as a proof of concept, we used electron-donating substituents to design a new fluorine-free complex, referred to as EB343, matching the various properties, namely oxidation and reduction potentials, electrochemical gap and emission profile, of the standard sky-blue emitter FIrPic. PMID:24345847

  2. Effective elastic constants of polycrystalline aggregates

    NASA Astrophysics Data System (ADS)

    Bonilla, Luis L.

    A METHOD is presented for the determination of the effective elastic constants of a transversely isotropic aggregate of weakly anisotropic crystallites with cubic symmetry. The results obtained generalize those given in the literature for the second and third order elastic constants. In addition, the second moments and the binary angular correlations of the second order stiffnesses are obtained. It is also explained how these moments can be used to find the two-point correlations of the elastic constants.

  3. Constant voltage electro-slag remelting control

    DOEpatents

    Schlienger, Max E.

    1996-01-01

    A system for controlling electrode gap in an electro-slag remelt furnace has a constant regulated voltage and an eletrode which is fed into the slag pool at a constant rate. The impedance of the circuit through the slag pool is directly proportional to the gap distance. Because of the constant voltage, the system current changes are inversely proportional to changes in gap. This negative feedback causes the gap to remain stable.

  4. Constant voltage electro-slag remelting control

    DOEpatents

    Schlienger, M.E.

    1996-10-22

    A system for controlling electrode gap in an electro-slag remelt furnace has a constant regulated voltage and an electrode which is fed into the slag pool at a constant rate. The impedance of the circuit through the slag pool is directly proportional to the gap distance. Because of the constant voltage, the system current changes are inversely proportional to changes in gap. This negative feedback causes the gap to remain stable. 1 fig.

  5. Modification of the characteristic gravitational constants

    NASA Astrophysics Data System (ADS)

    Vujičić, V. A.

    2006-08-01

    In the educational and scientific literature the numerical values of gravitational constants are seen as only approximately correct. The numerical values are different in work by various researchers, as also are the formulae and definitions of constants employed. In this paper, on the basis of Newton’s laws and Kepler’s laws we prove that it is necessary to modify the characteristic gravitational constants and their definitions. The formula for the geocentric gravitational constant of the satellites Kosmos N and the Moon are calculated.

  6. Accurate lineshape spectroscopy and the Boltzmann constant

    PubMed Central

    Truong, G.-W.; Anstie, J. D.; May, E. F.; Stace, T. M.; Luiten, A. N.

    2015-01-01

    Spectroscopy has an illustrious history delivering serendipitous discoveries and providing a stringent testbed for new physical predictions, including applications from trace materials detection, to understanding the atmospheres of stars and planets, and even constraining cosmological models. Reaching fundamental-noise limits permits optimal extraction of spectroscopic information from an absorption measurement. Here, we demonstrate a quantum-limited spectrometer that delivers high-precision measurements of the absorption lineshape. These measurements yield a very accurate measurement of the excited-state (6P1/2) hyperfine splitting in Cs, and reveals a breakdown in the well-known Voigt spectral profile. We develop a theoretical model that accounts for this breakdown, explaining the observations to within the shot-noise limit. Our model enables us to infer the thermal velocity dispersion of the Cs vapour with an uncertainty of 35 p.p.m. within an hour. This allows us to determine a value for Boltzmann's constant with a precision of 6 p.p.m., and an uncertainty of 71 p.p.m. PMID:26465085

  7. Recoupling pulse sequences with constant phase increments

    NASA Astrophysics Data System (ADS)

    Khaneja, Navin; Kumar, Ashutosh

    2016-10-01

    The paper studies a family of recoupling pulse sequences in magic angle spinning (MAS) solid state NMR, that are characterized by constant phase increments at regular intervals. These pulse sequences can be employed for both homonuclear and heteronuclear recoupling experiments and are robust to dispersion in chemical shifts and rf-inhomogeneity. The homonuclear pulse sequence consists of a building block (2 π) ϕp , where ϕp =p (n - 1) π/n, where n is number of blocks in a rotor period and p = 0, 1, 2, … . The pulse sequence repeats itself every rotor period when n is odd and every two rotor period when n is even. The heteronuclear recoupling pulse sequence consists of a building block (2 π) ϕ1p and (2 π) ϕ2p on channel I and S, where ϕ1p = p (2 n - 3) π/2 n, ϕ2p = p (2 n - 1) π/2 n and n is number of blocks in a rotor period. The recoupling pulse sequences mix the z magnetization. Experimental quantification of this method is shown for 13Cα -13CO , homonuclear recoupling in a sample of Glycine and 15N -13Cα , heteronuclear recoupling in Alanine. Application of this method is demonstrated on a sample of tripeptide N-formyl-[U-13C ,15N ]- Met-Leu-Phe-OH (MLF).

  8. Recoupling pulse sequences with constant phase increments.

    PubMed

    Khaneja, Navin; Kumar, Ashutosh

    2016-10-01

    The paper studies a family of recoupling pulse sequences in magic angle spinning (MAS) solid state NMR, that are characterized by constant phase increments at regular intervals. These pulse sequences can be employed for both homonuclear and heteronuclear recoupling experiments and are robust to dispersion in chemical shifts and rf-inhomogeneity. The homonuclear pulse sequence consists of a building block [Formula: see text] , where ϕ(p)=p(n-1)πn, where n is number of blocks in a rotor period and p=0,1,2,…. The pulse sequence repeats itself every rotor period when n is odd and every two rotor period when n is even. The heteronuclear recoupling pulse sequence consists of a building block [Formula: see text] and [Formula: see text] on channel I and S, where ϕ1(p)=p(2n-3)π2n,ϕ2(p)=p(2n-1)π2n and n is number of blocks in a rotor period. The recoupling pulse sequences mix the z magnetization. Experimental quantification of this method is shown for (13)Cα-(13)CO, homonuclear recoupling in a sample of Glycine and (15)N-(13)Cα, heteronuclear recoupling in Alanine. Application of this method is demonstrated on a sample of tripeptide N-formyl-[U-(13)C,(15)N]- Met-Leu-Phe-OH (MLF). PMID:27569693

  9. HST eclipse mapping of dwarf nova OY Carinae in quiescence: An 'Fe II curtain' with Mach approx. = 6 velocity dispersion veils the white dwarf

    NASA Technical Reports Server (NTRS)

    Horne, Keith; Marsh, T. R.; Cheng, F. H.; Hubeny, Ivan; Lanz, Theirry

    1994-01-01

    Hubble Space Telescope (HST) observations of the eclipsing dwarf nova OY Car in its quiescent state are used to isolate the ultraviolet spectrum (1150-2500 A at 9.2 A Full Width at Half Maximum (FWHM) resolution) of the white dwarf, the accretion disk, and the bright spot. The white dwarf spectrum has a Stark-broadened photospheric L(alpha) absorption, but is veiled by a forest of blended Fe II features that we attribute to absorption by intervening disk material. A fit gives T(sub w) approx. = 16.5 x 10(exp 3) K for the white dwarf with a solar-abundance, log g = 8 model atmosphere, and T approx. = 10(exp 4) K, n(sub e) approx. = 10(exp 13)/cu cm, N(sub H) approx. = 10(exp 22) sq cm, and velocity dispersion delta V approx. = 60 km/s for the veil of homogeneous solar-abundance local thermodynamic equilibrium (LTE) gas. The veil parameters probably measure characteristic physical conditions in the quiescent accretion disk or its chromosphere. The large velocity dispersion is essential for a good fit; it lowers (chi square)/778 from 22 to 4. Keplerian shear can produce the velocity dispersion if the veiling gas is located at R approx. = 5 R(sub W) with (delta R)/R approx. = 0.3, but this model leaves an unobscured view to the upper hemisphere of the white dwarf, incompatible with absorptions that are up to 80% deep. The veiling gas may be in the upper atmosphere of the disk near its outer rim, but we then require supersonic (Mach approx. = 6) but sub-Keplerian (delta V/V(sub Kep) approx. = 0.07) velocity disturbances in this region to produce both the observed radial velocity dispersion and vertical motions sufficient to elevate the gas to z/R = cos i = 0.12. Such motions might be driven by the gas stream, since it may take several Kepler periods to reestablish the disk's vertical hydrostatic equilibrium. The temperature and column density of the gas we see as Fe II absorption in the ultraviolet are similar to what is required to produce the strong Balmer jump and

  10. Atomic force microscopy spring constant determination in viscous liquids.

    PubMed

    Pirzer, Tobias; Hugel, Thorsten

    2009-03-01

    The spring constant of cantilever in atomic force microscopy (AFM) is often calibrated from thermal noise spectra. Essential for accurate implementation of this "thermal noise method" is an appropriate fitting function and procedure. Here, we survey the commonly used fitting functions and examine their applicability in a range of environments. We find that viscous liquid environments are extremely problematic due to the frequency dependent nature of the damping coefficient. The deviations from the true spring constant were sometimes more than 100% when utilizing the fit routines built into the three investigated commercial AFM instruments; similar problems can arise with homebuilt AFMs. We discuss the reasons for this problem, especially the limits of the fitting process. Finally, we present a thermal noise based procedure and an improved fit function to determine the spring constant with AFMs in fluids of various viscosities. PMID:19334955

  11. Atomic force microscopy spring constant determination in viscous liquids

    SciTech Connect

    Pirzer, Tobias; Hugel, Thorsten

    2009-03-15

    The spring constant of cantilever in atomic force microscopy (AFM) is often calibrated from thermal noise spectra. Essential for accurate implementation of this 'thermal noise method' is an appropriate fitting function and procedure. Here, we survey the commonly used fitting functions and examine their applicability in a range of environments. We find that viscous liquid environments are extremely problematic due to the frequency dependent nature of the damping coefficient. The deviations from the true spring constant were sometimes more than 100% when utilizing the fit routines built into the three investigated commercial AFM instruments; similar problems can arise with homebuilt AFMs. We discuss the reasons for this problem, especially the limits of the fitting process. Finally, we present a thermal noise based procedure and an improved fit function to determine the spring constant with AFMs in fluids of various viscosities.

  12. THE OPTICALLY UNBIASED GRB HOST (TOUGH) SURVEY. VI. RADIO OBSERVATIONS AT z {approx}< 1 AND CONSISTENCY WITH TYPICAL STAR-FORMING GALAXIES

    SciTech Connect

    Michalowski, M. J.; Dunlop, J. S.; Kamble, A.; Kaplan, D. L.; Hjorth, J.; Malesani, D.; Fynbo, J. P. U.; Kruehler, T.; Reinfrank, R. F.; Bonavera, L.; Ibar, E.; Garrett, M. A.; Jakobsson, P.; Levan, A. J.; Massardi, M.; Pal, S.; Sollerman, J.; Tanvir, N. R.; Van der Horst, A. J.; and others

    2012-08-20

    The objective of this paper is to determine the level of obscured star formation activity and dust attenuation in a sample of gamma-ray burst (GRB) hosts, and to test the hypothesis that GRB hosts have properties consistent with those of the general star-forming galaxy populations. We present a radio continuum survey of all z < 1 GRB hosts in The Optically Unbiased GRB Host (TOUGH) sample supplemented with radio data for all (mostly pre-Swift) GRB-SN hosts discovered before 2006 October. We present new radio data for 22 objects and have obtained a detection for three of them (GRB 980425, 021211, 031203; none in the TOUGH sample), increasing the number of radio-detected GRB hosts from two to five. The star formation rate (SFR) for the GRB 021211 host of {approx}825 M{sub Sun} yr{sup -1}, the highest ever reported for a GRB host, places it in the category of ultraluminous infrared galaxies. We found that at least {approx}63% of GRB hosts have SFR < 100 M{sub Sun} yr{sup -1} and at most {approx}8% can have SFR > 500 M{sub Sun} yr{sup -1}. For the undetected hosts the mean radio flux (<35 {mu}Jy 3{sigma}) corresponds to an average SFR < 15 M{sub Sun} yr{sup -1}. Moreover, {approx}> 88% of the z {approx}< 1 GRB hosts have ultraviolet dust attenuation A{sub UV} < 6.7 mag (visual attenuation A{sub V} < 3 mag). Hence, we did not find evidence for large dust obscuration in a majority of GRB hosts. Finally, we found that the distributions of SFRs and A{sub UV} of GRB hosts are consistent with those of Lyman break galaxies, H{alpha} emitters at similar redshifts, and of galaxies from cosmological simulations. The similarity of the GRB population with other star-forming galaxies is consistent with the hypothesis that GRBs, a least at z {approx}< 1, trace a large fraction of all star formation, and are therefore less biased indicators than once thought.

  13. THE ASSEMBLY OF THE RED SEQUENCE AT z {approx} 1: THE COLOR AND SPECTRAL PROPERTIES OF GALAXIES IN THE Cl1604 SUPERCLUSTER

    SciTech Connect

    Lemaux, B. C.; Gal, R. R.; Lubin, L. M.; Fassnacht, C. D.; and others

    2012-02-01

    We investigate the properties of the 525 spectroscopically confirmed members of the Cl1604 supercluster at z {approx} 0.9 as part of the Observations of Redshift Evolution in Large Scale Environments survey. In particular, we focus on the photometric, stellar mass, morphological, and spectral properties of the 305 member galaxies of the eight clusters and groups that comprise the Cl1604 supercluster. Using an extensive Keck Low-Resolution Imaging Spectrometer (LRIS)/DEep Imaging Multi-Object Spectrograph (DEIMOS) spectroscopic database in conjunction with ten-band ground-based, Spitzer, and Hubble Space Telescope imaging, we investigate the buildup of the red sequence in groups and clusters at high redshift. Nearly all of the brightest and most massive red-sequence galaxies present in the supercluster environment are found to lie within the bounds of the cluster and group systems, with a surprisingly large number of such galaxies present in low-mass group systems. Despite the prevalence of these red-sequence galaxies, we find that the average cluster galaxy has a spectrum indicative of a star-forming galaxy, with a star formation rate between those of z {approx} 1 field galaxies and moderate-redshift cluster galaxies. The average group galaxy is even more active, exhibiting spectral properties indicative of a starburst. The presence of massive, red galaxies and the high fraction of starbursting galaxies present in the group environment suggest that significant processing is occurring in group environments at z {approx} 1 and earlier. There is a deficit of low-luminosity red-sequence galaxies in all Cl1604 clusters and groups, suggesting that such galaxies transition to the red sequence at later times. Extremely massive ({approx}10{sup 12} M{sub sun}) red-sequence galaxies routinely observed in rich clusters at z {approx} 0 are also absent from the Cl1604 clusters and groups. We suggest that such galaxies form at later times through merging processes. There are

  14. The Multiwavelength Survey by Yale-Chile (MUSYC): Wide K-Band Imaging, Photometric Catalogs, Clustering, and Physical Properties of Galaxies at z {approx} 2

    SciTech Connect

    Blanc, Guillermo A.; Lira, Paulina; Francke, Harold; Maza, Jose; Barrientos, L. Felipe; Aguirre, Paula; Infante, Leopoldo; Taylor, Edward N.; Quadri, Ryan; Marchesini, Danilo; Gawiser, Eric; Hall, Patrick B.; Willis, Jon P.; Herrera, David

    2008-07-10

    We present K-band imaging of two {approx}30{sup '} x 30{sup '} fields covered by the Multiwavelength Survey by Yale-Chile (MUSYC) Wide NIR Survey. The SDSS 1030+05 and Cast 1255 fields were imaged with the Infrared Side Port Imager (ISPI) on the 4 m Blanco telescope at the Cerro Tololo Inter-American Observatory (CTIO) to a 5 {sigma} point-source limiting depth of K {approx} 20 (Vega). Combining these data with the MUSYC optical UBVRIz imaging, we created multiband K-selected source catalogs for both fields. These catalogs, together with the MUSYC K-band catalog of the Extended Chandra Deep Field South (ECDF-S) field, were used to select K < 20 BzK galaxies over an area of 0.71 deg{sup 2}. This is the largest area ever surveyed for BzK galaxies. We present number counts, redshift distributions, and stellar masses for our sample of 3261 BzK galaxies (2502 star-forming [sBzK] and 759 passively evolving [pBzK]), as well as reddening and star formation rate estimates for the star-forming BzK systems. We also present two-point angular correlation functions and spatial correlation lengths for both sBzK and pBzK galaxies and show that previous estimates of the correlation function of these galaxies were affected by cosmic variance due to the small areas surveyed. We have measured correlation lengths r{sub 0} of 8.89 {+-} 2.03 and 10.82 {+-} 1.72 Mpc for sBzK and pBzK galaxies, respectively. This is the first reported measurement of the spatial correlation function of passive BzK galaxies. In the {lambda}CDM scenario of galaxy formation, these correlation lengths at z {approx} 2 translate into minimum masses of {approx}4 x 10{sup 12} and {approx}9 x 10{sup 12} M{sub sun} for the dark matter halos hosting sBzK and pBzK galaxies, respectively. The clustering properties of the galaxies in our sample are consistent with their being the descendants of bright Lyman break galaxies at z {approx} 3, and the progenitors of present-day >1L{sup *} galaxies.

  15. The cosmological constant: Plus CA change, plus C`est La Meme Chose

    SciTech Connect

    Frieman, J.A.

    1998-02-01

    Recent measurements of the cosmological parameters have renewed interest in the cosmological constant {Lambda}. I briefly review the current status of these measurements and the corresponding arguments for and against cosmological models with non-zero {Lambda}. I outline a scenario which attempts to incorporate non-zero vacuum energy into the framework of particle physics, based on an ultra-light pseudo-Nambu-Goldstone boson. With global spontaneous symmetry breaking scale f {approx_equal} 10{sup 18} GeV and explicit breaking scale comparable to MSW neutrino masses, M {approximately} 10{sup -3} eV, such a field, which acquires a mass M{sub {phi}} {approximately} M{sup 2}/f {approximately} H{sub 0}, would have become dynamical at recent epochs and currently dominate the energy density of the universe. The field acts as an effective cosmological constant for several expansion times and then relaxes into a condensate of coherent non-relativistic bosons. Such a model can reconcile dynamical estimates of the density parameter, {Omega}{sub m} {approximately} 0.2, with a spatially flat universe, and can yield an expansion age H{sub 0}t{sub 0} {approx_equal} 1 while remaining consistent with limits from gravitational lens statistics.

  16. AB INITIO CALCULATIONS OF ELASTIC CONSTANTS OF BCC V-NB SYSTEM AT HIGH PRESSURES

    SciTech Connect

    Landa, A; Klepeis, J; Soderlind, P; Naumov, I; Velikokhatnyi, O; Vitos, L; Ruban, A

    2005-05-02

    First-principles total energy calculation based on the exact muffin-tin orbital and full potential linear muffin-tin orbital methods were used to calculate the equation of state and shear elastic constants of bcc V, Nb, and the V{sub 95}Nb{sub 05} disordered alloy as a function of pressure up to 6 Mbar. We found a mechanical instability in C{sub 44} and a corresponding softening in C at pressures {approx} 2 Mbar for V. Both shear elastic constants show softening at pressures {approx} 0.5 Mbar for Nb. Substitution of 5 at. % of V with Nb removes the instability of V with respect to trigonal distortions in the vicinity of 2 Mbar pressure, but still leaves the softening of C{sub 44} in this pressure region. We argue that the pressure induced shear instability (softening) of V (Nb) originates from the electronic system and can be explained by a combination of the Fermi surface nesting, electronic topological transition, and band Jahn-Teller effect.

  17. Varying constant cosmologies and cosmic singularities

    NASA Astrophysics Data System (ADS)

    Dabrowski, Mariusz P.; Marosek, Konrad

    2013-02-01

    We review standard and non-standard cosmological singularities paying special attention onto those which are of a weak type and do not necessarily exhibit geodesic incompletness. Then, we discuss how these singularities can be weakened, strengthened, or avoided due to the time-variation of the physical constants such as the speed of light c and the gravitational constant G.

  18. String theory, cosmology and varying constants

    NASA Astrophysics Data System (ADS)

    Damour, Thibault

    In string theory the coupling `constants' appearing in the low-energy effective Lagrangian are determined by the vacuum expectation values of some (a priori) massless scalar fields (dilaton, moduli). This naturally leads one to expect a correlated variation of all the coupling constants, and an associated violation of the equivalence principle. We review some string-inspired theoretical models which incorporate such a spacetime variation of coupling constants while remaining naturally compatible both with phenomenological constraints coming from geochemical data (Oklo; Rhenium decay) and with present equivalence principle tests. Barring a very unnatural fine-tuning of parameters, a variation of the fine-structure constant as large as that recently `observed' by Webb et al. in quasar absorption spectra appears to be incompatible with these phenomenological constraints. Independently of any model, it is emphasized that the best experimental probe of varying constants are high-precision tests of the universality of free fall, such as MICROSCOPE and STEP.

  19. THE BIMODAL GALAXY STELLAR MASS FUNCTION IN THE COSMOS SURVEY TO z approx 1: A STEEP FAINT END AND A NEW GALAXY DICHOTOMY

    SciTech Connect

    Drory, N.; Bundy, K.; Leauthaud, A.; Scoville, N.; Capak, P.; Salvato, M.; Ilbert, O.; Kneib, J. P.; Kartaltepe, J. S.; McCracken, H. J.; Sanders, D. B.; Thompson, D.; Willott, C. J.

    2009-12-20

    We present a new analysis of stellar mass functions in the COSMOS field to fainter limits than has been previously probed at z <= 1. The increase in dynamic range reveals features in the shape of the stellar mass function that deviate from a single Schechter function. Neither the total nor the red (passive) or blue (star-forming) galaxy stellar mass functions can be well fitted with a single Schechter function once the mass completeness limit of the sample probes below approx3 x 10{sup 9} M{sub sun}. We observe a dip or plateau at masses approx10{sup 10} M{sub sun}, just below the traditional M*, and an upturn toward a steep faint-end slope of alpha approx -1.7 at lower mass at all redshifts <=1. This bimodal nature of the mass function is not solely a result of the blue/red dichotomy. Indeed, the blue mass function is by itself bimodal at z approx 1. This suggests a new dichotomy in galaxy formation that predates the appearance of the red sequence. We propose two interpretations for this bimodal distribution. If the gas fraction increases toward lower mass, galaxies with M{sub baryon} approx 10{sup 10} M{sub sun} would shift to lower stellar masses, creating the observed dip. This would indicate a change in star formation efficiency, perhaps linked to supernovae feedback becoming much more efficient below approx10{sup 10} M{sub sun}. Therefore, we investigate whether the dip is present in the baryonic (stars+gas) mass function. Alternatively, the dip could be created by an enhancement of the galaxy assembly rate at approx10{sup 11} M{sub sun}, a phenomenon that naturally arises if the baryon fraction peaks at M{sub halo} approx 10{sup 12} M{sub sun}. In this scenario, galaxies occupying the bump around M{sub *} would be identified with central galaxies and the second fainter component of the mass function having a steep faint-end slope with satellite galaxies. The low-mass end of the blue and total mass functions exhibit a steeper slope than has been detected in

  20. The Contribution of z < or Approx. 6 Sources to the Spatial Coherence in the Unresolved Cosmic Near-Infrared and X-Ray Backgrounds

    NASA Technical Reports Server (NTRS)

    Helgason, K.; Cappelluti, N.; Hasinger, G.; Kashlinsky, A.; Ricotti, M.

