Sample records for approximately square pixels

  1. Photon-counting hexagonal pixel array CdTe detector: Spatial resolution characteristics for image-guided interventional applications

    PubMed Central

    Shrestha, Suman; Karellas, Andrew; Shi, Linxi; Gounis, Matthew J.; Bellazzini, Ronaldo; Spandre, Gloria; Brez, Alessandro; Minuti, Massimo

    2016-01-01

    Purpose: High-resolution, photon-counting, energy-resolved detector with fast-framing capability can facilitate simultaneous acquisition of precontrast and postcontrast images for subtraction angiography without pixel registration artifacts and can facilitate high-resolution real-time imaging during image-guided interventions. Hence, this study was conducted to determine the spatial resolution characteristics of a hexagonal pixel array photon-counting cadmium telluride (CdTe) detector. Methods: A 650 μm thick CdTe Schottky photon-counting detector capable of concurrently acquiring up to two energy-windowed images was operated in a single energy-window mode to include photons of 10 keV or higher. The detector had hexagonal pixels with apothem of 30 μm resulting in pixel pitch of 60 and 51.96 μm along the two orthogonal directions. The detector was characterized at IEC-RQA5 spectral conditions. Linear response of the detector was determined over the air kerma rate relevant to image-guided interventional procedures ranging from 1.3 nGy/frame to 91.4 μGy/frame. Presampled modulation transfer was determined using a tungsten edge test device. The edge-spread function and the finely sampled line spread function accounted for hexagonal sampling, from which the presampled modulation transfer function (MTF) was determined. Since detectors with hexagonal pixels require resampling to square pixels for distortion-free display, the optimal square pixel size was determined by minimizing the root-mean-squared-error of the aperture functions for the square and hexagonal pixels up to the Nyquist limit. Results: At Nyquist frequencies of 8.33 and 9.62 cycles/mm along the apothem and orthogonal to the apothem directions, the modulation factors were 0.397 and 0.228, respectively. For the corresponding axis, the limiting resolution defined as 10% MTF occurred at 13.3 and 12 cycles/mm, respectively. Evaluation of the aperture functions yielded an optimal square pixel size of 54 μm. After resampling to 54 μm square pixels using trilinear interpolation, the presampled MTF at Nyquist frequency of 9.26 cycles/mm was 0.29 and 0.24 along the orthogonal directions and the limiting resolution (10% MTF) occurred at approximately 12 cycles/mm. Visual analysis of a bar pattern image showed the ability to resolve close to 12 line-pairs/mm and qualitative evaluation of a neurovascular nitinol-stent showed the ability to visualize its struts at clinically relevant conditions. Conclusions: Hexagonal pixel array photon-counting CdTe detector provides high spatial resolution in single-photon counting mode. After resampling to optimal square pixel size for distortion-free display, the spatial resolution is preserved. The dual-energy capabilities of the detector could allow for artifact-free subtraction angiography and basis material decomposition. The proposed high-resolution photon-counting detector with energy-resolving capability can be of importance for several image-guided interventional procedures as well as for pediatric applications. PMID:27147324

  2. Photon-counting hexagonal pixel array CdTe detector: Spatial resolution characteristics for image-guided interventional applications.

    PubMed

    Vedantham, Srinivasan; Shrestha, Suman; Karellas, Andrew; Shi, Linxi; Gounis, Matthew J; Bellazzini, Ronaldo; Spandre, Gloria; Brez, Alessandro; Minuti, Massimo

