NASA Astrophysics Data System (ADS)
Bonetto, P.; Qi, Jinyi; Leahy, R. M.
2000-08-01
Describes a method for computing linear observer statistics for maximum a posteriori (MAP) reconstructions of PET images. The method is based on a theoretical approximation for the mean and covariance of MAP reconstructions. In particular, the authors derive here a closed form for the channelized Hotelling observer (CHO) statistic applied to 2D MAP images. The theoretical analysis models both the Poission statistics of PET data and the inhomogeneity of tracer uptake. The authors show reasonably good correspondence between these theoretical results and Monte Carlo studies. The accuracy and low computational cost of the approximation allow the authors to analyze the observer performance over a wide range of operating conditions and parameter settings for the MAP reconstruction algorithm.
Nonlinear Stochastic PDEs: Analysis and Approximations
2016-05-23
numerical performance. Main theoretical and experimental advances include: 1.Introduction of a number of effective approaches to numerical analysis of...Stokes and Euler SPDEs, quasi -geostrophic SPDE, Ginzburg-Landau SPDE and Duffing oscillator REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT...compare their numerical performance. Main theoretical and experimental advances include: 1.Introduction of a number of effective approaches to
Is probabilistic bias analysis approximately Bayesian?
MacLehose, Richard F.; Gustafson, Paul
2011-01-01
Case-control studies are particularly susceptible to differential exposure misclassification when exposure status is determined following incident case status. Probabilistic bias analysis methods have been developed as ways to adjust standard effect estimates based on the sensitivity and specificity of exposure misclassification. The iterative sampling method advocated in probabilistic bias analysis bears a distinct resemblance to a Bayesian adjustment; however, it is not identical. Furthermore, without a formal theoretical framework (Bayesian or frequentist), the results of a probabilistic bias analysis remain somewhat difficult to interpret. We describe, both theoretically and empirically, the extent to which probabilistic bias analysis can be viewed as approximately Bayesian. While the differences between probabilistic bias analysis and Bayesian approaches to misclassification can be substantial, these situations often involve unrealistic prior specifications and are relatively easy to detect. Outside of these special cases, probabilistic bias analysis and Bayesian approaches to exposure misclassification in case-control studies appear to perform equally well. PMID:22157311
Quantitative model of diffuse speckle contrast analysis for flow measurement.
Liu, Jialin; Zhang, Hongchao; Lu, Jian; Ni, Xiaowu; Shen, Zhonghua
2017-07-01
Diffuse speckle contrast analysis (DSCA) is a noninvasive optical technique capable of monitoring deep tissue blood flow. However, a detailed study of the speckle contrast model for DSCA has yet to be presented. We deduced the theoretical relationship between speckle contrast and exposure time and further simplified it to a linear approximation model. The feasibility of this linear model was validated by the liquid phantoms which demonstrated that the slope of this linear approximation was able to rapidly determine the Brownian diffusion coefficient of the turbid media at multiple distances using multiexposure speckle imaging. Furthermore, we have theoretically quantified the influence of optical property on the measurements of the Brownian diffusion coefficient which was a consequence of the fact that the slope of this linear approximation was demonstrated to be equal to the inverse of correlation time of the speckle.
An approach to an analysis of the energy response of LiF-TLD to high energy electrons.
Shiragai, A
1977-05-01
Responses of LiF-TLD to high energy electrons relative to 60Co gamma-rays were investigated experimentally and theoretically. The Burlin et al. theory, its modified version by Almond and McCray and the Holt et al. semi-empirical theory were examined in comparison with each experiment. An approximate approach to theoretical analysis of energy response of LiF-TLD was attempted and compared with some experimental results.
NASA Astrophysics Data System (ADS)
Dao Duc, Khanh; Saleem, Zain H.; Song, Yun S.
2018-01-01
The Totally Asymmetric Exclusion Process (TASEP) is a classical stochastic model for describing the transport of interacting particles, such as ribosomes moving along the messenger ribonucleic acid (mRNA) during translation. Although this model has been widely studied in the past, the extent of collision between particles and the average distance between a particle to its nearest neighbor have not been quantified explicitly. We provide here a theoretical analysis of such quantities via the distribution of isolated particles. In the classical form of the model in which each particle occupies only a single site, we obtain an exact analytic solution using the matrix ansatz. We then employ a refined mean-field approach to extend the analysis to a generalized TASEP with particles of an arbitrary size. Our theoretical study has direct applications in mRNA translation and the interpretation of experimental ribosome profiling data. In particular, our analysis of data from Saccharomyces cerevisiae suggests a potential bias against the detection of nearby ribosomes with a gap distance of less than approximately three codons, which leads to some ambiguity in estimating the initiation rate and protein production flux for a substantial fraction of genes. Despite such ambiguity, however, we demonstrate theoretically that the interference rate associated with collisions can be robustly estimated and show that approximately 1% of the translating ribosomes get obstructed.
NASA Astrophysics Data System (ADS)
Sanchez, J.
2018-06-01
In this paper, the application and analysis of the asymptotic approximation method to a single degree-of-freedom has recently been produced. The original concepts are summarized, and the necessary probabilistic concepts are developed and applied to single degree-of-freedom systems. Then, these concepts are united, and the theoretical and computational models are developed. To determine the viability of the proposed method in a probabilistic context, numerical experiments are conducted, and consist of a frequency analysis, analysis of the effects of measurement noise, and a statistical analysis. In addition, two examples are presented and discussed.
A Christoffel function weighted least squares algorithm for collocation approximations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narayan, Akil; Jakeman, John D.; Zhou, Tao
Here, we propose, theoretically investigate, and numerically validate an algorithm for the Monte Carlo solution of least-squares polynomial approximation problems in a collocation framework. Our investigation is motivated by applications in the collocation approximation of parametric functions, which frequently entails construction of surrogates via orthogonal polynomials. A standard Monte Carlo approach would draw samples according to the density defining the orthogonal polynomial family. Our proposed algorithm instead samples with respect to the (weighted) pluripotential equilibrium measure of the domain, and subsequently solves a weighted least-squares problem, with weights given by evaluations of the Christoffel function. We present theoretical analysis tomore » motivate the algorithm, and numerical results that show our method is superior to standard Monte Carlo methods in many situations of interest.« less
A Christoffel function weighted least squares algorithm for collocation approximations
Narayan, Akil; Jakeman, John D.; Zhou, Tao
2016-11-28
Here, we propose, theoretically investigate, and numerically validate an algorithm for the Monte Carlo solution of least-squares polynomial approximation problems in a collocation framework. Our investigation is motivated by applications in the collocation approximation of parametric functions, which frequently entails construction of surrogates via orthogonal polynomials. A standard Monte Carlo approach would draw samples according to the density defining the orthogonal polynomial family. Our proposed algorithm instead samples with respect to the (weighted) pluripotential equilibrium measure of the domain, and subsequently solves a weighted least-squares problem, with weights given by evaluations of the Christoffel function. We present theoretical analysis tomore » motivate the algorithm, and numerical results that show our method is superior to standard Monte Carlo methods in many situations of interest.« less
Nonlinear Dynamics of a Helicopter Model in Ground Resonance
NASA Technical Reports Server (NTRS)
Tang, D. M.; Dowell, E. H.
1985-01-01
An approximate theoretical method is presented which determined the limit cycle behavior of a helicopter model which has one or two nonlinear dampers. The relationship during unstable ground resonance oscillations between lagging motion of the blades and fuselage motion is discussed. An experiment was carried out on using a helicopter scale model. The experimental results agree with those of the theoretical analysis.
Theoretical, Experimental, and Computational Evaluation of Several Vane-Type Slow-Wave Structures
NASA Technical Reports Server (NTRS)
Wallett, Thomas M.; Qureshi, A. Haq
1994-01-01
Several types of periodic vane slow-wave structures were fabricated. The dispersion characteristics were found by theoretical analysis, experimental testing, and computer simulation using the MAFIA code. Computer-generated characteristics agreed to approximately within 2 percent of the experimental characteristics for all structures. The theoretical characteristics, however, deviated increasingly as the width to height ratio became smaller. Interaction impedances were also computed based on the experimental and computer-generated resonance frequency shifts due to the introduction of a perturbing dielectric rod.
Pang, Junbiao; Qin, Lei; Zhang, Chunjie; Zhang, Weigang; Huang, Qingming; Yin, Baocai
2015-12-01
Local coordinate coding (LCC) is a framework to approximate a Lipschitz smooth function by combining linear functions into a nonlinear one. For locally linear classification, LCC requires a coding scheme that heavily determines the nonlinear approximation ability, posing two main challenges: 1) the locality making faraway anchors have smaller influences on current data and 2) the flexibility balancing well between the reconstruction of current data and the locality. In this paper, we address the problem from the theoretical analysis of the simplest local coding schemes, i.e., local Gaussian coding and local student coding, and propose local Laplacian coding (LPC) to achieve the locality and the flexibility. We apply LPC into locally linear classifiers to solve diverse classification tasks. The comparable or exceeded performances of state-of-the-art methods demonstrate the effectiveness of the proposed method.
Short-bearing approximation for full journal bearings
NASA Technical Reports Server (NTRS)
Ocvirk, F W
1952-01-01
A short-bearing approximation of pressure distribution in the oil film is presented which is an extension of the pressure-distribution function of Michell and Cardullo and includes end-leakage effects. Equations giving applied load, attitude angle, location and magnitude of peak film pressure, friction, and required oil flow rate as functions of the eccentricity ratio are also given. The capacity number, a basic non dimensional quantity resulting from this analysis is the product of the Sommerfeld number and the square of the length-diameter ratio. Curves determined by this analysis are compared with previously published experimental data and theoretical curves of Sommerfeld and Cameron and Wood. Conclusions reached indicate that this approximation is of practical value for analysis of short bearings.
NASA Technical Reports Server (NTRS)
Hague, D. S.; Rozendaal, H. L.
1977-01-01
A rapid mission analysis code based on the use of approximate flight path equations of motion is presented. Equation form varies with the segment type, for example, accelerations, climbs, cruises, descents, and decelerations. Realistic and detailed characteristics were specified in tabular form. The code also contains extensive flight envelope performance mapping capabilities. Approximate take off and landing analyses were performed. At high speeds, centrifugal lift effects were accounted for. Extensive turbojet and ramjet engine scaling procedures were incorporated in the code.
Target Coverage in Wireless Sensor Networks with Probabilistic Sensors
Shan, Anxing; Xu, Xianghua; Cheng, Zongmao
2016-01-01
Sensing coverage is a fundamental problem in wireless sensor networks (WSNs), which has attracted considerable attention. Conventional research on this topic focuses on the 0/1 coverage model, which is only a coarse approximation to the practical sensing model. In this paper, we study the target coverage problem, where the objective is to find the least number of sensor nodes in randomly-deployed WSNs based on the probabilistic sensing model. We analyze the joint detection probability of target with multiple sensors. Based on the theoretical analysis of the detection probability, we formulate the minimum ϵ-detection coverage problem. We prove that the minimum ϵ-detection coverage problem is NP-hard and present an approximation algorithm called the Probabilistic Sensor Coverage Algorithm (PSCA) with provable approximation ratios. To evaluate our design, we analyze the performance of PSCA theoretically and also perform extensive simulations to demonstrate the effectiveness of our proposed algorithm. PMID:27618902
Autonomous vehicle motion control, approximate maps, and fuzzy logic
NASA Technical Reports Server (NTRS)
Ruspini, Enrique H.
1993-01-01
Progress on research on the control of actions of autonomous mobile agents using fuzzy logic is presented. The innovations described encompass theoretical and applied developments. At the theoretical level, results of research leading to the combined utilization of conventional artificial planning techniques with fuzzy logic approaches for the control of local motion and perception actions are presented. Also formulations of dynamic programming approaches to optimal control in the context of the analysis of approximate models of the real world are examined. Also a new approach to goal conflict resolution that does not require specification of numerical values representing relative goal importance is reviewed. Applied developments include the introduction of the notion of approximate map. A fuzzy relational database structure for the representation of vague and imprecise information about the robot's environment is proposed. Also the central notions of control point and control structure are discussed.
Rate-distortion analysis of directional wavelets.
Maleki, Arian; Rajaei, Boshra; Pourreza, Hamid Reza
2012-02-01
The inefficiency of separable wavelets in representing smooth edges has led to a great interest in the study of new 2-D transformations. The most popular criterion for analyzing these transformations is the approximation power. Transformations with near-optimal approximation power are useful in many applications such as denoising and enhancement. However, they are not necessarily good for compression. Therefore, most of the nearly optimal transformations such as curvelets and contourlets have not found any application in image compression yet. One of the most promising schemes for image compression is the elegant idea of directional wavelets (DIWs). While these algorithms outperform the state-of-the-art image coders in practice, our theoretical understanding of them is very limited. In this paper, we adopt the notion of rate-distortion and calculate the performance of the DIW on a class of edge-like images. Our theoretical analysis shows that if the edges are not "sharp," the DIW will compress them more efficiently than the separable wavelets. It also demonstrates the inefficiency of the quadtree partitioning that is often used with the DIW. To solve this issue, we propose a new partitioning scheme called megaquad partitioning. Our simulation results on real-world images confirm the benefits of the proposed partitioning algorithm, promised by our theoretical analysis. © 2011 IEEE
On the integration of reinforcement learning and approximate reasoning for control
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.
1991-01-01
The author discusses the importance of strengthening the knowledge representation characteristic of reinforcement learning techniques using methods such as approximate reasoning. The ARIC (approximate reasoning-based intelligent control) architecture is an example of such a hybrid approach in which the fuzzy control rules are modified (fine-tuned) using reinforcement learning. ARIC also demonstrates that it is possible to start with an approximately correct control knowledge base and learn to refine this knowledge through further experience. On the other hand, techniques such as the TD (temporal difference) algorithm and Q-learning establish stronger theoretical foundations for their use in adaptive control and also in stability analysis of hybrid reinforcement learning and approximate reasoning-based controllers.
NASA Astrophysics Data System (ADS)
Trattner, Sigal; Feigin, Micha; Greenspan, Hayit; Sochen, Nir
2008-03-01
The differential interference contrast (DIC) microscope is commonly used for the visualization of live biological specimens. It enables the view of the transparent specimens while preserving their viability, being a non-invasive modality. Fertility clinics often use the DIC microscope for evaluation of human embryos quality. Towards quantification and reconstruction of the visualized specimens, an image formation model for DIC imaging is sought and the interaction of light waves with biological matter is examined. In many image formation models the light-matter interaction is expressed via the first Born approximation. The validity region of this approximation is defined in a theoretical bound which limits its use to very small specimens with low dielectric contrast. In this work the Born approximation is investigated via the Helmholtz equation, which describes the interaction between the specimen and light. A solution on the lens field is derived using the Gaussian Legendre quadrature formulation. This numerical scheme is considered both accurate and efficient and has shortened significantly the computation time as compared to integration methods that required a great amount of sampling for satisfying the Whittaker - Shannon sampling theorem. By comparing the numerical results with the theoretical values it is shown that the theoretical bound is not directly relevant to microscopic imaging and is far too limiting. The numerical exhaustive experiments show that the Born approximation is inappropriate for modeling the visualization of thick human embryos.
Assessing the Utility of Compound Trait Estimates of Narrow Personality Traits.
Credé, Marcus; Harms, Peter D; Blacksmith, Nikki; Wood, Dustin
2016-01-01
It has been argued that approximations of narrow traits can be made through linear combinations of broad traits such as the Big Five personality traits. Indeed, Hough and Ones ( 2001 ) used a qualitative analysis of scale content to arrive at a taxonomy of how Big Five traits might be combined to approximate various narrow traits. However, the utility of such compound trait approximations has yet to be established beyond specific cases such as integrity and customer service orientation. Using data from the Eugene-Springfield Community Sample (Goldberg, 2008 ), we explore the ability of linear composites of scores on Big Five traits to approximate scores on 127 narrow trait measures from 5 well-known non-Big-Five omnibus measures of personality. Our findings indicate that individuals' standing on more than 30 narrow traits can be well estimated from 3 different types of linear composites of scores on Big Five traits without a substantial sacrifice in criterion validity. We discuss theoretical accounts for why such relationships exist as well as the theoretical and practical implications of these findings for researchers and practitioners.
Kernel-Based Approximate Dynamic Programming Using Bellman Residual Elimination
2010-02-01
framework is the ability to utilize stochastic system models, thereby allowing the system to make sound decisions even if there is randomness in the system ...approximate policy when a system model is unavailable. We present theoretical analysis of all BRE algorithms proving convergence to the optimal policy in...policies based on MDPs is that there may be parameters of the system model that are poorly known and/or vary with time as the system operates. System
Blocking performance approximation in flexi-grid networks
NASA Astrophysics Data System (ADS)
Ge, Fei; Tan, Liansheng
2016-12-01
The blocking probability to the path requests is an important issue in flexible bandwidth optical communications. In this paper, we propose a blocking probability approximation method of path requests in flexi-grid networks. It models the bundled neighboring carrier allocation with a group of birth-death processes and provides a theoretical analysis to the blocking probability under variable bandwidth traffic. The numerical results show the effect of traffic parameters to the blocking probability of path requests. We use the first fit algorithm in network nodes to allocate neighboring carriers to path requests in simulations, and verify approximation results.
Near optimum digital phase locked loops.
NASA Technical Reports Server (NTRS)
Polk, D. R.; Gupta, S. C.
1972-01-01
Near optimum digital phase locked loops are derived utilizing nonlinear estimation theory. Nonlinear approximations are employed to yield realizable loop structures. Baseband equivalent loop gains are derived which under high signal to noise ratio conditions may be calculated off-line. Additional simplifications are made which permit the application of the Kalman filter algorithms to determine the optimum loop filter. Performance is evaluated by a theoretical analysis and by simulation. Theoretical and simulated results are discussed and a comparison to analog results is made.
NASA Technical Reports Server (NTRS)
Federhofer, J. A.
1974-01-01
Laboratory data verifying the pulse quaternary modulation (PQM) theoretical predictions is presented. The first laboratory PQM laser communication system was successfully fabricated, integrated, tested and demonstrated. System bit error rate tests were performed and, in general, indicated approximately a 2 db degradation from the theoretically predicted results. These tests indicated that no gross errors were made in the initial theoretical analysis of PQM. The relative ease with which the entire PQM laboratory system was integrated and tested indicates that PQM is a viable candidate modulation scheme for an operational 400 Mbps baseband laser communication system.
Gradient descent for robust kernel-based regression
NASA Astrophysics Data System (ADS)
Guo, Zheng-Chu; Hu, Ting; Shi, Lei
2018-06-01
In this paper, we study the gradient descent algorithm generated by a robust loss function over a reproducing kernel Hilbert space (RKHS). The loss function is defined by a windowing function G and a scale parameter σ, which can include a wide range of commonly used robust losses for regression. There is still a gap between theoretical analysis and optimization process of empirical risk minimization based on loss: the estimator needs to be global optimal in the theoretical analysis while the optimization method can not ensure the global optimality of its solutions. In this paper, we aim to fill this gap by developing a novel theoretical analysis on the performance of estimators generated by the gradient descent algorithm. We demonstrate that with an appropriately chosen scale parameter σ, the gradient update with early stopping rules can approximate the regression function. Our elegant error analysis can lead to convergence in the standard L 2 norm and the strong RKHS norm, both of which are optimal in the mini-max sense. We show that the scale parameter σ plays an important role in providing robustness as well as fast convergence. The numerical experiments implemented on synthetic examples and real data set also support our theoretical results.
Stagnation-Point Shielding by Melting and Vaporization
NASA Technical Reports Server (NTRS)
Roberts, Leonard
1959-01-01
An approximate theoretical analysis was made of the shielding mechanism whereby the rate of heat transfer to the forward stagnation point of blunt bodies is reduced by melting and evaporation. General qualitative results are given and a numerical example, the melting and evaporation of ice, is presented and discussed in detail.
Evidence of iridescence in TiO2 nanostructures: An approximation in plane wave expansion method
NASA Astrophysics Data System (ADS)
Quiroz, Heiddy P.; Barrera-Patiño, C. P.; Rey-González, R. R.; Dussan, A.
2016-11-01
Titanium dioxide nanotubes, TiO2 NTs, can be obtained by electrochemical anodization of Titanium sheets. After nanotubes are removed by mechanical stress, residual structures or traces on the surface of titanium sheets can be observed. These traces show iridescent effects. In this paper we carry out both experimental and theoretical study of those interesting and novel optical properties. For the experimental analysis we use angle resolved UV-vis spectroscopy while in the theoretical study is evaluated the photonic spectra using numerical simulations into the frequency-domain and the framework of the wave plane approximation. The iridescent effect is a strong property and independent of the sample. This behavior can be important to design new materials or compounds for several applications such as, cosmetic industry, optoelectronic devices, photocatalysis, sensors, among others.
Testing Theoretical Models of Magnetic Damping Using an Air Track
ERIC Educational Resources Information Center
Vidaurre, Ana; Riera, Jaime; Monsoriu, Juan A.; Gimenez, Marcos H.
2008-01-01
Magnetic braking is a long-established application of Lenz's law. A rigorous analysis of the laws governing this problem involves solving Maxwell's equations in a time-dependent situation. Approximate models have been developed to describe different experimental results related to this phenomenon. In this paper we present a new method for the…
Spectral element multigrid. Part 2: Theoretical justification
NASA Technical Reports Server (NTRS)
Maday, Yvon; Munoz, Rafael
1988-01-01
A multigrid algorithm is analyzed which is used for solving iteratively the algebraic system resulting from tha approximation of a second order problem by spectral or spectral element methods. The analysis, performed here in the one dimensional case, justifies the good smoothing properties of the Jacobi preconditioner that was presented in Part 1 of this paper.
Study of Effects of Sweep on the Flutter of Cantilever Wings
NASA Technical Reports Server (NTRS)
Barmby, J G; Cunningham, H J; Garrick, I E
1951-01-01
An experimental and analytical investigation of the flutter of sweptback cantilever wings is reported. The experiments employed groups of wings swept back by rotating and by shearing. The angle of sweep range from 0 degree to 60 degrees and Mach numbers extended to approximately 0.85. A theoretical analysis of the air forces on an oscillating swept wing of high length-chord ratio is developed, and the approximations inherent in the assumptions are discussed. Comparison with experiment indicates that the analysis developed in the present report is satisfactory for giving the main effects of sweep, at least for nearly uniform cantilever wings of high and moderate length-chord ratios.
The response function of modulated grid Faraday cup plasma instruments
NASA Technical Reports Server (NTRS)
Barnett, A.; Olbert, S.
1986-01-01
Modulated grid Faraday cup plasma analyzers are a very useful tool for making in situ measurements of space plasmas. One of their great attributes is that their simplicity permits their angular response function to be calculated theoretically. An expression is derived for this response function by computing the trajectories of the charged particles inside the cup. The Voyager Plasma Science (PLS) experiment is used as a specific example. Two approximations to the rigorous response function useful for data analysis are discussed. The theoretical formulas were tested by multi-sensor analysis of solar wind data. The tests indicate that the formulas represent the true cup response function for all angles of incidence with a maximum error of only a few percent.
Random-Phase Approximation Methods
NASA Astrophysics Data System (ADS)
Chen, Guo P.; Voora, Vamsee K.; Agee, Matthew M.; Balasubramani, Sree Ganesh; Furche, Filipp
2017-05-01
Random-phase approximation (RPA) methods are rapidly emerging as cost-effective validation tools for semilocal density functional computations. We present the theoretical background of RPA in an intuitive rather than formal fashion, focusing on the physical picture of screening and simple diagrammatic analysis. A new decomposition of the RPA correlation energy into plasmonic modes leads to an appealing visualization of electron correlation in terms of charge density fluctuations. Recent developments in the areas of beyond-RPA methods, RPA correlation potentials, and efficient algorithms for RPA energy and property calculations are reviewed. The ability of RPA to approximately capture static correlation in molecules is quantified by an analysis of RPA natural occupation numbers. We illustrate the use of RPA methods in applications to small-gap systems such as open-shell d- and f-element compounds, radicals, and weakly bound complexes, where semilocal density functional results exhibit strong functional dependence.
Cosmographic analysis with Chebyshev polynomials
NASA Astrophysics Data System (ADS)
Capozziello, Salvatore; D'Agostino, Rocco; Luongo, Orlando
2018-05-01
The limits of standard cosmography are here revised addressing the problem of error propagation during statistical analyses. To do so, we propose the use of Chebyshev polynomials to parametrize cosmic distances. In particular, we demonstrate that building up rational Chebyshev polynomials significantly reduces error propagations with respect to standard Taylor series. This technique provides unbiased estimations of the cosmographic parameters and performs significatively better than previous numerical approximations. To figure this out, we compare rational Chebyshev polynomials with Padé series. In addition, we theoretically evaluate the convergence radius of (1,1) Chebyshev rational polynomial and we compare it with the convergence radii of Taylor and Padé approximations. We thus focus on regions in which convergence of Chebyshev rational functions is better than standard approaches. With this recipe, as high-redshift data are employed, rational Chebyshev polynomials remain highly stable and enable one to derive highly accurate analytical approximations of Hubble's rate in terms of the cosmographic series. Finally, we check our theoretical predictions by setting bounds on cosmographic parameters through Monte Carlo integration techniques, based on the Metropolis-Hastings algorithm. We apply our technique to high-redshift cosmic data, using the Joint Light-curve Analysis supernovae sample and the most recent versions of Hubble parameter and baryon acoustic oscillation measurements. We find that cosmography with Taylor series fails to be predictive with the aforementioned data sets, while turns out to be much more stable using the Chebyshev approach.
Laplace approximation for Bessel functions of matrix argument
NASA Astrophysics Data System (ADS)
Butler, Ronald W.; Wood, Andrew T. A.
2003-06-01
We derive Laplace approximations to three functions of matrix argument which arise in statistics and elsewhere: matrix Bessel A[nu]; matrix Bessel B[nu]; and the type II confluent hypergeometric function of matrix argument, [Psi]. We examine the theoretical and numerical properties of the approximations. On the theoretical side, it is shown that the Laplace approximations to A[nu], B[nu] and [Psi] given here, together with the Laplace approximations to the matrix argument functions 1F1 and 2F1 presented in Butler and Wood (Laplace approximations to hyper-geometric functions with matrix argument, Ann. Statist. (2002)), satisfy all the important confluence relations and symmetry relations enjoyed by the original functions.
Experimental and theoretical characterization of an AC electroosmotic micromixer.
Sasaki, Naoki; Kitamori, Takehiko; Kim, Haeng-Boo
2010-01-01
We have reported on a novel microfluidic mixer based on AC electroosmosis. To elucidate the mixer characteristics, we performed detailed measurements of mixing under various experimental conditions including applied voltage, frequency and solution viscosity. The results are discussed through comparison with results obtained from a theoretical model of AC electroosmosis. As predicted from the theoretical model, we found that a larger voltage (approximately 20 V(p-p)) led to more rapid mixing, while the dependence of the mixing on frequency (1-5 kHz) was insignificant under the present experimental conditions. Furthermore, the dependence of the mixing on viscosity was successfully explained by the theoretical model, and the applicability of the mixer in viscous solution (2.83 mPa s) was confirmed experimentally. By using these results, it is possible to estimate the mixing performance under given conditions. These estimations can provide guidelines for using the mixer in microfluidic chemical analysis.
Multigrid Techniques for Highly Indefinite Equations
NASA Technical Reports Server (NTRS)
Shapira, Yair
1996-01-01
A multigrid method for the solution of finite difference approximations of elliptic PDE's is introduced. A parallelizable version of it, suitable for two and multi level analysis, is also defined, and serves as a theoretical tool for deriving a suitable implementation for the main version. For indefinite Helmholtz equations, this analysis provides a suitable mesh size for the coarsest grid used. Numerical experiments show that the method is applicable to diffusion equations with discontinuous coefficients and highly indefinite Helmholtz equations.
NASA Astrophysics Data System (ADS)
Kandilian, Razmig; Pruvost, Jérémy; Artu, Arnaud; Lemasson, Camille; Legrand, Jack; Pilon, Laurent
2016-05-01
This paper aims to experimentally and directly validate a recent theoretical method for predicting the radiation characteristics of photosynthetic microorganisms. Such predictions would facilitate light transfer analysis in photobioreactors (PBRs) to control their operation and to maximize their production of biofuel and other high-value products. The state of the art experimental method can be applied to microorganisms of any shape and inherently accounts for their non-spherical and heterogeneous nature. On the other hand, the theoretical method treats the microorganisms as polydisperse homogeneous spheres with some effective optical properties. The absorption index is expressed as the weighted sum of the pigment mass absorption cross-sections and the refractive index is estimated based on the subtractive Kramers-Kronig relationship given an anchor refractive index and wavelength. Here, particular attention was paid to green microalgae Chlamydomonas reinhardtii grown under nitrogen-replete and nitrogen-limited conditions and to Chlorella vulgaris grown under nitrogen-replete conditions. First, relatively good agreement was found between the two methods for determining the mass absorption and scattering cross-sections and the asymmetry factor of both nitrogen-replete and nitrogen-limited C. reinhardtii with the proper anchor point. However, the homogeneous sphere approximation significantly overestimated the absorption cross-section of C. vulgaris cells. The latter were instead modeled as polydisperse coated spheres consisting of an absorbing core containing pigments and a non-absorbing but strongly refracting wall made of sporopollenin. The coated sphere approximation gave good predictions of the experimentally measured integral radiation characteristics of C. vulgaris. In both cases, the homogeneous and coated sphere approximations predicted resonance in the scattering phase function that were not observed experimentally. However, these approximations were sufficiently accurate to predict the fluence rate and local rate of photon absorption in PBRs.
AC electroosmotic pump with bubble-free palladium electrodes and rectifying polymer membrane valves.
Brask, Anders; Snakenborg, Detlef; Kutter, Jörg P; Bruus, Henrik
2006-02-01
We present the design, test and theoretical analysis of a novel micropump. The purpose is to make a pump with large flow rate (approximately 10 microL min-1) and high pressure capacity (approximately 1 bar) powered by a low voltage DeltaV<30 V. The pump is operated in AC mode with an electroosmotic actuator in connection with a full wave rectifying valve system. Individual valves are based on a flexible membrane with a slit. Bubble-free palladium electrodes are implemented in order to increase the range of applications and reduce maintenance.
Numerical solution of the time fractional reaction-diffusion equation with a moving boundary
NASA Astrophysics Data System (ADS)
Zheng, Minling; Liu, Fawang; Liu, Qingxia; Burrage, Kevin; Simpson, Matthew J.
2017-06-01
A fractional reaction-diffusion model with a moving boundary is presented in this paper. An efficient numerical method is constructed to solve this moving boundary problem. Our method makes use of a finite difference approximation for the temporal discretization, and spectral approximation for the spatial discretization. The stability and convergence of the method is studied, and the errors of both the semi-discrete and fully-discrete schemes are derived. Numerical examples, motivated by problems from developmental biology, show a good agreement with the theoretical analysis and illustrate the efficiency of our method.
Analysis of collapse in flattening a micro-grooved heat pipe by lateral compression
NASA Astrophysics Data System (ADS)
Li, Yong; He, Ting; Zeng, Zhixin
2012-11-01
The collapse of thin-walled micro-grooved heat pipes is a common phenomenon in the tube flattening process, which seriously influences the heat transfer performance and appearance of heat pipe. At present, there is no other better method to solve this problem. A new method by heating the heat pipe is proposed to eliminate the collapse during the flattening process. The effectiveness of the proposed method is investigated through a theoretical model, a finite element(FE) analysis, and experimental method. Firstly, A theoretical model based on a deformation model of six plastic hinges and the Antoine equation of the working fluid is established to analyze the collapse of thin walls at different temperatures. Then, the FE simulation and experiments of flattening process at different temperatures are carried out and compared with theoretical model. Finally, the FE model is followed to study the loads of the plates at different temperatures and heights of flattened heat pipes. The results of the theoretical model conform to those of the FE simulation and experiments in the flattened zone. The collapse occurs at room temperature. As the temperature increases, the collapse decreases and finally disappears at approximately 130 °C for various heights of flattened heat pipes. The loads of the moving plate increase as the temperature increases. Thus, the reasonable temperature for eliminating the collapse and reducing the load is approximately 130 °C. The advantage of the proposed method is that the collapse is reduced or eliminated by means of the thermal deformation characteristic of heat pipe itself instead of by external support. As a result, the heat transfer efficiency of heat pipe is raised.
Gravity-darkening exponents in semi-detached binary systems from their photometric observations. II.
NASA Astrophysics Data System (ADS)
Djurašević, G.; Rovithis-Livaniou, H.; Rovithis, P.; Georgiades, N.; Erkapić, S.; Pavlović, R.
2006-01-01
This second part of our study concerning gravity-darkening presents the results for 8 semi-detached close binary systems. From the light-curve analysis of these systems the exponent of the gravity-darkening (GDE) for the Roche lobe filling components has been empirically derived. The method used for the light-curve analysis is based on Roche geometry, and enables simultaneous estimation of the systems' parameters and the gravity-darkening exponents. Our analysis is restricted to the black-body approximation which can influence in some degree the parameter estimation. The results of our analysis are: 1) For four of the systems, namely: TX UMa, β Per, AW Cam and TW Cas, there is a very good agreement between empirically estimated and theoretically predicted values for purely convective envelopes. 2) For the AI Dra system, the estimated value of gravity-darkening exponent is greater, and for UX Her, TW And and XZ Pup lesser than corresponding theoretical predictions, but for all mentioned systems the obtained values of the gravity-darkening exponent are quite close to the theoretically expected values. 3) Our analysis has proved generally that with the correction of the previously estimated mass ratios of the components within some of the analysed systems, the theoretical predictions of the gravity-darkening exponents for stars with convective envelopes are highly reliable. The anomalous values of the GDE found in some earlier studies of these systems can be considered as the consequence of the inappropriate method used to estimate the GDE. 4) The empirical estimations of GDE given in Paper I and in the present study indicate that in the light-curve analysis one can apply the recent theoretical predictions of GDE with high confidence for stars with both convective and radiative envelopes.
Approximation Methods for Inverse Problems Governed by Nonlinear Parabolic Systems
1999-12-17
We present a rigorous theoretical framework for approximation of nonlinear parabolic systems with delays in the context of inverse least squares...numerical results demonstrating the convergence are given for a model of dioxin uptake and elimination in a distributed liver model that is a special case of the general theoretical framework .
An experimental-theoretical study of free vibrations of plates on elastic point supports
NASA Technical Reports Server (NTRS)
Leuner, T. R.
1972-01-01
A theoretical and experimental study is made to investigate the effect on plate vibrations of varying the stiffness of corner elastic point supports. A theoretical model is developed using a Rayleigh-Ritz analysis which approximates the plate mode shapes as products of free-free beam modes. The elastic point supports are modelled both as massless translational springs, and springs with tip masses. The tip masses are included to better represent the experimental supports. An experiment is constructed using the bending stiffness of horizontal beams to support a square plate at its four corners. The stiffness of these supports can be varied over such a range that the plate fundamental frequency is lowered to 40% of the rigid support frequency. The variation with support stiffness of the frequencies of the first eight plate modes is measured, and compared with the theoretical results. The plate mode shapes for rigid supports are analyzed using holographic interferometry. There is excellent agreement between the theoretical and experimental results, except for high plate modes where the theoretical model is demonstrated to be inadequate.
Course Shopping in Urban Community Colleges: An Analysis of Student Drop and Add Activities
ERIC Educational Resources Information Center
Hagedorn, Linda Serra; Maxwell, William E.; Cypers, Scott; Moon, Hye Sun; Lester, Jaime
2007-01-01
This study examined the course shopping behaviors among a sample of approximately 5,000 community college students enrolled across nine campuses of a large urban district. The sample was purposely designed as an analytic, rather than a random, sample that sought to obtain adequate numbers of students in course areas that were of theoretical and of…
Mode instability in one-dimensional anharmonic lattices: Variational equation approach
NASA Astrophysics Data System (ADS)
Yoshimura, K.
1999-03-01
The stability of normal mode oscillations has been studied in detail under the single-mode excitation condition for the Fermi-Pasta-Ulam-β lattice. Numerical experiments indicate that the mode stability depends strongly on k/N, where k is the wave number of the initially excited mode and N is the number of degrees of freedom in the system. It has been found that this feature does not change when N increases. We propose an average variational equation - approximate version of the variational equation - as a theoretical tool to facilitate a linear stability analysis. It is shown that this strong k/N dependence of the mode stability can be explained from the view point of the linear stability of the relevant orbits. We introduce a low-dimensional approximation of the average variational equation, which approximately describes the time evolution of variations in four normal mode amplitudes. The linear stability analysis based on this four-mode approximation demonstrates that the parametric instability mechanism plays a crucial role in the strong k/N dependence of the mode stability.
NASA Technical Reports Server (NTRS)
Kramer, James J; Prian, Vasily D; Wu, Chung-Hua
1956-01-01
A method for the solution of the incompressible nonviscous flow through a centrifugal impeller, including the inlet region, is presented. Several numerical solutions are obtained for four weight flows through an impeller at one operating speed. These solutions are refined in the leading-edge region. The results are presented in a series of figures showing streamlines and relative velocity contours. A comparison is made with the results obtained by using a rapid approximate method of analysis.
Piezoelectric line moment actuator for active radiation control from light-weight structures
NASA Astrophysics Data System (ADS)
Jandak, Vojtech; Svec, Petr; Jiricek, Ondrej; Brothanek, Marek
2017-11-01
This article outlines the design of a piezoelectric line moment actuator used for active structural acoustic control. Actuators produce a dynamic bending moment that appears in the controlled structure resulting from the inertial forces when the attached piezoelectric stripe actuators start to oscillate. The article provides a detailed theoretical analysis necessary for the practical realization of these actuators, including considerations concerning their placement, a crucial factor in the overall system performance. Approximate formulas describing the dependency of the moment amplitude on the frequency and the required electric voltage are derived. Recommendations applicable for the system's design based on both theoretical and empirical results are provided.
In Praise of Numerical Computation
NASA Astrophysics Data System (ADS)
Yap, Chee K.
Theoretical Computer Science has developed an almost exclusively discrete/algebraic persona. We have effectively shut ourselves off from half of the world of computing: a host of problems in Computational Science & Engineering (CS&E) are defined on the continuum, and, for them, the discrete viewpoint is inadequate. The computational techniques in such problems are well-known to numerical analysis and applied mathematics, but are rarely discussed in theoretical algorithms: iteration, subdivision and approximation. By various case studies, I will indicate how our discrete/algebraic view of computing has many shortcomings in CS&E. We want embrace the continuous/analytic view, but in a new synthesis with the discrete/algebraic view. I will suggest a pathway, by way of an exact numerical model of computation, that allows us to incorporate iteration and approximation into our algorithms’ design. Some recent results give a peek into how this view of algorithmic development might look like, and its distinctive form suggests the name “numerical computational geometry” for such activities.
NASA Astrophysics Data System (ADS)
Kashinski, D. O.; Nelson, R. G.; Chase, G. M.; di Nallo, O. E.; Byrd, E. F. C.
2016-05-01
We are investigating the accuracy of theoretical models used to predict the visible, ultraviolet, and infrared spectra, as well as other properties, of product materials ejected from the muzzle of currently fielded systems. Recent advances in solid propellants has made the management of muzzle signature (flash) a principle issue in weapons development across the calibers. A priori prediction of the electromagnetic spectra of formulations will allow researchers to tailor blends that yield desired signatures and determine spectrographic detection ranges. Quantum chemistry methods at various levels of sophistication have been employed to optimize molecular geometries, compute unscaled harmonic frequencies, and determine the optical spectra of specific gas-phase species. Electronic excitations are being computed using Time Dependent Density Functional Theory (TD-DFT). Calculation of approximate global harmonic frequency scaling factors for specific DFT functionals is also in progress. A full statistical analysis and reliability assessment of computational results is currently underway. Work supported by the ARL, DoD-HPCMP, and USMA.
An X-Ray Analysis Database of Photoionization Cross Sections Including Variable Ionization
NASA Technical Reports Server (NTRS)
Wang, Ping; Cohen, David H.; MacFarlane, Joseph J.; Cassinelli, Joseph P.
1997-01-01
Results of research efforts in the following areas are discussed: review of the major theoretical and experimental data of subshell photoionization cross sections and ionization edges of atomic ions to assess the accuracy of the data, and to compile the most reliable of these data in our own database; detailed atomic physics calculations to complement the database for all ions of 17 cosmically abundant elements; reconciling the data from various sources and our own calculations; and fitting cross sections with functional approximations and incorporating these functions into a compact computer code.Also, efforts included adapting an ionization equilibrium code, tabulating results, and incorporating them into the overall program and testing the code (both ionization equilibrium and opacity codes) with existing observational data. The background and scientific applications of this work are discussed. Atomic physics cross section models and calculations are described. Calculation results are compared with available experimental data and other theoretical data. The functional approximations used for fitting cross sections are outlined and applications of the database are discussed.
Theoretical and experimental studies of reentry plasmas
NASA Technical Reports Server (NTRS)
Dunn, M. G.; Kang, S.
1973-01-01
A viscous shock-layer analysis was developed and used to calculate nonequilibrium-flow species distributions in the plasma layer of the RAM vehicle. The theoretical electron-density results obtained are in good agreement with those measured in flight. A circular-aperture flush-mounted antenna was used to obtain a comparison between theoretical and experimental antenna admittance in the presence of ionized boundary layers of low collision frequency. The electron-temperature and electron-density distributions in the boundary layer were independently measured. The antenna admittance was measured using a four-probe microwave reflectometer and these measured values were found to be in good agreement with those predicted. Measurements were also performed with another type of circular-aperture antenna and good agreement was obtained between the calculations and the experimental results. A theoretical analysis has been completed which permits calculation of the nonequilibrium, viscous shock-layer flow field for a sphere-cone body. Results are presented for two different bodies at several different altitudes illustrating the influences of bluntness and chemical nonequilibrium on several gas dynamic parameters of interest. Plane-wave transmission coefficients were calculated for an approximate space-shuttle body using a typical trajectory.
Thermal/structural Tailoring of Engine Blades (T/SEAEBL). Theoretical Manual
NASA Technical Reports Server (NTRS)
Brown, K. W.; Clevenger, W. B.
1994-01-01
The Thermal/Structural Tailoring of Engine Blades (T/STAEBL) system is a family of computer programs executed by a control program. The T/STAEBL system performs design optimizations of cooled, hollow turbine blades and vanes. This manual describes the T/STAEBL data block structure and system organization. The approximate analysis and optimization modules are detailed, and a validation test case is provided.
Thermal/structural tailoring of engine blades (T/SEAEBL). Theoretical manual
NASA Astrophysics Data System (ADS)
Brown, K. W.; Clevenger, W. B.
1994-03-01
The Thermal/Structural Tailoring of Engine Blades (T/STAEBL) system is a family of computer programs executed by a control program. The T/STAEBL system performs design optimizations of cooled, hollow turbine blades and vanes. This manual describes the T/STAEBL data block structure and system organization. The approximate analysis and optimization modules are detailed, and a validation test case is provided.
Refractive index investigation of poly(vinyl alcohol) films with TiO2 nanoparticle inclusions.
Yovcheva, Temenuzhka; Vlaeva, Ivanka; Bodurov, Ivan; Dragostinova, Violeta; Sainov, Simeon
2012-11-10
The refractive index (RI) of polymer nanocomposite of poly(vinyl alcohol) films with TiO(2) nanoparticle inclusions with low concentration up to 1.2 wt. % was investigated. Accurate refractometric measurements, by a specially designed laser microrefractometer, were performed at wavelengths 532 and 632.8 nm. The influence of TiO(2) concentration on the RI dispersion curves was predicted based on the well-known Sellmeier model. The theoretical analysis, in a small filling factor approximation, was performed, and a relation between the effective RI of the nanocomposite and weight concentrations of the TiO(2) nanofiller was derived. The experimental values were approximated by two different functions (linear and a quadratic polynom). The polynomial approximation yields better result, where R(2)=0.90.
The evolution and discharge of electric fields within a thunderstorm
NASA Technical Reports Server (NTRS)
Hager, William W.; Nisbet, John S.; Kasha, John R.
1989-01-01
An analysis of the present three-dimensional thunderstorm electrical model and its finite-difference approximations indicates unconditional stability for the discretization that results from the approximation of the spatial derivatives by a box-schemelike method and of the temporal derivative by either a backward-difference or Crank-Nicholson scheme. Lightning propagation is treated through numerical techniques based on the inverse-matrix modification formula and Cholesky updates. The model is applied to a storm observed at the Kennedy Space Center in 1978, and numerical comparisons are conducted between the model and the theoretical results obtained by Wilson (1920) and Holzer and Saxon (1952).
NASA Astrophysics Data System (ADS)
Fu, Chao; Ren, Xingmin; Yang, Yongfeng; Xia, Yebao; Deng, Wangqun
2018-07-01
A non-intrusive interval precise integration method (IPIM) is proposed in this paper to analyze the transient unbalance response of uncertain rotor systems. The transfer matrix method (TMM) is used to derive the deterministic equations of motion of a hollow-shaft overhung rotor. The uncertain transient dynamic problem is solved by combing the Chebyshev approximation theory with the modified precise integration method (PIM). Transient response bounds are calculated by interval arithmetic of the expansion coefficients. Theoretical error analysis of the proposed method is provided briefly, and its accuracy is further validated by comparing with the scanning method in simulations. Numerical results show that the IPIM can keep good accuracy in vibration prediction of the start-up transient process. Furthermore, the proposed method can also provide theoretical guidance to other transient dynamic mechanical systems with uncertainties.
Scaling Cross Sections for Ion-atom Impact Ionization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Igor D. Kaganovich; Edward Startsev; Ronald C. Davidson
2003-06-06
The values of ion-atom ionization cross sections are frequently needed for many applications that utilize the propagation of fast ions through matter. When experimental data and theoretical calculations are not available, approximate formulas are frequently used. This paper briefly summarizes the most important theoretical results and approaches to cross section calculations in order to place the discussion in historical perspective and offer a concise introduction to the topic. Based on experimental data and theoretical predictions, a new fit for ionization cross sections is proposed. The range of validity and accuracy of several frequently used approximations (classical trajectory, the Born approximation,more » and so forth) are discussed using, as examples, the ionization cross sections of hydrogen and helium atoms by various fully stripped ions.« less
Energetic Consistency and Coupling of the Mean and Covariance Dynamics
NASA Technical Reports Server (NTRS)
Cohn, Stephen E.
2008-01-01
The dynamical state of the ocean and atmosphere is taken to be a large dimensional random vector in a range of large-scale computational applications, including data assimilation, ensemble prediction, sensitivity analysis, and predictability studies. In each of these applications, numerical evolution of the covariance matrix of the random state plays a central role, because this matrix is used to quantify uncertainty in the state of the dynamical system. Since atmospheric and ocean dynamics are nonlinear, there is no closed evolution equation for the covariance matrix, nor for the mean state. Therefore approximate evolution equations must be used. This article studies theoretical properties of the evolution equations for the mean state and covariance matrix that arise in the second-moment closure approximation (third- and higher-order moment discard). This approximation was introduced by EPSTEIN [1969] in an early effort to introduce a stochastic element into deterministic weather forecasting, and was studied further by FLEMING [1971a,b], EPSTEIN and PITCHER [1972], and PITCHER [1977], also in the context of atmospheric predictability. It has since fallen into disuse, with a simpler one being used in current large-scale applications. The theoretical results of this article make a case that this approximation should be reconsidered for use in large-scale applications, however, because the second moment closure equations possess a property of energetic consistency that the approximate equations now in common use do not possess. A number of properties of solutions of the second-moment closure equations that result from this energetic consistency will be established.
NASA Technical Reports Server (NTRS)
Gallenstein, J.; Huston, R. L.
1973-01-01
This paper presents an analysis of swimming motion with specific attention given to the flutter kick, the breast-stroke kick, and the breast stroke. The analysis is completely theoretical. It employs a mathematical model of the human body consisting of frustrums of elliptical cones. Dynamical equations are written for this model including both viscous and inertia forces. These equations are then applied with approximated swimming strokes and solved numerically using a digital computer. The procedure is to specify the input of the swimming motion. The computer solution then provides the output displacement, velocity, and rotation or body roll of the swimmer.
Adaptive control using neural networks and approximate models.
Narendra, K S; Mukhopadhyay, S
1997-01-01
The NARMA model is an exact representation of the input-output behavior of finite-dimensional nonlinear discrete-time dynamical systems in a neighborhood of the equilibrium state. However, it is not convenient for purposes of adaptive control using neural networks due to its nonlinear dependence on the control input. Hence, quite often, approximate methods are used for realizing the neural controllers to overcome computational complexity. In this paper, we introduce two classes of models which are approximations to the NARMA model, and which are linear in the control input. The latter fact substantially simplifies both the theoretical analysis as well as the practical implementation of the controller. Extensive simulation studies have shown that the neural controllers designed using the proposed approximate models perform very well, and in many cases even better than an approximate controller designed using the exact NARMA model. In view of their mathematical tractability as well as their success in simulation studies, a case is made in this paper that such approximate input-output models warrant a detailed study in their own right.
Theory and analysis of a large field polarization imaging system with obliquely incident light.
Lu, Xiaotian; Jin, Weiqi; Li, Li; Wang, Xia; Qiu, Su; Liu, Jing
2018-02-05
Polarization imaging technology provides information about not only the irradiance of a target but also the polarization degree and angle of polarization, which indicates extensive application potential. However, polarization imaging theory is based on paraxial optics. When a beam of obliquely incident light passes an analyser, the direction of light propagation is not perpendicular to the surface of the analyser and the applicability of the traditional paraxial optical polarization imaging theory is challenged. This paper investigates a theoretical model of a polarization imaging system with obliquely incident light and establishes a polarization imaging transmission model with a large field of obliquely incident light. In an imaging experiment with an integrating sphere light source and rotatable polarizer, the polarization imaging transmission model is verified and analysed for two cases of natural light and linearly polarized light incidence. Although the results indicate that the theoretical model is consistent with the experimental results, the theoretical model distinctly differs from the traditional paraxial approximation model. The results prove the accuracy and necessity of the theoretical model and the theoretical guiding significance for theoretical and systematic research of large field polarization imaging.
Electroosmosis in a Finite Cylindrical Pore: Simple Models of End Effects
2015-01-01
A theoretical model of electroosmosis through a circular pore of radius a that traverses a membrane of thickness h is investigated. Both the cylindrical surface of the pore and the outer surfaces of the membrane are charged. When h ≫ a, end effects are negligible, and the results of full numerical computations of electroosmosis in an infinite pore agree with theory. When h = 0, end effects dominate, and computations again agree with analysis. For intermediate values of h/a, an approximate analysis that combines these two limiting cases captures the main features of computational results when the Debye length κ–1 is small compared with the pore radius a. However, the approximate analysis fails when κ–1 ≫ a, when the charge cloud due to the charged cylindrical walls of the pore spills out of the ends of the pore, and the electroosmotic flow is reduced. When this spilling out is included in the analysis, agreement with computation is restored. PMID:25020257
NASA Astrophysics Data System (ADS)
Durlak, Piotr; Berski, Sławomir; Latajka, Zdzisław
2016-01-01
The molecular structure, conformational preferences, topological and vibrational analysis of allicin has been investigated at two different approaches. Calculations have been carried out on static (DFT and MP2) levels with an assortment of Dunning's basis sets and dynamic CPMD simulations. In this both case within the isolated molecule approximation. The results point out that at least twenty different conformers coexist on the PES as confirmed by the flexible character of this molecule. The topological analysis of ELF showed very similar nature of the Ssbnd S and Ssbnd O bonds. The infrared spectrum has been calculated, and a comparative vibrational analysis has been performed.
Acoustic invisibility cloaks of arbitrary shapes for complex background media
NASA Astrophysics Data System (ADS)
Zhu, Jian; Chen, Tianning; Liang, Qingxuan; Wang, Xiaopeng; Xiong, Jie; Jiang, Ping
2016-04-01
We report on the theoretical investigation of the acoustic cloaks working in complex background media in this paper. The constitutive parameters of arbitrary-shape cloaks are derived based on the transformation acoustic theory and coordinate transformation technique. The detailed analysis of boundaries conditions and potential applications of the cloaks are also presented in our work. To overcome the difficulty of achieving the materials with ideal parameters in nature, concentric alternating layered isotropic materials is adopted to approximate the required properties of the cloak. Theoretical design and excellent invisibility are demonstrated by numerical simulations. The inhomogeneous medium and arbitrary-shape acoustic cloaks grow closer to real application and may be a new hot spot in future.
ERIC Educational Resources Information Center
Plum, Terry; Franklin, Brinley
2015-01-01
Building on the theoretical proposals of Kevin Guthrie and others concerning the transition from print books to e-books in academic and health sciences libraries, this paper presents data collected using the MINES for Libraries® e-resource survey methodology. Approximately 6,000 e-book uses were analyzed from a sample of e-resource usage at…
NASA Astrophysics Data System (ADS)
Lee, K. David; Wiesenfeld, Eric; Gelfand, Andrew
2007-04-01
One of the greatest challenges in modern combat is maintaining a high level of timely Situational Awareness (SA). In many situations, computational complexity and accuracy considerations make the development and deployment of real-time, high-level inference tools very difficult. An innovative hybrid framework that combines Bayesian inference, in the form of Bayesian Networks, and Possibility Theory, in the form of Fuzzy Logic systems, has recently been introduced to provide a rigorous framework for high-level inference. In previous research, the theoretical basis and benefits of the hybrid approach have been developed. However, lacking is a concrete experimental comparison of the hybrid framework with traditional fusion methods, to demonstrate and quantify this benefit. The goal of this research, therefore, is to provide a statistical analysis on the comparison of the accuracy and performance of hybrid network theory, with pure Bayesian and Fuzzy systems and an inexact Bayesian system approximated using Particle Filtering. To accomplish this task, domain specific models will be developed under these different theoretical approaches and then evaluated, via Monte Carlo Simulation, in comparison to situational ground truth to measure accuracy and fidelity. Following this, a rigorous statistical analysis of the performance results will be performed, to quantify the benefit of hybrid inference to other fusion tools.
Urban, Jan; Hrouzek, Pavel; Stys, Dalibor; Martens, Harald
2013-01-01
Responsivity is a conversion qualification of a measurement device given by the functional dependence between the input and output quantities. A concentration-response-dependent calibration curve represents the most simple experiment for the measurement of responsivity in mass spectrometry. The cyanobacterial hepatotoxin microcystin-LR content in complex biological matrices of food additives was chosen as a model example of a typical problem. The calibration curves for pure microcystin and its mixtures with extracts of green alga and fish meat were reconstructed from the series of measurement. A novel approach for the quantitative estimation of ion competition in ESI is proposed in this paper. We define the correlated responsivity offset in the intensity values using the approximation of minimal correlation given by the matrix to the target mass values of the analyte. The estimation of the matrix influence enables the approximation of the position of a priori unknown responsivity and was easily evaluated using a simple algorithm. The method itself is directly derived from the basic attributes of the theory of measurements. There is sufficient agreement between the theoretical and experimental values. However, some theoretical issues are discussed to avoid misinterpretations and excessive expectations.
Hrouzek, Pavel; Štys, Dalibor; Martens, Harald
2013-01-01
Responsivity is a conversion qualification of a measurement device given by the functional dependence between the input and output quantities. A concentration-response-dependent calibration curve represents the most simple experiment for the measurement of responsivity in mass spectrometry. The cyanobacterial hepatotoxin microcystin-LR content in complex biological matrices of food additives was chosen as a model example of a typical problem. The calibration curves for pure microcystin and its mixtures with extracts of green alga and fish meat were reconstructed from the series of measurement. A novel approach for the quantitative estimation of ion competition in ESI is proposed in this paper. We define the correlated responsivity offset in the intensity values using the approximation of minimal correlation given by the matrix to the target mass values of the analyte. The estimation of the matrix influence enables the approximation of the position of a priori unknown responsivity and was easily evaluated using a simple algorithm. The method itself is directly derived from the basic attributes of the theory of measurements. There is sufficient agreement between the theoretical and experimental values. However, some theoretical issues are discussed to avoid misinterpretations and excessive expectations. PMID:23586036
13C NMR spectroscopic analysis of poly(electrolyte) cement liquids.
Watts, D C
1979-05-01
13C NMR spectroscopy has been applied to the analysis of carboxylic poly-acid cement liquids. Monomer incorporation, composition ratio, sequence statistics, and stereochemical configuration have been considered theoretically, and determined experimentally, from the spectra. Conventionally polymerized poly(acrylic acid) has an approximately random configuration, but other varieties may be synthesized. Two commercial glass-ionomer cement liquids both contain tartaric acid as a chelating additive but the composition of their poly-acids are different. Itaconic acid units, distributed randomly, constitute 21% of the repeating units in one of these polyelectrolytes.
2015-12-11
diameter) are consistent with theoretical predictions based on Taylor’s frozen- turbulence hypothesis and the geometrical - optics approximation. Short...theoretical predictions based on Taylor’s frozen- turbulence hypothesis and the geometrical - optics approximation. Short-term (less than a few seconds... turbulent , quasi-horizontal interfaces, or “sheets”. Collocated in- situ and optical field measurements conducted in the atmospheric surface layer
Pittmann, T; Steinmetz, H
2016-08-01
Biopolymers, which are made of renewable raw materials and/or biodegradable residual materials present a possible alternative to common plastic. A potential analysis, based on experimental results in laboratory scale and detailed data from German waste water treatment plants, showed that the theoretically possible production of biopolymers in Germany amounts to more than 20% of the 2015 worldwide biopolymer production. In addition a profound estimation regarding all European Union member states showed that theoretically about 115% of the actual worldwide biopolymer production could be produced on European waste water treatment plants. With an upgraded biopolymer production and a theoretically reachable biopolymer proportion of around 60% of the cell dry weight a total of 1,794,656tPHAa or approximately 236% of today's biopolymer production could be produced on waste water treatment plants in the European Union, using primary sludge as raw material only. Copyright © 2016 Elsevier Ltd. All rights reserved.
Time-dependent theoretical treatments of the dynamics of electrons and nuclei in molecular systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deumens, E.; Diz, A.; Longo, R.
1994-07-01
An overview is presented of methods for time-dependent treatments of molecules as systems of electrons and nuclei. The theoretical details of these methods are reviewed and contrasted in the light of a recently developed time-dependent method called electron-nuclear dynamics. Electron-nuclear dynamics (END) is a formulation of the complete dynamics of electrons and nuclei of a molecular system that eliminates the necessity of constructing potential-energy surfaces. Because of its general formulation, it encompasses many aspects found in other formulations and can serve as a didactic device for clarifying many of the principles and approximations relevant in time-dependent treatments of molecular systems.more » The END equations are derived from the time-dependent variational principle applied to a chosen family of efficiently parametrized approximate state vectors. A detailed analysis of the END equations is given for the case of a single-determinantal state for the electrons and a classical treatment of the nuclei. The approach leads to a simple formulation of the fully nonlinear time-dependent Hartree-Fock theory including nuclear dynamics. The nonlinear END equations with the [ital ab] [ital initio] Coulomb Hamiltonian have been implemented at this level of theory in a computer program, ENDyne, and have been shown feasible for the study of small molecular systems. Implementation of the Austin Model 1 semiempirical Hamiltonian is discussed as a route to large molecular systems. The linearized END equations at this level of theory are shown to lead to the random-phase approximation for the coupled system of electrons and nuclei. The qualitative features of the general nonlinear solution are analyzed using the results of the linearized equations as a first approximation. Some specific applications of END are presented, and the comparison with experiment and other theoretical approaches is discussed.« less
NASA Astrophysics Data System (ADS)
Maezawa, Saburo; Tsuchida, Akira; Takuma, Masao
1988-08-01
Visual observation of flow patterns in the condenser and heat transfer measurements were conducted for heat transfer rate ranges of 18-800 W using a vertical annular device with various quantities of R113 as a working fluid. As a result of visual observations, it was shown that ripples (interfacial waves) were generated on the condensate film surface when the condensate film Reynolds number exceeded approximately 20, and the condensation heat transfer was prompted. A simple theoretical analysis was presented in which the effects of interfacial waves and vapor drag were both considered. This analysis agreed very well with experimental results when the working fluid quantity was small enough so that the two-phase mixture generated by boiling the working fluid did not reach the condenser. The effects of interfacial waves and vapor drag on condensation heat transfer were also investigated theoretically.