    2014-01-01

    A spatial clustering signal has been established in Spitzer/IRAC measurements of the unresolved cosmic near-infrared background (CIB) out to large angular scales, approx. 1deg. This CIB signal, while significantly exceeding the contribution from the remaining known galaxies, was further found to be coherent at a highly statistically significant level with the unresolved soft cosmic X-ray background (CXB). This measurement probes the unresolved CXB to very faint source levels using deep near-IR source subtraction.We study contributions from extragalactic populations at low to intermediate redshifts to the measured positive cross-power signal of the CIB fluctuations with the CXB. We model the X-ray emission from active galactic nuclei (AGNs), normal galaxies, and hot gas residing in virialized structures, calculating their CXB contribution including their spatial coherence with all infrared emitting counterparts. We use a halo model framework to calculate the auto and cross-power spectra of the unresolved fluctuations based on the latest constraints of the halo occupation distribution and the biasing of AGNs, galaxies, and diffuse emission. At small angular scales (1), the 4.5microns versus 0.5-2 keV coherence can be explained by shot noise from galaxies and AGNs. However, at large angular scales (approx.10), we find that the net contribution from the modeled populations is only able to account for approx. 3% of the measured CIB×CXB cross-power. The discrepancy suggests that the CIB×CXB signal originates from the same unknown source population producing the CIB clustering signal out to approx. 1deg.

  1. THE MORPHOLOGY OF PASSIVELY EVOLVING GALAXIES AT z {approx} 2 FROM HUBBLE SPACE TELESCOPE/WFC3 DEEP IMAGING IN THE HUBBLE ULTRA DEEP FIELD

    SciTech Connect

    Cassata, P.; Giavalisco, M.; Guo Yicheng; Salimbeni, S.; Ferguson, H.; Koekemoer, A. M.; Casertano, S.; Grogin, N.; Lucas, R. A.; Renzini, A.; Fontana, A.; Dickinson, M.; Lotz, J. M.; Conselice, C. J.; Papovich, C.; Straughn, A.; Gardner, Jonathan P.; Moustakas, L.

    2010-05-01

    We present near-IR images, obtained with the Hubble Space Telescope and the WFC3/IR camera, of six passive and massive galaxies at redshift 1.3 < z < 2.4 (specific star formation rate <10{sup -2} Gyr{sup -1}; stellar mass M {approx} 10{sup 11} M {sub sun}), selected from the Great Observatories Origins Deep Survey. These images, which have a spatial resolution of {approx}1.5 kpc, provide the deepest view of the optical rest-frame morphology of such systems to date. We find that the light profile of these galaxies is regular and well described by a Sersic model with index typical of today's spheroids. Their size, however, is generally much smaller than today's early types of similar stellar masses, with four out of six galaxies having r{sub e} {approx} 1 kpc or less, in quantitative agreement with previous similar measures made at rest-frame UV wavelengths. The images reach limiting surface brightness {mu}{approx} 26.5 mag arcsec{sup -2} in the F160W bandpass; yet, there is no evidence of a faint halo in the galaxies of our sample, even in their stacked image. We also find that these galaxies have very weak 'morphological k-correction' between the rest-frame UV (from the Advanced Camera for Surveys z band) and the rest-frame optical (WFC3 H band): the Sersic index, physical size, and overall morphology are independent or only mildly dependent on the wavelength, within the errors.

  2. Software corrected hot wire thermal lag for the constant voltage anemometer featuring a constant bandwidth at the selected compensation setting

    NASA Astrophysics Data System (ADS)

    Sarma, Garimella R.; Comte-Bellot, Genevieve; Faure, Thierry M.

    1998-09-01

    Software compensation correction for thermal lag of a hot wire in the application of a constant voltage anemometer (CVA) for turbulence measurements in the boundary layer of a supersonic wind tunnel has been demonstrated. The CVA was used with a fixed compensation setting while measuring the in situ thermal lag (time constant) of the hot wire. Using the measured time constant, corrections are applied to the fixed compensation output of the CVA in postprocessing of the data. To demonstrate the flexibility of the approach it was used for two compensation settings at a test point to obtain the same results from both settings. A unique advantage of this approach is shown to be that for a given compensation setting in the CVA the bandwidth of the measurements for the test remains constant for all of the different test conditions and yields higher productivity. The results of the turbulence levels measured with this method agree with earlier research using other anemometers. Spectral plots of the mass flux and temperature and the measured in situ time constant responses under different conditions of the hot wire have been presented.

  3. Vicinal coupling constants and protein dynamics.

    PubMed

    Hoch, J C; Dobson, C M; Karplus, M

    1985-07-16

    The effects of motional averaging on the analysis of vicinal spin-spin coupling constants derived from proton NMR studies of proteins have been examined. Trajectories obtained from molecular dynamics simulations of bovine pancreatic trypsin inhibitor and of hen egg white lysozyme were used in conjunction with an expression for the dependence of the coupling constant on the intervening dihedral angle to calculate the time-dependent behavior of the coupling constants. Despite large fluctuations, the time-average values of the coupling constants are not far from those computed for the average structure in the cases where fluctuations occur about a single potential well. The calculated differences show a high correlation with the variation in the magnitude of the fluctuations of individual dihedral angles. For the cases where fluctuations involve multiple sites, large differences are found between the time-average values and the average structure values for the coupling constants. Comparison of the simulation results with the experimental trends suggests that side chains with more than one position are more common in proteins than is inferred from X-ray results. It is concluded that for the main chain, motional effects do not introduce significant errors where vicinal coupling constants are used in structure determinations; however, for side chains, the motional average can alter deductions about the structure. Accurately measured coupling constants are shown to provide information concerning the magnitude of dihedral angle fluctuations.

  4. On geometrically unified fields and universal constants

    NASA Astrophysics Data System (ADS)

    Fabbri, Luca

    2013-07-01

    We consider the Cartan extension of Riemann geometry as the basis upon which to build the Sciama-Kibble completion of Einstein gravity, developing the most general theory in which torsion and metric have two independent coupling constants: the main problem of the ESK theory was that torsion, having the Newton constant, was negligible beyond the Planck scale, but in this {ESK}2 theory torsion, with its own coupling constant, may be relevant much further Planck scales; further consequences of these torsionally-induced interactions will eventually be discussed.

  5. The Determination of the Strong Coupling Constant

    NASA Astrophysics Data System (ADS)

    Dissertori, Günther

    2016-10-01

    The strong coupling constant is one of the fundamental parameters of the Standard Theory of particle physics. In this review I will briefly summarise the theoretical framework, within which the strong coupling constant is defined and how it is connected to measurable observables. Then I will give an historical overview of its experimental determinations and discuss the current status and world average value. Among the many different techniques used to determine this coupling constant in the context of quantum chromodynamics, I will focus in particular on a number of measurements carried out at the Large Electron-Positron Collider (LEP) and the Large Hadron Collider (LHC) at CERN.

  6. Laser Propulsion and the Constant Momentum Mission

    NASA Astrophysics Data System (ADS)

    Larson, C. William; Mead, Franklin B.; Knecht, Sean D.

    2004-03-01

    We show that perfect propulsion requires a constant momentum mission, as a consequence of Newton's second law. Perfect propulsion occurs when the velocity of the propelled mass in the inertial frame of reference matches the velocity of the propellant jet in the rocket frame of reference. We compare constant momentum to constant specific impulse propulsion, which, for a given specification of the mission delta V, has an optimum specific impulse that maximizes the propelled mass per unit jet kinetic energy investment. We also describe findings of more than 50 % efficiency for conversion of laser energy into jet kinetic energy by ablation of solids.

  7. Laser Propulsion and the Constant Momentum Mission

    SciTech Connect

    Larson, C. William; Mead, Franklin B. Jr.; Knecht, Sean D.

    2004-03-30

    We show that perfect propulsion requires a constant momentum mission, as a consequence of Newton's second law. Perfect propulsion occurs when the velocity of the propelled mass in the inertial frame of reference matches the velocity of the propellant jet in the rocket frame of reference. We compare constant momentum to constant specific impulse propulsion, which, for a given specification of the mission delta V, has an optimum specific impulse that maximizes the propelled mass per unit jet kinetic energy investment. We also describe findings of more than 50 % efficiency for conversion of laser energy into jet kinetic energy by ablation of solids.

  8. Constants and Pseudo-Constants of Coupled Beam Motion in the PEP-II Rings

    SciTech Connect

    Decker, F.J.; Colocho, W.S.; Wang, M.H.; Yan, Y.T.; Yocky, G.; /SLAC

    2011-11-01

    Constants of beam motion help as cross checks to analyze beam diagnostics and the modeling procedure. Pseudo-constants, like the betatron mismatch parameter or the coupling parameter det C, are constant till certain elements in the beam line change them. This can be used to visually find the non-desired changes, pinpointing errors compared with the model.

  9. How the cosmological constant affects gravastar formation

    SciTech Connect

    Chan, R.; Silva, M.F.A. da; Rocha, P. E-mail: mfasnic@gmail.com

    2009-12-01

    Here we generalized a previous model of gravastar consisted of an internal de Sitter spacetime, a dynamical infinitely thin shell with an equation of state, but now we consider an external de Sitter-Schwarzschild spacetime. We have shown explicitly that the final output can be a black hole, a ''bounded excursion'' stable gravastar, a stable gravastar, or a de Sitter spacetime, depending on the total mass of the system, the cosmological constants, the equation of state of the thin shell and the initial position of the dynamical shell. We have found that the exterior cosmological constant imposes a limit to the gravastar formation, i.e., the exterior cosmological constant must be smaller than the interior cosmological constant. Besides, we have also shown that, in the particular case where the Schwarzschild mass vanishes, no stable gravastar can be formed, but we still have formation of black hole.

  10. The Solar Constant: A Take Home Lab

    ERIC Educational Resources Information Center

    Eaton, B. G.; And Others

    1977-01-01

    Describes a method that uses energy from the sun, absorbed by aluminum discs, to melt ice, and allows the determination of the solar constant. The take-home equipment includes Styrofoam cups, a plastic syringe, and aluminum discs. (MLH)

  11. Dielectric constant of water in the interface.

    PubMed

    Dinpajooh, Mohammadhasan; Matyushov, Dmitry V

    2016-07-01

    We define the dielectric constant (susceptibility) that should enter the Maxwell boundary value problem when applied to microscopic dielectric interfaces polarized by external fields. The dielectric constant (susceptibility) of the interface is defined by exact linear-response equations involving correlations of statistically fluctuating interface polarization and the Coulomb interaction energy of external charges with the dielectric. The theory is applied to the interface between water and spherical solutes of altering size studied by molecular dynamics (MD) simulations. The effective dielectric constant of interfacial water is found to be significantly lower than its bulk value, and it also depends on the solute size. For TIP3P water used in MD simulations, the interface dielectric constant changes from 9 to 4 when the solute radius is increased from ∼5 to 18 Å.

  12. The Rate Constant for Fluorescence Quenching

    ERIC Educational Resources Information Center

    Legenza, Michael W.; Marzzacco, Charles J.

    1977-01-01

    Describes an experiment that utilizes fluorescence intensity measurements from a Spectronic 20 to determine the rate constant for the fluorescence quenching of various aromatic hydrocarbons by carbon tetrachloride in an ethanol solvent. (MLH)

  13. INFRARED SPECTRA AND OPTICAL CONSTANTS OF NITRILE ICES RELEVANT TO TITAN's ATMOSPHERE

    SciTech Connect

    Moore, Marla H.; Hudson, Reggie; Ferrante, Robert F.; James Moore, W.

    2010-11-15

    Spectra and optical constants of nitrile ices known or suspected to be in Titan's atmosphere are presented from 2.0 to 333.3 {mu}m ({approx}5000-30 cm{sup -1}). These results are relevant to the ongoing modeling of Cassini CIRS observations of Titan's winter pole. Ices studied are: HCN, hydrogen cyanide; C{sub 2}N{sub 2}, cyanogen; CH{sub 3}CN, acetonitrile; C{sub 2}H{sub 5}CN, propionitrile; and HC{sub 3}N, cyanoacetylene. For each of these molecules, we also report new cryogenic measurements of the real refractive index, n, determined in both the amorphous and crystalline phases at 670 nm. These new values have been incorporated into our optical constant calculations. Spectra were measured and optical constants were calculated for each nitrile at a variety of temperatures, including, but not limited to, 20, 35, 50, 75, 95, and 110 K, in both the amorphous phase and the crystalline phase. This laboratory effort used a dedicated FTIR spectrometer to record transmission spectra of thin-film ice samples. Laser interference was used to measure film thickness during condensation onto a transparent cold window attached to the tail section of a closed-cycle helium cryostat. Optical constants, real (n) and imaginary (k) refractive indices, were determined using Kramers-Kronig analysis. Our calculation reproduces the complete spectrum, including all interference effects.

  14. Inflation with a constant rate of roll

    NASA Astrophysics Data System (ADS)

    Motohashi, Hayato; Starobinsky, Alexei A.; Yokoyama, Jun'ichi

    2015-09-01

    We consider an inflationary scenario where the rate of inflaton roll defined by ̈phi/H dot phi remains constant. The rate of roll is small for slow-roll inflation, while a generic rate of roll leads to the interesting case of 'constant-roll' inflation. We find a general exact solution for the inflaton potential required for such inflaton behaviour. In this model, due to non-slow evolution of background, the would-be decaying mode of linear scalar (curvature) perturbations may not be neglected. It can even grow for some values of the model parameter, while the other mode always remains constant. However, this always occurs for unstable solutions which are not attractors for the given potential. The most interesting particular cases of constant-roll inflation remaining viable with the most recent observational data are quadratic hilltop inflation (with cutoff) and natural inflation (with an additional negative cosmological constant). In these cases even-order slow-roll parameters approach non-negligible constants while the odd ones are asymptotically vanishing in the quasi-de Sitter regime.

  15. RNA structure and scalar coupling constants

    SciTech Connect

    Tinoco, I. Jr.; Cai, Z.; Hines, J.V.; Landry, S.M.; SantaLucia, J. Jr.; Shen, L.X.; Varani, G.

    1994-12-01

    Signs and magnitudes of scalar coupling constants-spin-spin splittings-comprise a very large amount of data that can be used to establish the conformations of RNA molecules. Proton-proton and proton-phosphorus splittings have been used the most, but the availability of {sup 13}C-and {sup 15}N-labeled molecules allow many more coupling constants to be used for determining conformation. We will systematically consider the torsion angles that characterize a nucleotide unit and the coupling constants that depend on the values of these torsion angles. Karplus-type equations have been established relating many three-bond coupling constants to torsion angles. However, one- and two-bond coupling constants can also depend on conformation. Serianni and coworkers measured carbon-proton coupling constants in ribonucleosides and have calculated their values as a function of conformation. The signs of two-bond coupling can be very useful because it is easier to measure a sign than an accurate magnitude.

  16. The modified Black-Scholes model via constant elasticity of variance for stock options valuation

    NASA Astrophysics Data System (ADS)

    Edeki, S. O.; Owoloko, E. A.; Ugbebor, O. O.

    2016-02-01

    In this paper, the classical Black-Scholes option pricing model is visited. We present a modified version of the Black-Scholes model via the application of the constant elasticity of variance model (CEVM); in this case, the volatility of the stock price is shown to be a non-constant function unlike the assumption of the classical Black-Scholes model.

  17. Inverse problem in anisotropic poroelasticity: Drained constants from undrained ultrasound measurements

    SciTech Connect

    Berryman, J.G.; Nakagawa, S.

    2009-11-20

    Poroelastic analysis has traditionally focused on the relationship between dry or drained constants which are assumed known and the saturated or undrained constants which are assumed unknown. However, there are many applications in this field of study for which the main measurements can only be made on the saturated/undrained system, and then it is uncertain what the eects of the uids were on the system, since the drained constants remain a mystery. The work presented here shows how to deduce drained constants from undrained constants for anisotropic systems having symmetries ranging from isotropic to orthotropic. Laboratory ultrasound data are then inverted for the drained constants in three granular packings: one of glass beads, and two others for distinct types of more or less angular sand grain packings. Experiments were performed under uniaxial stress, which resulted in hexagonal (transversely isotropic) symmetry of the poroelastic response. One important conclusion from the general analysis is that the drained constants are uniquely related to the undrained constants, assuming that porosity, grain bulk modulus, and pore uid bulk modulus are already known. Since the resulting system of equations for all the drained constants is linear, measurement error in undrained constants also propagates linearly into the computed drained constants.

  18. Free volume model for dielectric constant of polymer films

    NASA Astrophysics Data System (ADS)

    Eftekhari, Abe; Clair, Anne St.; Stockly, Diane M.; Sprinkle, Danny R.; Singh, Jag J.

    1994-06-01

    A slow positron flux generator reported in another paper at this conference was used to measure positron lifetime in a series of especially developed fluorine containing thin polyimide films. The positron lifetime spectra was analyzed into 2-components using a standard least square routine. No evidence for positronium formation was observed in any of test films studied. The trapped positron lifetimes were used to calculate the radii of the shallow trap sites. Equating the total volume occupied by the traps with the saturation of the shallow trap sites. Equating the total volume occupied by the traps with the saturation moisture content of Kapton (reference) films, free volume fractions (f) were calculated in all the samples. These free volume fractions affect the dielectric constants (ɛ) of the test films as follows: 1/ɛ= (1-f)/ɛR+f(1-d)/ɛAir+fd/ɛWater Where, ɛR is the dielectric constant of the trap-free medium, ɛAir is the dielectric constant of air, ɛWater is the dielectric constant of water, and d is the moisture uptake inhibition factor. Several examples illustrating the applicability of this model to various types of polymers will be presented.

  19. Running Newton constant, improved gravitational actions, and galaxy rotation curves

    NASA Astrophysics Data System (ADS)

    Reuter, M.; Weyer, H.

    2004-12-01

    A renormalization group (RG) improvement of the Einstein-Hilbert action is performed which promotes Newton’s constant and the cosmological constant to scalar functions on spacetime. They arise from solutions of an exact RG equation by means of a “cutoff identification” which associates RG scales to the points of spacetime. The resulting modified Einstein equations for spherically symmetric, static spacetimes are derived and analyzed in detail. The modifications of the Newtonian limit due to the RG evolution are obtained for the general case. As an application, the viability of a scenario is investigated where strong quantum effects in the infrared cause Newton’s constant to grow at large (astrophysical) distances. For two specific RG trajectories exact vacuum spacetimes modifying the Schwarzschild metric are obtained by means of a solution-generating Weyl transformation. Their possible relevance to the problem of the observed approximately flat galaxy rotation curves is discussed. It is found that a power law running of Newton’s constant with a small exponent of the order 10-6 would account for their non-Keplerian behavior without having to postulate the presence of any dark matter in the galactic halo.

  20. THE STRUCTURE AND KINEMATICS OF THE CIRCUMGALACTIC MEDIUM FROM FAR-ULTRAVIOLET SPECTRA OF z {approx_equal} 2-3 GALAXIES

    SciTech Connect

    Steidel, Charles C.; Bogosavljevic, Milan; Rudie, Gwen C.; Erb, Dawn K.; Shapley, Alice E.; Pettini, Max; Reddy, Naveen; Rakic, Olivera

    2010-07-01

    We present new results on the kinematics and spatial distribution of metal-enriched gas within {approx}125 kpc of star-forming ('Lyman break') galaxies at redshifts 2 {approx_lt} z {approx_lt} 3. In particular, we focus on constraints provided by the rest-frame far-ultraviolet (far-UV) spectra of faint galaxies, and demonstrate how galaxy spectra can be used to obtain key spatial and spectral information more efficiently than possible with QSO sightlines. Using a sample of 89 galaxies with (z) = 2.3 {+-} 0.3 and with both rest-frame far-UV and H{alpha} spectra, we re-calibrate the measurement of accurate galaxy systemic redshifts using only survey-quality rest-UV spectra. We use the velocity-calibrated sample to investigate the kinematics of the galaxy-scale outflows via the strong interstellar (IS) absorption lines and Ly{alpha} emission (when present), as well as their dependence on other physical properties of the galaxies. We construct a sample of 512 close (1''-15'') angular pairs of z {approx} 2-3 galaxies with redshift differences indicating a lack of physical association. Sightlines to the background galaxies provide new information on the spatial distribution of circumgalactic gas surrounding the foreground galaxies. The close pairs sample galactocentric impact parameters 3-125 kpc (physical) at (z) = 2.2, providing for the first time a robust map of cool gas as a function of galactocentric distance for a well-characterized population of galaxies. We propose a simple model of circumgalactic gas that simultaneously matches the kinematics, depth, and profile shape of IS absorption and Ly{alpha} emission lines, as well as the observed variation of absorption line strength (H I and several metallic species) versus galactocentric impact parameter. Within the model, cool gas is distributed symmetrically around every galaxy, accelerating radially outward with v{sub out}(r) increasing with r (i.e., the highest velocities are located at the largest galactocentric

  1. THE FAINT END OF THE QUASAR LUMINOSITY FUNCTION AT z {approx} 4: IMPLICATIONS FOR IONIZATION OF THE INTERGALACTIC MEDIUM AND COSMIC DOWNSIZING

    SciTech Connect

    Glikman, Eilat; Lee, Kyoung-Soo; Djorgovski, S. G.; Stern, Daniel; Dey, Arjun; Jannuzi, Buell T.

    2011-02-20

    We present an updated determination of the z {approx} 4 QSO luminosity function (QLF), improving the quality of the determination of the faint end of the QLF presented by Glikman et al. (2010). We have observed an additional 43 candidates from our survey sample, yielding one additional QSO at z = 4.23 and increasing the completeness of our spectroscopic follow-up to 48% for candidates brighter than R = 24 over our survey area of 3.76 deg{sup 2}. We study the effect of using K-corrections to compute the rest-frame absolute magnitude at 1450 A compared with measuring M{sub 1450} directly from the object spectra. We find a luminosity-dependent bias: template-based K-corrections overestimate the luminosity of low-luminosity QSOs, likely due to their reliance on templates derived from higher luminosity QSOs. Combining our sample with bright quasars from the Sloan Digital Sky Survey and using spectrum-based M{sub 1450} for all the quasars, we fit a double power law to the binned QLF. Our best fit has a bright-end slope, {alpha} = 3.3 {+-} 0.2, and faint-end slope, {beta} = 1.6{sup +0.8}{sub -0.6}. Our new data revise the faint-end slope of the QLF down to flatter values similar to those measured at z {approx} 3. The break luminosity, though poorly constrained, is at M* = -24.1{sup +0.7}{sub -1.9}, approximately 1-1.5 mag fainter than at z {approx} 3. This QLF implies that QSOs account for about half the radiation needed to ionize the intergalactic medium at these redshifts.

  2. A REST-FRAME OPTICAL VIEW ON z {approx} 4 GALAXIES. I. COLOR AND AGE DISTRIBUTIONS FROM DEEP IRAC PHOTOMETRY OF THE IUDF10 AND GOODS SURVEYS

    SciTech Connect

    Oesch, P. A.; Illingworth, G. D.; Gonzalez, V.; Holden, B. P.; Magee, D.; Trenti, M.; Van Dokkum, P. G.

    2013-08-01

    We present a study of rest-frame UV-to-optical color distributions for z {approx} 4 galaxies based on the combination of deep HST/ACS+WFC3/IR data with Spitzer/IRAC imaging. In particular, we use new, ultra-deep data from the IRAC Ultradeep Field program (IUDF10), together with previous, public IRAC data over the GOODS fields. Our sample contains a total of {approx}2600 galaxies selected as B-dropout Lyman-break Galaxies in the HUDF and its deep parallel field HUDF09-2, as well as GOODS-North/South. This sample is used to investigate the UV continuum slopes {beta} and Balmer break colors (J{sub 125} - [4.5]) as a function of rest-frame optical luminosity (using [4.5] to avoid optical emission lines). We find that galaxies at M{sub z} < -21.5 (roughly corresponding to L{sup *}{sub z{approx}4}) are significantly redder than their lower luminosity counterparts. The UV continuum slopes and the J{sub 125} - [4.5] colors are well correlated, indicating that the dust reddening at these redshifts is better described by an SMC-like extinction curve, rather than the typically assumed Calzetti reddening. After dust correction, we find that the galaxy population shows mean stellar population ages in the range 10{sup 8.5} to 10{sup 9} yr, with a dispersion of {approx}0.5 dex, and only weak trends as a function of luminosity. Only a small fraction of galaxies shows Balmer break colors consistent with extremely young ages, younger than 100 Myr. Under the assumption of smooth star-formation histories, this fraction is 12%-19% for galaxies at M{sub z} < -19.75. Our results are consistent with a gradual build-up of stars and dust in galaxies at z > 4 with only a small fraction of stars being formed in short, intense bursts of star-formation.