    2016-05-01

    High-resolution, photon-counting, energy-resolved detector with fast-framing capability can facilitate simultaneous acquisition of precontrast and postcontrast images for subtraction angiography without pixel registration artifacts and can facilitate high-resolution real-time imaging during image-guided interventions. Hence, this study was conducted to determine the spatial resolution characteristics of a hexagonal pixel array photon-counting cadmium telluride (CdTe) detector. A 650 μm thick CdTe Schottky photon-counting detector capable of concurrently acquiring up to two energy-windowed images was operated in a single energy-window mode to include photons of 10 keV or higher. The detector had hexagonal pixels with apothem of 30 μm resulting in pixel pitch of 60 and 51.96 μm along the two orthogonal directions. The detector was characterized at IEC-RQA5 spectral conditions. Linear response of the detector was determined over the air kerma rate relevant to image-guided interventional procedures ranging from 1.3 nGy/frame to 91.4 μGy/frame. Presampled modulation transfer was determined using a tungsten edge test device. The edge-spread function and the finely sampled line spread function accounted for hexagonal sampling, from which the presampled modulation transfer function (MTF) was determined. Since detectors with hexagonal pixels require resampling to square pixels for distortion-free display, the optimal square pixel size was determined by minimizing the root-mean-squared-error of the aperture functions for the square and hexagonal pixels up to the Nyquist limit. At Nyquist frequencies of 8.33 and 9.62 cycles/mm along the apothem and orthogonal to the apothem directions, the modulation factors were 0.397 and 0.228, respectively. For the corresponding axis, the limiting resolution defined as 10% MTF occurred at 13.3 and 12 cycles/mm, respectively. Evaluation of the aperture functions yielded an optimal square pixel size of 54 μm. After resampling to 54 μm square pixels using trilinear interpolation, the presampled MTF at Nyquist frequency of 9.26 cycles/mm was 0.29 and 0.24 along the orthogonal directions and the limiting resolution (10% MTF) occurred at approximately 12 cycles/mm. Visual analysis of a bar pattern image showed the ability to resolve close to 12 line-pairs/mm and qualitative evaluation of a neurovascular nitinol-stent showed the ability to visualize its struts at clinically relevant conditions. Hexagonal pixel array photon-counting CdTe detector provides high spatial resolution in single-photon counting mode. After resampling to optimal square pixel size for distortion-free display, the spatial resolution is preserved. The dual-energy capabilities of the detector could allow for artifact-free subtraction angiography and basis material decomposition. The proposed high-resolution photon-counting detector with energy-resolving capability can be of importance for several image-guided interventional procedures as well as for pediatric applications.

  3. WE-G-204-03: Photon-Counting Hexagonal Pixel Array CdTe Detector: Optimal Resampling to Square Pixels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrestha, S; Vedantham, S; Karellas, A

    Purpose: Detectors with hexagonal pixels require resampling to square pixels for distortion-free display of acquired images. In this work, the presampling modulation transfer function (MTF) of a hexagonal pixel array photon-counting CdTe detector for region-of-interest fluoroscopy was measured and the optimal square pixel size for resampling was determined. Methods: A 0.65mm thick CdTe Schottky sensor capable of concurrently acquiring up to 3 energy-windowed images was operated in a single energy-window mode to include ≥10 KeV photons. The detector had hexagonal pixels with apothem of 30 microns resulting in pixel spacing of 60 and 51.96 microns along the two orthogonal directions.more » Images of a tungsten edge test device acquired under IEC RQA5 conditions were double Hough transformed to identify the edge and numerically differentiated. The presampling MTF was determined from the finely sampled line spread function that accounted for the hexagonal sampling. The optimal square pixel size was determined in two ways; the square pixel size for which the aperture function evaluated at the Nyquist frequencies along the two orthogonal directions matched that from the hexagonal pixel aperture functions, and the square pixel size for which the mean absolute difference between the square and hexagonal aperture functions was minimized over all frequencies up to the Nyquist limit. Results: Evaluation of the aperture functions over the entire frequency range resulted in square pixel size of 53 microns with less than 2% difference from the hexagonal pixel. Evaluation of the aperture functions at Nyquist frequencies alone resulted in 54 microns square pixels. For the photon-counting CdTe detector and after resampling to 53 microns square pixels using quadratic interpolation, the presampling MTF at Nyquist frequency of 9.434 cycles/mm along the two directions were 0.501 and 0.507. Conclusion: Hexagonal pixel array photon-counting CdTe detector after resampling to square pixels provides high-resolution imaging suitable for fluoroscopy.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vedantham, Srinivasan; Shrestha, Suman; Karellas, Andrew, E-mail: andrew.karellas@umassmed.edu