NASA Astrophysics Data System (ADS)
Priya, B. Ganesh; Muthukumar, P.
2018-02-01
This paper deals with the trajectory controllability for a class of multi-order fractional linear systems subject to a constant delay in state vector. The solution for the coupled fractional delay differential equation is established by the Mittag-Leffler function. The necessary and sufficient condition for the trajectory controllability is formulated and proved by the generalized Gronwall's inequality. The approximate trajectory for the proposed system is obtained through the shifted Jacobi operational matrix method. The numerical simulation of the approximate solution shows the theoretical results. Finally, some remarks and comments on the existing results of constrained controllability for the fractional dynamical system are also presented.
Slender-Body Theory Based On Approximate Solution of the Transonic Flow Equation
NASA Technical Reports Server (NTRS)
Spreiter, John R.; Alksne, Alberta Y.
1959-01-01
Approximate solution of the nonlinear equations of the small disturbance theory of transonic flow are found for the pressure distribution on pointed slender bodies of revolution for flows with free-stream, Mach number 1, and for flows that are either purely subsonic or purely supersonic. These results are obtained by application of a method based on local linearization that was introduced recently in the analysis of similar problems in two-dimensional flows. The theory is developed for bodies of arbitrary shape, and specific results are given for cone-cylinders and for parabolic-arc bodies at zero angle of attack. All results are compared either with existing theoretical results or with experimental data.
Simulation of water-table aquifers using specified saturated thickness
Sheets, Rodney A.; Hill, Mary C.; Haitjema, Henk M.; Provost, Alden M.; Masterson, John P.
2014-01-01
Simulating groundwater flow in a water-table (unconfined) aquifer can be difficult because the saturated thickness available for flow depends on model-calculated hydraulic heads. It is often possible to realize substantial time savings and still obtain accurate head and flow solutions by specifying an approximate saturated thickness a priori, thus linearizing this aspect of the model. This specified-thickness approximation often relies on the use of the “confined” option in numerical models, which has led to confusion and criticism of the method. This article reviews the theoretical basis for the specified-thickness approximation, derives an error analysis for relatively ideal problems, and illustrates the utility of the approximation with a complex test problem. In the transient version of our complex test problem, the specified-thickness approximation produced maximum errors in computed drawdown of about 4% of initial aquifer saturated thickness even when maximum drawdowns were nearly 20% of initial saturated thickness. In the final steady-state version, the approximation produced maximum errors in computed drawdown of about 20% of initial aquifer saturated thickness (mean errors of about 5%) when maximum drawdowns were about 35% of initial saturated thickness. In early phases of model development, such as during initial model calibration efforts, the specified-thickness approximation can be a very effective tool to facilitate convergence. The reduced execution time and increased stability obtained through the approximation can be especially useful when many model runs are required, such as during inverse model calibration, sensitivity and uncertainty analyses, multimodel analysis, and development of optimal resource management scenarios.
Probability Density Functions of Observed Rainfall in Montana
NASA Technical Reports Server (NTRS)
Larsen, Scott D.; Johnson, L. Ronald; Smith, Paul L.
1995-01-01
The question of whether a rain rate probability density function (PDF) can vary uniformly between precipitation events is examined. Image analysis on large samples of radar echoes is possible because of advances in technology. The data provided by such an analysis easily allow development of radar reflectivity factors (and by extension rain rate) distribution. Finding a PDF becomes a matter of finding a function that describes the curve approximating the resulting distributions. Ideally, one PDF would exist for all cases; or many PDF's that have the same functional form with only systematic variations in parameters (such as size or shape) exist. Satisfying either of theses cases will, validate the theoretical basis of the Area Time Integral (ATI). Using the method of moments and Elderton's curve selection criteria, the Pearson Type 1 equation was identified as a potential fit for 89 percent of the observed distributions. Further analysis indicates that the Type 1 curve does approximate the shape of the distributions but quantitatively does not produce a great fit. Using the method of moments and Elderton's curve selection criteria, the Pearson Type 1 equation was identified as a potential fit for 89% of the observed distributions. Further analysis indicates that the Type 1 curve does approximate the shape of the distributions but quantitatively does not produce a great fit.
Calculation of the energy loss for an electron passing near giant fullerenes
NASA Astrophysics Data System (ADS)
Henrard, L.; Lambin, Ph
1996-11-01
We present a theoretical analysis of the electron energy-loss spectra of isolated giant fullerenes. We use a macroscopic dielectric description of spherical onion-like fullerenes and a discrete dipole approximation (DDA) framework for tubular fullerenes. In the DDA model, an anisotropic dynamical polarizability is assigned to each carbon site. We stress the fundamental importance of the hollow character of giant fullerenes in the electron energy-loss resonances.
On Equivalence between Critical Probabilities of Dynamic Gossip Protocol and Static Site Percolation
NASA Astrophysics Data System (ADS)
Ishikawa, Tetsuya; Hayakawa, Tomohisa
The relationship between the critical probability of gossip protocol on the square lattice and the critical probability of site percolation on the square lattice is discussed. Specifically, these two critical probabilities are analytically shown to be equal to each other. Furthermore, we present a way of evaluating the critical probability of site percolation by approximating the saturation of gossip protocol. Finally, we provide numerical results which support the theoretical analysis.
NASA Astrophysics Data System (ADS)
García, Gregorio; Navarro, Amparo; Granadino-Roldán, José Manuel; Garzón, Andrés; Ruiz, Tomás Peña; Fernández-Liencres, Maria Paz; Melguizo, Manuel; Peñas, Antonio; Pongor, Gábor; Eőri, János; Fernández-Gómez, Manuel
2010-08-01
The molecular structure of 2-hydroxy-styrene has been investigated at DFT (B3LYP, mPW1PW91) and MP2 levels with an assortment of Pople's and Dunning's basis sets within the isolated molecule approximation. The presence of intramolecular hydrogen bonds has been theoretically characterized through a topological analysis of the electron density according to the Atom-In-Molecules, AIM, theory. The conformational equilibrium has been pursued by means of an analysis of the hydroxyl-phenyl and vinyl-phenyl internal rotation barriers. This analysis also allowed getting an insight into the effects governing the torsion barriers and the preferred conformations. A twofold scheme has been used for this goal, i.e. the total electronic energy changes and the natural bonding orbital, NBO, schemes. The vibrational spectrum was recorded and then calculated at DFT-B3LYP/6-31G∗ and cc-pVTZ levels. Two scaling methods, SQMFF and linear scaling, have been applied on the theoretical spectrum in order to analyse the experimental one. The results point out that at least three different conformers coexist at room temperature.
A pertinent approach to solve nonlinear fuzzy integro-differential equations.
Narayanamoorthy, S; Sathiyapriya, S P
2016-01-01
Fuzzy integro-differential equations is one of the important parts of fuzzy analysis theory that holds theoretical as well as applicable values in analytical dynamics and so an appropriate computational algorithm to solve them is in essence. In this article, we use parametric forms of fuzzy numbers and suggest an applicable approach for solving nonlinear fuzzy integro-differential equations using homotopy perturbation method. A clear and detailed description of the proposed method is provided. Our main objective is to illustrate that the construction of appropriate convex homotopy in a proper way leads to highly accurate solutions with less computational work. The efficiency of the approximation technique is expressed via stability and convergence analysis so as to guarantee the efficiency and performance of the methodology. Numerical examples are demonstrated to verify the convergence and it reveals the validity of the presented numerical technique. Numerical results are tabulated and examined by comparing the obtained approximate solutions with the known exact solutions. Graphical representations of the exact and acquired approximate fuzzy solutions clarify the accuracy of the approach.
Field-theoretical approach to a dense polymer with an ideal binary mixture of clustering centers.
Fantoni, Riccardo; Müller-Nedebock, Kristian K
2011-07-01
We propose a field-theoretical approach to a polymer system immersed in an ideal mixture of clustering centers. The system contains several species of these clustering centers with different functionality, each of which connects a fixed number segments of the chain to each other. The field theory is solved using the saddle point approximation and evaluated for dense polymer melts using the random phase approximation. We find a short-ranged effective intersegment interaction with strength dependent on the average segment density and discuss the structure factor within this approximation. We also determine the fractions of linkers of the different functionalities.
Stress Analysis of Columns and Beam Columns by the Photoelastic Method
NASA Technical Reports Server (NTRS)
Ruffner, B F
1946-01-01
Principles of similarity and other factors in the design of models for photoelastic testing are discussed. Some approximate theoretical equations, useful in the analysis of results obtained from photoelastic tests are derived. Examples of the use of photoelastic techniques and the analysis of results as applied to uniform and tapered beam columns, circular rings, and statically indeterminate frames, are given. It is concluded that this method is an effective tool for the analysis of structures in which column action is present, particularly in tapered beam columns, and in statically indeterminate structures in which the distribution of loads in the structures is influenced by bending moments due to axial loads in one or more members.
NASA Technical Reports Server (NTRS)
Foore, Larry; Ida, Nathan
2007-01-01
This study introduces the use of a modified Longley-Rice irregular terrain model and digital elevation data representative of an analogue lunar site for the prediction of RF path loss over the lunar surface. The results are validated by theoretical models and past Apollo studies. The model is used to approximate the path loss deviation from theoretical attenuation over a reflecting sphere. Analysis of the simulation results provides statistics on the fade depths for frequencies of interest, and correspondingly a method for determining the maximum range of communications for various coverage confidence intervals. Communication system engineers and mission planners are provided a link margin and path loss policy for communication frequencies of interest.
NASA Astrophysics Data System (ADS)
Long, Yin; Zhang, Xiao-Jun; Wang, Kui
2018-05-01
In this paper, convergence and approximate calculation of average degree under different network sizes for decreasing random birth-and-death networks (RBDNs) are studied. First, we find and demonstrate that the average degree is convergent in the form of power law. Meanwhile, we discover that the ratios of the back items to front items of convergent reminder are independent of network link number for large network size, and we theoretically prove that the limit of the ratio is a constant. Moreover, since it is difficult to calculate the analytical solution of the average degree for large network sizes, we adopt numerical method to obtain approximate expression of the average degree to approximate its analytical solution. Finally, simulations are presented to verify our theoretical results.
A Lyapunov and Sacker–Sell spectral stability theory for one-step methods
Steyer, Andrew J.; Van Vleck, Erik S.
2018-04-13
Approximation theory for Lyapunov and Sacker–Sell spectra based upon QR techniques is used to analyze the stability of a one-step method solving a time-dependent (nonautonomous) linear ordinary differential equation (ODE) initial value problem in terms of the local error. Integral separation is used to characterize the conditioning of stability spectra calculations. The stability of the numerical solution by a one-step method of a nonautonomous linear ODE using real-valued, scalar, nonautonomous linear test equations is justified. This analysis is used to approximate exponential growth/decay rates on finite and infinite time intervals and establish global error bounds for one-step methods approximating uniformly,more » exponentially stable trajectories of nonautonomous and nonlinear ODEs. A time-dependent stiffness indicator and a one-step method that switches between explicit and implicit Runge–Kutta methods based upon time-dependent stiffness are developed based upon the theoretical results.« less
The arbitrary order mixed mimetic finite difference method for the diffusion equation
Gyrya, Vitaliy; Lipnikov, Konstantin; Manzini, Gianmarco
2016-05-01
Here, we propose an arbitrary-order accurate mimetic finite difference (MFD) method for the approximation of diffusion problems in mixed form on unstructured polygonal and polyhedral meshes. As usual in the mimetic numerical technology, the method satisfies local consistency and stability conditions, which determines the accuracy and the well-posedness of the resulting approximation. The method also requires the definition of a high-order discrete divergence operator that is the discrete analog of the divergence operator and is acting on the degrees of freedom. The new family of mimetic methods is proved theoretically to be convergent and optimal error estimates for flux andmore » scalar variable are derived from the convergence analysis. A numerical experiment confirms the high-order accuracy of the method in solving diffusion problems with variable diffusion tensor. It is worth mentioning that the approximation of the scalar variable presents a superconvergence effect.« less
A Review of Spectral Methods for Variable Amplitude Fatigue Prediction and New Results
NASA Technical Reports Server (NTRS)
Larsen, Curtis E.; Irvine, Tom
2013-01-01
A comprehensive review of the available methods for estimating fatigue damage from variable amplitude loading is presented. The dependence of fatigue damage accumulation on power spectral density (psd) is investigated for random processes relevant to real structures such as in offshore or aerospace applications. Beginning with the Rayleigh (or narrow band) approximation, attempts at improved approximations or corrections to the Rayleigh approximation are examined by comparison to rainflow analysis of time histories simulated from psd functions representative of simple theoretical and real world applications. Spectral methods investigated include corrections by Wirsching and Light, Ortiz and Chen, the Dirlik formula, and the Single-Moment method, among other more recent proposed methods. Good agreement is obtained between the spectral methods and the time-domain rainflow identification for most cases, with some limitations. Guidelines are given for using the several spectral methods to increase confidence in the damage estimate.
A Lyapunov and Sacker–Sell spectral stability theory for one-step methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steyer, Andrew J.; Van Vleck, Erik S.
Approximation theory for Lyapunov and Sacker–Sell spectra based upon QR techniques is used to analyze the stability of a one-step method solving a time-dependent (nonautonomous) linear ordinary differential equation (ODE) initial value problem in terms of the local error. Integral separation is used to characterize the conditioning of stability spectra calculations. The stability of the numerical solution by a one-step method of a nonautonomous linear ODE using real-valued, scalar, nonautonomous linear test equations is justified. This analysis is used to approximate exponential growth/decay rates on finite and infinite time intervals and establish global error bounds for one-step methods approximating uniformly,more » exponentially stable trajectories of nonautonomous and nonlinear ODEs. A time-dependent stiffness indicator and a one-step method that switches between explicit and implicit Runge–Kutta methods based upon time-dependent stiffness are developed based upon the theoretical results.« less
Computational Approaches to the Chemical Equilibrium Constant in Protein-ligand Binding.
Montalvo-Acosta, Joel José; Cecchini, Marco
2016-12-01
The physiological role played by protein-ligand recognition has motivated the development of several computational approaches to the ligand binding affinity. Some of them, termed rigorous, have a strong theoretical foundation but involve too much computation to be generally useful. Some others alleviate the computational burden by introducing strong approximations and/or empirical calibrations, which also limit their general use. Most importantly, there is no straightforward correlation between the predictive power and the level of approximation introduced. Here, we present a general framework for the quantitative interpretation of protein-ligand binding based on statistical mechanics. Within this framework, we re-derive self-consistently the fundamental equations of some popular approaches to the binding constant and pinpoint the inherent approximations. Our analysis represents a first step towards the development of variants with optimum accuracy/efficiency ratio for each stage of the drug discovery pipeline. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Typical performance of approximation algorithms for NP-hard problems
NASA Astrophysics Data System (ADS)
Takabe, Satoshi; Hukushima, Koji
2016-11-01
Typical performance of approximation algorithms is studied for randomized minimum vertex cover problems. A wide class of random graph ensembles characterized by an arbitrary degree distribution is discussed with the presentation of a theoretical framework. Herein, three approximation algorithms are examined: linear-programming relaxation, loopy-belief propagation, and the leaf-removal algorithm. The former two algorithms are analyzed using a statistical-mechanical technique, whereas the average-case analysis of the last one is conducted using the generating function method. These algorithms have a threshold in the typical performance with increasing average degree of the random graph, below which they find true optimal solutions with high probability. Our study reveals that there exist only three cases, determined by the order of the typical performance thresholds. In addition, we provide some conditions for classification of the graph ensembles and demonstrate explicitly some examples for the difference in thresholds.
On the spreading and instability of gravity current fronts of arbitrary shape
NASA Astrophysics Data System (ADS)
Zgheib, N.; Bonometti, T.; Balachandar, S.
2012-11-01
Experiments, simulations and theoretical analysis were carried out to study the influence of geometry on the spreading of gravity currents. The horizontal spreading of three different intial planforms of initial release were investigated: an extended ellipse, a cross, and a circle. The experiments used a pulley system for a swift nearly instantaneous release. The case of the axisymmetric cylinder compared favorably with earlier simulations. We ran experiments for multiple aspect ratios for all three configurations. Perhaps the most intriguing of the three cases is the ``ellipse,'' which within a short period of release flipped the major and minor axes. This behavior cannot be captured by current theoretical methods (such as the Box Model). These cases have also been investigated using shallow water and direct numerical simulations. Also, in this study, we investigate the possibility of a Rayleigh-Taylor (RT) instability of the radially moving, but decelerating front. We present a simple theoretical framework based on the inviscid Shallow Water Equations. The theoretical results are supplemented and compared to highly resolved three-dimensional simulations with the Boussinesq approximation. Chateaubriand Fellowship - NSF PIRE grant OISE-0968313.
Supersonic second order analysis and optimization program user's manual
NASA Technical Reports Server (NTRS)
Clever, W. C.
1984-01-01
Approximate nonlinear inviscid theoretical techniques for predicting aerodynamic characteristics and surface pressures for relatively slender vehicles at supersonic and moderate hypersonic speeds were developed. Emphasis was placed on approaches that would be responsive to conceptual configuration design level of effort. Second order small disturbance theory was utilized to meet this objective. Numerical codes were developed for analysis and design of relatively general three dimensional geometries. Results from the computations indicate good agreement with experimental results for a variety of wing, body, and wing-body shapes. Case computational time of one minute on a CDC 176 are typical for practical aircraft arrangement.
NASA Astrophysics Data System (ADS)
Greig, Bradley; Mesinger, Andrei
2018-07-01
We extend 21CMMC, a Monte Carlo Markov Chain sampler of 3D reionization simulations, to perform parameter estimation directly on 3D light-cones of the cosmic 21 cm signal. This brings theoretical analysis closer to the tomographic 21 cm observations achievable with next generation interferometers like the Hydrogen Epoch of Reionization Array and the Square Kilometre Array. Parameter recovery can therefore account for modes that evolve with redshift/frequency. Additionally, simulated data can be more easily corrupted to resemble real data. Using the light-cone version of 21CMMC, we quantify the biases in the recovered astrophysical parameters if we use the 21 cm power spectrum from the co-evolution approximation to fit a 3D light-cone mock observation. While ignoring the light-cone effect under most assumptions will not significantly bias the recovered astrophysical parameters, it can lead to an underestimation of the associated uncertainty. However, significant biases (˜few - 10σ) can occur if the 21 cm signal evolves rapidly (i.e. the epochs of reionization and heating overlap significantly), and (i) foreground removal is very efficient, allowing large physical scales (k ≲ 0.1 Mpc-1) to be used in the analysis or (ii) theoretical modelling is accurate to within ˜10 per cent in the power spectrum amplitude.
Approximate kernel competitive learning.
Wu, Jian-Sheng; Zheng, Wei-Shi; Lai, Jian-Huang
2015-03-01
Kernel competitive learning has been successfully used to achieve robust clustering. However, kernel competitive learning (KCL) is not scalable for large scale data processing, because (1) it has to calculate and store the full kernel matrix that is too large to be calculated and kept in the memory and (2) it cannot be computed in parallel. In this paper we develop a framework of approximate kernel competitive learning for processing large scale dataset. The proposed framework consists of two parts. First, it derives an approximate kernel competitive learning (AKCL), which learns kernel competitive learning in a subspace via sampling. We provide solid theoretical analysis on why the proposed approximation modelling would work for kernel competitive learning, and furthermore, we show that the computational complexity of AKCL is largely reduced. Second, we propose a pseudo-parallelled approximate kernel competitive learning (PAKCL) based on a set-based kernel competitive learning strategy, which overcomes the obstacle of using parallel programming in kernel competitive learning and significantly accelerates the approximate kernel competitive learning for large scale clustering. The empirical evaluation on publicly available datasets shows that the proposed AKCL and PAKCL can perform comparably as KCL, with a large reduction on computational cost. Also, the proposed methods achieve more effective clustering performance in terms of clustering precision against related approximate clustering approaches. Copyright © 2014 Elsevier Ltd. All rights reserved.
Grosse Frie, Kirstin; Janssen, Christian
2009-01-01
Based on the theoretical and empirical approach of Pierre Bourdieu, a multivariate non-linear method is introduced as an alternative way to analyse the complex relationships between social determinants and health. The analysis is based on face-to-face interviews with 695 randomly selected respondents aged 30 to 59. Variables regarding socio-economic status, life circumstances, lifestyles, health-related behaviour and health were chosen for the analysis. In order to determine whether the respondents can be differentiated and described based on these variables, a non-linear canonical correlation analysis (OVERALS) was performed. The results can be described on three dimensions; Eigenvalues add up to the fit of 1.444, which can be interpreted as approximately 50 % of explained variance. The three-dimensional space illustrates correspondences between variables and provides a framework for interpretation based on latent dimensions, which can be described by age, education, income and gender. Using non-linear canonical correlation analysis, health characteristics can be analysed in conjunction with socio-economic conditions and lifestyles. Based on Bourdieus theoretical approach, the complex correlations between these variables can be more substantially interpreted and presented.
A theoretical formulation of wave-vortex interactions
NASA Technical Reports Server (NTRS)
Wu, J. Z.; Wu, J. M.
1989-01-01
A unified theoretical formulation for wave-vortex interaction, designated the '(omega, Pi) framework,' is presented. Based on the orthogonal decomposition of fluid dynamic interactions, the formulation can be used to study a variety of problems, including the interaction of a longitudinal (acoustic) wave and/or transverse (vortical) wave with a main vortex flow. Moreover, the formulation permits a unified treatment of wave-vortex interaction at various approximate levels, where the normal 'piston' process and tangential 'rubbing' process can be approximated dfferently.
Wang, Ya-Xuan; Gao, Ying-Lian; Liu, Jin-Xing; Kong, Xiang-Zhen; Li, Hai-Jun
2017-09-01
Identifying differentially expressed genes from the thousands of genes is a challenging task. Robust principal component analysis (RPCA) is an efficient method in the identification of differentially expressed genes. RPCA method uses nuclear norm to approximate the rank function. However, theoretical studies showed that the nuclear norm minimizes all singular values, so it may not be the best solution to approximate the rank function. The truncated nuclear norm is defined as the sum of some smaller singular values, which may achieve a better approximation of the rank function than nuclear norm. In this paper, a novel method is proposed by replacing nuclear norm of RPCA with the truncated nuclear norm, which is named robust principal component analysis regularized by truncated nuclear norm (TRPCA). The method decomposes the observation matrix of genomic data into a low-rank matrix and a sparse matrix. Because the significant genes can be considered as sparse signals, the differentially expressed genes are viewed as the sparse perturbation signals. Thus, the differentially expressed genes can be identified according to the sparse matrix. The experimental results on The Cancer Genome Atlas data illustrate that the TRPCA method outperforms other state-of-the-art methods in the identification of differentially expressed genes.
Wang, Jinfeng; Zhao, Meng; Zhang, Min; Liu, Yang; Li, Hong
2014-01-01
We discuss and analyze an H 1-Galerkin mixed finite element (H 1-GMFE) method to look for the numerical solution of time fractional telegraph equation. We introduce an auxiliary variable to reduce the original equation into lower-order coupled equations and then formulate an H 1-GMFE scheme with two important variables. We discretize the Caputo time fractional derivatives using the finite difference methods and approximate the spatial direction by applying the H 1-GMFE method. Based on the discussion on the theoretical error analysis in L 2-norm for the scalar unknown and its gradient in one dimensional case, we obtain the optimal order of convergence in space-time direction. Further, we also derive the optimal error results for the scalar unknown in H 1-norm. Moreover, we derive and analyze the stability of H 1-GMFE scheme and give the results of a priori error estimates in two- or three-dimensional cases. In order to verify our theoretical analysis, we give some results of numerical calculation by using the Matlab procedure. PMID:25184148
NASA Astrophysics Data System (ADS)
Boschi, Lapo
2006-10-01
I invert a large set of teleseismic phase-anomaly observations, to derive tomographic maps of fundamental-mode surface wave phase velocity, first via ray theory, then accounting for finite-frequency effects through scattering theory, in the far-field approximation and neglecting mode coupling. I make use of a multiple-resolution pixel parametrization which, in the assumption of sufficient data coverage, should be adequate to represent strongly oscillatory Fréchet kernels. The parametrization is finer over North America, a region particularly well covered by the data. For each surface-wave mode where phase-anomaly observations are available, I derive a wide spectrum of plausible, differently damped solutions; I then conduct a trade-off analysis, and select as optimal solution model the one associated with the point of maximum curvature on the trade-off curve. I repeat this exercise in both theoretical frameworks, to find that selected scattering and ray theoretical phase-velocity maps are coincident in pattern, and differ only slightly in amplitude.
Theoretical Prediction of Pressure Distributions on Nonlifting Airfoils at High Subsonic Speeds
NASA Technical Reports Server (NTRS)
Spreiter, John R; Alksne, Alberta
1955-01-01
Theoretical pressure distributions on nonlifting circular-arc airfoils in two-dimensional flows with high subsonic free-stream velocity are found by determining approximate solutions, through an iteration process, of an integral equation for transonic flow proposed by Oswatitsch. The integral equation stems directly from the small-disturbance theory for transonic flow. This method of analysis possesses the advantage of remaining in the physical, rather than the hodograph, variable and can be applied in airfoils having curved surfaces. After discussion of the derivation of the integral equation and qualitative aspects of the solution, results of calculations carried out for circular-arc airfoils in flows with free-stream Mach numbers up to unity are described. These results indicate most of the principal phenomena observed in experimental studies.
Duality, Gauge Symmetries, Renormalization Groups and the BKT Transition
NASA Astrophysics Data System (ADS)
José, Jorge V.
2017-03-01
In this chapter, I will briefly review, from my own perspective, the situation within theoretical physics at the beginning of the 1970s, and the advances that played an important role in providing a solid theoretical and experimental foundation for the Berezinskii-Kosterlitz-Thouless theory (BKT). Over this period, it became clear that the Abelian gauge symmetry of the 2D-XY model had to be preserved to get the right phase structure of the model. In previous analyses, this symmetry was broken when using low order calculational approximations. Duality transformations at that time for two-dimensional models with compact gauge symmetries were introduced by José, Kadanoff, Nelson and Kirkpatrick (JKKN). Their goal was to analyze the phase structure and excitations of XY and related models, including symmetry breaking fields which are experimentally important. In a separate context, Migdal had earlier developed an approximate Renormalization Group (RG) algorithm to implement Wilson’s RG for lattice gauge theories. Although Migdal’s RG approach, later extended by Kadanoff, did not produce a true phase transition for the XY model, it almost did asymptotically in terms of a non-perturbative expansion in the coupling constant with an essential singularity. Using these advances, including work done on instantons (vortices), JKKN analyzed the behavior of the spin-spin correlation functions of the 2D XY-model in terms of an expansion in temperature and vortex-pair fugacity. Their analysis led to a perturbative derivation of RG equations for the XY model which are the same as those first derived by Kosterlitz for the two-dimensional Coulomb gas. JKKN’s results gave a theoretical formulation foundation and justification for BKT’s sound physical assumptions and for the validity of their calculational approximations that were, in principle, strictly valid only at very low temperatures, away from the critical TBKT temperature. The theoretical predictions were soon tested successfully against experimental results on superfluid helium films. The success of the BKT theory also gave one of the first quantitative proofs of the validity of the RG theory.
Duality, Gauge Symmetries, Renormalization Groups and the BKT Transition
NASA Astrophysics Data System (ADS)
José, Jorge V.
2013-06-01
In this chapter, I will briefly review, from my own perspective, the situation within theoretical physics at the beginning of the 1970s, and the advances that played an important role in providing a solid theoretical and experimental foundation for the Berezinskii-Kosterlitz-Thouless theory (BKT). Over this period, it became clear that the Abelian gauge symmetry of the 2D-XY model had to be preserved to get the right phase structure of the model. In previous analyses, this symmetry was broken when using low order calculational approximations. Duality transformations at that time for two-dimensional models with compact gauge symmetries were introduced by José, Kadanoff, Nelson and Kirkpatrick (JKKN). Their goal was to analyze the phase structure and excitations of XY and related models, including symmetry breaking fields which are experimentally important. In a separate context, Migdal had earlier developed an approximate Renormalization Group (RG) algorithm to implement Wilson's RG for lattice gauge theories. Although Migdal's RG approach, later extended by Kadanoff, did not produce a true phase transition for the XY model, it almost did asymptotically in terms of a non-perturbative expansion in the coupling constant with an essential singularity. Using these advances, including work done on instantons (vortices), JKKN analyzed the behavior of the spin-spin correlation functions of the 2D XY-model in terms of an expansion in temperature and vortex-pair fugacity. Their analysis led to a perturbative derivation of RG equations for the XY model which are the same as those first derived by Kosterlitz for the two-dimensional Coulomb gas. JKKN's results gave a theoretical formulation foundation and justification for BKT's sound physical assumptions and for the validity of their calculational approximations that were, in principle, strictly valid only at very low temperatures, away from the critical TBKT temperature. The theoretical predictions were soon tested successfully against experimental results on superfluid helium films. The success of the BKT theory also gave one of the first quantitative proofs of the validity of the RG theory...
Technology development for phosphoric acid fuel cell powerplant, phase 2
NASA Technical Reports Server (NTRS)
Christner, L.
1979-01-01
A technique for producing an acid inventory control member by spraying FEP onto a partially screened carbon paper backing is discussed. Theoretical analysis of the acid management indicates that the vapor composition of 103% H3PO4 is approximately 1.0 ppm P4O10. An SEM evaluation of corrosion resistance of phenolic resins and graphite/phenolic resin composites in H3PO4 at 185 C shows specific surface etching. Carbonization of graphite/phenolic bipolar plates is achieved without blistering.
Spectral Structure Of Phase-Induced Intensity Noise In Recirculating Delay Lines
NASA Astrophysics Data System (ADS)
Tur, M.; Moslehi, B.; Bowers, J. E.; Newton, S. A.; Jackson, K. P.; Goodman, J. W.; Cutler, C. C.; Shaw, H. J.
1983-09-01
The dynamic range of fiber optic signal processors driven by relatively incoherent multimode semiconductor lasers is shown to be severely limited by laser phase-induced noise. It is experimentally demonstrated that while the noise power spectrum of differential length fiber filters is approximately flat, processors with recirculating loops exhibit noise with a periodically structured power spectrum with notches at zero frequency as well as at all other multiples of 1/(loop delay). The experimental results are aug-mented by a theoretical analysis.
Error analysis of finite element method for Poisson–Nernst–Planck equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yuzhou; Sun, Pengtao; Zheng, Bin
A priori error estimates of finite element method for time-dependent Poisson-Nernst-Planck equations are studied in this work. We obtain the optimal error estimates in L∞(H1) and L2(H1) norms, and suboptimal error estimates in L∞(L2) norm, with linear element, and optimal error estimates in L∞(L2) norm with quadratic or higher-order element, for both semi- and fully discrete finite element approximations. Numerical experiments are also given to validate the theoretical results.
NASA Technical Reports Server (NTRS)
Chang, Ching L.; Jiang, Bo-Nan
1990-01-01
A theoretical proof of the optimal rate of convergence for the least-squares method is developed for the Stokes problem based on the velocity-pressure-vorticity formula. The 2D Stokes problem is analyzed to define the product space and its inner product, and the a priori estimates are derived to give the finite-element approximation. The least-squares method is found to converge at the optimal rate for equal-order interpolation.
Towards syntactic characterizations of approximation schemes via predicate and graph decompositions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunt, H.B. III; Stearns, R.E.; Jacob, R.
1998-12-01
The authors present a simple extensible theoretical framework for devising polynomial time approximation schemes for problems represented using natural syntactic (algebraic) specifications endowed with natural graph theoretic restrictions on input instances. Direct application of the technique yields polynomial time approximation schemes for all the problems studied in [LT80, NC88, KM96, Ba83, DTS93, HM+94a, HM+94] as well as the first known approximation schemes for a number of additional combinatorial problems. One notable aspect of the work is that it provides insights into the structure of the syntactic specifications and the corresponding algorithms considered in [KM96, HM+94]. The understanding allows them tomore » extend the class of syntactic specifications for which generic approximation schemes can be developed. The results can be shown to be tight in many cases, i.e. natural extensions of the specifications can be shown to yield non-approximable problems. The results provide a non-trivial characterization of a class of problems having a PTAS and extend the earlier work on this topic by [KM96, HM+94].« less
One- and Two-Equation Models to Simulate Ion Transport in Charged Porous Electrodes
Gabitto, Jorge; Tsouris, Costas
2018-01-19
Energy storage in porous capacitor materials, capacitive deionization (CDI) for water desalination, capacitive energy generation, geophysical applications, and removal of heavy ions from wastewater streams are some examples of processes where understanding of ionic transport processes in charged porous media is very important. In this work, one- and two-equation models are derived to simulate ionic transport processes in heterogeneous porous media comprising two different pore sizes. It is based on a theory for capacitive charging by ideally polarizable porous electrodes without Faradaic reactions or specific adsorption of ions. A two-step volume averaging technique is used to derive the averaged transportmore » equations for multi-ionic systems without any further assumptions, such as thin electrical double layers or Donnan equilibrium. A comparison between both models is presented. The effective transport parameters for isotropic porous media are calculated by solving the corresponding closure problems. An approximate analytical procedure is proposed to solve the closure problems. Numerical and theoretical calculations show that the approximate analytical procedure yields adequate solutions. Lastly, a theoretical analysis shows that the value of interphase pseudo-transport coefficients determines which model to use.« less
Performance analysis of optimal power allocation in wireless cooperative communication systems
NASA Astrophysics Data System (ADS)
Babikir Adam, Edriss E.; Samb, Doudou; Yu, Li
2013-03-01
Cooperative communication has been recently proposed in wireless communication systems for exploring the inherent spatial diversity in relay channels.The Amplify-and-Forward (AF) cooperation protocols with multiple relays have not been sufficiently investigated even if it has a low complexity in term of implementation. We consider in this work a cooperative diversity system in which a source transmits some information to a destination with the help of multiple relay nodes with AF protocols and investigate the optimality of allocating powers both at the source and the relays system by optimizing the symbol error rate (SER) performance in an efficient way. Firstly we derive a closedform SER formulation for MPSK signal using the concept of moment generating function and some statistical approximations in high signal to noise ratio (SNR) for the system under studied. We then find a tight corresponding lower bound which converges to the same limit as the theoretical upper bound and develop an optimal power allocation (OPA) technique with mean channel gains to minimize the SER. Simulation results show that our scheme outperforms the equal power allocation (EPA) scheme and is tight to the theoretical approximation based on the SER upper bound in high SNR for different number of relays.
One- and Two-Equation Models to Simulate Ion Transport in Charged Porous Electrodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gabitto, Jorge; Tsouris, Costas
Energy storage in porous capacitor materials, capacitive deionization (CDI) for water desalination, capacitive energy generation, geophysical applications, and removal of heavy ions from wastewater streams are some examples of processes where understanding of ionic transport processes in charged porous media is very important. In this work, one- and two-equation models are derived to simulate ionic transport processes in heterogeneous porous media comprising two different pore sizes. It is based on a theory for capacitive charging by ideally polarizable porous electrodes without Faradaic reactions or specific adsorption of ions. A two-step volume averaging technique is used to derive the averaged transportmore » equations for multi-ionic systems without any further assumptions, such as thin electrical double layers or Donnan equilibrium. A comparison between both models is presented. The effective transport parameters for isotropic porous media are calculated by solving the corresponding closure problems. An approximate analytical procedure is proposed to solve the closure problems. Numerical and theoretical calculations show that the approximate analytical procedure yields adequate solutions. Lastly, a theoretical analysis shows that the value of interphase pseudo-transport coefficients determines which model to use.« less
The bead on a rotating hoop revisited: an unexpected resonance
NASA Astrophysics Data System (ADS)
Raviola, Lisandro A.; Véliz, Maximiliano E.; Salomone, Horacio D.; Olivieri, Néstor A.; Rodríguez, Eduardo E.
2017-01-01
The bead on a rotating hoop is a typical problem in mechanics, frequently posed to junior science and engineering students in basic physics courses. Although this system has a rich dynamics, it is usually not analysed beyond the point particle approximation in undergraduate textbooks, nor empirically investigated. Advanced textbooks show the existence of bifurcations owing to the system's nonlinear nature, and some papers demonstrate, from a theoretical standpoint, its points of contact with phase transition phenomena. However, scarce experimental research has been conducted to better understand its behaviour. We show in this paper that a minor modification to the problem leads to appealing consequences that can be studied both theoretically and empirically with the basic conceptual tools and experimental skills available to junior students. In particular, we go beyond the point particle approximation by treating the bead as a rigid spherical body, and explore the effect of a slightly non-vertical hoop's rotation axis that gives rise to a resonant behaviour not considered in previous works. This study can be accomplished by means of digital video and open source software. The experience can motivate an engaging laboratory project by integrating standard curriculum topics, data analysis and experimental exploration.
NASA Astrophysics Data System (ADS)
Moser, Dorothee; Poelchau, Michael H.; Stark, Florian; Grosse, Christian
2013-01-01
Within the framework of the Multidisciplinary Experimental and Modeling Impact Research Network (MEMIN) research group, the damage zones underneath two experimentally produced impact craters in sandstone targets were investigated using several nondestructive testing (NDT) methods. The 20 × 20 × 20 cm sandstones were impacted by steel projectiles with a radius of 1.25 mm at approximately 5 km s-1, resulting in craters with approximately 6 cm diameter and approximately 1 cm depth. Ultrasound (US) tomography and vibrational analysis were applied before and after the impact experiments to characterize the damage zone, and micro-computer tomography (μ-CT) measurements were performed to visualize subsurface fractures. The newly obtained experimental data can help to quantify the extent of the damage zone, which extends to about 8 cm depth in the target. The impacted sandstone shows a local p-wave reduction of 18% below the crater floor, and a general reduction in elastic moduli by between approximately 9 and approximately 18%, depending on the type of elastic modulus. The results contribute to a better empirical and theoretical understanding of hypervelocity events and simulations of cratering processes.
Radiative cooling in shock-heated hydrogen-helium plasmas. [for planetary entry probe heat shields
NASA Technical Reports Server (NTRS)
Poon, P. T. Y.; Stickford, G. H., Jr.
1978-01-01
Axial and off-axis radiative cooling of cylindrical shock-heated hydrogen-helium plasmas is investigated theoretically and experimentally. The coupled fluid dynamic-radiative transfer equations are solved by a combination of approximation techniques aimed at simplifying the computation of the flux divergence term, namely, the quasi-isothermal approximation and the exponential approximation developed for the solid angle integration. The accuracy of the approximation schemes has been assessed and found acceptable for applying the methods to the rapid computation of the radiatively coupled flow problem. Radiative cooling experiments were conducted in a 6-inch annular arc accelerator shock tube (ANAA) for an initial pressure of 1 torr and shock speeds from 35 to 45 Km/sec. The results indicate that the lateral cooling is small compared with the axial cooling, and that better agreement is achieved between the data and the theoretical results by inclusion of the lateral temperature gradient.
Two Temperature Modeling and Experimental Measurements of Laser Sustained Hydrogen Plasmas
1993-05-01
4 1.3 Theoretical Background .................................................................. 7 1.4...typically produce low specific impulses with an upper limit of approximately 450 seconds. The theoretical chamber temperature in such a system can be as...systems are theoretically capable of producing moderate thrusts (> 1 kN) with specific impulses in excess of 1000 seconds for 10 MW input power. This
NASA Technical Reports Server (NTRS)
Banks, H. T.; Kunisch, K.
1982-01-01
Approximation results from linear semigroup theory are used to develop a general framework for convergence of approximation schemes in parameter estimation and optimal control problems for nonlinear partial differential equations. These ideas are used to establish theoretical convergence results for parameter identification using modal (eigenfunction) approximation techniques. Results from numerical investigations of these schemes for both hyperbolic and parabolic systems are given.
NASA Technical Reports Server (NTRS)
Bartenwerfer, M.
1982-01-01
When measuring velocities in turbulent gas flow, approximation signal analysis with hot wire anemometers having one and two wire probes are used. A numeric test of standard analyses shows the resulting systemmatic error increases quickly with increasing turbulent intensity. Since it also depends on the turbulence structure, it cannot be corrected. The use of such probes is thus restricted to low turbulence. By means of three wire probes (in two dimensional flows with X wire probes) in principle, instantaneous values of velocity can be determined, and an asymmetric arrangement of wires has a theoretical advantage.
Response function of modulated grid Faraday cup plasma instruments
NASA Technical Reports Server (NTRS)
Barnett, A.; Olbert, S.
1986-01-01
Modulated grid Faraday cup plasma analyzers are a very useful tool for making in situ measurements of space plasmas. One of their great attributes is that their simplicity permits their angular response function to be calculated theoretically. An expression is derived for this response function by computing the trajectories of the charged particles inside the cup. The Voyager plasma science experiment is used as a specific example. Two approximations to the rigorous response function useful for data analysis are discussed. Multisensor analysis of solar wind data indicates that the formulas represent the true cup response function for all angles of incidence with a maximum error of only a few percent.
NASA Astrophysics Data System (ADS)
Mackie, Cameron J.; Candian, Alessandra; Huang, Xinchuan; Maltseva, Elena; Petrignani, Annemieke; Oomens, Jos; Mattioda, Andrew L.; Buma, Wybren Jan; Lee, Timothy J.; Tielens, Alexander G. G. M.
2016-08-01
The study of interstellar polycyclic aromatic hydrocarbons (PAHs) relies heavily on theoretically predicted infrared spectra. Most earlier studies use scaled harmonic frequencies for band positions and the double harmonic approximation for intensities. However, recent high-resolution gas-phase experimental spectroscopic studies have shown that the harmonic approximation is not sufficient to reproduce experimental results. In our previous work, we presented the anharmonic theoretical spectra of three linear PAHs, showing the importance of including anharmonicities into the theoretical calculations. In this paper, we continue this work by extending the study to include five non-linear PAHs (benz[a]anthracene, chrysene, phenanthrene, pyrene, and triphenylene), thereby allowing us to make a full assessment of how edge structure, symmetry, and size influence the effects of anharmonicities. The theoretical anharmonic spectra are compared to spectra obtained under matrix isolation low-temperature conditions, low-resolution, high-temperature gas-phase conditions, and high-resolution, low-temperature gas-phase conditions. Overall, excellent agreement is observed between the theoretical and experimental spectra although the experimental spectra show subtle but significant differences.
Mackie, Cameron J; Candian, Alessandra; Huang, Xinchuan; Maltseva, Elena; Petrignani, Annemieke; Oomens, Jos; Mattioda, Andrew L; Buma, Wybren Jan; Lee, Timothy J; Tielens, Alexander G G M
2016-08-28
The study of interstellar polycyclic aromatic hydrocarbons (PAHs) relies heavily on theoretically predicted infrared spectra. Most earlier studies use scaled harmonic frequencies for band positions and the double harmonic approximation for intensities. However, recent high-resolution gas-phase experimental spectroscopic studies have shown that the harmonic approximation is not sufficient to reproduce experimental results. In our previous work, we presented the anharmonic theoretical spectra of three linear PAHs, showing the importance of including anharmonicities into the theoretical calculations. In this paper, we continue this work by extending the study to include five non-linear PAHs (benz[a]anthracene, chrysene, phenanthrene, pyrene, and triphenylene), thereby allowing us to make a full assessment of how edge structure, symmetry, and size influence the effects of anharmonicities. The theoretical anharmonic spectra are compared to spectra obtained under matrix isolation low-temperature conditions, low-resolution, high-temperature gas-phase conditions, and high-resolution, low-temperature gas-phase conditions. Overall, excellent agreement is observed between the theoretical and experimental spectra although the experimental spectra show subtle but significant differences.
Mechanisms of 200 MeV electron radiation in diamond crystal in the axial orientation
NASA Astrophysics Data System (ADS)
Ganenko, V. B.; Burdeinyi, D. D.; Truten', V. I.; Shul'ga, N. F.; Fissum, K.; Brudvik, J.; Hansen, K.; Isaksson, L.; Livingston, K.; Lundin, M.; Nilsson, B.; Schroder, B.
2018-06-01
The γ -radiation by electrons with the energy of ∼ 200 MeV in a 100 μ m-thick diamond crystal has been measured at the MAX-lab experimental facility, when the electrons are incident on the crystal along the < 100 > axis. In this case, the intensity of the -radiation with the energy ∼ 1-2 MeV is approximately 16 times higher than that in amorphous matter of the same thickness. Theoretical calculations based on the quasi-classical QED approximation are in good agreement with the experimental data. The analysis of the radiation mechanisms has shown that the main contribution to the radiation intensity resulted from electrons, moving in the above-barrier regime and at small angles to the crystal axis.
Yang, Xianchao; Xu, Degang; Rong, Feng; Zhao, Junfa; Yao, Jianquan
2017-01-01
Multimode interferometers based on the single-mode-no-core-single-mode fiber (SNCS) structure have been widely investigated as functional devices and sensors. However, the theoretical support for the sensing mechanism is still imperfect, especially for the cladding refractive index response. In this paper, a modified model of no-core fiber (NCF) based on far from cut-off approximation is proposed to investigate the spectrum characteristic and sensing mechanism of the SNCS structure. Guided-mode propagation analysis (MPA) is used to analyze the self-image effect and spectrum response to the cladding refractive index and temperature. Verified by experiments, the performance of the SNCS structure can be estimated specifically and easily by the proposed method. PMID:28961174
Scalable algorithms for three-field mixed finite element coupled poromechanics
NASA Astrophysics Data System (ADS)
Castelletto, Nicola; White, Joshua A.; Ferronato, Massimiliano
2016-12-01
We introduce a class of block preconditioners for accelerating the iterative solution of coupled poromechanics equations based on a three-field formulation. The use of a displacement/velocity/pressure mixed finite-element method combined with a first order backward difference formula for the approximation of time derivatives produces a sequence of linear systems with a 3 × 3 unsymmetric and indefinite block matrix. The preconditioners are obtained by approximating the two-level Schur complement with the aid of physically-based arguments that can be also generalized in a purely algebraic approach. A theoretical and experimental analysis is presented that provides evidence of the robustness, efficiency and scalability of the proposed algorithm. The performance is also assessed for a real-world challenging consolidation experiment of a shallow formation.
THEORETICAL METHODS FOR COMPUTING ELECTRICAL CONDITIONS IN WIRE-PLATE ELECTROSTATIC PRECIPITATORS
The paper describes a new semi-empirical, approximate theory for predicting electrical conditions. In the approximate theory, analytical expressions are derived for calculating voltage-current characteristics and electric potential, electric field, and space charge density distri...
Beyond-proximity-force-approximation Casimir force between two spheres at finite temperature
NASA Astrophysics Data System (ADS)
Bimonte, Giuseppe
2018-04-01
A recent experiment [J. L. Garrett, D. A. T. Somers, and J. N. Munday, Phys. Rev. Lett. 120, 040401 (2018), 10.1103/PhysRevLett.120.040401] measured for the first time the gradient of the Casimir force between two gold spheres at room temperature. The theoretical analysis of the data was carried out using the standard proximity force approximation (PFA). A fit of the data, using a parametrization of the force valid for the sphere-plate geometry, was used by the authors to place a bound on deviations from PFA. Motivated by this work, we compute the Casimir force between two gold spheres at finite temperature. The semianalytic formula for the Casimir force that we construct is valid for all separations, and can be easily used to interpret future experiments in both the sphere-plate and sphere-sphere configurations. We describe the correct parametrization of the corrections to PFA for two spheres that should be used in data analysis.
Seo, Dong-Kyun
2007-11-14
We present a theoretical scheme for a semiquantitative analysis of electronic structures of magnetic transition metal dimer complexes within spin density functional theory (DFT). Based on the spin polarization perturbational orbital theory [D.-K. Seo, J. Chem. Phys. 125, 154105 (2006)], explicit spin-dependent expressions of the spin orbital energies and coefficients are derived, which allows to understand how spin orbitals form and change their energies and shapes when two magnetic sites are coupled either ferromagnetically or antiferromagnetically. Upon employment of the concept of magnetic orbitals in the active-electron approximation, a general mathematical formula is obtained for the magnetic coupling constant J from the analytical expression for the electronic energy difference between low-spin broken-symmetry and high-spin states. The origin of the potential exchange and kinetic exchange terms based on the one-electron picture is also elucidated. In addition, we provide a general account of the DFT analysis of the magnetic exchange interactions in compounds for which the active-electron approximation is not appropriate.
1982-09-01
which the virtual crystal approximation breaks down using PES. This is well understood and was confirmed theoretically , working with Arden Sher of SRI...Quasistatic Capacitance of SiC on Hg07 Cd0 Te Treated with HF to Remove Native Oxide, Compared to Theoretical Curve...MIS devices show near ideal behav- ior. Figure I shows capacitance data taken quasistatically and at 1 MHz (dashed curves), compared to a theoretically
ATMOS: Simulating molecular spectra towards the remote detection of biosignature gases
NASA Astrophysics Data System (ADS)
Sousa-Silva, Clara; Petkowski, Janusz; Seager, Sara
2018-01-01
The ability to identify molecules within spectral data is of importance for a variety of academic and industrial uses, in particular for the spectroscopic detection of life. A comprehensive analysis of any observational spectra requires information about the spectrum of each of its molecular components. However, knowledge of molecular spectra currently only exists for a few hundred molecules and, other than a handful of exceptions (e.g. water, NH3), most of their spectra are incomplete. Given the relatively low level of accuracy that observations often require, there is value in creating approximate models for the spectra of molecules, particularly for those about which we know very little or nothing at all. ATMOS (Approximate Theoretical MOlecular Spectra) can quickly provide spectral information for any given molecule, using a combination of experimental measurements, organic chemistry and quantum mechanics. ATMOS 1.0, presented here, can identify volatile molecules with significant spectral features in any given wavelength window within the infrared region and provide approximate spectra for thousands of gases.
Boussinesq approximation of the Cahn-Hilliard-Navier-Stokes equations.
Vorobev, Anatoliy
2010-11-01
We use the Cahn-Hilliard approach to model the slow dissolution dynamics of binary mixtures. An important peculiarity of the Cahn-Hilliard-Navier-Stokes equations is the necessity to use the full continuity equation even for a binary mixture of two incompressible liquids due to dependence of mixture density on concentration. The quasicompressibility of the governing equations brings a short time-scale (quasiacoustic) process that may not affect the slow dynamics but may significantly complicate the numerical treatment. Using the multiple-scale method we separate the physical processes occurring on different time scales and, ultimately, derive the equations with the filtered-out quasiacoustics. The derived equations represent the Boussinesq approximation of the Cahn-Hilliard-Navier-Stokes equations. This approximation can be further employed as a universal theoretical model for an analysis of slow thermodynamic and hydrodynamic evolution of the multiphase systems with strongly evolving and diffusing interfacial boundaries, i.e., for the processes involving dissolution/nucleation, evaporation/condensation, solidification/melting, polymerization, etc.
Quasi-periodic pulsations in solar hard X-ray and microwave flares
NASA Technical Reports Server (NTRS)
Kosugi, Takeo; Kiplinger, Alan L.
1986-01-01
For more than a decade, various studies have pointed out that hard X-ray and microwave time profiles of some solar flares show quasi-periodic fluctuations or pulsations. Nevertheless, it was not until recently that a flare displaying large amplitude quasi-periodic pulsations in X-rays and microwaves was observed with good spectral coverage and with a sufficient time resolution. The event occurred on June 7, 1980, at approximately 0312 UT, and exhibits seven intense pulses with a quasi-periodicity of approximately 8 seconds in microwaves, hard X-rays, and gamma-ray lines. On May 12, 1983, at approximately 0253 UT, another good example of this type of flare was observed both in hard X-rays and in microwaves. Temporal and spectral characteristics of this flare are compared with the event of June 7, 1980. In order to further explore these observational results and theoretical scenarios, a study of nine additional quasi-periodic events were incorporated with the results from the two flares described. Analysis of these events are briefly summarized.
Seward, Kirsty; Wolfenden, Luke; Wiggers, John; Finch, Meghan; Wyse, Rebecca; Oldmeadow, Christopher; Presseau, Justin; Clinton-McHarg, Tara; Yoong, Sze Lin
2017-04-04
While there are number of frameworks which focus on supporting the implementation of evidence based approaches, few psychometrically valid measures exist to assess constructs within these frameworks. This study aimed to develop and psychometrically assess a scale measuring each domain of the Theoretical Domains Framework for use in assessing the implementation of dietary guidelines within a non-health care setting (childcare services). A 75 item 14-domain Theoretical Domains Framework Questionnaire (TDFQ) was developed and administered via telephone interview to 202 centre based childcare service cooks who had a role in planning the service menu. Confirmatory factor analysis (CFA) was undertaken to assess the reliability, discriminant validity and goodness of fit of the 14-domain theoretical domain framework measure. For the CFA, five iterative processes of adjustment were undertaken where 14 items were removed, resulting in a final measure consisting of 14 domains and 61 items. For the final measure: the Chi-Square goodness of fit statistic was 3447.19; the Standardized Root Mean Square Residual (SRMR) was 0.070; the Root Mean Square Error of Approximation (RMSEA) was 0.072; and the Comparative Fit Index (CFI) had a value of 0.78. While only one of the three indices support goodness of fit of the measurement model tested, a 14-domain model with 61 items showed good discriminant validity and internally consistent items. Future research should aim to assess the psychometric properties of the developed TDFQ in other community-based settings.
A new probability distribution model of turbulent irradiance based on Born perturbation theory
NASA Astrophysics Data System (ADS)
Wang, Hongxing; Liu, Min; Hu, Hao; Wang, Qian; Liu, Xiguo
2010-10-01
The subject of the PDF (Probability Density Function) of the irradiance fluctuations in a turbulent atmosphere is still unsettled. Theory reliably describes the behavior in the weak turbulence regime, but theoretical description in the strong and whole turbulence regimes are still controversial. Based on Born perturbation theory, the physical manifestations and correlations of three typical PDF models (Rice-Nakagami, exponential-Bessel and negative-exponential distribution) were theoretically analyzed. It is shown that these models can be derived by separately making circular-Gaussian, strong-turbulence and strong-turbulence-circular-Gaussian approximations in Born perturbation theory, which denies the viewpoint that the Rice-Nakagami model is only applicable in the extremely weak turbulence regime and provides theoretical arguments for choosing rational models in practical applications. In addition, a common shortcoming of the three models is that they are all approximations. A new model, called the Maclaurin-spread distribution, is proposed without any approximation except for assuming the correlation coefficient to be zero. So, it is considered that the new model can exactly reflect the Born perturbation theory. Simulated results prove the accuracy of this new model.
NASA Astrophysics Data System (ADS)
Gao, Lingyu; Li, Xinghua; Guo, Qianrui; Quan, Jing; Hu, Zhengyue; Su, Zhikun; Zhang, Dong; Liu, Peilu; Li, Haopeng
2018-01-01
The internal structure of off-axis three-mirror system is commonly complex. The mirror installation error in assembly always affects the imaging line-of-sight and further degrades the image quality. Due to the complexity of the optical path in off-axis three-mirror optical system, the straightforward theoretical analysis on the variations of imaging line-of-sight is extremely difficult. In order to simplify the theoretical analysis, an equivalent single-mirror system is proposed and presented in this paper. In addition, the mathematical model of single-mirror system is established and the accurate expressions of imaging coordinate are derived. Utilizing the simulation software ZEMAX, off-axis three-mirror model and single-mirror model are both established. By adjusting the position of mirror and simulating the line-of-sight rotation of optical system, the variations of imaging coordinates are clearly observed. The final simulation results include: in off-axis three-mirror system, the varying sensitivity of the imaging coordinate to the rotation of line-of-sight is approximately 30 um/″; in single-mirror system, the varying sensitivity of the imaging coordinate to the rotation of line-of-sight is 31.5 um/″. Compared to the simulation results of the off-axis three-mirror model, the 5% relative error of single-mirror model analysis highly satisfies the requirement of equivalent analysis and also verifies its validity. This paper presents a new method to analyze the installation error of the mirror in the off-axis three-mirror system influencing on the imaging line-of-sight. Moreover, the off-axis three-mirror model is totally equivalent to the single-mirror model in theoretical analysis.
Solute Nucleation and Growth in Supercritical Fluid Mixtures
NASA Technical Reports Server (NTRS)
Smedley, Gregory T.; Wilemski, Gerald; Rawlins, W. Terry; Joshi, Prakash; Oakes, David B.; Durgin, William W.
1996-01-01
This research effort is directed toward two primary scientific objectives: (1) to determine the gravitational effect on the measurement of nucleation and growth rates near a critical point and (2) to investigate the nucleation process in supercritical fluids to aid in the evaluation and development of existing theoretical models and practical applications. A nucleation pulse method will be employed for this investigation using a rapid expansion to a supersaturated state that is maintained for approximately 1 ms followed by a rapid recompression to a less supersaturated state that effectively terminates nucleation while permitting growth to continue. Nucleation, which occurs during the initial supersaturated state, is decoupled from growth by producing rapid pressure changes. Thermodynamic analysis, condensation modeling, apparatus design, and optical diagnostic design necessary for the initiation of a theoretical and experimental investigation of naphthalene nucleation from supercritical CO2 have been completed.
Multi-trait analysis of genome-wide association summary statistics using MTAG.
Turley, Patrick; Walters, Raymond K; Maghzian, Omeed; Okbay, Aysu; Lee, James J; Fontana, Mark Alan; Nguyen-Viet, Tuan Anh; Wedow, Robbee; Zacher, Meghan; Furlotte, Nicholas A; Magnusson, Patrik; Oskarsson, Sven; Johannesson, Magnus; Visscher, Peter M; Laibson, David; Cesarini, David; Neale, Benjamin M; Benjamin, Daniel J
2018-02-01
We introduce multi-trait analysis of GWAS (MTAG), a method for joint analysis of summary statistics from genome-wide association studies (GWAS) of different traits, possibly from overlapping samples. We apply MTAG to summary statistics for depressive symptoms (N eff = 354,862), neuroticism (N = 168,105), and subjective well-being (N = 388,538). As compared to the 32, 9, and 13 genome-wide significant loci identified in the single-trait GWAS (most of which are themselves novel), MTAG increases the number of associated loci to 64, 37, and 49, respectively. Moreover, association statistics from MTAG yield more informative bioinformatics analyses and increase the variance explained by polygenic scores by approximately 25%, matching theoretical expectations.