  3. THE DISCOVERY OF A LARGE Ly{alpha}+He II NEBULA AT z {approx} 1.67: A CANDIDATE LOW METALLICITY REGION?

    SciTech Connect

    Prescott, Moire K. M.; Dey, Arjun; Jannuzi, Buell T. E-mail: dey@noao.edu

    2009-09-01

    We have discovered a {approx}45 kpc Ly{alpha} nebula (or Ly{alpha} 'blob') at z {approx} 1.67 which exhibits strong, spatially extended He II emission and very weak C IV and C III] emission. This is the first spatially extended Ly{alpha}+He II emitter observed and the lowest redshift Ly{alpha} blob yet found. Strong Ly{alpha} and He II{lambda}1640 emission in the absence of metal lines has been proposed as a unique observational signature of primordial galaxy formation (e.g., from gravitational cooling radiation or Population III star formation), but no convincing examples of spatially extended Ly{alpha}+He II emitters have surfaced either in Ly{alpha}-emitting galaxy surveys at high redshifts (z > 4) or in studies of Ly{alpha} nebulae at lower redshifts. From comparisons with photoionization models, we find that the observed line ratios in this nebula are consistent with low metallicity gas (Z {approx}< 10{sup -2}-10{sup -3} Z{sub sun}), but that this conclusion depends on the unknown ionization parameter of the system. The large He II equivalent width ({approx}37 {+-} 10 A) and the large He II/Ly{alpha} ratio (0.12 {+-} 0.04) suggest that the cloud is being illuminated by a hard ionizing continuum, either an active galactic nucleus (AGN) or very low metallicity stars, or perhaps powered by gravitational cooling radiation. Thus far there is no obvious sign of a powerful AGN in or near the system, so in order to power the nebula while remaining hidden from view even in the mid-infrared, the AGN would need to be heavily obscured. Despite the strong Ly{alpha}+He II emission, it is not yet clear what is the dominant power source for this nebula. The system therefore serves as an instructive example of how the complexities of true astrophysical sources will complicate matters when attempting to use a strong Ly{alpha}+He II signature as a unique tracer of primordial galaxy formation.

  4. {beta}-decay half-lives and {beta}-delayed neutron emission probabilities of nuclei in the region A < or approx. 110, relevant for the r process

    SciTech Connect

    Pereira, J.; Galaviz, D.; Matos, M.; Montes, F.; Hennrich, S.; Kessler, R.; Schertz, F.; Aprahamian, A.; Quinn, M.; Woehr, A.; Arndt, O.; Pfeiffer, B.; Becerril, A.; Elliot, T.; Estrade, A.; Lorusso, G.; Schatz, H.; Kratz, K.-L.; Mantica, P. F.; Moeller, P.

    2009-03-15

    Measurements of {beta}-decay properties of A < or approx. 110 r-process nuclei have been completed at the National Superconducting Cyclotron Laboratory at Michigan State University. {beta}-decay half-lives for {sup 105}Y, {sup 106,107}Zr, and {sup 111}Mo, along with {beta}-delayed neutron emission probabilities of {sup 104}Y, {sup 109,110}Mo and upper limits for {sup 105}Y, {sup 103-107}Zr, and {sup 108,111}Mo have been measured for the first time. Studies on the basis of the quasi-random-phase approximation are used to analyze the ground-state deformation of these nuclei.

  5. CLUSTERING PROPERTIES OF BzK-SELECTED GALAXIES IN GOODS-N: ENVIRONMENTAL QUENCHING AND TRIGGERING OF STAR FORMATION AT z {approx} 2

    SciTech Connect

    Lin Lihwai; Wang Weihao; Yan, Chi-Hung; Dickinson, Mark; Jian, Hung-Yu; Merson, A. I.; Baugh, C. M.; Helly, John; Lagos, Claudia del P; Scott, Douglas; Meger, Nicole; Foucaud, Sebastien; Yan Haojing; Cheng, Yi-Wen; Guo Yicheng; Pope, Alexandra; Kirsten, Franz; Koo, David C.; Simard, Luc; and others

    2012-09-01

    Using a sample of BzK-selected galaxies at z {approx} 2 identified from the CFHT/WIRCAM near-infrared survey of GOODS-North, we discuss the relation between star formation rate (SFR), specific star formation rate (SSFR), and stellar mass (M{sub *}), and the clustering of galaxies as a function of these parameters. For star-forming galaxies (sBzKs), the UV-based SFR, corrected for extinction, scales with the stellar mass as SFR{proportional_to}M{sup {alpha}}{sub *} with {alpha} = 0.74 {+-} 0.20 down to M{sub *} {approx} 10{sup 9} M{sub Sun }, indicating a weak dependence on the stellar mass of the SFR efficiency, namely, SSFR. We also measure the angular correlation function and hence infer the correlation length for sBzK galaxies as a function of M{sub *}, SFR, and SSFR, as well as K-band apparent magnitude. We show that passive galaxies (pBzKs) are more strongly clustered than sBzK galaxies at a given stellar mass, mirroring the color-density relation seen at lower redshifts. We also find that the correlation length of sBzK galaxies ranges from 4 to 20 h {sup -1} Mpc, being a strong function of M{sub K} , M{sub *}, and SFR. On the other hand, the clustering dependence on SSFR changes abruptly at 2 Multiplication-Sign 10{sup -9} yr{sup -1}, which is the typical value for 'main-sequence' star-forming galaxies at z {approx} 2. We show that the correlation length reaches a minimum at this characteristic value, and is larger for galaxies with both smaller and larger SSFRs; a dichotomy that is only marginally implied from the predictions of the semi-analytical models. Our results suggest that there are two types of environmental effects at work at z {approx} 2. Stronger clustering for relatively quiescent galaxies implies that the environment has started to play a role in quenching star formation. At the same time, stronger clustering for galaxies with elevated SSFRs ({sup s}tarbursts{sup )} might be attributed to an increased efficiency for galaxy interactions and

  6. Effects of the rest mass of the neutrino (antineutrino) on the scattering of /gamma/ (/sup /approx///gamma/) by /sub 6/C/sup 12/

    SciTech Connect

    Samsonenko, N.V.; Katkhat, C.L.; El-Gavkhari, A.I.

    1989-01-01

    Expressions are obtained for the differential cross sections of the processes /gamma/ + /sub 6/C/sup 12/ /yields/ /sub 7/N/sup 12/ + e/sup /minus// and /sup /approx///gamma/ + /sub 6/C/sup 12/ /yields/ /sub 5/B/sup 12/ + e/sup +/ for the shell model of the nucleus and the harmonic oscillator model. The authors analyze the effect of the rest mass of the neutrino (antineutrino) on the degree of longitudinal polarization of the electrons (positrons), the angular electron-neutrino (positron-antineutrino) correlation coefficient, and the charge symmetry.

  7. Normal and torsional spring constants of atomic force microscope cantilevers

    NASA Astrophysics Data System (ADS)

    Green, Christopher P.; Lioe, Hadi; Cleveland, Jason P.; Proksch, Roger; Mulvaney, Paul; Sader, John E.

    2004-06-01

    Two methods commonly used to measure the normal spring constants of atomic force microscope cantilevers are the added mass method of Cleveland et al. [J. P. Cleveland et al., Rev. Sci. Instrum. 64, 403 (1993)], and the unloaded resonance technique of Sader et al. [J. E. Sader, J. W. M. Chon, and P. Mulvaney, Rev. Sci. Instrum. 70, 3967 (1999)]. The added mass method involves measuring the change in resonant frequency of the fundamental mode of vibration upon the addition of known masses to the free end of the cantilever. In contrast, the unloaded resonance technique requires measurement of the unloaded resonant frequency and quality factor of the fundamental mode of vibration, as well as knowledge of the plan view dimensions of the cantilever and properties of the fluid. In many applications, such as frictional force microscopy, the torsional spring constant is often required. Consequently, in this article, we extend both of these techniques to allow simultaneous calibration of both the normal and torsional spring constants. We also investigate the validity and applicability of the unloaded resonance method when a mass is attached to the free end of the cantilever due to its importance in practice.

  8. Theoretical Analysis of One-Dimensional Pressure Diffusion from a Constant Upstream Pressure to a Constant Downstream Storage

    NASA Astrophysics Data System (ADS)

    Song, Insun

    2016-05-01

    The one-dimensional diffusion equation was solved to understand the pressure and flow behaviors along a cylindrical rock specimen for experimental boundary conditions of constant upstream pressure and constant downstream storage. The solution consists of a time-constant asymptotic part and a transient part that is a negative exponential function of time. This means that the transient flow exponentially decays with time and is eventually followed by a steady-state condition. For a given rock sample, the transient stage is shortest when the downstream storage is minimized. For this boundary condition, a simple equation was derived from the analytic solution to determine the hydraulic permeability from the initial flow rate during the transient stage. The specific storage of a rock sample can be obtained simply from the total flow into the sample during the entire transient stage if there is no downstream storage. In theory, both of these hydraulic properties could be obtained simultaneously from transient-flow stage measurements without a complicated curve fitting or inversion process. Sensitivity analysis showed that the derived permeability is more reliable for lower-permeability rock samples. In conclusion, the constant head method with no downstream storage might be more applicable to extremely low-permeability rocks if the upstream flow rate is measured precisely upstream.

  9. An Improved Dielectric Constant Cell for Use in Student and Research Laboratories.

    ERIC Educational Resources Information Center

    Thompson, H. Bradford.; Walmsley, Judith A.

    1979-01-01

    Describes the latest stage in the design of an economical dielectric constant cell, tested in both instructional and research applications, that is suitable for student laboratories and for precision research measurements. (BT)

  10. Rate constant for OH with selected large alkanes : shock-tube measurements and an improved group scheme.

    SciTech Connect

    Sivaramakrishnan, R.; Michael, J. V.; Chemical Sciences and Engineering Division

    2009-04-06

    High-temperature rate constant experiments on OH with the five large (C{sub 5}-C{sub 8}) saturated hydrocarbons n-heptane, 2,2,3,3-tetramethylbutane (2,2,3,3-TMB), n-pentane, n-hexane, and 2,3-dimethylbutane (2,3-DMB) were performed with the reflected-shock-tube technique using multipass absorption spectrometric detection of OH radicals at 308 nm. Single-point determinations at {approx}1200 K on n-heptane, 2,2,3,3-TMB, n-hexane, and 2,3-DMB were previously reported by Cohen and co-workers; however, the present work substantially extends the database to both lower and higher temperature. The present experiments span a wide temperature range, 789-1308 K, and represent the first direct measurements of rate constants at T > 800 K for n-pentane. The present work utilized 48 optical passes corresponding to a total path length of {approx}4.2 m. As a result of this increased path length, the high OH concentration detection sensitivity permitted pseudo-first-order analyses for unambiguously measuring rate constants.

  11. Absolute radiometry and the solar constant

    NASA Technical Reports Server (NTRS)

    Willson, R. C.

    1974-01-01

    A series of active cavity radiometers (ACRs) are described which have been developed as standard detectors for the accurate measurement of irradiance in absolute units. It is noted that the ACR is an electrical substitution calorimeter, is designed for automatic remote operation in any environment, and can make irradiance measurements in the range from low-level IR fluxes up to 30 solar constants with small absolute uncertainty. The instrument operates in a differential mode by chopping the radiant flux to be measured at a slow rate, and irradiance is determined from two electrical power measurements together with the instrumental constant. Results are reported for measurements of the solar constant with two types of ACRs. The more accurate measurement yielded a value of 136.6 plus or minus 0.7 mW/sq cm (1.958 plus or minus 0.010 cal/sq cm per min).

  12. Heavy-meson decay constants from QCD sum rules

    SciTech Connect

    Lucha, Wolfgang; Melikhov, Dmitri; Simula, Silvano

    2010-12-22

    We sketch a recent sum-rule extraction of the decay constants of the heavy pseudoscalar mesons D, D{sub s}, B, and B{sub s} from the two-point correlator of heavy-light pseudoscalar currents. Our main emphasis lies on the control over all the uncertainties in the decay constants, related both to the input QCD parameters and to the limited accuracy of the method of sum rules. Gaining this control has become possible by application of our new procedure of extracting hadron observables based on a dual threshold depending on the Borel parameter. For the charmed-meson decay constants, we find fD = (206.2{+-}7.3{sub (OPE)}{+-}5.1{sub (syst)}) MeV, fD{sub s} = (245.3{+-}15.7{sub (OPE)}{+-}4.5{sub (syst)}) MeV. For the beauty mesons, the decay constants turn out to be extremely sensitive to the precise value of the {ovr MS} mass of the b-quark, {bar m}{sub b}({bar m}{sub b}). By requiring our sum-rule estimate to match the average of the lattice determinations of f{sub B}, we extract the rather accurate value {bar m}{sub b}({bar m}{sub b}) = (4.245{+-}0.025) GeV. Feeding this parameter value into our sum-rule formalism leads to the beauty-meson decay constants fB = (193.4{+-}12.3{sub (OPE)}{+-}4.3{sub (syst)}) MeV, fB{sub s} = (232.5{+-}18.6{sub (OPE)}{+-}2.4{sub (syst)}) MeV.

  13. Classically exact surface diffusion constants at arbitrary temperature

    SciTech Connect

    Voter, A.F.; Cohen, J.M.

    1989-05-01

    An expression is presented for computing the classical diffusion constant of a point defect (e.g., an adatom) in an infinite lattice of binding sites at arbitrary temperature. The transition state theory diffusion constant is simply multiplied by a dynamical correction factor that is computed from short-time classical trajectories initiated at the site boundaries. The time scale limitations of direct molecular dynamics are thus avoided in the low- and middle-temperature regimes. The expression results from taking the time derivative of the particle mean-square displacement in the lattice-discretized coordinate system. Applications are presented for surface diffusion on fcc(100) and fcc(111) Lennard-Jones crystal faces.

  14. Classically exact surface diffusion constants at arbitrary temperature

    SciTech Connect

    Voter, A.F.; Cohen, J.M.

    1988-01-01

    An expression is presented for computing the classical diffusion constant of a point defect (e.g., adatom) in an infinite lattice of binding sites at arbitrary temperature. The transition state theory diffusion constant is simply multiplied by a dynamical correction factor that is computed from short-time classical trajectories initiated at the site boundaries. The time scale limitations of direct molecular dynamics are thus avoided in the low and middle temperature regimes. The expression resulted from taking the time derivative of the particle mean square displacement in the lattice-discretized coordinate system. Applications are presented for surface diffusion on fcc(100) and fcc(111) Lennard-Jones crystal faces. 14 refs., 3 figs.

  15. Optimizing constant wavelength neutron powder diffractometers

    NASA Astrophysics Data System (ADS)

    Cussen, Leo D.

    2016-06-01

    This article describes an analytic method to optimize constant wavelength neutron powder diffractometers. It recasts the accepted mathematical description of resolution and intensity in terms of new variables and includes terms for vertical divergence, wavelength and some sample scattering effects. An undetermined multiplier method is applied to the revised equations to minimize the RMS value of resolution width at constant intensity and fixed wavelength. A new understanding of primary spectrometer transmission (presented elsewhere) can then be applied to choose beam elements to deliver an optimum instrument. Numerical methods can then be applied to choose the best wavelength.

  16. Dielectric constants of soils at microwave frequencies

    NASA Technical Reports Server (NTRS)

    Geiger, F. E.; Williams, D.

    1972-01-01

    A knowledge of the complex dielectric constant of soils is essential in the interpretation of microwave airborne radiometer data of the earth's surface. Measurements were made at 37 GHz on various soils from the Phoenix, Ariz., area. Extensive data have been obtained for dry soil and soil with water content in the range from 0.6 to 35 percent by dry weight. Measurements were made in a two arm microwave bridge and results were corrected for reflections at the sample interfaces by solution of the parallel dielectric plate problem. The maximum dielectric constants are about a factor of 3 lower than those reported for similar soils at X-band frequencies.

  17. Microfabricated microengine with constant rotation rate

    SciTech Connect

    Romero, L.A.; Dickey, F.M.

    1999-09-21

    A microengine uses two synchronized linear actuators as a power source and converts oscillatory motion from the actuators into constant rotational motion via direct linkage connection to an output gear or wheel. The microengine provides output in the form of a continuously rotating output gear that is capable of delivering drive torque at a constant rotation to a micromechanism. The output gear can have gear teeth on its outer perimeter for directly contacting a micromechanism requiring mechanical power. The gear is retained by a retaining means which allows said gear to rotate freely. The microengine is microfabricated of polysilicon on one wafer using surface micromachining batch fabrication.

  18. Atomic Weights No Longer Constants of Nature

    SciTech Connect

    Coplen, T.B.; Holden, N.

    2011-03-01

    Many of us grew up being taught that the standard atomic weights we found in the back of our chemistry textbooks or on the Periodic Table of the Chemical Elements hanging on the wall of our chemistry classroom are constants of nature. This was common knowledge for more than a century and a half, but not anymore. The following text explains how advances in chemical instrumentation and isotopic analysis has changed the way we view atomic weights and why they are no longer constants of nature.

  19. Atomic weights: no longer constants of nature

    USGS Publications Warehouse

    Coplen, Tyler B.; Holden, Norman E.

    2011-01-01

    Many of us were taught that the standard atomic weights we found in the back of our chemistry textbooks or on the Periodic Table of the Chemical Elements hanging on the wall of our chemistry classroom are constants of nature. This was common knowledge for more than a century and a half, but not anymore. The following text explains how advances in chemical instrumentation and isotopic analysis have changed the way we view atomic weights and why they are no longer constants of nature

  20. TOPICAL REVIEW The cosmological constant puzzle

    NASA Astrophysics Data System (ADS)

    Bass, Steven D.

    2011-04-01

    The accelerating expansion of the Universe points to a small positive vacuum energy density and negative vacuum pressure. A strong candidate is the cosmological constant in Einstein's equations of general relativity. Possible contributions are zero-point energies and the condensates associated with spontaneous symmetry breaking. The vacuum energy density extracted from astrophysics is 1056 times smaller than the value expected from quantum fields and standard model particle physics. Is the vacuum energy density time dependent? We give an introduction to the cosmological constant puzzle and ideas how to solve it.

  1. Cosmological constant in scale-invariant theories

    SciTech Connect

    Foot, Robert; Kobakhidze, Archil; Volkas, Raymond R.

    2011-10-01

    The incorporation of a small cosmological constant within radiatively broken scale-invariant models is discussed. We show that phenomenologically consistent scale-invariant models can be constructed which allow a small positive cosmological constant, providing certain relation between the particle masses is satisfied. As a result, the mass of the dilaton is generated at two-loop level. Another interesting consequence is that the electroweak symmetry-breaking vacuum in such models is necessarily a metastable ''false'' vacuum which, fortunately, is not expected to decay on cosmological time scales.

  2. Environmental dependence of masses and coupling constants

    SciTech Connect

    Olive, Keith A.; Pospelov, Maxim

    2008-02-15

    We construct a class of scalar field models coupled to matter that lead to the dependence of masses and coupling constants on the ambient matter density. Such models predict a deviation of couplings measured on the Earth from values determined in low-density astrophysical environments, but do not necessarily require the evolution of coupling constants with the redshift in the recent cosmological past. Additional laboratory and astrophysical tests of {delta}{alpha} and {delta}(m{sub p}/m{sub e}) as functions of the ambient matter density are warranted.

  3. Our Universe from the cosmological constant

    SciTech Connect

    Barrau, Aurélien; Linsefors, Linda E-mail: linda.linsefors@lpsc.in2p3.fr

    2014-12-01

    The issue of the origin of the Universe and of its contents is addressed in the framework of bouncing cosmologies, as described for example by loop quantum gravity. If the current acceleration is due to a true cosmological constant, this constant is naturally conserved through the bounce and the Universe should also be in a (contracting) de Sitter phase in the remote past. We investigate here the possibility that the de Sitter temperature in the contracting branch fills the Universe with radiation that causes the bounce and the subsequent inflation and reheating. We also consider the possibility that this gives rise to a cyclic model of the Universe and suggest some possible tests.

  4. Microfabricated microengine with constant rotation rate

    DOEpatents

    Romero, Louis A.; Dickey, Fred M.

    1999-01-01

    A microengine uses two synchronized linear actuators as a power source and converts oscillatory motion from the actuators into constant rotational motion via direct linkage connection to an output gear or wheel. The microengine provides output in the form of a continuously rotating output gear that is capable of delivering drive torque at a constant rotation to a micromechanism. The output gear can have gear teeth on its outer perimeter for directly contacting a micromechanism requiring mechanical power. The gear is retained by a retaining means which allows said gear to rotate freely. The microengine is microfabricated of polysilicon on one wafer using surface micromachining batch fabrication.

  5. THE BOSS EMISSION-LINE LENS SURVEY (BELLS). I. A LARGE SPECTROSCOPICALLY SELECTED SAMPLE OF LENS GALAXIES AT REDSHIFT {approx}0.5

    SciTech Connect

    Brownstein, Joel R.; Bolton, Adam S.; Pandey, Parul; Schlegel, David J.; Eisenstein, Daniel J.; Kochanek, Christopher S.; Connolly, Natalia; Maraston, Claudia; Seitz, Stella; Wake, David A.; Wood-Vasey, W. Michael; Brinkmann, Jon; Schneider, Donald P.; Weaver, Benjamin A.

    2012-01-01

    We present a catalog of 25 definite and 11 probable strong galaxy-galaxy gravitational lens systems with lens redshifts 0.4 {approx}< z {approx}< 0.7, discovered spectroscopically by the presence of higher-redshift emission lines within the Baryon Oscillation Spectroscopic Survey (BOSS) of luminous galaxies, and confirmed with high-resolution Hubble Space Telescope (HST) images of 44 candidates. Our survey extends the methodology of the Sloan Lens Advanced Camera for Surveys survey (SLACS) to higher redshift. We describe the details of the BOSS spectroscopic candidate detections, our HST ACS image processing and analysis methods, and our strong gravitational lens modeling procedure. We report BOSS spectroscopic parameters and ACS photometric parameters for all candidates, and mass-distribution parameters for the best-fit singular isothermal ellipsoid models of definite lenses. Our sample to date was selected using only the first six months of BOSS survey-quality spectroscopic data. The full five-year BOSS database should produce a sample of several hundred strong galaxy-galaxy lenses and in combination with SLACS lenses at lower redshift, strongly constrain the redshift evolution of the structure of elliptical, bulge-dominated galaxies as a function of luminosity, stellar mass, and rest-frame color, thereby providing a powerful test for competing theories of galaxy formation and evolution.

  6. Constant capacitance in nanopores of carbon monoliths.

    PubMed

    García-Gómez, Alejandra; Moreno-Fernández, Gelines; Lobato, Belén; Centeno, Teresa A

    2015-06-28

    The results obtained for binder-free electrodes made of carbon monoliths with narrow micropore size distributions confirm that the specific capacitance in the electrolyte (C2H5)4NBF4/acetonitrile does not depend significantly on the micropore size and support the foregoing constant result of 0.094 ± 0.011 F m(-2).

  7. Variations of the Solar Constant. [conference

    NASA Technical Reports Server (NTRS)

    Sofia, S. (Editor)

    1981-01-01

    The variations in data received from rocket-borne and balloon-borne instruments are discussed. Indirect techniques to measure and monitor the solar constant are presented. Emphasis is placed on the correlation of data from the Solar Maximum Mission and the Nimbus 7 satellites.