    Purpose: High-resolution, photon-counting, energy-resolved detector with fast-framing capability can facilitate simultaneous acquisition of precontrast and postcontrast images for subtraction angiography without pixel registration artifacts and can facilitate high-resolution real-time imaging during image-guided interventions. Hence, this study was conducted to determine the spatial resolution characteristics of a hexagonal pixel array photon-counting cadmium telluride (CdTe) detector. Methods: A 650 μm thick CdTe Schottky photon-counting detector capable of concurrently acquiring up to two energy-windowed images was operated in a single energy-window mode to include photons of 10 keV or higher. The detector had hexagonal pixels with apothem of 30 μm resulting in pixelmore » pitch of 60 and 51.96 μm along the two orthogonal directions. The detector was characterized at IEC-RQA5 spectral conditions. Linear response of the detector was determined over the air kerma rate relevant to image-guided interventional procedures ranging from 1.3 nGy/frame to 91.4 μGy/frame. Presampled modulation transfer was determined using a tungsten edge test device. The edge-spread function and the finely sampled line spread function accounted for hexagonal sampling, from which the presampled modulation transfer function (MTF) was determined. Since detectors with hexagonal pixels require resampling to square pixels for distortion-free display, the optimal square pixel size was determined by minimizing the root-mean-squared-error of the aperture functions for the square and hexagonal pixels up to the Nyquist limit. Results: At Nyquist frequencies of 8.33 and 9.62 cycles/mm along the apothem and orthogonal to the apothem directions, the modulation factors were 0.397 and 0.228, respectively. For the corresponding axis, the limiting resolution defined as 10% MTF occurred at 13.3 and 12 cycles/mm, respectively. Evaluation of the aperture functions yielded an optimal square pixel size of 54 μm. After resampling to 54 μm square pixels using trilinear interpolation, the presampled MTF at Nyquist frequency of 9.26 cycles/mm was 0.29 and 0.24 along the orthogonal directions and the limiting resolution (10% MTF) occurred at approximately 12 cycles/mm. Visual analysis of a bar pattern image showed the ability to resolve close to 12 line-pairs/mm and qualitative evaluation of a neurovascular nitinol-stent showed the ability to visualize its struts at clinically relevant conditions. Conclusions: Hexagonal pixel array photon-counting CdTe detector provides high spatial resolution in single-photon counting mode. After resampling to optimal square pixel size for distortion-free display, the spatial resolution is preserved. The dual-energy capabilities of the detector could allow for artifact-free subtraction angiography and basis material decomposition. The proposed high-resolution photon-counting detector with energy-resolving capability can be of importance for several image-guided interventional procedures as well as for pediatric applications.« less

  5. Simulation and Spectrum Extraction in the Spectroscopic Channel of the SNAP Experiment

    NASA Astrophysics Data System (ADS)

    Tilquin, Andre; Bonissent, A.; Gerdes, D.; Ealet, A.; Prieto, E.; Macaire, C.; Aumenier, M. H.

    2007-05-01

    A pixel-level simulation software is described. It is composed of two modules. The first module applies Fourier optics at each active element of the system to construct the PSF at a large variety of wavelengths and spatial locations of the point source. The input is provided by the engineer's design program (Zemax). It describes the optical path and the distortions. The PSF properties are compressed and interpolated using shapelets decomposition and neural network techniques. A second module is used for production jobs. It uses the output of the first module to reconstruct the relevant PSF and integrate it on the detector pixels. Extended and polychromatic sources are approximated by a combination of monochromatic point sources. For the spectrum extraction, we use a fast simulator based on a multidimensional linear interpolation of the pixel response tabulated on a grid of values of wavelength, position on sky and slice number. The prediction of the fast simulator is compared to the observed pixel content, and a chi-square minimization where the parameters are the bin contents is used to build the extracted spectrum. The visible and infrared arms are combined in the same chi-square, providing a single spectrum.

  6. Penrose high-dynamic-range imaging

    NASA Astrophysics Data System (ADS)

    Li, Jia; Bai, Chenyan; Lin, Zhouchen; Yu, Jian

    2016-05-01

    High-dynamic-range (HDR) imaging is becoming increasingly popular and widespread. The most common multishot HDR approach, based on multiple low-dynamic-range images captured with different exposures, has difficulties in handling camera and object movements. The spatially varying exposures (SVE) technology provides a solution to overcome this limitation by obtaining multiple exposures of the scene in only one shot but suffers from a loss in spatial resolution of the captured image. While aperiodic assignment of exposures has been shown to be advantageous during reconstruction in alleviating resolution loss, almost all the existing imaging sensors use the square pixel layout, which is a periodic tiling of square pixels. We propose the Penrose pixel layout, using pixels in aperiodic rhombus Penrose tiling, for HDR imaging. With the SVE technology, Penrose pixel layout has both exposure and pixel aperiodicities. To investigate its performance, we have to reconstruct HDR images in square pixel layout from Penrose raw images with SVE. Since the two pixel layouts are different, the traditional HDR reconstruction methods are not applicable. We develop a reconstruction method for Penrose pixel layout using a Gaussian mixture model for regularization. Both quantitative and qualitative results show the superiority of Penrose pixel layout over square pixel layout.

  7. Dem Generation with WORLDVIEW-2 Images

    NASA Astrophysics Data System (ADS)

    Büyüksalih, G.; Baz, I.; Alkan, M.; Jacobsen, K.