Kazachkin, Dmitry; Nishimura, Yoshifumi; Irle, Stephan; Morokuma, Keiji; Vidic, Radisav D; Borguet, Eric
2008-08-05
The interaction of acetone with single wall carbon nanotubes (SWCNTs) at low temperatures was studied by a combination of temperature programmed desorption (TPD) and dispersion-augmented density-functional-based tight binding (DFTB-D) theoretical simulations. On the basis of the results of the TPD study and theoretical simulations, the desorption peaks of acetone can be assigned to the following adsorption sites: (i) sites with energy of approximately 75 kJ mol (-1) ( T des approximately 300 K)endohedral sites of small diameter nanotubes ( approximately 7.7 A); (ii) sites with energy 40-68 kJ mol (-1) ( T des approximately 240 K)acetone adsorption on accessible interstitial, groove sites, and endohedral sites of larger nanotubes ( approximately 14 A); (iii) sites with energy 25-42 kJ mol (-1) ( T des approximately 140 K)acetone adsorption on external walls of SWCNTs and multilayer adsorption. Oxidatively purified SWCNTs have limited access to endohedral sites due to the presence of oxygen functionalities. Oxygen functionalities can be removed by annealing to elevated temperature (900 K) opening access to endohedral sites of nanotubes. Nonpurified, as-received SWCNTs are characterized by limited access for acetone to endohedral sites even after annealing to elevated temperatures (900 K). Annealing of both purified and as-produced SWCNTs to high temperatures (1400 K) leads to reduction of access for acetone molecules to endohedral sites of small nanotubes, probably due to defect self-healing and cap formation at the ends of SWCNTs. No chemical interaction between acetone and SWCNTs was detected for low temperature adsorption experiments. Theoretical simulations of acetone adsorption on finite pristine SWCNTs of different diameters suggest a clear relationship of the adsorption energy with tube sidewall curvature. Adsorption of acetone is due to dispersion forces, with its C-O bond either parallel to the surface or O pointing away from it. No significant charge transfer or polarization was found. Carbon black was used to model amorphous carbonaceous impurities present in as-produced SWCNTs. Desorption of acetone from carbon black revealed two peaks at approximately 140 and approximately 180-230 K, similar to two acetone desorption peaks from SWCNTs. The characteristic feature of acetone desorption from SWCNTs was peak at approximately 300 K that was not observed for carbon black. Care should be taken when assigning TPD peaks for molecules desorbing from carbon nanotubes as amorphous carbon can interfere.
Greenbaum, Gili
2015-09-07
Evaluation of the time scale of the fixation of neutral mutations is crucial to the theoretical understanding of the role of neutral mutations in evolution. Diffusion approximations of the Wright-Fisher model are most often used to derive analytic formulations of genetic drift, as well as for the time scales of the fixation of neutral mutations. These approximations require a set of assumptions, most notably that genetic drift is a stochastic process in a continuous allele-frequency space, an assumption appropriate for large populations. Here equivalent approximations are derived using a coalescent theory approach which relies on a different set of assumptions than the diffusion approach, and adopts a discrete allele-frequency space. Solutions for the mean and variance of the time to fixation of a neutral mutation derived from the two approaches converge for large populations but slightly differ for small populations. A Markov chain analysis of the Wright-Fisher model for small populations is used to evaluate the solutions obtained, showing that both the mean and the variance are better approximated by the coalescent approach. The coalescence approximation represents a tighter upper-bound for the mean time to fixation than the diffusion approximation, while the diffusion approximation and coalescence approximation form an upper and lower bound, respectively, for the variance. The converging solutions and the small deviations of the two approaches strongly validate the use of diffusion approximations, but suggest that coalescent theory can provide more accurate approximations for small populations. Copyright © 2015 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
de Berg, Kevin C.
2010-01-01
The discovery of the electron in 1897 deeply impacted the nature of chemistry in the twentieth century. A revolution in the theoretical structure of chemistry as well as in the instrumental tools used in chemical analysis occurred as a result of this discovery. The impact of this revolution on tin oxide chemistry over approximately a 100 year…
Reflective array modeling for reflective and directional SAW transducers.
Morgan, D P
1998-01-01
This paper presents a new approximate method for analyzing reflective SAW transducers, with much of the convenience of the coupled-mode (COM) method but with better accuracy. Transduction accuracy is obtained by incorporating the accurate electrostatic solution, giving for example correct harmonics, and allowance for electrode width variation, in a simple manner. Results are shown for a single-electrode transducer, Natural SPUDT and DART SPUDT, each using theoretically derived parameters. In contrast to the COM, the RAM can give accurate results for short or withdrawal-weighted transducers and for wide analysis bandwidth.
NASA Astrophysics Data System (ADS)
Tiutiunnyk, A.; Tulupenko, V.; Akimov, V.; Demediuk, R.; Morales, A. L.; Mora-Ramos, M. E.; Radu, A.; Duque, C. A.
2015-11-01
This work concerns theoretical study of confined electrons in a low-dimensional structure consisting of three coupled triangular GaAs/AlxGa1-xAs quantum wires. Calculations have been made in the effective mass and parabolic band approximations. In the calculations a diagonalization method to find the eigenfunctions and eigenvalues of the Hamiltonian was used. A comparative analysis of linear and nonlinear optical absorption coefficients and the relative change in the refractive index was made, which is tied to the intersubband electron transitions.
[Approaching the family: presenting a new definition of family and care].
Wernet, Monika; Angelo, Margareth
2003-03-01
Identifying the need to comprehend how nurses 'move' to the family, with the intention of caring for them, the present study obtained twelve biographical narratives of pediatric nurses. The theoretical approach adopted was the Symbolic Interactionism and the methodological one was the Interpretative Interactionism. The analysis of the data allowed the reconstruction of a story which showed that through modifying the concept of caring and family is the process that approximate the pediatric nurses progressively to the family, to a being with them, reaching the freedom to act.
2012-09-01
Originally, Resio and Vincent (1977) used theoretical results derived from Cardone (1969) to develop curves relating overland to overlake wind speeds...Later, Schwab (1978) proposed the following equation as an approximation to the Cardone curves: ERDC/CHL TR-12-19 13 /Δ. Δ . ΔW L L TTU U U T...1992), the CEM (USACE 2002), and in Smith (1991); Schwab and Morton (1984); Donelan (1980); Schwab (1978); Resio and Vincent (1977); and Cardone
Theoretical and experimental NMR study of protopine hydrochloride isomers.
Tousek, Jaromír; Malináková, Katerina; Dostál, Jirí; Marek, Radek
2005-07-01
The 1H and 13C NMR chemical shifts of cis- and trans-protopinium salts were measured and calculated. The calculations of the chemical shifts consisted of conformational analysis, geometry optimization (RHF/6-31G** method) and shielding constants calculations (B3LYP/6-31G** method). Based on the results of the quantum chemical calculations, two sets of experimental chemical shifts were assigned to the particular isomers. According to the experimental results, the trans-isomer is more stable and its population is approximately 68%. Copyright 2005 John Wiley & Sons, Ltd
Skriver, Mette Vinther; Væth, Michael; Støvring, Henrik
2018-01-01
The standardized mortality ratio (SMR) is a widely used measure. A recent methodological study provided an accurate approximate relationship between an SMR and difference in lifetime expectancies. This study examines the usefulness of the theoretical relationship, when comparing historic mortality data in four Scandinavian populations. For Denmark, Finland, Norway and Sweden, data on mortality every fifth year in the period 1950 to 2010 were obtained. Using 1980 as the reference year, SMRs and difference in life expectancy were calculated. The assumptions behind the theoretical relationship were examined graphically. The theoretical relationship predicts a linear association with a slope, [Formula: see text], between log(SMR) and difference in life expectancies, and the theoretical prediction and calculated differences in lifetime expectancies were compared. We examined the linear association both for life expectancy at birth and at age 30. All analyses were done for females, males and the total population. The approximate relationship provided accurate predictions of actual differences in lifetime expectancies. The accuracy of the predictions was better when age was restricted to above 30, and improved if the changes in mortality rate were close to a proportional change. Slopes of the linear relationship were generally around 9 for females and 10 for males. The theoretically derived relationship between SMR and difference in life expectancies provides an accurate prediction for comparing populations with approximately proportional differences in mortality, and was relatively robust. The relationship may provide a useful prediction of differences in lifetime expectancies, which can be more readily communicated and understood.
NASA Astrophysics Data System (ADS)
Amami, Sadek; Ozer, Zehra N.; Dogan, Mevlut; Yavuz, Murat; Varol, Onur; Madison, Don
2016-09-01
There have been several studies of electron-impact ionization of inert gases for asymmetric final state energy sharing and normally one electron has an energy significantly higher than the other. However, there have been relatively few studies examining equal energy final state electrons. Here we report experimental and theoretical triple differential cross sections for electron impact ionization of Ar (3p) for equal energy sharing of the outgoing electrons. Previous experimental results combined with some new measurements are compared with distorted wave born approximation (DWBA) results, DWBA results using the Ward-Macek (WM) approximation for the post collision interaction (PCI), and three-body distorted wave (3DW) which includes PCI without approximation. The results show that it is crucially important to include PCI in the calculation particularly for lower energies and that the WM approximation is valid only for high energies. The 3DW, on the other hand, is in reasonably good agreement with data down to fairly low energies.
Gabbay, Itay E; Gabbay, Uri
2013-01-01
Excess adverse events may be attributable to poor surgical performance but also to case-mix, which is controlled through the Standardized Incidence Ratio (SIR). SIR calculations can be complicated, resource consuming, and unfeasible in some settings. This article suggests a novel method for SIR approximation. In order to evaluate a potential SIR surrogate measure we predefined acceptance criteria. We developed a new measure - Approximate Risk Index (ARI). "Number Needed for Event" (NNE) is the theoretical number of patients needed "to produce" one adverse event. ARI is defined as the quotient of the group of patients needed for no observed events Ge by total patients treated Ga. Our evaluation compared 2500 surgical units and over 3 million heterogeneous risk surgical patients that were induced through a computerized simulation. Surgical unit's data were computed for SIR and ARI to evaluate compliance with the predefined criteria. Approximation was evaluated by correlation analysis and performance prediction capability by Receiver Operating Characteristics (ROC) analysis. ARI strongly correlates with SIR (r(2) = 0.87, p < 0.05). ARI prediction of excessive risk revealed excellent ROC (Area Under the Curve > 0.9) 87% sensitivity and 91% specificity. ARI provides good approximation of SIR and excellent prediction capability. ARI is simple and cost-effective as it requires thorough risk evaluation of only the adverse events patients. ARI can provide a crucial screening and performance evaluation quality control tool. The ARI method may suit other clinical and epidemiological settings where relatively small fraction of the entire population is affected. Copyright © 2013 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.
Theoretical studies of floating-reference method for NIR blood glucose sensing
NASA Astrophysics Data System (ADS)
Shi, Zhenzhi; Yang, Yue; Zhao, Huijuan; Chen, Wenliang; Liu, Rong; Xu, Kexin
2011-03-01
Non-invasive blood glucose monitoring using NIR light has been suffered from the variety of optical background that is mainly caused by the change of human body, such as the change of temperature, water concentration, and so on. In order to eliminate these internal influence and external interference a so called floating-reference method has been proposed to provide an internal reference. From the analysis of the diffuse reflectance spectrum, a position has been found where diffuse reflection of light is not sensitive to the glucose concentrations. Our previous work has proved the existence of reference position using diffusion equation. However, since glucose monitoring generally use the NIR light in region of 1000-2000nm, diffusion equation is not valid because of the high absorption coefficient and small source-detector separations. In this paper, steady-state high-order approximate model is used to further investigate the existence of the floating reference position in semi-infinite medium. Based on the analysis of different optical parameters on the impact of spatially resolved reflectance of light, we find that the existence of the floating-reference position is the result of the interaction of optical parameters. Comparing to the results of Monte Carlo simulation, the applicable region of diffusion approximation and higher-order approximation for the calculation of floating-reference position is discussed at the wavelength of 1000nm-1800nm, using the intralipid solution of different concentrations. The results indicate that when the reduced albedo is greater than 0.93, diffusion approximation results are more close to simulation results, otherwise the high order approximation is more applicable.
Approximation of Quantum Stochastic Differential Equations for Input-Output Model Reduction
2016-02-25
Approximation of Quantum Stochastic Differential Equations for Input-Output Model Reduction We have completed a short program of theoretical research...on dimensional reduction and approximation of models based on quantum stochastic differential equations. Our primary results lie in the area of...2211 quantum probability, quantum stochastic differential equations REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR
An asymptotic analysis of the logrank test.
Strawderman, R L
1997-01-01
Asymptotic expansions for the null distribution of the logrank statistic and its distribution under local proportional hazards alternatives are developed in the case of iid observations. The results, which are derived from the work of Gu (1992) and Taniguchi (1992), are easy to interpret, and provide some theoretical justification for many behavioral characteristics of the logrank test that have been previously observed in simulation studies. We focus primarily upon (i) the inadequacy of the usual normal approximation under treatment group imbalance; and, (ii) the effects of treatment group imbalance on power and sample size calculations. A simple transformation of the logrank statistic is also derived based on results in Konishi (1991) and is found to substantially improve the standard normal approximation to its distribution under the null hypothesis of no survival difference when there is treatment group imbalance.
Renormalization group analysis of the Reynolds stress transport equation
NASA Technical Reports Server (NTRS)
Rubinstein, R.; Barton, J. M.
1992-01-01
The pressure velocity correlation and return to isotropy term in the Reynolds stress transport equation are analyzed using the Yakhot-Orszag renormalization group. The perturbation series for the relevant correlations, evaluated to lowest order in the epsilon-expansion of the Yakhot-Orszag theory, are infinite series in tensor product powers of the mean velocity gradient and its transpose. Formal lowest order Pade approximations to the sums of these series produce a fast pressure strain model of the form proposed by Launder, Reece, and Rodi, and a return to isotropy model of the form proposed by Rotta. In both cases, the model constant are computed theoretically. The predicted Reynolds stress ratios in simple shear flows are evaluated and compared with experimental data. The possibility is discussed of driving higher order nonlinear models by approximating the sums more accurately.
NASA Astrophysics Data System (ADS)
Morikawa, Satoshi; Satake, Yuji; Takashiri, Masayuki
2018-06-01
The effects of crystal orientation and grain size on the thermoelectric properties of Bi2Te3 thin films were investigated by conducting experimental and theoretical analyses. To vary the crystal orientation and grain size, we performed oblique deposition, followed by thermal annealing treatment. The crystal orientation decreased as the oblique angle was increased, while the grain size was not changed significantly. The thermoelectric properties were measured at room temperature. A theoretical analysis was performed using a first principles method based on density functional theory. Then the semi-classical Boltzmann transport equation was used in the relaxation time approximation, with the effect of grain size included. Furthermore, the effect of crystal orientation was included in the calculation based on a simple semi-experimental model. A maximum power factor of 11.6 µW/(cm·K2) was obtained at an oblique angle of 40°. The calculated thermoelectric properties were in very good agreement with the experimentally measured values.
Modeling of large amplitude plasma blobs in three-dimensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Angus, Justin R.; Umansky, Maxim V.
2014-01-15
Fluctuations in fusion boundary and similar plasmas often have the form of filamentary structures, or blobs, that convectively propagate radially. This may lead to the degradation of plasma facing components as well as plasma confinement. Theoretical analysis of plasma blobs usually takes advantage of the so-called Boussinesq approximation of the potential vorticity equation, which greatly simplifies the treatment analytically and numerically. This approximation is only strictly justified when the blob density amplitude is small with respect to that of the background plasma. However, this is not the case for typical plasma blobs in the far scrape-off layer region, where themore » background density is small compared to that of the blob, and results obtained based on the Boussinesq approximation are questionable. In this report, the solution of the full vorticity equation, without the usual Boussinesq approximation, is proposed via a novel numerical approach. The method is used to solve for the evolution of 2D and 3D plasma blobs in a regime where the Boussinesq approximation is not valid. The Boussinesq solution under predicts the cross field transport in 2D. However, in 3D, for parameters typical of current tokamaks, the disparity between the radial cross field transport from the Boussinesq approximation and full solution is virtually non-existent due to the effects of the drift wave instability.« less
Dynamic analysis of a fibre-optic ring resonator excited by a sinewave-modulated laser diode
NASA Astrophysics Data System (ADS)
Pandian, G. Soundra; Seraji, Faramarz
1990-10-01
The present theoretical dynamic analysis of a fiber-optic ring resonator upon excitation by a sinusoidally-modulated laser diode (LD) yields results for such resonator conditions as modulating frequency, amplitude-modulation index, coupler power-coupling coefficient, loop-delay time (tau), and the phase angle between the LD's AM and FM responses. It is found that when the modulation frequency f(m) exceeds a threshold value such that f(m)tau exceeds 0.0002, the output response diverges from steady state and engages in an oscillatory behavior characterized by overshoots. When f(m)tau exceeds 1.0, the output approximates the intensity modulation of the LD.
Time-dependent diffusive acceleration of test particles at shocks
NASA Astrophysics Data System (ADS)
Drury, L. O'C.
1991-07-01
A theoretical description is developed for the acceleration of test particles at a steady plane nonrelativistic shock. The mean and the variance of the acceleration-time distribution are expressed analytically for the condition under which the diffusion coefficient is arbitrarily dependent on position and momentum. The formula for an acceleration rate with arbitrary spatial variation in the diffusion coefficient developed by Drury (1987) is supplemented by a general theory of time dependence. An approximation scheme is developed by means of the analysis which permits the description of the spectral cutoff resulting from the finite shock age. The formulas developed in the analysis are also of interest for analyzing the observations of heliospheric shocks made from spacecraft.
A New Equivalence Theory Method for Treating Doubly Heterogeneous Fuel - II. Verifications
Choi, Sooyoung; Kong, Chidong; Lee, Deokjung; ...
2015-03-09
A new methodology has been developed recently to treat resonance self-shielding in systems for which the fuel compact region of a reactor lattice consists of small fuel grains dispersed in a graphite matrix. The theoretical development adopts equivalence theory in both micro- and macro-level heterogeneities to provide approximate analytical expressions for the shielded cross sections, which may be interpolated from a table of resonance integrals or Bondarenko factors using a modified background cross section as the interpolation parameter. This paper describes the first implementation of the theoretical equations in a reactor analysis code. In order to reduce discrepancies caused bymore » use of the rational approximation for collision probabilities in the original derivation, a new formulation for a doubly heterogeneous Bell factor is developed in this paper to improve the accuracy of doubly heterogeneous expressions. This methodology is applied to a wide range of pin cell and assembly test problems with varying geometry parameters, material compositions, and temperatures, and the results are compared with continuous-energy Monte Carlo simulations to establish the accuracy and range of applicability of the new approach. It is shown that the new doubly heterogeneous self-shielding method including the Bell factor correction gives good agreement with reference Monte Carlo results.« less
Optimal Tikhonov Regularization in Finite-Frequency Tomography
NASA Astrophysics Data System (ADS)
Fang, Y.; Yao, Z.; Zhou, Y.
2017-12-01
The last decade has witnessed a progressive transition in seismic tomography from ray theory to finite-frequency theory which overcomes the resolution limit of the high-frequency approximation in ray theory. In addition to approximations in wave propagation physics, a main difference between ray-theoretical tomography and finite-frequency tomography is the sparseness of the associated sensitivity matrix. It is well known that seismic tomographic problems are ill-posed and regularizations such as damping and smoothing are often applied to analyze the tradeoff between data misfit and model uncertainty. The regularizations depend on the structure of the matrix as well as noise level of the data. Cross-validation has been used to constrain data uncertainties in body-wave finite-frequency inversions when measurements at multiple frequencies are available to invert for a common structure. In this study, we explore an optimal Tikhonov regularization in surface-wave phase-velocity tomography based on minimization of an empirical Bayes risk function using theoretical training datasets. We exploit the structure of the sensitivity matrix in the framework of singular value decomposition (SVD) which also allows for the calculation of complete resolution matrix. We compare the optimal Tikhonov regularization in finite-frequency tomography with traditional tradeo-off analysis using surface wave dispersion measurements from global as well as regional studies.
Model error in covariance structure models: Some implications for power and Type I error
Coffman, Donna L.
2010-01-01
The present study investigated the degree to which violation of the parameter drift assumption affects the Type I error rate for the test of close fit and power analysis procedures proposed by MacCallum, Browne, and Sugawara (1996) for both the test of close fit and the test of exact fit. The parameter drift assumption states that as sample size increases both sampling error and model error (i.e. the degree to which the model is an approximation in the population) decrease. Model error was introduced using a procedure proposed by Cudeck and Browne (1992). The empirical power for both the test of close fit, in which the null hypothesis specifies that the Root Mean Square Error of Approximation (RMSEA) ≤ .05, and the test of exact fit, in which the null hypothesis specifies that RMSEA = 0, is compared with the theoretical power computed using the MacCallum et al. (1996) procedure. The empirical power and theoretical power for both the test of close fit and the test of exact fit are nearly identical under violations of the assumption. The results also indicated that the test of close fit maintains the nominal Type I error rate under violations of the assumption. PMID:21331302
Song, Xiaojun; Ta, Dean; Wang, Weiqi
2011-10-01
The parameters of ultrasonic guided waves (GWs) are very sensitive to mechanical and structural changes in long cortical bones. However, it is a challenge to obtain the group velocity and other parameters of GWs because of the presence of mixed multiple modes. This paper proposes a blind identification algorithm using the joint approximate diagonalization of eigen-matrices (JADE) and applies it to the separation of superimposed GWs in long bones. For the simulation case, the velocity of the single mode was calculated after separation. A strong agreement was obtained between the estimated velocity and the theoretical expectation. For the experiments in bovine long bones, by using the calculated velocity and a theoretical model, the cortical thickness (CTh) was obtained. For comparison with the JADE approach, an adaptive Gaussian chirplet time-frequency (ACGTF) method was also used to estimate the CTh. The results showed that the mean error of the CTh acquired by the JADE approach was 4.3%, which was smaller than that of the ACGTF method (13.6%). This suggested that the JADE algorithm may be used to separate the superimposed GWs and that the JADE algorithm could potentially be used to evaluate long bones. Copyright © 2011 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Kim-Kang, H; Crouch, L S; Bova, A; Robinson, R A; Wu, J
2001-11-01
An accurate, reliable, and reproducible assay for the determination of residual concentrations of emamectin B(1a) in muscle, skin, and intact muscle/skin in natural proportions from Atlantic salmon treated with SCH 58854 (emamectin benzoate) is described. The determinative method was developed and validated using fortified control tissues at five levels over a range of 50-800 ng/g as well as tissues containing incurred levels in the same range. Incurred tissues were obtained from a metabolism study of [(3)H]emamectin benzoate in Atlantic salmon. The assay employs processing of a tissue ethyl acetate extract on a propylsulfonic acid solid phase extraction cartridge, followed by derivatization with trifluoroacetic anhydride in the presence of N-methylimidazole. Following separation using reversed phase HPLC, the amount of derivatized emamectin B(1a) is determined by fluorescence detection. The theoretical limits of detection were determined from the analysis of control tissue matrices to be 2.6, 3.3, and 3.8 ng/g as emamectin B(1a) for muscle, skin, and intact muscle/skin, respectively. Likewise, the theoretical limits of quantitation (LOQ) were determined to be 6.9, 8.1, and 9.5 ng/g as emamectin B(1a) for muscle, skin, and intact muscle/skin, respectively. The lowest fortification level used for method validation was 50 ng/g, which served as the effective LOQ for the method. The overall percent recoveries (+/-% CV) were 94.4 +/- 6.89% (n = 25) for muscle, 88.4 +/- 5.35% (n = 25) for skin, and 88.0 +/- 3.73% for intact muscle/skin (n = 25). Accuracy, precision, linearity, selectivity, and ruggedness were demonstrated. The structure of the final fluorescent derivative of emamectin B(1a) free base was identified by ESI(+)/LC-MS. The frozen storage stability of [(3)H]emamectin B(1a) in tissues with incurred residues was demonstrated for approximately 15 months by radiometric analysis and for an additional approximately 13 months by fluorometric analysis for a total of approximately 28 months.
NASA Astrophysics Data System (ADS)
Lehner, L.; Pfeiffer, H.; Poisson, E.
2011-07-01
This special issue of Classical and Quantum Gravity contains articles submitted in relation to the 'Theory Meets Data Analysis at Comparable and Extreme Mass Ratios' conference held at the Perimeter Institute for Theoretical Physics, Waterloo, Canada, 20-26 June 2010. This conference, organized by S Fairhurst, G Gonzalez, L Lehner, Y Liu, H Pfeiffer, and E Poisson brought together researchers from three gravitational wave communities: experiment, theory and data analysis, who discussed the latest advances and challenges for detecting and exploiting gravitational waves. Approximately 60 talks spread over one week, together with many lively discussions provided an excellent atmosphere for debate. With so much packed in over seven days there were too many highlights to list specifics here. However, several common themes could be clearly discerned: the tremendous progress achieved in the detector level; the understanding of key comparable-mass systems and the data analysis techniques required for searching for their signals; the significant progress achieved in obtaining predictions in extreme mass ratio scenarios and the understanding of remaining challenges; as well as several new efforts towards making multi-messenger astronomy a reality. This issue contains research articles presented at this conference which, together with online talks (all of which can be found at pirsa.org/C10015), illustrate the level of maturity the field has reached. Many challenges still remain and the communities involved are actively working towards addressing them.
Cheng, Long; Hou, Zeng-Guang; Tan, Min; Zhang, W J
2012-10-01
The trajectory tracking problem of a closed-chain five-bar robot is studied in this paper. Based on an error transformation function and the backstepping technique, an approximation-based tracking algorithm is proposed, which can guarantee the control performance of the robotic system in both the stable and transient phases. In particular, the overshoot, settling time, and final tracking error of the robotic system can be all adjusted by properly setting the parameters in the error transformation function. The radial basis function neural network (RBFNN) is used to compensate the complicated nonlinear terms in the closed-loop dynamics of the robotic system. The approximation error of the RBFNN is only required to be bounded, which simplifies the initial "trail-and-error" configuration of the neural network. Illustrative examples are given to verify the theoretical analysis and illustrate the effectiveness of the proposed algorithm. Finally, it is also shown that the proposed approximation-based controller can be simplified by a smart mechanical design of the closed-chain robot, which demonstrates the promise of the integrated design and control philosophy.
Quantum-Theoretical Methods and Studies Relating to Properties of Materials
1989-12-19
particularly sensitive to the behavior of the electron distribution close to the nuclei, which contributes only to E(l). Although the above results were...other condensed phases. So it was a useful test case to test the behavior of the theoretical computations for the gas phase relative to that in the...increasingly complicated and time- comsuming electron-correlation approximations should assure a small error in the theoret- ically computed enthalpy for a
Faraday's first dynamo: A retrospective
NASA Astrophysics Data System (ADS)
Smith, Glenn S.
2013-12-01
In the early 1830s, Michael Faraday performed his seminal experimental research on electromagnetic induction, in which he created the first electric dynamo—a machine for continuously converting rotational mechanical energy into electrical energy. His machine was a conducting disc, rotating between the poles of a permanent magnet, with the voltage/current obtained from brushes contacting the disc. In his first dynamo, the magnetic field was asymmetric with respect to the axis of the disc. This is to be contrasted with some of his later symmetric designs, which are the ones almost invariably discussed in textbooks on electromagnetism. In this paper, a theoretical analysis is developed for Faraday's first dynamo. From this analysis, the eddy currents in the disc and the open-circuit voltage for arbitrary positioning of the brushes are determined. The approximate analysis is verified by comparing theoretical results with measurements made on an experimental recreation of the dynamo. Quantitative results from the analysis are used to elucidate Faraday's qualitative observations, from which he learned so much about electromagnetic induction. For the asymmetric design, the eddy currents in the disc dissipate energy that makes the dynamo inefficient, prohibiting its use as a practical generator of electric power. Faraday's experiments with his first dynamo provided valuable insight into electromagnetic induction, and this insight was quickly used by others to design practical generators.
Approximation of reliability of direct genomic breeding values
USDA-ARS?s Scientific Manuscript database
Two methods to efficiently approximate theoretical genomic reliabilities are presented. The first method is based on the direct inverse of the left hand side (LHS) of mixed model equations. It uses the genomic relationship matrix for a small subset of individuals with the highest genomic relationshi...
Stroke maximizing and high efficient hysteresis hybrid modeling for a rhombic piezoelectric actuator
NASA Astrophysics Data System (ADS)
Shao, Shubao; Xu, Minglong; Zhang, Shuwen; Xie, Shilin
2016-06-01
Rhombic piezoelectric actuator (RPA), which employs a rhombic mechanism to amplify the small stroke of PZT stack, has been widely used in many micro-positioning machineries due to its remarkable properties such as high displacement resolution and compact structure. In order to achieve large actuation range along with high accuracy, the stroke maximizing and compensation for the hysteresis are two concerns in the use of RPA. However, existing maximization methods based on theoretical model can hardly accurately predict the maximum stroke of RPA because of approximation errors that are caused by the simplifications that must be made in the analysis. Moreover, despite the high hysteresis modeling accuracy of Preisach model, its modeling procedure is trivial and time-consuming since a large set of experimental data is required to determine the model parameters. In our research, to improve the accuracy of theoretical model of RPA, the approximation theory is employed in which the approximation errors can be compensated by two dimensionless coefficients. To simplify the hysteresis modeling procedure, a hybrid modeling method is proposed in which the parameters of Preisach model can be identified from only a small set of experimental data by using the combination of discrete Preisach model (DPM) with particle swarm optimization (PSO) algorithm. The proposed novel hybrid modeling method can not only model the hysteresis with considerable accuracy but also significantly simplified the modeling procedure. Finally, the inversion of hysteresis is introduced to compensate for the hysteresis non-linearity of RPA, and consequently a pseudo-linear system can be obtained.
NASA Technical Reports Server (NTRS)
Hurlbut, F. C.; Jih, C. R.
1972-01-01
Theoretical and experimental research on fluid conductivity of lunar surface materials is summarized. Theoretical methods were developed for the analysis of transitional and free-molecular flows, and for analysis of lunar permeability probe data in general. Experimental studies of rarefied flows under conditions of a large pressure gradient show flows in the continuum regime to be responsible for the largest portion of the pressure drop between source and sink for one dimensional flow, provided the entrance Knudsen number is sufficiently small. The concept of local similarity leading to a universal nondimensional function of Knudsen number was shown to have approximate validity; flows in all regimes may be described in terms of an area fraction and a single length parameter. Synthetic porous media prepared from glass beads exhibited flow behavior similar in many regards to that of a natural sandstone; studies using artificial stones with known pore configurations may lead to new insight concerning the structure of natural materials. The experimental method involving the use of segmented specimens of large permeability is shown to be fruitful.
Wei, Chia-Chien
2012-11-05
This work theoretically studies the transmission performance of a DML-based OFDM system by small-signal approximation, and the model considers both the transient and adiabatic chirps. The dispersion-induced distortion is modeled as subcarrier-to-subcarrier intermixing interference (SSII), and the theoretical SSII agrees with the distortion obtained from large-signal simulation statistically and deterministically. The analysis shows that the presence of the adiabatic chirp will ease power fading or even provide gain, but will increase the SSII to deteriorate OFDM signals after dispersive transmission. Furthermore, this work also proposes a novel iterative equalization to eliminate the SSII. From the simulation, the distortion could be effectively mitigated by the proposed equalization such that the maximum transmission distance of the DML-based OFDM signal is significantly improved. For instance, the transmission distance of a 30-Gbps DML-based OFDM signal can be extended from 10 km to more than 100 km. Besides, since the dispersion-induced distortion could be effectively mitigated by the equalization, negative power penalties are observed at some distances due to chirp-induced power gain.
Simultaneously constraining the astrophysics of reionisation and the epoch of heating with 21CMMC
NASA Astrophysics Data System (ADS)
Greig, Bradley; Mesinger, Andrei
2018-05-01
We extend our MCMC sampler of 3D EoR simulations, 21CMMC, to perform parameter estimation directly on light-cones of the cosmic 21cm signal. This brings theoretical analysis one step closer to matching the expected 21-cm signal from next generation interferometers like HERA and the SKA. Using the light-cone version of 21CMMC, we quantify biases in the recovered astrophysical parameters obtained from the 21cm power spectrum when using the co-eval approximation to fit a mock 3D light-cone observation. While ignoring the light-cone effect does not bias the parameters under most assumptions, it can still underestimate their uncertainties. However, significant biases (~few - 10 σ) are possible if all of the following conditions are met: (i) foreground removal is very efficient, allowing large physical scales (k ~ 0.1 Mpc-1) to be used in the analysis; (ii) theoretical modelling is accurate to ~10 per cent in the power spectrum amplitude; and (iii) the 21cm signal evolves rapidly (i.e. the epochs of reionisation and heating overlap significantly
Validating Experimental and Theoretical Langmuir Probe Analyses
NASA Astrophysics Data System (ADS)
Pilling, Lawrence Stuart; Carnegie, Dale
2004-11-01
Analysis of Langmuir probe characteristics contains a paradox in that it is unknown a priori which theory is applicable before it is applied. Often theories are assumed to be correct when certain criteria are met although they may not validate the approach used. We have analysed the Langmuir probe data from cylindrical double and single probes acquired from a DC discharge plasma over a wide variety of conditions. This discharge contains a dual temperature distribution and hence fitting a theoretically generated curve is impractical. To determine the densities an examination of the current theories was necessary. For the conditions where the probe radius is the same order of magnitude as the Debye length, the gradient expected for orbital motion limited (OML) is approximately the same as the radial motion gradients. An analysis of the gradients from the radial motion theory was able to resolve the differences from the OML gradient value of two. The method was also able to determine whether radial or OML theories applied without knowledge of the electron temperature. Only the position of the space charge potential is necessary to determine the applicable theory.
Testing theoretical models of magnetic damping using an air track
NASA Astrophysics Data System (ADS)
Vidaurre, Ana; Riera, Jaime; Monsoriu, Juan A.; Giménez, Marcos H.
2008-03-01
Magnetic braking is a long-established application of Lenz's law. A rigorous analysis of the laws governing this problem involves solving Maxwell's equations in a time-dependent situation. Approximate models have been developed to describe different experimental results related to this phenomenon. In this paper we present a new method for the analysis of magnetic braking using a magnet fixed to the glider of an air track. The forces acting on the glider, a result of the eddy currents, can be easily observed and measured. As a consequence of the air track inclination, the glider accelerates at the beginning, although it asymptotically tends towards a uniform rectilinear movement characterized by a terminal speed. This speed depends on the interaction between the magnetic field and the conductivity properties of the air track. Compared with previous related approaches, in our experimental setup the magnet fixed to the glider produces a magnetic braking force which acts continuously, rather than over a short period of time. The experimental results satisfactorily concur with the theoretical models adapted to this configuration.
Influence of heterogeneity on second-kind self-similar solutions for viscous gravity currents
Zheng, Zhong; Christov, Ivan C.; Stone, Howard A.
2014-05-01
We report experimental, theoretical and numerical results on the effects of horizontal heterogeneities on the propagation of viscous gravity currents. We use two geometries to highlight these effects: (a) a horizontal channel (or crack) whose gap thickness varies as a power-law function of the streamwise coordinate; (b) a heterogeneous porous medium whose permeability and porosity have power-law variations. We demonstrate that two types of self-similar behaviours emerge as a result of horizontal heterogeneity: (a) a first-kind self-similar solution is found using dimensional analysis (scaling) for viscous gravity currents that propagate away from the origin (a point of zero permeability); (b)more » a second-kind self-similar solution is found using a phase-plane analysis for viscous gravity currents that propagate toward the origin. These theoretical predictions, obtained using the ideas of self-similar intermediate asymptotics, are compared with experimental results and numerical solutions of the governing partial differential equation developed under the lubrication approximation. All three results are found to be in good agreement.« less
Correlation of molecular valence- and K-shell photoionization resonances with bond lengths
NASA Technical Reports Server (NTRS)
Sheehy, J. A.; Gil, T. J.; Winstead, C. L.; Farren, R. E.; Langhoff, P. W.
1989-01-01
The relationship between the interatomic distance and the positions of valence-shell and K-shell sigma(asterisk) photoionization resonances is investigated theoretically for the molecules C2, F2, N2, O2, CO, NO, C2H2, C2H4, C2H6, HCN, H2CO, N20, CO2, and C2N2. The results of molecular-orbital computations are presented in three-dimensional diagrams, which are shown to be similar to the wave functions of a particle in a cylindrical well, confirming the validity of free-electron molecular-orbital (FEMO) approximations for modeling the potential along the symmetry axis. FEMO orbital energies and resonance positions are found to be in good agreement with previous theoretical and experimental results. Also included is a Feshbach-Fano analysis of the relevance of virtual-valence orbitals to the appearance of single-channel resonances in molecular photoionization cross sections.
Classical Testing in Functional Linear Models.
Kong, Dehan; Staicu, Ana-Maria; Maity, Arnab
2016-01-01
We extend four tests common in classical regression - Wald, score, likelihood ratio and F tests - to functional linear regression, for testing the null hypothesis, that there is no association between a scalar response and a functional covariate. Using functional principal component analysis, we re-express the functional linear model as a standard linear model, where the effect of the functional covariate can be approximated by a finite linear combination of the functional principal component scores. In this setting, we consider application of the four traditional tests. The proposed testing procedures are investigated theoretically for densely observed functional covariates when the number of principal components diverges. Using the theoretical distribution of the tests under the alternative hypothesis, we develop a procedure for sample size calculation in the context of functional linear regression. The four tests are further compared numerically for both densely and sparsely observed noisy functional data in simulation experiments and using two real data applications.
Classical Testing in Functional Linear Models
Kong, Dehan; Staicu, Ana-Maria; Maity, Arnab
2016-01-01
We extend four tests common in classical regression - Wald, score, likelihood ratio and F tests - to functional linear regression, for testing the null hypothesis, that there is no association between a scalar response and a functional covariate. Using functional principal component analysis, we re-express the functional linear model as a standard linear model, where the effect of the functional covariate can be approximated by a finite linear combination of the functional principal component scores. In this setting, we consider application of the four traditional tests. The proposed testing procedures are investigated theoretically for densely observed functional covariates when the number of principal components diverges. Using the theoretical distribution of the tests under the alternative hypothesis, we develop a procedure for sample size calculation in the context of functional linear regression. The four tests are further compared numerically for both densely and sparsely observed noisy functional data in simulation experiments and using two real data applications. PMID:28955155
Similarity Theory of Withdrawn Water Temperature Experiment
2015-01-01
Selective withdrawal from a thermal stratified reservoir has been widely utilized in managing reservoir water withdrawal. Besides theoretical analysis and numerical simulation, model test was also necessary in studying the temperature of withdrawn water. However, information on the similarity theory of the withdrawn water temperature model remains lacking. Considering flow features of selective withdrawal, the similarity theory of the withdrawn water temperature model was analyzed theoretically based on the modification of governing equations, the Boussinesq approximation, and some simplifications. The similarity conditions between the model and the prototype were suggested. The conversion of withdrawn water temperature between the model and the prototype was proposed. Meanwhile, the fundamental theory of temperature distribution conversion was firstly proposed, which could significantly improve the experiment efficiency when the basic temperature of the model was different from the prototype. Based on the similarity theory, an experiment was performed on the withdrawn water temperature which was verified by numerical method. PMID:26065020
Enhanced correlation of received power-signal fluctuations in bidirectional optical links
NASA Astrophysics Data System (ADS)
Minet, Jean; Vorontsov, Mikhail A.; Polnau, Ernst; Dolfi, Daniel
2013-02-01
A study of the correlation between the power signals received at both ends of bidirectional free-space optical links is presented. By use of the quasi-optical approximation, we show that an ideal (theoretically 100%) power-signal correlation can be achieved in optical links with specially designed monostatic transceivers based on single-mode fiber collimators. The theoretical prediction of enhanced correlation is supported both by experiments conducted over a 7 km atmospheric path and wave optics numerical analysis of the corresponding bidirectional optical link. In the numerical simulations, we also compare correlation properties of received power signals for different atmospheric conditions and for optical links with monostatic and bistatic geometries based on single-mode fiber collimator and on power-in-the-bucket transceiver types. Applications of the observed phenomena for signal fading mitigation and turbulence-enhanced communication link security in free-space laser communication links are discussed.
NASA Technical Reports Server (NTRS)
Datla, R. U.; Roberts, J. R.; Bhatia, A. K.
1991-01-01
Populations of 3p2 1D2, 3P1, 3P2 levels in Si-like Cu, Zn, Ge, and Se ions have been deduced from the measurements of absolute intensities of magnetic dipole transitions within the 3s2 3p2 ground configuration. The measured population ratios are compared with theoretical calculations based on the distorted-wave approximation for the electron collisions and a semiclassical approximation for the proton collisions. The observed deviation from the statistical distribution for the excited-level populations within the ground configuration along the silicon isoelectronic sequence is in agreement with theoretical prediction.
Time-dependent spin-density-functional-theory description of He+-He collisions
NASA Astrophysics Data System (ADS)
Baxter, Matthew; Kirchner, Tom; Engel, Eberhard
2017-09-01
Theoretical total cross-section results for all ionization and capture processes in the He+-He collision system are presented in the approximate impact energy range of 10-1000 keV/amu. Calculations were performed within the framework of time-dependent spin-density functional theory. The Krieger-Li-Iafrate approximation was used to determine an accurate exchange-correlation potential in the exchange-only limit. The results of two models, one where electron translation factors in the orbitals used to calculate the potential are ignored and another where partial electron translation factors are included, are compared with available experimental data as well as a selection of previous theoretical calculations.
NASA Technical Reports Server (NTRS)
Schafer, Louis J; Stepka, Francis S; Brown, W Byron
1953-01-01
An analysis was made to permit the calculation of the effectiveness of oxide coatings in retarding the transient heat flow into turbine blades when the combustion gas temperature of a turbojet engine is suddenly changed. The analysis is checked with experimental data obtained from a turbojet engine whose blades were coated with two different coating materials (silicon dioxide and boric oxide) by adding silicone oil and tributyl borate to the engine fuel. The very thin coatings (approximately 0.001 in.) that formed on the blades produced a negligible effect on the turbine-blade transient temperature response. With the analysis discussed here, it was possible to predict the turbine rotor-blade temperature response with a maximum error of 40 F.
Optimal feedback control infinite dimensional parabolic evolution systems: Approximation techniques
NASA Technical Reports Server (NTRS)
Banks, H. T.; Wang, C.
1989-01-01
A general approximation framework is discussed for computation of optimal feedback controls in linear quadratic regular problems for nonautonomous parabolic distributed parameter systems. This is done in the context of a theoretical framework using general evolution systems in infinite dimensional Hilbert spaces. Conditions are discussed for preservation under approximation of stabilizability and detectability hypotheses on the infinite dimensional system. The special case of periodic systems is also treated.
QMRA for Drinking Water: 2. The Effect of Pathogen Clustering in Single-Hit Dose-Response Models.
Nilsen, Vegard; Wyller, John
2016-01-01
Spatial and/or temporal clustering of pathogens will invalidate the commonly used assumption of Poisson-distributed pathogen counts (doses) in quantitative microbial risk assessment. In this work, the theoretically predicted effect of spatial clustering in conventional "single-hit" dose-response models is investigated by employing the stuttering Poisson distribution, a very general family of count distributions that naturally models pathogen clustering and contains the Poisson and negative binomial distributions as special cases. The analysis is facilitated by formulating the dose-response models in terms of probability generating functions. It is shown formally that the theoretical single-hit risk obtained with a stuttering Poisson distribution is lower than that obtained with a Poisson distribution, assuming identical mean doses. A similar result holds for mixed Poisson distributions. Numerical examples indicate that the theoretical single-hit risk is fairly insensitive to moderate clustering, though the effect tends to be more pronounced for low mean doses. Furthermore, using Jensen's inequality, an upper bound on risk is derived that tends to better approximate the exact theoretical single-hit risk for highly overdispersed dose distributions. The bound holds with any dose distribution (characterized by its mean and zero inflation index) and any conditional dose-response model that is concave in the dose variable. Its application is exemplified with published data from Norovirus feeding trials, for which some of the administered doses were prepared from an inoculum of aggregated viruses. The potential implications of clustering for dose-response assessment as well as practical risk characterization are discussed. © 2016 Society for Risk Analysis.
Equation of state for detonation product gases
NASA Astrophysics Data System (ADS)
Nagayama, Kunihito; Kubota, Shiro
2003-03-01
A thermodynamic analysis procedure of the detonation product equation of state (EOS) together with the experimental data set of the detonation velocity as a function of initial density has been formulated. The Chapman-Jouguet (CJ) state [W. Ficket and W. C. Davis, Detonation: Theory and Experiment (University of California Press, Berkeley 1979)] on the p-ν plane is found to be well approximated by the envelope function formed by the collection of Rayleigh lines with many different initial density states. The Jones-Stanyukovich-Manson relation [W. Ficket and W. C. Davis, Detonation: Theory and Experiment (University of California Press, Berkeley, 1979)] is used to estimate the error included in this approximation. Based on this analysis, a simplified integration method to calculate the Grüneisen parameter along the CJ state curve with different initial densities utilizing the cylinder expansion data has been presented. The procedure gives a simple way of obtaining the EOS function, compatible with the detonation velocity data. Theoretical analysis has been performed for the precision of the estimated EOS function. EOS of the pentaerithrytoltetranitrate explosive is calculated and compared with some of the experimental data such as CJ pressure data and cylinder expansion data.
Physics in one dimension: theoretical concepts for quantum many-body systems.
Schönhammer, K
2013-01-09
Various sophisticated approximation methods exist for the description of quantum many-body systems. It was realized early on that the theoretical description can simplify considerably in one-dimensional systems and various exact solutions exist. The focus in this introductory paper is on fermionic systems and the emergence of the Luttinger liquid concept.
NASA Technical Reports Server (NTRS)
Wadlin, Kenneth L; Shuford, Charles L , Jr; Mcgehee, John R
1955-01-01
A theoretical and experimental investigation at subcavitation speeds was made of the effect of the free-water surface and rigid boundaries on the lift and drag of an aspect-ratio-10 hydrofoil at both subcritical and supercritical speeds and of an aspect ratio-4 hydrofoil at supercritical speeds. Approximate theoretical solutions for the effects of the free-water surface and rigid boundaries on drag at subcritical speeds are developed. An approximate theoretical solution for the effects of these boundaries on drag at subcritical speeds is also presented. The agreement between theory and experiment at both supercritical and subcritical speeds is satisfactory for engineering calculations of hydrofoil characteristics from aerodynamic data. The experimental investigation indicated no appreciable effect of the limiting speed of wave propagation on lift-curve slope or angle of zero lift. It also showed that the increase in drag as the critical speed is approached from the supercritical range is gradual. The result is contrary to the abrupt increase at the critical speed predicted by theory.
NASA Technical Reports Server (NTRS)
Patel, D. K.; Czarnecki, K. R.
1975-01-01
A theoretical investigation of the pressure distributions and drag characteristics was made for forward facing steps in turbulent flow at supersonic speeds. An approximate solution technique proposed by Uebelhack has been modified and extended to obtain a more consistent numerical procedure. A comparison of theoretical calculations with experimental data generally indicated good agreement over the experimentally available range of ratios of step height to boundary layer thickness from 7 to 0.05.
Limitations of shallow nets approximation.
Lin, Shao-Bo
2017-10-01
In this paper, we aim at analyzing the approximation abilities of shallow networks in reproducing kernel Hilbert spaces (RKHSs). We prove that there is a probability measure such that the achievable lower bound for approximating by shallow nets can be realized for all functions in balls of reproducing kernel Hilbert space with high probability, which is different with the classical minimax approximation error estimates. This result together with the existing approximation results for deep nets shows the limitations for shallow nets and provides a theoretical explanation on why deep nets perform better than shallow nets. Copyright © 2017 Elsevier Ltd. All rights reserved.
Electron-ion collision rates in noble gas clusters irradiated by femtosecond laser pulse
NASA Astrophysics Data System (ADS)
Dey, R.; Roy, A. C.
2012-05-01
We report a theoretical analysis of electron-ion collision rates in xenon gas clusters irradiated by femtosecond laser pulses. The present analysis is based on the eikonal approximation (EA), the first Born approximation (FBA) and the classical (CL) methods. The calculations are performed using the plasma-screened Rogers potential introduced by Moll et al. [J. Phys. B. 43, 135103 (2010)] as well as the Debye potential for a wide range of experimental parameters. We find that the magnitudes of electron-ion collision frequency obtained in the EA do not fall as rapidly with the kinetic energy of electrons as in the FBA and CL methods for higher charge states of xenon ion (Xe8+ and Xe14+). Furthermore, EA shows that the effect of the inner structure of ion is most dominant for the lowest charge state of xenon ion (Xe1+). In the case of the present effective potential, FBA overestimates the CL results for all three different charge states of xenon, whereas for the Debye potential, both the FBA and CL methods predict collision frequencies which are nearly close to each other.
Methods in the study of discrete upper hybrid waves
NASA Astrophysics Data System (ADS)
Yoon, P. H.; Ye, S.; Labelle, J.; Weatherwax, A. T.; Menietti, J. D.
2007-11-01
Naturally occurring plasma waves characterized by fine frequency structure or discrete spectrum, detected by satellite, rocket-borne instruments, or ground-based receivers, can be interpreted as eigenmodes excited and trapped in field-aligned density structures. This paper overviews various theoretical methods to study such phenomena for a one-dimensional (1-D) density structure. Among the various methods are parabolic approximation, eikonal matching, eigenfunction matching, and full numerical solution based upon shooting method. Various approaches are compared against the full numerical solution. Among the analytic methods it is found that the eigenfunction matching technique best approximates the actual numerical solution. The analysis is further extended to 2-D geometry. A detailed comparative analysis between the eigenfunction matching and fully numerical methods is carried out for the 2-D case. Although in general the two methods compare favorably, significant differences are also found such that for application to actual observations it is prudent to employ the fully numerical method. Application of the methods developed in the present paper to actual geophysical problems will be given in a companion paper.
Pyell, Ute; Jalil, Alaa H; Pfeiffer, Christian; Pelaz, Beatriz; Parak, Wolfgang J
2015-07-15
Taking gold nanoparticles with different hydrophilic coatings as an example, it is investigated whether capillary electrophoresis in combination with Taylor dispersion analysis allows for the precise determination of mean electrophoretic mobilities, electrophoretic mobility distributions, and zeta potentials in a matrix of exactly known composition and the calibration-free determination of number-weighted mean hydrodynamic radii. Our experimental data confirm that the calculation of the zeta potential for colloidal nanoparticles with ζ>25 mV requires to take the relaxation effect into account. Because of the requirement to avoid particle-wall interactions, a solution of disodiumtetraborate decahydrate (borax) in deionized water had been selected as suitable electrolyte. Measurements of the electrophoretic mobility at different ionic strength and application of the analytic approximation developed by Ohshima show that in the present case of a buffered solution with a weak electrolyte co-ion and a strong electrolyte counterion, the effective ionic drag coefficient should be approximated with the ionic drag coefficient of the counterion. The obtained results are in good agreement with theoretical expectations regarding the dependence of the zeta potential and the electrokinetic surface charge density on the ionic strength. We also show that Taylor dispersion analysis (besides estimation of the number-weighted mean hydrodynamic radius) provides additional information on the type and width of the number-weighted particle distribution. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Zumberge, J. F.
1981-01-01
The isotopic compositions of galactic cosmic ray boron, carbon, and nitrogen were measured at energies near 300 MeV amu, using a balloon-borne instrument at an atmospheric depth of approximately 5 g/sq cm. The calibrations of the detectors comprising the instrument are described. The saturation properties of the cesium iodide scintillators used for measurement of particle energy are studied in the context of analyzing the data for mass. The achieved rms mass resolution varies from approximately 0.3 amu at boron to approximately 0.5 amu at nitrogen, consistent with a theoretical analysis of the contributing factors. Corrected for detector interactions and the effects of the residual atmosphere the results are B-10/B=0.33 (+0.17, -0.11), C-13/C=0.06 (+0.13, -0.11), and N-15/N=0.42 (+0.19, -0.17). A model of galactic propagation and solar modulation is described. Assuming a cosmic ray source composition of solar-like isotopic abundances, the model predicts abundances near Earth consistent with the measurements.
Flash photolysis of rhodopsin in the cat retina
1981-01-01
The bleaching of rhodopsin by short-duration flashes of a xenon discharge lamp was studied in vivo in the cat retina with the aid of a rapid, spectral-scan fundus reflectometer. Difference spectra recorded over a broad range of intensities showed that the bleaching efficacy of high-intensity flashes was less than that of longer duration, steady lights delivering the same amount of energy. Both the empirical results and those derived from a theoretical analysis of flash photolysis indicate that, under the conditions of these experiments, the upper limit of the flash bleaching of rhodopsin in cat is approximately 90%. Although the fact that a full bleach could not be attained is attributable to photoreversal, i.e., the photic regeneration of rhodopsin from its light-sensitive intermediates, the 90% limit is considerably higher than the 50% (or lower) value obtained under other experimental circumstances. Thus, it appears that the duration (approximately 1 ms) and spectral composition of the flash, coupled with the kinetic parameters of the thermal and photic reactions in the cat retina, reduce the light-induced regeneration of rhodopsin to approximately 10%. PMID:7252476
NASA Technical Reports Server (NTRS)
Hunter, Craig A.
1995-01-01
An analytical/numerical method has been developed to predict the static thrust performance of non-axisymmetric, two-dimensional convergent-divergent exhaust nozzles. Thermodynamic nozzle performance effects due to over- and underexpansion are modeled using one-dimensional compressible flow theory. Boundary layer development and skin friction losses are calculated using an approximate integral momentum method based on the classic karman-Polhausen solution. Angularity effects are included with these two models in a computational Nozzle Performance Analysis Code, NPAC. In four different case studies, results from NPAC are compared to experimental data obtained from subscale nozzle testing to demonstrate the capabilities and limitations of the NPAC method. In several cases, the NPAC prediction matched experimental gross thrust efficiency data to within 0.1 percent at a design NPR, and to within 0.5 percent at off-design conditions.
Standard representation and unified stability analysis for dynamic artificial neural network models.
Kim, Kwang-Ki K; Patrón, Ernesto Ríos; Braatz, Richard D
2018-02-01
An overview is provided of dynamic artificial neural network models (DANNs) for nonlinear dynamical system identification and control problems, and convex stability conditions are proposed that are less conservative than past results. The three most popular classes of dynamic artificial neural network models are described, with their mathematical representations and architectures followed by transformations based on their block diagrams that are convenient for stability and performance analyses. Classes of nonlinear dynamical systems that are universally approximated by such models are characterized, which include rigorous upper bounds on the approximation errors. A unified framework and linear matrix inequality-based stability conditions are described for different classes of dynamic artificial neural network models that take additional information into account such as local slope restrictions and whether the nonlinearities within the DANNs are odd. A theoretical example shows reduced conservatism obtained by the conditions. Copyright © 2017. Published by Elsevier Ltd.
Register of experts for information on mechanics of structural failure
NASA Technical Reports Server (NTRS)
Carpenter, J. L., Jr.; Stuhrke, W. F.
1975-01-01
This register is comprised of a list of approximately 300 experts from approximately 90 organizations who have published results of theoretical and/or experimental research related to six problem areas in the mechanics of structural failure: (1) life prediction for structural materials, (2) fracture toughness testing, (3) fracture mechanics analysis; (4) hydrogen embrittlement; (5) protective coatings; and (6) composite materials. The criteria for the selection of names for the register are recent contributions to the literature, participation in or support of relevant research programs, and referral by peers. Each author included is listed by organizational affiliation, address, and principal field of expertise. The purpose of the register is to present, in easy reference form, sources for dependable information regarding failure modes and mechanisms of aerospace structures. The register includes two indexes; an alphabetical listing of the experts and an alphabetical listing of the organizations with whom they are affiliated.
Acoustical radiation torque and force for spheres and Bessel beam extinction efficiency
NASA Astrophysics Data System (ADS)
Marston, Philip L.; Zhang, Likun
2014-11-01
The scattering of optical and acoustical beams is relevant to the levitation and manipulation of drops. Here we examine theoretical developments in the acoustical case. We previously showed how the optical theorem for extinction can be extended to invariant beams. The example of a sphere in a Bessel beam facilitates the direct comparison with a circular disc computed using Babinet's principle and the Kirchhoff approximation. In related work, by considering traveling or standing wave first-order vortex beams we previously showed that the radiation torque is the ratio of the absorbed power and the radian acoustic frequency. By modifying the scattering to account for the viscosity of the surrounding fluid in the analysis of the absorbed power, approximations for radiation torque and force are obtained at long wavelengths in special cases and these can be compared with results published elsewhere.
Electron collisions with small esters: A joint experimental-theoretical investigation
NASA Astrophysics Data System (ADS)
de Souza, G. L. C.; da Silva, L. A.; de Sousa, W. J. C.; Sugohara, R. T.; Iga, I.; dos Santos, A. S.; Machado, L. E.; Homem, M. G. P.; Brescansin, L. M.; Lucchese, R. R.; Lee, M.-T.
2016-03-01
A theoretical and experimental investigation on elastic electron scattering by two small esters, namely, methyl formate and ethyl acetate, is reported. Experimental differential, integral, and momentum-transfer cross sections are given in the 30-1000 eV and 10∘-120∘ ranges. The relative-flow technique was used to determine such quantities. Particularly for methyl formate, a theoretical study was also carried out in the 1-500 eV range. A complex optical potential derived from a Hartree-Fock molecular wave function was used to represent the collision dynamics, whereas the Padé approximation was used to solve the scattering equations. In addition, calculations based on the framework of the independent-atom model (IAM) were also performed for both targets. In general, there is good agreement between our experimental data and the present theoretical results calculated using the Padé approximation. The theoretical results using the IAM also agree well with the experimental data at 200 eV and above. Moreover, for methyl formate, our calculations reveal a 2A'' (π*) resonance at about 3.0 eV and a σ*-type resonance centered at about 8.0 eV in the 2A' scattering channel. The π* resonance is also seen in other targets containing a carbonyl group.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbosa, Alessandra Souza; Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica; Varella, Márcio T. do N.
2016-08-28
In this work, we report theoretical and experimental cross sections for elastic scattering of electrons by chlorobenzene (ClB). The theoretical integral and differential cross sections (DCSs) were obtained with the Schwinger multichannel method implemented with pseudopotentials (SMCPP) and the independent atom method with screening corrected additivity rule (IAM-SCAR). The calculations with the SMCPP method were done in the static-exchange (SE) approximation, for energies above 12 eV, and in the static-exchange plus polarization approximation, for energies up to 12 eV. The calculations with the IAM-SCAR method covered energies up to 500 eV. The experimental differential cross sections were obtained in themore » high resolution electron energy loss spectrometer VG-SEELS 400, in Lisbon, for electron energies from 8.0 eV to 50 eV and angular range from 7{sup ∘} to 110{sup ∘}. From the present theoretical integral cross section (ICS) we discuss the low-energy shape-resonances present in chlorobenzene and compare our computed resonance spectra with available electron transmission spectroscopy data present in the literature. Since there is no other work in the literature reporting differential cross sections for this molecule, we compare our theoretical and experimental DCSs with experimental data available for the parent molecule benzene.« less
Detailed Analysis of the Interoccurrence Time Statistics in Seismic Activity
NASA Astrophysics Data System (ADS)
Tanaka, Hiroki; Aizawa, Yoji
2017-02-01
The interoccurrence time statistics of seismiciry is studied theoretically as well as numerically by taking into account the conditional probability and the correlations among many earthquakes in different magnitude levels. It is known so far that the interoccurrence time statistics is well approximated by the Weibull distribution, but the more detailed information about the interoccurrence times can be obtained from the analysis of the conditional probability. Firstly, we propose the Embedding Equation Theory (EET), where the conditional probability is described by two kinds of correlation coefficients; one is the magnitude correlation and the other is the inter-event time correlation. Furthermore, the scaling law of each correlation coefficient is clearly determined from the numerical data-analysis carrying out with the Preliminary Determination of Epicenter (PDE) Catalog and the Japan Meteorological Agency (JMA) Catalog. Secondly, the EET is examined to derive the magnitude dependence of the interoccurrence time statistics and the multi-fractal relation is successfully formulated. Theoretically we cannot prove the universality of the multi-fractal relation in seismic activity; nevertheless, the theoretical results well reproduce all numerical data in our analysis, where several common features or the invariant aspects are clearly observed. Especially in the case of stationary ensembles the multi-fractal relation seems to obey an invariant curve, furthermore in the case of non-stationary (moving time) ensembles for the aftershock regime the multi-fractal relation seems to satisfy a certain invariant curve at any moving times. It is emphasized that the multi-fractal relation plays an important role to unify the statistical laws of seismicity: actually the Gutenberg-Richter law and the Weibull distribution are unified in the multi-fractal relation, and some universality conjectures regarding the seismicity are briefly discussed.