  8. Unified Technical Concepts. Module 12: Time Constants.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This concept module on time constants is one of thirteen modules that provide a flexible, laboratory-based physics instructional package designed to meet the specialized needs of students in two-year, postsecondary technical schools. Each of the thirteen concept modules discusses a single physics concept and how it is applied to each energy…

  9. The ideal Kolmogorov inertial range and constant

    NASA Technical Reports Server (NTRS)

    Zhou, YE

    1993-01-01

    The energy transfer statistics measured in numerically simulated flows are found to be nearly self-similar for wavenumbers in the inertial range. Using the measured self-similar form, an 'ideal' energy transfer function and the corresponding energy flux rate were deduced. From this flux rate, the Kolmogorov constant was calculated to be 1.5, in excellent agreement with experiments.

  10. The Elastic Constants for Wrought Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Templin, R L; Hartmann, E C

    1945-01-01

    There are several constants which have been devised as numerical representations of the behavior of metals under the action of loadings which stress the metal within the range of elastic action. Some of these constants, such as Young's modulus of elasticity in tension and compression, shearing modulus of elasticity, and Poisson's ratio, are regularly used in engineering calculations. Precise tests and experience indicate that these elastic constants are practically unaffected by many of the factors which influence the other mechanical properties of materials and that a few careful determinations under properly controlled conditions are more useful and reliable than many determinations made under less favorable conditions. It is the purpose of this paper to outline the methods employed by the Aluminum Research Laboratories for the determination of some of these elastic constants, to list the values that have been determined for some of the wrought aluminum alloys, and to indicate the variations in the values that may be expected for some of the commercial products of these alloys.

  11. The Cosmological Constant and its Interpretation

    NASA Astrophysics Data System (ADS)

    Liddle, A.; Murdin, P.

    2002-12-01

    The cosmological constant was first introduced into the equations of general relativity by Einstein himself, who later famously criticized this move as his `greatest blunder'. His main motivation had been to allow cosmological models featuring a static universe, but this possibility swiftly became redundant with Edwin Hubble's discovery of the expansion of the universe. Despite this, it has period...

  12. Can compactifications solve the cosmological constant problem?

    NASA Astrophysics Data System (ADS)

    Hertzberg, Mark P.; Masoumi, Ali

    2016-06-01

    Recently, there have been claims in the literature that the cosmological constant problem can be dynamically solved by specific compactifications of gravity from higher-dimensional toy models. These models have the novel feature that in the four-dimensional theory, the cosmological constant Λ is much smaller than the Planck density and in fact accumulates at Λ = 0. Here we show that while these are very interesting models, they do not properly address the real cosmological constant problem. As we explain, the real problem is not simply to obtain Λ that is small in Planck units in a toy model, but to explain why Λ is much smaller than other mass scales (and combinations of scales) in the theory. Instead, in these toy models, all other particle mass scales have been either removed or sent to zero, thus ignoring the real problem. To this end, we provide a general argument that the included moduli masses are generically of order Hubble, so sending them to zero trivially sends the cosmological constant to zero. We also show that the fundamental Planck mass is being sent to zero, and so the central problem is trivially avoided by removing high energy physics altogether. On the other hand, by including various large mass scales from particle physics with a high fundamental Planck mass, one is faced with a real problem, whose only known solution involves accidental cancellations in a landscape.

  13. Spray Gun With Constant Mixing Ratio

    NASA Technical Reports Server (NTRS)

    Simpson, William G.

    1987-01-01

    Conceptual mechanism mounted in handle of spray gun maintains constant ratio between volumetric flow rates in two channels leading to spray head. With mechanism, possible to keep flow ratio near 1:1 (or another desired ratio) over range of temperatures, orifice or channel sizes, or clogging conditions.

  14. Asymptotically Vanishing Cosmological Constant in the Multiverse

    NASA Astrophysics Data System (ADS)

    Kawai, Hikaru; Okada, Takashi

    We study the problem of the cosmological constant in the context of the multiverse in Lorentzian space-time, and show that the cosmological constant will vanish in the future. This sort of argument was started by Sidney Coleman in 1989, and he argued that the Euclidean wormholes make the multiverse partition function a superposition of various values of the cosmological constant Λ, which has a sharp peak at Λ = 0. However, the implication of the Euclidean analysis to our Lorentzian space-time is unclear. With this motivation, we analyze the quantum state of the multiverse in Lorentzian space-time by the WKB method, and calculate the density matrix of our universe by tracing out the other universes. Our result predicts vanishing cosmological constant. While Coleman obtained the enhancement at Λ = 0 through the action itself, in our Lorentzian analysis the similar enhancement arises from the front factor of eiS in the universe wave function, which is in the next leading order in the WKB approximation.

  15. A tunable CMOS constant current source

    NASA Technical Reports Server (NTRS)

    Thelen, D.

    1991-01-01

    A constant current source has been designed which makes use of on chip electrically erasable memory to adjust the magnitude and temperature coefficient of the output current. The current source includes a voltage reference based on the difference between enhancement and depletion transistor threshold voltages. Accuracy is +/- 3% over the full range of power supply, process variations, and temperature using eight bits for tuning.

  16. Man's Size in Terms of Fundamental Constants.

    ERIC Educational Resources Information Center

    Press, William H.

    1980-01-01

    Reviews calculations that derive an order of magnitude expression for the size of man in terms of fundamental constants, assuming that man satifies these three properties: he is made of complicated molecules; he requires an atmosphere which is not hydrogen and helium; he is as large as possible. (CS)

  17. Factorization of the constants of motion

    NASA Astrophysics Data System (ADS)

    Nash, P. L.; Chen, L. Y.

    2006-08-01

    A complete set of first integrals, or constants of motion, for a model system is constructed using "factorization", as described below. The system is described by the effective Feynman Lagrangian L = 1/4 [m(x)double over dot(t) + 2m lambda(x)over dot(t) + partial derivative V-x(x(t))](2), with one of the simplest, nontrivial, potentials V (x) = 1/2m omega(2)x(2) selected for study. Four new, explicitly time-dependent, constants of the motion c(i +/-), i = 1, 2 are defined for this system. While partial derivative/partial derivative tc(i +/-) not equal 0, d/tc(i +/-) = partial derivative/partial derivative tc(i +/-) + (x)over dot partial derivative/partial derivative xc(i +/-) + (x)double over dot partial derivative/partial derivative xci +/- + ... = along an extremal of L. The Hamiltonian H is shown to equal a sum of products of the c(i +/-), and verifies partial derivative H/partial derivative t = 0. A second, functionally independent constant of motion is also constructed as a sum of the quadratic products of c(i +/-). It is shown that these derived constants of motion are in involution.

  18. Teaching Nanochemistry: Madelung Constants of Nanocrystals

    ERIC Educational Resources Information Center

    Baker, Mark D.; Baker, A. David

    2010-01-01

    The Madelung constants for binary ionic nanoparticles are determined. The computational method described here sums the Coulombic interactions of each ion in the particle without the use of partial charges commonly used for bulk materials. The results show size-dependent lattice energies. This is a useful concept in teaching how properties such as…

  19. Correlations Between the Cosmic X-Ray and Microwave Backgrounds: Constraints on a Cosmological Constant

    NASA Technical Reports Server (NTRS)

    Boughn, S. P.; Crittenden, R. G.; Turok, N. G.

    1998-01-01

    In universes with significant curvature or cosmological constant, cosmic microwave background (CMB) anisotropies are created very recently via the Rees-Sciama or integrated Sachs-Wolfe effects. This causes the CMB anisotropies to become partially correlated with the local matter density (z less than 4). We examine the prospects of using the hard (2- 10 keV) X-ray background as a probe of the local density and the measured correlation between the HEAO1 A2 X-ray survey and the 4-year COBE-DMR map to obtain a constraint on the cosmological constant. The 95% confidence level upper limit on the cosmological constant is OMega(sub Lambda) less than or equal to 0.5, assuming that the observed fluctuations in the X-ray map result entirely from large scale structure. (This would also imply that the X-rays trace matter with a bias factor of b(sub x) approx. = 5.6 Omega(sub m, sup 0.53)). This bound is weakened considerably if a large portion of the X-ray fluctuations arise from Poisson noise from unresolved sources. For example, if one assumes that the X-ray bias is b(sub x) = 2, then the 95% confidence level upper limit is weaker, Omega(sub Lambda) less than or equal to 0.7. More stringent limits should be attainable with data from the next generation of CMB and X-ray background maps.

  20. A KINEMATIC APPROACH TO ASSESSING ENVIRONMENTAL EFFECTS: STAR-FORMING GALAXIES IN A z {approx} 0.9 SpARCS CLUSTER USING SPITZER 24 {mu}m OBSERVATIONS

    SciTech Connect

    Noble, A. G.; Webb, T. M. A.; Muzzin, A.; Van der Burg, R. F. J.; Wilson, G.; Yee, H. K. C.

    2013-05-10

    We present an infrared study of a z = 0.872 cluster, SpARCS J161314+564930, with the primary aim of distinguishing the dynamical histories of spectroscopically confirmed star-forming members to assess the role of cluster environment. We utilize deep MIPS imaging and a mass-limited sample of 85 spectroscopic members to identify 16 24 {mu}m bright sources within the cluster, and measure their 24 {mu}m star formation rates (SFRs) down to {approx}6 M{sub Sun} yr{sup -1}. Based on their line-of-sight velocities and stellar ages, MIPS cluster members appear to be an infalling population that was recently accreted from the field with minimal environmental dependency on their star formation. However, we identify a double-sequenced distribution of star-forming galaxies among the members, with one branch exhibiting declining specific SFRs with mass. The members along this sub-main sequence contain spectral features suggestive of passive galaxies. Using caustic diagrams, we kinematically identify these galaxies as a virialized and/or backsplash population. Moreover, we find a mix of dynamical histories at all projected radii, indicating that standard definitions of environment (i.e., radius and density) are contaminated with recently accreted interlopers, which could contribute to a lack of environmental trends for star-forming galaxies. A cleaner narrative of their dynamical past begins to unfold when using a proxy for accretion histories through profiles of constant (r/r{sub 200}) Multiplication-Sign ({Delta}v/{sigma}{sub v}); galaxies accreted at earlier times possess lower values of (r/r{sub 200}) Multiplication-Sign ({Delta}v/{sigma}{sub v}) with minimal contamination from the distinct infalling population. Therefore, adopting a time-averaged definition for density (as traced by accretion histories) rather than an instantaneous density yields a depressed specific SFR within the dynamical cluster core.

  1. BLACK HOLE MASS AND EDDINGTON RATIO DISTRIBUTION FUNCTIONS OF X-RAY-SELECTED BROAD-LINE AGNs AT z {approx} 1.4 IN THE SUBARU XMM-NEWTON DEEP FIELD

    SciTech Connect

    Nobuta, K.; Akiyama, M.; Ueda, Y.; Hiroi, K.; Ohta, K.; Iwamuro, F.; Yabe, K.; Moritani, Y.; Sumiyoshi, M.; Maihara, T.; Watson, M. G.; Silverman, J.; Tamura, N.; Kimura, M.; Takato, N.; Dalton, G.; Lewis, I.; Bonfield, D.; Lee, H.; Curtis-Lake, E.; and others

    2012-12-20

    In order to investigate the growth of supermassive black holes (SMBHs), we construct the black hole mass function (BHMF) and Eddington ratio distribution function (ERDF) of X-ray-selected broad-line active galactic nuclei (AGNs) at z {approx} 1.4 in the Subaru XMM-Newton Deep Survey (SXDS) field. A significant part of the accretion growth of SMBHs is thought to take place in this redshift range. Black hole masses of X-ray-selected broad-line AGNs are estimated using the width of the broad Mg II line and 3000 A monochromatic luminosity. We supplement the Mg II FWHM values with the H{alpha} FWHM obtained from our NIR spectroscopic survey. Using the black hole masses of broad-line AGNs at redshifts between 1.18 and 1.68, the binned broad-line AGN BHMFs and ERDFs are calculated using the V{sub max} method. To properly account for selection effects that impact the binned estimates, we derive the corrected broad-line AGN BHMFs and ERDFs by applying the maximum likelihood method, assuming that the ERDF is constant regardless of the black hole mass. We do not correct for the non-negligible uncertainties in virial BH mass estimates. If we compare the corrected broad-line AGN BHMF with that in the local universe, then the corrected BHMF at z = 1.4 has a higher number density above 10{sup 8} M{sub Sun} but a lower number density below that mass range. The evolution may be indicative of a downsizing trend of accretion activity among the SMBH population. The evolution of broad-line AGN ERDFs from z = 1.4 to 0 indicates that the fraction of broad-line AGNs with accretion rates close to the Eddington limit is higher at higher redshifts.

  2. Construction of Lines of Constant Density and Constant Refractive Index for Ternary Liquid Mixtures.

    ERIC Educational Resources Information Center

    Tasic, Aleksandar Z.; Djordjevic, Bojan D.

    1983-01-01

    Demonstrates construction of density constant and refractive index constant lines in triangular coordinate system on basis of systematic experimental determinations of density and refractive index for both homogeneous (single-phase) ternary liquid mixtures (of known composition) and the corresponding binary compositions. Background information,…

  3. REDDENING AND EXTINCTION TOWARD THE GALACTIC BULGE FROM OGLE-III: THE INNER MILKY WAY'S R{sub V} {approx} 2.5 EXTINCTION CURVE

    SciTech Connect

    Nataf, David M.; Gould, Andrew; Johnson, Jennifer A.; Skowron, Jan; Fouque, Pascal; Gonzalez, Oscar A.; Udalski, Andrzej; Szymanski, Michal K.; Kubiak, Marcin; Pietrzynski, Grzegorz; Soszynski, Igor; Ulaczyk, Krzysztof; Wyrzykowski, Lukasz; Poleski, Radoslaw

    2013-06-01

    We combine VI photometry from OGLE-III with VISTA Variables in The Via Lactea survey and Two Micron All Sky Survey measurements of E(J - K{sub s} ) to resolve the longstanding problem of the non-standard optical extinction toward the Galactic bulge. We show that the extinction is well fit by the relation A{sub I} = 0.7465 Multiplication-Sign E(V - I) + 1.3700 Multiplication-Sign E(J - K{sub s} ), or, equivalently, A{sub I} = 1.217 Multiplication-Sign E(V - I)(1 + 1.126 Multiplication-Sign (E(J - K{sub s} )/E(V - I) - 0.3433)). The optical and near-IR reddening law toward the inner Galaxy approximately follows an R{sub V} Almost-Equal-To 2.5 extinction curve with a dispersion {sigma}{sub R{sub V}}{approx}0.2, consistent with extragalactic investigations of the hosts of Type Ia SNe. Differential reddening is shown to be significant on scales as small as our mean field size of 6'. The intrinsic luminosity parameters of the Galactic bulge red clump (RC) are derived to be (M{sub I,RC},{sigma}{sub I,RC,0}, (V-I){sub RC,0},{sigma}{sub (V-I){sub R{sub C}}}, (J-K{sub s}){sub RC,0}) = (-0.12, 0.09, 1.06, 0.121, 0.66). Our measurements of the RC brightness, brightness dispersion, and number counts allow us to estimate several Galactic bulge structural parameters. We estimate a distance to the Galactic center of 8.20 kpc. We measure an upper bound on the tilt {alpha} Almost-Equal-To 40 Degree-Sign between the bulge's major axis and the Sun-Galactic center line of sight, though our brightness peaks are consistent with predictions of an N-body model oriented at {alpha} Almost-Equal-To 25 Degree-Sign . The number of RC stars suggests a total stellar mass for the Galactic bulge of {approx}2.3 Multiplication-Sign 10{sup 10} M{sub Sun} if one assumes a canonical Salpeter initial mass function (IMF), or {approx}1.6 Multiplication-Sign 10{sup 10} M{sub Sun} if one assumes a bottom-light Zoccali IMF.

  4. Acoustic performance of boundaries having constant phase gradient.

    PubMed

    Wang, Xu; Wang, Xiaonan; Yu, Wuzhou; Jiang, Zaixiu; Mao, Dongxing

    2016-07-01

    In this paper, inhomogeneous boundaries having constant phase gradient are investigated. In principle, such a theoretically proposed boundary is dispersionless. In practice, however, when the boundary is realized by a subwavelength-structured tubes array, the impedance discretization brings about sub-reflections at high frequencies. Moreover, determined by the longest duct in the array, a realized boundary is impractically thick. Therefore, a finite-thickness boundary is further proposed by truncating and periodizing the tubes in the array. In this paper, the theoretical analysis agrees well with the numerical simulations. By appropriately choosing its phase gradient and target frequency, the finite-thickness boundaries have potential applications in noise control. PMID:27475215

  5. Precision Measurement of Fundamental Constants Using GAMS4

    PubMed Central

    Dewey, M. S.; Kessler, E. G.

    2000-01-01

    We discuss the connection of high-energy gamma-ray measurements with precision atomic mass determinations. These rather different technologies, properly combined, are shown to lead to new values for the neutron mass and the molar Planck constant. We then proceed to describe the gamma-ray measurement process using the GAMS4 facility at the Institut Laue-Langevin and its application to a recent measurement of the 2.2 MeV deuteron binding energy and the neutron mass. Our paper concludes by describing the first crystal diffraction measurement of the 8.6 MeV 36Cl binding energy. PMID:27551583

  6. Components of Dielectric Constants of Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Izgorodina, Ekaterina I.

    2010-03-01

    In this study ab initio-based methods were used to calculate electronic polarizability and dipole moment of ions comprising ionic liquids [1]. The test set consisted of a number of anions and cations routinely used in the ionic liquid field. As expected, in the first approximation electronic polarizability volume turned out to be proportional to the ion volume, also calculated by means of ab initio theory. For ionic liquid ions this means that their electronic polarizabilities are at least an order of magnitude larger than those of traditional molecular solvents like water and DMSO. On this basis it may seem surprising that most of ionic liquids actually possess modest dielectric constants, falling the narrow range between 10 and 15. The lower than first expected dielectric constants of ionic liquids has been explored in this work via explicit calculations of the electronic and orientation polarization contributions to the dielectric constant using the Clausius-Mossotti equation and the Onsager theory for polar dielectric materials. We determined that the electronic polarization contribution to the dielectric constant was rather small (between 1.9 and 2.2) and comparable to that of traditional molecular solvents. These findings were explained by the interplay between two quantities, increasing electronic polarizability of ions and decreasing number of ions present in the unit volume; although electronic polarizability is usually relatively large for ionic liquid ions, due to their size there are fewer ions present per unit volume (by a factor of 10 compared to traditional molecular solvents). For ionic liquids consisting of ions with zero (e.g. BF4) or negligible (e.g. NTf2) dipole moments the calculated orientation polarization does not contribute enough to account for the whole of the measured values of the dielectric constants. We suggest that in ionic liquids an additional type of polarization, ``ionic polarization'', originating from small movements of the

  7. Molecular dynamics simulations of solutions at constant chemical potential

    NASA Astrophysics Data System (ADS)

    Perego, C.; Salvalaglio, M.; Parrinello, M.

    2015-04-01

    Molecular dynamics studies of chemical processes in solution are of great value in a wide spectrum of applications, which range from nano-technology to pharmaceutical chemistry. However, these calculations are affected by severe finite-size effects, such as the solution being depleted as the chemical process proceeds, which influence the outcome of the simulations. To overcome these limitations, one must allow the system to exchange molecules with a macroscopic reservoir, thus sampling a grand-canonical ensemble. Despite the fact that different remedies have been proposed, this still represents a key challenge in molecular simulations. In the present work, we propose the Constant Chemical Potential Molecular Dynamics (CμMD) method, which introduces an external force that controls the environment of the chemical process of interest. This external force, drawing molecules from a finite reservoir, maintains the chemical potential constant in the region where the process takes place. We have applied the CμMD method to the paradigmatic case of urea crystallization in aqueous solution. As a result, we have been able to study crystal growth dynamics under constant supersaturation conditions and to extract growth rates and free-energy barriers.

  8. Reaction rate constant for radiative association of CF(.).

    PubMed

    Öström, Jonatan; Bezrukov, Dmitry S; Nyman, Gunnar; Gustafsson, Magnus

    2016-01-28

    Reaction rate constants and cross sections are computed for the radiative association of carbon cations (C(+)) and fluorine atoms (F) in their ground states. We consider reactions through the electronic transition 1(1)Π → X(1)Σ(+) and rovibrational transitions on the X(1)Σ(+) and a(3)Π potentials. Semiclassical and classical methods are used for the direct contribution and Breit-Wigner theory for the resonance contribution. Quantum mechanical perturbation theory is used for comparison. A modified formulation of the classical method applicable to permanent dipoles of unequally charged reactants is implemented. The total rate constant is fitted to the Arrhenius-Kooij formula in five temperature intervals with a relative difference of <3%. The fit parameters will be added to the online database KIDA. For a temperature of 10-250 K, the rate constant is about 10(-21) cm(3) s(-1), rising toward 10(-16) cm(3) s(-1) for a temperature of 30,000 K.

  9. Electronic transport in two-dimensional high dielectric constant nanosystems

    DOE PAGESBeta

    Ortuño, M.; Somoza, A. M.; Vinokur, V. M.; Baturina, T. I.

    2015-04-10

    There has been remarkable recent progress in engineering high-dielectric constant two dimensional (2D) materials, which are being actively pursued for applications in nanoelectronics in capacitor and memory devices, energy storage, and high-frequency modulation in communication devices. Yet many of the unique properties of these systems are poorly understood and remain unexplored. Here we report a numerical study of hopping conductivity of the lateral network of capacitors, which models two-dimensional insulators, and demonstrate that 2D long-range Coulomb interactions lead to peculiar size effects. We find that the characteristic energy governing electronic transport scales logarithmically with either system size or electrostatic screeningmore » length depending on which one is shorter. Our results are relevant well beyond their immediate context, explaining, for example, recent experimental observations of logarithmic size dependence of electric conductivity of thin superconducting films in the critical vicinity of superconductor-insulator transition where a giant dielectric constant develops. Our findings mark a radical departure from the orthodox view of conductivity in 2D systems as a local characteristic of materials and establish its macroscopic global character as a generic property of high-dielectric constant 2D nanomaterials.« less

  10. Electronic transport in two-dimensional high dielectric constant nanosystems

    NASA Astrophysics Data System (ADS)

    Ortuño, M.; Somoza, A. M.; Vinokur, V. M.; Baturina, T. I.

    2015-04-01

    There has been remarkable recent progress in engineering high-dielectric constant two dimensional (2D) materials, which are being actively pursued for applications in nanoelectronics in capacitor and memory devices, energy storage, and high-frequency modulation in communication devices. Yet many of the unique properties of these systems are poorly understood and remain unexplored. Here we report a numerical study of hopping conductivity of the lateral network of capacitors, which models two-dimensional insulators, and demonstrate that 2D long-range Coulomb interactions lead to peculiar size effects. We find that the characteristic energy governing electronic transport scales logarithmically with either system size or electrostatic screening length depending on which one is shorter. Our results are relevant well beyond their immediate context, explaining, for example, recent experimental observations of logarithmic size dependence of electric conductivity of thin superconducting films in the critical vicinity of superconductor-insulator transition where a giant dielectric constant develops. Our findings mark a radical departure from the orthodox view of conductivity in 2D systems as a local characteristic of materials and establish its macroscopic global character as a generic property of high-dielectric constant 2D nanomaterials.

  11. Deeper Probing of the Fine-structure Constant

    NASA Astrophysics Data System (ADS)

    Goradia, Shantilal

    2008-10-01

    In our earlier attempt in [1] to derive fine-structure constant, one subtle reason why the natural logarithm of the age of the universe in Planck times comes out to be slightly greater than the reciprocal of the fine structure constant is that the variable W in Boltzmann's expression should be the age of the universe in Planck times divided by the bit depth for our specific application. Since we cannot decode the nature's bit depth, we cannot come up with the expected value of ALPHA. For an assumed bit depth of 10, the reciprocal of ALPHA goes down by ln10 (2.3) without having a significant impact on the order of magnitude of the baud rate (baud rate = bits per second/bit depth = 10^43 (Planck time/second)/10 = 10^42). Use of terms and equations from informatics in both of author's interrelated abstracts this meeting is meant to engage a wider audience simply. [1] Goradia, Shantilal ``What is Fine-structure Constant?'' http://www.arXiv.org/pdf/physics/0210040v3.