Differentiating among pragmatic uses of words through timed sensicality judgments.
Bambini, Valentina; Ghio, Marta; Moro, Andrea; Schumacher, Petra B
2013-01-01
Pragmatic and cognitive accounts of figurative language posit a difference between metaphor and metonymy in terms of underlying conceptual operations. Recently, other pragmatic uses of words have been accounted for in the Relevance Theory framework, such as approximation, described in terms of conceptual adjustment that varies in degree and direction with respect to the case of metaphor. Despite the theoretical distinctions, there is very poor experimental evidence addressing the metaphor/metonymy distinction, and none concerning approximation. Here we used meticulously built materials to investigate the interpretation mechanisms of these three phenomena through timed sensicality judgments. Results revealed that interpreting metaphors and approximations differs from literal interpretation both in accuracy and reaction times, with higher difficulty and costs for metaphors than for approximations. This suggests similar albeit gradual interpretative costs, in line with the latest account of Relevance Theory. Metonymy, on the contrary, almost equates literal comprehension and calls for a theoretical distinction from metaphor. Overall, this work represents a first attempt to provide an empirical basis for a theory-sound and psychologically-grounded taxonomy of figurative and loose uses of language.
Differentiating among pragmatic uses of words through timed sensicality judgments
Bambini, Valentina; Ghio, Marta; Moro, Andrea; Schumacher, Petra B.
2013-01-01
Pragmatic and cognitive accounts of figurative language posit a difference between metaphor and metonymy in terms of underlying conceptual operations. Recently, other pragmatic uses of words have been accounted for in the Relevance Theory framework, such as approximation, described in terms of conceptual adjustment that varies in degree and direction with respect to the case of metaphor. Despite the theoretical distinctions, there is very poor experimental evidence addressing the metaphor/metonymy distinction, and none concerning approximation. Here we used meticulously built materials to investigate the interpretation mechanisms of these three phenomena through timed sensicality judgments. Results revealed that interpreting metaphors and approximations differs from literal interpretation both in accuracy and reaction times, with higher difficulty and costs for metaphors than for approximations. This suggests similar albeit gradual interpretative costs, in line with the latest account of Relevance Theory. Metonymy, on the contrary, almost equates literal comprehension and calls for a theoretical distinction from metaphor. Overall, this work represents a first attempt to provide an empirical basis for a theory-sound and psychologically-grounded taxonomy of figurative and loose uses of language. PMID:24391608
Why Do Only Some Hyperopes Become Strabismic?
Babinsky, Erin; Candy, T. Rowan
2013-01-01
Children with hyperopia greater than +3.5 diopters (D) are at increased risk for developing refractive esotropia. However, only approximately 20% of these hyperopes develop strabismus. This review provides a systematic theoretical analysis of the accommodation and vergence oculomotor systems with a view to understanding factors that could either protect a hyperopic individual or precipitate a strabismus. The goal is to consider factors that may predict refractive esotropia in an individual and therefore help identify the subset of hyperopes who are at the highest risk for this strabismus, warranting the most consideration in a preventive effort PMID:23883788
Golas, Ewa I; Czaplewski, Cezary
2014-09-01
This work theoretically investigates the mechanical properties of a novel silk-derived biopolymer as polymerized in silico from sericin and elastin-like monomers. Molecular Dynamics simulations and Steered Molecular Dynamics were the principal computational methods used, the latter of which applies an external force onto the system and thereby enables an observation of its response to stress. The models explored herein are single-molecule approximations, and primarily serve as tools in a rational design process for the preliminary assessment of properties in a new material candidate. © 2014 Wiley Periodicals, Inc.
Polo, Jean David; De Castro, Alberto; Amarís, María
2015-01-01
This article is the result of integration between a theoretical analysis and a qualitative approximation to the field about the experience of well-being. It presents the results of an investigation and its principal purpose was to examine the state and experience of well-being in the professionals who support victims of political or familiar conflicts during their social-integration processes. For this purpose, the researchers approached lived discourses, analyzed the context of the participants in the investigation in order to clarify direct and subjective experiences.
First principle investigation of structural and optical properties of cubic titanium dioxide
NASA Astrophysics Data System (ADS)
Dash, Debashish; Chaudhury, Saurabh; Tripathy, Susanta K.
2018-05-01
This paper presents an analysis of structural and optical properties of cubic titanium dioxide (TiO2) using Orthogonalzed Linear Combinations of Atomic Orbitals (OLCAO) basis set under the framework of Density Functional Theory (DFT). The structural property, specially the lattice constant `a' and the optical properties such as refractive index, extinction coefficient, and reflectivity are investigated and discussed in the energy range of 0-16 eV. Further, the results have compared with previous theoretical as well as with experimental results. It was found that DFT based simulation results are approximation to experimental results.
A systematic study of mass spectra and strong decay of strange mesons
NASA Astrophysics Data System (ADS)
Pang, Cheng-Qun; Wang, Jun-Zhang; Liu, Xiang; Matsuki, Takayuki
2017-12-01
The mass spectrum of the kaon family is analyzed by the modified Godfrey-Isgur model with a color screening effect approximating the kaon as a heavy-light meson system. This analysis gives us the structure and possible assignments of the observed kaon candidates, which can be tested by comparing the theoretical results of their two-body strong decays with the experimental data. Additionally, prediction of some partial decay widths is made on the kaons still missing in experiment. This study is crucial to establishing the kaon family and searching for their higher excitations in the future.
Theoretical studies of solar-pumped lasers
NASA Technical Reports Server (NTRS)
Harries, W. L.
1982-01-01
Solar-pumped lasers were investigated by comparing experimental results from pulse experiments with steady state calculations. The time varying behavior of an IBr laser is studied. The analysis is only approximate, but indicates that conditions occurring in a pulsed experiment are quite different from those at steady state. The possibility of steady-state lasing in an IBr laser is determined. The effects of high temperatures on the quenching and recombination rates are examined. Although uncertainties in the values of the rate coefficients make it difficult to draw firm conclusions, it seems steady state running may be possible at high temperatures.
Transfer pricing in hospitals and efficiency of physicians: the case of anesthesia services.
Kuntz, Ludwig; Vera, Antonio
2005-01-01
The objective is to investigate theoretically and empirically how the efficiency of the physicians involved in anesthesia and surgery can be optimized by the introduction of transfer pricing for anesthesia services. The anesthesiology data of approximately 57,000 operations carried out at the University Hospital Hamburg-Eppendorf (UKE) in Germany in the period from 2000 to 2002 are analyzed using parametric and non-parametric methods. The principal finding of the empirical analysis is that the efficiency of the physicians involved in anesthesia and surgery at the UKE improved after the introduction of transfer pricing.
Low frequency acoustic and electromagnetic scattering
NASA Technical Reports Server (NTRS)
Hariharan, S. I.; Maccamy, R. C.
1986-01-01
This paper deals with two classes of problems arising from acoustics and electromagnetics scattering in the low frequency stations. The first class of problem is solving Helmholtz equation with Dirichlet boundary conditions on an arbitrary two dimensional body while the second one is an interior-exterior interface problem with Helmholtz equation in the exterior. Low frequency analysis show that there are two intermediate problems which solve the above problems accurate to 0(k/2/ log k) where k is the frequency. These solutions greatly differ from the zero frequency approximations. For the Dirichlet problem numerical examples are shown to verify the theoretical estimates.
Quasi-optical grids with thin rectangular patch/aperture elements
NASA Technical Reports Server (NTRS)
Wu, Te-Kao
1993-01-01
Theoretical analysis is presented for an efficient and accurate performance evaluation of quasi-optical grids comprised of thin rectangular patch/aperture elements with/without a dielectric substrate/superstrate. The convergence rate of this efficient technique is improved by an order of magnitude with the approximate edge conditions incorporated in the basis functions of the integral equation solution. Also presented are the interesting applications of this efficient analytical technique to the design and performance evaluation of the coupling grids and beam splitters in the optical systems as well as thermal protection sunshields used in the communication systems of satellites and spacecrafts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sokaras, D.; Andrianis, M.; Lagoyannis, A.
The cascade L-shell x-ray emission as an incident polarized and unpolarized monochromatic radiation overpass the 1s ionization threshold is investigated for the metallic Fe by means of moderate resolution, quantitative x-ray spectrometry. A full ab initio theoretical investigation of the L-shell x-ray emission processes is performed based on a detailed straightforward construction of the cascade decay trees within the Pauli-Fock approximation. The agreement obtained between experiments and the presented theory is indicated and discussed with respect to the accuracy of advanced atomic models as well as its significance for the characterization capabilities of x-ray fluorescence (XRF) analysis.
Potential benefits of remote sensing: Theoretical framework and empirical estimate
NASA Technical Reports Server (NTRS)
Eisgruber, L. M.
1972-01-01
A theoretical framwork is outlined for estimating social returns from research and application of remote sensing. The approximate dollar magnitude is given of a particular application of remote sensing, namely estimates of corn production, soybeans, and wheat. Finally, some comments are made on the limitations of this procedure and on the implications of results.
Isosinglet approximation for nonelastic reactions
NASA Technical Reports Server (NTRS)
Wilson, J. W.
1972-01-01
Group theoretic relations are derived between different combinations of projectile and secondary particles which appear to have a broad range of application in spacecraft shielding or radiation damage studies. These relations are used to reduce the experimental effort required to obtain nuclear reaction data for transport calculations. Implications for theoretical modeling are also noted, especially for heavy-heavy reactions.
Examining Theoretical Predictors of Substance Use among a Sample of Incarcerated Youth
ERIC Educational Resources Information Center
Cooper, Kelly; May, David; Soderstrom, Irina; Jarjoura, G. Roger
2009-01-01
A wide variety of theoretical perspectives have been found to have an association with substance abuse. Most of these studies use data from samples of public school students and thus capture only part of the youth population. Using data from approximately 800 delinquents incarcerated in a Midwestern state, we examine the association between…
A Taylor weak-statement algorithm for hyperbolic conservation laws
NASA Technical Reports Server (NTRS)
Baker, A. J.; Kim, J. W.
1987-01-01
Finite element analysis, applied to computational fluid dynamics (CFD) problem classes, presents a formal procedure for establishing the ingredients of a discrete approximation numerical solution algorithm. A classical Galerkin weak-statement formulation, formed on a Taylor series extension of the conservation law system, is developed herein that embeds a set of parameters eligible for constraint according to specification of suitable norms. The derived family of Taylor weak statements is shown to contain, as special cases, over one dozen independently derived CFD algorithms published over the past several decades for the high speed flow problem class. A theoretical analysis is completed that facilitates direct qualitative comparisons. Numerical results for definitive linear and nonlinear test problems permit direct quantitative performance comparisons.
Development and Initial Validation of the Multicultural Personality Inventory (MPI).
Ponterotto, Joseph G; Fietzer, Alexander W; Fingerhut, Esther C; Woerner, Scott; Stack, Lauren; Magaldi-Dopman, Danielle; Rust, Jonathan; Nakao, Gen; Tsai, Yu-Ting; Black, Natasha; Alba, Renaldo; Desai, Miraj; Frazier, Chantel; LaRue, Alyse; Liao, Pei-Wen
2014-01-01
Two studies summarize the development and initial validation of the Multicultural Personality Inventory (MPI). In Study 1, the 115-item prototype MPI was administered to 415 university students where exploratory factor analysis resulted in a 70-item, 7-factor model. In Study 2, the 70-item MPI and theoretically related companion instruments were administered to a multisite sample of 576 university students. Confirmatory factory analysis found the 7-factor structure to be a relatively good fit to the data (Comparative Fit Index =.954; root mean square error of approximation =.057), and MPI factors predicted variance in criterion variables above and beyond the variance accounted for by broad personality traits (i.e., Big Five). Study limitations and directions for further validation research are specified.
Integral criteria for large-scale multiple fingerprint solutions
NASA Astrophysics Data System (ADS)
Ushmaev, Oleg S.; Novikov, Sergey O.
2004-08-01
We propose the definition and analysis of the optimal integral similarity score criterion for large scale multmodal civil ID systems. Firstly, the general properties of score distributions for genuine and impostor matches for different systems and input devices are investigated. The empirical statistics was taken from the real biometric tests. Then we carry out the analysis of simultaneous score distributions for a number of combined biometric tests and primary for ultiple fingerprint solutions. The explicit and approximate relations for optimal integral score, which provides the least value of the FRR while the FAR is predefined, have been obtained. The results of real multiple fingerprint test show good correspondence with the theoretical results in the wide range of the False Acceptance and the False Rejection Rates.
Coherent population transfer in multilevel systems with magnetic sublevels. II. Algebraic analysis
NASA Astrophysics Data System (ADS)
Martin, J.; Shore, B. W.; Bergmann, K.
1995-07-01
We extend previous theoretical work on coherent population transfer by stimulated Raman adiabatic passage for states involving nonzero angular momentum. The pump and Stokes fields are either copropagating or counterpropagating with the corresponding linearly polarized electric-field vectors lying in a common plane with the magnetic-field direction. Zeeman splitting lifts the magnetic sublevel degeneracy. We present an algebraic analysis of dressed-state properties to explain the behavior noted in numerical studies. In particular, we discuss conditions which are likely to lead to a failure of complete population transfer. The applied strategy, based on simple methods of linear algebra, will also be successful for other types of discrete multilevel systems, provided the rotating-wave and adiabatic approximation are valid.
A Simple Model for Nonlinear Confocal Ultrasonic Beams
NASA Astrophysics Data System (ADS)
Zhang, Dong; Zhou, Lin; Si, Li-Sheng; Gong, Xiu-Fen
2007-01-01
A confocally and coaxially arranged pair of focused transmitter and receiver represents one of the best geometries for medical ultrasonic imaging and non-invasive detection. We develop a simple theoretical model for describing the nonlinear propagation of a confocal ultrasonic beam in biological tissues. On the basis of the parabolic approximation and quasi-linear approximation, the nonlinear Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation is solved by using the angular spectrum approach. Gaussian superposition technique is applied to simplify the solution, and an analytical solution for the second harmonics in the confocal ultrasonic beam is presented. Measurements are performed to examine the validity of the theoretical model. This model provides a preliminary model for acoustic nonlinear microscopy.
Investigations of quantum heuristics for optimization
NASA Astrophysics Data System (ADS)
Rieffel, Eleanor; Hadfield, Stuart; Jiang, Zhang; Mandra, Salvatore; Venturelli, Davide; Wang, Zhihui
We explore the design of quantum heuristics for optimization, focusing on the quantum approximate optimization algorithm, a metaheuristic developed by Farhi, Goldstone, and Gutmann. We develop specific instantiations of the of quantum approximate optimization algorithm for a variety of challenging combinatorial optimization problems. Through theoretical analyses and numeric investigations of select problems, we provide insight into parameter setting and Hamiltonian design for quantum approximate optimization algorithms and related quantum heuristics, and into their implementation on hardware realizable in the near term.
Shutin, Dmitriy; Zlobinskaya, Olga
2010-02-01
The goal of this contribution is to apply model-based information-theoretic measures to the quantification of relative differences between immunofluorescent signals. Several models for approximating the empirical fluorescence intensity distributions are considered, namely Gaussian, Gamma, Beta, and kernel densities. As a distance measure the Hellinger distance and the Kullback-Leibler divergence are considered. For the Gaussian, Gamma, and Beta models the closed-form expressions for evaluating the distance as a function of the model parameters are obtained. The advantages of the proposed quantification framework as compared to simple mean-based approaches are analyzed with numerical simulations. Two biological experiments are also considered. The first is the functional analysis of the p8 subunit of the TFIIH complex responsible for a rare hereditary multi-system disorder--trichothiodystrophy group A (TTD-A). In the second experiment the proposed methods are applied to assess the UV-induced DNA lesion repair rate. A good agreement between our in vivo results and those obtained with an alternative in vitro measurement is established. We believe that the computational simplicity and the effectiveness of the proposed quantification procedure will make it very attractive for different analysis tasks in functional proteomics, as well as in high-content screening. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Kaufman, Yoram J.; Gobron, Nadine; Pinty, Bernard; Widlowski, Jean-Luc; Verstraete, Michel M.; Lau, William K. M. (Technical Monitor)
2001-01-01
The analysis of data from the MODIS instrument on the Terra platform to derive global distribution of aerosols assumes a set of relationships between the blue, rho (sub blue), the red, rho (sub red), and 2.1 micrometers, rho (sub 2.1), spectral channels. These relations have been established from a series of measurements indicating that rho (sub blue) approximately 0.5 rho (sub red) approximately 0.25 rho (sub 2.1). Here we use a model to describe the transfer of radiation through a vegetation canopy composed of randomly oriented leaves to assess the theoretical foundations for these relationships. The influence of varying fractional vegetation coverage is simulated simply as a linear combination of pure soil and pure vegetation conditions, also known as Independent Pixel Approximation (IPA). Calculations for a wide range of leaf area indices and vegetation fractions show that rho (sub blue) is consistently about 1/4 of rho (sub 2.1) as used by MODIS for the whole range of analyzed cases, except for very dark soils, such as those found in burn scars. For its part, the ratio rho (sub red)/rho (sub 2.1) varies from less than the empirically derived value of 1/2 for dense and dark vegetation (rho (sub 2.1) less than 0.1), to more than 1/2 for bright mixture of soil and vegetation. This is in agreement with measurements over uniform dense vegetation, but not with measurements over mixed dark scenes. In the later case, the discrepancy is probably mitigated by shadows due to uneven canopy and terrain on a large scale. It is concluded that the value of this ratio should ideally be made dependent on the land cover type in the operational processing of MODIS data, especially over dense forests.
NASA Astrophysics Data System (ADS)
Shi, Fan; Lowe, Mike; Craster, Richard
2017-06-01
Elastic waves scattered by random rough interfaces separating two distinct media play an important role in modeling phonon scattering and impact upon thermal transport models, and are also integral to ultrasonic inspection. We introduce theoretical formulas for the diffuse field of elastic waves scattered by, and transmitted across, random rough solid-solid interfaces using the elastodynamic Kirchhoff approximation. The new formulas are validated by comparison with numerical Monte Carlo simulations, for a wide range of roughness (rms σ ≤λ /3 , correlation length λ0≥ wavelength λ ), demonstrating a significant improvement over the widely used small-perturbation approach, which is valid only for surfaces with small rms values. Physical analysis using the theoretical formulas derived here demonstrates that increasing the rms value leads to a considerable change of the scattering patterns for each mode. The roughness has different effects on the reflection and the transmission, with a strong dependence on the material properties. In the special case of a perfect match of the wave speed of the two solid media, the transmission is the same as the case for a flat interface. We pay particular attention to scattering in the specular direction, often used as an observable quantity, in terms of the roughness parameters, showing a peak at an intermediate value of rms; this rms value coincides with that predicted by the Rayleigh parameter.
Compressive deformation of a single microcapsule
NASA Astrophysics Data System (ADS)
Liu, K. K.; Williams, D. R.; Briscoe, B. J.
1996-12-01
This paper reports an experimental and theoretical study of the compressive behavior of single microcapsules; that is, liquid-filled cellular entities (approximately 65 μm in diameter) with a thin polymeric membrane wall. An experimental technique which allows the simultaneous measurement of both the compressive displacement and the reaction forces of individual microcapsules deformed between two parallel plates up to a dimensionless approach [(compressive displacement)/(initial particle diameter)] of 60% is described. The corresponding major geometric parameters of the deformed microcapsule, such as central lateral extension as well as the failure phenomena, are reported and recorded through a microscopic visualization system. The elastic modulus, the bursting strength of the membrane, and the pressure difference across the membrane are computed by using a theoretical analysis which is also presented in this paper. This theoretical model, which was developed by Feng and Yang [
Theoretical and experimental study of fenofibrate and simvastatin
NASA Astrophysics Data System (ADS)
Nicolás Vázquez, Inés; Rodríguez-Núñez, Jesús Rubén; Peña-Caballero, Vicente; Ruvalcaba, Rene Miranda; Aceves-Hernandez, Juan Manuel
2017-12-01
Fenofibrate, an oral fibrate lipid lowering agent, and simvastatin, which reduces plasma levels of low-density lipoprotein cholesterol, are active pharmaceutical ingredients (APIs), currently in the market. We characterized these APIs by thermal analysis and conducted X-ray powder diffraction techniques. Studies should be carried out in the formulation stage before the final composition of a polypill may be established. Thus, it was found in thermochemical studies that both compounds present no chemical interactions in an equimolar mixture of solid samples at room temperature. Theoretical studies were employed to determine possible interactions between fenofibrate and simvastatin. A very weak intramolecular hydrogen bond is formed between the hydroxyl group (O5H5) of the simvastatin with chlorine and carbonyl group (C11O4, C1O2) of the fenofibrate molecule. These weak energy hydrogen bonds have no effect on the chemical stability of the compounds studied. The results were obtained using Density Functional Theory methods; particularly the BPE1BPE and B3LYP functional and 6-31++G** basis set. The values of energy show good approximation when are compared with similar calculations previously reported. Infrared spectra of monomers and dimers were obtained via theoretical calculations.
Statistically significant relational data mining :
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berry, Jonathan W.; Leung, Vitus Joseph; Phillips, Cynthia Ann
This report summarizes the work performed under the project (3z(BStatitically significant relational data mining.(3y (BThe goal of the project was to add more statistical rigor to the fairly ad hoc area of data mining on graphs. Our goal was to develop better algorithms and better ways to evaluate algorithm quality. We concetrated on algorithms for community detection, approximate pattern matching, and graph similarity measures. Approximate pattern matching involves finding an instance of a relatively small pattern, expressed with tolerance, in a large graph of data observed with uncertainty. This report gathers the abstracts and references for the eight refereed publicationsmore » that have appeared as part of this work. We then archive three pieces of research that have not yet been published. The first is theoretical and experimental evidence that a popular statistical measure for comparison of community assignments favors over-resolved communities over approximations to a ground truth. The second are statistically motivated methods for measuring the quality of an approximate match of a small pattern in a large graph. The third is a new probabilistic random graph model. Statisticians favor these models for graph analysis. The new local structure graph model overcomes some of the issues with popular models such as exponential random graph models and latent variable models.« less
Performance evaluation of digital phase-locked loops for advanced deep space transponders
NASA Technical Reports Server (NTRS)
Nguyen, T. M.; Hinedi, S. M.; Yeh, H.-G.; Kyriacou, C.
1994-01-01
The performances of the digital phase-locked loops (DPLL's) for the advanced deep-space transponders (ADT's) are investigated. DPLL's considered in this article are derived from the analog phase-locked loop, which is currently employed by the NASA standard deep space transponder, using S-domain to Z-domain mapping techniques. Three mappings are used to develop digital approximations of the standard deep space analog phase-locked loop, namely the bilinear transformation (BT), impulse invariant transformation (IIT), and step invariant transformation (SIT) techniques. The performance in terms of the closed loop phase and magnitude responses, carrier tracking jitter, and response of the loop to the phase offset (the difference between in incoming phase and reference phase) is evaluated for each digital approximation. Theoretical results of the carrier tracking jitter for command-on and command-off cases are then validated by computer simulation. Both theoretical and computer simulation results show that at high sampling frequency, the DPLL's approximated by all three transformations have the same tracking jitter. However, at low sampling frequency, the digital approximation using BT outperforms the others. The minimum sampling frequency for adequate tracking performance is determined for each digital approximation of the analog loop. In addition, computer simulation shows that the DPLL developed by BT provides faster response to the phase offset than IIT and SIT.
Theoretical Foundation of Zisman's Empirical Equation for Wetting of Liquids on Solid Surfaces
ERIC Educational Resources Information Center
Zhu, Ruzeng; Cui, Shuwen; Wang, Xiaosong
2010-01-01
Theories of wetting of liquids on solid surfaces under the condition that van der Waals force is dominant are briefly reviewed. We show theoretically that Zisman's empirical equation for wetting of liquids on solid surfaces is a linear approximation of the Young-van der Waals equation in the wetting region, and we express the two parameters in…
Champion, Christophe; Quinto, Michele A.; Bug, Marion U.; ...
2014-07-29
Electron-induced ionization of the commonly used surrogate of the DNA sugar-phosphate backbone, namely, the tetrahydrofuran molecule, is here theoretically described within the 1 st Born approximation by means of quantum-mechanical approach. Comparisons between theory and recent experiments are reported in terms of doubly and singly differential cross sections.
Li, Tsung-Lung; Lu, Wen-Cai
2015-10-05
In this work, Koopmans' theorem for Kohn-Sham density functional theory (KS-DFT) is applied to the photoemission spectra (PES) modeling over the entire valence-band. To examine the validity of this application, a PES modeling scheme is developed to facilitate a full valence-band comparison of theoretical PES spectra with experiments. The PES model incorporates the variations of electron ionization cross-sections over atomic orbitals and a linear dispersion of spectral broadening widths. KS-DFT simulations of pristine rubrene (5,6,11,12-tetraphenyltetracene) and potassium-rubrene complex are performed, and the simulation results are used as the input to the PES models. Two conclusions are reached. First, decompositions of the theoretical total spectra show that the dissociated electron of the potassium mainly remains on the backbone and has little effect on the electronic structures of phenyl side groups. This and other electronic-structure results deduced from the spectral decompositions have been qualitatively obtained with the anionic approximation to potassium-rubrene complexes. The qualitative validity of the anionic approximation is thus verified. Second, comparison of the theoretical PES with the experiments shows that the full-scale simulations combined with the PES modeling methods greatly enhance the agreement on spectral shapes over the anionic approximation. This agreement of the theoretical PES spectra with the experiments over the full valence-band can be regarded, to some extent, as a collective validation of the application of Koopmans' theorem for KS-DFT to valence-band PES, at least, for this hydrocarbon and its alkali-adsorbed complex. Copyright © 2015 Elsevier B.V. All rights reserved.
Kia, Seyed Mostafa; Vega Pons, Sandro; Weisz, Nathan; Passerini, Andrea
2016-01-01
Brain decoding is a popular multivariate approach for hypothesis testing in neuroimaging. Linear classifiers are widely employed in the brain decoding paradigm to discriminate among experimental conditions. Then, the derived linear weights are visualized in the form of multivariate brain maps to further study spatio-temporal patterns of underlying neural activities. It is well known that the brain maps derived from weights of linear classifiers are hard to interpret because of high correlations between predictors, low signal to noise ratios, and the high dimensionality of neuroimaging data. Therefore, improving the interpretability of brain decoding approaches is of primary interest in many neuroimaging studies. Despite extensive studies of this type, at present, there is no formal definition for interpretability of multivariate brain maps. As a consequence, there is no quantitative measure for evaluating the interpretability of different brain decoding methods. In this paper, first, we present a theoretical definition of interpretability in brain decoding; we show that the interpretability of multivariate brain maps can be decomposed into their reproducibility and representativeness. Second, as an application of the proposed definition, we exemplify a heuristic for approximating the interpretability in multivariate analysis of evoked magnetoencephalography (MEG) responses. Third, we propose to combine the approximated interpretability and the generalization performance of the brain decoding into a new multi-objective criterion for model selection. Our results, for the simulated and real MEG data, show that optimizing the hyper-parameters of the regularized linear classifier based on the proposed criterion results in more informative multivariate brain maps. More importantly, the presented definition provides the theoretical background for quantitative evaluation of interpretability, and hence, facilitates the development of more effective brain decoding algorithms in the future.
Analytical analysis of the temporal asymmetry between seawater intrusion and retreat
NASA Astrophysics Data System (ADS)
Rathore, Saubhagya Singh; Zhao, Yue; Lu, Chunhui; Luo, Jian
2018-01-01
The quantification of timescales associated with the movement of the seawater-freshwater interface is useful for developing effective management strategies for controlling seawater intrusion (SWI). In this study, for the first time, we derive an explicit analytical solution for the timescales of SWI and seawater retreat (SWR) in a confined, homogeneous coastal aquifer system under the quasi-steady assumption, based on a classical sharp-interface solution for approximating freshwater outflow rates into the sea. The flow continuity and hydrostatic equilibrium across the interface are identified as two primary mechanisms governing timescales of the interface movement driven by an abrupt change in discharge rates or hydraulic heads at the inland boundary. Through theoretical analysis, we quantified the dependence of interface-movement timescales on porosity, hydraulic conductivity, aquifer thickness, aquifer length, density ratio, and boundary conditions. Predictions from the analytical solution closely agreed with those from numerical simulations. In addition, we define a temporal asymmetry index (the ratio of the SWI timescale to the SWR timescale) to represent the resilience of the coastal aquifer in response to SWI. The developed analytical solutions provide a simple tool for the quick assessment of SWI and SWR timescales and reveal that the temporal asymmetry between SWI and SWR mainly relies on the initial and final values of the freshwater flux at the inland boundary, and is weakly affected by aquifer parameters. Furthermore, we theoretically examined the log-linearity relationship between the timescale and the freshwater flux at the inland boundary, and found that the relationship may be approximated by two linear functions with a slope of -2 and -1 for large changes at the boundary flux for SWI and SWR, respectively.
Kia, Seyed Mostafa; Vega Pons, Sandro; Weisz, Nathan; Passerini, Andrea
2017-01-01
Brain decoding is a popular multivariate approach for hypothesis testing in neuroimaging. Linear classifiers are widely employed in the brain decoding paradigm to discriminate among experimental conditions. Then, the derived linear weights are visualized in the form of multivariate brain maps to further study spatio-temporal patterns of underlying neural activities. It is well known that the brain maps derived from weights of linear classifiers are hard to interpret because of high correlations between predictors, low signal to noise ratios, and the high dimensionality of neuroimaging data. Therefore, improving the interpretability of brain decoding approaches is of primary interest in many neuroimaging studies. Despite extensive studies of this type, at present, there is no formal definition for interpretability of multivariate brain maps. As a consequence, there is no quantitative measure for evaluating the interpretability of different brain decoding methods. In this paper, first, we present a theoretical definition of interpretability in brain decoding; we show that the interpretability of multivariate brain maps can be decomposed into their reproducibility and representativeness. Second, as an application of the proposed definition, we exemplify a heuristic for approximating the interpretability in multivariate analysis of evoked magnetoencephalography (MEG) responses. Third, we propose to combine the approximated interpretability and the generalization performance of the brain decoding into a new multi-objective criterion for model selection. Our results, for the simulated and real MEG data, show that optimizing the hyper-parameters of the regularized linear classifier based on the proposed criterion results in more informative multivariate brain maps. More importantly, the presented definition provides the theoretical background for quantitative evaluation of interpretability, and hence, facilitates the development of more effective brain decoding algorithms in the future. PMID:28167896
Li, Yue; Jha, Devesh K; Ray, Asok; Wettergren, Thomas A; Yue Li; Jha, Devesh K; Ray, Asok; Wettergren, Thomas A; Wettergren, Thomas A; Li, Yue; Ray, Asok; Jha, Devesh K
2018-06-01
This paper presents information-theoretic performance analysis of passive sensor networks for detection of moving targets. The proposed method falls largely under the category of data-level information fusion in sensor networks. To this end, a measure of information contribution for sensors is formulated in a symbolic dynamics framework. The network information state is approximately represented as the largest principal component of the time series collected across the network. To quantify each sensor's contribution for generation of the information content, Markov machine models as well as x-Markov (pronounced as cross-Markov) machine models, conditioned on the network information state, are constructed; the difference between the conditional entropies of these machines is then treated as an approximate measure of information contribution by the respective sensors. The x-Markov models represent the conditional temporal statistics given the network information state. The proposed method has been validated on experimental data collected from a local area network of passive sensors for target detection, where the statistical characteristics of environmental disturbances are similar to those of the target signal in the sense of time scale and texture. A distinctive feature of the proposed algorithm is that the network decisions are independent of the behavior and identity of the individual sensors, which is desirable from computational perspectives. Results are presented to demonstrate the proposed method's efficacy to correctly identify the presence of a target with very low false-alarm rates. The performance of the underlying algorithm is compared with that of a recent data-driven, feature-level information fusion algorithm. It is shown that the proposed algorithm outperforms the other algorithm.
Surface Segregation Energies of BCC Binaries from Ab Initio and Quantum Approximate Calculations
NASA Technical Reports Server (NTRS)
Good, Brian S.
2003-01-01
We compare dilute-limit segregation energies for selected BCC transition metal binaries computed using ab initio and quantum approximate energy method. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent parameterization. Quantum approximate segregation energies are computed with and without atomistic relaxation. The ab initio calculations are performed without relaxation for the most part, but predicted relaxations from quantum approximate calculations are used in selected cases to compute approximate relaxed ab initio segregation energies. Results are discussed within the context of segregation models driven by strain and bond-breaking effects. We compare our results with other quantum approximate and ab initio theoretical work, and available experimental results.
Low-energy Scattering of Positronium by Atoms
NASA Technical Reports Server (NTRS)
Ray, Hasi
2007-01-01
The survey reports theoretical studies involving positronium (Ps) - atom scattering. Investigations carried out in last few decades have been briefly reviewed in this article. A brief description of close-coupling approximation (CCA), the first-Born approximation (FBA) and the Born-Oppenheimer approximation (BOA) for Ps-Atom systems are made. The CCA codes of Ray et a1 [1-6] are reinvestigated using very fine mesh-points to search for resonances. The article advocates the need for an extended basis set & a systematic study using CCAs.
Sandoval-Castellanos, Edson; Palkopoulou, Eleftheria; Dalén, Love
2014-01-01
Inference of population demographic history has vastly improved in recent years due to a number of technological and theoretical advances including the use of ancient DNA. Approximate Bayesian computation (ABC) stands among the most promising methods due to its simple theoretical fundament and exceptional flexibility. However, limited availability of user-friendly programs that perform ABC analysis renders it difficult to implement, and hence programming skills are frequently required. In addition, there is limited availability of programs able to deal with heterochronous data. Here we present the software BaySICS: Bayesian Statistical Inference of Coalescent Simulations. BaySICS provides an integrated and user-friendly platform that performs ABC analyses by means of coalescent simulations from DNA sequence data. It estimates historical demographic population parameters and performs hypothesis testing by means of Bayes factors obtained from model comparisons. Although providing specific features that improve inference from datasets with heterochronous data, BaySICS also has several capabilities making it a suitable tool for analysing contemporary genetic datasets. Those capabilities include joint analysis of independent tables, a graphical interface and the implementation of Markov-chain Monte Carlo without likelihoods.
The global contribution of energy consumption by product exports from China.
Tang, Erzi; Peng, Chong
2017-06-01
This paper presents a model to analyze the mechanism of the global contribution of energy usage by product exports. The theoretical analysis is based on the perspective that contribution estimates should be in relatively smaller sectors in which the production characteristics could be considered, such as the productivity distribution for each sector. Then, we constructed a method to measure the global contribution of energy usage. The simple method to estimate the global contribution is the percentage of goods export volume compared to the GDP as a multiple of total energy consumption, but this method underestimates the global contribution because it ignores the structure of energy consumption and product export in China. According to our measurement method and based on the theoretical analysis, we calculated the global contribution of energy consumption only by industrial manufactured product exports in a smaller sector per industry or manufacturing sector. The results indicated that approximately 42% of the total energy usage in the whole economy for China in 2013 was contributed to foreign regions. Along with the primary products and service export in China, the global contribution of energy consumption for China in 2013 by export was larger than 42% of the total energy usage.
A roadmap for optimal control: the right way to commute.
Ross, I Michael
2005-12-01
Optimal control theory is the foundation for many problems in astrodynamics. Typical examples are trajectory design and optimization, relative motion control of distributed space systems and attitude steering. Many such problems in astrodynamics are solved by an alternative route of mathematical analysis and deep physical insight, in part because of the perception that an optimal control framework generates hard problems. Although this is indeed true of the Bellman and Pontryagin frameworks, the covector mapping principle provides a neoclassical approach that renders hard problems easy. That is, although the origins of this philosophy can be traced back to Bernoulli and Euler, it is essentially modern as a result of the strong linkage between approximation theory, set-valued analysis and computing technology. Motivated by the broad success of this approach, mission planners are now conceiving and demanding higher performance from space systems. This has resulted in new set of theoretical and computational problems. Recently, under the leadership of NASA-GRC, several workshops were held to address some of these problems. This paper outlines the theoretical issues stemming from practical problems in astrodynamics. Emphasis is placed on how it pertains to advanced mission design problems.
Validating experimental and theoretical Langmuir probe analyses
NASA Astrophysics Data System (ADS)
Pilling, L. S.; Carnegie, D. A.
2007-08-01
Analysis of Langmuir probe characteristics contains a paradox in that it is unknown a priori which theory is applicable before it is applied. Often theories are assumed to be correct when certain criteria are met although they may not validate the approach used. We have analysed the Langmuir probe data from cylindrical double and single probes acquired from a dc discharge plasma over a wide variety of conditions. This discharge contains a dual-temperature distribution and hence fitting a theoretically generated curve is impractical. To determine the densities, an examination of the current theories was necessary. For the conditions where the probe radius is the same order of magnitude as the Debye length, the gradient expected for orbital-motion limited (OML) is approximately the same as the radial-motion gradients. An analysis of the 'gradients' from the radial-motion theory was able to resolve the differences from the OML gradient value of two. The method was also able to determine whether radial or OML theories applied without knowledge of the electron temperature, or separation of the ion and electron contributions. Only the value of the space potential is necessary to determine the applicable theory.
NASA Astrophysics Data System (ADS)
Kim, Min Chan
2014-11-01
To simulate a CO2 sequestration process, some researchers employed a water/propylene glycol (PPG) system which shows a non-monotonic density profile. Motivated by this fact, the stability of the diffusion layer of two miscible fluids saturated in a porous medium is analyzed. For a non-monotonic density profile system, linear stability equations are derived in a global domain, and then transformed into a system of ordinary differential equations in an infinite domain. Initial growth rate analysis is conducted without the quasi-steady state approximation (QSSA) and shows that initially the system is unconditionally stable for the least stable disturbance. For the time evolving case, the ordinary differential equations are solved applying the eigen-analysis and numerical shooting scheme with and without the QSSA. To support these theoretical results, direct numerical simulations are conducted using the Fourier spectral method. The results of theoretical linear stability analyses and numerical simulations validate one another. The present linear and nonlinear analyses show that the water/PPG system is more unstable than the CO2/brine one, and the flow characteristics of these two systems are quite different from each other.
Testolin, C G; Gore, R; Rivkin, T; Horlick, M; Arbo, J; Wang, Z; Chiumello, G; Heymsfield, S B
2000-12-01
Dual-energy X-ray absorptiometry (DXA) percent (%) fat estimates may be inaccurate in young children, who typically have high tissue hydration levels. This study was designed to provide a comprehensive analysis of pediatric tissue hydration effects on DXA %fat estimates. Phase 1 was experimental and included three in vitro studies to establish the physical basis of DXA %fat-estimation models. Phase 2 extended phase 1 models and consisted of theoretical calculations to estimate the %fat errors emanating from previously reported pediatric hydration effects. Phase 1 experiments supported the two-compartment DXA soft tissue model and established that pixel ratio of low to high energy (R values) are a predictable function of tissue elemental content. In phase 2, modeling of reference body composition values from birth to age 120 mo revealed that %fat errors will arise if a "constant" adult lean soft tissue R value is applied to the pediatric population; the maximum %fat error, approximately 0.8%, would be present at birth. High tissue hydration, as observed in infants and young children, leads to errors in DXA %fat estimates. The magnitude of these errors based on theoretical calculations is small and may not be of clinical or research significance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kopec, Sabine; Köppel, Horst; Ottiger, Philipp
2015-02-28
The S{sub 2}←S{sub 0} vibronic spectrum of the ortho-cyanophenol dimer (oCP){sub 2} is analyzed in a joint experimental and theoretical investigation. Vibronic excitation energies up to 750 cm{sup −1} are covered, which extends our previous analysis of the quenching of the excitonic splitting in this and related species [Kopec et al., J. Chem. Phys. 137, 184312 (2012)]. As we demonstrate, this necessitates an extension of the coupling model. Accordingly, we compute the potential energy surfaces of the ortho-cyanophenol dimer (oCP){sub 2} along all relevant normal modes using the approximate second-order coupled cluster method RI-CC2 and extract the corresponding coupling constantsmore » using the linear and quadratic vibronic coupling scheme. These serve as the basis to calculate the vibronic spectrum. The theoretical results are found to be in good agreement with the experimental highly resolved resonant two-photon ionization spectrum. This allows to interpret key features of the excitonic and vibronic interactions in terms of nodal patterns of the underlying vibronic wave functions.« less
The motion of bubbles inside drops in containerless processing
NASA Technical Reports Server (NTRS)
Shankar, N.; Annamalai, P.; Cole, R.; Subramanian, R. S.
1982-01-01
A theoretical model of thermocapillary bubble motion inside a drop, located in a space laboratory, due to an arbitrary axisymmetric temperature distribution on the drop surface was constructed. Typical results for the stream function and temperature fields as well as the migration velocity of the bubble were obtained in the quasistatic limit. The motion of bubbles in a rotating body of liquid was studied experimentally, and an approximate theoretical model was developed. Comparison of the experimental observations of the bubble trajectories and centering times with theoretical predictions lends qualified support to the theory.
NASA Astrophysics Data System (ADS)
Wang, Y. Z.; Wang, B.; Xiong, X. M.; Zhang, J. X.
2011-03-01
In many previous research work associated with studying the deformation of the fluid interface interacting with a solid, the theoretical calculation of the surface energy density on the deformed fluid interface (or its interaction surface pressure) is often approximately obtained by using the expression for the interaction energy per unit area (or pressure) between two parallel macroscopic plates, e.g. σ(D) = - A / 12 πD2or π(D) = - A / 6 πD3for the van der Waals (vdW) interaction, through invoking the Derjaguin approximation (DA). This approximation however would result in over- or even inaccurate-prediction of the interaction force and the corresponding deformation of the fluid interface due to the invalidation of Derjaguin approximation in cases of microscopic or submacroscopic solids. To circumvent the above limitations existing in the previous DA-based theoretical work, a more accurate and quantitative theoretical model, available for exactly calculating the vdW-induced deformation of a planar fluid interface interacting with a sphere, and the interaction forces taking into account its change, is presented in this paper. The validity and advantage of the new mathematical and physical technique is rigorously verified by comparison with the numerical results on basis of the previous Paraboloid solid (PS) model and the Hamaker's sphere-flat expression (viz. F = - 2 Aa3 / (3 D2( D + 2 a) 2)), as well as its well-known DA-based general form of F / a = - A / 6z p02.
The post-buckling behavior of a beam constrained by springy walls
NASA Astrophysics Data System (ADS)
Katz, Shmuel; Givli, Sefi
2015-05-01
The post-buckling behavior of a beam subjected to lateral constraints is of practical importance in a variety of applications, such as stent procedures, filopodia growth in living cells, endoscopic examination of internal organs, and deep drilling. Even though in reality the constraining surfaces are often deformable, the literature has focused mainly on rigid and fixed constraints. In this paper, we make a first step to bridge this gap through a theoretical and experimental examination of the post-buckling behavior of a beam constrained by a fixed wall and a springy wall, i.e. one that moves laterally against a spring. The response exhibited by the proposed system is much richer compared to that of the fixed-wall system, and can be tuned by choosing the spring stiffness. Based on small-deformation analysis, we obtained closed-form analytical solutions and quantitative insights. The accuracy of these results was examined by comparison to large-deformation analysis. We concluded that the closed-form solution of the small-deformation analysis provides an excellent approximation, except in the highest attainable mode. There, the system exhibits non-intuitive behavior and non-monotonous force-displacement relations that can only be captured by large-deformation theories. Although closed-form solutions cannot be derived for the large-deformation analysis, we were able to reveal general properties of the solution. In the last part of the paper, we present experimental results that demonstrate various features obtained from the theoretical analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Kong Ooi; Meier, Beat H., E-mail: beme@ethz.ch, E-mail: maer@ethz.ch; Ernst, Matthias, E-mail: beme@ethz.ch, E-mail: maer@ethz.ch
2016-09-07
We present a generalized theoretical framework that allows the approximate but rapid analysis of residual couplings of arbitrary decoupling sequences in solid-state NMR under magic-angle spinning conditions. It is a generalization of the tri-modal Floquet analysis of TPPM decoupling [Scholz et al., J. Chem. Phys. 130, 114510 (2009)] where three characteristic frequencies are used to describe the pulse sequence. Such an approach can be used to describe arbitrary periodic decoupling sequences that differ only in the magnitude of the Fourier coefficients of the interaction-frame transformation. It allows a ∼100 times faster calculation of second-order residual couplings as a function ofmore » pulse sequence parameters than full spin-dynamics simulations. By comparing the theoretical calculations with full numerical simulations, we show the potential of the new approach to examine the performance of decoupling sequences. We exemplify the usefulness of this framework by analyzing the performance of commonly used high-power decoupling sequences and low-power decoupling sequences such as amplitude-modulated XiX (AM-XiX) and its super-cycled variant SC-AM-XiX. In addition, the effect of chemical-shift offset is examined for both high- and low-power decoupling sequences. The results show that the cross-terms between the dipolar couplings are the main contributions to the line broadening when offset is present. We also show that the SC-AM-XIX shows a better offset compensation.« less
Tan, Kong Ooi; Agarwal, Vipin; Meier, Beat H; Ernst, Matthias
2016-09-07
We present a generalized theoretical framework that allows the approximate but rapid analysis of residual couplings of arbitrary decoupling sequences in solid-state NMR under magic-angle spinning conditions. It is a generalization of the tri-modal Floquet analysis of TPPM decoupling [Scholz et al., J. Chem. Phys. 130, 114510 (2009)] where three characteristic frequencies are used to describe the pulse sequence. Such an approach can be used to describe arbitrary periodic decoupling sequences that differ only in the magnitude of the Fourier coefficients of the interaction-frame transformation. It allows a ∼100 times faster calculation of second-order residual couplings as a function of pulse sequence parameters than full spin-dynamics simulations. By comparing the theoretical calculations with full numerical simulations, we show the potential of the new approach to examine the performance of decoupling sequences. We exemplify the usefulness of this framework by analyzing the performance of commonly used high-power decoupling sequences and low-power decoupling sequences such as amplitude-modulated XiX (AM-XiX) and its super-cycled variant SC-AM-XiX. In addition, the effect of chemical-shift offset is examined for both high- and low-power decoupling sequences. The results show that the cross-terms between the dipolar couplings are the main contributions to the line broadening when offset is present. We also show that the SC-AM-XIX shows a better offset compensation.
Timing analysis by model checking
NASA Technical Reports Server (NTRS)
Naydich, Dimitri; Guaspari, David
2000-01-01
The safety of modern avionics relies on high integrity software that can be verified to meet hard real-time requirements. The limits of verification technology therefore determine acceptable engineering practice. To simplify verification problems, safety-critical systems are commonly implemented under the severe constraints of a cyclic executive, which make design an expensive trial-and-error process highly intolerant of change. Important advances in analysis techniques, such as rate monotonic analysis (RMA), have provided a theoretical and practical basis for easing these onerous restrictions. But RMA and its kindred have two limitations: they apply only to verifying the requirement of schedulability (that tasks meet their deadlines) and they cannot be applied to many common programming paradigms. We address both these limitations by applying model checking, a technique with successful industrial applications in hardware design. Model checking algorithms analyze finite state machines, either by explicit state enumeration or by symbolic manipulation. Since quantitative timing properties involve a potentially unbounded state variable (a clock), our first problem is to construct a finite approximation that is conservative for the properties being analyzed-if the approximation satisfies the properties of interest, so does the infinite model. To reduce the potential for state space explosion we must further optimize this finite model. Experiments with some simple optimizations have yielded a hundred-fold efficiency improvement over published techniques.
Probability density function learning by unsupervised neurons.
Fiori, S
2001-10-01
In a recent work, we introduced the concept of pseudo-polynomial adaptive activation function neuron (FAN) and presented an unsupervised information-theoretic learning theory for such structure. The learning model is based on entropy optimization and provides a way of learning probability distributions from incomplete data. The aim of the present paper is to illustrate some theoretical features of the FAN neuron, to extend its learning theory to asymmetrical density function approximation, and to provide an analytical and numerical comparison with other known density function estimation methods, with special emphasis to the universal approximation ability. The paper also provides a survey of PDF learning from incomplete data, as well as results of several experiments performed on real-world problems and signals.
Study of the zinc-silver oxide battery system
NASA Technical Reports Server (NTRS)
Nanis, L.
1973-01-01
Theoretical and experimental models for the evaluation of current distribution in flooded, porous electrodes are discussed. An approximation for the local current distribution function was derived for conditions of a linear overpotential, a uniform concentration, and a very conductive matrix. By considering the porous electrode to be an analog of chemical catalyst structures, a dimensionless performance parameter was derived from the approximated current distribution function. In this manner the electrode behavior was characterized in terms of an electrochemical Thiele parameter and an effectiveness factor. It was shown that the electrochemical engineering approach makes possible the organizations of theoretical descriptions and of practical experience in the form of dimensionless parameters, such as the electrochemical Thiele parameters, and hence provides useful information for the design of new electrochemical systems.
Electronic and magnetic properties of NiS2, NiSSe and NiSe2 by a combination of theoretical methods
NASA Astrophysics Data System (ADS)
Schuster, Cosima; Gatti, Matteo; Rubio, Angel
2012-09-01
We investigate the electronic and magnetic properties of NiS2, which, by varying the chemical composition substituting S by Se atoms or applying pressure, can be driven across various electronic and magnetic phase transitions. By combining several theoretical methods, we highlight the different role played by the chalcogen dimers and the volume compression in determining the phase transitions, through variations of the chalcogen p bonding-antibonding gap, the crystal-field splitting and the broadening of the bandwidths. While the generalized gradient approximation (GGA) of density-functional theory fails to reproduce the insulating nature of NiS2, it describes well the magnetic boundaries of the phase diagram. The large GGA delocalization error is corrected to a large extent by the use of GGA + U, hybrid functionals or the self-consistent COHSEX + GW approximation. We also discuss the advantages and the shortcomings of the different approximations in the various regions of the phase diagram of this prototypical correlated compound.
Information-theoretic limitations on approximate quantum cloning and broadcasting
NASA Astrophysics Data System (ADS)
Lemm, Marius; Wilde, Mark M.
2017-07-01
We prove quantitative limitations on any approximate simultaneous cloning or broadcasting of mixed states. The results are based on information-theoretic (entropic) considerations and generalize the well-known no-cloning and no-broadcasting theorems. We also observe and exploit the fact that the universal cloning machine on the symmetric subspace of n qudits and symmetrized partial trace channels are dual to each other. This duality manifests itself both in the algebraic sense of adjointness of quantum channels and in the operational sense that a universal cloning machine can be used as an approximate recovery channel for a symmetrized partial trace channel and vice versa. The duality extends to give control of the performance of generalized universal quantum cloning machines (UQCMs) on subspaces more general than the symmetric subspace. This gives a way to quantify the usefulness of a priori information in the context of cloning. For example, we can control the performance of an antisymmetric analog of the UQCM in recovering from the loss of n -k fermionic particles.
bb̅ud̅ four-quark systems in the Born-Oppenheimer approximation: prospects and challenges
NASA Astrophysics Data System (ADS)
Peters, Antje; Bicudo, Pedro; Wagner, Marc
2018-03-01
We summarize previous work on b̅b̅ud four-quark systems in the Born-Oppenheimer approximation and discuss first steps towards an extension to the theoretically more challenging bb̅ud̅ system. Strategies to identify a possibly existing bb̅ud̅ bound state are discussed and first numerical results are presented.
NASA Technical Reports Server (NTRS)
Banks, H. T.; Kojima, Fumio
1988-01-01
The identification of the geometrical structure of the system boundary for a two-dimensional diffusion system is reported. The domain identification problem treated here is converted into an optimization problem based on a fit-to-data criterion and theoretical convergence results for approximate identification techniques are discussed. Results of numerical experiments to demonstrate the efficacy of the theoretical ideas are reported.
NASA Astrophysics Data System (ADS)
Nadeem, S.; Ijaz, S.
2016-07-01
In this paper hemodynamics of stenosis are discussed to predict effect of atherosclerosis by means of mathematical models in the presence of uniform transverse magnetic field. The analysis is carried out using silver and copper nanoparticles as a drug carrier. Exact solution for the fluid temperature, velocity, axial induced magnetic field and current density distribution are obtained under mild stenosis approximation. The results indicate that with an increase in the concentration of nanoparticle hemodynamics effects of stenosis reduces throughout the inclined composite stenosed arteries. The considered analysis also summarizes that the drug silver nanoparticles is more efficient to reduce hemodynamics of stenosis when compare to the drug copper nanoparticle. In future this model could be helpful to predict important properties in some biomedical applications.
Ramírez-Miquet, Evelio E.; Perchoux, Julien; Loubière, Karine; Tronche, Clément; Prat, Laurent; Sotolongo-Costa, Oscar
2016-01-01
Optical feedback interferometry (OFI) is a compact sensing technique with recent implementation for flow measurements in microchannels. We propose implementing OFI for the analysis at the microscale of multiphase flows starting with the case of parallel flows of two immiscible fluids. The velocity profiles in each phase were measured and the interface location estimated for several operating conditions. To the authors knowledge, this sensing technique is applied here for the first time to multiphase flows. Theoretical profiles issued from a model based on the Couette viscous flow approximation reproduce fairly well the experimental results. The sensing system and the analysis presented here provide a new tool for studying more complex interactions between immiscible fluids (such as liquid droplets flowing in a microchannel). PMID:27527178
An improved analysis of proton structure function F2(x,t) at small x
NASA Astrophysics Data System (ADS)
Machahari, Luxmi; Choudhury, D. K.
2018-04-01
We report an improved analysis of Taylor approximated coupled DGLAP equations for singlet F2S(x,t) and gluon G( x, t) distributions at small x pursued in recent years. To that end, we assume a plausible t-dependent relation between the singlet and gluon distribution valid at small x and omit the boundary condition F2S (1, t) = 0, for any t which needs large x extrapolation of small x solution. We observe that in general two inequivalent t-evolutions of F2S (x, t) and G( x, t) are possible. Theoretical advantages of one over the other are discussed and compared with the recently compiled data in order to choose the best one. Phenomenological range of validity of solutions is also reported.
Theoretical study of asymmetric super-rotors: Alignment and orientation
NASA Astrophysics Data System (ADS)
Omiste, Juan J.
2018-02-01
We report a theoretical study of the optical centrifuge acceleration of an asymmetric top molecule interacting with an electric static field by solving the time-dependent Schrödinger equation in the rigid rotor approximation. A detailed analysis of the mixing of the angular momentum in both the molecular and the laboratory fixed frames allows us to deepen the understanding of the main features of the acceleration process, for instance, the effective angular frequency of the molecule at the end of the pulse. For the case of the SO2 molecular super-rotor, we show numerically that it rotates around one internal axis and that its dynamics is confined to the plane defined by the polarization axis of the laser, in agreement with experimental findings. Furthermore, we consider the orientation patterns induced by the dc field, showing the characteristics of their structure as a function of the strength of the static field and the initial configuration of the fields.
Zhao, Na; Qin, Honglei; Sun, Kewen; Ji, Yuanfa
2017-01-01
Frequency-locked detector (FLD) has been widely utilized in tracking loops of Global Positioning System (GPS) receivers to indicate their locking status. The relation between FLD and lock status has been seldom discussed. The traditional PLL experience is not suitable for FLL. In this paper, the threshold setting criteria for frequency-locked detector in the GPS receiver has been proposed by analyzing statistical characteristic of FLD output. The approximate probability distribution of frequency-locked detector is theoretically derived by using a statistical approach, which reveals the relationship between probabilities of frequency-locked detector and the carrier-to-noise ratio (C/N0) of the received GPS signal. The relationship among mean-time-to-lose-lock (MTLL), detection threshold and lock probability related to C/N0 can be further discovered by utilizing this probability. Therefore, a theoretical basis for threshold setting criteria in frequency locked loops for GPS receivers is provided based on mean-time-to-lose-lock analysis. PMID:29207546
Jin, Tian; Yuan, Heliang; Zhao, Na; Qin, Honglei; Sun, Kewen; Ji, Yuanfa
2017-12-04
Frequency-locked detector (FLD) has been widely utilized in tracking loops of Global Positioning System (GPS) receivers to indicate their locking status. The relation between FLD and lock status has been seldom discussed. The traditional PLL experience is not suitable for FLL. In this paper, the threshold setting criteria for frequency-locked detector in the GPS receiver has been proposed by analyzing statistical characteristic of FLD output. The approximate probability distribution of frequency-locked detector is theoretically derived by using a statistical approach, which reveals the relationship between probabilities of frequency-locked detector and the carrier-to-noise ratio ( C / N ₀) of the received GPS signal. The relationship among mean-time-to-lose-lock (MTLL), detection threshold and lock probability related to C / N ₀ can be further discovered by utilizing this probability. Therefore, a theoretical basis for threshold setting criteria in frequency locked loops for GPS receivers is provided based on mean-time-to-lose-lock analysis.
NASA Astrophysics Data System (ADS)
Walker, Ernest L.
1994-05-01
This paper presents results of a theoretical investigation to evaluate the performance of code division multiple access communications over multimode optical fiber channels in an asynchronous, multiuser communication network environment. The system is evaluated using Gold sequences for spectral spreading of the baseband signal from each user employing direct-sequence biphase shift keying and intensity modulation techniques. The transmission channel model employed is a lossless linear system approximation of the field transfer function for the alpha -profile multimode optical fiber. Due to channel model complexity, a correlation receiver model employing a suboptimal receive filter was used in calculating the peak output signal at the ith receiver. In Part 1, the performance measures for the system, i.e., signal-to-noise ratio and bit error probability for the ith receiver, are derived as functions of channel characteristics, spectral spreading, number of active users, and the bit energy to noise (white) spectral density ratio. In Part 2, the overall system performance is evaluated.
NASA Astrophysics Data System (ADS)
Arslan, Hakan; Algül, Öztekin; Önkol, Tijen
2008-08-01
The molecular structure, vibrational frequencies and infrared intensities of the 3-(6-benzoyl-2-oxobenzo[ d]oxazol-3(2 H)-yl)propanoic acid were calculated by the HF and DFT methods using 6-31G(d) basis set. The FT-infrared spectra have been measured for the title compound in the solid state. We obtained 11 stable conformers for the title compound, however the Conformer 1 is approximately 3.88 kcal/mol more stable than the Conformer 11. The comparison of the theoretical and experimental geometry of the title compound shows that the X-ray parameters fairly well reproduce the geometry of the Conformer 1. The harmonic vibrations computed of this compound by the B3LYP/6-31G(d) method are in a good agreement with the observed IR spectral data. Theoretical vibrational spectra of the title compound were interpreted by means of PEDs using VEDA 4 program.