  12. SINGLE-PHOTON EMISSION COMPUTED TOMOGRAPHY: COMPENSATION FOR CONSTANT ATTENUATION

    SciTech Connect

    Gullberg, Grant T.; Budinger, Thomas F.

    1980-06-01

    A back-projection of filtered projection (BKFIL) reconstruction algorithm is presented that is applicable to single-photon emission computed tomography (ECT) in the presence of a constant attenuating medium such as the brain. The filters used in transmission computed tomography (TCT) - comprised of a ramp multiplied by window functions - are modified so that the single-photon ECT filter is a function of the constant attenuation coefficient. The filters give good reconstruction results with sufficient angular and lateral sampling. With continuous samples the BKFIL algorithm has a point spread function that is the Hankel transform of the window function. The resolution and s tistical properties of the filters are demonstrated by various simulations. Statistical formulas for the reconstructed image show that the square of the percent-root-mean square uncertainty (%RMS) of the reconstruction is inversely proportional to the total measured counts. The results indicate that constant attenuation can be compensated for in single-photon ECT by using an attenuation-dependent filter that reconstructs the transverse section reliably. Computer time requirements are two times that of conventional TCT or positron ECT and there is no increase in memory requirements.

  13. Time constant determination for electrical equivalent of biological cells

    NASA Astrophysics Data System (ADS)

    Dubey, Ashutosh Kumar; Dutta-Gupta, Shourya; Kumar, Ravi; Tewari, Abhishek; Basu, Bikramjit

    2009-04-01

    The electric field interactions with biological cells are of significant interest in various biophysical and biomedical applications. In order to study such important aspect, it is necessary to evaluate the time constant in order to estimate the response time of living cells in the electric field (E-field). In the present study, the time constant is evaluated by considering the hypothesis of electrical analog of spherical shaped cells and assuming realistic values for capacitance and resistivity properties of cell/nuclear membrane, cytoplasm, and nucleus. In addition, the resistance of cytoplasm and nucleoplasm was computed based on simple geometrical considerations. Importantly, the analysis on the basis of first principles shows that the average values of time constant would be around 2-3 μs, assuming the theoretical capacitance values and the analytically computed resistance values. The implication of our analytical solution has been discussed in reference to the cellular adaptation processes such as atrophy/hypertrophy as well as the variation in electrical transport properties of cellular membrane/cytoplasm/nuclear membrane/nucleoplasm.

  14. Analytical model of infiltration under constant-concentration boundary conditions

    NASA Astrophysics Data System (ADS)

    Triadis, D.; Broadbridge, P.

    2010-03-01

    Known integrable models for 1D flow in unsaturated soil have a rescaled soil water diffusivity that is either constant or proportional to C(C - 1)/(C - Θ)2, where Θ is the degree of saturation and C > 1 is constant. With a wider more realistic range of hydraulic conductivity functions than has been used in this context before, a formal series solution is developed for infiltration, subject to constant-concentration boundary conditions. A readily programmed iteration algorithm, applicable for any value of C, is used to construct many coefficients of the infiltration series without requiring any numerical integration. In particular, for either C - 1 small or 1/C small, several infiltration series coefficients are constructed as formal power series in C - 1 or in 1/C, for which we construct a number of terms explicitly. In the limit as the diffusivity approaches a delta function, the infiltration coefficients are obtained in simpler closed form. All but the sorptivity depend on the form of the conductivity function.

  15. Electronic transport in two-dimensional high dielectric constant nanosystems

    SciTech Connect

    Ortuño, M.; Somoza, A. M.; Vinokur, V. M.; Baturina, T. I.

    2015-04-10

    There has been remarkable recent progress in engineering high-dielectric constant two dimensional (2D) materials, which are being actively pursued for applications in nanoelectronics in capacitor and memory devices, energy storage, and high-frequency modulation in communication devices. Yet many of the unique properties of these systems are poorly understood and remain unexplored. Here we report a numerical study of hopping conductivity of the lateral network of capacitors, which models two-dimensional insulators, and demonstrate that 2D long-range Coulomb interactions lead to peculiar size effects. We find that the characteristic energy governing electronic transport scales logarithmically with either system size or electrostatic screening length depending on which one is shorter. Our results are relevant well beyond their immediate context, explaining, for example, recent experimental observations of logarithmic size dependence of electric conductivity of thin superconducting films in the critical vicinity of superconductor-insulator transition where a giant dielectric constant develops. Our findings mark a radical departure from the orthodox view of conductivity in 2D systems as a local characteristic of materials and establish its macroscopic global character as a generic property of high-dielectric constant 2D nanomaterials.

  16. Irradiation creep and void swelling of two LMR heat of HT9 at {approx}400{degrees}C and 165 dpa

    SciTech Connect

    Toloczko, M.B.; Garner, F.A.

    1996-04-01

    Two nominally identical heats of HT9 ferritic-martensitic steel were produced, fabricated into pressurized tubes, and then irradiated in FFTF, using identical procedures. After reaching 165 dpa at {approx}400C, small differences in strains associated with both phase-related change in lattice parameter and void swelling were observed in comparing the two heats. The creep strains, while different, exhibited the same functional relationship to the swelling behavior. The derived creep coefficients, the one associated with creep in the absence of swelling and the one directly responsive to swelling, were essentially identical for the two heats. Even more significantly, the creep coefficients for this bcc ferritic-martensitic steel appear to be very similar and possibly identical to those routinely derived from creep experiments on fcc austenitic steels.

  17. ULTRA-DEEP HUBBLE SPACE TELESCOPE IMAGING OF THE SMALL MAGELLANIC CLOUD: THE INITIAL MASS FUNCTION OF STARS WITH M {approx}< 1 M {sub Sun}

    SciTech Connect

    Kalirai, Jason S.; Anderson, Jay; Dotter, Aaron; Reid, I. Neill; Richer, Harvey B.; Fahlman, Gregory G.; Hansen, Brad M. S.; Rich, R. Michael; Hurley, Jarrod; Shara, Michael M. E-mail: jayander@stsci.edu E-mail: richer@astro.ubc.ca E-mail: hansen@astro.ucla.edu E-mail: jhurley@swin.edu.au

    2013-02-15

    We present a new measurement of the stellar initial mass function (IMF) based on ultra-deep, high-resolution photometry of >5000 stars in the outskirts of the Small Magellanic Cloud (SMC) galaxy. The Hubble Space Telescope (HST) Advanced Camera for Surveys observations reveal this rich, cospatial population behind the foreground globular cluster 47 Tuc, which we targeted for 121 HST orbits. The stellar main sequence of the SMC is measured in the F606W, F814W color-magnitude diagram down to {approx}30th magnitude, and is cleanly separated from the foreground star cluster population using proper motions. We simulate the SMC population by extracting stellar masses (single and unresolved binaries) from specific IMFs and converting those masses to luminosities in our bandpasses. The corresponding photometry for these simulated stars is drawn directly from a rich cloud of 4 million artificial stars, thereby accounting for the real photometric scatter and completeness of the data. Over a continuous and well-populated mass range of M = 0.37-0.93 M {sub Sun} (e.g., down to a {approx}75% completeness limit at F606W = 28.7), we demonstrate that the IMF is well represented by a single power-law form with slope {alpha} = -1.90 ({sup +0.15} {sub -0.10}) (3{sigma} error) (e.g., dN/dM{proportional_to} M {sup {alpha}}). This is shallower than the Salpeter slope of {alpha} = -2.35, which agrees with the observed stellar luminosity function at higher masses. Our results indicate that the IMF does not turn over to a more shallow power-law form within this mass range. We discuss implications of this result for the theory of star formation, the inferred masses of galaxies, and the (lack of a) variation of the IMF with metallicity.

  18. SCALING RELATIONS AND OVERABUNDANCE OF MASSIVE CLUSTERS AT z {approx}> 1 FROM WEAK-LENSING STUDIES WITH THE HUBBLE SPACE TELESCOPE

    SciTech Connect

    Jee, M. J.; Lubin, L.; Stanford, S. A.; Dawson, K. S.; Harris, D. W.; Hoekstra, H.; Perlmutter, S.; Suzuki, N.; Meyers, J.; Barbary, K.; Rosati, P.; Brodwin, M.; Koester, B.; Gladders, M. D.; Postman, M.; Barrientos, F.; Eisenhardt, P.; Ford, H. C.; Gilbank, D. G.; Gonzalez, A.

    2011-08-20

    We present weak gravitational lensing analysis of 22 high-redshift (z {approx}> 1) clusters based on Hubble Space Telescope images. Most clusters in our sample provide significant lensing signals and are well detected in their reconstructed two-dimensional mass maps. Combining the current results and our previous weak-lensing studies of five other high-z clusters, we compare gravitational lensing masses of these clusters with other observables. We revisit the question whether the presence of the most massive clusters in our sample is in tension with the current {Lambda}CDM structure formation paradigm. We find that the lensing masses are tightly correlated with the gas temperatures and establish, for the first time, the lensing mass-temperature relation at z {approx}> 1. For the power-law slope of the M-T{sub X} relation (M{proportional_to}T{sup {alpha}}), we obtain {alpha} = 1.54 {+-} 0.23. This is consistent with the theoretical self-similar prediction {alpha} = 3/2 and with the results previously reported in the literature for much lower redshift samples. However, our normalization is lower than the previous results by 20%-30%, indicating that the normalization in the M-T{sub X} relation might evolve. After correcting for Eddington bias and updating the discovery area with a more conservative choice, we find that the existence of the most massive clusters in our sample still provides a tension with the current {Lambda}CDM model. The combined probability of finding the four most massive clusters in this sample after the marginalization over cosmological parameters is less than 1%.

  19. KECK SPECTROSCOPY OF FAINT 3 < z < 7 LYMAN BREAK GALAXIES. III. THE MEAN ULTRAVIOLET SPECTRUM AT z {approx_equal} 4

    SciTech Connect

    Jones, Tucker; Ellis, Richard S.; Stark, Daniel P.

    2012-05-20

    We present and discuss the mean rest-frame ultraviolet spectrum for a sample of 81 Lyman break galaxies (LBGs) selected to be B-band dropouts at z {approx_equal} 4. The sample is mostly drawn from our ongoing Keck/DEIMOS survey in the GOODS fields and augmented with archival Very Large Telescope data. In general, we find similar spectroscopic trends to those found in earlier surveys of LBGs at z = 3. Specifically, low-ionization absorption lines which trace neutral outflowing gas are weaker in galaxies with stronger Ly{alpha} emission, bluer UV spectral slopes, lower stellar masses, lower UV luminosities, and smaller half-light radii. This is consistent with a physical picture whereby star formation drives outflows of neutral gas which scatter Ly{alpha} and produce strong low-ionization absorption lines, while increasing galaxy stellar mass, size, metallicity, and dust content. Typical galaxies are thus expected to have stronger Ly{alpha} emission and weaker low-ionization absorption at earlier times, and we indeed find somewhat weaker low-ionization absorption at higher redshifts. In conjunction with earlier results from our survey, we argue that the reduced low-ionization absorption is likely caused by lower covering fraction and/or velocity range of outflowing neutral gas at earlier epochs. Although low-ionization absorption decreases at higher redshift, fine-structure emission lines are stronger, suggesting a greater concentration of neutral gas at small galactocentric radius ({approx}< 5 kpc). Our continuing survey will enable us to extend these diagnostics more reliably to higher redshift and determine the implications for the escape fraction of ionizing photons which governs the role of early galaxies in cosmic reionization.

  20. THE BULK OF THE BLACK HOLE GROWTH SINCE z {approx} 1 OCCURS IN A SECULAR UNIVERSE: NO MAJOR MERGER-AGN CONNECTION

    SciTech Connect

    Cisternas, Mauricio; Jahnke, Knud; Inskip, Katherine J.; Robaina, Aday R.; Andrae, Rene; Kartaltepe, Jeyhan; Koekemoer, Anton M.; Lisker, Thorsten; Scodeggio, Marco; Sheth, Kartik; Capak, Peter; Trump, Jonathan R.; Impey, Chris D.; Miyaji, Takamitsu; Lusso, Elisabeta; Brusa, Marcella; Cappelluti, Nico; Civano, Francesca; Ilbert, Olivier; Leauthaud, Alexie

    2011-01-10

    What is the relevance of major mergers and interactions as triggering mechanisms for active galactic nuclei (AGNs) activity? To answer this long-standing question, we analyze 140 XMM-Newton-selected AGN host galaxies and a matched control sample of 1264 inactive galaxies over z {approx} 0.3-1.0 and M{sub *} < 10{sup 11.7} M{sub sun} with high-resolution Hubble Space Telescope/Advanced Camera for Surveys imaging from the COSMOS field. The visual analysis of their morphologies by 10 independent human classifiers yields a measure of the fraction of distorted morphologies in the AGN and control samples, i.e., quantifying the signature of recent mergers which might potentially be responsible for fueling/triggering the AGN. We find that (1) the vast majority (>85%) of the AGN host galaxies do not show strong distortions and (2) there is no significant difference in the distortion fractions between active and inactive galaxies. Our findings provide the best direct evidence that, since z {approx} 1, the bulk of black hole (BH) accretion has not been triggered by major galaxy mergers, therefore arguing that the alternative mechanisms, i.e., internal secular processes and minor interactions, are the leading triggers for the episodes of major BH growth. We also exclude an alternative interpretation of our results: a substantial time lag between merging and the observability of the AGN phase could wash out the most significant merging signatures, explaining the lack of enhancement of strong distortions on the AGN hosts. We show that this alternative scenario is unlikely due to (1) recent major mergers being ruled out for the majority of sources due to the high fraction of disk-hosted AGNs, (2) the lack of a significant X-ray signal in merging inactive galaxies as a signature of a potential buried AGN, and (3) the low levels of soft X-ray obscuration for AGNs hosted by interacting galaxies, in contrast to model predictions.

  1. Fluid inclusion evidence for boiling at approx. 370/sup 0/C in the stockwork of the Lasail ophiolitic hydrothermal massive sulfide deposit, Oman

    SciTech Connect

    Spooner, E.T.C.; Bray, C.J.

    1985-01-01

    Four samples of stockwork material from DDHnumber9 through the Lasail ophiolitic massive sulfide deposit in Oman were found to contain satisfactory densities of primary fluid inclusion. Primary fluid inclusions in the latter three samples show evidence typical of boiling: (i) variable phase rations, and (ii) inclusions which homogenize into the liquid or vapor phases over the same temperature interval (360/sup 0/C-400/sup 0/C). The pooled data show two salinity populations: one with a modal composition near that of seawater, (3.5 wt.%TDS), and the other characterized by the bulk of the data concentrated between 4.9 and 6.4 equiv. wt.% NaCl (x 1.4-1.8 seawater) with values as high as 8.6 (x 2.5 seawater). The latter high salinities are interpreted to have been produced by the boiling process. For boiling conditions, fluid inclusion homogenization temperatures = trapping temperatures, with some perturbations. Hence, the mode (372/sup 0/C) and range (360/sup 0/C-400/sup 0/C) of the homogenization temperatures for the high salinity population are estimates of the fluid temperatures during ore deposition. The values are at the upper end of the measured range for black smokers. The pressure given by these boiling temperatures is approx. 230 bars, giving an estimate for original seawater depth of approx. 2-2 1/2 km; figures typical of active spreading ridges. The sample from immediately below massive ore (OM2064) shows a lower hom. T range of 330/sup 0/C-350/sup 0/C, no high salinity population, and no evidence for boiling. These observations are interpreted to reflect high level mixing with cold seawater immediately below the original sea floor.

  2. Quiescent Galaxies in the 3D-HST Survey: Spectroscopic Confirmation of a Large Number of Galaxies With Relatively Old Stellar Populations at z Approx. 2

    NASA Technical Reports Server (NTRS)

    Tease, Katherine Whitaker; vanDokkum, Pieter G.; Brammer, Gabriel; Momcheva, Ivelina; Skelton, Rosalind; Franx, Marijin; Kriek, Mariska; Labbe, Ivo; Fumagalli, Mattia; Lundgren, Britt F.; Nelson, Erica J.; Patel, Shannon G.; Rix, Hans-Walter

    2013-01-01

    Quiescent galaxies at z approx. 2 have been identified in large numbers based on rest-frame colors, but only a small number of these galaxies have been spectroscopically confirmed to show that their rest-frame optical spectra show either strong Balmer or metal absorption lines. Here, we median stack the rest-frame optical spectra for 171 photometrically quiescent galaxies at 1.4 < z < 2.2 from the 3D-HST grism survey. In addition to H (4861 ),we unambiguously identify metal absorption lines in the stacked spectrum, including the G band (4304 ),Mgi (5175 ), and Na i (5894 ). This finding demonstrates that galaxies with relatively old stellar populations already existed when the universe was approx. 3 Gyr old, and that rest-frame color selection techniques can efficiently select them. We find an average age of 1.3+0.10.3 Gyr when fitting a simple stellar population to the entire stack. We confirm our previous result from medium-band photometry that the stellar age varies with the colors of quiescent galaxies: the reddest 80 of galaxies are dominated by metal lines and have a relatively old mean age of 1.6+0.50.4 Gyr, whereas the bluest (and brightest) galaxies have strong Balmer lines and a spectroscopic age of 0.9+0.20.1 Gyr. Although the spectrum is dominated by an evolved stellar population, we also find [O iii] and H emission. Interestingly, this emission is more centrally concentrated than the continuum with LOiii = 1.7+/- 0.3 x 10(exp 40) erg/s, indicating residual central star formation or nuclear activity.

  3. QUIESCENT GALAXIES IN THE 3D-HST SURVEY: SPECTROSCOPIC CONFIRMATION OF A LARGE NUMBER OF GALAXIES WITH RELATIVELY OLD STELLAR POPULATIONS AT z {approx} 2

    SciTech Connect

    Whitaker, Katherine E.; Van Dokkum, Pieter G.; Momcheva, Ivelina G.; Skelton, Rosalind; Nelson, Erica J.; Brammer, Gabriel; Franx, Marijn; Labbe, Ivo; Fumagalli, Mattia; Patel, Shannon G.; Kriek, Mariska; Lundgren, Britt F.; Rix, Hans-Walter

    2013-06-20

    Quiescent galaxies at z {approx} 2 have been identified in large numbers based on rest-frame colors, but only a small number of these galaxies have been spectroscopically confirmed to show that their rest-frame optical spectra show either strong Balmer or metal absorption lines. Here, we median stack the rest-frame optical spectra for 171 photometrically quiescent galaxies at 1.4 < z < 2.2 from the 3D-HST grism survey. In addition to H{beta} ({lambda}4861 A), we unambiguously identify metal absorption lines in the stacked spectrum, including the G band ({lambda}4304 A), Mg I ({lambda}5175 A), and Na I ({lambda}5894 A). This finding demonstrates that galaxies with relatively old stellar populations already existed when the universe was {approx}3 Gyr old, and that rest-frame color selection techniques can efficiently select them. We find an average age of 1.3{sup +0.1}{sub -0.3} Gyr when fitting a simple stellar population to the entire stack. We confirm our previous result from medium-band photometry that the stellar age varies with the colors of quiescent galaxies: the reddest 80% of galaxies are dominated by metal lines and have a relatively old mean age of 1.6{sup +0.5}{sub -0.4} Gyr, whereas the bluest (and brightest) galaxies have strong Balmer lines and a spectroscopic age of 0.9{sup +0.2}{sub -0.1} Gyr. Although the spectrum is dominated by an evolved stellar population, we also find [O III] and H{beta} emission. Interestingly, this emission is more centrally concentrated than the continuum with L{sub OIII}=1.7{+-}0.3 Multiplication-Sign 10{sup 40} erg s{sup -1}, indicating residual central star formation or nuclear activity.

  4. Some Dynamical Effects of the Cosmological Constant

    NASA Astrophysics Data System (ADS)

    Axenides, M.; Floratos, E. G.; Perivolaropoulos, L.

    Newton's law gets modified in the presence of a cosmological constant by a small repulsive term (antigravity) that is proportional to the distance. Assuming a value of the cosmological constant consistent with the recent SnIa data (Λ~=10-52 m-2), we investigate the significance of this term on various astrophysical scales. We find that on galactic scales or smaller (less than a few tens of kpc), the dynamical effects of the vacuum energy are negligible by several orders of magnitude. On scales of 1 Mpc or larger however we find that the vacuum energy can significantly affect the dynamics. For example we show that the velocity data in the local group of galaxies correspond to galactic masses increased by 35% in the presence of vacuum energy. The effect is even more important on larger low density systems like clusters of galaxies or superclusters.

  5. BOREAS RSS-17 Dielectric Constant Profile Measurements

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); McDonald, Kyle C.; Zimmerman, Reiner; Way, JoBea

    2000-01-01

    The BOREAS RSS-17 team acquired and analyzed imaging radar data from the ESA's ERS-1 over a complete annual cycle at the BOREAS sites in Canada in 1994 to detect shifts in radar backscatter related to varying environmental conditions. This data set consists of dielectric constant profile measurements from selected trees at various BOREAS flux tower sites. The relative dielectric constant was measured at C-band (frequency = 5 GHz) as a function of depth into the trunk of three trees at each site, Measurements were made during April 1994 with an Applied Microwave Corporation field PDP fitted with a 0.358-cm (0.141-inch) diameter coaxial probe tip. The data are available in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  6. Dielectric Constant Measurements for Characterizing Lunar Soils

    NASA Technical Reports Server (NTRS)

    Anderson, Robert C.; Buehler, M.; Seshadri, S.; Kuhlman, G.; Schaap, M.

    2005-01-01

    The return to the Moon has ignited the need to characterize the lunar regolith using fast, reliable in-situ methods. Characterizing the physical properties of the rocks and soils can be very difficult because of the many complex parameters that influence the measurements. In particular, soil electrical property measurements are influenced by temperature, mineral type, grain size, porosity, and soil conductivity. Determining the dielectric constant of lunar materials may be very important in providing quick characterization of surface deposits, especially for the Moon. A close examination of the lunar regolith samples collected by the Apollo astronauts indicates that the rocks and soils on the Moon are dominated by silicates and oxides. In this presentation, we will show that determining the dielectric constant measurements can provide a simple, quick detection method for minerals that contain titanium, iron, and water. Their presence is manifest by an unusually large imaginary permittivity.

  7. Cosmological constant in the quantum multiverse

    NASA Astrophysics Data System (ADS)

    Larsen, Grant; Nomura, Yasunori; Roberts, Hannes L. L.

    2011-12-01

    Recently, a new framework for describing the multiverse has been proposed which is based on the principles of quantum mechanics. The framework allows for well-defined predictions, both regarding global properties of the universe and outcomes of particular experiments, according to a single probability formula. This provides complete unification of the eternally inflating multiverse and many worlds in quantum mechanics. In this paper, we elucidate how cosmological parameters can be calculated in this framework, and study the probability distribution for the value of the cosmological constant. We consider both positive and negative values, and find that the observed value is consistent with the calculated distribution at an order of magnitude level. In particular, in contrast to the case of earlier measure proposals, our framework prefers a positive cosmological constant over a negative one. These results depend only moderately on how we model galaxy formation and life evolution therein.

  8. Hyperscaling violation and the shear diffusion constant

    NASA Astrophysics Data System (ADS)

    Kolekar, Kedar S.; Mukherjee, Debangshu; Narayan, K.

    2016-09-01

    We consider holographic theories in bulk (d + 1)-dimensions with Lifshitz and hyperscaling violating exponents z , θ at finite temperature. By studying shear gravitational modes in the near-horizon region given certain self-consistent approximations, we obtain the corresponding shear diffusion constant on an appropriately defined stretched horizon, adapting the analysis of Kovtun, Son and Starinets. For generic exponents with d - z - θ > - 1, we find that the diffusion constant has power law scaling with the temperature, motivating us to guess a universal relation for the viscosity bound. When the exponents satisfy d - z - θ = - 1, we find logarithmic behaviour. This relation is equivalent to z = 2 +deff where deff =di - θ is the effective boundary spatial dimension (and di = d - 1 the actual spatial dimension). It is satisfied by the exponents in hyperscaling violating theories arising from null reductions of highly boosted black branes, and we comment on the corresponding analysis in that context.

  9. On determining dose rate constants spectroscopically

    SciTech Connect

    Rodriguez, M.; Rogers, D. W. O.

    2013-01-15

    Purpose: To investigate several aspects of the Chen and Nath spectroscopic method of determining the dose rate constants of {sup 125}I and {sup 103}Pd seeds [Z. Chen and R. Nath, Phys. Med. Biol. 55, 6089-6104 (2010)] including the accuracy of using a line or dual-point source approximation as done in their method, and the accuracy of ignoring the effects of the scattered photons in the spectra. Additionally, the authors investigate the accuracy of the literature's many different spectra for bare, i.e., unencapsulated {sup 125}I and {sup 103}Pd sources. Methods: Spectra generated by 14 {sup 125}I and 6 {sup 103}Pd seeds were calculated in vacuo at 10 cm from the source in a 2.7 Multiplication-Sign 2.7 Multiplication-Sign 0.05 cm{sup 3} voxel using the EGSnrc BrachyDose Monte Carlo code. Calculated spectra used the initial photon spectra recommended by AAPM's TG-43U1 and NCRP (National Council of Radiation Protection and Measurements) Report 58 for the {sup 125}I seeds, or TG-43U1 and NNDC(2000) (National Nuclear Data Center, 2000) for {sup 103}Pd seeds. The emitted spectra were treated as coming from a line or dual-point source in a Monte Carlo simulation to calculate the dose rate constant. The TG-43U1 definition of the dose rate constant was used. These calculations were performed using the full spectrum including scattered photons or using only the main peaks in the spectrum as done experimentally. Statistical uncertainties on the air kerma/history and the dose rate/history were Less-Than-Or-Slanted-Equal-To 0.2%. The dose rate constants were also calculated using Monte Carlo simulations of the full seed model. Results: The ratio of the intensity of the 31 keV line relative to that of the main peak in {sup 125}I spectra is, on average, 6.8% higher when calculated with the NCRP Report 58 initial spectrum vs that calculated with TG-43U1 initial spectrum. The {sup 103}Pd spectra exhibit an average 6.2% decrease in the 22.9 keV line relative to the main peak when

  10. Simple liquid models with corrected dielectric constants.

    PubMed

    Fennell, Christopher J; Li, Libo; Dill, Ken A

    2012-06-14

    Molecular simulations often use explicit-solvent models. Sometimes explicit-solvent models can give inaccurate values for basic liquid properties, such as the density, heat capacity, and permittivity, as well as inaccurate values for molecular transfer free energies. Such errors have motivated the development of more complex solvents, such as polarizable models. We describe an alternative here. We give new fixed-charge models of solvents for molecular simulations--water, carbon tetrachloride, chloroform, and dichloromethane. Normally, such solvent models are parametrized to agree with experimental values of the neat liquid density and enthalpy of vaporization. Here, in addition to those properties, our parameters are chosen to give the correct dielectric constant. We find that these new parametrizations also happen to give better values for other properties, such as the self-diffusion coefficient. We believe that parametrizing fixed-charge solvent models to fit experimental dielectric constants may provide better and more efficient ways to treat solvents in computer simulations.

  11. Pole placement with constant gain output feedback

    NASA Technical Reports Server (NTRS)

    Sridhar, B.; Lindorff, D. P.

    1972-01-01

    Given a linear time invariant multivariable system with m inputs and p outputs, it was shown that p closed loop poles of the system can be preassigned arbitrarily using constant gain output feedback provided (A circumflex, B circumflex) is controllable. These data show that if (A circumflex, B circumflex, C circumflex) is controllable and observable, and Rank B circumflex = m, Rank C circumflex = p, then max (m,p) poles of the system can be assigned arbitarily using constant gain output feedback. Further, it is shown that in some cases more than max (m,p) poles can be arbitrarily assigned. A least square design technique is outlined to approximate the desired pole locations when it is not possible to place all the poles.

  12. Gravitational constant in multiple field gravity

    SciTech Connect

    Abedi, Habib; Abbassi, Amir M. E-mail: amabasi@khayam.ut.ac.ir

    2015-05-01

    In the present study, we consider general form of the Lagrangian  f(R, φ{sup I}, X) , that is a function of the Ricci scalar, multiple scalar fields and non-canonical kinetic terms. We obtain the effective Newton's constant deep inside the Hubble radius. We use Jordan and Einstein frames, and study the conservation of energy-momentum tensor.

  13. Mars Pathfinder Project: Planetary Constants and Models

    NASA Technical Reports Server (NTRS)

    Vaughan, Robin

    1995-01-01

    This document provides a common set of astrodynamic constants and planetary models for use by the Mars Pathfinder Project. It attempts to collect in a single reference all the quantities and models in use across the project during development and for mission operations. These models are central to the navigation and mission design functions, but they are also used in other aspects of the project such as science observation planning and data reduction.

  14. Casimir effect in spacetimes with cosmological constant

    NASA Astrophysics Data System (ADS)

    Bessa, C. H. G.; Bezerra, V. B.; Silva, J. C. J.

    2016-06-01

    In this work, we study the influence of the gravitational field induced by the presence of a cosmological constant Λ on the Casimir energy density. We consider two metrics with the presence of the Λ-term, namely de Sitter and Schwarzschild-de Sitter (SdS). In the former case, we consider a conformal de Sitter spacetime and in the last one, a weak gravitational SdS spacetime.

  15. Dynamical Cosmological Constant in R 3 Gravity

    NASA Astrophysics Data System (ADS)

    Zare, Nasser; Fathi, Mohsen

    2015-03-01

    In this paper, we go through the famous f( R) theories of gravity, but keeping a peculiar one, namely R 3 modification. Moreover, instead of a coordinate free cosmological parameter, we take it to be a function of time. Having all these stuff, we investigate the notions of standard cosmology model, in the context of R 3 modification to general relativity, and in various regimes, we study the dynamical cosmological constant.

  16. Time constants of flat superconducting cables

    SciTech Connect

    Takacs, S.; Yamamoto, J.

    1997-06-01

    The frequency dependence of coupling losses is calculated for flat superconducting cables, including the electromagnetic coupling between different current loops on the cable. It is shown that there are two characteristic time constants for both parallel and transverse coupling losses. The values of these time constants {tau}{sub 0} and {tau}{sub 1} are calculated by introducing effective inductances for the current loops. In both cases, {tau}{sub 1} is considerably smaller than {tau}{sub 0}. As the most important methods of determining {tau}{sub 0} from AC losses - namely, the limiting slope of loss/cycle at zero frequency and the position of the maximum loss/cycle vs. frequency - estimate {tau}{sub 0} and {tau}{sub 1}, respectively, the results are important for practical measurements and evaluation of time constants from AC losses. At larger frequencies, the losses are more likely to those in normal conductors (skin effect). The calculation schemes can be applied to cables with closely wound strands (like the cable-in-conduit conductors), too. However, several other effects should be considered being different and/or more important with respect to other cable types (demagnetization factor of strands and cables, larger regions near the cable edges, smaller number of strands and subcables, etc.).

  17. Mission Advantages of Constant Power, Variable Isp Electrostatic Thrusters

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.

    2000-01-01

    Electric propulsion has moved from station-keeping capability for spacecraft to primary propulsion with the advent of both the Deep Space One asteroid flyby and geosynchronous spacecraft orbit insertion. In both cases notably more payload was delivered than would have been possible with chemical propulsion. To provide even greater improvements electrostatic thruster performance could be varied in specific impulse, but kept at constant power to provide better payload or trip time performance for different mission phases. Such variable specific impulse mission applications include geosynchronous and low earth orbit spacecraft stationkeeping and orbit insertion, geosynchronous reusable tug missions, and interplanetary probes. The application of variable specific impulse devices is shown to add from 5 to 15% payload for these missions. The challenges to building such devices include variable voltage power supplies and extending fuel throughput capabilities across the specific impulse range.

  18. New improved massive gravity and three-dimensional spacetimes of constant curvature and constant torsion

    NASA Astrophysics Data System (ADS)

    Dereli, Tekin; Yetişmişoǧlu, Cem

    2016-09-01

    We derive the field equations for topologically massive gravity coupled with the most general quadratic curvature terms using the language of exterior differential forms and a first order constrained variational principle. We find variational field equations both in the presence and absence of torsion. We then show that spaces of constant negative curvature (i.e. the anti-de Sitter space AdS3) and constant torsion provide exact solutions.

  19. Controllable giant dielectric constant in AlO{sub x}/TiO{sub y} nanolaminates.

    SciTech Connect

    Li, W.; Chen, Z.; Premnath, R. N.; Kabius, B.; Auciello, O.

    2011-01-01

    Dielectric materials exhibiting high dielectric constants play critical roles in a wide range of applications from microchip energy storage embedded capacitors for implantable biomedical devices to energy storage capacitors for a new generation of renewable energy generation/storage systems. Instead of searching for new materials, we demonstrate that giant dielectric constants can be achieved by integrating two simple oxides with low dielectric constants into nanolaminate structures. In addition, the obtained dielectric constant values are highly tunable by manipulating the sub-layer thicknesses of the component oxides to control the number of interfaces and oxygen redistribution. The work reported here opens a new pathway for the design and development of high dielectric constant materials based on the nanolaminate concept.

  20. Controllable giant dielectric constant in AlOx/TiOy nanolaminates

    NASA Astrophysics Data System (ADS)

    Li, Wei; Chen, Zhijun; Premnath, Ramesh N.; Kabius, Bernd; Auciello, Orlando

    2011-07-01

    Dielectric materials exhibiting high dielectric constants play critical roles in a wide range of applications from microchip energy storage embedded capacitors for implantable biomedical devices to energy storage capacitors for a new generation of renewable energy generation/storage systems. Instead of searching for new materials, we demonstrate that giant dielectric constants can be achieved by integrating two simple oxides with low dielectric constants into nanolaminate structures. In addition, the obtained dielectric constant values are highly tunable by manipulating the sub-layer thicknesses of the component oxides to control the number of interfaces and oxygen redistribution. The work reported here opens a new pathway for the design and development of high dielectric constant materials based on the nanolaminate concept.

  1. History and progress on accurate measurements of the Planck constant.

    PubMed

    Steiner, Richard

    2013-01-01

    improved techniques and discoveries in quantum mechanics steadily reduced the uncertainty of h. The central part of this review describes the technical details of the watt balance technique, which is a combination of the mechanical and electronic measurements that now determine h as a direct result, i.e. not requiring measured values of additional fundamental constants. The first technical section describes the basics and some of the common details of many watt balance designs. Next is a review of the ongoing advances at the (currently) seven national metrology institutions where these experiments are pursued. A final summary of the recent h determinations of the last two decades shows how history keeps repeating itself; there is again a question of whether there is a shift in the newest results, albeit at uncertainties that are many orders of magnitude less than the original experiments. The conclusion is that there is room for further development to resolve these differences and find new ideas for a watt balance system with a more universal application. Since the next generation of watt balance experiments are expected to become kilogram realization standards, the historical record suggests that there is yet a need for proof that Planck constant results are finally reproducible at an acceptable uncertainty. PMID:23249618

  2. Localized (super)gravity and cosmological constant

    NASA Astrophysics Data System (ADS)

    Kakushadze, Zurab

    2000-11-01

    We consider localization of gravity in domain wall solutions of Einstein's gravity coupled to a scalar field with a generic potential. We discuss conditions on the scalar potential such that domain wall solutions are non-singular. Such solutions even exist for appropriate potentials which have no minima at all and are unbounded below. Domain walls of this type have infinite tension, while usual kink type of solutions interpolating between two AdS minima have finite tension. In the latter case the cosmological constant on the domain wall is necessarily vanishing, while in the former case it can be zero or negative. Positive cosmological constant is allowed for singular domain walls. We discuss non-trivial conditions for physically allowed singularities arising from the requirement that truncating the space at the singularities be consistent. Non-singular domain walls with infinite tension might a priori avoid recent "no-go" theorems indicating impossibility of supersymmetric embedding of kink type of domain walls in gauged supergravity. We argue that (non-singular) domain walls are stable even if they have infinite tension. This is essentially due to the fact that localization of gravity in smooth domain walls is a Higgs mechanism corresponding to a spontaneous breakdown of translational invariance. As to discontinuous domain walls arising in the presence of δ-function "brane" sources, they explicitly break translational invariance. Such solutions cannot therefore be thought of as limits of smooth domain walls. We point out that if the scalar potential has no minima and approaches finite negative values at infinity, then higher derivative terms are under control, and do not affect the cosmological constant which is vanishing for such backgrounds. Nonetheless, we also point out that higher curvature terms generically delocalize gravity, so that the desired lower-dimensional Newton's law is no longer reproduced.

  3. Axion decay constants away from the lamppost

    NASA Astrophysics Data System (ADS)

    Conlon, Joseph P.; Krippendorf, Sven

    2016-04-01

    It is unknown whether a bound on axion field ranges exists within quantum gravity. We study axion field ranges using extended supersymmetry, in particular allowing an analysis within strongly coupled regions of moduli space. We apply this strategy to Calabi-Yau compactifications with one and two Kähler moduli. We relate the maximally allowable decay constant to geometric properties of the underlying Calabi-Yau geometry. In all examples we find a maximal field range close to the reduced Planck mass (with the largest field range being 3.25 M P ). On this perspective, field ranges relate to the intersection and instanton numbers of the underlying Calabi-Yau geometry.

  4. Rate constants, timescales, and free energy barriers

    NASA Astrophysics Data System (ADS)

    Salamon, Peter; Wales, David; Segall, Anca; Lai, Yi-An; Schön, J. Christian; Hoffmann, Karl Heinz; Andresen, Bjarne

    2016-01-01

    The traditional connection between rate constants and free energy landscapes is extended to define effective free energy landscapes relevant on any chosen timescale. Although the Eyring-Polanyi transition state theory specifies a fixed timescale of τ=h/kBT}, we introduce instead the timescale of interest for the system in question, e.g. the observation time. The utility of drawing such landscapes using a variety of timescales is illustrated by the example of Holliday junction resolution. The resulting free energy landscapes are easier to interpret, clearly reveal observation time dependent effects like coalescence of short-lived states, and reveal features of interest for the specific system more clearly.

  5. Optical constants of minerals and rocks.

    PubMed

    Aronson, J R; Strong, P F

    1975-12-01

    Lorentz line parameters (and estimates of their standard deviations) have been empirically derived from measured reflectance data for muscovite mica, an anorthosite, a diopsidic pyroxenite, an almandite-pyrope garnet, and a soda lime glass. These parameters provide a useful starting point for computer calculations requiring optical constants as a function of frequency and are therefore given here. A novel method of fitting the reflectance data by least squares is described in detail, as is the statistical procedure for estimating the standard deviations of the parameters found. PMID:20155132

  6. The fine structure constant and habitable planets

    NASA Astrophysics Data System (ADS)

    Sandora, McCullen

    2016-08-01

    We use the existence of habitable planets to impose anthropic requirements on the fine structure constant, α. To this effect, we present two considerations that restrict its value to be very near the one observed. The first, that the end product of stellar fusion is iron and not one of its neighboring elements, restricts α-1 to be 145± 50. The second, that radiogenic heat in the Earth's interior remains adequately productive for billions of years, restricts it to be 145±9. A connection with the grand unified theory window is discussed, effectively providing a route to probe ultra-high energy physics with upcoming advances in planetary science.

  7. Quantum coherence, wormholes, and the cosmological constant

    SciTech Connect

    Unruh, W.G. )

    1989-08-15

    Coleman has argued that if wormhole solutions to the Euclidean action coupled to matter dominate the Euclidean path integral for quantum gravity, they do not lead to a loss of quantum coherence for wave functions in our Universe. Furthermore, they also lead to the prediction that the ultimate'' cosmological constant is zero. I analyze the assumptions that go into this result and argue that the presence of wormhole solutions does lead to a loss of quantum coherence and, furthermore, completely destroys the Euclidean quantum theory by producing a highly nonlocal effective Euclidean action which is violently unbounded from below.

  8. Constant-Elasticity-of-Substitution Simulation

    NASA Technical Reports Server (NTRS)

    Reiter, G.

    1986-01-01

    Program simulates constant elasticity-of-substitution (CES) production function. CES function used by economic analysts to examine production costs as well as uncertainties in production. User provides such input parameters as price of labor, price of capital, and dispersion levels. CES minimizes expected cost to produce capital-uncertainty pair. By varying capital-value input, one obtains series of capital-uncertainty pairs. Capital-uncertainty pairs then used to generate several cost curves. CES program menu driven and features specific print menu for examining selected output curves. Program written in BASIC for interactive execution and implemented on IBM PC-series computer.

  9. Optical constants of minerals and rocks.

    PubMed

    Aronson, J R; Strong, P F

    1975-12-01

    Lorentz line parameters (and estimates of their standard deviations) have been empirically derived from measured reflectance data for muscovite mica, an anorthosite, a diopsidic pyroxenite, an almandite-pyrope garnet, and a soda lime glass. These parameters provide a useful starting point for computer calculations requiring optical constants as a function of frequency and are therefore given here. A novel method of fitting the reflectance data by least squares is described in detail, as is the statistical procedure for estimating the standard deviations of the parameters found.

  10. Characterization of a constant current charge detector.

    PubMed

    Mori, Masanobu; Chen, Yongjing; Ohira, Shin-Ichi; Dasgupta, Purnendu K

    2012-12-15

    Ion exchangers are ionic equivalents of doped semiconductors, where cations and anions are equivalents of holes and electrons as charge carriers in solid state semiconductors. We have previously demonstrated an ion exchange membrane (IEM) based electrolyte generator which behaves similar to a light-emitting diode and a charge detector (ChD) which behaves analogous to a p-i-n photodiode. The previous work on the charge detector, operated at a constant voltage, established its unique ability to respond to the charge represented by the analyte ions regardless of their redox properties, rather than to their conductivities. It also suggested that electric field induced dissociation (EFID) of water occurs at one or both ion exchange membranes. A logical extension is to study the behavior of the same device, operated in a constant current mode (ChD(i)). The evidence indicates that in the present operational mode the device also responds to the charge represented by the analytes and not their conductivity. Injection of a base into a charge detector operated in the constant voltage mode was not previously examined; in the constant current mode, base injection appears to inhibit EFID. The effects of applied current, analyte residence time and outer channel fluid composition were individually examined; analyte ions of different mobilities as well as affinities for the respective IEMs were used. While the exact behavior is somewhat dependent on the applied current, strong electrolytes, both acids and salts, respond the highest and in a near-uniform fashion, weak acids and their salts respond in an intermediate fashion and bases produce the lowest responses. A fundamentally asymmetric behavior is observed. Injected bases but not injected acids produce a poor response; the effects of incorporating a strong base as the electrolyte in the anion exchange membrane (AEM) compartment is far greater than incorporating an acid in the cation exchange membrane (CEM) compartment. These

  11. TASI Lectures on the cosmological constant

    SciTech Connect

    Bousso, Raphael; Bousso, Raphael

    2007-08-30

    The energy density of the vacuum, Lambda, is at least 60 orders of magnitude smaller than several known contributions to it. Approaches to this problem are tightly constrained by data ranging from elementary observations to precision experiments. Absent overwhelming evidence to the contrary, dark energy can only be interpreted as vacuum energy, so the venerable assumption that Lambda=0 conflicts with observation. The possibility remains that Lambda is fundamentally variable, though constant over large spacetime regions. This can explain the observed value, but only in a theory satisfying a number of restrictive kinematic and dynamical conditions. String theory offers a concrete realization through its landscape of metastable vacua.

  12. The fine structure constant and habitable planets

    NASA Astrophysics Data System (ADS)

    Sandora, McCullen

    2016-08-01

    We use the existence of habitable planets to impose anthropic requirements on the fine structure constant, α. To this effect, we present two considerations that restrict its value to be very near the one observed. The first, that the end product of stellar fusion is iron and not one of its neighboring elements, restricts α‑1 to be 145± 50. The second, that radiogenic heat in the Earth's interior remains adequately productive for billions of years, restricts it to be 145±9. A connection with the grand unified theory window is discussed, effectively providing a route to probe ultra-high energy physics with upcoming advances in planetary science.

  13. The Boltzmann constant from a snifter

    NASA Astrophysics Data System (ADS)

    Tyukodi, B.; Sárközi, Zs; Néda, Z.; Tunyagi, A.; Györke, E.

    2012-03-01

    Evaporation of a small glass of ethylic alcohol is studied both experimentally and through an elementary thermal physics approach. For a cylindrical beaker and no air flow in the room, a simple quadratic relation is found between the evaporation time and the mass of evaporated liquid. This problem and the obtained results offer excellent possibilities for simple student experiments and for testing basic principles of thermal physics. As an example, we use the obtained results for estimating the value of the Boltzmann constant from evaporation experiments.

  14. Radiation balances and the solar constant

    NASA Astrophysics Data System (ADS)

    Crommelynck, D.

    1981-07-01

    The radiometric concepts are defined in order to consider various types of radiation balances and relate them to the diabetic form of the energy balance. Variability in space and time of the components of the radiation field are presented. A specific concept for sweeping which is tailored to the requirements is proposed. Finally, after establishing the truncated character of the present knowledge of the radiation balance. The results of the last observations of the solar constant are given. Ground and satellite measurement techniques are discussed.

  15. Optical constants of minerals and rocks

    NASA Technical Reports Server (NTRS)

    Aronson, J. R.; Strong, P. F.

    1975-01-01

    Lorentz line parameters (and estimates of their standard deviations) have been empirically derived from measured reflectance data for muscovite mica, an anorthosite, a diopsidic pyroxenite, an almandite-pyrope garnet, and a soda lime glass. These parameters provide a useful starting point for computer calculations requiring optical constants as a function and are therefore given here. A novel method of fitting the reflectance data by least squares is described in detail, as is the statistical procedure for estimating the standard deviations of the parameters found.

  16. PROBING THE INTERSTELLAR MEDIUM OF z {approx} 1 ULTRALUMINOUS INFRARED GALAXIES THROUGH INTERFEROMETRIC OBSERVATIONS OF CO AND SPITZER MID-INFRARED SPECTROSCOPY

    SciTech Connect

    Pope, Alexandra; Kirkpatrick, Allison; Wagg, Jeff; Frayer, David; Armus, Lee; Chary, Ranga-Ram; Desai, Vandana; Daddi, Emanuele; Elbaz, David; Gabor, Jared

    2013-08-01

    We explore the relationship between gas, dust, and star formation in a sample of 12 ultraluminous infrared galaxies (ULIRGs) at high-redshift compared to a similar sample of local galaxies. We present new CO observations and/or Spitzer mid-IR spectroscopy for six 70 {mu}m selected galaxies at z {approx} 1 in order to quantify the properties of the molecular gas reservoir, the contribution of an active galactic nucleus (AGN) to the mid-IR luminosity, and the star formation efficiency (SFE = L{sub IR}/L{sup '}{sub CO}). The mid-IR spectra show strong polycyclic aromatic hydrocarbon (PAH) emission, and our spectral decomposition suggests that the AGN makes a minimal contribution (<25%) to the mid-IR luminosity. The 70 {mu}m selected ULIRGs, which we find to be spectroscopic close pairs, are observed to have high SFE, similar to local ULIRGs and high-redshift submillimeter galaxies, consistent with enhanced IR luminosity due to an ongoing major merger. Combined with existing observations of local and high-redshift ULIRGs, we further compare the PAH, IR, and CO luminosities. We show that the ratio L{sub PAH,6.2}/L{sub IR} decreases with increasing IR luminosity for both local and high-redshift galaxies, but the trend for high-redshift galaxies is shifted to higher IR luminosities; the average L{sub PAH,6.2}/L{sub IR} ratio at a given L{sub IR} is {approx}3 times higher at high-redshift. When we normalize by the molecular gas, we find this trend to be uniform for galaxies at all redshifts and that the molecular gas is correlated with the PAH dust emission. The similar trends seen in the [C II] to molecular gas ratios in other studies suggests that PAH emission, like [C II], continues to be a good tracer of photodissociation regions even at high-redshift. Together the CO, PAH, and far-IR fine structure lines should be useful for constraining the interstellar medium conditions in high-redshift galaxies.