Theoretical analysis of exponential transversal method of lines for the diffusion equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salazar, A.; Raydan, M.; Campo, A.
1996-12-31
Recently a new approximate technique to solve the diffusion equation was proposed by Campo and Salazar. This new method is inspired on the Method of Lines (MOL) with some insight coming from the method of separation of variables. The proposed method, the Exponential Transversal Method of Lines (ETMOL), utilizes an exponential variation to improve accuracy in the evaluation of the time derivative. Campo and Salazar have implemented this method in a wide range of heat/mass transfer applications and have obtained surprisingly good numerical results. In this paper, the authors study the theoretical properties of ETMOL in depth. In particular, consistency,more » stability and convergence are established in the framework of the heat/mass diffusion equation. In most practical applications the method presents a very reduced truncation error in time and its different versions are proven to be unconditionally stable in the Fourier sense. Convergence of the solutions is then established. The theory is corroborated by several analytical/numerical experiments.« less
NASA Astrophysics Data System (ADS)
Khan, Shehryar; Kubica-Misztal, Aleksandra; Kruk, Danuta; Kowalewski, Jozef; Odelius, Michael
2015-01-01
The zero-field splitting (ZFS) of the electronic ground state in paramagnetic ions is a sensitive probe of the variations in the electronic and molecular structure with an impact on fields ranging from fundamental physical chemistry to medical applications. A detailed analysis of the ZFS in a series of symmetric Gd(III) complexes is presented in order to establish the applicability and accuracy of computational methods using multiconfigurational complete-active-space self-consistent field wave functions and of density functional theory calculations. The various computational schemes are then applied to larger complexes Gd(III)DOTA(H2O)-, Gd(III)DTPA(H2O)2-, and Gd(III)(H2O)83+ in order to analyze how the theoretical results compare to experimentally derived parameters. In contrast to approximations based on density functional theory, the multiconfigurational methods produce results for the ZFS of Gd(III) complexes on the correct order of magnitude.
The spatial configuration of ordered polynucleotide chains. II. The poly(rA) helix.
Olson, W K
1975-01-01
Approximate details of the spatial configuration of the ordered single-stranded poly(rA) molecule in dilute solution have been obtained in a combined theoretical analysis of base stacking and chain flexibility. Only those regularly repeating structures which fulfill the criterion of conformational flexibility (based upon all available experimental and theoretical evidence of preferred bond rotations) and which also exhibit the right-handed base stacking pattern observed in nmr investigations of poly(rA) are deemed suitable single-stranded helices. In addition, the helical geometry of the stacked structures is required to be consistent with the experimentally observed dimensions of both completely ordered and partially ordered poly(rA) chains. Only a single category of poly(rA) helices (very similar in all conformational details to the individual chains of the poly(rA) double-stranded X-ray structure) is thus obtained. Other conformationally feasible polynucleotide helices characterized simply by a parallel and overlapping base stacking arrangement are also discussed. PMID:1052529
Magnetosphere-Ionosphere Energy Interchange in the Electron Diffuse Aurora
NASA Technical Reports Server (NTRS)
Khazanov, George V.; Glocer, Alex; Himwich, E. W.
2014-01-01
The diffuse aurora has recently been shown to be a major contributor of energy flux into the Earth's ionosphere. Therefore, a comprehensive theoretical analysis is required to understand its role in energy redistribution in the coupled ionosphere-magnetosphere system. In previous theoretical descriptions of precipitated magnetospheric electrons (E is approximately 1 keV), the major focus has been the ionization and excitation rates of the neutral atmosphere and the energy deposition rate to thermal ionospheric electrons. However, these precipitating electrons will also produce secondary electrons via impact ionization of the neutral atmosphere. This paper presents the solution of the Boltzman-Landau kinetic equation that uniformly describes the entire electron distribution function in the diffuse aurora, including the affiliated production of secondary electrons (E greater than 600 eV) and their ionosphere-magnetosphere coupling processes. In this article, we discuss for the first time how diffuse electron precipitation into the atmosphere and the associated secondary electron production participate in ionosphere-magnetosphere energy redistribution.
Infrared radiation and inversion population of CO2 laser levels in Venusian and Martian atmospheres
NASA Technical Reports Server (NTRS)
Gordiyets, B. F.; Panchenko, V. Y.
1983-01-01
Formation mechanisms of nonequilibrium 10 micron CO2 molecule radiation and the possible existence of a natural laser effect in the upper atmospheres of Venus and Mars are theoretically studied. An analysis is made of the excitation process of CO2 molecule vibrational-band levels (with natural isotropic content) induced by direct solar radiation in bands 10.6, 9.4, 4.3, 2.7 and 2.0 microns. The model of partial vibrational-band temperatures was used in the case. The problem of IR radiation transfer in vibrational-rotational bands was solved in the radiation escape approximation.
NASA Technical Reports Server (NTRS)
Yen, D. H. Y.; Maestrello, L.; Padula, S.
1975-01-01
The response of a clamped panel to supersonically convected turbulence is considered. A theoretical model in the form of an integro-differential equation is employed that takes into account the coupling between the panel motion and the surrounding acoustic medium. The kernels of the integrals, which represent induced pressures due to the panel motion, are Green's functions for sound radiations under various moving and stationary sources. An approximate analysis is made by following a finite-element Ritz-Galerkin procedure. Preliminary numerical results, in agreement with experimental findings, indicate that the acoustic damping is the controlling mechanism of the response.
Polar cloud and surface classification using AVHRR imagery - An intercomparison of methods
NASA Technical Reports Server (NTRS)
Welch, R. M.; Sengupta, S. K.; Goroch, A. K.; Rabindra, P.; Rangaraj, N.; Navar, M. S.
1992-01-01
Six Advanced Very High-Resolution Radiometer local area coverage (AVHRR LAC) arctic scenes are classified into ten classes. Three different classifiers are examined: (1) the traditional stepwise discriminant analysis (SDA) method; (2) the feed-forward back-propagation (FFBP) neural network; and (3) the probabilistic neural network (PNN). More than 200 spectral and textural measures are computed. These are reduced to 20 features using sequential forward selection. Theoretical accuracy of the classifiers is determined using the bootstrap approach. Overall accuracy is 85.6 percent, 87.6 percent, and 87.0 percent for the SDA, FFBP, and PNN classifiers, respectively, with standard deviations of approximately 1 percent.
Les résonances d'un trou noir de Schwarzschild.
NASA Astrophysics Data System (ADS)
Bachelot, A.; Motet-Bachelot, A.
1993-09-01
This paper is devoted to the theoretical and computational investigations of the scattering frequencies of scalar, electromagnetic, gravitational waves around a spherical black hole. The authors adopt a time dependent approach: construction of wave operators for the hyperbolic Regge-Wheeler equation; asymptotic completeness; outgoing and incoming spectral representations; meromorphic continuation of the Heisenberg matrix; approximation by dumping and cut-off of the potentials and interpretation of the semi group Z(t) in the framework of the membrane paradigma. They develop a new procedure for the computation of the resonances by the spectral analysis of the transient scattered wave, based on Prony's algorithm.
Morphodynamic modeling of erodible laminar channels.
Devauchelle, Olivier; Josserand, Christophe; Lagrée, Pierre-Yves; Zaleski, Stéphane
2007-11-01
A two-dimensional model for the erosion generated by viscous free-surface flows, based on the shallow-water equations and the lubrication approximation, is presented. It has a family of self-similar solutions for straight erodible channels, with an aspect ratio that increases in time. It is also shown, through a simplified stability analysis, that a laminar river can generate various bar instabilities very similar to those observed in natural rivers. This theoretical similarity reflects the meandering and braiding tendencies of laminar rivers indicated by F. Métivier and P. Meunier [J. Hydrol. 27, 22 (2003)]. Finally, we propose a simple scenario for the transition between patterns observed in experimental erodible channels.
Polarization effects in above-threshold ionization with a mid-infrared strong laser field
NASA Astrophysics Data System (ADS)
Kang, Hui-Peng; Xu, Song-Po; Wang, Yan-Lan; Yu, Shao-Gang; Zhao, Xiao-Yun; Hao, Xiao-Lei; Lai, Xuan-Yang; Pfeifer, Thomas; Liu, Xiao-Jun; Chen, Jing; Cheng, Ya; Xu, Zhi-Zhan
2018-05-01
Using a semiclassical approach, we theoretically study the above-threshold ionization of magnesium by intense, mid-infrared laser pulses. The formation of low-energy structures in the photoelectron spectrum is found to be enhanced by comparing with a calculation based on the single-active electron approximation. By performing electron trajectory and recollision-time distribution analysis, we demonstrate that this phenomenon is due to the laser-induced ionic core polarization effects on the recolliding electrons. We also show that the polarization effects should be experimentally detectable. Our finding provides new insight into ultrafast control of strong-field photoionization and imaging of polar molecules.
Chacón, R; Martínez García-Hoz, A
1999-06-01
We study a parametrically damped two-well Duffing oscillator, subjected to a periodic string of symmetric pulses. The order-chaos threshold when altering solely the width of the pulses is investigated theoretically through Melnikov analysis. We show analytically and numerically that most of the results appear independent of the particular wave form of the pulses provided that the transmitted impulse is the same. By using this property, the stability boundaries of the stationary solutions are determined to first approximation by means of an elliptic harmonic balance method. Finally, the bifurcation behavior at the stability boundaries is determined numerically.
NASA Astrophysics Data System (ADS)
Wang, Xiu-lin; Wei, Zheng; Wang, Rui; Huang, Wen-cai
2018-05-01
A self-mixing interferometer (SMI) with resolution twenty times higher than that of a conventional interferometer is developed by multiple reflections. Only by employing a simple external reflecting mirror, the multiple-pass optical configuration can be constructed. The advantage of the configuration is simple and easy to make the light re-injected back into the laser cavity. Theoretical analysis shows that the resolution of measurement is scalable by adjusting the number of reflections. The experiment shows that the proposed method has the optical resolution of approximate λ/40. The influence of displacement sensitivity gain ( G) is further analyzed and discussed in practical experiments.
CSM research: Methods and application studies
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.
1989-01-01
Computational mechanics is that discipline of applied science and engineering devoted to the study of physical phenomena by means of computational methods based on mathematical modeling and simulation, utilizing digital computers. The discipline combines theoretical and applied mechanics, approximation theory, numerical analysis, and computer science. Computational mechanics has had a major impact on engineering analysis and design. When applied to structural mechanics, the discipline is referred to herein as computational structural mechanics. Complex structures being considered by NASA for the 1990's include composite primary aircraft structures and the space station. These structures will be much more difficult to analyze than today's structures and necessitate a major upgrade in computerized structural analysis technology. NASA has initiated a research activity in structural analysis called Computational Structural Mechanics (CSM). The broad objective of the CSM activity is to develop advanced structural analysis technology that will exploit modern and emerging computers, such as those with vector and/or parallel processing capabilities. Here, the current research directions for the Methods and Application Studies Team of the Langley CSM activity are described.
Non-suicidal self-injury and life stress: A systematic meta-analysis and theoretical elaboration
Liu, Richard T.; Cheek, Shayna M.; Nestor, Bridget A.
2016-01-01
Recent years have seen a considerable growth of interest in the study of life stress and non-suicidal self-injury (NSSI). The current article presents a systematic review of the empirical literature on this association. In addition to providing a comprehensive meta-analysis, the current article includes a qualitative review of the findings for which there were too few cases (i.e., < 3) for reliable approximations of effect sizes. Across the studies included in the meta-analysis, a significant but modest relation between life stress and NSSI was found (pooled OR = 1.81 [95% CI = 1.49–2.21]). After an adjustment was made for publication bias, the estimated effect size was smaller but still significant (pooled OR = 1.33 [95% CI = 1.08–1.63]). This relation was moderated by sample type, NSSI measure type, and length of period covered by the NSSI measure. The empirical literature is characterized by several methodological limitations, particularly the frequent use of cross-sectional analyses involving temporal overlap between assessments of life stress and NSSI, leaving unclear the precise nature of the relation between these two phenomena (e.g., whether life stress may be a cause, concomitant, or consequence of NSSI). Theoretically informed research utilizing multi-wave designs, assessing life stress and NSSI over relatively brief intervals, and featuring interview-based assessments of these constructs holds promise for advancing our understanding of their relation. The current review concludes with a theoretical elaboration of the association between NSSI and life stress, with the aim of providing a conceptual framework to guide future study in this area. PMID:27267345
Statistical analysis of excitation energies in actinide and rare-earth nuclei
NASA Astrophysics Data System (ADS)
Levon, A. I.; Magner, A. G.; Radionov, S. V.
2018-04-01
Statistical analysis of distributions of the collective states in actinide and rare-earth nuclei is performed in terms of the nearest-neighbor spacing distribution (NNSD). Several approximations, such as the linear approach to the level repulsion density and that suggested by Brody to the NNSDs were applied for the analysis. We found an intermediate character of the experimental spectra between the order and the chaos for a number of rare-earth and actinide nuclei. The spectra are closer to the Wigner distribution for energies limited by 3 MeV, and to the Poisson distribution for data including higher excitation energies and higher spins. The latter result is in agreement with the theoretical calculations. These features are confirmed by the cumulative distributions, where the Wigner contribution dominates at smaller spacings while the Poisson one is more important at larger spacings, and our linear approach improves the comparison with experimental data at all desired spacings.
Structural design using equilibrium programming formulations
NASA Technical Reports Server (NTRS)
Scotti, Stephen J.
1995-01-01
Solutions to increasingly larger structural optimization problems are desired. However, computational resources are strained to meet this need. New methods will be required to solve increasingly larger problems. The present approaches to solving large-scale problems involve approximations for the constraints of structural optimization problems and/or decomposition of the problem into multiple subproblems that can be solved in parallel. An area of game theory, equilibrium programming (also known as noncooperative game theory), can be used to unify these existing approaches from a theoretical point of view (considering the existence and optimality of solutions), and be used as a framework for the development of new methods for solving large-scale optimization problems. Equilibrium programming theory is described, and existing design techniques such as fully stressed design and constraint approximations are shown to fit within its framework. Two new structural design formulations are also derived. The first new formulation is another approximation technique which is a general updating scheme for the sensitivity derivatives of design constraints. The second new formulation uses a substructure-based decomposition of the structure for analysis and sensitivity calculations. Significant computational benefits of the new formulations compared with a conventional method are demonstrated.
A Max-Flow Based Algorithm for Connected Target Coverage with Probabilistic Sensors
Shan, Anxing; Xu, Xianghua; Cheng, Zongmao; Wang, Wensheng
2017-01-01
Coverage is a fundamental issue in the research field of wireless sensor networks (WSNs). Connected target coverage discusses the sensor placement to guarantee the needs of both coverage and connectivity. Existing works largely leverage on the Boolean disk model, which is only a coarse approximation to the practical sensing model. In this paper, we focus on the connected target coverage issue based on the probabilistic sensing model, which can characterize the quality of coverage more accurately. In the probabilistic sensing model, sensors are only be able to detect a target with certain probability. We study the collaborative detection probability of target under multiple sensors. Armed with the analysis of collaborative detection probability, we further formulate the minimum ϵ-connected target coverage problem, aiming to minimize the number of sensors satisfying the requirements of both coverage and connectivity. We map it into a flow graph and present an approximation algorithm called the minimum vertices maximum flow algorithm (MVMFA) with provable time complex and approximation ratios. To evaluate our design, we analyze the performance of MVMFA theoretically and also conduct extensive simulation studies to demonstrate the effectiveness of our proposed algorithm. PMID:28587084
He, Pingan; Jagannathan, S
2007-04-01
A novel adaptive-critic-based neural network (NN) controller in discrete time is designed to deliver a desired tracking performance for a class of nonlinear systems in the presence of actuator constraints. The constraints of the actuator are treated in the controller design as the saturation nonlinearity. The adaptive critic NN controller architecture based on state feedback includes two NNs: the critic NN is used to approximate the "strategic" utility function, whereas the action NN is employed to minimize both the strategic utility function and the unknown nonlinear dynamic estimation errors. The critic and action NN weight updates are derived by minimizing certain quadratic performance indexes. Using the Lyapunov approach and with novel weight updates, the uniformly ultimate boundedness of the closed-loop tracking error and weight estimates is shown in the presence of NN approximation errors and bounded unknown disturbances. The proposed NN controller works in the presence of multiple nonlinearities, unlike other schemes that normally approximate one nonlinearity. Moreover, the adaptive critic NN controller does not require an explicit offline training phase, and the NN weights can be initialized at zero or random. Simulation results justify the theoretical analysis.
S-curve networks and an approximate method for estimating degree distributions of complex networks
NASA Astrophysics Data System (ADS)
Guo, Jin-Li
2010-12-01
In the study of complex networks almost all theoretical models have the property of infinite growth, but the size of actual networks is finite. According to statistics from the China Internet IPv4 (Internet Protocol version 4) addresses, this paper proposes a forecasting model by using S curve (logistic curve). The growing trend of IPv4 addresses in China is forecasted. There are some reference values for optimizing the distribution of IPv4 address resource and the development of IPv6. Based on the laws of IPv4 growth, that is, the bulk growth and the finitely growing limit, it proposes a finite network model with a bulk growth. The model is said to be an S-curve network. Analysis demonstrates that the analytic method based on uniform distributions (i.e., Barabási-Albert method) is not suitable for the network. It develops an approximate method to predict the growth dynamics of the individual nodes, and uses this to calculate analytically the degree distribution and the scaling exponents. The analytical result agrees with the simulation well, obeying an approximately power-law form. This method can overcome a shortcoming of Barabási-Albert method commonly used in current network research.
A Max-Flow Based Algorithm for Connected Target Coverage with Probabilistic Sensors.
Shan, Anxing; Xu, Xianghua; Cheng, Zongmao; Wang, Wensheng
2017-05-25
Coverage is a fundamental issue in the research field of wireless sensor networks (WSNs). Connected target coverage discusses the sensor placement to guarantee the needs of both coverage and connectivity. Existing works largely leverage on the Boolean disk model, which is only a coarse approximation to the practical sensing model. In this paper, we focus on the connected target coverage issue based on the probabilistic sensing model, which can characterize the quality of coverage more accurately. In the probabilistic sensing model, sensors are only be able to detect a target with certain probability. We study the collaborative detection probability of target under multiple sensors. Armed with the analysis of collaborative detection probability, we further formulate the minimum ϵ -connected target coverage problem, aiming to minimize the number of sensors satisfying the requirements of both coverage and connectivity. We map it into a flow graph and present an approximation algorithm called the minimum vertices maximum flow algorithm (MVMFA) with provable time complex and approximation ratios. To evaluate our design, we analyze the performance of MVMFA theoretically and also conduct extensive simulation studies to demonstrate the effectiveness of our proposed algorithm.
The derived population of luminous supersoft X-ray sources
NASA Technical Reports Server (NTRS)
Di Stefano, R.STEFANO; Rappaport, S.
1994-01-01
The existence of a new class of astrophysical object, luminous supersoft X-ray sources, has been established through ROSAT satellite observations and analysis during the past approximately 3 yr. Because most of the radiation emitted by supersoft sources spans a range of wavelengths readily absorbed by interstellar gas, a substantial fraction of these sources may not be detectable with present satellite instrumentation. It is therefore important to derive a reliable estimate of the underlying population, based on the approximately 30 sources that have been observed to date. The work reported here combines the observational results with a theoretical analysis, to obtain an estimate of the total number of sources likely to be present in M31, the Magellanic Clouds, and in our own Galaxy. We find that in M31, where approximately 15 supersoft sources have been identified and roughly an equal number of sources are being investigated as supersoft candidates, there are likely to be approximately 2500 active supersoft sources at the present time. In our own Galaxy, where about four supersoft sources have been detected in the Galactic plane, there are likely to be approximately 1000 active sources. Similarly, with about six and about four (nonforeground) sources observed in the Large (LMC) and Small Magellanic Clouds (SMC), respectively, there should be approximately 30 supersoft sources in the LMC, and approximately 20 in the SMC. The likely uncertainties in the numbers quoted above, and the properties of observable sources relative to those of the total underlying population, are also derived in detail. These results can be scaled to estimate the numbers of supersoft sources likely to be present in other galaxies. The results reported here on the underlying population of supersoft X-ray sources are in good agreement with the results of a prior population synthesis study of the white dwarf accretor model for luminous supersoft X-ray sources. It should be emphasized, however, that the questions asked in these two investigations are distinct, that the approaches taken to answer these questions are largely independent and that the findings of these two studies could in principle have been quite different.
Thermal refraction focusing in planar index-antiguided lasers.
Casperson, Lee W; Dittli, Adam; Her, Tsing-Hua
2013-03-15
Thermal refraction focusing in planar index-antiguided lasers is investigated both theoretically and experimentally. An analytical model based on zero-field approximation is presented for treating the combined effects of index antiguiding and thermal focusing. At very low pumping power, the mode is antiguided by the amplifier boundary, whereas at high pumping power it narrows due to thermal focusing. Theoretical results are in reasonable agreement with experimental data.
Barlow, Nathaniel S; Schultz, Andrew J; Weinstein, Steven J; Kofke, David A
2015-08-21
The mathematical structure imposed by the thermodynamic critical point motivates an approximant that synthesizes two theoretically sound equations of state: the parametric and the virial. The former is constructed to describe the critical region, incorporating all scaling laws; the latter is an expansion about zero density, developed from molecular considerations. The approximant is shown to yield an equation of state capable of accurately describing properties over a large portion of the thermodynamic parameter space, far greater than that covered by each treatment alone.
Design and fabrication of N x N optical couplers based on organic polymer optical waveguides
NASA Astrophysics Data System (ADS)
Krchnavek, Robert R.; Rode, Daniel L.
1994-08-01
In this report, we examine the design and fabrication of a planar, 10x10 optical coupler utilizing photopolymerizable organic polymers. Background information on the theory of operation of the coupler culminating in a set of design equations is presented. The details of the material processing are described, including the preparation of monomer mixtures that result in single-mode polymer waveguides (lambda = 1300 nm) that have core dimensions approximately equal to those of single-mode fiber. This is necessary to insure high coupling efficiency between the planar device and optical fiber. A unique method of aligning and attaching optical fibers to the coupler is demonstrated. This method relies on patterned alignment ways, a transcision cut, and single-mode D-fiber. A theoretical analysis of the in situ monitoring technique used to fabricate the single-mode D-fiber is presented and compared favorably with the experimental results. Finally, the 10x10 coupler is characterized. We have measured an excess loss of approximately 8 dB.
Calculation of near optimum design of InP/In(0.53)Ga(0.47)As monolithic tandem solar cells
NASA Technical Reports Server (NTRS)
Renaud, P.; Vilela, M. F.; Freundlich, A.; Medelci, N.; Bensaoula, A.
1994-01-01
An analysis of InP/GaAs tandem solar cell structure has been undertaken to allow for maximum AMO conversion efficiencies (space applications) while still taking into account both the theoretical and technological limitations. The dependence of intrinsic and extrinsic parameters such as diffusion lengths and generation-recombination (GR) lifetimes on N/P and P/N devices performances are clearly demonstrated. We also report for the first time the improvement attainable through the use of a new patterned tunnel junction as the inter cell ohmic interconnect. Such a design minimizes the light absorption in the interconnect region and leads to a noticeable increase in the cell efficiency. Our computations predict 27 percent AMO efficiency for N/P tandems with ideality factor gamma = 2 (GR lifetimes approximately equal 1 micron), and 36 percent for gamma = 1 (GR lifetimes approximately equals 100 microns). The method of optimization and the values of the physical and optical parameters are discussed.
Using RIXS to uncover elementary charge and spin excitations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, Chunjing; Wohlfeld, Krzysztof; Wang, Yao
2016-05-13
Despite significant progress in resonant inelastic x-ray scattering (RIXS) experiments on cuprates at the Cu L-edge, a theoretical understanding of the cross section remains incomplete in terms of elementary excitations and the connection to both charge and spin structure factors. Here, we use state-of-the-art, unbiased numerical calculations to study the low-energy excitations probed by RIXS in the Hubbard model, relevant to the cuprates. The results highlight the importance of scattering geometry, in particular, both the incident and scattered x-ray photon polarization, and they demonstrate that on a qualitative level the RIXS spectral shape in the cross-polarized channel approximates that ofmore » the spin dynamical structure factor. Furthermore, in the parallel-polarized channel, the complexity of the RIXS process beyond a simple two-particle response complicates the analysis and demonstrates that approximations and expansions that attempt to relate RIXS to less complex correlation functions cannot reproduce the full diversity of RIXS spectral features.« less
Surface Plasmon Resonance Sensor Based on Ethylene Tetra-Fluoro-Ethylene Hollow Fiber.
Chen, Pan; He, Yu-Jing; Zhu, Xiao-Song; Shi, Yi-Wei
2015-11-03
A new kind of hollow fiber surface plasmon resonance sensor (HF-SPRS) based on the silver-coated ethylene tetra-fluoro-ethylene (ETFE) hollow fiber (HF) is presented. The ETFE HF-SPRS is fabricated, and its performance is investigated experimentally by measuring the transmission spectra of the sensor when filled by liquid sensed media with different refractive indices (RIs). Theoretical analysis based on the ray transmission model is also taken to evaluate the sensor. Because the RI of ETFE is much lower than that of fused silica (FSG), the ETFE HF-SPRS can extend the lower limit of the detection range of the early reported FSG HF-SPRS from 1.5 to 1.42 approximately. This could greatly enhance the application potential of HF-SPRS. Moreover, the joint use of both ETFE and FSG HF-SPRSs can cover a wide detection range from 1.42 to 1.69 approximately with high sensitivities larger than 1000 nm/RIU.
Surface Plasmon Resonance Sensor Based on Ethylene Tetra-Fluoro-Ethylene Hollow Fiber
Chen, Pan; He, Yu-Jing; Zhu, Xiao-Song; Shi, Yi-Wei
2015-01-01
A new kind of hollow fiber surface plasmon resonance sensor (HF-SPRS) based on the silver-coated ethylene tetra-fluoro-ethylene (ETFE) hollow fiber (HF) is presented. The ETFE HF-SPRS is fabricated, and its performance is investigated experimentally by measuring the transmission spectra of the sensor when filled by liquid sensed media with different refractive indices (RIs). Theoretical analysis based on the ray transmission model is also taken to evaluate the sensor. Because the RI of ETFE is much lower than that of fused silica (FSG), the ETFE HF-SPRS can extend the lower limit of the detection range of the early reported FSG HF-SPRS from 1.5 to 1.42 approximately. This could greatly enhance the application potential of HF-SPRS. Moreover, the joint use of both ETFE and FSG HF-SPRSs can cover a wide detection range from 1.42 to 1.69 approximately with high sensitivities larger than 1000 nm/RIU. PMID:26540062
NASA Astrophysics Data System (ADS)
Diveyev, Bohdan; Konyk, Solomija; Crocker, Malcolm J.
2018-01-01
The main aim of this study is to predict the elastic and damping properties of composite laminated plates. This problem has an exact elasticity solution for simple uniform bending and transverse loading conditions. This paper presents a new stress analysis method for the accurate determination of the detailed stress distributions in laminated plates subjected to cylindrical bending. Some approximate methods for the stress state predictions for laminated plates are presented here. The present method is adaptive and does not rely on strong assumptions about the model of the plate. The theoretical model described here incorporates deformations of each sheet of the lamina, which account for the effects of transverse shear deformation, transverse normal strain-stress and nonlinear variation of displacements with respect to the thickness coordinate. Predictions of the dynamic and damping values of laminated plates for various geometrical, mechanical and fastening properties are presented. Comparison with the Timoshenko beam theory is systematically made for analytical and approximation variants.
NASA Astrophysics Data System (ADS)
Li, Qiang; Argatov, Ivan; Popov, Valentin L.
2018-04-01
A recent paper by Popov, Pohrt and Li (PPL) in Friction investigated adhesive contacts of flat indenters in unusual shapes using numerical, analytical and experimental methods. Based on that paper, we analyze some special cases for which analytical solutions are known. As in the PPL paper, we consider adhesive contact in the Johnson-Kendall-Roberts approximation. Depending on the energy balance, different upper and lower estimates are obtained in terms of certain integral characteristics of the contact area. The special cases of an elliptical punch as well as a system of two circular punches are considered. Theoretical estimations for the first critical force (force at which the detachment process begins) are confirmed by numerical simulations using the adhesive boundary element method. It is shown that simpler approximations for the pull-off force, based both on the Holm radius of contact and the contact area, substantially overestimate the maximum adhesive force.
Mean field study of a propagation-turnover lattice model for the dynamics of histone marking
NASA Astrophysics Data System (ADS)
Yao, Fan; Li, FangTing; Li, TieJun
2017-02-01
We present a mean field study of a propagation-turnover lattice model, which was proposed by Hodges and Crabtree [Proc. Nat. Acad. Sci. 109, 13296 (2012)] for understanding how posttranslational histone marks modulate gene expression in mammalian cells. The kinetics of the lattice model consists of nucleation, propagation and turnover mechanisms, and exhibits second-order phase transition for the histone marking domain. We showed rigorously that the dynamics essentially depends on a non-dimensional parameter κ = k +/ k -, the ratio between the propagation and turnover rates, which has been observed in the simulations. We then studied the lowest order mean field approximation, and observed the phase transition with an analytically obtained critical parameter. The boundary layer analysis was utilized to investigate the structure of the decay profile of the mark density. We also studied the higher order mean field approximation to achieve sharper estimate of the critical transition parameter and more detailed features. The comparison between the simulation and theoretical results shows the validity of our theory.
NASA Astrophysics Data System (ADS)
Zurek, Sebastian; Guzik, Przemyslaw; Pawlak, Sebastian; Kosmider, Marcin; Piskorski, Jaroslaw
2012-12-01
We explore the relation between correlation dimension, approximate entropy and sample entropy parameters, which are commonly used in nonlinear systems analysis. Using theoretical considerations we identify the points which are shared by all these complexity algorithms and show explicitly that the above parameters are intimately connected and mutually interdependent. A new geometrical interpretation of sample entropy and correlation dimension is provided and the consequences for the interpretation of sample entropy, its relative consistency and some of the algorithms for parameter selection for this quantity are discussed. To get an exact algorithmic relation between the three parameters we construct a very fast algorithm for simultaneous calculations of the above, which uses the full time series as the source of templates, rather than the usual 10%. This algorithm can be used in medical applications of complexity theory, as it can calculate all three parameters for a realistic recording of 104 points within minutes with the use of an average notebook computer.
Forward multiple scattering corrections as function of detector field of view
NASA Astrophysics Data System (ADS)
Zardecki, A.; Deepak, A.
1983-06-01
The theoretical formulations are given for an approximate method based on the solution of the radiative transfer equation in the small angle approximation. The method is approximate in the sense that an approximation is made in addition to the small angle approximation. Numerical results were obtained for multiple scattering effects as functions of the detector field of view, as well as the size of the detector's aperture for three different values of the optical depth tau (=1.0, 4.0 and 10.0). Three cases of aperture size were considered--namely, equal to or smaller or larger than the laser beam diameter. The contrast between the on-axis intensity and the received power for the last three cases is clearly evident.
Low Luminosity States of the Black Hole Candidate GX 339-4. 2; Timing Analysis
NASA Technical Reports Server (NTRS)
Nowak, Michael A.; Wilms, Joern; Dove, James B.
1999-01-01
Here we present timing analysis of a set of eight Rossi X-ray Timing Explorer (RXTE) observations of the black hole candidate GX 339-4 that were taken during its hard/low state. On long time scales, the RXTE All Sky Monitor data reveal evidence of a 240 day periodicity, comparable to timescales expected from warped, precessing accretion disks. On short timescales all observations save one show evidence of a persistent f(qpo approximately equals 0.3 Hz quasi-periodic oscillations (QPO)). The broad band (10 (exp -3) to 10 (exp2) Hz) power appears to be dominated by two independent processes that can be modeled as very broad Lorentzians with Q approximately less than - 1. The coherence function between soft and hard photon variability shows that if these are truly independent processes, then they are individually coherent, but they are incoherent with one another. This is evidenced by the fact that the coherence function between the hard and soft variability is near unity between 5 x 10 (exp -3) but shows evidence of a dip at f approximately equals 1 Hz. This is the region of overlap between the broad Lorentzian fits to the Power Spectral Density (PSD). Similar to Cyg X-1, the coherence also drops dramatically at frequencies approximately greater than 1O Hz. Also similar to Cyg X-1, the hard photon variability is seen to lag the soft photon variability with the lag time increasing with decreasing Fourier frequency. The magnitude of this time lag appears to be positively correlated with the flux of GX 339-4. We discuss all of these observations in light of current theoretical models of both black hole spectra and temporal variability.
Electrolyte diodes with weak acids and bases. I. Theory and an approximate analytical solution.
Iván, Kristóf; Simon, Péter L; Wittmann, Mária; Noszticzius, Zoltán
2005-10-22
Until now acid-base diodes and transistors applied strong mineral acids and bases exclusively. In this work properties of electrolyte diodes with weak electrolytes are studied and compared with those of diodes with strong ones to show the advantages of weak acids and bases in these applications. The theoretical model is a one dimensional piece of gel containing fixed ionizable groups and connecting reservoirs of an acid and a base. The electric current flowing through the gel is measured as a function of the applied voltage. The steady-state current-voltage characteristic (CVC) of such a gel looks like that of a diode under these conditions. Results of our theoretical, numerical, and experimental investigations are reported in two parts. In this first, theoretical part governing equations necessary to calculate the steady-state CVC of a reverse-biased electrolyte diode are presented together with an approximate analytical solution of this reaction-diffusion-ionic migration problem. The applied approximations are quasielectroneutrality and quasiequilibrium. It is shown that the gel can be divided into an alkaline and an acidic zone separated by a middle weakly acidic region. As a further approximation it is assumed that the ionization of the fixed acidic groups is complete in the alkaline zone and that it is completely suppressed in the acidic one. The general solution given here describes the CVC and the potential and ionic concentration profiles of diodes applying either strong or weak electrolytes. It is proven that previous formulas valid for a strong acid-strong base diode can be regarded as a special case of the more general formulas presented here.
2D-pattern matching image and video compression: theory, algorithms, and experiments.
Alzina, Marc; Szpankowski, Wojciech; Grama, Ananth
2002-01-01
In this paper, we propose a lossy data compression framework based on an approximate two-dimensional (2D) pattern matching (2D-PMC) extension of the Lempel-Ziv (1977, 1978) lossless scheme. This framework forms the basis upon which higher level schemes relying on differential coding, frequency domain techniques, prediction, and other methods can be built. We apply our pattern matching framework to image and video compression and report on theoretical and experimental results. Theoretically, we show that the fixed database model used for video compression leads to suboptimal but computationally efficient performance. The compression ratio of this model is shown to tend to the generalized entropy. For image compression, we use a growing database model for which we provide an approximate analysis. The implementation of 2D-PMC is a challenging problem from the algorithmic point of view. We use a range of techniques and data structures such as k-d trees, generalized run length coding, adaptive arithmetic coding, and variable and adaptive maximum distortion level to achieve good compression ratios at high compression speeds. We demonstrate bit rates in the range of 0.25-0.5 bpp for high-quality images and data rates in the range of 0.15-0.5 Mbps for a baseline video compression scheme that does not use any prediction or interpolation. We also demonstrate that this asymmetric compression scheme is capable of extremely fast decompression making it particularly suitable for networked multimedia applications.
Shahidi, Faraz Vahid; De Moortel, Deborah; Muntaner, Carles; Davis, Owen; Siddiqi, Arjumand
2016-12-01
Flexicurity policies comprise a relatively novel approach to the regulation of work and welfare that aims to combine labour market flexibility with social security. Advocates of this approach argue that, by striking the right balance between flexibility and security, flexicurity policies allow firms to take advantage of loose contractual arrangements in an increasingly competitive economic environment while simultaneously protecting workers from the adverse health and social consequences of flexible forms of employment. In this study, we use multilevel Poisson regression models to test the theoretical claim of the flexicurity approach using data for 23 countries across three waves of the European Social Survey. We construct an institutional typology of labour market regulation and social security to evaluate whether inequalities in self-reported health and limiting longstanding illness between temporary workers and their permanent counterparts are smaller in countries that most closely approximate the ideal type described by advocates of the flexicurity approach. Our results indicate that, while the association between temporary employment and health varies across countries, institutional configurations of labour market regulation and social security do not provide a meaningful explanation for this cross-national variation. Contrary to the expectations of the flexicurity hypothesis, our data do not indicate that employment-related inequalities are smaller in countries that approximate the flexicurity approach. We discuss potential explanations for these findings and conclude that there remains a relative lack of evidence in support of the theoretical claims of the flexicurity approach.
Neurolinguistic approach to natural language processing with applications to medical text analysis.
Duch, Włodzisław; Matykiewicz, Paweł; Pestian, John
2008-12-01
Understanding written or spoken language presumably involves spreading neural activation in the brain. This process may be approximated by spreading activation in semantic networks, providing enhanced representations that involve concepts not found directly in the text. The approximation of this process is of great practical and theoretical interest. Although activations of neural circuits involved in representation of words rapidly change in time snapshots of these activations spreading through associative networks may be captured in a vector model. Concepts of similar type activate larger clusters of neurons, priming areas in the left and right hemisphere. Analysis of recent brain imaging experiments shows the importance of the right hemisphere non-verbal clusterization. Medical ontologies enable development of a large-scale practical algorithm to re-create pathways of spreading neural activations. First concepts of specific semantic type are identified in the text, and then all related concepts of the same type are added to the text, providing expanded representations. To avoid rapid growth of the extended feature space after each step only the most useful features that increase document clusterization are retained. Short hospital discharge summaries are used to illustrate how this process works on a real, very noisy data. Expanded texts show significantly improved clustering and may be classified with much higher accuracy. Although better approximations to the spreading of neural activations may be devised a practical approach presented in this paper helps to discover pathways used by the brain to process specific concepts, and may be used in large-scale applications.
Lin, Ting; Harmsen, Stephen C.; Baker, Jack W.; Luco, Nicolas
2013-01-01
The conditional spectrum (CS) is a target spectrum (with conditional mean and conditional standard deviation) that links seismic hazard information with ground-motion selection for nonlinear dynamic analysis. Probabilistic seismic hazard analysis (PSHA) estimates the ground-motion hazard by incorporating the aleatory uncertainties in all earthquake scenarios and resulting ground motions, as well as the epistemic uncertainties in ground-motion prediction models (GMPMs) and seismic source models. Typical CS calculations to date are produced for a single earthquake scenario using a single GMPM, but more precise use requires consideration of at least multiple causal earthquakes and multiple GMPMs that are often considered in a PSHA computation. This paper presents the mathematics underlying these more precise CS calculations. Despite requiring more effort to compute than approximate calculations using a single causal earthquake and GMPM, the proposed approach produces an exact output that has a theoretical basis. To demonstrate the results of this approach and compare the exact and approximate calculations, several example calculations are performed for real sites in the western United States. The results also provide some insights regarding the circumstances under which approximate results are likely to closely match more exact results. To facilitate these more precise calculations for real applications, the exact CS calculations can now be performed for real sites in the United States using new deaggregation features in the U.S. Geological Survey hazard mapping tools. Details regarding this implementation are discussed in this paper.
Mackie, Cameron J; Candian, Alessandra; Huang, Xinchuan; Maltseva, Elena; Petrignani, Annemieke; Oomens, Jos; Buma, Wybren Jan; Lee, Timothy J; Tielens, Alexander G G M
2015-12-14
Current efforts to characterize and study interstellar polycyclic aromatic hydrocarbons (PAHs) rely heavily on theoretically predicted infrared (IR) spectra. Generally, such studies use the scaled harmonic frequencies for band positions and double harmonic approximation for intensities of species, and then compare these calculated spectra with experimental spectra obtained under matrix isolation conditions. High-resolution gas-phase experimental spectroscopic studies have recently revealed that the double harmonic approximation is not sufficient for reliable spectra prediction. In this paper, we present the anharmonic theoretical spectra of three PAHs: naphthalene, anthracene, and tetracene, computed with a locally modified version of the SPECTRO program using Cartesian derivatives transformed from Gaussian 09 normal coordinate force constants. Proper treatments of Fermi resonances lead to an impressive improvement on the agreement between the observed and theoretical spectra, especially in the C-H stretching region. All major IR absorption features in the full-scale matrix-isolated spectra, the high-temperature gas-phase spectra, and the most recent high-resolution gas-phase spectra obtained under supersonically cooled molecular beam conditions in the CH-stretching region are assigned.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackie, Cameron J., E-mail: mackie@strw.leidenuniv.nl; Candian, Alessandra; Tielens, Alexander G. G. M.
2015-12-14
Current efforts to characterize and study interstellar polycyclic aromatic hydrocarbons (PAHs) rely heavily on theoretically predicted infrared (IR) spectra. Generally, such studies use the scaled harmonic frequencies for band positions and double harmonic approximation for intensities of species, and then compare these calculated spectra with experimental spectra obtained under matrix isolation conditions. High-resolution gas-phase experimental spectroscopic studies have recently revealed that the double harmonic approximation is not sufficient for reliable spectra prediction. In this paper, we present the anharmonic theoretical spectra of three PAHs: naphthalene, anthracene, and tetracene, computed with a locally modified version of the SPECTRO program using Cartesianmore » derivatives transformed from Gaussian 09 normal coordinate force constants. Proper treatments of Fermi resonances lead to an impressive improvement on the agreement between the observed and theoretical spectra, especially in the C–H stretching region. All major IR absorption features in the full-scale matrix-isolated spectra, the high-temperature gas-phase spectra, and the most recent high-resolution gas-phase spectra obtained under supersonically cooled molecular beam conditions in the CH-stretching region are assigned.« less
A simple theoretical model for ⁶³Ni betavoltaic battery.
Zuo, Guoping; Zhou, Jianliang; Ke, Guotu
2013-12-01
A numerical simulation of the energy deposition distribution in semiconductors is performed for ⁶³Ni beta particles. Results show that the energy deposition distribution exhibits an approximate exponential decay law. A simple theoretical model is developed for ⁶³Ni betavoltaic battery based on the distribution characteristics. The correctness of the model is validated by two literature experiments. Results show that the theoretical short-circuit current agrees well with the experimental results, and the open-circuit voltage deviates from the experimental results in terms of the influence of the PN junction defects and the simplification of the source. The theoretical model can be applied to ⁶³Ni and ¹⁴⁷Pm betavoltaic batteries. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Moral, Mónica; García, Gregorio; Peñas, Antonio; Garzón, Andrés; Granadino-Roldán, José M.; Melguizo, Manuel; Fernández-Gómez, Manuel
2012-10-01
This work presents a theoretical and spectroscopic study on the electronic and structural properties of the diphenyl-s-tetrazine molecule (Ph2Tz) and some oligomeric derivatives. Ph2Tz was synthesized through a variation of Pinner-type reaction which uses N-acetylcysteine as catalyst. Insight into the structure and electronic properties of the title compound was obtained through IR, Raman, UV-Vis spectra in different solvents, and theoretical calculations. Theoretical studies have been extended to different n-mers derivatives up to an ideal molecular wire through the oligomeric approximation, predicting this way electronic properties such as LUMO energy levels, electron affinity and reorganization energy in order to assess their possible applications in molecular electronics.
Analysis of simple 2-D and 3-D metal structures subjected to fragment impact
NASA Technical Reports Server (NTRS)
Witmer, E. A.; Stagliano, T. R.; Spilker, R. L.; Rodal, J. J. A.
1977-01-01
Theoretical methods were developed for predicting the large-deflection elastic-plastic transient structural responses of metal containment or deflector (C/D) structures to cope with rotor burst fragment impact attack. For two-dimensional C/D structures both, finite element and finite difference analysis methods were employed to analyze structural response produced by either prescribed transient loads or fragment impact. For the latter category, two time-wise step-by-step analysis procedures were devised to predict the structural responses resulting from a succession of fragment impacts: the collision force method (CFM) which utilizes an approximate prediction of the force applied to the attacked structure during fragment impact, and the collision imparted velocity method (CIVM) in which the impact-induced velocity increment acquired by a region of the impacted structure near the impact point is computed. The merits and limitations of these approaches are discussed. For the analysis of 3-d responses of C/D structures, only the CIVM approach was investigated.
A note on generalized Genome Scan Meta-Analysis statistics
Koziol, James A; Feng, Anne C
2005-01-01
Background Wise et al. introduced a rank-based statistical technique for meta-analysis of genome scans, the Genome Scan Meta-Analysis (GSMA) method. Levinson et al. recently described two generalizations of the GSMA statistic: (i) a weighted version of the GSMA statistic, so that different studies could be ascribed different weights for analysis; and (ii) an order statistic approach, reflecting the fact that a GSMA statistic can be computed for each chromosomal region or bin width across the various genome scan studies. Results We provide an Edgeworth approximation to the null distribution of the weighted GSMA statistic, and, we examine the limiting distribution of the GSMA statistics under the order statistic formulation, and quantify the relevance of the pairwise correlations of the GSMA statistics across different bins on this limiting distribution. We also remark on aggregate criteria and multiple testing for determining significance of GSMA results. Conclusion Theoretical considerations detailed herein can lead to clarification and simplification of testing criteria for generalizations of the GSMA statistic. PMID:15717930
The p-version of the finite element method in incremental elasto-plastic analysis
NASA Technical Reports Server (NTRS)
Holzer, Stefan M.; Yosibash, Zohar
1993-01-01
Whereas the higher-order versions of the finite elements method (the p- and hp-version) are fairly well established as highly efficient methods for monitoring and controlling the discretization error in linear problems, little has been done to exploit their benefits in elasto-plastic structural analysis. Aspects of incremental elasto-plastic finite element analysis which are particularly amenable to improvements by the p-version is discussed. These theoretical considerations are supported by several numerical experiments. First, an example for which an analytical solution is available is studied. It is demonstrated that the p-version performs very well even in cycles of elasto-plastic loading and unloading, not only as compared to the traditional h-version but also in respect to the exact solution. Finally, an example of considerable practical importance - the analysis of a cold-worked lug - is presented which demonstrates how the modeling tools offered by higher-order finite element techniques can contribute to an improved approximation of practical problems.
NASA Technical Reports Server (NTRS)
Viswanathan, A. V.; Tamekuni, M.; Baker, L. L.
1974-01-01
A method is presented to predict theoretical buckling loads of long, rectangular flat and curved laminated plates with arbitrary orientation of orthotropic axes each lamina. The plate is subjected to combined inplane normal and shear loads. Arbitrary boundary conditions may be stipulated along the longitudinal sides of the plate. In the absence of inplane shear loads and extensional-shear coupling, the analysis is also applicable to finite length plates. Numerical results are presented for curved laminated composite plates with boundary conditions and subjected to various loadings. These results indicate some of the complexities involved in the numerical solution of the analysis for general laminates. The results also show that the reduced bending stiffness approximation when applied to buckling problems could lead to considerable error in some cases and therefore must be used with caution.
NASA Astrophysics Data System (ADS)
Chang, Xia; Xie, Jiayu; Wu, Tianle; Tang, Bing
2018-07-01
A theoretical study on modulational instability and quantum discrete breather states in a system of cold bosonic atoms in zig-zag optical lattices is presented in this work. The time-dependent Hartree approximation is employed to deal with the multiple body problem. By means of a linear stability analysis, we analytically study the modulational instability, and estimate existence conditions of the bright stationary localized solutions for different values of the second-neighbor hopping constant. On the other hand, we get analytical bright stationary localized solutions, and analyze the influence of the second-neighbor hopping on their existence conditions. The predictions of the modulational instability analysis are shown to be reliable. Using these stationary localized single-boson wave functions, the quantum breather states corresponding to the system with different types of nonlinearities are constructed.
NASA Astrophysics Data System (ADS)
Beneš, Michal; Pažanin, Igor
2018-03-01
This paper reports an analytical investigation of non-isothermal fluid flow in a thin (or long) vertical pipe filled with porous medium via asymptotic analysis. We assume that the fluid inside the pipe is cooled (or heated) by the surrounding medium and that the flow is governed by the prescribed pressure drop between pipe's ends. Starting from the dimensionless Darcy-Brinkman-Boussinesq system, we formally derive a macroscopic model describing the effective flow at small Brinkman-Darcy number. The asymptotic approximation is given by the explicit formulae for the velocity, pressure and temperature clearly acknowledging the effects of the cooling (heating) and porous structure. The theoretical error analysis is carried out to indicate the order of accuracy and to provide a rigorous justification of the effective model.
Calendering and Rolling of Viscoplastic Materials: Theory and Experiments
NASA Astrophysics Data System (ADS)
Mitsoulis, E.; Sofou, S.; Muliawan, E. B.; Hatzikiriakos, S. G.
2007-04-01
The calendering and rolling processes are used in a wide variety of industries for the production of rolled sheets or films of specific thickness and final appearance. The acquired final sheet thickness depends mainly on the rheological properties of the material. Materials which have been used in the present study are foodstuff (such as mozzarella cheese and flour-water dough) used in food processing. These materials are rheologically viscoplastic, obeying the Herschel-Bulkley model. The results give the final sheet thickness and the torque as a function of the roll speed. Theoretical analysis based on the Lubrication Approximation Theory (LAT) shows that LAT is a good predictive tool for calendering, where the sheet thickness is very small compared with the roll size. However, in rolling where this is not true, LAT does not hold, and a 2-D analysis is necessary.
Kelly, Priscilla; Liu, Mingzhao; Kuznetsova, Lyuba
2016-04-07
In this study, nano-layered Al:ZnO/ZnO hyperbolic dispersion metamaterial with a large number of layers was fabricated using the atomic layer deposition (ALD) technique. Experimental dielectric functions for Al:ZnO/ZnO structures are obtained by an ellipsometry technique in the visible and near-infrared spectral ranges. The theoretical modeling of the Al:ZnO/ZnO dielectric permittivity is done using effective medium approximation. A method for analysis of spectroscopic ellipsometry data is demonstrated to extract the optical permittivity for this highly anisotropic nano-layered metamaterial. The results of the ellipsometry analysis show that Al:ZnO/ZnO structures with a 1:9 ALD cycle ratio exhibit hyperbolic dispersion transition change near 1.8more » μm wavelength.« less
The Internal Ballistics of an Air Gun
NASA Astrophysics Data System (ADS)
Denny, Mark
2011-02-01
The internal ballistics of a firearm or artillery piece considers the pellet, bullet, or shell motion while it is still inside the barrel. In general, deriving the muzzle speed of a gunpowder firearm from first principles is difficult because powder combustion is fast and it very rapidly raises the temperature of gas (generated by gunpowder deflagration, or burning), which greatly complicates the analysis. A simple case is provided by air guns, for which we can make reasonable approximations that permit a derivation of muzzle speed. It is perhaps surprising that muzzle speed depends upon barrel length (artillerymen debated this dependence for centuries, until it was established experimentally and, later, theoretically ). Here we see that a simple physical analysis, accessible to high school or freshmen undergraduate physics students, not only derives realistic muzzle speed but also shows how it depends upon barrel length.
Theoretical Calculations of Atomic Data for Spectroscopy
NASA Technical Reports Server (NTRS)
Bautista, Manuel A.
2000-01-01
Several different approximations and techniques have been developed for the calculation of atomic structure, ionization, and excitation of atoms and ions. These techniques have been used to compute large amounts of spectroscopic data of various levels of accuracy. This paper presents a review of these theoretical methods to help non-experts in atomic physics to better understand the qualities and limitations of various data sources and assess how reliable are spectral models based on those data.
Performance and state-space analyses of systems using Petri nets
NASA Technical Reports Server (NTRS)
Watson, James Francis, III
1992-01-01
The goal of any modeling methodology is to develop a mathematical description of a system that is accurate in its representation and also permits analysis of structural and/or performance properties. Inherently, trade-offs exist between the level detail in the model and the ease with which analysis can be performed. Petri nets (PN's), a highly graphical modeling methodology for Discrete Event Dynamic Systems, permit representation of shared resources, finite capacities, conflict, synchronization, concurrency, and timing between state changes. By restricting the state transition time delays to the family of exponential density functions, Markov chain analysis of performance problems is possible. One major drawback of PN's is the tendency for the state-space to grow rapidly (exponential complexity) compared to increases in the PN constructs. It is the state space, or the Markov chain obtained from it, that is needed in the solution of many problems. The theory of state-space size estimation for PN's is introduced. The problem of state-space size estimation is defined, its complexities are examined, and estimation algorithms are developed. Both top-down and bottom-up approaches are pursued, and the advantages and disadvantages of each are described. Additionally, the author's research in non-exponential transition modeling for PN's is discussed. An algorithm for approximating non-exponential transitions is developed. Since only basic PN constructs are used in the approximation, theory already developed for PN's remains applicable. Comparison to results from entropy theory show the transition performance is close to the theoretic optimum. Inclusion of non-exponential transition approximations improves performance results at the expense of increased state-space size. The state-space size estimation theory provides insight and algorithms for evaluating this trade-off.
Applying Agrep to r-NSA to solve multiple sequences approximate matching.
Ni, Bing; Wong, Man-Hon; Lam, Chi-Fai David; Leung, Kwong-Sak
2014-01-01
This paper addresses the approximate matching problem in a database consisting of multiple DNA sequences, where the proposed approach applies Agrep to a new truncated suffix array, r-NSA. The construction time of the structure is linear to the database size, and the computations of indexing a substring in the structure are constant. The number of characters processed in applying Agrep is analysed theoretically, and the theoretical upper-bound can approximate closely the empirical number of characters, which is obtained through enumerating the characters in the actual structure built. Experiments are carried out using (synthetic) random DNA sequences, as well as (real) genome sequences including Hepatitis-B Virus and X-chromosome. Experimental results show that, compared to the straight-forward approach that applies Agrep to multiple sequences individually, the proposed approach solves the matching problem in much shorter time. The speed-up of our approach depends on the sequence patterns, and for highly similar homologous genome sequences, which are the common cases in real-life genomes, it can be up to several orders of magnitude.
STRONG ORACLE OPTIMALITY OF FOLDED CONCAVE PENALIZED ESTIMATION.
Fan, Jianqing; Xue, Lingzhou; Zou, Hui
2014-06-01
Folded concave penalization methods have been shown to enjoy the strong oracle property for high-dimensional sparse estimation. However, a folded concave penalization problem usually has multiple local solutions and the oracle property is established only for one of the unknown local solutions. A challenging fundamental issue still remains that it is not clear whether the local optimum computed by a given optimization algorithm possesses those nice theoretical properties. To close this important theoretical gap in over a decade, we provide a unified theory to show explicitly how to obtain the oracle solution via the local linear approximation algorithm. For a folded concave penalized estimation problem, we show that as long as the problem is localizable and the oracle estimator is well behaved, we can obtain the oracle estimator by using the one-step local linear approximation. In addition, once the oracle estimator is obtained, the local linear approximation algorithm converges, namely it produces the same estimator in the next iteration. The general theory is demonstrated by using four classical sparse estimation problems, i.e., sparse linear regression, sparse logistic regression, sparse precision matrix estimation and sparse quantile regression.
NASA Astrophysics Data System (ADS)
Pahlavani, M. R.; Firoozi, B.
2016-09-01
γ-ray transitions from excited states of {}16{{N}} and {}16{{O}} isomers that appear in the γ spectrum of the {}616{{{C}}}10\\to {}716{{{N}}}9\\to {}816{{{O}}}8 beta decay chain are investigated. The theoretical approach used in this research starts with a mean-field potential consisting of a phenomenological Woods-Saxon potential including spin-orbit and Coulomb terms (for protons) in order to obtain single-particle energies and wave functions for nucleons in a nucleus. A schematic residual surface delta interaction is then employed on the top of the mean field and is treated within the proton-neutron Tamm-Dancoff approximation (pnTDA) and the proton-neutron random phase approximation. The goal is to use an optimized surface delta interaction interaction, as a residual interaction, to improve the results. We have used artificial intelligence algorithms to establish a good agreement between theoretical and experimental energy spectra. The final results of the ‘optimized’ calculations are reasonable via this approach.
STRONG ORACLE OPTIMALITY OF FOLDED CONCAVE PENALIZED ESTIMATION
Fan, Jianqing; Xue, Lingzhou; Zou, Hui
2014-01-01
Folded concave penalization methods have been shown to enjoy the strong oracle property for high-dimensional sparse estimation. However, a folded concave penalization problem usually has multiple local solutions and the oracle property is established only for one of the unknown local solutions. A challenging fundamental issue still remains that it is not clear whether the local optimum computed by a given optimization algorithm possesses those nice theoretical properties. To close this important theoretical gap in over a decade, we provide a unified theory to show explicitly how to obtain the oracle solution via the local linear approximation algorithm. For a folded concave penalized estimation problem, we show that as long as the problem is localizable and the oracle estimator is well behaved, we can obtain the oracle estimator by using the one-step local linear approximation. In addition, once the oracle estimator is obtained, the local linear approximation algorithm converges, namely it produces the same estimator in the next iteration. The general theory is demonstrated by using four classical sparse estimation problems, i.e., sparse linear regression, sparse logistic regression, sparse precision matrix estimation and sparse quantile regression. PMID:25598560
Structure and thermodynamics of a simple fluid
NASA Astrophysics Data System (ADS)
Stell, G.; Weis, J. J.
1980-02-01
Monte Carlo results are found for a simple fluid with a pair potential consisting of a hard-sphere core and a Lennard-Jones attractive tail. They are compared with several of the most promising recent theoretical treatments of simple fluids, all of which involve the decomposition of the pair potential into a hard-sphere-core term and an attractive-tail term. This direct comparison avoids the use of a second perturbation scheme associated with softening the core, which would introduce an ambiguity in the significance of the differences found between the theoretical and Monte Carlo results. The study includes the optimized random-phase approximation (ORPA) and exponential (EXP) approximations of Andersen and Chandler, an extension of the latter approximation to nodal order three (the N3 approximation), the linear-plus-square (LIN + SQ) approximation of Høye and Stell, the renormalized hypernetted chain (RHNC) approximation of Lado, and the quadratic (QUAD) approximation suggested by second-order self-consistent Γ ordering, the lowest order of which is identical to the ORPA. As anticipated on the basis of earlier studies, it is found that the EXP approximation yields radial distribution functions and structure factors of excellent overall accuracy in the liquid state, where the RHNC results are also excellent and the EXP, QUAD, and LIN + SQ results prove to be virtually indistinguishable from one another. For all the approximations, however, the thermodynamics from the compressibility relation are poor and the virial-theorem results are not uniformly reliable. Somewhat more surprisingly, it is found that the EXP results yield a negative structure factor S(k) for very small k in the liquid state and poor radial distribution functions at low densities. The RHNC results are nowhere worse than the EXP results and in some states (e.g., at low densities) much better. In contrast, the N3 results are better in some respects than the EXP results but worse in others. The authors briefly comment on the RHNC and EXP approximations applied to the full Lennard-Jones potential, for which the EXP approximation appears somewhat improved in the liquid state as a result of the softening of the potential core.
From Bethe–Salpeter Wave functions to Generalised Parton Distributions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mezrag, C.; Moutarde, H.; Rodríguez-Quintero, J.