  17. THE GEMINI CLUSTER ASTROPHYSICS SPECTROSCOPIC SURVEY (GCLASS): THE ROLE OF ENVIRONMENT AND SELF-REGULATION IN GALAXY EVOLUTION AT z {approx} 1

    SciTech Connect

    Muzzin, Adam; Van Dokkum, Pieter; Wilson, Gillian; Rettura, Alessandro; Yee, H. K. C.; Gilbank, David; Hoekstra, Henk; Franx, Marijn; Demarco, Ricardo; Nantais, Julie; Balogh, Michael; Ellingson, Erica; Hicks, Amalia; Noble, Allison; Webb, Tracy; Lacy, Mark; Lidman, Chris; Surace, Jason

    2012-02-20

    We evaluate the effects of environment and stellar mass on galaxy properties at 0.85 9.3 the well-known correlations between environment and properties such as star-forming fraction (f{sub SF}), star formation rate (SFR), specific SFR (SSFR), D{sub n}(4000), and color are already in place at z {approx} 1. We separate the effects of environment and stellar mass on galaxies by comparing the properties of star-forming and quiescent galaxies at fixed environment and fixed stellar mass. The SSFR of star-forming galaxies at fixed environment is correlated with stellar mass; however, at fixed stellar mass it is independent of environment. The same trend exists for the D{sub n}(4000) measures of both the star-forming and quiescent galaxies and shows that their properties are determined primarily by their stellar mass, not by their environment. Instead, it appears that environment's primary role is to control the fraction of star-forming galaxies. Using the spectra we identify candidate poststarburst galaxies and find that those with 9.3 < log M{sub *}/M{sub Sun} < 10.7 are 3.1 {+-} 1.1 times more common in high-density regions compared to low-density regions. The clear association of poststarbursts with high-density regions as well as the lack of a correlation between the SSFRs and D{sub n}(4000)s of star-forming galaxies with their environment strongly suggests that at z {approx} 1 the environmental-quenching timescale must be rapid. Lastly, we construct a simple quenching model which demonstrates that the lack of a correlation between the D{sub n}(4000) of quiescent galaxies and their environment results naturally if self quenching dominates over environmental quenching at z > 1, or if the evolution of the self-quenching rate mirrors the evolution of the

  18. Variable energy constant current accelerator structure

    DOEpatents

    Anderson, Oscar A.

    1990-01-01

    A variable energy, constant current ion beam accelerator structure is disclosed comprising an ion source capable of providing the desired ions, a pre-accelerator for establishing an initial energy level, a matching/pumping module having means for focusing means for maintaining the beam current, and at least one main accelerator module for continuing beam focus, with means capable of variably imparting acceleration to the beam so that a constant beam output current is maintained independent of the variable output energy. In a preferred embodiment, quadrupole electrodes are provided in both the matching/pumping module and the one or more accelerator modules, and are formed using four opposing cylinder electrodes which extend parallel to the beam axis and are spaced around the beam at 90.degree. intervals with opposing electrodes maintained at the same potential. Adjacent cylinder electrodes of the quadrupole structure are maintained at different potentials to thereby reshape the cross section of the charged particle beam to an ellipse in cross section at the mid point along each quadrupole electrode unit in the accelerator modules. The beam is maintained in focus by alternating the major axis of the ellipse along the x and y axis respectively at adjacent quadrupoles. In another embodiment, electrostatic ring electrodes may be utilized instead of the quadrupole electrodes.

  19. Holographic dark energy with cosmological constant

    NASA Astrophysics Data System (ADS)

    Hu, Yazhou; Li, Miao; Li, Nan; Zhang, Zhenhui

    2015-08-01

    Inspired by the multiverse scenario, we study a heterotic dark energy model in which there are two parts, the first being the cosmological constant and the second being the holographic dark energy, thus this model is named the ΛHDE model. By studying the ΛHDE model theoretically, we find that the parameters d and Ωhde are divided into a few domains in which the fate of the universe is quite different. We investigate dynamical behaviors of this model, and especially the future evolution of the universe. We perform fitting analysis on the cosmological parameters in the ΛHDE model by using the recent observational data. We find the model yields χ2min=426.27 when constrained by Planck+SNLS3+BAO+HST, comparable to the results of the HDE model (428.20) and the concordant ΛCDM model (431.35). At 68.3% CL, we obtain -0.07<ΩΛ0<0.68 and correspondingly 0.04<Ωhde0<0.79, implying at present there is considerable degeneracy between the holographic dark energy and cosmological constant components in the ΛHDE model.

  20. Ventricular fibrillation time constant for swine.

    PubMed

    Wu, Jiun-Yan; Nimunkar, Amit J; Sun, Hongyu; O'Rourke, Ann; Huebner, Shane; Will, James A; Webster, John G

    2008-10-01

    The strength-duration curve for cardiac excitation can be modeled by a parallel resistor-capacitor circuit that has a time constant. Experiments on six pigs were performed by delivering current from the X26 Taser dart at a distance from the heart to cause ventricular fibrillation (VF). The X26 Taser is an electromuscular incapacitation device (EMD), which generates about 50 kV and delivers a pulse train of about 15-19 pulses s(-1) with a pulse duration of about 150 micros and peak current about 2 A. Similarly a continuous 60 Hz alternating current of the amplitude required to cause VF was delivered from the same distance. The average current and duration of the current pulse were estimated in both sets of experiments. The strength-duration equation was solved to yield an average time constant of 2.87 ms +/- 1.90 (SD). Results obtained may help in the development of safety standards for future electromuscular incapacitation devices (EMDs) without requiring additional animal tests.

  1. Constant-mesh, multiple-shaft transmission

    SciTech Connect

    Rea, J.E.; Mills, D.D.; Sewell, J.S.

    1992-04-21

    This patent describes a multiple-shaft, constant-mesh transmission adapted to establish selectively a reverse torque delivery path and a forward drive torque delivery path and having a torque input means including a torque input shaft, a mainshaft aligned with the input shaft, a countershaft geared to the input shaft in spaced, parallel relationship with respect to the mainshaft, a torque output shaft joined to the mainshaft; multiple mainshaft gear elements journalled on the main airshaft, multiple cluster gear elements carried by the countershaft in meshing engagement with the mainshaft gear elements, one of the cluster gear elements being rotatably journalled on the countershaft; a reverse idle gear, a reverse gear journalled on the countershaft, the reverse idler gear being in constant mesh with the reverse gear and one of the mainshaft gear elements; first clutch means for connecting selectively the reverse gear and the countershaft; second synchronizer clutch means for connecting selectively the one of the mainshaft gear elements to the mainshaft; and third synchronizer clutch means for selectively connecting another of the mainshaft gear elements to the mainshaft; the first clutch means being a double-acting clutch with a first common axially movable clutch element adapted upon movement in one axial direction to drivably connected the reverse gear to the countershaft and adapted upon movement in the opposite axial direction to connect the one cluster gear element to the countershaft.

  2. The Hubble Constant and the Expanding Universe

    NASA Astrophysics Data System (ADS)

    Freedman, Wendy

    2003-01-01

    In 1929 Edwin Hubble proved that our universe is expanding by showing that the farther a galaxy is from us, the faster it is speeding away into space. This velocity-distance relation came to be called Hubble's law, and the value that describes the rate of expansion is known as the Hubble constant, or H0 . Like the speed of light, H0 is a fundamental constant, and it is a key parameter needed to estimate both the age and size of the universe. Since the late 1950s astronomers have been arguing for an H0 value between 50 to 100 kilometers per second per megaparsec, a lack of precision that produced an unacceptably wide range of ages for the universe—anywhere from 10 to 20 billion years. Using the Hubble Space Telescope, Freedman and her colleagues measured H0 to an unprecedented level of accuracy, deriving a value of 72, with an uncertainty of 10 percent—a milestone achievement in cosmology. The new result suggests that our universe is about 13 billion years old, give or take a billion years, and it's a value that sits comfortably alongside the 12 billion years estimated for the age of the oldest stars.

  3. A Constant-Force Resistive Exercise Unit

    NASA Technical Reports Server (NTRS)

    Colosky, Paul; Ruttley, Tara

    2010-01-01

    A constant-force resistive exercise unit (CFREU) has been invented for use in both normal gravitational and microgravitational environments. In comparison with a typical conventional exercise machine, this CFREU weighs less and is less bulky: Whereas weight plates and associated bulky supporting structures are used to generate resistive forces in typical conventional exercise machines, they are not used in this CFREU. Instead, resistive forces are generated in this CFREU by relatively compact, lightweight mechanisms based on constant-torque springs wound on drums. Each such mechanism is contained in a module, denoted a resistive pack, that includes a shaft for making a torque connection to a cable drum. During a stroke of resistive exercise, the cable is withdrawn from the cable drum against the torque exerted by the resistance pack. The CFREU includes a housing, within which can be mounted one or more resistive pack(s). The CFREU also includes mechanisms for engaging any combination of (1) one or more resistive pack(s) and (2) one or more spring(s) within each resistive pack to obtain a desired level of resistance.

  4. Holographic dark energy with cosmological constant

    SciTech Connect

    Hu, Yazhou; Li, Nan; Zhang, Zhenhui; Li, Miao E-mail: mli@itp.ac.cn E-mail: zhangzhh@mail.ustc.edu.cn

    2015-08-01

    Inspired by the multiverse scenario, we study a heterotic dark energy model in which there are two parts, the first being the cosmological constant and the second being the holographic dark energy, thus this model is named the ΛHDE model. By studying the ΛHDE model theoretically, we find that the parameters d and Ω{sub hde} are divided into a few domains in which the fate of the universe is quite different. We investigate dynamical behaviors of this model, and especially the future evolution of the universe. We perform fitting analysis on the cosmological parameters in the ΛHDE model by using the recent observational data. We find the model yields χ{sup 2}{sub min}=426.27 when constrained by Planck+SNLS3+BAO+HST, comparable to the results of the HDE model (428.20) and the concordant ΛCDM model (431.35). At 68.3% CL, we obtain −0.07<Ω{sub Λ0}<0.68 and correspondingly 0.04<Ω{sub hde0}<0.79, implying at present there is considerable degeneracy between the holographic dark energy and cosmological constant components in the ΛHDE model.

  5. Direct Measures of the Hubble Constant

    NASA Astrophysics Data System (ADS)

    Schechter, P. L.

    1999-05-01

    When astronomers talk about Lutz-Kelker corrections, metallicity dependent zeropoints, statistical parallaxes, Tully-Fisher relations, "fundamental" planes, light curve decline rates and, worst of all, Malmquist bias, physicists begin heading for the exits, showing signs of severe allergic reaction. They respond less violently to so-called "direct" methods of measuring distances which bypass the traditional distance ladder. Two of these, gravitational lens time delay measurements (Refsdal's method) and the Sunyaev-Zeldovich (S-Z) effect, give distance measurements to objects at high redshift which appear to rival more traditional approaches. Present, model mediated interpretations of such measurements give low values for the Hubble constant. But as is often the case with new techniques, initial enthusiasm is followed by increasing concern about systematic errors connected with messy astrophysical details. The single largest source of error in modelling lenses is the difficulty in constraining the degree of central concentration of the lensing galaxy. Sources of systematic error in S-Z distances include the clumpiness of intracluster gas, temperature variations within that gas and a bias toward selecting clusters that are elongated along the line of sight. Present best estimates of the Hubble constant, along with best estimates of the systematic uncertainties, and the prospects for improving upon these, will be presented. Support from NSF grant AST96-16866 is gratefully acknowledged.

  6. Do Wormholes Fix the Coupling Constants?

    NASA Astrophysics Data System (ADS)

    Goradia, Shantilal

    2004-05-01

    If Newtonian gravitation is modified to use surface-to-surface separation between particles, it can have the strength of nuclear force between nucleons. This may be justified by possible existence of quantum wormholes in particles. All gravitational interactions would be between coupled wormholes, emitting 1/r graviton flux from their exit mouths as a function of the particle size, allowing the point-like treatment above. When the wormhole exit mouths are 1 Planck length apart, the resultant force is the known strong force coupling constant with an order of magnitude of 40 compared to the normal gravitational strength for nucleons. In addition to being mathematically simple, the above finding is consistent with observations of other coupling constants, Feynman's speculation of "transfusion" of two particles into spin 2 gravitons (published in 1962), Hawking radiation, big-bang theory abundance of quantum wormholes, wormhole theory fine-tuned by Kip S. Thorne and Matt Visser, and recent microscopic gravity measurements. It potentially leads to the holographic principle being promoted by Dr. G. t' Hooft, by naturally pointing out that the mass of the particles is proportional to their diameter squared.

  7. Computing the dielectric constant of liquid water at constant dielectric displacement

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Sprik, Michiel

    2016-04-01

    The static dielectric constant of liquid water is computed using classical force field based molecular dynamics simulation at fixed electric displacement D . The method to constrain the electric displacement is the finite-temperature classical variant of the constant D method developed by Stengel, Spaldin, and Vanderbilt [Nat. Phys. 5, 304 (2009), 10.1038/nphys1185]. There is also a modification of this scheme imposing fixed values of the macroscopic field E . The method is applied to the popular SPC/E model of liquid water. We compare four different estimates of the dielectric constant, two obtained from fluctuations of the polarization at D =0 and E =0 and two from the variation of polarization with finite D and E . It is found that all four estimates agree when properly converged. The computational effort to achieve convergence varies, however, with constant D calculations being substantially more efficient. We attribute this difference to the much shorter relaxation time of longitudinal polarization compared to transverse polarization accelerating constant D calculations.

  8. One-particle properties of deformed N{approx_equal}28 odd-N nuclei with weakly bound or resonant neutrons

    SciTech Connect

    Hamamoto, Ikuko

    2009-01-15

    Possible deformation of odd-N nuclei with N{approx_equal}28 toward the neutron drip line is investigated using the Nilsson diagram based on deformed Woods-Saxon potentials. Both weakly-bound and resonant one-particle levels are properly obtained by directly solving the Schroedinger equation in mesh of space coordinate with the correct boundary condition. If we use the same diffuseness of the potential as that of {beta}-stable nuclei, the energy difference between the neutron 2p{sub 3/2} and 1f{sub 7/2} levels becomes very small or the N=28 energy gap almost disappears, as the binding energies of those levels approach zero. This suggests that the ground states of those neutron drip line nuclei are likely to be deformed. In particular, the spin-parity and the magnetic moment of the ground state of odd-N nuclei, {sub 16}{sup 43}S{sub 27} and {sub 16}{sup 45}S{sub 29}, are examined. Moreover, it is suggested that in {sub 12}{sup 39}Mg{sub 27} lying outside the drip line the lowest resonant state may have 5/2{sup -}, if the N=28 energy gap almost vanishes.

  9. THE COLORS OF CENTRAL AND SATELLITE GALAXIES IN zCOSMOS OUT TO z {approx_equal} 0.8 AND IMPLICATIONS FOR QUENCHING

    SciTech Connect

    Knobel, C.; Lilly, S. J.; Kovac, K.; Peng, Y.; Bschorr, T. J.; Carollo, C. M.; Caputi, K.; Contini, T.; Kneib, J.-P.; Le Fevre, O.; Renzini, A.; Scodeggio, M.; Zamorani, G.; Bardelli, S.; Bolzonella, M.; Bongiorno, A.; Cucciati, O.; De la Torre, S.; De Ravel, L.; and others

    2013-05-20

    We examine the red fraction of central and satellite galaxies in the large zCOSMOS group catalog out to z {approx_equal} 0.8, correcting for both the incompleteness in stellar mass and for the less than perfect purities of the central and satellite samples. We show that at all masses and at all redshifts, the fraction of satellite galaxies that have been quenched, i.e., that are red, is systematically higher than that of centrals, as seen locally in the Sloan Digital Sky Survey (SDSS). The satellite quenching efficiency, which is the probability that a satellite is quenched because it is a satellite rather than a central, is, as locally, independent of stellar mass. Furthermore, the average value is about 0.5, which is also very similar to that seen in the SDSS. We also construct the mass functions of blue and red centrals and satellites and show that these broadly follow the predictions of the Peng et al. analysis of the SDSS groups. Together, these results indicate that the effect of the group environment in quenching satellite galaxies was very similar to what it is today when the universe was about half its present age.

  10. Large pre-equilibrium contribution in {alpha}+{sup nat}Ni interactions at {approx_equal}8-40 MeV

    SciTech Connect

    Yadav, Abhishek; Singh, Pushpendra P.; Sharma, Manoj K.; Singh, Devendra P.; Unnati,; Singh, B. P.; Prasad, R.; Musthafa, M. M.

    2008-10-15

    To investigate pre-equilibrium emission of light nuclear particle(s), an experiment has been performed using {alpha} beams at the Variable Energy Cyclotron Center (VECC), Kolkata, India. In the present work, excitation functions for {sup 58}Ni({alpha},p){sup 61}Cu,{sup 58}Ni({alpha},pn){sup 60}Cu,{sup 60}Ni({alpha},p2n){sup 61}Cu,{sup 60}Ni({alpha},n){sup 63}Zn,{sup 60}Ni({alpha},2n) {sup 62}Zn,{sup 61}Ni({alpha},3n){sup 62}Zn, and {sup 61}Ni({alpha},2n){sup 63}Zn reactions have been measured by using the stacked foil activation technique followed by off-line {gamma}-ray spectroscopy. Experimentally measured excitation functions have been compared with the prediction of the theoretical model code ALICE-91 with and/or without the inclusion of pre-equilibrium emission. Analysis of the data suggests that an admixture of both equilibrium and pre-equilibrium emission is needed to reproduce experimental data at energies {approx_equal}8-40 MeV and reveals significant contribution from pre-equilibrium emission. An attempt has also been made to estimate the pre-equilibrium contribution, which has been found to depend on projectile energy and on number of emitted particle(s)

  11. Results on search for a QGP with a TPC magnetic spectrometer at AGS and plans for an approx 4. pi. TPC magnetic spectrometer at RHIC

    SciTech Connect

    Lindenbaum, S.J. City Univ. of New York, NY )

    1991-01-01

    In the first part of this paper a search for a Quark-Gluon Plasma (QGP) with a TPC Magnetic Spectrometer at AGS by the BNL/CCNY/Johns Hopkins/Rice (E-810) Collaboration is discussed. At AGS energies the expected increase in baryon density is near maximum. If a QGP is formed even rarely this approach provides a sensitive method for its detection. We have found some interesting phenomena including strangeness enhancement, multi-{Lambda} and K{sub s}{sup 0} events and an increased slope for {pi}{sup {minus}} (corresponding to a reduced temperature) in the usual temperature plot for p{sub {perpendicular}} < 0.2 GeV/c. We plan to increase the statistics with the 14.5 GeV/c {times} A Si ions on targets from light to heavy and then to continue the program with incident Au ions. In Part 2 we discuss the BNL/CCNY/Notre Dame/Rice proposal for an {approx} 4{pi} TPC Magnetic Spectrometer for RHIC which we believe will be a sensitive probe for hadronic QGP signals, and also capable of observing departures from QCD should they occur. 8 refs., 12 figs.

  12. Influence of incomplete fusion on complete fusion: Observation of a large incomplete fusion fraction at E {approx_equal}5-7 MeV/nucleon

    SciTech Connect

    Singh, Pushpendra P.; Singh, B. P.; Sharma, Manoj Kumar; Unnati,; Singh, Devendra P.; Prasad, R.; Kumar, Rakesh; Golda, K. S.

    2008-01-15

    Experiments have been carried out to explore the reaction dynamics leading to incomplete fusion of heavy ions at moderate excitation energies. Excitation functions for {sup 168}Lu{sup m}, {sup 167}Lu, {sup 167}Yb, {sup 166}Tm, {sup 179}Re, {sup 177}Re, {sup 177}W, {sup 178}Ta, and {sup 177}Hf radio-nuclides populated via complete and/or incomplete fusion of {sup 16}O with {sup 159}Tb and {sup 169}Tm have been studied over the wide projectile energy range E{sub proj}{approx_equal}75-95 MeV. Recoil-catcher technique followed by off-line {gamma}-spectrometry has been employed in the present measurements. Experimental data have been compared with the predictions of theoretical model code PACE2. The experimentally measured production cross sections of {alpha}-emitting channels were found to be larger as compared to the theoretical model predictions and may be attributed to incomplete fusion at these energies. During the analysis of experimental data, incomplete fusion has been found to be competing with complete fusion. As such, an attempt has been made to estimate the incomplete fusion fraction for both the systems, and has been found to be sensitive for projectile energy and mass asymmetry of interacting partners.

  13. Infrared Spectra and Optical Constants of Nitrile Ices Relevant to Titan's Atmosphere

    NASA Technical Reports Server (NTRS)

    Anderson, Carrie; Ferrante, Robert F.; Moore, W. James; Hudson, Reggie; Moore, Marla H.

    2011-01-01

    Spectra and optical constants of nitrile ices known or suspected to be in Titan?s atmosphere have been determined from 2.0 to 333.3 microns (approx.5000 to 30/cm). These results are relevant to the ongoing modeling of Cassini CIRS observations of Titan?s winter pole. Ices studied were: HCN, hydrogen cyanide; C2N2, cyanogen; CH3CN, acetonitrile; C2H5CN, propionitrile; and HC3N, cyanoacetylene. Optical constants were calculated, using Kramers-Kronig analysis, for each nitrile ice?s spectrum measured at a variety of temperatures, in both the amorphous- and crystalline phases. Spectra were also measured for many of the nitriles after quenching at the annealing temperature and compared with those of annealed ices. For each of these molecules we also measured the real component, n, of the refractive index for amorphous and crystalline phases at 670 nm. Several examples of the information contained in these new data sets and their usefulness in modeling Titan?s observed features will be presented (e.g., the broad emission feature at 160/cm; Anderson and Samuelson, 2011).

  14. Theoretical Evaluation of the Transient Response of Constant Head and Constant Flow-Rate Permeability Tests

    USGS Publications Warehouse

    Zhang, M.; Takahashi, M.; Morin, R.H.; Esaki, T.

    1998-01-01

    A theoretical analysis is presented that compares the response characteristics of the constant head and the constant flowrate (flow pump) laboratory techniques for quantifying the hydraulic properties of geologic materials having permeabilities less than 10-10 m/s. Rigorous analytical solutions that describe the transient distributions of hydraulic gradient within a specimen are developed, and equations are derived for each method. Expressions simulating the inflow and outflow rates across the specimen boundaries during a constant-head permeability test are also presented. These solutions illustrate the advantages and disadvantages of each method, including insights into measurement accuracy and the validity of using Darcy's law under certain conditions. The resulting observations offer practical considerations in the selection of an appropriate laboratory test method for the reliable measurement of permeability in low-permeability geologic materials.

  15. Frank's constant in the hexatic phase.

    PubMed

    Keim, P; Maret, G; von Grünberg, H H

    2007-03-01

    Using videomicroscopy data of a two-dimensional colloidal system the bond-order correlation function G{6} is calculated and used to determine both the orientational correlation length xi{6} in the liquid phase and the modulus of orientational stiffness, Frank's constant F{A}, in the hexatic phase. The latter is an anisotropic fluid phase between the crystalline and the isotropic liquid phase. F{A} is found to be finite within the hexatic phase, takes the value 72/pi at the hexatic<-->isotropic liquid phase transition, and diverges at the hexatic<-->crystal transition as predicted by the Kosterlitz-Thouless-Halperin-Nelson-Young theory. This is a quantitative test of the mechanism of breaking the orientational symmetry by disclination unbinding.

  16. Defect Motifs for Constant Mean Curvature Surfaces

    NASA Astrophysics Data System (ADS)

    Kusumaatmaja, Halim; Wales, David J.

    2013-04-01

    The energy landscapes of electrostatically charged particles embedded on constant mean curvature surfaces are analyzed for a wide range of system size, curvature, and interaction potentials. The surfaces are taken to be rigid, and the basin-hopping method is used to locate the putative global minimum structures. The defect motifs favored by potential energy agree with experimental observations for colloidal systems: extended defects (scars and pleats) for weakly positive and negative Gaussian curvatures, and isolated defects for strongly negative Gaussian curvatures. Near the phase boundary between these regimes, the two motifs are in strong competition, as evidenced from the appearance of distinct funnels in the potential energy landscape. We also report a novel defect motif consisting of pentagon pairs.

  17. Maximum terminal velocity turns at constant altitude

    NASA Astrophysics Data System (ADS)

    Eisler, G. Richard; Hull, David G.

    An optimal control problem is formulated for a maneuvering reentry vehicle to execute a maximum terminal velocity turn at constant altitude to a fixed final position. A control solution technique is devised which uses a Newton scheme to repetitively solve a nonlinear algebraic system for two parameters to provide the on-line guidance. The turn control takes advantage of the high dynamic pressure at the beginning of the flight path; the lift solution acts to null deviations from the prescribed altitude. Control solutions are compared for a continuously updated, approximate physical model, for a simulation of the approximate optimal guidance in a true physical model, and for a parameter optimization solution for the true model. End constraint satisfaction is excellent. Overall trajectory agreement is good, if the assumed atmospheric model is reasonably accurate.

  18. Maximum terminal velocity turns at constant altitude

    SciTech Connect

    Eisler, G.R.; Hull, D.G.

    1987-01-01

    An optimal control problem is formulated for a maneuvering reentry vehicle to execute a maximum terminal velocity turn at constant altitude to a fixed final position. A control solution technique is devised which uses a Newton scheme to repetitively solve a nonlinear algebraic system for two parameters to provide the on-line guidance. The turn control takes advantage of the high dynamic pressure at the beginning of the flight path; the lift solution acts to null deviations from the prescribed altitude. Control solutions are compared for a continuously updated, approximate physical model, for a simulation of the approximate optimal guidance in a true physical model, and for a parameter optimization solution for the true model. End constraint satisfaction is excellent. Overall trajectory agreement is good, if the assumed atmospheric model is reasonably accurate.

  19. Measuring the RC time constant with Arduino

    NASA Astrophysics Data System (ADS)

    Pereira, N. S. A.

    2016-11-01

    In this work we use the Arduino UNO R3 open source hardware platform to assemble an experimental apparatus for the measurement of the time constant of an RC circuit. With adequate programming, the Arduino is used as a signal generator, a data acquisition system and a basic signal visualisation tool. Theoretical calculations are compared with direct observations from an analogue oscilloscope. Data processing and curve fitting is performed on a spreadsheet. The results obtained for the six RC test circuits are within the expected interval of values defined by the tolerance of the components. The hardware and software prove to be adequate to the proposed measurements and therefore adaptable to a laboratorial teaching and learning context.

  20. Running cosmological constant with observational tests

    NASA Astrophysics Data System (ADS)

    Geng, Chao-Qiang; Lee, Chung-Chi; Zhang, Kaituo

    2016-09-01

    We investigate the running cosmological constant model with dark energy linearly proportional to the Hubble parameter, Λ = σH +Λ0, in which the ΛCDM limit is recovered by taking σ = 0. We derive the linear perturbation equations of gravity under the Friedmann-Lemaïtre-Robertson-Walker cosmology, and show the power spectra of the CMB temperature and matter density distribution. By using the Markov chain Monte Carlo method, we fit the model to the current observational data and find that σH0 /Λ0 ≲ 2.63 ×10-2 and 6.74 ×10-2 for Λ (t) coupled to matter and radiation-matter, respectively, along with constraints on other cosmological parameters.

  1. The decay constant of 87Rb

    NASA Astrophysics Data System (ADS)

    Rotenberg, E.; Davis, D. W.; Amelin, Y.

    2009-05-01

    Despite dozens of measurements of the decay constant of 87Rb (λ87), uncertainty surrounding the value remains. Mounting evidence [e.g. 1,2,3] suggests that the actual value is 1-2% lower than the conventional value of 1.42 × 10-11a-1 [4]. Increased precision and accuracy are crucial if meaningful comparisons are to be made between Rb-Sr and U-Pb ages. We have been working on measuring the decay constant by the accumulation of radiogenic 87Sr (87Sr*) in a RbClO4 salt. Our original measurements by this method had large errors [5,6] and tended to agree with the conventional value. Because the samples contained very little common Sr, it was impossible to properly correct for instrumental fractionation, with the result that both precision and accuracy were compromised. Furthermore, the concentration of the 84Sr spike was not determined reliably, which likely affected the accuracy. In order to overcome this, a new 84-86Sr double-spike was prepared, and the experiment was repeated. The spike was calibrated against three different Sr reference solutions. Two were prepared from Sr metal and the third from SrCl2. The isotopic abundance ratios of the 84-86Sr double-spike are: 84/86 = 0.93252, 87/86 = 0.01033, and 88/86 = 0.02240. The concentration was determined to be 832.95 ± 0.26 ng Sr/g solution (MSWD = 2.5). Seventeen measurements of the decay-constant were made by measuring 87Sr* ingrowth in a RbClO4 salt over approximately 32 years. 87Sr* ranges from 125 - 616 pg. The two highest points are eliminated: one due to high procedure blank and the second due to abnormal fractionation behaviour. A weighted average of the remaining fifteen measurements yields a decay constant of 1.3981 × 10-11a-11 ± 0.0009 (0.062%; and a high MSWD = 106. The 2σ standard deviation is 0.004). The data scatter outside of their analytical errors. Recent geological calibrations [1,2] and a carefully controlled decay counting measurement [3] yield λ87 values from 1.395 ± 0.006 to 1.398 ± 0

  2. Constant-parameter capture-recapture models

    USGS Publications Warehouse

    Brownie, C.; Hines, J.E.; Nichols, J.D.

    1986-01-01

    Jolly (1982, Biometrics 38, 301-321) presented modifications of the Jolly-Seber model for capture-recapture data, which assume constant survival and/or capture rates. Where appropriate, because of the reduced number of parameters, these models lead to more efficient estimators than the Jolly-Seber model. The tests to compare models given by Jolly do not make complete use of the data, and we present here the appropriate modifications, and also indicate how to carry out goodness-of-fit tests which utilize individual capture history information. We also describe analogous models for the case where young and adult animals are tagged. The availability of computer programs to perform the analysis is noted, and examples are given using output from these programs.

  3. Constant field gradient planar coupled cavity structure

    DOEpatents

    Kang, Yoon W.; Kustom, Robert L.

    1999-01-01

    A cavity structure having at least two opposing planar housing members spaced apart to accommodate the passage of a particle beam through the structure between the members. Each of the housing members have a plurality of serially aligned hollows defined therein, and also passages, formed in the members, which interconnect serially adjacent hollows to provide communication between the hollows. The opposing planar housing members are spaced and aligned such that the hollows in one member cooperate with corresponding hollows in the other member to form a plurality of resonant cavities aligned along the particle beam within the cavity structure. To facilitate the obtaining of a constant field gradient within the cavity structure, the passages are configured so as to be incrementally narrower in the direction of travel of the particle beam. In addition, the spacing distance between the opposing housing members is configured to be incrementally smaller in the direction of travel of the beam.

  4. Constant field gradient planar coupled cavity structure

    DOEpatents

    Kang, Y.W.; Kustom, R.L.

    1999-07-27

    A cavity structure is disclosed having at least two opposing planar housing members spaced apart to accommodate the passage of a particle beam through the structure between the members. Each of the housing members have a plurality of serially aligned hollows defined therein, and also passages, formed in the members, which interconnect serially adjacent hollows to provide communication between the hollows. The opposing planar housing members are spaced and aligned such that the hollows in one member cooperate with corresponding hollows in the other member to form a plurality of resonant cavities aligned along the particle beam within the cavity structure. To facilitate the obtaining of a constant field gradient within the cavity structure, the passages are configured so as to be incrementally narrower in the direction of travel of the particle beam. In addition, the spacing distance between the opposing housing members is configured to be incrementally smaller in the direction of travel of the beam. 16 figs.

  5. Hawking temperature of constant curvature black holes

    SciTech Connect

    Cai Ronggen; Myung, Yun Soo

    2011-05-15

    The constant curvature (CC) black holes are higher dimensional generalizations of Banados-Teitelboim-Zanelli black holes. It is known that these black holes have the unusual topology of M{sub D-1}xS{sup 1}, where D is the spacetime dimension and M{sub D-1} stands for a conformal Minkowski spacetime in D-1 dimensions. The unusual topology and time-dependence for the exterior of these black holes cause some difficulties to derive their thermodynamic quantities. In this work, by using a globally embedding approach, we obtain the Hawking temperature of the CC black holes. We find that the Hawking temperature takes the same form when using both the static and global coordinates. Also, it is identical to the Gibbons-Hawking temperature of the boundary de Sitter spaces of these CC black holes.

  6. Constant field gradient planar cavity structure

    SciTech Connect

    Kang, Yoon W.; Kustom, R.L.

    1997-12-01

    A cavity structure is described having at least two opposing planar housing members spaced apart to accommodate the passage of a particle beam through the structure between the members. Each of the housing members have a plurality of serially aligned hollows defined therein, and also passages, formed in the members, which interconnect serially adjacent hollows to provide communication between the hollows. The opposing planar housing members are spaced and aligned such that the hollows in one member cooperate with corresponding hollows in the other member to form a plurality of resonant cavities aligned along the particle beam within the cavity structure. To facilitate the obtaining of a constant field gradient within the cavity structure, the passages are configured so as to be incrementally narrower in the direction of travel of the particle beam. In addition, the spacing distance between the opposing housing members is configured to be incrementally smaller in the direction of travel of the beam.

  7. Consistency tests for the cosmological constant.

    PubMed

    Zunckel, Caroline; Clarkson, Chris

    2008-10-31

    We propose consistency tests for the cosmological constant which provide a direct observational signal if Lambda is wrong, regardless of the densities of matter and curvature. As an example of its utility, our flat case test can warn of a small transition of the equation of state w(z) from w(z)=-1 of 20% from SNAP (Supernova Acceleration Probe) quality data at 4-sigma, even when direct reconstruction techniques see virtually no evidence for deviation from Lambda. It is shown to successfully rule out a wide range of non-Lambda dark energy models with no reliance on knowledge of Omega_{m} using SNAP quality data and a large range for using 10;{5} supernovae as forecasted for the Large Synoptic Survey Telescope. PMID:18999813

  8. Automatic gesture analysis using constant affine velocity.

    PubMed

    Cifuentes, Jenny; Boulanger, Pierre; Pham, Minh Tu; Moreau, Richard; Prieto, Flavio

    2014-01-01

    Hand human gesture recognition has been an important research topic widely studied around the world, as this field offers the ability to identify, recognize, and analyze human gestures in order to control devices or to interact with computer interfaces. In particular, in medical training, this approach is an important tool that can be used to obtain an objective evaluation of a procedure performance. In this paper, some obstetrical gestures, acquired by a forceps, were studied with the hypothesis that, as the scribbling and drawing movements, they obey the one-sixth power law, an empirical relationship which connects path curvature, torsion, and euclidean velocity. Our results show that obstetrical gestures have a constant affine velocity, which is different for each type of gesture and based on this idea this quantity is proposed as an appropriate classification feature in the hand human gesture recognition field. PMID:25570332

  9. Simple Pendulum Determination of the Gravitational Constant

    SciTech Connect

    Parks, Harold V.; Faller, James E.

    2010-09-10

    We determined the Newtonian constant of gravitation G by interferometrically measuring the change in spacing between two free-hanging pendulum masses caused by the gravitational field from large tungsten source masses. We find a value for G of (6.672 34{+-}0.000 14)x10{sup -11} m{sup 3} kg{sup -1} s{sup -2}. This value is in good agreement with the 1986 Committee on Data for Science and Technology (CODATA) value of (6.672 59{+-}0.000 85)x10{sup -11} m{sup 3} kg{sup -1} s{sup -2}[Rev. Mod. Phys. 59, 1121 (1987)] but differs from some more recent determinations as well as the latest CODATA recommendation of (6.674 28{+-}0.000 67)x10{sup -11} m{sup 3} kg{sup -1} s{sup -2}[Rev. Mod. Phys. 80, 633 (2008)].

  10. Molecular dynamics at constant Cauchy stress

    NASA Astrophysics Data System (ADS)

    Miller, Ronald E.; Tadmor, Ellad B.; Gibson, Joshua S.; Bernstein, Noam; Pavia, Fabio

    2016-05-01

    The Parrinello-Rahman algorithm for imposing a general state of stress in periodic molecular dynamics simulations is widely used in the literature and has been implemented in many readily available molecular dynamics codes. However, what is often overlooked is that this algorithm controls the second Piola-Kirchhoff stress as opposed to the true (Cauchy) stress. This can lead to misinterpretation of simulation results because (1) the true stress that is imposed during the simulation depends on the deformation of the periodic cell, (2) the true stress is potentially very different from the imposed second Piola-Kirchhoff stress, and (3) the true stress can vary significantly during the simulation even if the imposed second Piola-Kirchhoff is constant. We propose a simple modification to the algorithm that allows the true Cauchy stress to be controlled directly. We then demonstrate the efficacy of the new algorithm with the example of martensitic phase transformations under applied stress.

  11. Constant-force approach to discontinuous potentials.

    PubMed

    Orea, Pedro; Odriozola, Gerardo

    2013-06-01

    Aiming to approach the thermodynamical properties of hard-core systems by standard molecular dynamics simulation, we propose setting a repulsive constant-force for overlapping particles. That is, the discontinuity of the pair potential is replaced by a linear function with a large negative slope. Hence, the core-core repulsion, usually modeled with a power function of distance, yields a large force as soon as the cores slightly overlap. This leads to a quasi-hardcore behavior. The idea is tested for a triangle potential of short range. The results obtained by replica exchange molecular dynamics for several repulsive forces are contrasted with the ones obtained for the discontinuous potential and by means of replica exchange Monte Carlo. We found remarkable agreements for the vapor-liquid coexistence densities as well as for the surface tension.

  12. The Solar constant: Status of our knowledge

    NASA Astrophysics Data System (ADS)

    Crommelynck, D.

    A historical survey of the observations of the Solar constant up to now is given and commented with respect to the particular conditions in which they were obtained. The continuous series of measurements obtained by J.R. Hickey since 1978, C. Willson since 1980 and R.B. Lee III since 1984 and the differences are analysed to deduce the state of the art of absolute radiometry. Taking into account the large scale monitoring requirements for climatological purposes, the areas in absolute radiometry where improvements are still possible are identified together with the estimated ultimate possible accuracy. A strategy is proposed to guarantee the continuity of the monitoring over large enough climatological periods.

  13. Universal equations and constants of turbulent motion

    NASA Astrophysics Data System (ADS)

    Baumert, H. Z.

    2013-07-01

    This paper presents a parameter-free theory of shear-generated turbulence at asymptotically high Reynolds numbers in incompressible fluids. It is based on a two-fluids concept. Both components are materially identical and inviscid. The first component is an ensemble of quasi-rigid dipole-vortex tubes (vortex filaments, excitations) as quasi-particles in chaotic motion. The second is a superfluid performing evasive motions between the tubes. The local dipole motions follow Helmholtz' law. The vortex radii scale with the energy-containing length scale. Collisions between quasi-particles lead either to annihilation (likewise rotation, turbulent dissipation) or to scattering (counterrotation, turbulent diffusion). There are analogies with birth and death processes of population dynamics and their master equations and with Landau's two-fluid theory of liquid helium. For free homogeneous decay the theory predicts the turbulent kinetic energy to follow t-1. With an adiabatic wall condition it predicts the logarithmic law with von Kármán's constant as 1/\\sqrt {2\\,\\pi }= 0.399 . Likewise rotating couples form localized dissipative patches almost at rest (→ intermittency) wherein under local quasi-steady conditions the spectrum evolves into an ‘Apollonian gear’ as discussed first by Herrmann (1990 Correlation and Connectivity (Dordrecht: Kluwer) pp 108-20). Dissipation happens exclusively at scale zero and at finite scales this system is frictionless and reminds of Prigogine's (1947 Etude Thermodynamique des Phenomenes Irreversibles (Liege: Desoer) p 143) law of minimum (here: zero) entropy production. The theory predicts further the prefactor of the 3D-wavenumber spectrum (a Kolmogorov constant) as \\frac {1}{3}(4\\,\\pi )^{2/3}=1.802 , well within the scatter range of observational, experimental and direct numerical simulation results.

  14. Broadband negative optical constants in composite materials

    NASA Astrophysics Data System (ADS)

    Khosravi, S.; Rostami, A.; Rostami, G.; Dolatyari, M.

    2015-04-01

    Capability of flexible composite substrates, consisting of randomly distributed nanoparticles in polymeric host medium, to illustrate negative effective permittivity and permeability in the mid infrared wavelengths (3-5 μm) is investigated. To produce negative permittivity in the desired wavelength range, we proposed a structure in which plasmonic nanoparticles (doped semiconductors or metallic nanoparticles) are inserted inside polytetrafluoroethylene as the low refractive index polymeric medium. Also, the optical properties of the structures including core/shell nanoparticles in polytetrafluoroethylene host (with polytetrafluoroethylene as core material and dielectric shells possessing higher refractive index compared to refractive index of the host medium) are investigated. It is shown that, high refractive index dielectric shells result in negative μeff in these structures. As a basic idea, to obtain negative optical constants in broad wavelength range, superposition of the mentioned nanoparticles in the polymeric host is examined. The advantages and limitations of the proposed structure are carefully investigated. Moreover, based on the simulation results, we will introduce flexible media that simultaneously display negative permittivity and permeability in the wavelength range of interest. Capability of two types of composites (the first one contains mixture of plasmonic nanoparticles with polymer-dielectric core-shell nanoparticles and the second one includes metal-dielectric core-shell nanoparticles in the polymeric host) to produce both negative effective parameters in the desired wavelength range are investigated and compared together. Finally a polymeric medium with random distribution of core-shell (metal-dielectric) nanoparticles and plasmonic nanoparticles is introduced as an optimal medium to illustrate negative optical constants in mid infrared wavelengths. Clausius-Mossotti formula is used to calculate the effective parameters.

  15. Theoretical grounds of relativistic methods for calculation of spin-spin coupling constants in nuclear magnetic resonance spectra

    NASA Astrophysics Data System (ADS)

    Rusakova, I. L.; Rusakov, Yu Yu; Krivdin, L. B.

    2016-04-01

    The theoretical grounds of the modern relativistic methods for quantum chemical calculation of spin-spin coupling constants in nuclear magnetic resonance spectra are considered. Examples and prospects of application of relativistic calculations of these constants in the structural studies of organic and heteroorganic compounds are discussed. Practical recommendations on relativistic calculations of spin-spin coupling constants using the available software are given. The bibliography includes 622 references.

  16. Theoretical grounds of relativistic methods for calculation of spin–spin coupling constants in nuclear magnetic resonance spectra

    NASA Astrophysics Data System (ADS)

    Rusakova, I. L.; Rusakov, Yu Yu; Krivdin, L. B.

    2016-04-01

    The theoretical grounds of the modern relativistic methods for quantum chemical calculation of spin–spin coupling constants in nuclear magnetic resonance spectra are considered. Examples and prospects of application of relativistic calculations of these constants in the structural studies of organic and heteroorganic compounds are discussed. Practical recommendations on relativistic calculations of spin–spin coupling constants using the available software are given. The bibliography includes 622 references.

  17. Infrared Spectra and Optical Constants of Elusive Amorphous Methane

    NASA Technical Reports Server (NTRS)

    Gerakines, Perry A.; Hudson, Reggie L.

    2015-01-01

    New and accurate laboratory results are reported for amorphous methane (CH4) ice near 10 K for the study of the interstellar medium (ISM) and the outer Solar System. Near- and mid-infrared (IR) data, including spectra, band strengths, absorption coefficients, and optical constants, are presented for the first time for this seldom-studied amorphous solid. The apparent IR band strength near 1300 cm(exp -1) (7.69 micrometer) for amorphous CH4 is found to be about 33% higher than the value long used by IR astronomers to convert spectral observations of interstellar CH4 into CH4 abundances. Although CH4 is most likely to be found in an amorphous phase in the ISM, a comparison of results from various laboratory groups shows that the earlier CH4 band strength at 1300 cm(exp -1) (7.69 micrometer) was derived from IR spectra of ices that were either partially or entirely crystalline CH4 Applications of the new amorphous-CH4 results are discussed, and all optical constants are made available in electronic form.

  18. Constant volume gas cell optical phase-shifter

    DOEpatents

    Phillion, Donald W.

    2002-01-01

    A constant volume gas cell optical phase-shifter, particularly applicable for phase-shifting interferometry, contains a sealed volume of atmospheric gas at a pressure somewhat different than atmospheric. An optical window is present at each end of the cell, and as the length of the cell is changed, the optical path length of a laser beam traversing the cell changes. The cell comprises movable coaxial tubes with seals and a volume equalizing opening. Because the cell is constant volume, the pressure, temperature, and density of the contained gas do not change as the cell changes length. This produces an exactly linear relationship between the change in the length of the gas cell and the change in optical phase of the laser beam traversing it. Because the refractive index difference between the gas inside and the atmosphere outside is very much the same, a large motion must be made to change the optical phase by the small fraction of a wavelength that is required by phase-shifting interferometry for its phase step. This motion can be made to great fractional accuracy.

  19. A constant size extension drives bacterial cell size homeostasis

    PubMed Central

    Campos, Manuel; Surovtsev, Ivan V.; Kato, Setsu; Paintdakhi, Ahmad; Beltran, Bruno; Ebmeier, Sarah E.; Jacobs-Wagner, Christine

    2014-01-01

    Cell size control is an intrinsic feature of the cell cycle. In bacteria, cell growth and division are thought to be coupled through a cell size threshold. Here, we provide direct experimental evidence disproving the critical size paradigm. Instead, we show through single-cell microscopy and modeling that the evolutionarily distant bacteria Escherichia coli and Caulobacter crescentus achieve cell size homeostasis by growing on average the same amount between divisions, irrespective of cell length at birth. This simple mechanism provides a remarkably robust cell size control without the need of being precise, abating size deviations exponentially within a few generations. This size homeostasis mechanism is broadly applicable for symmetric and asymmetric divisions as well as for different growth rates. Furthermore, our data suggest that constant size extension is implemented at or close to division. Altogether, our findings provide fundamentally distinct governing principles for cell size and cell cycle control in bacteria. PMID:25480302

  20. Coupling constant metamorphosis, the Staeckel transform and superintegrability

    SciTech Connect

    Post, Sarah

    2010-12-23

    This paper is dedicated to the memory of Marcos Moshinsky. In this paper, we discuss the important role that coupling constant metamorphosis (CCM) and the Staeckel transform have played in the analysis of superintegrable systems. We explain the relation between the two and in particular show that they coincide when transforming between second-order superintegrable systems. Unlike in the case of second-order superintegrability, the quantum analog of CCM has only been proven for a subclass of systems with integrals of a specific form. We give the proof and as an application show the mapping of a family of superintegrable deformations of the simple harmonic oscillator to an associated family of superintegrable deformations of the Kepler-Coulomb potential.