2016-06-06
We review recent works on the modelling of Generalised Parton Distributions within the Dyson-Schwinger formalism. We highlight how covariant computations, using the impulse approximation, allows one to fulfil most of the theoretical constraints of the GPDs. A specific attention is brought to chiral properties and especially the so-called soft pion theorem, and its link with the Axial-Vector Ward-Takahashi identity. The limitation of the impulse approximation are also explained. Beyond impulse approximation computations are reviewed in the forward case. Finally, we stress the advantages of the overlap of lightcone wave functions, and possible ways to construct covariant GPD models within thismore » framework, in a two-body approximation« less
Quantum Approximate Methods for the Atomistic Modeling of Multicomponent Alloys. Chapter 7
NASA Technical Reports Server (NTRS)
Bozzolo, Guillermo; Garces, Jorge; Mosca, Hugo; Gargano, pablo; Noebe, Ronald D.; Abel, Phillip
2007-01-01
This chapter describes the role of quantum approximate methods in the understanding of complex multicomponent alloys at the atomic level. The need to accelerate materials design programs based on economical and efficient modeling techniques provides the framework for the introduction of approximations and simplifications in otherwise rigorous theoretical schemes. As a promising example of the role that such approximate methods might have in the development of complex systems, the BFS method for alloys is presented and applied to Ru-rich Ni-base superalloys and also to the NiAI(Ti,Cu) system, highlighting the benefits that can be obtained from introducing simple modeling techniques to the investigation of such complex systems.
The Sonic Altimeter for Aircraft
NASA Technical Reports Server (NTRS)
Draper, C S
1937-01-01
Discussed here are results already achieved with sonic altimeters in light of the theoretical possibilities of such instruments. From the information gained in this investigation, a procedure is outlined to determine whether or not a further development program is justified by the value of the sonic altimeter as an aircraft instrument. The information available in the literature is reviewed and condensed into a summary of sonic altimeter developments. Various methods of receiving the echo and timing the interval between the signal and the echo are considered. A theoretical discussion is given of sonic altimeter errors due to uncertainties in timing, variations in sound velocity, aircraft speed, location of the sending and receiving units, and inclinations of the flight path with respect to the ground surface. Plots are included which summarize the results in each case. An analysis is given of the effect of an inclined flight path on the frequency of the echo. A brief study of the acoustical phases of the sonic altimeter problem is carried through. The results of this analysis are used to predict approximately the maximum operating altitudes of a reasonably designed sonic altimeter under very good and very bad conditions. A final comparison is made between the estimated and experimental maximum operating altitudes which shows good agreement where quantitative information is available.
A close examination of double filtering with fold change and t test in microarray analysis
2009-01-01
Background Many researchers use the double filtering procedure with fold change and t test to identify differentially expressed genes, in the hope that the double filtering will provide extra confidence in the results. Due to its simplicity, the double filtering procedure has been popular with applied researchers despite the development of more sophisticated methods. Results This paper, for the first time to our knowledge, provides theoretical insight on the drawback of the double filtering procedure. We show that fold change assumes all genes to have a common variance while t statistic assumes gene-specific variances. The two statistics are based on contradicting assumptions. Under the assumption that gene variances arise from a mixture of a common variance and gene-specific variances, we develop the theoretically most powerful likelihood ratio test statistic. We further demonstrate that the posterior inference based on a Bayesian mixture model and the widely used significance analysis of microarrays (SAM) statistic are better approximations to the likelihood ratio test than the double filtering procedure. Conclusion We demonstrate through hypothesis testing theory, simulation studies and real data examples, that well constructed shrinkage testing methods, which can be united under the mixture gene variance assumption, can considerably outperform the double filtering procedure. PMID:19995439
A State-Space Approach to Optimal Level-Crossing Prediction for Linear Gaussian Processes
NASA Technical Reports Server (NTRS)
Martin, Rodney Alexander
2009-01-01
In many complex engineered systems, the ability to give an alarm prior to impending critical events is of great importance. These critical events may have varying degrees of severity, and in fact they may occur during normal system operation. In this article, we investigate approximations to theoretically optimal methods of designing alarm systems for the prediction of level-crossings by a zero-mean stationary linear dynamic system driven by Gaussian noise. An optimal alarm system is designed to elicit the fewest false alarms for a fixed detection probability. This work introduces the use of Kalman filtering in tandem with the optimal level-crossing problem. It is shown that there is a negligible loss in overall accuracy when using approximations to the theoretically optimal predictor, at the advantage of greatly reduced computational complexity. I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulagin, N.
2005-02-15
Theoretical study of electronic structure of antinide ions and its dependence on N and Z are presented in this paper. The main 5f{sup N} and excited 5f{sup N}n'l'{sup N'} configurations of actinides have been studied using Hartree-Fock-Pauli approximation. Results of calculations of radial integrals and the energy of X-ray lines for all 5f ions with electronic state AC{sup +1}-AC{sup +4} show approximate dependence on N and Z. A square of N and cubic of Z are ewalized for the primary electronic parameters of the actinides. Theoretical values of radial integrals for free actinides and for ions in a cluster AC{supmore » +n}:[L]{sub k} are compared, too.« less
Solvation suppression of ion recombination in gas discharge afterglow
NASA Astrophysics Data System (ADS)
Amirov, R. Kh.; Lankin, A. V.; Norman, G. E.
2018-03-01
An effect which suppresses recombination in ion plasmas is considered both theoretically and experimentally. Experimental results are presented for the ion recombination rate in fluorine plasma, which are obtained from data for the gas discharge afterglow. To interpret them, a suppression factor is considered: ion solvation in weakly ionized plasma. It is shown that the recombination process has a two-stage character with the formation of intermediate metastable ion pairs. The pairs consist of negative and positive ion-molecular clusters. A theoretical explanation is given for the slowing down of the ion recombination with the increase of the Coulomb coupling compared to the ion recombination rate calculated in the ideal plasma approximation. The approximate similarity of the recombination rate of the ion temperature and concentration and reasons for the slight deviation from the similarity are elucidated.
Fluid mechanics in the perivascular space.
Wang, Peng; Olbricht, William L
2011-04-07
Perivascular space (PVS) within the brain is an important pathway for interstitial fluid (ISF) and solute transport. Fluid flowing in the PVS can affect these transport processes and has significant impacts on physiology. In this paper, we carry out a theoretical analysis to investigate the fluid mechanics in the PVS. With certain assumptions and approximations, we are able to find an analytical solution to the problem. We discuss the physical meanings of the solution and particularly examine the consequences of the induced fluid flow in the context of convection-enhanced delivery (CED). We conclude that peristaltic motions of the blood vessel walls can facilitate fluid and solute transport in the PVS. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hanumagowda, B. N.; Savitramma, G.; Salma, A.; Noorjahan
2018-04-01
In this article, the theoretical analysis of the combined study of non-Newtonian couple stresses with piezo-viscous dependency for annular plates squeeze film bearings have been carried out, with help of stokes micro continuum theory along with the exponential variation of viscosity with pressure. An approximate analytical solution is found using a small perturbation method. The solution for pressure and load capacity with distinct values of viscosity-pressure parameter are calculated and compared with iso-viscous couple stress and Newtonian lubricants and the results reveals that the effect of couple stresses and pressure-dependent viscosity variation enhances the load-carrying capacity and lengthens the squeeze film time.
Higgs production via gluon fusion in k{sub T} factorisation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hautmann, F.; Jung, H.; Pandis, V.
2011-07-15
Theoretical studies of Higgs production via gluon fusion are frequently carried out in the limit where the top quark mass is much larger than the Higgs mass, an approximation which reduces the top quark loop to an effective vertex. We present a numerical analysis of the error thus introduced by performing a Monte Carlo calculation for gg{yields}h in k{sub T}-factorisation, using the parton shower generator CASCADE. By examining both inclusive and exclusive quantities, we find that retaining the top-mass dependence results in only a small enhancement of the cross-section. We then proceed to compare CASCADE to the collinear Monte Carlosmore » PYTHIA, MC-NLO and POWHEG.« less
Active motion on curved surfaces
NASA Astrophysics Data System (ADS)
Castro-Villarreal, Pavel; Sevilla, Francisco J.
2018-05-01
A theoretical analysis of active motion on curved surfaces is presented in terms of a generalization of the telegrapher equation. Such a generalized equation is explicitly derived as the polar approximation of the hierarchy of equations obtained from the corresponding Fokker-Planck equation of active particles diffusing on curved surfaces. The general solution to the generalized telegrapher equation is given for a pulse with vanishing current as initial data. Expressions for the probability density and the mean squared geodesic displacement are given in the limit of weak curvature. As an explicit example of the formulated theory, the case of active motion on the sphere is presented, where oscillations observed in the mean squared geodesic displacement are explained.
Structural and electronic properties Te62+ and Te82+: A DFT study
NASA Astrophysics Data System (ADS)
Sharma, Tamanna; Tamboli, Rohit; Kanhere, D. G.; Sharma, Raman
2018-05-01
Structural and electronic properties of Tellurium cluster (Ten) and their cations (Ten2+) (n = 6, 8) have been studied theoretically using VASP within generalized gradient approximation. Ground state geometries and higher energy isomers of these clusters have been examined on the basis of total free energy calculations. Lowest energy isomers of neutral clusters are ring like structures whereas the lowest energy isomers of cations are polyhedral cages. HOMO-LUMO gap in cationic clusters is small compared to its neutral clusters. Removal of two electrons from the neutral cluster raises the free energy. Analysis of free energy, HOMO-LUMO gap and density of states (DOS) show that neutral cluster are more stable than their cations.
Iatrogenesis in intensive care units: dramatization of contemporary bio/ethical problems.
de Oliveira Vargas, Mara Ambrosina; Ramos, Flavia Regina Souza
2010-01-01
This qualitative investigation, based in Foucauldian analysis with approximations to the post-structuralism theoretical framework, explores iatrogenesis as one of the tensions in the nursing to do/to know which can be discursively articulated to bioethics and to technobiomedicine. The documentary sources and intensive interviews with nurses, permitted the activation of a reflection on the act of the nurse in a context permeated by the ever-present possibility of failure in both the procedure and in the conduct and, from this possibility, they should meet their obligation to correct this failure not so much or not only in knowledge, not so much or not only in law but in practice itself.
Testing a common ice-ocean parameterization with laboratory experiments
NASA Astrophysics Data System (ADS)
McConnochie, C. D.; Kerr, R. C.
2017-07-01
Numerical models of ice-ocean interactions typically rely upon a parameterization for the transport of heat and salt to the ice face that has not been satisfactorily validated by observational or experimental data. We compare laboratory experiments of ice-saltwater interactions to a common numerical parameterization and find a significant disagreement in the dependence of the melt rate on the fluid velocity. We suggest a resolution to this disagreement based on a theoretical analysis of the boundary layer next to a vertical heated plate, which results in a threshold fluid velocity of approximately 4 cm/s at driving temperatures between 0.5 and 4°C, above which the form of the parameterization should be valid.
Granular metamaterials for vibration mitigation
NASA Astrophysics Data System (ADS)
Gantzounis, G.; Serra-Garcia, M.; Homma, K.; Mendoza, J. M.; Daraio, C.
2013-09-01
Acoustic metamaterials that allow low-frequency band gaps are interesting for many practical engineering applications, where vibration control and sound insulation are necessary. In most prior studies, the mechanical response of these structures has been described using linear continuum approximations. In this work, we experimentally and theoretically address the formation of low-frequency band gaps in locally resonant granular crystals, where the dynamics of the system is governed by discrete equations. We investigate the quasi-linear behavior of such structures. The analysis shows that a stopband can be introduced at about one octave lower frequency than in materials without local resonances. Broadband and multi-frequency stopband characteristics can also be achieved by strategically tailoring the non-uniform local resonance parameters.
Magnetic structure of Ba (TiO ) Cu4(PO4)4 probed using spherical neutron polarimetry
NASA Astrophysics Data System (ADS)
Babkevich, P.; Testa, L.; Kimura, K.; Kimura, T.; Tucker, G. S.; Roessli, B.; Rønnow, H. M.
2017-12-01
The antiferromagnetic compound Ba (TiO ) Cu4(PO4)4 contains square cupola of corner-sharing CuO4 plaquettes, which were proposed to form effective quadrupolar order. To identify the magnetic structure, we have performed spherical neutron polarimetry measurements. Based on symmetry analysis and careful measurements, we conclude that the orientation of the Cu2 + spins form a noncollinear in-out structure with spins approximately perpendicular to the CuO4 motif. Strong Dzyaloshinskii-Moriya interaction naturally lends itself to explain this phenomenon. The identification of the ground-state magnetic structure should serve well for future theoretical and experimental studies into this and closely related compounds.
Laser Doppler systems in atmospheric turbulence
NASA Technical Reports Server (NTRS)
Murty, S. S. R.
1976-01-01
The loss of heterodyne signal power for the Marshall Space Flight Center laser Doppler system due to the random changes in the atmospheric index of refraction is investigated. The current status in the physics of low energy laser propagation through turbulent atmosphere is presented. The analysis and approximate evaluation of the loss of the heterodyne signal power due to the atmospheric absorption, scattering, and turbulence are estimated for the conditions of the January 1973 flight tests. Theoretical and experimental signal to noise values are compared. Maximum and minimum values of the atmospheric attenuation over a two way path of 20 km range are calculated as a function of altitude using models of atmosphere, aerosol concentration, and turbulence.
Mineral exploration potential of ERTS-1 data. [porphyry copper deposits in Arizona
NASA Technical Reports Server (NTRS)
Brewer, W. A. (Principal Investigator); Erskine, M. C., Jr.; Prindle, R. O.; Haenggi, W. T.
1974-01-01
The author has identified the following significant results. ERTS-1 imagery of an area approximately 15,000 square miles in Arizona was interpreted for regional structure and tectonic units. Eight fault systems were identified by trend, of which two, northeast and northwest, are considered to be related to porphyry copper mineralization. Nine tectonic units can be identified on the imagery as distinct geological identities. The boundaries between these units can be correlated with theoretical shear directions related to the San Andreas stress system. Fourier analysis of the N 50 W fault trend indicates a fundamental spacing between Fourier energy maxima that can be related to distances between copper deposits.
Heating of cardiovascular stents in intense radiofrequency magnetic fields.
Foster, K R; Goldberg, R; Bonsignore, C
1999-01-01
We consider the heating of a metal stent in an alternating magnetic field from an induction heating furnace. An approximate theoretical analysis is conducted to estimate the magnetic field strength needed to produce substantial temperature increases. Experiments of stent heating in industrial furnaces are reported, which confirm the model. The results show that magnetic fields inside inductance furnaces are capable of significantly heating stents. However, the fields fall off very quickly with distance and in most locations outside the heating coil, field levels are far too small to produce significant heating. The ANSI/IEEE C95.1-1992 limits for human exposure to alternating magnetic fields provide adequate protection against potential excessive heating of the stents.
Cheng, Kung-Shan; Dewhirst, Mark W; Stauffer, Paul R; Das, Shiva
2010-03-01
This paper investigates overall theoretical requirements for reducing the times required for the iterative learning of a real-time image-guided adaptive control routine for multiple-source heat applicators, as used in hyperthermia and thermal ablative therapy for cancer. Methods for partial reconstruction of the physical system with and without model reduction to find solutions within a clinically practical timeframe were analyzed. A mathematical analysis based on the Fredholm alternative theorem (FAT) was used to compactly analyze the existence and uniqueness of the optimal heating vector under two fundamental situations: (1) noiseless partial reconstruction and (2) noisy partial reconstruction. These results were coupled with a method for further acceleration of the solution using virtual source (VS) model reduction. The matrix approximation theorem (MAT) was used to choose the optimal vectors spanning the reduced-order subspace to reduce the time for system reconstruction and to determine the associated approximation error. Numerical simulations of the adaptive control of hyperthermia using VS were also performed to test the predictions derived from the theoretical analysis. A thigh sarcoma patient model surrounded by a ten-antenna phased-array applicator was retained for this purpose. The impacts of the convective cooling from blood flow and the presence of sudden increase of perfusion in muscle and tumor were also simulated. By FAT, partial system reconstruction directly conducted in the full space of the physical variables such as phases and magnitudes of the heat sources cannot guarantee reconstructing the optimal system to determine the global optimal setting of the heat sources. A remedy for this limitation is to conduct the partial reconstruction within a reduced-order subspace spanned by the first few maximum eigenvectors of the true system matrix. By MAT, this VS subspace is the optimal one when the goal is to maximize the average tumor temperature. When more than 6 sources present, the steps required for a nonlinear learning scheme is theoretically fewer than that of a linear one, however, finite number of iterative corrections is necessary for a single learning step of a nonlinear algorithm. Thus, the actual computational workload for a nonlinear algorithm is not necessarily less than that required by a linear algorithm. Based on the analysis presented herein, obtaining a unique global optimal heating vector for a multiple-source applicator within the constraints of real-time clinical hyperthermia treatments and thermal ablative therapies appears attainable using partial reconstruction with minimum norm least-squares method with supplemental equations. One way to supplement equations is the inclusion of a method of model reduction.
NASA Technical Reports Server (NTRS)
Rosen, I. G.
1985-01-01
Rayleigh-Ritz methods for the approximation of the natural modes for a class of vibration problems involving flexible beams with tip bodies using subspaces of piecewise polynomial spline functions are developed. An abstract operator theoretic formulation of the eigenvalue problem is derived and spectral properties investigated. The existing theory for spline-based Rayleigh-Ritz methods applied to elliptic differential operators and the approximation properties of interpolatory splines are useed to argue convergence and establish rates of convergence. An example and numerical results are discussed.
Chao, Jerry; Ram, Sripad; Ward, E. Sally; Ober, Raimund J.
2014-01-01
The extraction of information from images acquired under low light conditions represents a common task in diverse disciplines. In single molecule microscopy, for example, techniques for superresolution image reconstruction depend on the accurate estimation of the locations of individual particles from generally low light images. In order to estimate a quantity of interest with high accuracy, however, an appropriate model for the image data is needed. To this end, we previously introduced a data model for an image that is acquired using the electron-multiplying charge-coupled device (EMCCD) detector, a technology of choice for low light imaging due to its ability to amplify weak signals significantly above its readout noise floor. Specifically, we proposed the use of a geometrically multiplied branching process to model the EMCCD detector’s stochastic signal amplification. Geometric multiplication, however, can be computationally expensive and challenging to work with analytically. We therefore describe here two approximations for geometric multiplication that can be used instead. The high gain approximation is appropriate when a high level of signal amplification is used, a scenario which corresponds to the typical usage of an EMCCD detector. It is an accurate approximation that is computationally more efficient, and can be used to perform maximum likelihood estimation on EMCCD image data. In contrast, the Gaussian approximation is applicable at all levels of signal amplification, but is only accurate when the initial signal to be amplified is relatively large. As we demonstrate, it can importantly facilitate the analysis of an information-theoretic quantity called the noise coefficient. PMID:25075263
NASA Astrophysics Data System (ADS)
Kumar, Amit; Kumar, Rajesh; Gupta, Archana; Tandon, Poonam; D'silva, E. Deepak
2017-12-01
A collective experimental and theoretical study was conducted on the molecular structure and vibrational spectra of nonlinear optical chalcone derivative (2E)-3-[4-(methylsulfanyl) phenyl]-1-(3-bromophenyl) prop-2-en-1-one (3Br4MSP). The FT-IR and FT-Raman spectra of the molecule in the solid phase have been recorded. Density functional theory (DFT) calculations at B3LYP level with 6-311++G (d,p) basis set have been carried out to derive useful information about the molecular structure and to assign the relevant electronic and vibrational features. These calculations reveal that the optimized geometry closely resembles the experimental XRD data. The vibrational spectra were analyzed on the basis of the potential energy distribution (PED) of each vibrational mode, which allowed us to obtain a quantitative as well as qualitative interpretation of FT-IR and FT-Raman spectra. The UV-vis spectrum was recorded in methanol solution. The excited state properties have been determined by TD-DFT method and the effect of solvent was analyzed by PCM model. The most prominent transition corresponds to π→π∗. The reactivity parameters as chemical potential, global hardness, and electrophilicity index have also been calculated. To provide an explicit assignment and analysis of 13C and 1H NMR spectra, theoretical calculations on chemical shift of the title compound were done through GIAO method at B3LYP/6-311++G (d,p) level. The Mulliken's population analysis shows one of the simplest pictures of charge distribution. The standard statistical thermodynamic functions like heat capacity at constant pressure (Cop,m), entropy (Som) and enthalpy (Hom) were obtained from the theoretical harmonic frequencies for the optimized molecule. The nonlinear optical properties of title molecule are also addressed theoretically. Two contributions, vibrational and electronic, to the electrical properties polarizability and first order hyperpolarizability of 3Br4MSP have been evaluated using the self-consistent field wave functions within the double harmonic oscillator approximation.
Protein Folding Free Energy Landscape along the Committor - the Optimal Folding Coordinate.
Krivov, Sergei V
2018-06-06
Recent advances in simulation and experiment have led to dramatic increases in the quantity and complexity of produced data, which makes the development of automated analysis tools very important. A powerful approach to analyze dynamics contained in such data sets is to describe/approximate it by diffusion on a free energy landscape - free energy as a function of reaction coordinates (RC). For the description to be quantitatively accurate, RCs should be chosen in an optimal way. Recent theoretical results show that such an optimal RC exists; however, determining it for practical systems is a very difficult unsolved problem. Here we describe a solution to this problem. We describe an adaptive nonparametric approach to accurately determine the optimal RC (the committor) for an equilibrium trajectory of a realistic system. In contrast to alternative approaches, which require a functional form with many parameters to approximate an RC and thus extensive expertise with the system, the suggested approach is nonparametric and can approximate any RC with high accuracy without system specific information. To avoid overfitting for a realistically sampled system, the approach performs RC optimization in an adaptive manner by focusing optimization on less optimized spatiotemporal regions of the RC. The power of the approach is illustrated on a long equilibrium atomistic folding simulation of HP35 protein. We have determined the optimal folding RC - the committor, which was confirmed by passing a stringent committor validation test. It allowed us to determine a first quantitatively accurate protein folding free energy landscape. We have confirmed the recent theoretical results that diffusion on such a free energy profile can be used to compute exactly the equilibrium flux, the mean first passage times, and the mean transition path times between any two points on the profile. We have shown that the mean squared displacement along the optimal RC grows linear with time as for simple diffusion. The free energy profile allowed us to obtain a direct rigorous estimate of the pre-exponential factor for the folding dynamics.
NASA Astrophysics Data System (ADS)
Scrimshire, A.; Lobera, A.; Bell, A. M. T.; Jones, A. H.; Sterianou, I.; Forder, S. D.; Bingham, P. A.
2018-03-01
Lanthanide orthoferrites have wide-ranging industrial uses including solar, catalytic and electronic applications. Here a series of lanthanide orthoferrite perovskites, LnFeO3 (Ln = La Nd; Sm; Eu; Gd), prepared through a standard stoichiometric wet ball milling route using oxide precursors, has been studied. Characterisation through x-ray diffraction and x-ray fluorescence confirmed the synthesis of phase-pure or near-pure LnFeO3 compounds. 57Fe Mössbauer spectroscopy was performed over a temperature range of 10 K-293 K to observe hyperfine structure and to enable calculation of the recoil-free fraction and Debye temperature (θ D) of each orthoferrite. Debye temperatures (Ln = La 474 K Nd 459 K Sm 457 K Eu 452 K Gd 473 K) and recoil-free fractions (Ln = La 0.827; Nd 0.817; Sm 0.816; Eu 0.812; Gd 0.826) were approximated through minimising the difference in the temperature dependent experimental centre shift and theoretical isomer shift, by allowing the Debye temperature and isomer shift values to vary. This method of minimising the difference between theoretical and actual values yields Debye temperatures consistent with results from other studies determined through thermal analysis methods. This displays the ability of variable-temperature Mössbauer spectroscopy to approximate Debye temperatures and recoil-free fractions, whilst observing temperature induced transitions over the temperature range observed. X-ray diffraction and Rietveld refinement show an inverse relationship between FeO6 octahedral volume and approximated Debye temperatures. Raman spectroscopy show an increase in the band positions attributed to soft modes of Ag symmetry, Ag(3) and Ag(5) from La to GdFeO3 corresponding to octahedral rotations and tilts in the [0 1 0] and [1 0 1] planes respectively.
On an apparent discrepancy between pulsation and evolution masses for Cepheids.
NASA Technical Reports Server (NTRS)
Iben, I., Jr.; Tuggle, R. S.
1972-01-01
Results of new theoretical pulsation calculations in the linear nonadiabatic approximation are presented. Emphasis is placed on the location of blue edges (the borderline between stability and instability against pulsation) for pulsation in the fundamental mode. The results of evolutionary calculations for the helium-burning phase are introduced, and a theoretical period-luminosity relationship is obtained for Cepheids that lie on the blue edge of the instability strip. The theoretical results are then compared with current estimates of the intrinsic bulk properties of 13 Cepheids, and it is shown how theoretical and observational properties may be reconciled without assuming significant mass loss or the necessity of major adjustments in the theory. Finally, it is argued that the required revision in Cepheid luminosities lies within the observational uncertainties.
Neuhauser, Daniel; Gao, Yi; Arntsen, Christopher; Karshenas, Cyrus; Rabani, Eran; Baer, Roi
2014-08-15
We develop a formalism to calculate the quasiparticle energy within the GW many-body perturbation correction to the density functional theory. The occupied and virtual orbitals of the Kohn-Sham Hamiltonian are replaced by stochastic orbitals used to evaluate the Green function G, the polarization potential W, and, thereby, the GW self-energy. The stochastic GW (sGW) formalism relies on novel theoretical concepts such as stochastic time-dependent Hartree propagation, stochastic matrix compression, and spatial or temporal stochastic decoupling techniques. Beyond the theoretical interest, the formalism enables linear scaling GW calculations breaking the theoretical scaling limit for GW as well as circumventing the need for energy cutoff approximations. We illustrate the method for silicon nanocrystals of varying sizes with N_{e}>3000 electrons.
An experimental study of turbulence by phase-contrast imaging in the DIII-D tokamak
NASA Astrophysics Data System (ADS)
Coda, Stefano
1997-10-01
A CO2-laser imaging system employing the Zernike phase-contrast technique was designed, built, installed, and operated on the DIII-D tokamak. This system measures the line integrals of plasma density fluctuations along 16 vertical chords at the outer edge of the tokamak (0.85
Airfoil Shape Optimization based on Surrogate Model
NASA Astrophysics Data System (ADS)
Mukesh, R.; Lingadurai, K.; Selvakumar, U.
2018-02-01
Engineering design problems always require enormous amount of real-time experiments and computational simulations in order to assess and ensure the design objectives of the problems subject to various constraints. In most of the cases, the computational resources and time required per simulation are large. In certain cases like sensitivity analysis, design optimisation etc where thousands and millions of simulations have to be carried out, it leads to have a life time of difficulty for designers. Nowadays approximation models, otherwise called as surrogate models (SM), are more widely employed in order to reduce the requirement of computational resources and time in analysing various engineering systems. Various approaches such as Kriging, neural networks, polynomials, Gaussian processes etc are used to construct the approximation models. The primary intention of this work is to employ the k-fold cross validation approach to study and evaluate the influence of various theoretical variogram models on the accuracy of the surrogate model construction. Ordinary Kriging and design of experiments (DOE) approaches are used to construct the SMs by approximating panel and viscous solution algorithms which are primarily used to solve the flow around airfoils and aircraft wings. The method of coupling the SMs with a suitable optimisation scheme to carryout an aerodynamic design optimisation process for airfoil shapes is also discussed.
Honda, Michitaka
2014-04-01
Several improvements were implemented in the edge method of presampled modulation transfer function measurements (MTFs). The estimation technique for edge angle was newly developed by applying an algorithm for principal components analysis. The error in the estimation was statistically confirmed to be less than 0.01 even in the presence of quantum noise. Secondly, the geometrical edge slope was approximated using a rationalized number, making it possible to obtain an oversampled edge response function (ESF) with equal intervals. Thirdly, the final MTFs were estimated using the average of multiple MTFs calculated for local areas. This averaging operation eliminates the errors caused by the rationalized approximation. Computer-simulated images were used to evaluate the accuracy of our method. The relative error between the estimated MTF and the theoretical MTF at the Nyquist frequency was less than 0.5% when the MTF was expressed as a sinc function. For MTFs representing an indirect detector and phase-contrast detector, good agreement was also observed for the estimated MTFs for each. The high accuracy of the MTF estimation was also confirmed, even for edge angles of around 10 degrees, which suggests the potential for simplification of the measurement conditions. The proposed method could be incorporated into an automated measurement technique using a software application.
Electroosmotic flows of non-Newtonian power-law fluids in a cylindrical microchannel.
Zhao, Cunlu; Yang, Chun
2013-03-01
EOF of non-Newtonian power-law fluids in a cylindrical microchannel is analyzed theoretically. Specially, exact solutions of electroosmotic velocity corresponding to two special fluid behavior indices (n = 0.5 and 1.0) are found, while approximate solutions are derived for arbitrary values of fluid behavior index. It is found that because of the approximation for the first-order modified Bessel function of the first kind, the approximate solutions introduce largest errors for predicting electroosmotic velocity when the thickness of electric double layer is comparable to channel radius, but can accurately predict the electroosmotic velocity when the thickness of electric double layer is much smaller or larger than the channel radius. Importantly, the analysis reveals that the Helmholtz-Smoluchowski velocity of power-law fluids in cylindrical microchannels becomes dependent on geometric dimensions (radius of channel), standing in stark contrast to the Helmholtz-Smoluchowski velocity over planar surfaces or in parallel-plate microchannels. Such interesting and counterintuitive effects can be attributed to the nonlinear coupling among the electrostatics, channel geometry, and non-Newtonian hydrodynamics. Furthermore, a method for enhancement of EOFs of power-law fluids is proposed under a combined DC and AC electric field. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Eames, I; Small, I; Frampton, A; Cottenden, A M
2003-01-01
The spread of fluid from a localized source on to a flat fibrous sheet is studied. The sheet is inclined at an angle, alpha, to the horizontal, and the areal flux of the fluid released is Qa. A new experimental study is described where the dimensions of the wetted region are measured as a function of time t, Qa and alpha (>0). The down-slope length, Y, grows according to Y approximately (Qa t)(2/3) (sin alpha)(1/3); for high discharge rates and low angles of inclination, the cross-slope width, X, grows as approximately (Qa t)(1/2), while for low discharge rates or high angles of inclination, the cross-slope transport is dominated by infiltration and X approximately 2(2Ks psi* t)(1/2), where Ks is the saturated permeability and psi* is the characteristic value of capillary pressure. A scaling analysis of the underlying non-linear advection diffusion equation describing the infiltration process confirms many of the salient features of the flow observed. Good agreement is observed between the collapse of the numerical solutions and experimental results. The broader implications of these results for incontinence bed-pad research are briefly discussed.
Discrete-Time Demodulator Architectures for Free-Space Broadband Optical Pulse-Position Modulation
NASA Technical Reports Server (NTRS)
Gray, A. A.; Lee, C.
2004-01-01
The objective of this work is to develop discrete-time demodulator architectures for broadband optical pulse-position modulation (PPM) that are capable of processing Nyquist or near-Nyquist data rates. These architectures are motivated by the numerous advantages of realizing communications demodulators in digital very large scale integrated (VLSI) circuits. The architectures are developed within a framework that encompasses a large body of work in optical communications, synchronization, and multirate discrete-time signal processing and are constrained by the limitations of the state of the art in digital hardware. This work attempts to create a bridge between theoretical communication algorithms and analysis for deep-space optical PPM and modern digital VLSI. The primary focus of this work is on the synthesis of discrete-time processing architectures for accomplishing the most fundamental functions required in PPM demodulators, post-detection filtering, synchronization, and decision processing. The architectures derived are capable of closely approximating the theoretical performance of the continuous-time algorithms from which they are derived. The work concludes with an outline of the development path that leads to hardware.
Recovery of time-dependent volatility in option pricing model
NASA Astrophysics Data System (ADS)
Deng, Zui-Cha; Hon, Y. C.; Isakov, V.
2016-11-01
In this paper we investigate an inverse problem of determining the time-dependent volatility from observed market prices of options with different strikes. Due to the non linearity and sparsity of observations, an analytical solution to the problem is generally not available. Numerical approximation is also difficult to obtain using most of the existing numerical algorithms. Based on our recent theoretical results, we apply the linearisation technique to convert the problem into an inverse source problem from which recovery of the unknown volatility function can be achieved. Two kinds of strategies, namely, the integral equation method and the Landweber iterations, are adopted to obtain the stable numerical solution to the inverse problem. Both theoretical analysis and numerical examples confirm that the proposed approaches are effective. The work described in this paper was partially supported by a grant from the Research Grant Council of the Hong Kong Special Administrative Region (Project No. CityU 101112) and grants from the NNSF of China (Nos. 11261029, 11461039), and NSF grants DMS 10-08902 and 15-14886 and by Emylou Keith and Betty Dutcher Distinguished Professorship at the Wichita State University (USA).
Scheidel, Jennifer; Lindauer, Klaus; Ackermann, Jörg; Koch, Ina
2015-12-17
The insulin-dependent activation and recycling of the insulin receptor play an essential role in the regulation of the energy metabolism, leading to a special interest for pharmaceutical applications. Thus, the recycling of the insulin receptor has been intensively investigated, experimentally as well as theoretically. We developed a time-resolved, discrete model to describe stochastic dynamics and study the approximation of non-linear dynamics in the context of timed Petri nets. Additionally, using a graph-theoretical approach, we analyzed the structure of the regulatory system and demonstrated the close interrelation of structural network properties with the kinetic behavior. The transition invariants decomposed the model into overlapping subnetworks of various sizes, which represent basic functional modules. Moreover, we computed the quasi-steady states of these subnetworks and demonstrated that they are fundamental to understand the dynamic behavior of the system. The Petri net approach confirms the experimental results of insulin-stimulated degradation of the insulin receptor, which represents a common feature of insulin-resistant, hyperinsulinaemic states.
Quasichemical analysis of the cluster-pair approximation for the thermodynamics of proton hydration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pollard, Travis; Beck, Thomas L.; Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221
2014-06-14
A theoretical analysis of the cluster-pair approximation (CPA) is presented based on the quasichemical theory of solutions. The sought single-ion hydration free energy of the proton includes an interfacial potential contribution by definition. It is shown, however, that the CPA involves an extra-thermodynamic assumption that does not guarantee uniform convergence to a bulk free energy value with increasing cluster size. A numerical test of the CPA is performed using the classical polarizable AMOEBA force field and supporting quantum chemical calculations. The enthalpy and free energy differences are computed for the kosmotropic Na{sup +}/F{sup −} ion pair in water clusters ofmore » size n = 5, 25, 105. Additional calculations are performed for the chaotropic Rb{sup +}/I{sup −} ion pair. A small shift in the proton hydration free energy and a larger shift in the hydration enthalpy, relative to the CPA values, are predicted based on the n = 105 simulations. The shifts arise from a combination of sequential hydration and interfacial potential effects. The AMOEBA and quantum chemical results suggest an electrochemical surface potential of water in the range −0.4 to −0.5 V. The physical content of single-ion free energies and implications for ion-water force field development are also discussed.« less
Measurement Uncertainty Relations for Discrete Observables: Relative Entropy Formulation
NASA Astrophysics Data System (ADS)
Barchielli, Alberto; Gregoratti, Matteo; Toigo, Alessandro
2018-02-01
We introduce a new information-theoretic formulation of quantum measurement uncertainty relations, based on the notion of relative entropy between measurement probabilities. In the case of a finite-dimensional system and for any approximate joint measurement of two target discrete observables, we define the entropic divergence as the maximal total loss of information occurring in the approximation at hand. For fixed target observables, we study the joint measurements minimizing the entropic divergence, and we prove the general properties of its minimum value. Such a minimum is our uncertainty lower bound: the total information lost by replacing the target observables with their optimal approximations, evaluated at the worst possible state. The bound turns out to be also an entropic incompatibility degree, that is, a good information-theoretic measure of incompatibility: indeed, it vanishes if and only if the target observables are compatible, it is state-independent, and it enjoys all the invariance properties which are desirable for such a measure. In this context, we point out the difference between general approximate joint measurements and sequential approximate joint measurements; to do this, we introduce a separate index for the tradeoff between the error of the first measurement and the disturbance of the second one. By exploiting the symmetry properties of the target observables, exact values, lower bounds and optimal approximations are evaluated in two different concrete examples: (1) a couple of spin-1/2 components (not necessarily orthogonal); (2) two Fourier conjugate mutually unbiased bases in prime power dimension. Finally, the entropic incompatibility degree straightforwardly generalizes to the case of many observables, still maintaining all its relevant properties; we explicitly compute it for three orthogonal spin-1/2 components.
Galerkin approximation for inverse problems for nonautonomous nonlinear distributed systems
NASA Technical Reports Server (NTRS)
Banks, H. T.; Reich, Simeon; Rosen, I. G.
1988-01-01
An abstract framework and convergence theory is developed for Galerkin approximation for inverse problems involving the identification of nonautonomous nonlinear distributed parameter systems. A set of relatively easily verified conditions is provided which are sufficient to guarantee the existence of optimal solutions and their approximation by a sequence of solutions to a sequence of approximating finite dimensional identification problems. The approach is based on the theory of monotone operators in Banach spaces and is applicable to a reasonably broad class of nonlinear distributed systems. Operator theoretic and variational techniques are used to establish a fundamental convergence result. An example involving evolution systems with dynamics described by nonstationary quasilinear elliptic operators along with some applications are presented and discussed.
Schmidt, Philip J; Pintar, Katarina D M; Fazil, Aamir M; Topp, Edward
2013-09-01
Dose-response models are the essential link between exposure assessment and computed risk values in quantitative microbial risk assessment, yet the uncertainty that is inherent to computed risks because the dose-response model parameters are estimated using limited epidemiological data is rarely quantified. Second-order risk characterization approaches incorporating uncertainty in dose-response model parameters can provide more complete information to decisionmakers by separating variability and uncertainty to quantify the uncertainty in computed risks. Therefore, the objective of this work is to develop procedures to sample from posterior distributions describing uncertainty in the parameters of exponential and beta-Poisson dose-response models using Bayes's theorem and Markov Chain Monte Carlo (in OpenBUGS). The theoretical origins of the beta-Poisson dose-response model are used to identify a decomposed version of the model that enables Bayesian analysis without the need to evaluate Kummer confluent hypergeometric functions. Herein, it is also established that the beta distribution in the beta-Poisson dose-response model cannot address variation among individual pathogens, criteria to validate use of the conventional approximation to the beta-Poisson model are proposed, and simple algorithms to evaluate actual beta-Poisson probabilities of infection are investigated. The developed MCMC procedures are applied to analysis of a case study data set, and it is demonstrated that an important region of the posterior distribution of the beta-Poisson dose-response model parameters is attributable to the absence of low-dose data. This region includes beta-Poisson models for which the conventional approximation is especially invalid and in which many beta distributions have an extreme shape with questionable plausibility. © Her Majesty the Queen in Right of Canada 2013. Reproduced with the permission of the Minister of the Public Health Agency of Canada.
On the exactness of effective Floquet Hamiltonians employed in solid-state NMR spectroscopy
NASA Astrophysics Data System (ADS)
Garg, Rajat; Ramachandran, Ramesh
2017-05-01
Development of theoretical models based on analytic theory has remained an active pursuit in molecular spectroscopy for its utility both in the design of experiments as well as in the interpretation of spectroscopic data. In particular, the role of "Effective Hamiltonians" in the evolution of theoretical frameworks is well known across all forms of spectroscopy. Nevertheless, a constant revalidation of the approximations employed in the theoretical frameworks is necessitated by the constant improvements on the experimental front in addition to the complexity posed by the systems under study. Here in this article, we confine our discussion to the derivation of effective Floquet Hamiltonians based on the contact transformation procedure. While the importance of the effective Floquet Hamiltonians in the qualitative description of NMR experiments has been realized in simpler cases, its extension in quantifying spectral data deserves a cautious approach. With this objective, the validity of the approximations employed in the derivation of the effective Floquet Hamiltonians is re-examined through a comparison with exact numerical methods under differing experimental conditions. The limitations arising from the existing analytic methods are outlined along with remedial measures for improving the accuracy of the derived effective Floquet Hamiltonians.
Teaching light scattering spectroscopy: the dimension and shape of tobacco mosaic virus.
Santos, N C; Castanho, M A
1996-01-01
The tobacco mosaic virus is used as a model molecular assembly to illustrate the basic potentialities of light scattering techniques (both static and dynamic) to undergraduates. The work has two objectives: a pedagogic one (introducing light scattering to undergraduate students) and a scientific one (stabilization of the virus molecular assembly structure by the nucleic acid). Students are first challenged to confirm the stabilization of the cylindrical shape of the virus by the nucleic acid, at pH and ionic strength conditions where the coat proteins alone do not self-assemble. The experimental intramolecular scattering factor is compared with the theoretical ones for several model geometries. The data clearly suggest that the geometry is, in fact, a rod. Comparing the experimental values of gyration radius and hydrodynamic radius with the theoretical expectations further confirms this conclusion. Moreover, the rod structure is maintained over a wider range of pH and ionic strength than that valid for the coat proteins alone. The experimental values of the diffusion coefficient and radius of gyration are compared with the theoretical expectations assuming the dimensions detected by electron microscopy techniques. In fact, both values are in agreement (length approximately 300 nm, radius approximately 20 nm). PMID:8874039
Theoretical DFT, vibrational and NMR studies of benzimidazole and alkyl derivatives
NASA Astrophysics Data System (ADS)
Infante-Castillo, Ricardo; Rivera-Montalvo, Luis A.; Hernández-Rivera, Samuel P.
2008-04-01
Benzimidazoles are heterocyclic compounds that have awaked great interest during the last few years because of their proven biological activity as antiviral, antimicrobial, and antitumoral agents. For this reason, the development of a systematic FT-IR, FT-Raman and NMR study of 1-substituted compounds in 2-methylbenzimidazole constitutes a significant tool in understanding the molecular dynamics and the structural parameters that govern their behavior. Two new 1-alkyl-2-methylbenzimidazoles compounds were synthesized from reaction of 2-methylbenzimidazole with primary and secondary alkyl halides using a strong base as a catalyst. These compounds were purified and characterized by elemental analysis and different spectroscopic methods. The comparative analysis of vibrational modes of benzimidazole and its alkyl derivatives show that regions of absorption are very similar in all of them. However, changes are produced at low frequencies specifically in the C-H out of plane deformations, ring breathing and ring skeletal vibrations. The ring out-of plane bending modes shift by 10-15 cm -1 in some cases as results of alkyl substitution. The theoretical calculated spectra, using Density Functional Theory (DFT) approximation, and experimental results were consistent with each other. The GIAO method was used to calculate absolute shieldings, which agree consistently with those measured by 1H and 13C NMR. The consistency and efficiency of the GIAO 13C and 1H NMR calculations were thoroughly checked by the analysis of statistical parameters concerning computed and experimental 13C and 1H NMR chemical shift values of the studied compounds.
NASA Astrophysics Data System (ADS)
Allec, N.; Abbaszadeh, S.; Scott, C. C.; Lewin, J. M.; Karim, K. S.
2012-12-01
In contrast-enhanced mammography (CEM), the dual-energy dual-exposure technique, which can leverage existing conventional mammography infrastructure, relies on acquiring the low- and high-energy images using two separate exposures. The finite time between image acquisition leads to motion artifacts in the combined image. Motion artifacts can lead to greater anatomical noise in the combined image due to increased mismatch of the background tissue in the images to be combined, however the impact has not yet been quantified. In this study we investigate a method to include motion artifacts in the dual-energy noise and performance analysis. The motion artifacts are included via an extended cascaded systems model. To validate the model, noise power spectra of a previous dual-energy clinical study are compared to that of the model. The ideal observer detectability is used to quantify the effect of motion artifacts on tumor detectability. It was found that the detectability can be significantly degraded when motion is present (e.g., detectability of 2.5 mm radius tumor decreased by approximately a factor of 2 for translation motion on the order of 1000 μm). The method presented may be used for a more comprehensive theoretical noise and performance analysis and fairer theoretical performance comparison between dual-exposure techniques, where motion artifacts are present, and single-exposure techniques, where low- and high-energy images are acquired simultaneously and motion artifacts are absent.
NASA Astrophysics Data System (ADS)
Cao, Zhoujian; Han, Wen-Biao
2017-08-01
Binary black hole systems are among the most important sources for gravitational wave detection. They are also good objects for theoretical research for general relativity. A gravitational waveform template is important to data analysis. An effective-one-body-numerical-relativity (EOBNR) model has played an essential role in the LIGO data analysis. For future space-based gravitational wave detection, many binary systems will admit a somewhat orbit eccentricity. At the same time, the eccentric binary is also an interesting topic for theoretical study in general relativity. In this paper, we construct the first eccentric binary waveform model based on an effective-one-body-numerical-relativity framework. Our basic assumption in the model construction is that the involved eccentricity is small. We have compared our eccentric EOBNR model to the circular one used in the LIGO data analysis. We have also tested our eccentric EOBNR model against another recently proposed eccentric binary waveform model; against numerical relativity simulation results; and against perturbation approximation results for extreme mass ratio binary systems. Compared to numerical relativity simulations with an eccentricity as large as about 0.2, the overlap factor for our eccentric EOBNR model is better than 0.98 for all tested cases, including spinless binary and spinning binary, equal mass binary, and unequal mass binary. Hopefully, our eccentric model can be the starting point to develop a faithful template for future space-based gravitational wave detectors.
Allec, N; Abbaszadeh, S; Scott, C C; Lewin, J M; Karim, K S
2012-12-21
In contrast-enhanced mammography (CEM), the dual-energy dual-exposure technique, which can leverage existing conventional mammography infrastructure, relies on acquiring the low- and high-energy images using two separate exposures. The finite time between image acquisition leads to motion artifacts in the combined image. Motion artifacts can lead to greater anatomical noise in the combined image due to increased mismatch of the background tissue in the images to be combined, however the impact has not yet been quantified. In this study we investigate a method to include motion artifacts in the dual-energy noise and performance analysis. The motion artifacts are included via an extended cascaded systems model. To validate the model, noise power spectra of a previous dual-energy clinical study are compared to that of the model. The ideal observer detectability is used to quantify the effect of motion artifacts on tumor detectability. It was found that the detectability can be significantly degraded when motion is present (e.g., detectability of 2.5 mm radius tumor decreased by approximately a factor of 2 for translation motion on the order of 1000 μm). The method presented may be used for a more comprehensive theoretical noise and performance analysis and fairer theoretical performance comparison between dual-exposure techniques, where motion artifacts are present, and single-exposure techniques, where low- and high-energy images are acquired simultaneously and motion artifacts are absent.
Neurolinguistic Approach to Natural Language Processing with Applications to Medical Text Analysis
Matykiewicz, Paweł; Pestian, John
2008-01-01
Understanding written or spoken language presumably involves spreading neural activation in the brain. This process may be approximated by spreading activation in semantic networks, providing enhanced representations that involve concepts that are not found directly in the text. Approximation of this process is of great practical and theoretical interest. Although activations of neural circuits involved in representation of words rapidly change in time snapshots of these activations spreading through associative networks may be captured in a vector model. Concepts of similar type activate larger clusters of neurons, priming areas in the left and right hemisphere. Analysis of recent brain imaging experiments shows the importance of the right hemisphere non-verbal clusterization. Medical ontologies enable development of a large-scale practical algorithm to re-create pathways of spreading neural activations. First concepts of specific semantic type are identified in the text, and then all related concepts of the same type are added to the text, providing expanded representations. To avoid rapid growth of the extended feature space after each step only the most useful features that increase document clusterization are retained. Short hospital discharge summaries are used to illustrate how this process works on a real, very noisy data. Expanded texts show significantly improved clustering and may be classified with much higher accuracy. Although better approximations to the spreading of neural activations may be devised a practical approach presented in this paper helps to discover pathways used by the brain to process specific concepts, and may be used in large-scale applications. PMID:18614334
Vortex breakdown incipience: Theoretical considerations
NASA Technical Reports Server (NTRS)
Berger, Stanley A.; Erlebacher, Gordon
1992-01-01
The sensitivity of the onset and the location of vortex breakdowns in concentrated vortex cores, and the pronounced tendency of the breakdowns to migrate upstream have been characteristic observations of experimental investigations; they have also been features of numerical simulations and led to questions about the validity of these simulations. This behavior seems to be inconsistent with the strong time-like axial evolution of the flow, as expressed explicitly, for example, by the quasi-cylindrical approximate equations for this flow. An order-of-magnitude analysis of the equations of motion near breakdown leads to a modified set of governing equations, analysis of which demonstrates that the interplay between radial inertial, pressure, and viscous forces gives an elliptic character to these concentrated swirling flows. Analytical, asymptotic, and numerical solutions of a simplified non-linear equation are presented; these qualitatively exhibit the features of vortex onset and location noted above.
Well-tempered metadynamics converges asymptotically.
Dama, James F; Parrinello, Michele; Voth, Gregory A
2014-06-20
Metadynamics is a versatile and capable enhanced sampling method for the computational study of soft matter materials and biomolecular systems. However, over a decade of application and several attempts to give this adaptive umbrella sampling method a firm theoretical grounding prove that a rigorous convergence analysis is elusive. This Letter describes such an analysis, demonstrating that well-tempered metadynamics converges to the final state it was designed to reach and, therefore, that the simple formulas currently used to interpret the final converged state of tempered metadynamics are correct and exact. The results do not rely on any assumption that the collective variable dynamics are effectively Brownian or any idealizations of the hill deposition function; instead, they suggest new, more permissive criteria for the method to be well behaved. The results apply to tempered metadynamics with or without adaptive Gaussians or boundary corrections and whether the bias is stored approximately on a grid or exactly.
Well-Tempered Metadynamics Converges Asymptotically
NASA Astrophysics Data System (ADS)
Dama, James F.; Parrinello, Michele; Voth, Gregory A.
2014-06-01
Metadynamics is a versatile and capable enhanced sampling method for the computational study of soft matter materials and biomolecular systems. However, over a decade of application and several attempts to give this adaptive umbrella sampling method a firm theoretical grounding prove that a rigorous convergence analysis is elusive. This Letter describes such an analysis, demonstrating that well-tempered metadynamics converges to the final state it was designed to reach and, therefore, that the simple formulas currently used to interpret the final converged state of tempered metadynamics are correct and exact. The results do not rely on any assumption that the collective variable dynamics are effectively Brownian or any idealizations of the hill deposition function; instead, they suggest new, more permissive criteria for the method to be well behaved. The results apply to tempered metadynamics with or without adaptive Gaussians or boundary corrections and whether the bias is stored approximately on a grid or exactly.
NASA Astrophysics Data System (ADS)
Li, Pengfei; Ren, Xinguo; He, Lixin
2017-10-01
Plasmon excitations in free-standing graphene and graphene/hexagonal boron nitride (hBN) heterostructure are studied using linear-response time-dependent density functional theory within the random phase approximation. Within a single theoretical framework, we examine both the plasmon dispersion behavior and lifetime (linewidth) of Dirac and π plasmons on an equal footing. Particular attention is paid to the influence of the hBN substrate and the anisotropic effect. Furthermore, a model-based analysis indicates that the correct dispersion behavior of π plasmons should be ωπ(q ) =√{Eg2+β ql} for small q 's, where Eg is the band gap at the M point in the Brillouin zone, and β is a fitting parameter. This model is radically different from previous proposals, but in good agreement with our calculated results from first principles.
Immiscible impact dynamics of droplets onto millimetric films
NASA Astrophysics Data System (ADS)
Shaikh, S.; Toyofuku, G.; Hoang, R.; Marston, J. O.
2018-01-01
The impact of liquid droplets onto a film of an immiscible liquid is studied experimentally across a broad range of parameters [Re = O(101-103), We = O(102-103)] with the aid of high-speed photography and image analysis. Above a critical impact parameter, Re^{1/2}We^{1/4} ≈ 100, the droplet fragments into multiple satellite droplets, which typically occurs as the result of a fingering instability. Statistical analysis indicates that the satellite droplets are approximately log-normally distributed, in agreement with some previous studies and the theoretical predictions of Wu (Prob Eng Mech 18:241-249, 2003). However, in contrast to a recent study by Lhuissier et al. (Phys Rev Lett 110:264503, 2013), we find that it is the modal satellite diameter, not the mean diameter, that scales inversely with the impact speed (or Weber number) and that the dependence is d_{mod} ˜ We^{-1/4}.
Zak, Emil J; Tennyson, Jonathan
2017-09-07
A procedure for calculating ro-vibronic transition intensities for triatomic molecules within the Born-Oppenheimer approximation is reported. Ro-vibrational energy levels and wavefunctions are obtained with the DVR3D suite, which solves the nuclear motion problem with an exact kinetic energy operator. Absolute transition intensities are calculated both with the Franck-Condon approximation and with a full transition dipole moment surface. The theoretical scheme is tested on C̃ 1 B 2 ← X̃ 1 A 1 ro-vibronic transitions of SO 2 . Ab initio potential energy and dipole moment surfaces are generated for this purpose. The calculated ro-vibronic transition intensities and cross sections are compared with the available experimental and theoretical data.
Size invariance of the granular Rayleigh-Taylor instability.
Vinningland, Jan Ludvig; Johnsen, Øistein; Flekkøy, Eirik G; Toussaint, Renaud; Måløy, Knut Jørgen
2010-04-01
The size scaling behavior of the granular Rayleigh-Taylor instability [J. L. Vinningland, Phys. Rev. Lett. 99, 048001 (2007)] is investigated experimentally, numerically, and theoretically. An upper layer of grains displaces a lower gap of air by organizing into dense fingers of falling grains separated by rising bubbles of air. The dependence of these structures on the system and grain sizes is investigated. A spatial measurement of the finger structures is obtained by the Fourier power spectrum of the wave number k. As the size of the grains increases the wave number decreases accordingly which leaves the dimensionless product of wave number and grain diameter, dk, invariant. A theoretical interpretation of the invariance, based on the scaling properties of the model equations, suggests a gradual breakdown of the invariance for grains smaller than approximately 70 microm or greater than approximately 570 microm in diameter.
[Research on the emission spectrum of NO molecule's γ-band system by corona discharge].
Zhai, Xiao-dong; Ding, Yan-jun; Peng, Zhi-min; Luo, Rui
2012-05-01
The optical emission spectrum of the gamma-band system of NO molecule, A2 sigma+ --> X2 pi(r), has been analyzed and calculated based on the energy structure of NO molecule' doublet states. By employing the theory of diatomic molecular Spectra, some key parameters of equations for the radiative transition intensity were evaluated theoretically, including the potentials of the doublet states of NO molecule's upper and lower energy levels, the electronic transition moments calculated by using r-centroid approximation method, and the Einstein coefficient of different vibrational and rotational levels. The simulated spectrum of the gamma-band system was calculated as a function of different vibrational and rotational temperature. Compared to the theoretical spectroscopy, the measured results were achieved from corona discharge experiments of NO and N2. The vibrational and rotational temperatures were determined approximately by fitting the measured spectral intensities with the calculated ones.
NASA Technical Reports Server (NTRS)
Hakkinen, Raimo J; Richardson, A S , Jr
1957-01-01
Sinusoidally oscillating downwash and lift produced on a simple rigid airfoil were measured and compared with calculated values. Statistically stationary random downwash and the corresponding lift on a simple rigid airfoil were also measured and the transfer functions between their power spectra determined. The random experimental values are compared with theoretically approximated values. Limitations of the experimental technique and the need for more extensive experimental data are discussed.
A quantum theoretical study of polyimides
NASA Technical Reports Server (NTRS)
Burke, Luke A.
1987-01-01
One of the most important contributions of theoretical chemistry is the correct prediction of properties of materials before any costly experimental work begins. This is especially true in the field of electrically conducting polymers. Development of the Valence Effective Hamiltonian (VEH) technique for the calculation of the band structure of polymers was initiated. The necessary VEH potentials were developed for the sulfur and oxygen atoms within the particular molecular environments and the explanation explored for the success of this approximate method in predicting the optical properties of conducting polymers.
Theory of heat transfer and hydraulic resistance of oil radiators
NASA Technical Reports Server (NTRS)
Mariamov, N B
1942-01-01
In the present report the coefficients of heat transfer and hydraulic resistance are theoretically obtained for the case of laminar flow of a heated viscous liquid in a narrow rectangular channel. The results obtained are applied to the computation of oil radiators, which to a first approximation may be considered as made up of a system of such channels. In conclusion, a comparison is given of the theoretical with the experimental results obtained from tests on airplane oil radiators.
An accurate method for solving a class of fractional Sturm-Liouville eigenvalue problems
NASA Astrophysics Data System (ADS)
Kashkari, Bothayna S. H.; Syam, Muhammed I.
2018-06-01
This article is devoted to both theoretical and numerical study of the eigenvalues of nonsingular fractional second-order Sturm-Liouville problem. In this paper, we implement a fractional-order Legendre Tau method to approximate the eigenvalues. This method transforms the Sturm-Liouville problem to a sparse nonsingular linear system which is solved using the continuation method. Theoretical results for the considered problem are provided and proved. Numerical results are presented to show the efficiency of the proposed method.
Local linear regression for function learning: an analysis based on sample discrepancy.
Cervellera, Cristiano; Macciò, Danilo
2014-11-01
Local linear regression models, a kind of nonparametric structures that locally perform a linear estimation of the target function, are analyzed in the context of empirical risk minimization (ERM) for function learning. The analysis is carried out with emphasis on geometric properties of the available data. In particular, the discrepancy of the observation points used both to build the local regression models and compute the empirical risk is considered. This allows to treat indifferently the case in which the samples come from a random external source and the one in which the input space can be freely explored. Both consistency of the ERM procedure and approximating capabilities of the estimator are analyzed, proving conditions to ensure convergence. Since the theoretical analysis shows that the estimation improves as the discrepancy of the observation points becomes smaller, low-discrepancy sequences, a family of sampling methods commonly employed for efficient numerical integration, are also analyzed. Simulation results involving two different examples of function learning are provided.
Multifractal Cross Wavelet Analysis
NASA Astrophysics Data System (ADS)
Jiang, Zhi-Qiang; Gao, Xing-Lu; Zhou, Wei-Xing; Stanley, H. Eugene
Complex systems are composed of mutually interacting components and the output values of these components usually exhibit long-range cross-correlations. Using wavelet analysis, we propose a method of characterizing the joint multifractal nature of these long-range cross correlations, a method we call multifractal cross wavelet analysis (MFXWT). We assess the performance of the MFXWT method by performing extensive numerical experiments on the dual binomial measures with multifractal cross correlations and the bivariate fractional Brownian motions (bFBMs) with monofractal cross correlations. For binomial multifractal measures, we find the empirical joint multifractality of MFXWT to be in approximate agreement with the theoretical formula. For bFBMs, MFXWT may provide spurious multifractality because of the wide spanning range of the multifractal spectrum. We also apply the MFXWT method to stock market indices, and in pairs of index returns and volatilities we find an intriguing joint multifractal behavior. The tests on surrogate series also reveal that the cross correlation behavior, particularly the cross correlation with zero lag, is the main origin of cross multifractality.
NASA Astrophysics Data System (ADS)
Ivankina, T. I.; Zel, I. Yu.; Lokajicek, T.; Kern, H.; Lobanov, K. V.; Zharikov, A. V.
2017-08-01
In this paper we present experimental and theoretical studies on a highly anisotropic layered rock sample characterized by alternating layers of biotite and muscovite (retrogressed from sillimanite) and plagioclase and quartz, respectively. We applied two different experimental methods to determine seismic anisotropy at pressures up to 400 MPa: (1) measurement of P- and S-wave phase velocities on a cube in three foliation-related orthogonal directions and (2) measurement of P-wave group velocities on a sphere in 132 directions The combination of the spatial distribution of P-wave velocities on the sphere (converted to phase velocities) with S-wave velocities of three orthogonal structural directions on the cube made it possible to calculate the bulk elastic moduli of the anisotropic rock sample. On the basis of the crystallographic preferred orientations (CPOs) of major minerals obtained by time-of-flight neutron diffraction, effective media modeling was performed using different inclusion methods and averaging procedures. The implementation of a nonlinear approximation of the P-wave velocity-pressure relation was applied to estimate the mineral matrix properties and the orientation distribution of microcracks. Comparison of theoretical calculations of elastic properties of the mineral matrix with those derived from the nonlinear approximation showed discrepancies in elastic moduli and P-wave velocities of about 10%. The observed discrepancies between the effective media modeling and ultrasonic velocity data are a consequence of the inhomogeneous structure of the sample and inability to perform long-wave approximation. Furthermore, small differences between elastic moduli predicted by the different theoretical models, including specific fabric characteristics such as crystallographic texture, grain shape and layering were observed. It is shown that the bulk elastic anisotropy of the sample is basically controlled by the CPO of biotite and muscovite and their volume proportions in the layers dominated by phyllosilicate minerals.
The isotropic-nematic phase transition of tangent hard-sphere chain fluids—Pure components
NASA Astrophysics Data System (ADS)
van Westen, Thijs; Oyarzún, Bernardo; Vlugt, Thijs J. H.; Gross, Joachim
2013-07-01
An extension of Onsager's second virial theory is developed to describe the isotropic-nematic phase transition of tangent hard-sphere chain fluids. Flexibility is introduced by the rod-coil model. The effect of chain-flexibility on the second virial coefficient is described using an accurate, analytical approximation for the orientation-dependent pair-excluded volume. The use of this approximation allows for an analytical treatment of intramolecular flexibility by using a single pure-component parameter. Two approaches to approximate the effect of the higher virial coefficients are considered, i.e., the Vega-Lago rescaling and Scaled Particle Theory (SPT). The Onsager trial function is employed to describe the orientational distribution function. Theoretical predictions for the equation of state and orientational order parameter are tested against the results from Monte Carlo (MC) simulations. For linear chains of length 9 and longer, theoretical results are in excellent agreement with MC data. For smaller chain lengths, small errors introduced by the approximation of the higher virial coefficients become apparent, leading to a small under- and overestimation of the pressure and density difference at the phase transition, respectively. For rod-coil fluids of reasonable rigidity, a quantitative comparison between theory and MC simulations is obtained. For more flexible chains, however, both the Vega-Lago rescaling and SPT lead to a small underestimation of the location of the phase transition.
On the phase lag of turbulent dissipation in rotating tidal flows
NASA Astrophysics Data System (ADS)
Zhang, Qianjiang; Wu, Jiaxue
2018-03-01
Field observations of rotating tidal flows in a shallow tidally swept sea reveal that a notable phase lag of both shear production and turbulent dissipation increases with height above the seafloor. These vertical delays of turbulent quantities are approximately equivalent in magnitude to that of squared mean shear. The shear production approximately equals turbulent dissipation over the phase-lag column, and thus a main mechanism of phase lag of dissipation is mean shear, rather than vertical diffusion of turbulent kinetic energy. By relating the phase lag of dissipation to that of the mean shear, a simple formulation with constant eddy viscosity is developed to describe the phase lag in rotating tidal flows. An analytical solution indicates that the phase lag increases linearly with height subjected to a combined effect of tidal frequency, Coriolis parameter and eddy viscosity. The vertical diffusion of momentum associated with eddy viscosity produces the phase lag of squared mean shear, and resultant delay of turbulent quantities. Its magnitude is inhibited by Earth's rotation. Furthermore, a theoretical formulation of the phase lag with a parabolic eddy viscosity profile can be constructed. A first-order approximation of this formulation is still a linear function of height, and its magnitude is approximately 0.8 times that with constant viscosity. Finally, the theoretical solutions of phase lag with realistic viscosity can be satisfactorily justified by realistic phase lags of dissipation.
Nardi, Marco; Verucchi, Roberto; Corradi, Claudio; Pola, Marco; Casarin, Maurizio; Vittadini, Andrea; Iannotta, Salvatore
2010-01-28
Porphyrins and their metal complexes are particularly well suitable for applications in photoelectronics, sensing, energy production, because of their chemical, electronic and optical properties. The understanding of the electronic properties of the pristine molecule is of great relevance for the study and application of the wide class of these compounds. This is notably important for the recently achieved in-vacuo synthesis of organo-metallic thin films directly from the pure free base organic-inorganic precursors in the vapor phase, and its interpretation by means of surface electron spectroscopies. We report on a combined experimental and theoretical study of the physical/chemical properties of tetraphenylporphyrin, H(2)TPP, deposited on the SiO(2)/Si(100) native oxide surface by supersonic molecular beam deposition (SuMBD). Valence states and 1s core level emissions of carbon and nitrogen have been investigated with surface photoelectron spectroscopies by using synchrotron radiation light. The interpretation of the spectra has been guided by density functional numerical experiments on the gas-phase molecule. Non-relativistic calculations were carried out for the valence states, whereas a two component relativistic approach in the zeroth-order regular approximation was used to investigate the core levels. The good agreement between theoretical and experimental analysis results in a comprehensive overview of the chemical properties of the H(2)TPP molecule, highly improving reliability in the interpretation of experimental photoemission spectra.
A theoretical and shock tube kinetic study on hydrogen abstraction from phenyl formate.
Ning, Hongbo; Liu, Dapeng; Wu, Junjun; Ma, Liuhao; Ren, Wei; Farooq, Aamir
2018-06-12
The hydrogen abstraction reactions of phenyl formate (PF) by different radicals (H/O(3P)/OH/HO2) were theoretically investigated. We calculated the reaction energetics for PF + H/O/OH using the composite method ROCBS-QB3//M06-2X/cc-pVTZ and that for PF + HO2 at the M06-2X/cc-pVTZ level of theory. The high-pressure limit rate constants were calculated using the transition state theory in conjunction with the 1-D hindered rotor approximation and tunneling correction. Three-parameter Arrhenius expressions of rate constants were provided over the temperature range of 500-2000 K. To validate the theoretical calculations, the overall rate constants of PF + OH → Products were measured in shock tube experiments at 968-1128 K and 1.16-1.25 atm using OH laser absorption. The predicted overall rate constants agree well with the shock tube data (within 15%) over the entire experimental conditions. Rate constant analysis indicates that the H-abstraction at the formic acid site dominates the PF consumption, whereas the contribution of H-abstractions at the aromatic ring increases with temperature. Additionally, comparisons of site-specific H-abstractions from PF with methyl formate, ethyl formate, benzene, and toluene were performed to understand the effects of the aromatic ring and side-chain substituent on H-abstraction rate constants.
NASA Astrophysics Data System (ADS)
Hunt, Allen G.; Sahimi, Muhammad
2017-12-01
We describe the most important developments in the application of three theoretical tools to modeling of the morphology of porous media and flow and transport processes in them. One tool is percolation theory. Although it was over 40 years ago that the possibility of using percolation theory to describe flow and transport processes in porous media was first raised, new models and concepts, as well as new variants of the original percolation model are still being developed for various applications to flow phenomena in porous media. The other two approaches, closely related to percolation theory, are the critical-path analysis, which is applicable when porous media are highly heterogeneous, and the effective medium approximation—poor man's percolation—that provide a simple and, under certain conditions, quantitatively correct description of transport in porous media in which percolation-type disorder is relevant. Applications to topics in geosciences include predictions of the hydraulic conductivity and air permeability, solute and gas diffusion that are particularly important in ecohydrological applications and land-surface interactions, and multiphase flow in porous media, as well as non-Gaussian solute transport, and flow morphologies associated with imbibition into unsaturated fractures. We describe new applications of percolation theory of solute transport to chemical weathering and soil formation, geomorphology, and elemental cycling through the terrestrial Earth surface. Wherever quantitatively accurate predictions of such quantities are relevant, so are the techniques presented here. Whenever possible, the theoretical predictions are compared with the relevant experimental data. In practically all the cases, the agreement between the theoretical predictions and the data is excellent. Also discussed are possible future directions in the application of such concepts to many other phenomena in geosciences.
Simulation of temperature distribution in tumor Photothermal treatment
NASA Astrophysics Data System (ADS)
Zhang, Xiyang; Qiu, Shaoping; Wu, Shulian; Li, Zhifang; Li, Hui
2018-02-01
The light transmission in biological tissue and the optical properties of biological tissue are important research contents of biomedical photonics. It is of great theoretical and practical significance in medical diagnosis and light therapy of disease. In this paper, the temperature feedback-controller was presented for monitoring photothermal treatment in realtime. Two-dimensional Monte Carlo (MC) and diffuse approximation were compared and analyzed. The results demonstrated that diffuse approximation using extrapolated boundary conditions by finite element method is a good approximation to MC simulation. Then in order to minimize thermal damage, real-time temperature monitoring was appraised by proportional-integral-differential (PID) controller in the process of photothermal treatment.
Positron-alkali atom scattering
NASA Technical Reports Server (NTRS)
Mceachran, R. P.; Horbatsch, M.; Stauffer, A. D.; Ward, S. J.
1990-01-01
Positron-alkali atom scattering was recently investigated both theoretically and experimentally in the energy range from a few eV up to 100 eV. On the theoretical side calculations of the integrated elastic and excitation cross sections as well as total cross sections for Li, Na and K were based upon either the close-coupling method or the modified Glauber approximation. These theoretical results are in good agreement with experimental measurements of the total cross section for both Na and K. Resonance structures were also found in the L = 0, 1 and 2 partial waves for positron scattering from the alkalis. The structure of these resonances appears to be quite complex and, as expected, they occur in conjunction with the atomic excitation thresholds. Currently both theoretical and experimental work is in progress on positron-Rb scattering in the same energy range.
Aerodynamic performance of high turning core turbine vanes in a two dimensional cascade
NASA Technical Reports Server (NTRS)
Schwab, J. R.
1982-01-01
Experimental and theoretical aerodynamic performance data are presented for four uncooled high turning core turbine vanes with exit angles of 74.9, 75.0, 77.5, and 79.6 degrees in a two dimensional cascade. Data for a more conservative 67.0 degree vane are included for comparison. Correction of the experimental aftermix kinetic energy losses to a common 0.100 centimeter trailing edge thickness yields a linear trend of increased loss from 0.020 to 0.025 as the vane exit angle increases from 67.0 to 79.6 degrees. The theoretical losses show a similar trend. The experimental and theoretical vane surface velocity distributions generally agree within approximately five percent, although the suction surface theoretical velocities are generally higher than the experimental velocities as the vane exit angle increases.
Analysis of Implicit Uncertain Systems. Part 1: Theoretical Framework
1994-12-07
Analysis of Implicit Uncertain Systems Part I: Theoretical Framework Fernando Paganini * John Doyle 1 December 7, 1994 Abst rac t This paper...Analysis of Implicit Uncertain Systems Part I: Theoretical Framework 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...model and a number of constraints relevant to the analysis problem under consideration. In Part I of this paper we propose a theoretical framework which
Kienle, A; Patterson, M S
1997-09-01
We investigate theoretically the errors in determining the reduced scattering and absorption coefficients of semi-infinite turbid media from frequency-domain reflectance measurements made at small distances between the source and the detector(s). The errors are due to the uncertainties in the measurement of the phase, the modulation and the steady-state reflectance as well as to the diffusion approximation which is used as a theoretical model to describe light propagation in tissue. Configurations using one and two detectors are examined for the measurement of the phase and the modulation and for the measurement of the phase and the steady-state reflectance. Three solutions of the diffusion equation are investigated. We show that measurements of the phase and the steady-state reflectance at two different distances are best suited for the determination of the optical properties close to the source. For this arrangement the errors in the absorption coefficient due to typical uncertainties in the measurement are greater than those resulting from the application of the diffusion approximation at a modulation frequency of 200 MHz. A Monte Carlo approach is also examined; this avoids the errors due to the diffusion approximation.
A Study on the Security Levels of Spread-Spectrum Embedding Schemes in the WOA Framework.
Wang, Yuan-Gen; Zhu, Guopu; Kwong, Sam; Shi, Yun-Qing
2017-08-23
Security analysis is a very important issue for digital watermarking. Several years ago, according to Kerckhoffs' principle, the famous four security levels, namely insecurity, key security, subspace security, and stego-security, were defined for spread-spectrum (SS) embedding schemes in the framework of watermarked-only attack. However, up to now there has been little application of the definition of these security levels to the theoretical analysis of the security of SS embedding schemes, due to the difficulty of the theoretical analysis. In this paper, based on the security definition, we present a theoretical analysis to evaluate the security levels of five typical SS embedding schemes, which are the classical SS, the improved SS (ISS), the circular extension of ISS, the nonrobust and robust natural watermarking, respectively. The theoretical analysis of these typical SS schemes are successfully performed by taking advantage of the convolution of probability distributions to derive the probabilistic models of watermarked signals. Moreover, simulations are conducted to illustrate and validate our theoretical analysis. We believe that the theoretical and practical analysis presented in this paper can bridge the gap between the definition of the four security levels and its application to the theoretical analysis of SS embedding schemes.
Statistical properties of kinetic and total energy densities in reverberant spaces.
Jacobsen, Finn; Molares, Alfonso Rodríguez
2010-04-01
Many acoustical measurements, e.g., measurement of sound power and transmission loss, rely on determining the total sound energy in a reverberation room. The total energy is usually approximated by measuring the mean-square pressure (i.e., the potential energy density) at a number of discrete positions. The idea of measuring the total energy density instead of the potential energy density on the assumption that the former quantity varies less with position than the latter goes back to the 1930s. However, the phenomenon was not analyzed until the late 1970s and then only for the region of high modal overlap, and this analysis has never been published. Moreover, until fairly recently, measurement of the total sound energy density required an elaborate experimental arrangement based on finite-difference approximations using at least four amplitude and phase matched pressure microphones. With the advent of a three-dimensional particle velocity transducer, it has become somewhat easier to measure total rather than only potential energy density in a sound field. This paper examines the ensemble statistics of kinetic and total sound energy densities in reverberant enclosures theoretically, experimentally, and numerically.
How important is self-consistency for the dDsC density dependent dispersion correction?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brémond, Éric; Corminboeuf, Clémence, E-mail: clemence.corminboeuf@epfl.ch; Golubev, Nikolay
2014-05-14
The treatment of dispersion interactions is ubiquitous but computationally demanding for seamless ab initio approaches. A highly popular and simple remedy consists in correcting for the missing interactions a posteriori by adding an attractive energy term summed over all atom pairs to standard density functional approximations. These corrections were originally based on atom pairwise parameters and, hence, had a strong touch of empiricism. To overcome such limitations, we recently proposed a robust system-dependent dispersion correction, dDsC, that is computed from the electron density and that provides a balanced description of both weak inter- and intramolecular interactions. From the theoretical pointmore » of view and for the sake of increasing reliability, we here verify if the self-consistent implementation of dDsC impacts ground-state properties such as interaction energies, electron density, dipole moments, geometries, and harmonic frequencies. In addition, we investigate the suitability of the a posteriori scheme for molecular dynamics simulations, for which the analysis of the energy conservation constitutes a challenging tests. Our study demonstrates that the post-SCF approach in an excellent approximation.« less
NASA Astrophysics Data System (ADS)
Chester, Aaron; Starosta, Krzysztof; S1467 Experiment Collaboration
2017-09-01
A high precision lifetime measurement of the 21+ state in 94Sr was performed at TRIUMF's ISAC-II facility by coupling the Recoil Distance Method implemented via the TIGRESS Integrated Plunger with unsafe Coulomb excitation in inverse kinematics. Due to limited statistics imposed by the use of a radioactive 94Sr beam, a likelihood ratio χ2 method was derived and used to compare experimental data to Geant4-simulated lineshapes. The B (E 2 ;21+ ->01+) value extracted from the lifetime measurement of 7 .80-0.40 + 0.50 (stat .) +/- 0.07 (sys .) ps is approximately 25% larger than previously reported while the relative uncertainty has been reduced by a factor of approximately 8. A baseline deformation has been established for Sr isotopes with N <= 58 which is a necessary condition for the Quantum Phase Transition interpretation of the onset of deformation in this region. A summary of the experiment, description of the data analysis methods, and a comparison to existing theoretical models will be presented.
The quasar proximity effect in an equivalent-width-limited sample of the Lyman-alpha forest
NASA Technical Reports Server (NTRS)
Chernomordik, Viktor V.; Ozernoy, Leonid M.
1993-01-01
We have obtained a simple analytical approximation to the relationship between a rest-frame equivalent-width distribution for Ly-alpha forest absorption lines, N(W), and an H I column density distribution of the observed cloud number, N(N). Assuming a simple power-law form for N(N) proportional to N exp (1-beta), it is shown that beta = 1.4 turns out to agree fairly well with the observed form of N(W) in a broad range of column densities. We present a theoretical analysis of how the 'proximity effect' influences a W-limited sample of Ly-alpha forest lines. It is shown that this influence is considerably smaller than has been found before for a N-limited sample, for which an approximate value of beta was assumed rather than derived as has been done, for a W-limited sample, in the present paper. As a result, available observational data appear to be still consistent with the conjecture that the observed population of QSOs is the major source of the UV background at redshifts z about 2-4.
NASA Astrophysics Data System (ADS)
Bhattacharya, D. P.; Das, J.; Basu, A.; Das, B.
2017-09-01
In compound semiconductors which lack inversion symmetry, the combined interaction of the electrons with both acoustic and piezoelectric phonons is dominant at low lattice temperatures ( 20 K). The field dependence of the effective electron temperature under these conditions, has been calculated by solving the modified energy balance equation that takes due account of the degeneracy. The traditionally used heated Fermi-Dirac (F.D.) function for the non-equilibrium distribution function is approximated by some well tested model distribution. This makes it possible to carry out the integrations quite easily and, thus to obtain some more realistic results in a closed form, without taking recourse to any oversimplified approximations. The numerical results that follow for InSb, InAs and GaN, from the present analysis, are then compared with the available theoretical and experimental data. The degeneracy and the piezoelectric interaction, both are seen to bring about significant changes in the electron temperature characteristics. The scope for further refinement is discussed.
NASA Technical Reports Server (NTRS)
Landahl, Marten T.
1988-01-01
Experiments on wall-bounded shear flows (channel flows and boundary layers) have indicated that the turbulence in the region close to the wall exhibits a characteristic intermittently formed pattern of coherent structures. For a quantitative study of coherent structures it is necessary to make use of conditional sampling. One particularly successful sampling technique is the Variable Integration Time Averaging technique (VITA) first explored by Blackwelder and Kaplan (1976). In this, an event is assumed to occur when the short time variance exceeds a certain threshold multiple of the mean square signal. The analysis presented removes some assumptions in the earlier models in that the effects of pressure and viscosity are taken into account in an approximation based on the assumption that the near-wall structures are highly elongated in the streamwise direction. The appropriateness of this is suggested by the observations but is also self consistent with the results of the model which show that the streamwise dimension of the structure grows with time, so that the approximation should improve with the age of the structure.
The anharmonic quartic force field infrared spectra of hydrogenated and methylated PAHs.
Mackie, Cameron J; Candian, Alessandra; Huang, Xinchuan; Maltseva, Elena; Petrignani, Annemieke; Oomens, Jos; Buma, Wybren Jan; Lee, Timothy J; Tielens, Alexander G G M
2018-01-03
Polycyclic aromatic hydrocarbons (PAHs) have been shown to be ubiquitous in a large variety of distinct astrophysical environments and are therefore of great interest to astronomers. The majority of these findings are based on theoretically predicted spectra, which make use of scaled DFT harmonic frequencies for band positions and the double harmonic approximation for intensities. However, these approximations have been shown to fail at predicting high-resolution gas-phase infrared spectra accurately, especially in the CH-stretching region (2950-3150 cm -1 , 3 μm). This is particularly worrying for the subset of hydrogenated or methylated PAHs to which astronomers attribute the observed non-aromatic features that appear in the CH-stretching region of spectral observations of the interstellar medium (ISM). In our previous work, we presented the anharmonic theoretical spectra of three linear PAHs and five non-linear PAHs, demonstrating the importance of including anharmonicities into theoretical calculations. In this work we extend these techniques to two methylated PAHs (9-methylanthracene, and 9,10-dimethylanthracene) and four hydrogenated PAHs (9,10-dihydroanthracene, 9,10-dihydrophenanthrene, 1,2,3,4-tetrahydronaphthalene, and 1,2,3,6,7,8-hexahydropyrene) in order to better understand the aliphatic IR features of substituted PAHs. The theoretical spectra are compared with the spectra obtained under matrix isolation low-temperature conditions for the full vibrational fundamental range and under high-resolution, low-temperature gas-phase conditions for the CH-stretching region. Excellent agreement is observed between the theoretical and high-resolution experimental spectra with a deviation of 0.00% ± 0.17%, and changes to the spectra of PAHs upon methylation and hydrogenated are tracked accurately and explained.
Coupled microrings data buffer using fast light
NASA Astrophysics Data System (ADS)
Scheuer, Jacob; Shahriar, Selim
2013-03-01
We present a theoretical study of a trap-door optical buffer based on a coupled microrings add/drop filter (ADF) utilizing the white light cavity (WLC). The buffer "trap-door" can be opened and closed by tuning the resonances of the microrings comprising the ADF and trap/release optical pulses. We show that the WLC based ADF yields a maximally flat filter which exhibits superior performances in terms of bandwidth and flatness compared to previous design approaches. We also present a realistic, Silicon-over-Insulator based, design and performance analysis taking into consideration the realistic properties and limitations of the materials and the fabrication process, leading to delays exceeding 850ps for 80GHz bandwidth, and a corresponding delay-bandwidth product of approximately 70.
The Search for a Non-Superallowed Branch in the β decay of ^38mK
NASA Astrophysics Data System (ADS)
Leach, Kyle; Bandyopadhyay, D.; Finlay, P.; Garrett, P. E.; Grinyer, G. F.; Phillips, A. A.; Schumaker, M. A.; Svensson, C. E.; Wong, J.; Ball, G. C.; Bassiachvilli, E.; Ettenauer, S.; Hackman, G.; Morton, A. C.; Mythili, S.; Newman, O.; Pearson, C. J.; Pearson, M. R.; Savajols, H.; Leslie, J. R.; Melconian, D.; Austin, R. A. E.; Barton, C.
2007-10-01
The study presented is part of an experimental program exploring the properties of superallowed Fermi β decays conducted at the Isotope Separator and Accelerator (ISAC) facility at TRIUMF in Vancouver, B.C. Canada. Using the 8π γ-ray spectrometer and the Scintillating Electron Positron Tagging Array (SCEPTAR), it was possible to set a new upper limit on an unobserved non-analogue branch in the decay of ^38mK. This branch is expected to be extremely weak, and the removal of contaminant isobaric decays and background radiation in the spectra was thus exceedingly important during the analysis. Our work has reduced the previous upper limit by approximately a factor of two and is approaching the theoretically predicted branching ratio.
Enhanced target normal sheath acceleration based on the laser relativistic self-focusing
NASA Astrophysics Data System (ADS)
Zou, D. B.; Zhuo, H. B.; Yang, X. H.; Shao, F. Q.; Ma, Y. Y.; Yu, T. P.; Wu, H. C.; Yin, Y.; Ge, Z. Y.; Li, X. H.
2014-06-01
The enhanced target normal sheath acceleration of ions in laser target interaction via the laser relativistic self-focusing effect is investigated by theoretical analysis and particle-in-cell simulations. The temperature of the hot electrons in the underdense plasma is greatly increased due to the occurrence of resonant absorption, while the electron-betatron-oscillation frequency is close to its witnessed laser frequency [Pukhov et al., Phys. Plasma 6, 2847 (1999)]. While these hot electrons penetrate through the backside solid target, a stronger sheath electric field at the rear surface of the target is induced, which can accelerate the protons to a higher energy. It is also shown that the optimum length of the underdense plasma is approximately equal to the self-focusing distance.
Output Beam Polarisation of X-ray Lasers with Transient Inversion
NASA Astrophysics Data System (ADS)
Janulewicz, K. A.; Kim, C. M.; Matouš, B.; Stiel, H.; Nishikino, M.; Hasegawa, N.; Kawachi, T.
It is commonly accepted that X-ray lasers, as the devices based on amplified spontaneous emission (ASE), did not show any specific polarization in the output beam. The theoretical analysis within the uniform (single-mode) approximation suggested that the output radiation should show some defined polarization feature, but randomly changing from shot-to-shot. This hypothesis has been verified by experiment using traditional double-pulse scheme of transient inversion. Membrane beam-splitter was used as a polarization selector. It was found that the output radiation has a significant component of p-polarisation in each shot. To explain the effect and place it in the line with available, but scarce data, propagation and kinetic effects in the non-uniform plasma have been analysed.
Delgado, J; Liao, J C
1992-01-01
The methodology previously developed for determining the Flux Control Coefficients [Delgado & Liao (1992) Biochem. J. 282, 919-927] is extended to the calculation of metabolite Concentration Control Coefficients. It is shown that the transient metabolite concentrations are related by a few algebraic equations, attributed to mass balance, stoichiometric constraints, quasi-equilibrium or quasi-steady states, and kinetic regulations. The coefficients in these relations can be estimated using linear regression, and can be used to calculate the Control Coefficients. The theoretical basis and two examples are discussed. Although the methodology is derived based on the linear approximation of enzyme kinetics, it yields reasonably good estimates of the Control Coefficients for systems with non-linear kinetics. PMID:1497632
Semileptonic decays of B and D mesons in the light-front formalism
NASA Astrophysics Data System (ADS)
Jaus, W.
1990-06-01
The light-front formalism is used to present a relativistic calculation of form factors for semileptonic D and B decays in the constituent quark model. The quark-antiquark wave functions of the mesons can be obtained, in principle, from an analysis of the meson spectrum, but are approximated in this work by harmonic-oscillator wave functions. The predictions of the model are consistent with the experimental data for B decays. The Kobayashi-Maskawa (KM) matrix element ||Vcs|| is determined by a comparison of the experimental and theoretical rates for D0-->K-e+ν, and is consistent with a unitary KM matrix for three families. The predictions for D-->K* transitions are in conflict with the data.
Analysis and Optimization of Thin Film Ferroelectric Phase Shifters
NASA Technical Reports Server (NTRS)
Romanofsky, Robert R.; VanKeuls, Fred W.; Warner, Joseph D.; Mueller, Carl H.; Alterovitz, Samuel A.; Miranda, Felix A.; Qureshi, A. Haq; Romanofsky, Robert R. (Technical Monitor)
2000-01-01
Microwave phase shifters have been fabricated from (YBa2Cu3O(7-delta) or Au)/SrTiO3 and Au/Ba(x)Sr(1-x)TiO3 films on LaAlO3 and MgO substrates. These coupled microstrip devices rival the performance of their semiconductor counter-parts parts at Ku- and K-band frequencies. Typical insertion loss for room temperature ferroelectric phase shifters at K-band is approximately equal 5 dB. An experimental and theoretical investigation of these novel devices explains the role of the ferroelectric film in overall device performance. A roadmap to the development of a 3 dB insertion loss phase shifter that would enable a new type of phased array antenna is discussed.
NASA Astrophysics Data System (ADS)
Luo, Minghua; Shimizu, Etsuro; Zhang, Feifei; Ito, Masanori
This paper describes a six-axis force/tactile sensor for robot fingers. A mathematical model of this sensor is proposed. By this model, the grasping force and its moments, and touching position of robot finger for holding an object can be calculated. A new sensor is fabricated based on this model, where the elastic sensing unit of the sensor is made of a brazen plate. A new compensating method for decreasing error is proposed. Furthermore, the performance of this sensor is examined. The test results present approximate relationship between theoretical input and output of the sensor. It is obvious that the performance of the new sensor is better than the sensor with no compensation.
Curvilinear Squeeze Film Bearing with Porous Wall Lubricated by a Rabinowitsch Fluid
NASA Astrophysics Data System (ADS)
Walicka, A.; Walicki, E.; Jurczak, P.; Falicki, J.
2017-05-01
The present theoretical analysis is to investigate the effect of non-Newtonian lubricant modelled by a Rabinowitsch fluid on the performance of a curvilinear squeeze film bearing with one porous wall. The equations of motion of a Rabinowitsch fluid are used to derive the Reynolds equation. After general considerations on the flow in a bearing clearance and in a porous layer using the Morgan-Cameron approximation the modified Reynolds equation is obtained. The analytical solution of this equation for the case of a squeeze film bearing is presented. As a result one obtains the formulae expressing pressure distribution and load-carrying capacity. Thrust radial bearing and spherical bearing with a squeeze film are considered as numerical examples.
David crighton, 1942-2000: a commentary on his career and his influence on aeroacoustic theory
NASA Astrophysics Data System (ADS)
Ffowcs Williams, John E.
David Crighton, a greatly admired figure in fluid mechanics, Head of the Department of Applied Mathematics and Theoretical Physics at Cambridge, and Master of Jesus College, Cambridge, died at the peak of his career. He had made important contributions to the theory of waves generated by unsteady flow. Crighton's work was always characterized by the application of rigorous mathematical approximations to fluid mechanical idealizations of practically relevant problems. At the time of his death, he was certainly the most influential British applied mathematical figure, and his former collaborators and students form a strong school that continues his special style of mathematical application. Rigorous analysis of well-posed aeroacoustical problems was transformed by David Crighton.
Hybrid magnet devices for molecule manipulation and small scale high gradient-field applications
Humphries, David E [El Cerrito, CA; Hong, Seok-Cheol [Seoul, KR; Cozzarelli, legal representative, Linda A.; Pollard, Martin J [El Cerrito, CA; Cozzarelli, Nicholas R [Berkeley, CA
2009-01-06
The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides means for separation and other biotechnology applications involving holding, manipulation, or separation of magnetizable molecular structures and targets. Also disclosed are hybrid magnetic tweezers able to exert approximately 1 nN of force to 4.5 .mu.m magnetic bead. The maximum force was experimentally measured to be .about.900 pN which is in good agreement with theoretical estimations and other measurements. In addition, a new analysis scheme that permits fast real-time position measurement in typical geometry of magnetic tweezers has been developed and described in detail.
NASA Astrophysics Data System (ADS)
Bubin, Sergiy; Adamowicz, Ludwik
2006-06-01
In this work we present analytical expressions for Hamiltonian matrix elements with spherically symmetric, explicitly correlated Gaussian basis functions with complex exponential parameters for an arbitrary number of particles. The expressions are derived using the formalism of matrix differential calculus. In addition, we present expressions for the energy gradient that includes derivatives of the Hamiltonian integrals with respect to the exponential parameters. The gradient is used in the variational optimization of the parameters. All the expressions are presented in the matrix form suitable for both numerical implementation and theoretical analysis. The energy and gradient formulas have been programed and used to calculate ground and excited states of the He atom using an approach that does not involve the Born-Oppenheimer approximation.
Bubin, Sergiy; Adamowicz, Ludwik
2006-06-14
In this work we present analytical expressions for Hamiltonian matrix elements with spherically symmetric, explicitly correlated Gaussian basis functions with complex exponential parameters for an arbitrary number of particles. The expressions are derived using the formalism of matrix differential calculus. In addition, we present expressions for the energy gradient that includes derivatives of the Hamiltonian integrals with respect to the exponential parameters. The gradient is used in the variational optimization of the parameters. All the expressions are presented in the matrix form suitable for both numerical implementation and theoretical analysis. The energy and gradient formulas have been programmed and used to calculate ground and excited states of the He atom using an approach that does not involve the Born-Oppenheimer approximation.
NASA Technical Reports Server (NTRS)
Shu, Chi-Wang
1998-01-01
This project is about the development of high order, non-oscillatory type schemes for computational fluid dynamics. Algorithm analysis, implementation, and applications are performed. Collaborations with NASA scientists have been carried out to ensure that the research is relevant to NASA objectives. The combination of ENO finite difference method with spectral method in two space dimension is considered, jointly with Cai [3]. The resulting scheme behaves nicely for the two dimensional test problems with or without shocks. Jointly with Cai and Gottlieb, we have also considered one-sided filters for spectral approximations to discontinuous functions [2]. We proved theoretically the existence of filters to recover spectral accuracy up to the discontinuity. We also constructed such filters for practical calculations.
Super-resolving random-Gaussian apodized photon sieve.
Sabatyan, Arash; Roshaninejad, Parisa
2012-09-10
A novel apodized photon sieve is presented in which random dense Gaussian distribution is implemented to modulate the pinhole density in each zone. The random distribution in dense Gaussian distribution causes intrazone discontinuities. Also, the dense Gaussian distribution generates a substantial number of pinholes in order to form a large degree of overlap between the holes in a few innermost zones of the photon sieve; thereby, clear zones are formed. The role of the discontinuities on the focusing properties of the photon sieve is examined as well. Analysis shows that secondary maxima have evidently been suppressed, transmission has increased enormously, and the central maxima width is approximately unchanged in comparison to the dense Gaussian distribution. Theoretical results have been completely verified by experiment.
NASA Astrophysics Data System (ADS)
Konkoli, Zoran
2004-01-01
Theoretical methods for dealing with diffusion-controlled reactions inevitably rely on some kind of approximation, and to find the one that works on a particular problem is not always easy. Here the approximation used by Bogolyubov to study a weakly nonideal Bose gas, referred to as the weakly nonideal Bose gas approximation (WBGA), is applied in the analysis of three reaction-diffusion models: (i) A+A→Ø, (ii) A+B→Ø, and (iii) A+A,B+B,A+B→Ø (the ABBA model). Two types of WBGA are considered, the simpler WBGA-I and the more complicated WBGA-II. All models are defined on the lattice to facilitate comparison with computer experiment (simulation). It is found that the WBGA describes the A+B reaction well, it reproduces the correct d/4 density decay exponent. However, it fails in the case of the A+A reaction and the ABBA model. (To cure the deficiency of WBGA in dealing with the A+A model, a hybrid of the WBGA and Kirkwood superposition approximations is suggested.) It is shown that the WBGA-I is identical to the dressed-tree calculation suggested by Lee [J. Phys. A 27, 2633 (1994)], and that the dressed-tree calculation does not lead to the d/2 density decay exponent when applied to the A+A reaction, as normally believed, but it predicts the d/4 decay exponent. Last, the usage of the small n0 approximation suggested by Mattis and Glasser [Rev. Mod. Phys. 70, 979 (1998)] is questioned if used beyond the A+B reaction-diffusion model.
The Observational and Theoretical Tidal Radii of Globular Clusters in M87
NASA Astrophysics Data System (ADS)
Webb, Jeremy J.; Sills, Alison; Harris, William E.
2012-02-01
Globular clusters have linear sizes (tidal radii) which theory tells us are determined by their masses and by the gravitational potential of their host galaxy. To explore the relationship between observed and expected radii, we utilize the globular cluster population of the Virgo giant M87. Unusually deep, high signal-to-noise images of M87 are used to measure the effective and limiting radii of approximately 2000 globular clusters. To compare with these observations, we simulate a globular cluster population that has the same characteristics as the observed M87 cluster population. Placing these simulated clusters in the well-studied tidal field of M87, the orbit of each cluster is solved and the theoretical tidal radius of each cluster is determined. We compare the predicted relationship between cluster size and projected galactocentric distance to observations. We find that for an isotropic distribution of cluster velocities, theoretical tidal radii are approximately equal to observed limiting radii for R gc < 10 kpc. However, the isotropic simulation predicts a steep increase in cluster size at larger radii, which is not observed in large galaxies beyond the Milky Way. To minimize the discrepancy between theory and observations, we explore the effects of orbital anisotropy on cluster sizes, and suggest a possible orbital anisotropy profile for M87 which yields a better match between theory and observations. Finally, we suggest future studies which will establish a stronger link between theoretical tidal radii and observed radii.
Kotini, A; Anninos, P; Anastasiadis, A N; Tamiolakis, D
2005-09-07
The aim of this study was to compare a theoretical neural net model with MEG data from epileptic patients and normal individuals. Our experimental study population included 10 epilepsy sufferers and 10 healthy subjects. The recordings were obtained with a one-channel biomagnetometer SQUID in a magnetically shielded room. Using the method of x2-fitting it was found that the MEG amplitudes in epileptic patients and normal subjects had Poisson and Gauss distributions respectively. The Poisson connectivity derived from the theoretical neural model represents the state of epilepsy, whereas the Gauss connectivity represents normal behavior. The MEG data obtained from epileptic areas had higher amplitudes than the MEG from normal regions and were comparable with the theoretical magnetic fields from Poisson and Gauss distributions. Furthermore, the magnetic field derived from the theoretical model had amplitudes in the same order as the recorded MEG from the 20 participants. The approximation of the theoretical neural net model with real MEG data provides information about the structure of the brain function in epileptic and normal states encouraging further studies to be conducted.
Local Orthogonal Cutting Method for Computing Medial Curves and Its Biomedical Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiao, Xiangmin; Einstein, Daniel R.; Dyedov, Volodymyr
2010-03-24
Medial curves have a wide range of applications in geometric modeling and analysis (such as shape matching) and biomedical engineering (such as morphometry and computer assisted surgery). The computation of medial curves poses significant challenges, both in terms of theoretical analysis and practical efficiency and reliability. In this paper, we propose a definition and analysis of medial curves and also describe an efficient and robust method for computing medial curves. Our approach is based on three key concepts: a local orthogonal decomposition of objects into substructures, a differential geometry concept called the interior center of curvature (ICC), and integrated stabilitymore » and consistency tests. These concepts lend themselves to robust numerical techniques including eigenvalue analysis, weighted least squares approximations, and numerical minimization, resulting in an algorithm that is efficient and noise resistant. We illustrate the effectiveness and robustness of our approach with some highly complex, large-scale, noisy biomedical geometries derived from medical images, including lung airways and blood vessels. We also present comparisons of our method with some existing methods.« less
NASA Astrophysics Data System (ADS)
Shen, Wei; Li, Dongsheng; Zhang, Shuaifang; Ou, Jinping
2017-07-01
This paper presents a hybrid method that combines the B-spline wavelet on the interval (BSWI) finite element method and spectral analysis based on fast Fourier transform (FFT) to study wave propagation in One-Dimensional (1D) structures. BSWI scaling functions are utilized to approximate the theoretical wave solution in the spatial domain and construct a high-accuracy dynamic stiffness matrix. Dynamic reduction on element level is applied to eliminate the interior degrees of freedom of BSWI elements and substantially reduce the size of the system matrix. The dynamic equations of the system are then transformed and solved in the frequency domain through FFT-based spectral analysis which is especially suitable for parallel computation. A comparative analysis of four different finite element methods is conducted to demonstrate the validity and efficiency of the proposed method when utilized in high-frequency wave problems. Other numerical examples are utilized to simulate the influence of crack and delamination on wave propagation in 1D rods and beams. Finally, the errors caused by FFT and their corresponding solutions are presented.
Mehraeen, Shahab; Dierks, Travis; Jagannathan, S; Crow, Mariesa L
2013-12-01
In this paper, the nearly optimal solution for discrete-time (DT) affine nonlinear control systems in the presence of partially unknown internal system dynamics and disturbances is considered. The approach is based on successive approximate solution of the Hamilton-Jacobi-Isaacs (HJI) equation, which appears in optimal control. Successive approximation approach for updating control and disturbance inputs for DT nonlinear affine systems are proposed. Moreover, sufficient conditions for the convergence of the approximate HJI solution to the saddle point are derived, and an iterative approach to approximate the HJI equation using a neural network (NN) is presented. Then, the requirement of full knowledge of the internal dynamics of the nonlinear DT system is relaxed by using a second NN online approximator. The result is a closed-loop optimal NN controller via offline learning. A numerical example is provided illustrating the effectiveness of the approach.
The Evolution and Discharge of Electric Fields within a Thunderstorm
NASA Astrophysics Data System (ADS)
Hager, William W.; Nisbet, John S.; Kasha, John R.
1989-05-01
A 3-dimensional electrical model for a thunderstorm is developed and finite difference approximations to the model are analyzed. If the spatial derivatives are approximated by a method akin to the ☐ scheme and if the temporal derivative is approximated by either a backward difference or the Crank-Nicholson scheme, we show that the resulting discretization is unconditionally stable. The forward difference approximation to the time derivative is stable when the time step is sufficiently small relative to the ratio between the permittivity and the conductivity. Max-norm error estimates for the discrete approximations are established. To handle the propagation of lightning, special numerical techniques are devised based on the Inverse Matrix Modification Formula and Cholesky updates. Numerical comparisons between the model and theoretical results of Wilson and Holzer-Saxon are presented. We also apply our model to a storm observed at the Kennedy Space Center on July 11, 1978.
Dynamics of moment neuronal networks.
Feng, Jianfeng; Deng, Yingchun; Rossoni, Enrico
2006-04-01
A theoretical framework is developed for moment neuronal networks (MNNs). Within this framework, the behavior of the system of spiking neurons is specified in terms of the first- and second-order statistics of their interspike intervals, i.e., the mean, the variance, and the cross correlations of spike activity. Since neurons emit and receive spike trains which can be described by renewal--but generally non-Poisson--processes, we first derive a suitable diffusion-type approximation of such processes. Two approximation schemes are introduced: the usual approximation scheme (UAS) and the Ornstein-Uhlenbeck scheme. It is found that both schemes approximate well the input-output characteristics of spiking models such as the IF and the Hodgkin-Huxley models. The MNN framework is then developed according to the UAS scheme, and its predictions are tested on a few examples.
NASA Astrophysics Data System (ADS)
Heavens, A. F.; Seikel, M.; Nord, B. D.; Aich, M.; Bouffanais, Y.; Bassett, B. A.; Hobson, M. P.
2014-12-01
The Fisher Information Matrix formalism (Fisher 1935) is extended to cases where the data are divided into two parts (X, Y), where the expectation value of Y depends on X according to some theoretical model, and X and Y both have errors with arbitrary covariance. In the simplest case, (X, Y) represent data pairs of abscissa and ordinate, in which case the analysis deals with the case of data pairs with errors in both coordinates, but X can be any measured quantities on which Y depends. The analysis applies for arbitrary covariance, provided all errors are Gaussian, and provided the errors in X are small, both in comparison with the scale over which the expected signal Y changes, and with the width of the prior distribution. This generalizes the Fisher Matrix approach, which normally only considers errors in the `ordinate' Y. In this work, we include errors in X by marginalizing over latent variables, effectively employing a Bayesian hierarchical model, and deriving the Fisher Matrix for this more general case. The methods here also extend to likelihood surfaces which are not Gaussian in the parameter space, and so techniques such as DALI (Derivative Approximation for Likelihoods) can be generalized straightforwardly to include arbitrary Gaussian data error covariances. For simple mock data and theoretical models, we compare to Markov Chain Monte Carlo experiments, illustrating the method with cosmological supernova data. We also include the new method in the FISHER4CAST software.
Ensemble Solar Forecasting Statistical Quantification and Sensitivity Analysis: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, WanYin; Zhang, Jie; Florita, Anthony
2015-12-08
Uncertainties associated with solar forecasts present challenges to maintain grid reliability, especially at high solar penetrations. This study aims to quantify the errors associated with the day-ahead solar forecast parameters and the theoretical solar power output for a 51-kW solar power plant in a utility area in the state of Vermont, U.S. Forecasts were generated by three numerical weather prediction (NWP) models, including the Rapid Refresh, the High Resolution Rapid Refresh, and the North American Model, and a machine-learning ensemble model. A photovoltaic (PV) performance model was adopted to calculate theoretical solar power generation using the forecast parameters (e.g., irradiance,more » cell temperature, and wind speed). Errors of the power outputs were quantified using statistical moments and a suite of metrics, such as the normalized root mean squared error (NRMSE). In addition, the PV model's sensitivity to different forecast parameters was quantified and analyzed. Results showed that the ensemble model yielded forecasts in all parameters with the smallest NRMSE. The NRMSE of solar irradiance forecasts of the ensemble NWP model was reduced by 28.10% compared to the best of the three NWP models. Further, the sensitivity analysis indicated that the errors of the forecasted cell temperature attributed only approximately 0.12% to the NRMSE of the power output as opposed to 7.44% from the forecasted solar irradiance.« less
Limit analysis of hollow spheres or spheroids with Hill orthotropic matrix
NASA Astrophysics Data System (ADS)
Pastor, Franck; Pastor, Joseph; Kondo, Djimedo
2012-03-01
Recent theoretical studies of the literature are concerned by the hollow sphere or spheroid (confocal) problems with orthotropic Hill type matrix. They have been developed in the framework of the limit analysis kinematical approach by using very simple trial velocity fields. The present Note provides, through numerical upper and lower bounds, a rigorous assessment of the approximate criteria derived in these theoretical works. To this end, existing static 3D codes for a von Mises matrix have been easily extended to the orthotropic case. Conversely, instead of the non-obvious extension of the existing kinematic codes, a new original mixed approach has been elaborated on the basis of the plane strain structure formulation earlier developed by F. Pastor (2007). Indeed, such a formulation does not need the expressions of the unit dissipated powers. Interestingly, it delivers a numerical code better conditioned and notably more rapid than the previous one, while preserving the rigorous upper bound character of the corresponding numerical results. The efficiency of the whole approach is first demonstrated through comparisons of the results to the analytical upper bounds of Benzerga and Besson (2001) or Monchiet et al. (2008) in the case of spherical voids in the Hill matrix. Moreover, we provide upper and lower bounds results for the hollow spheroid with the Hill matrix which are compared to those of Monchiet et al. (2008).
Problem Behavior in Schools: A Bibliography. Revised.
ERIC Educational Resources Information Center
Wood, Frank H.; Raison, Susan
The bibliography lists approximately 800 books and articles (c. 1950-1979)on 10 topics of behavior problems: theoretical foundations; incidence; characteristics of classified group (autistic/psychotic, emotionally disturbed/behavior disordered/learning disabled, brain injured/hyperactive/hyperkinetic); social context of education; legal and…
Considering Horn's Parallel Analysis from a Random Matrix Theory Point of View.
Saccenti, Edoardo; Timmerman, Marieke E
2017-03-01
Horn's parallel analysis is a widely used method for assessing the number of principal components and common factors. We discuss the theoretical foundations of parallel analysis for principal components based on a covariance matrix by making use of arguments from random matrix theory. In particular, we show that (i) for the first component, parallel analysis is an inferential method equivalent to the Tracy-Widom test, (ii) its use to test high-order eigenvalues is equivalent to the use of the joint distribution of the eigenvalues, and thus should be discouraged, and (iii) a formal test for higher-order components can be obtained based on a Tracy-Widom approximation. We illustrate the performance of the two testing procedures using simulated data generated under both a principal component model and a common factors model. For the principal component model, the Tracy-Widom test performs consistently in all conditions, while parallel analysis shows unpredictable behavior for higher-order components. For the common factor model, including major and minor factors, both procedures are heuristic approaches, with variable performance. We conclude that the Tracy-Widom procedure is preferred over parallel analysis for statistically testing the number of principal components based on a covariance matrix.
NASA Astrophysics Data System (ADS)
Henderson, Gregory Newell
Semiconductor device dimensions are rapidly approaching a fundamental limit where drift-diffusion equations and the depletion approximation are no longer valid. In this regime, quantum effects can dominate device response. To increase further device density and speed, new devices must be designed that use these phenomena to positive advantage. In addition, quantum effects provide opportunities for a new class of devices which can perform functions previously unattainable with "conventional" semiconductor devices. This thesis has described research in the analysis of electron wave effects in semiconductors and the development of methods for the design, fabrication, and characterization of quantum devices based on these effects. First, an exact set of quantitative analogies are presented which allow the use of well understood optical design and analysis tools for the development of electron wave semiconductor devices. Motivated by these analogies, methods are presented for modeling electron wave grating diffraction using both an exact rigorous coupled-wave analysis and approximate analyses which are useful for grating design. Example electron wave grating switch and multiplexer designs are presented. In analogy to thin-film optics, the design and analysis of electron wave Fabry-Perot interference filters are also discussed. An innovative technique has been developed for testing these (and other) electron wave structures using Ballistic Electron Emission Microscopy (BEEM). This technique uses a liquid-helium temperature scanning tunneling microscope (STM) to perform spectroscopy of the electron transmittance as a function of electron energy. Experimental results show that BEEM can resolve even weak quantum effects, such as the reflectivity of a single interface between materials. Finally, methods are discussed for incorporating asymmetric electron wave Fabry-Perot filters into optoelectronic devices. Theoretical and experimental results show that such structures could be the basis for a new type of electrically pumped mid - to far-infrared semiconductor laser.
Some comparisons of complexity in dictionary-based and linear computational models.
Gnecco, Giorgio; Kůrková, Věra; Sanguineti, Marcello
2011-03-01
Neural networks provide a more flexible approximation of functions than traditional linear regression. In the latter, one can only adjust the coefficients in linear combinations of fixed sets of functions, such as orthogonal polynomials or Hermite functions, while for neural networks, one may also adjust the parameters of the functions which are being combined. However, some useful properties of linear approximators (such as uniqueness, homogeneity, and continuity of best approximation operators) are not satisfied by neural networks. Moreover, optimization of parameters in neural networks becomes more difficult than in linear regression. Experimental results suggest that these drawbacks of neural networks are offset by substantially lower model complexity, allowing accuracy of approximation even in high-dimensional cases. We give some theoretical results comparing requirements on model complexity for two types of approximators, the traditional linear ones and so called variable-basis types, which include neural networks, radial, and kernel models. We compare upper bounds on worst-case errors in variable-basis approximation with lower bounds on such errors for any linear approximator. Using methods from nonlinear approximation and integral representations tailored to computational units, we describe some cases where neural networks outperform any linear approximator. Copyright © 2010 Elsevier Ltd. All rights reserved.
Physical Violence between Siblings: A Theoretical and Empirical Analysis
ERIC Educational Resources Information Center
Hoffman, Kristi L.; Kiecolt, K. Jill; Edwards, John N.
2005-01-01
This study develops and tests a theoretical model to explain sibling violence based on the feminist, conflict, and social learning theoretical perspectives and research in psychology and sociology. A multivariate analysis of data from 651 young adults generally supports hypotheses from all three theoretical perspectives. Males with brothers have…
NASA Astrophysics Data System (ADS)
Yavuz, Murat; Ozer, Zehra Nur; Ulu, Melike; Champion, Christophe; Dogan, Mevlut
2016-04-01
Experimental and theoretical double differential cross sections (DDCSs) for electron-induced ionization of methane (CH4) are here reported for primary energies ranging from 50 eV to 350 eV and ejection angles between 25° and 130°. Experimental DDCSs are compared with theoretical predictions performed within the first Born approximation Coulomb wave. In this model, the initial molecular state is described by using single center wave functions, the incident (scattered) electron being described by a plane wave, while a Coulomb wave function is used for modeling the secondary ejected electron. A fairly good agreement may be observed between theory and experiment with nevertheless an expected systematic overestimation of the theory at low-ejection energies (<50 eV).
Game Theoretic Approach to Post-Docked Satellite Control
NASA Technical Reports Server (NTRS)
Hiramatsu, Takashi; Fitz-Coy, Norman G.
2007-01-01
This paper studies the interaction between two satellites after docking. In order to maintain the docked state with uncertainty in the motion of the target vehicle, a game theoretic controller with Stackelberg strategy to minimize the interaction between the satellites is considered. The small perturbation approximation leads to LQ differential game scheme, which is validated to address the docking interactions between a service vehicle and a target vehicle. The open-loop solution are compared with Nash strategy, and it is shown that less control efforts are obtained with Stackelberg strategy.
Transonic Flow Past Cone Cylinders
NASA Technical Reports Server (NTRS)
Solomon, George E
1955-01-01
Experimental results are presented for transonic flow post cone-cylinder, axially symmetric bodies. The drag coefficient and surface Mach number are studied as the free-stream Mach number is varied and, wherever possible, the experimental results are compared with theoretical predictions. Interferometric results for several typical flow configurations are shown and an example of shock-free supersonic-to-subsonic compression is experimentally demonstrated. The theoretical problem of transonic flow past finite cones is discussed briefly and an approximate solution of the axially symmetric transonic equations, valid for a semi-infinite cone, is presented.
Relativistic effects in photoionization: Wigner time delay for the noble gases and IIB atoms
NASA Astrophysics Data System (ADS)
Banerjee, Sourav; Deshmukh, Pranawa; Dolmatov, Valeriy; Kheifets, Anatoli; Manson, Steven
2017-04-01
Time delay in atomic photoionization has been observed in several experiments, and various theoretical and experimental approaches are developing rapidly to obtain a better understanding of this phenomena. Theoretical methods that account for many body correlations include the relativistic random phase approximation (RRPA) and its non-relativistic analogue, RPAE. Calculations using RRPA are performed and the impact of relativistic interactions on Wigner time delay are explored via comparison of this result with RPAE results. In addition, results on Wigner time delay for Zn Cd and Hg are presented.
Electronic structure of disordered CuPd alloys: A two-dimensional positron-annihilation study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smedskjaer, L.C.; Benedek, R.; Siegel, R.W.
1987-11-23
Two-dimensional--angular-correlation experiments using posi- tron-annihilation spectroscopy were performed on a series of disordered Cu-rich CuPd-alloy single crystals. The results are compared with theoretical calculations based on the Korringa-Kohn-Rostoker coherent-potential approximation. Our experiments confirm the theoretically predicted flattening of the alloy Fermi surface near (110) with increasing Pd concentration. The momentum densities and the two-dimensional--angular-correlation spectra around zero momentum exhibit a characteristic signature of the electronic states near the valence-band edge in the alloy.
The distribution of the scattered laser light in laser-plate-target coupling
NASA Astrophysics Data System (ADS)
Xiao-bo, Nie; Tie-qiang, Chang; Dong-xian, Lai; Shen-ye, Liu; Zhi-jian, Zheng
1997-04-01
Theoretical and experimental studies of the angular distributions of scattered laser light in laser-Au-plate-target coupling are reported. A simple model that describes three-dimensional plasmas and scattered laser light is presented. The approximate shape of critical density surface has been given and the three-dimensional laser ray tracing is applied in the model. The theoretical results of the model are consistent with the experimental data for the scattered laser light in the polar angle range of 25° to 145° from the laser beam.
NASA Technical Reports Server (NTRS)
Frehlich, Rod; Kavaya, Michael J.
2000-01-01
The explanation for the difference between simulation and the zero-order theory for heterodyne lidar returns in a turbulent atmosphere proposed by Belmonte and Rye is incorrect. The theoretical expansion is not developed under a square- law-structure function approximation (random wedge atmosphere). Agreement between the simulations and the zero-order term of the theoretical expansion is produced for the limit of statistically independent paths (bi-static operation with large transmitter-receiver separation) when the simulations correctly include the large-scale gradients of the turbulent atmosphere.
NASA Technical Reports Server (NTRS)
Padial, N.; Csanak, G.; Mckoy, B. V.; Langhoff, P. W.
1981-01-01
Vertical-electronic static-exchange photoexcitation and ionization cross sections are reported which provide a first approximation to the complete dipole spectrum of CO2. Separated-channel static-exchange calculations of vertical-electronic transition energies and oscillator strengths, and Stieltjes-Chebyshev moment methods were used in the development. Detailed comparisons were made of the static-exchange excitation and ionization spectra with photoabsorption, electron-impact excitation, and quantum-defect estimates of discrete transition energies and intensities, and with partial-channel photoionization cross sections obtained from fluorescence measurements and from tunable-source and (e, 2e) photoelectron spectroscopy. Results show that the separate-channel static-exchange approximation is generally satisfactory in CO2.
NASA Astrophysics Data System (ADS)
Thomas, Philipp; Straube, Arthur V.; Grima, Ramon
2011-11-01
It is commonly believed that, whenever timescale separation holds, the predictions of reduced chemical master equations obtained using the stochastic quasi-steady-state approximation are in very good agreement with the predictions of the full master equations. We use the linear noise approximation to obtain a simple formula for the relative error between the predictions of the two master equations for the Michaelis-Menten reaction with substrate input. The reduced approach is predicted to overestimate the variance of the substrate concentration fluctuations by as much as 30%. The theoretical results are validated by stochastic simulations using experimental parameter values for enzymes involved in proteolysis, gluconeogenesis, and fermentation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldstein, J.; Nguyen, D.C.; Sheffield, R.L.
1996-10-01
We present the results of theoretical and simulation studies of the design and performance of a new F type of FEL oscillator. This device, known by the acronym RAFEL for Regenerative Amplifier Free-Electron Laser, will be constructed in the space presently occupied by the AFEL (Advanced FEL) at Los Alamos, and will be driven by an upgraded (to higher average power) version of the present AFEL linac. In order to achieve a long-time-averaged optical output power of {approximately} 1 kW using an electron beam with an average power of {approximately} 20 kW, a rather high extraction efficiency {eta} {approximately} 5%more » is required. We have designed a 2-m-long undulator to attain this goal: the first meter is untapered and provides high gain while the second meter is linearly-tapered in magnetic field amplitude to provide high extraction efficiency in the standard K-M-R manner. Two-plane focusing and linear polarization of the undulator are assumed. Electron-beam properties from PARMEIA simulations of the AFEL accelerator were used in the design. A large saturated gain, {approximately} 500, requires a very small optical feedback to keep the device operating at steady-state. However, the large gain leads to distorted optical modes which require two- and three-dimensional simulations to adequately treat diffraction effects. This FEL will be driven by 17 MeV electrons and will operate in the 16 {mu}m spectral region.« less
Sharma, Suhansar Jit; Singh, Tajinder; Singh, Doordarshi; Singh, Amrit; Dhaliwal, A S
2017-12-01
Total bremsstrahlung spectral photon distribution generated in thick targets of lead compounds Pb(CH 3 COO) 2 ·3H 2 O, Pb(NO 3 ) 2 and PbCl 2 by 90 Sr beta particles has been investigated theoretically and experimentally in the photon energy region 1-10keV. The experimental results are compared with the theoretical models describing ordinary bremsstrahlung and the theoretical model which includes polarization bremsstrahlung into ordinary bremsstrahlung, in stripped approximation. It is observed that the experimental results show better agreement with the model which describes bremsstrahlung in stripped approximation in the energy range 3-10keV. However, the results show positive deviation in the photon energy region of 1-3keV. Further, it has been found that there is a continuous decrease of polarization bremsstrahlung contribution into ordinary bremsstrahlung in the formation of total bremsstrahlung spectra with increase in photon energy. The suppression of polarization bremsstrahlung has been observed due to the presence of large fraction of low Z elements in the compounds. The results clearly indicate that polarization bremsstrahlung plays an important role in the formation of total bremsstrahlung spectra in compounds in the studied energy region. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Qian, Feng; Zhou, Wanlu; Kaluvan, Suresh; Zhang, Haifeng; Zuo, Lei
2018-04-01
Vibration energy harvesting has been extensively studied in recent years to explore a continuous power source for sensor networks and low-power electronics. Torsional vibration widely exists in mechanical engineering; however, it has not yet been well exploited for energy harvesting. This paper presents a theoretical model and an experimental validation of a torsional vibration energy harvesting system comprised of a shaft and a shear mode piezoelectric transducer. The piezoelectric transducer position on the surface of the shaft is parameterized by two variables that are optimized to obtain the maximum power output. The piezoelectric transducer can work in d 15 mode (pure shear mode), coupled mode of d 31 and d 33, and coupled mode of d 33, d 31 and d 15, respectively, when attached at different angles. Approximate expressions of voltage and power are derived from the theoretical model, which gave predictions in good agreement with analytical solutions. Physical interpretations on the implicit relationship between the power output and the position parameters of the piezoelectric transducer is given based on the derived approximate expression. The optimal position and angle of the piezoelectric transducer is determined, in which case, the transducer works in the coupled mode of d 15, d 31 and d 33.
NASA Astrophysics Data System (ADS)
Lin, L.; Luo, X.; Qin, F.; Yang, J.
2018-03-01
As one of the combustion products of hydrocarbon fuels in a combustion-heated wind tunnel, water vapor may condense during the rapid expansion process, which will lead to a complex two-phase flow inside the wind tunnel and even change the design flow conditions at the nozzle exit. The coupling of the phase transition and the compressible flow makes the estimation of the condensation effects in such wind tunnels very difficult and time-consuming. In this work, a reduced theoretical model is developed to approximately compute the nozzle-exit conditions of a flow including real-gas and homogeneous condensation effects. Specifically, the conservation equations of the axisymmetric flow are first approximated in the quasi-one-dimensional way. Then, the complex process is split into two steps, i.e., a real-gas nozzle flow but excluding condensation, resulting in supersaturated nozzle-exit conditions, and a discontinuous jump at the end of the nozzle from the supersaturated state to a saturated state. Compared with two-dimensional numerical simulations implemented with a detailed condensation model, the reduced model predicts the flow parameters with good accuracy except for some deviations caused by the two-dimensional effect. Therefore, this reduced theoretical model can provide a fast, simple but also accurate estimation of the condensation effect in combustion-heated hypersonic tunnels.
Elementary Theoretical Forms for the Spatial Power Spectrum of Earth's Crustal Magnetic Field
NASA Technical Reports Server (NTRS)
Voorhies, C.
1998-01-01
The magnetic field produced by magnetization in Earth's crust and lithosphere can be distinguished from the field produced by electric currents in Earth's core because the spatial magnetic power spectrum of the crustal field differs from that of the core field. Theoretical forms for the spectrum of the crustal field are derived by treating each magnetic domain in the crust as the point source of a dipole field. The geologic null-hypothesis that such moments are uncorrelated is used to obtain the magnetic spectrum expected from a randomly magnetized, or unstructured, spherical crust of negligible thickness. This simplest spectral form is modified to allow for uniform crustal thickness, ellipsoidality, and the polarization of domains by an periodically reversing, geocentric axial dipole field from Earth's core. Such spectra are intended to describe the background crustal field. Magnetic anomalies due to correlated magnetization within coherent geologic structures may well be superimposed upon this background; yet representing each such anomaly with a single point dipole may lead to similar spectral forms. Results from attempts to fit these forms to observational spectra, determined via spherical harmonic analysis of MAGSAT data, are summarized in terms of amplitude, source depth, and misfit. Each theoretical spectrum reduces to a source factor multiplied by the usual exponential function of spherical harmonic degree n due to geometric attenuation with attitude above the source layer. The source factors always vary with n and are approximately proportional to n(exp 3) for degrees 12 through 120. The theoretical spectra are therefore not directly proportional to an exponential function of spherical harmonic degree n. There is no radius at which these spectra are flat, level, or otherwise independent of n.
Carman, Christián; Díez, José
2015-08-01
The goal of this paper, both historical and philosophical, is to launch a new case into the scientific realism debate: geocentric astronomy. Scientific realism about unobservables claims that the non-observational content of our successful/justified empirical theories is true, or approximately true. The argument that is currently considered the best in favor of scientific realism is the No Miracles Argument: the predictive success of a theory that makes (novel) observational predictions while making use of non-observational content would be inexplicable unless such non-observational content approximately corresponds to the world "out there". Laudan's pessimistic meta-induction challenged this argument, and realists reacted by moving to a "selective" version of realism: the approximately true part of the theory is not its full non-observational content but only the part of it that is responsible for the novel, successful observational predictions. Selective scientific realism has been tested against some of the theories in Laudan's list, but the first member of this list, geocentric astronomy, has been traditionally ignored. Our goal here is to defend that Ptolemy's Geocentrism deserves attention and poses a prima facie strong case against selective realism, since it made several successful, novel predictions based on theoretical hypotheses that do not seem to be retained, not even approximately, by posterior theories. Here, though, we confine our work just to the detailed reconstruction of what we take to be the main novel, successful Ptolemaic predictions, leaving the full analysis and assessment of their significance for the realist thesis to future works. Copyright © 2015. Published by Elsevier Ltd.
Ringham, Brandy M; Kreidler, Sarah M; Muller, Keith E; Glueck, Deborah H
2016-07-30
Multilevel and longitudinal studies are frequently subject to missing data. For example, biomarker studies for oral cancer may involve multiple assays for each participant. Assays may fail, resulting in missing data values that can be assumed to be missing completely at random. Catellier and Muller proposed a data analytic technique to account for data missing at random in multilevel and longitudinal studies. They suggested modifying the degrees of freedom for both the Hotelling-Lawley trace F statistic and its null case reference distribution. We propose parallel adjustments to approximate power for this multivariate test in studies with missing data. The power approximations use a modified non-central F statistic, which is a function of (i) the expected number of complete cases, (ii) the expected number of non-missing pairs of responses, or (iii) the trimmed sample size, which is the planned sample size reduced by the anticipated proportion of missing data. The accuracy of the method is assessed by comparing the theoretical results to the Monte Carlo simulated power for the Catellier and Muller multivariate test. Over all experimental conditions, the closest approximation to the empirical power of the Catellier and Muller multivariate test is obtained by adjusting power calculations with the expected number of complete cases. The utility of the method is demonstrated with a multivariate power analysis for a hypothetical oral cancer biomarkers study. We describe how to implement the method using standard, commercially available software products and give example code. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Morikawa, Satoshi; Inamoto, Takuya; Takashiri, Masayuki
2018-02-16
The effect of crystal grain size on the thermoelectric properties of nanocrystalline antimony telluride (Sb 2 Te 3 ) thin films was investigated by experiments and first-principles studies using a developed relaxation time approximation. The Sb 2 Te 3 thin films were deposited on glass substrates using radio-frequency magnetron sputtering. To change the crystal grain size of the Sb 2 Te 3 thin films, thermal annealing was performed at different temperatures. The crystal grain size, lattice parameter, and crystal orientation of the thin films were estimated using XRD patterns. The carrier concentration and in-plane thermoelectric properties of the thin films were measured at room temperature. A theoretical analysis was performed using a first-principles study based on density functional theory. The electronic band structures of Sb 2 Te 3 were calculated using different lattice parameters, and the thermoelectric properties were predicted based on the semi-classical Boltzmann transport equation in the relaxation time approximation. In particular, we introduced the effect of carrier scattering at the grain boundaries into the relaxation time approximation by estimating the group velocities from the electronic band structures. Finally, the experimentally measured thermoelectric properties were compared with those obtained by calculation. As a result, the calculated thermoelectric properties were found to be in good agreement with the experimental results. Therefore, we can conclude that introducing the effect of carrier scattering at the grain boundaries into the relaxation time approximation contributes to enhance the accuracy of a first-principles calculation relating to nanocrystalline materials.
NASA Astrophysics Data System (ADS)
Morikawa, Satoshi; Inamoto, Takuya; Takashiri, Masayuki
2018-02-01
The effect of crystal grain size on the thermoelectric properties of nanocrystalline antimony telluride (Sb2Te3) thin films was investigated by experiments and first-principles studies using a developed relaxation time approximation. The Sb2Te3 thin films were deposited on glass substrates using radio-frequency magnetron sputtering. To change the crystal grain size of the Sb2Te3 thin films, thermal annealing was performed at different temperatures. The crystal grain size, lattice parameter, and crystal orientation of the thin films were estimated using XRD patterns. The carrier concentration and in-plane thermoelectric properties of the thin films were measured at room temperature. A theoretical analysis was performed using a first-principles study based on density functional theory. The electronic band structures of Sb2Te3 were calculated using different lattice parameters, and the thermoelectric properties were predicted based on the semi-classical Boltzmann transport equation in the relaxation time approximation. In particular, we introduced the effect of carrier scattering at the grain boundaries into the relaxation time approximation by estimating the group velocities from the electronic band structures. Finally, the experimentally measured thermoelectric properties were compared with those obtained by calculation. As a result, the calculated thermoelectric properties were found to be in good agreement with the experimental results. Therefore, we can conclude that introducing the effect of carrier scattering at the grain boundaries into the relaxation time approximation contributes to enhance the accuracy of a first-principles calculation relating to nanocrystalline materials.
Birdwell, Justin; Cook, Robert L; Thibodeaux, Louis J
2007-03-01
Resuspension of contaminated sediment can lead to the release of toxic compounds to surface waters where they are more bioavailable and mobile. Because the timeframe of particle resettling during such events is shorter than that needed to reach equilibrium, a kinetic approach is required for modeling the release process. Due to the current inability of common theoretical approaches to predict site-specific release rates, empirical algorithms incorporating the phenomenological assumption of biphasic, or fast and slow, release dominate the descriptions of nonpolar organic chemical release in the literature. Two first-order rate constants and one fraction are sufficient to characterize practically all of the data sets studied. These rate constants were compared to theoretical model parameters and functionalities, including chemical properties of the contaminants and physical properties of the sorbents, to determine if the trends incorporated into the hindered diffusion model are consistent with the parameters used in curve fitting. The results did not correspond to the parameter dependence of the hindered diffusion model. No trend in desorption rate constants, for either fast or slow release, was observed to be dependent on K(OC) or aqueous solubility for six and seven orders of magnitude, respectively. The same was observed for aqueous diffusivity and sediment fraction organic carbon. The distribution of kinetic rate constant values was approximately log-normal, ranging from 0.1 to 50 d(-1) for the fast release (average approximately 5 d(-1)) and 0.0001 to 0.1 d(-1) for the slow release (average approximately 0.03 d(-1)). The implications of these findings with regard to laboratory studies, theoretical desorption process mechanisms, and water quality modeling needs are presented and discussed.
NASA Astrophysics Data System (ADS)
Melchert, O.; Hartmann, A. K.
2015-02-01
In this work we consider information-theoretic observables to analyze short symbolic sequences, comprising time series that represent the orientation of a single spin in a two-dimensional (2D) Ising ferromagnet on a square lattice of size L2=1282 for different system temperatures T . The latter were chosen from an interval enclosing the critical point Tc of the model. At small temperatures the sequences are thus very regular; at high temperatures they are maximally random. In the vicinity of the critical point, nontrivial, long-range correlations appear. Here we implement estimators for the entropy rate, excess entropy (i.e., "complexity"), and multi-information. First, we implement a Lempel-Ziv string-parsing scheme, providing seemingly elaborate entropy rate and multi-information estimates and an approximate estimator for the excess entropy. Furthermore, we apply easy-to-use black-box data-compression utilities, providing approximate estimators only. For comparison and to yield results for benchmarking purposes, we implement the information-theoretic observables also based on the well-established M -block Shannon entropy, which is more tedious to apply compared to the first two "algorithmic" entropy estimation procedures. To test how well one can exploit the potential of such data-compression techniques, we aim at detecting the critical point of the 2D Ising ferromagnet. Among the above observables, the multi-information, which is known to exhibit an isolated peak at the critical point, is very easy to replicate by means of both efficient algorithmic entropy estimation procedures. Finally, we assess how good the various algorithmic entropy estimates compare to the more conventional block entropy estimates and illustrate a simple modification that yields enhanced results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kucha, E.I.
1984-01-01
A general method was developed to calculate two dimensional (axisymmetric) mixing of a compressible jet in a variable cross-sectional area mixing channel of the ejector. The analysis considers mixing of the primary and secondary fluids at constant pressure and incorporates finite difference approximations to the conservation equations. The flow model is based on the mixing length approximations. A detailed study and modeling of the flow phenomenon determines the best (optimum) mixing channel geometry of the ejector. The detailed ejector performance characteristics are predicted by incorporating the flow model into a solar-powered ejector cycle cooling system computer model. Freon-11 is usedmore » as both the primary and secondary fluids. Performance evaluation of the cooling system is examined for its coefficient of performance (COP) under a variety of operating conditions. A study is also conducted on a modified ejector cycle in which a secondary pump is introduced at the exit of the evaporator. Results show a significant improvement in the overall performance over that of the conventional ejector cycle (without a secondary pump). Comparison between one and two-dimensional analyses indicates that the two-dimensional ejector fluid flow analysis predicts a better overall system performance. This is true for both the conventional and modified ejector cycles.« less
Hyperpolarized (129) Xe imaging of the rat lung using spiral IDEAL.
Doganay, Ozkan; Wade, Trevor; Hegarty, Elaine; McKenzie, Charles; Schulte, Rolf F; Santyr, Giles E
2016-08-01
To implement and optimize a single-shot spiral encoding strategy for rapid 2D IDEAL projection imaging of hyperpolarized (Hp) (129) Xe in the gas phase, and in the pulmonary tissue (PT) and red blood cells (RBCs) compartments of the rat lung, respectively. A theoretical and experimental point spread function analysis was used to optimize the spiral k-space read-out time in a phantom. Hp (129) Xe IDEAL images from five healthy rats were used to: (i) optimize flip angles by a Bloch equation analysis using measured kinetics of gas exchange and (ii) investigate the feasibility of the approach to characterize the exchange of Hp (129) Xe. A read-out time equal to approximately 1.8 × T2* was found to provide the best trade-off between spatial resolution and signal-to-noise ratio (SNR). Spiral IDEAL approaches that use the entire dissolved phase magnetization should give an SNR improvement of a factor of approximately three compared with Cartesian approaches with similar spatial resolution. The IDEAL strategy allowed imaging of gas, PT, and RBC compartments with sufficient SNR and temporal resolution to permit regional gas exchange measurements in healthy rats. Single-shot spiral IDEAL imaging of gas, PT and RBC compartments and gas exchange is feasible in rat lung using Hp (129) Xe. Magn Reson Med 76:566-576, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Definitions, Foundations and Associations of Physical Literacy: A Systematic Review.
Edwards, Lowri C; Bryant, Anna S; Keegan, Richard J; Morgan, Kevin; Jones, Anwen M
2017-01-01
The concept of physical literacy has stimulated increased research attention in recent years-being deployed in physical education, sport participation, and the promotion of physical activity. Independent research groups currently operationalize the construct differently. The purpose of this systematic review was to conduct a systematic review of the physical literacy construct, as reflected in contemporary research literature. Five databases were searched using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines for systematic reviews. Inclusion criteria were English language, peer reviewed, published by March 2016, and seeking to conceptualize physical literacy. Articles that met these criteria were analyzed in relation to three core areas: properties/attributes, philosophical foundations and theoretical associations with other constructs. A total of 50 published articles met the inclusion criteria and were analyzed qualitatively using inductive thematic analysis. The thematic analysis addressed the three core areas. Under definitions, core attributes that define physical literacy were identified, as well as areas of conflict between different approaches currently being adopted. One relatively clear philosophical approach was prominent in approximately half of the papers, based on a monist/holistic ontology and phenomenological epistemology. Finally, the analysis identified a number of theoretical associations, including health, physical activity and academic performance. Current literature contains different representations of the physical literacy construct. The costs and benefits of adopting an exclusive approach versus pluralism are considered. Recommendations for both researchers and practitioners focus on identifying and clearly articulating the definitions, philosophical assumptions and expected outcomes prior to evaluating the effectiveness of this emerging concept.
Theoretical Calculations for Electron Impact Ionization of Atoms and Molecules
NASA Astrophysics Data System (ADS)
Amami, Sadek Mohamed Fituri
In the last twenty years, significant progress has been made for the theoretical treatment of electron impact ionization (e,2e) of atoms and molecules and, for some cases, very nice agreement between experiment and theory has been achieved. In particular, excellent agreement between theory and experiment and theory has been achieved for ionization of hydrogen and helium. However, agreement between experiment and theory is not nearly as good for ionization of larger atoms and molecules. In the first part of this dissertation, different theoretical approaches will be employed to study the triply differential cross section (TDCS) for low and intermediate energy electron-impact ionization of Neon and Argon for different orbital states. There is a very recent interest in studying ionization of Laser aligned atoms in order to get a better understanding about electron impact ionization of molecules. In the next part of this dissertation, results will be presented for electron-impact ionization of three laser aligned atoms, Mg, Ca, and Na. The comparison between the theory and experiment showed that our three body distorted wave (3DW) model gave excellent agreement with experiment in the scattering plane but very poor agreement perpendicular to the scattering plane. An explanation for this poor agreement out of the scattering plane has been provided by comparing our theoretical results with those of the time depended close coupling (TDCC) model and this explanation is also provided in this dissertation. Recently, significant attention has been directed towards obtaining a better under-standing of electron-impact ionization of molecules which are significantly more challenging than atoms. In the last part of this dissertation, results will be presented for electron-impact ionization of three different molecules (N2 , H2O, and CH4) which have been studied comprehensively using different theoretical approximations for different types of geometries. The published papers in section two contain a detailed analysis and discussion for each of these topics.
Păunescu, T G; Helman, S I
2001-01-01
Transepithelial electrical impedance analysis provides a sensitive method to evaluate the conductances and capacitances of apical and basolateral plasma membranes of epithelial cells. Impedance analysis is complicated, due not only to the anatomical arrangement of the cells and their paracellular shunt pathways, but also in particular to the existence of audio frequency-dependent capacitances or dispersions. In this paper we explore implications and consequences of anatomically related Maxwell-Wagner and Cole-Cole dielectric dispersions that impose limitations, approximations, and pitfalls of impedance analysis when tissues are studied under widely ranging spontaneous rates of transport, and in particular when apical membrane sodium and chloride channels are activated by adenosine 3',5'-cyclic monophosphate (cAMP) in A6 epithelia. We develop the thesis that capacitive relaxation processes of any origin lead not only to dependence on frequency of the impedance locus, but also to the appearance of depressed semicircles in Nyquist transepithelial impedance plots, regardless of the tightness or leakiness of the paracellular shunt pathways. Frequency dependence of capacitance precludes analysis of data in traditional ways, where capacitance is assumed constant, and is especially important when apical and/or basolateral membranes exhibit one or more dielectric dispersions. PMID:11463629
NASA Technical Reports Server (NTRS)
Stoll, Frederick
1993-01-01
The NLPAN computer code uses a finite-strip approach to the analysis of thin-walled prismatic composite structures such as stiffened panels. The code can model in-plane axial loading, transverse pressure loading, and constant through-the-thickness thermal loading, and can account for shape imperfections. The NLPAN code represents an attempt to extend the buckling analysis of the VIPASA computer code into the geometrically nonlinear regime. Buckling mode shapes generated using VIPASA are used in NLPAN as global functions for representing displacements in the nonlinear regime. While the NLPAN analysis is approximate in nature, it is computationally economical in comparison with finite-element analysis, and is thus suitable for use in preliminary design and design optimization. A comprehensive description of the theoretical approach of NLPAN is provided. A discussion of some operational considerations for the NLPAN code is included. NLPAN is applied to several test problems in order to demonstrate new program capabilities, and to assess the accuracy of the code in modeling various types of loading and response. User instructions for the NLPAN computer program are provided, including a detailed description of the input requirements and example input files for two stiffened-panel configurations.
Waskasi, Morteza M; Newton, Marshall D; Matyushov, Dmitry V
2017-03-30
A combination of experimental data and theoretical analysis provides evidence of a bell-shaped kinetics of electron transfer in the Arrhenius coordinates ln k vs 1/T. This kinetic law is a temperature analogue of the familiar Marcus bell-shaped dependence based on ln k vs the reaction free energy. These results were obtained for reactions of intramolecular charge shift between the donor and acceptor separated by a rigid spacer studied experimentally by Miller and co-workers. The non-Arrhenius kinetic law is a direct consequence of the solvent reorganization energy and reaction driving force changing approximately as hyperbolic functions with temperature. The reorganization energy decreases and the driving force increases when temperature is increased. The point of equality between them marks the maximum of the activationless reaction rate. Reaching the consistency between the kinetic and thermodynamic experimental data requires the non-Gaussian statistics of the donor-acceptor energy gap described by the Q-model of electron transfer. The theoretical formalism combines the vibrational envelope of quantum vibronic transitions with the Q-model describing the classical component of the Franck-Condon factor and a microscopic solvation model of the solvent reorganization energy and the reaction free energy.
Theoretical analysis for the optical deformation of emulsion droplets.
Tapp, David; Taylor, Jonathan M; Lubansky, Alex S; Bain, Colin D; Chakrabarti, Buddhapriya
2014-02-24
We propose a theoretical framework to predict the three-dimensional shapes of optically deformed micron-sized emulsion droplets with ultra-low interfacial tension. The resulting shape and size of the droplet arises out of a balance between the interfacial tension and optical forces. Using an approximation of the laser field as a Gaussian beam, working within the Rayleigh-Gans regime and assuming isotropic surface energy at the oil-water interface, we numerically solve the resulting shape equations to elucidate the three-dimensional droplet geometry. We obtain a plethora of shapes as a function of the number of optical tweezers, their laser powers and positions, surface tension, initial droplet size and geometry. Experimentally, two-dimensional droplet silhouettes have been imaged from above, but their full side-on view has not been observed and reported for current optical configurations. This experimental limitation points to ambiguity in differentiating between droplets having the same two-dimensional projection but with disparate three-dimensional shapes. Our model elucidates and quantifies this difference for the first time. We also provide a dimensionless number that indicates the shape transformation (ellipsoidal to dumbbell) at a value ≈ 1.0, obtained by balancing interfacial tension and laser forces, substantiated using a data collapse.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waskasi, Morteza M.; Newton, Marshall D.; Matyushov, Dmitry V.
A combination of experimental data and theoretical analysis provides evidence of a bell-shaped kinetics of electron transfer in the Arrhenius coordinates ln k vs 1/T . This kinetic law is a temperature analog of the familiar Marcus bell-shaped dependence based on ln k vs the reaction free energy. These results were obtained for reactions of intramolecular charge shift between the donor and acceptor separated by a rigid spacer studied experimentally by Miller and co-workers. The non-Arrhenius kinetic law is a direct consequence of the solvent reorganization energy and reaction driving force changing approximately as hyperbolic functions with temperature. The reorganizationmore » energy decreases and the driving force increases when temperature is increased. The point of equality between them marks the maximum of the activationless reaction rate. Reaching the consistency between the kinetic and thermodynamic experimental data requires the non-Gaussian statistics of the donor-acceptor energy gap described by the Q-model of electron transfer. Furthermore, the theoretical formalism combines the vibrational envelope of quantum vibronic transitions with the Q-model describing the classical component of the Franck-Condon factor and a microscopic solvation model of the solvent reorganization energy and the reaction free energy.« less
Fast Constrained Spectral Clustering and Cluster Ensemble with Random Projection
Liu, Wenfen
2017-01-01
Constrained spectral clustering (CSC) method can greatly improve the clustering accuracy with the incorporation of constraint information into spectral clustering and thus has been paid academic attention widely. In this paper, we propose a fast CSC algorithm via encoding landmark-based graph construction into a new CSC model and applying random sampling to decrease the data size after spectral embedding. Compared with the original model, the new algorithm has the similar results with the increase of its model size asymptotically; compared with the most efficient CSC algorithm known, the new algorithm runs faster and has a wider range of suitable data sets. Meanwhile, a scalable semisupervised cluster ensemble algorithm is also proposed via the combination of our fast CSC algorithm and dimensionality reduction with random projection in the process of spectral ensemble clustering. We demonstrate by presenting theoretical analysis and empirical results that the new cluster ensemble algorithm has advantages in terms of efficiency and effectiveness. Furthermore, the approximate preservation of random projection in clustering accuracy proved in the stage of consensus clustering is also suitable for the weighted k-means clustering and thus gives the theoretical guarantee to this special kind of k-means clustering where each point has its corresponding weight. PMID:29312447
Pulskamp, Jeffrey S; Bedair, Sarah S; Polcawich, Ronald G; Smith, Gabriel L; Martin, Joel; Power, Brian; Bhave, Sunil A
2012-05-01
This paper reports theoretical analysis and experimental results on a numerical electrode shaping design technique that permits the excitation of arbitrary modes in arbitrary geometries for piezoelectric resonators, for those modes permitted to exist by the nonzero piezoelectric coefficients and electrode configuration. The technique directly determines optimal electrode shapes by assessing the local suitability of excitation and detection electrode placement on two-port resonators without the need for iterative numerical techniques. The technique is demonstrated in 61 different electrode designs in lead zirconate titanate (PZT) thin film on silicon RF micro electro-mechanical system (MEMS) plate, beam, ring, and disc resonators for out-of-plane flexural and various contour modes up to 200 MHz. The average squared effective electromechanical coupling factor for the designs was 0.54%, approximately equivalent to the theoretical maximum value of 0.53% for a fully electroded length-extensional mode beam resonator comprised of the same composite. The average improvement in S(21) for the electrode-shaped designs was 14.6 dB with a maximum improvement of 44.3 dB. Through this piezoelectric electrodeshaping technique, 95% of the designs showed a reduction in insertion loss.
Haiwu, Rong; Wang, Xiangdong; Xu, Wei; Fang, Tong
2009-08-01
The subharmonic response of single-degree-of-freedom nonlinear vibro-impact oscillator with a one-sided barrier to narrow-band random excitation is investigated. The narrow-band random excitation used here is a filtered Gaussian white noise. The analysis is based on a special Zhuravlev transformation, which reduces the system to one without impacts, or velocity jumps, thereby permitting the applications of asymptotic averaging over the "fast" variables. The averaged stochastic equations are solved exactly by the method of moments for the mean-square response amplitude for the case of linear system with zero offset. A perturbation-based moment closure scheme is proposed and the formula of the mean-square amplitude is obtained approximately for the case of linear system with nonzero offset. The perturbation-based moment closure scheme is used once again to obtain the algebra equation of the mean-square amplitude of the response for the case of nonlinear system. The effects of damping, detuning, nonlinear intensity, bandwidth, and magnitudes of random excitations are analyzed. The theoretical analyses are verified by numerical results. Theoretical analyses and numerical simulations show that the peak amplitudes may be strongly reduced at large detunings or large nonlinear intensity.
MHD Energy Bypass Scramjet Performance with Real Gas Effects
NASA Technical Reports Server (NTRS)
Park, Chul; Mehta, Unmeel B.; Bogdanoff, David W.
2000-01-01
The theoretical performance of a scramjet propulsion system incorporating an magneto-hydro-dynamic (MHD) energy bypass scheme is calculated. The one-dimensional analysis developed earlier, in which the theoretical performance is calculated neglecting skin friction and using a sudden-freezing approximation for the nozzle flow, is modified to incorporate the method of Van Driest for turbulent skin friction and a finite-rate chemistry calculation in the nozzle. Unlike in the earlier design, in which four ramp compressions occurred in the pitch plane, in the present design the first two ramp compressions occur in the pitch plane and the next two compressions occur in the yaw plane. The results for the simplified design of a spaceliner show that (1) the present design produces higher specific impulses than the earlier design, (2) skin friction substantially reduces thrust and specific impulse, and (3) the specific impulse of the MHD-bypass system is still better than the non-MHD system and typical rocket over a narrow region of flight speeds and design parameters. Results suggest that the energy management with MHD principles offers the possibility of improving the performance of the scramjet. The technical issues needing further studies are identified.
NASA Astrophysics Data System (ADS)
Kaur, Jagjit; Gorczyca, T. W.; Badnell, N. R.
2018-02-01
Context. We aim to present a comprehensive theoretical investigation of dielectronic recombination (DR) of the silicon-like isoelectronic sequence and provide DR and radiative recombination (RR) data that can be used within a generalized collisional-radiative modelling framework. Aims: Total and final-state level-resolved DR and RR rate coefficients for the ground and metastable initial levels of 16 ions between P+ and Zn16+ are determined. Methods: We carried out multi-configurational Breit-Pauli DR calculations for silicon-like ions in the independent processes, isolated resonance, distorted wave approximation. Both Δnc = 0 and Δnc = 1 core excitations are included using LS and intermediate coupling schemes. Results: Results are presented for a selected number of ions and compared to all other existing theoretical and experimental data. The total dielectronic and radiative recombination rate coefficients for the ground state are presented in tabulated form for easy implementation into spectral modelling codes. These data can also be accessed from the Atomic Data and Analysis Structure (ADAS) OPEN-ADAS database. This work is a part of an assembly of a dielectronic recombination database for the modelling of dynamic finite-density plasmas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herraiz, Joaquin Lopez
Experimental coincidence cross section and transverse-longitudinal asymmetry ATL have been obtained for the quasielastic (e,e'p) reaction in 16O, 12C, and {sup 208}Pb in constant q-ω kinematics in the missing momentum range -350 < p miss < 350 MeV/c. In these experiments, performed in experimental Hall A of the Thomas Jefferson National Accelerator Facility (JLAB), the beam energy and the momentum and angle of the scattered electrons were kept fixed, while the angle between the proton momentum and the momentum transfer q was varied in order to map out the missing momentum distribution. The experimental cross section and A TL asymmetrymore » have been compared with Monte Carlo simulations based on Distorted Wave Impulse Approximation (DWIA) calculations with both relativistic and non-relativistic spinor structure. The spectroscopic factors obtained for both models are in agreement with previous experimental values, while A TL measurements favor the relativistic DWIA calculation. This thesis describes the details of the experimental setup, the calibration of the spectrometers, the techniques used in the data analysis to derive the final cross sections and the A TL, the ingredients of the theoretical calculations employed and the comparison of the results with the simulations based on these theoretical models.« less
Pathways to childhood depressive symptoms: the role of social, cognitive, and genetic risk factors.
Lau, Jennifer Y F; Rijsdijk, Frühling; Gregory, Alice M; McGuffin, Peter; Eley, Thalia C
2007-11-01
Childhood depressive conditions have been explored from multiple theoretical approaches but with few empirical attempts to address the interrelationships among these different domains and their combined effects. In the present study, the authors examined different pathways through which social, cognitive, and genetic risk factors may be expressed to influence depressive symptoms in 300 pairs of child twins from a longitudinal study. Path analysis supported several indirect routes. First, risks associated with living in a step- or single-parent family and punitive parenting did not directly influence depressive outcome but were instead mediated through maternal depressive symptoms and child negative attributional style. Second, the effects of negative attributional style on depressive outcome were greatly exacerbated in the presence of precipitating negative life events. Third, independent of these social and cognitive risk mechanisms, modest genetic effects were also implicated in symptoms, with some indication that these risks are expressed through exposure to negative stressors. Together, these routes accounted for approximately 13% of total phenotypic variance in depressive symptoms. Theoretical and analytical implications of these results are discussed in the context of several design-related caveats. (c) 2007 APA.
Vocational Interests and Performance: A Quantitative Summary of Over 60 Years of Research.
Nye, Christopher D; Su, Rong; Rounds, James; Drasgow, Fritz
2012-07-01
Despite early claims that vocational interests could be used to distinguish successful workers and superior students from their peers, interest measures are generally ignored in the employee selection literature. Nevertheless, theoretical descriptions of vocational interests from vocational and educational psychology have proposed that interest constructs should be related to performance and persistence in work and academic settings. Moreover, on the basis of Holland's (1959, 1997) theoretical predictions, congruence indices, which quantify the degree of similarity or person-environment fit between individuals and their occupations, should be more strongly related to performance than interest scores alone. Using a comprehensive review of the interest literature that spans more than 60 years of research, a meta-analysis was conducted to examine the veracity of these claims. A literature search identified 60 studies and approximately 568 correlations that addressed the relationship between interests and performance. Results showed that interests are indeed related to performance and persistence in work and academic contexts. In addition, the correlations between congruence indices and performance were stronger than for interest scores alone. Thus, consistent with interest theory, the fit between individuals and their environment was more predictive of performance than interest alone. © The Author(s) 2012.
Theoretical Analysis for the Optical Shaping of Emulsion Droplets
NASA Astrophysics Data System (ADS)
Tapp, David; Taylor, Jonathan; Lubanksy, Alex; Bain, Colin; Chakrabarti, Buddhapriya
2014-03-01
Motivated by recent experimental observations, I discuss a theoretical framework to predict the three-dimensional shapes of optically deformed micron-sized emulsion droplets with ultra-low interfacial tension. The resulting shape and size of the droplet arises out of a balance between the interfacial tension and optical forces. Using an approximation of the laser field as a Gaussian beam, working within the Rayleigh-Gans regime and beyond, and assuming isotropic surface energy at the oil-water interface, the resulting shape equations are numerically solved to elucidate the three-dimensional droplet geometry. A plethora of shapes as a function of the number of optical tweezers, their laser powers and positions, surface tension, initial droplet size and geometry are obtained. Experimentally, two-dimensional emulsion droplet silhouettes have been imaged from above, but their full side-on view has not been observed and reported for current optical configurations. This experimental limitation points to ambiguity in differentiating between droplets having the same two-dimensional projection but with disparate three-dimensional shapes. The model I present elucidates and quantifies this difference for the first time. Supported by funding from EPSRC via grant EP/I013377/1.
Energy and momentum relaxation of electrons in bulk and 2D GaN
NASA Astrophysics Data System (ADS)
Zanato, D.; Balkan, N.; Hill, G.; Schaff, W. J.
2004-10-01
We present our experimental and theoretical studies regarding the energy and momentum relaxation of hot electrons in n-type bulk GaN and AlGaN/GaN HEMT structures. We determine the non-equilibrium temperatures and the energy relaxation rates in the steady state using the mobility mapping technique together with the power balance conditions as described by us elsewhere [N. Balkan, M.C. Arikan, S. Gokden, V. Tilak, B. Schaff, R.J. Shealy, J. Phys.: Condens. Matter 14 (2002) 3457]. We obtain the e-LO phonon scattering time of 8 fs and show that the power loss of electrons due to optical phonon emission agrees with the theoretical prediction. The drift velocity-field curves at high electric fields indicate that the drift velocity saturates at approximately 3×10 6 cm/s for the two-dimensional structure and 4×10 6 cm/s for the bulk material at 77 K. These values are much lower than those predicted by the existing theories. A critical analysis of the observations is given with a model taking into account of the non-drifting non-equilibrium phonon production.
NACA Transonic Wind-tunnel Test Sections
NASA Technical Reports Server (NTRS)
Wright, Ray H; Ward, Vernon G
1955-01-01
Report presents an approximate subsonic theory for the solid-blockage interference in circular wind tunnels with walls slotted in the direction of flow. This theory indicated the possibility of obtaining zero blockage interference. Tests in a circular slotted tunnel based on the theory confirmed the theoretical predictions.
NASA Astrophysics Data System (ADS)
Joseph, Dwayne C.; Saha, Bidhan C.
2012-11-01
Charge transfer cross sections are calculated by employing both the quantal and semiclassical ɛ(R) molecular orbital close coupling (MOCC) approximations in the adiabatic representation and compared with other theoretical and experimental results
The travel-time ellipse: An approximate zone of transport
Almendinger, J.E.
1994-01-01
A zone of transport for a well is defined as the area in the horizontal plane bounded by a contour of equal ground-water travel time to the well. For short distances and ground-water travel times near a well, the potentiometric surface may be simulated analytically as that for a fully penetrating well in a uniform flow field. The zone of transport for this configuration is nearly elliptical. A simple method is derived to calculate a travel-time ellipse that approximates the zone of transport for a well in a uniform flow field. The travel-time ellipse was nearly congruent with the exact solution for the theoretical zone of transport for ground-water travel times of at least 10 years and for aquifer property values appropriate for southeastern Minnesota. For distances and travel times approaching infinity, however, the ellipse becomes slightly wider at its midpoint and narrower near its upgradient boundary than the theoretical zone of transport. The travel-time ellipse also may be used to simulate the plume area surrounding an injection well. However, the travel-time ellipse is an approximation that does not account for the effect of dispersion in enlarging the true area of an injection plume or zone of transport; hence, caution is advised in the use and interpretation of this simple construction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castaño-González, E.-E.; Seña, N.; Mendoza-Estrada, V.
In this paper, we carried out first-principles calculations in order to investigate the structural and electronic properties of the binary compound gallium antimonide (GaSb). This theoretical study was carried out using the Density Functional Theory within the plane-wave pseudopotential method. The effects of exchange and correlation (XC) were treated using the functional Local Density Approximation (LDA), generalized gradient approximation (GGA): Perdew–Burke–Ernzerhof (PBE), Perdew-Burke-Ernzerhof revised for solids (PBEsol), Perdew-Wang91 (PW91), revised Perdew–Burke–Ernzerhof (rPBE), Armiento–Mattson 2005 (AM05) and meta-generalized gradient approximation (meta-GGA): Tao–Perdew–Staroverov–Scuseria (TPSS) and revised Tao–Perdew–Staroverov–Scuseria (RTPSS) and modified Becke-Johnson (MBJ). We calculated the densities of state (DOS) and band structuremore » with different XC potentials identified and compared them with the theoretical and experimental results reported in the literature. It was discovered that functional: LDA, PBEsol, AM05 and RTPSS provide the best results to calculate the lattice parameters (a) and bulk modulus (B{sub 0}); while for the cohesive energy (E{sub coh}), functional: AM05, RTPSS and PW91 are closer to the values obtained experimentally. The MBJ, Rtpss and AM05 values found for the band gap energy is slightly underestimated with those values reported experimentally.« less
Richardson, Hugh H; Carlson, Michael T; Tandler, Peter J; Hernandez, Pedro; Govorov, Alexander O
2009-03-01
We perform a set of experiments on photoheating in a water droplet containing gold nanoparticles (NPs). Using photocalorimetric methods, we determine efficiency of light-to-heat conversion (eta) which turns out to be remarkably close to 1, (0.97 < eta < 1.03). Detailed studies reveal a complex character of heat transfer in an optically stimulated droplet. The main mechanism of equilibration is due to convectional flow. Theoretical modeling is performed to describe thermal effects at both nano- and millimeter scales. Theory shows that the collective photoheating is the main mechanism. For a large concentration of NPs and small laser intensity, an averaged temperature increase (at the millimeter scale) is significant (approximately 7 degrees C), whereas on the nanometer scale the temperature increase at the surface of a single NP is small (approximately 0.02 degrees C). In the opposite regime, that is, a small NP concentration and intense laser irradiation, we find an opposite picture: a temperature increase at the millimeter scale is small (0.1 degrees C) but a local, nanoscale temperature has strong local spikes at the surfaces of NPs (approximately 3 degrees C). These studies are crucial for the understanding of photothermal effects in NPs and for their potential and current applications in nano- and biotechnologies.
Behura, Sanjay K; Mahala, Pramila; Nayak, Sasmita; Yang, Qiaoqin; Mukhopadhyay, Indrajit; Janil, Omkar
2014-04-01
High quality graphene film is fabricated using mechanical exfoliation of highly-oriented pyrolytic graphite. The graphene films on glass substrates are characterized using field-emission scanning electron microscopy, atomic force microscopy, Raman spectroscopy, UV-vis spectroscopy and Fourier transform infrared spectroscopy. A very high intensity ratio of 2D to G-band (to approximately 1.67) and narrow 2D-band full-width at half maximum (to approximately 40 cm(-1)) correspond to the bi-layer graphene formation. The bi-layer graphene/p-GaN/n-InGaN/n-GaN/GaN/sAl2O3 system is studied theoretically using TCAD Silvaco software, in which the properties of exfoliated bi-layer graphene are used as transparent and conductive film, and the device exhibits an efficiency of 15.24% compared to 13.63% for ITO/p-GaN/n-InGaN/n-GaN/GaN/Al2O3 system.
Magnetic contributions in Bekenstein type models
NASA Astrophysics Data System (ADS)
Kraiselburd, Lucila; Castillo, Florencia L.; Mosquera, Mercedes E.; Vucetich, Héctor
2018-02-01
In this work, we analyze the spatial and time variation of the fine structure constant (α ) upon the theoretical framework developed by Bekenstein (Phys. Rev. D 66, 123514 (2002), 10.1103/PhysRevD.66.123514). We have computed the field ψ related to α at first order of the weak-field approximation and have also improved the estimation of the nuclear magnetic energy and, therefore, their contributions to the source term in the equation of motion of ψ . We obtained that the results are similar to the ones published in L. Kraiselburd and H. Vucetich, Int. J. Mod. Phys. E 20, 101 (2011) which were computed using the zero order of the approximation, showing that one can neglect the first order contribution to the variation of the fine structure constant. Through the comparison between our theoretical results and the observational data of the Eötvös-type experiments or the time variation of α over the cosmological time scale, we set constraints on the free parameter of the Bekenstein model, namely the Bekenstein length.
NASA Astrophysics Data System (ADS)
Dang Chien, Nguyen; Shih, Chun-Hsing; Hoa, Phu Chi; Minh, Nguyen Hong; Thi Thanh Hien, Duong; Nhung, Le Hong
2016-06-01
The two-band Kane model has been popularly used to calculate the band-to-band tunneling (BTBT) current in tunnel field-effect transistor (TFET) which is currently considered as a promising candidate for low power applications. This study theoretically clarifies the maximum electric field approximation (MEFA) of direct BTBT Kane model and evaluates its appropriateness for low bandgap semiconductors. By analysing the physical origin of each electric field term in the Kane model, it has been elucidated in the MEFA that the local electric field term must be remained while the nonlocal electric field terms are assigned by the maximum value of electric field at the tunnel junction. Mathematical investigations have showed that the MEFA is more appropriate for low bandgap semiconductors compared to high bandgap materials because of enhanced tunneling probability in low field regions. The appropriateness of the MEFA is very useful for practical uses in quickly estimating the direct BTBT current in low bandgap TFET devices.
Dipole and nondipole photoionization of molecular hydrogen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zimmermann, B.; McKoy, V.; Southworth, S. H.
2015-05-01
We describe a theoretical approach to molecular photoionization that includes first-order corrections to the dipole approximation. The theoretical formalism is presented and applied to photoionization of H-2 over the 20-to 180-eV photon energy range. The angle-integrated cross section sigma, the electric dipole anisotropy parameter beta(e), the molecular alignment anisotropy parameter beta(m), and the first-order nondipole asymmetry parameters gamma and delta were calculated within the single-channel, static-exchange approximation. The calculated parameters are compared with previous measurements of sigma and beta(m) and the present measurements of beta(e) and gamma + 3 delta. The dipole and nondipole angular distribution parameters were determined simultaneouslymore » using an efficient, multiangle measurement technique. Good overall agreement is observed between the magnitudes and spectral variations of the calculated and measured parameters. The nondipole asymmetries of He 1s and Ne 2p photoelectrons were also measured in the course of this work.« less
Baek, A-Hyong; Jeon, Eun-Yeong; Lee, Sun-Mee; Park, Jin-Byung
2015-05-01
We demonstrated for the first time that the archaeal chaperones (i.e., γ-prefoldin and thermosome) can stabilize enzyme activity in vivo. Ricinoleic acid biotransformation activity of recombinant Escherichia coli expressing Micrococcus luteus alcohol dehydrogenase and the Pseudomonas putida KT2440 Baeyer-Villiger monooxygenase improved significantly with co-expression of γ-prefoldin or recombinant themosome originating from the deep-sea hyperthermophile archaea Methanocaldococcus jannaschii. Furthermore, the degree of enhanced activity was dependent on the expression levels of the chaperones. For example, whole-cell biotransformation activity was highest at 12 µmol/g dry cells/min when γ-prefoldin expression level was approximately 46% of the theoretical maximum. This value was approximately two-fold greater than that in E. coli, where the γ-prefoldin expression level was zero or set to the theoretical maximum. Therefore, it was assumed that the expression levels of chaperones must be optimized to achieve maximum biotransformation activity in whole-cell biocatalysts. © 2014 Wiley Periodicals, Inc.
Consistent Pl Analysis of Aqueous Uranium-235 Critical Assemblies
NASA Technical Reports Server (NTRS)
Fieno, Daniel
1961-01-01
The lethargy-dependent equations of the consistent Pl approximation to the Boltzmann transport equation for slowing down neutrons have been used as the basis of an IBM 704 computer program. Some of the effects included are (1) linearly anisotropic center of mass elastic scattering, (2) heavy element inelastic scattering based on the evaporation model of the nucleus, and (3) optional variation of the buckling with lethargy. The microscopic cross-section data developed for this program covered 473 lethargy points from lethargy u = 0 (10 Mev) to u = 19.8 (0.025 ev). The value of the fission neutron age in water calculated here is 26.5 square centimeters; this value is to be compared with the recent experimental value given as 27.86 square centimeters. The Fourier transform of the slowing-down kernel for water to indium resonance energy calculated here compared well with the Fourier transform of the kernel for water as measured by Hill, Roberts, and Fitch. This method of calculation has been applied to uranyl fluoride - water solution critical assemblies. Theoretical results established for both unreflected and fully reflected critical assemblies have been compared with available experimental data. The theoretical buckling curve derived as a function of the hydrogen to uranium-235 atom concentration for an energy-independent extrapolation distance was successful in predicting the critical heights of various unreflected cylindrical assemblies. The critical dimensions of fully water-reflected cylindrical assemblies were reasonably well predicted using the theoretical buckling curve and reflector savings for equivalent spherical assemblies.
[Analysis of the impact of job characteristics and organizational support for workplace violence].
Li, M L; Chen, P; Zeng, F H; Cui, Q L; Zeng, J; Zhao, X S; Li, Z N
2017-12-20
Objective: To analyze the effect of job characteristics and organizational support for workplace violence, explore the influence path and the theoretical model, and provide a theoretical basis for reducing workplace violence. Methods: Stratified random sampling was used to select 813 medical staff, conductors and bus drivers in Chongqing with a self-made questionnaire to investigate job characteristics, organization attitude toward workplace violence, workplace violence, fear of violence, workplace violence, etc from February to October, 2014. Amos 21.0 was used to analyze the path and to establish a theoretical model of workplace violence. Results: The odds ratio of work characteristics and organizational attitude to workplace violence were 6.033 and 0.669, respectively, and the path coefficients were 0.41 and-0.14, respectively ( P <0.05). The Fitting indexes of the model: Chi-square (χ(2)) =67.835, The ratio of the chi-square to the degree of freedom (χ(2)/df) =5.112, Good-of-fit index (GFI) =0.970, Adjusted good-of-fit index (AGFI) =0.945, Normed fit index (NFI) =0.923, Root mean square error of approximation (RMSEA) =0.071, Fit criterion (Fmin) =0.092, so the model fit well with the data. Conclusion: The job characteristic is a risk factor for workplace violence while organizational attitude is a protective factor for workplace violence, so changing the job characteristics and improving the enthusiasm of the organization to deal with workplace violence are conducive to reduce workplace violence and increase loyalty to the unit.
A Teorell oscillator system with fine pore membranes.
Langer, P; Page, K R; Wiedner, G
1981-01-01
A Teorell membrane oscillator system has been investigated theoretically and experimentally. Instead of the broad pore (e.g., glass sinter) membranes used by Teorell and other investigators, we used membranes of a hydrodynamic permeability lower by factor of 10(3)-10(5) and a fixed ion concentration higher by a factor of 10(2)-10(5). A system with such membranes was thought to be a more adequate analogue of excitable biological tissues (for which the Teorell oscillator had been presented as a model). Stationary state voltage-current curves were recorded, and flip-flops were only found in membranes whose hydrodynamic permeability was above a certain value. A theoretical description, agreeing closely with the experimental findings, is given in terms of the Nernst-Planck-Schlögl equations; flip-flops are predicted only if the hydrodynamic permeability is above the fixed ion concentration is below a critical value. These values depend on the hydrostatic pressure and on the ratio of the cation and anion diffusion coefficient in the membrane, and they are found to be far beyond (approximately 3 orders of magnitude) the data for membranes used by others in similar experiments. Although our theoretical analysis demonstrates that the Teorell mechanism is ineligible as a source of excitability in those biological systems for which sufficient data ate available to permit comparison, the membrane properties for which the theory predicts flip-flops are such that it cannot be excluded a priori. PMID:7284557
A unified framework for approximation in inverse problems for distributed parameter systems
NASA Technical Reports Server (NTRS)
Banks, H. T.; Ito, K.
1988-01-01
A theoretical framework is presented that can be used to treat approximation techniques for very general classes of parameter estimation problems involving distributed systems that are either first or second order in time. Using the approach developed, one can obtain both convergence and stability (continuous dependence of parameter estimates with respect to the observations) under very weak regularity and compactness assumptions on the set of admissible parameters. This unified theory can be used for many problems found in the recent literature and in many cases offers significant improvements to existing results.
NASA Astrophysics Data System (ADS)
Wei, Gao-Feng; Dong, Shi-Hai
2010-11-01
By applying a Pekeris-type approximation to the pseudo-centrifugal term, we study the pseudospin symmetry of a Dirac nucleon subjected to scalar and vector modified Rosen-Morse (MRM) potentials. A complicated quartic energy equation and spinor wave functions with arbitrary spin-orbit coupling quantum number k are presented. The pseudospin degeneracy is checked numerically. Pseudospin symmetry is discussed theoretically and numerically in the limit case α rightarrow 0 . It is found that the relativistic MRM potential cannot trap a Dirac nucleon in this limit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Intravaia, F.; Behunin, R. O.; Henkel, C.
Here, we discuss the failure of the Markov approximation in the description of atom-surface fluctuation-induced interactions, both in equilibrium (Casimir-Polder forces) and out of equilibrium (quantum friction). Using general theoretical arguments, we show that the Markov approximation can lead to erroneous predictions of such phenomena with regard to both strength and functional dependencies on system parameters. Particularly, we show that the long-time power-law tails of two-time dipole correlations and their corresponding low-frequency behavior, neglected in the Markovian limit, affect the prediction of the force. These findings highlight the importance of non-Markovian effects in dispersion interactions.
NASA Astrophysics Data System (ADS)
Schiwietz, G.; Grande, P. L.
2011-11-01
Recent developments in the theoretical treatment of electronic energy losses of bare and screened ions in gases are presented. Specifically, the unitary-convolution-approximation (UCA) stopping-power model has proven its strengths for the determination of nonequilibrium effects for light as well as heavy projectiles at intermediate to high projectile velocities. The focus of this contribution will be on the UCA and its extension to specific projectile energies far below 100 keV/u, by considering electron-capture contributions at charge-equilibrium conditions.
Schoen, K; Snow, W M; Kaiser, H; Werner, S A
2005-01-01
The neutron index of refraction is generally derived theoretically in the Fermi approximation. However, the Fermi approximation neglects the effects of the binding of the nuclei of a material as well as multiple scattering. Calculations by Nowak introduced correction terms to the neutron index of refraction that are quadratic in the scattering length and of order 10(-3) fm for hydrogen and deuterium. These correction terms produce a small shift in the final value for the coherent scattering length of H2 in a recent neutron interferometry experiment.
1983-03-21
zero , it is necessary that B M(0) be nonzero. In the case considered here, B M(0) is taken to be nonsingula and withot loss of generality it may be set...452. (c.51 D. Levin, " General order Padd type rational approximants defined from a double power series," J. Inst. Maths. Applics., 18, 1976, pp. 1-8...common zeros in the closed unit bidisc, U- 2 . The 2-D setting provides a nice theoretical framework for generalization of these stabilization results to
Approximate solutions to Mathieu's equation
NASA Astrophysics Data System (ADS)
Wilkinson, Samuel A.; Vogt, Nicolas; Golubev, Dmitry S.; Cole, Jared H.
2018-06-01
Mathieu's equation has many applications throughout theoretical physics. It is especially important to the theory of Josephson junctions, where it is equivalent to Schrödinger's equation. Mathieu's equation can be easily solved numerically, however there exists no closed-form analytic solution. Here we collect various approximations which appear throughout the physics and mathematics literature and examine their accuracy and regimes of applicability. Particular attention is paid to quantities relevant to the physics of Josephson junctions, but the arguments and notation are kept general so as to be of use to the broader physics community.
Fusion Propulson System Requirements for an Interstellar Probe
NASA Technical Reports Server (NTRS)
Spencer, D. F.
1963-01-01
An examination of the engine constraints for a fusion-propelled vehicle indicates that minimum flight times for a probe to a 5 light-year star will be approximately 50 years. The principal restraint on the vehicle is the radiator weight and size necessary to dissipate the heat which enters the chamber walls from the fusion plasma. However, it is interesting, at least theoretically, that the confining magnetic field strength is of reasonable magnitude, 2 to 3 x 10(exp5) gauss, and the confinement time is approximately 0.1 sec.
Frimpong, Joseph Asamoah; Amo-Addae, Maame Pokuah; Adewuyi, Peter Adebayo; Hall, Casey Daniel; Park, Meeyoung Mattie; Nagbe, Thomas Knue
2017-01-01
Public health officials depend on timely, complete, and accurate surveillance data for decision making. The quality of data generated from surveillance is highly dependent on external and internal factors which may either impede or enhance surveillance activities. One way of identifying challenges affecting the quality of data generated is to conduct a data quality audit. This case study, based on an audit conducted by residents of the Liberia Frontline Field Epidemiology Training Program, was designed to be a classroom simulation of a data quality audit in a health facility. It is suited to enforce theoretical lectures in surveillance data quality and auditing. The target group is public health trainees, who should be able to complete this exercise in approximately 2 hours and 30 minutes.
First-principles study of anhydrite, polyhalite and carnallite
NASA Astrophysics Data System (ADS)
Weck, Philippe F.; Kim, Eunja; Jové-Colón, Carlos F.; Sassani, David C.
2014-02-01
We report density functional calculations of the structures and properties of anhydrite (CaSO4), polyhalite (K2SO4·MgSO4·2CaSO4·2H2O) and carnallite (KCl·MgCl2·6H2O). Densities of states are systematically investigated and phonon analysis using density functional perturbation theory is performed at constant equilibrium volume for anhydrite and polyhalite in order to derive their isochoric thermal properties. Thermal properties at constant atmospheric pressure are also calculated using the quasi-harmonic approximation. The computed molar entropy and isobaric heat capacity for anhydrite reproduce experimental data up to 800 K to within 3% and 10%, respectively, while further experimental work is needed to assess our theoretical predictions for polyhalite.
NASA Astrophysics Data System (ADS)
Kılıçarslan, Aynur; Salmankurt, Bahadır; Duman, Sıtkı
2017-02-01
We have performed an ab initio study of the structural, electronic, dynamical and thermal properties of the cubic AuCu3-type YSn3 and YPb3 by using the density functional theory, plane-wave pseudopotential method and a linear response scheme, within the generalized gradient approximation. An analysis of the electronic density of states at the Fermi level is found to be governed by the p states of Sn and Pb atoms with some contributions from the d states of Y atoms. The obtained phonon figures indicate that these material are dynamically stable in the cubic structure. Due to the metallic behavior of the compounds, the calculated zone-center phonon modes are triply degenerate. Also the thermal properties have been examined.
False Discovery Control in Large-Scale Spatial Multiple Testing
Sun, Wenguang; Reich, Brian J.; Cai, T. Tony; Guindani, Michele; Schwartzman, Armin
2014-01-01
Summary This article develops a unified theoretical and computational framework for false discovery control in multiple testing of spatial signals. We consider both point-wise and cluster-wise spatial analyses, and derive oracle procedures which optimally control the false discovery rate, false discovery exceedance and false cluster rate, respectively. A data-driven finite approximation strategy is developed to mimic the oracle procedures on a continuous spatial domain. Our multiple testing procedures are asymptotically valid and can be effectively implemented using Bayesian computational algorithms for analysis of large spatial data sets. Numerical results show that the proposed procedures lead to more accurate error control and better power performance than conventional methods. We demonstrate our methods for analyzing the time trends in tropospheric ozone in eastern US. PMID:25642138
Role of misalignment-induced angular chirp in the electro-optic detection of THz waves.
Walsh, D A; Cliffe, M J; Pan, R; Snedden, E W; Graham, D M; Gillespie, W A; Jamison, S P
2014-05-19
A general description of electro-optic detection including non-collinear phase matching and finite transverse beam profiles is presented. It is shown theoretically and experimentally that non-collinear phase matching in ZnTe (and similar materials) produces an angular chirp in the χ(2)-generated optical signal. Due to this, in non-collinear THz and probe arrangements such as single-shot THz measurements or through accidental misalignment, measurement of an undistorted THz signal is critically dependent on having sufficient angular acceptance in the optical probe path. The associated spatial walk-off can also preclude the phase retardation approximation used in THz-TDS. The rate of misalignment-induced chirping in commonly used ZnTe and GaP schemes is tabulated, allowing ready analysis of a detection system.
Hierarchy of models: From qualitative to quantitative analysis of circadian rhythms in cyanobacteria
NASA Astrophysics Data System (ADS)
Chaves, M.; Preto, M.
2013-06-01
A hierarchy of models, ranging from high to lower levels of abstraction, is proposed to construct "minimal" but predictive and explanatory models of biological systems. Three hierarchical levels will be considered: Boolean networks, piecewise affine differential (PWA) equations, and a class of continuous, ordinary, differential equations' models derived from the PWA model. This hierarchy provides different levels of approximation of the biological system and, crucially, allows the use of theoretical tools to more exactly analyze and understand the mechanisms of the system. The Kai ABC oscillator, which is at the core of the cyanobacterial circadian rhythm, is analyzed as a case study, showing how several fundamental properties—order of oscillations, synchronization when mixing oscillating samples, structural robustness, and entrainment by external cues—can be obtained from basic mechanisms.
Figure Control of Lightweight Optical Structures
NASA Technical Reports Server (NTRS)
Main, John A.; Song, Haiping
2005-01-01
The goal of this paper is to demonstrate the use of fuzzy logic controllers in modifying the figure of a piezoceramic bimorph mirror. Non-contact electron actuation technology is used to actively control a bimorph mirror comprised two PZT-5H wafers by varying the electron flux and electron voltages. Due to electron blooming generated by the electron flux, it is difficult to develop an accurate control model for the bimorph mirror through theoretical analysis alone. The non-contact shape control system with electron flux blooming can be approximately described with a heuristic model based on experimental data. Two fuzzy logic feedback controllers are developed to control the shape of the bimorph mirror according to heuristic fuzzy inference rules generated from previous experimental results. Validation of the proposed fuzzy logic controllers is also discussed.
Zero-crossing statistics for non-Markovian time series.
Nyberg, Markus; Lizana, Ludvig; Ambjörnsson, Tobias
2018-03-01
In applications spanning from image analysis and speech recognition to energy dissipation in turbulence and time-to failure of fatigued materials, researchers and engineers want to calculate how often a stochastic observable crosses a specific level, such as zero. At first glance this problem looks simple, but it is in fact theoretically very challenging, and therefore few exact results exist. One exception is the celebrated Rice formula that gives the mean number of zero crossings in a fixed time interval of a zero-mean Gaussian stationary process. In this study we use the so-called independent interval approximation to go beyond Rice's result and derive analytic expressions for all higher-order zero-crossing cumulants and moments. Our results agree well with simulations for the non-Markovian autoregressive model.
NASA Astrophysics Data System (ADS)
Mehdian, H.; Nobahar, D.; Hajisharifi, K.
2018-02-01
Ion-acoustic (IA) waves carrying orbital angular momentum (OAM) are investigated in an unmagnetized, uniform, and collisionless electron-positron-ion (e-p-i) plasma system. Employing the hydrodynamic theory, the paraxial equation in term of ion perturbed number density is derived and discussed about its Laguerre-Gaussian (LG) beam solutions. Obtaining an approximate solution for the electrostatic potential, the IA wave characteristics including helical electric field structure, energy density, and OAM density are theoretically studied. Based on the numerical analysis, the effects of positron concentration, radial and angular mode number as well as beam waist on the obtained potential profile are investigated. It is shown that the depth (height) and width of the LG potential profile wells (barriers) are considerably modify by the variation of positron concentration.