    2012-07-01

    For planning purposes 42 km coast line of the Black Sea, starting at the Bosporus going in West direction, with a width of approximately 5 km, was imaged by WorldView-2. Three stereo scenes have been oriented at first by 3D-affine transformation and later by bias corrected RPC solution. The result is nearly the same, but it is limited by identification of the control points in the images. Nevertheless after blunder elimination by data snooping root mean square discrepancies below 1 pixel have been reached. The root mean square discrepancy at control point height reached 0.5 m up to 1.3 m with a base to height relation between 1:1.26 and 1:1.80. Digital Surface models (DSM) with 4 m spacing have been generated by least squares matching with region growing, supported by image pyramids. A higher percentage of the mountainous area is covered by forest, requiring the approximation based on image pyramids. In the forest area the approximation just by region growing leads to larger gaps in the DSM. Caused by the good image quality of WorldView-2 the correlation coefficients reached by least squares matching are high and even in most forest areas a satisfying density of accepted points was reached. Two stereo models have an overlapping area of 1.6 km times 6.7 km allowing an accuracy evaluation. Small, but nevertheless significant differences in scene orientation have been eliminated by least squares shift of both overlapping height models to each other. The root mean square differences of both independent DSM are 1.06m or as a function of terrain inclination 0.74 m + 0.55 m  tangent (slope). The terrain inclination in the average is 7° with 12% exceeding 17°. The frequency distribution of height discrepancies is not far away from normal distribution, but as usual, larger discrepancies are more often available as corresponding to normal distribution. This also can be seen by the normalized medium absolute deviation (NMAS) related to 68% probability level of 0.83m being significant smaller as the root mean square differences. Nevertheless the results indicate a standard deviation of the single height models of 0.75 m or 0.52 m + 0.39* tangent (slope), corresponding to approximately 0.6 pixels for the x-parallax in flat terrain, being very satisfying for the available land cover. An interpolation over 10 m enlarged the root mean square differences of both height models nearly by 50%.

  8. Design of High Resolution Soft X-Ray Microcalorimeters Using Magnetic Penetration Thermometers

    NASA Technical Reports Server (NTRS)

    Busch. Sarah; Balvin, Manuel; Bandler, Simon; Denis, Kevin; Finkbeiner, Fred; Porst, Jan-Patrick; Sadlier, Jack; Smith, Stephen; Stevenson, Thomas

    2012-01-01

    We have designed high-resolution soft x-ray microcalorimeters using magnetic penetration thermometers (MPTs) in an array of pixels covering a total of 2 square centimeters to have a resolving power of 300 at energies around 300 eV. This performance is desirable for studying the soft x-ray background from the warm hot intergalactic medium. MPT devices have small sensor heat capacity and high responsivities, which makes them excellent detector technology for attempting to attain sub-eV resolution. We are investigating the feasibility of pixels with absorbers that are 625 x 625 square micrometers, up to 1 x 1 square millimeters in area and 0.35 micrometer thick and thinner. Our tests have shown that suspended gold absorbers 0.35 micrometers thick (RRR = 6.7) are feasible to fabricate. We modeled the thermal diffusion from such thin gold over the size of a 625 x 625 square micrometer absorber, and conclude that the effect of the thermalization on the resolution of a 300 eV photon is an additional approximately 0.2 eV FWHM of broadening. We discuss the thermal effects of small absorber attachment sterns on solid substrate, as well as considerations for multiplexed readout. We will present the progress we have made towards building and testing this soft x-ray detector.

  9. Faxed document image restoration method based on local pixel patterns

    NASA Astrophysics Data System (ADS)

    Akiyama, Teruo; Miyamoto, Nobuo; Oguro, Masami; Ogura, Kenji

    1998-04-01

    A method for restoring degraded faxed document images using the patterns of pixels that construct small areas in a document is proposed. The method effectively restores faxed images that contain the halftone textures and/or density salt-and-pepper noise that degrade OCR system performance. The halftone image restoration process, white-centered 3 X 3 pixels, in which black-and-white pixels alternate, are identified first using the distribution of the pixel values as halftone textures, and then the white center pixels are inverted to black. To remove high-density salt- and-pepper noise, it is assumed that the degradation is caused by ill-balanced bias and inappropriate thresholding of the sensor output which results in the addition of random noise. Restored image can be estimated using an approximation that uses the inverse operation of the assumed original process. In order to process degraded faxed images, the algorithms mentioned above are combined. An experiment is conducted using 24 especially poor quality examples selected from data sets that exemplify what practical fax- based OCR systems cannot handle. The maximum recovery rate in terms of mean square error was 98.8 percent.

  10. Methods for computing color anaglyphs

    NASA Astrophysics Data System (ADS)

    McAllister, David F.; Zhou, Ya; Sullivan, Sophia

    2010-02-01

    A new computation technique is presented for calculating pixel colors in anaglyph images. The method depends upon knowing the RGB spectral distributions of the display device and the transmission functions of the filters in the viewing glasses. It requires the solution of a nonlinear least-squares program for each pixel in a stereo pair and is based on minimizing color distances in the CIEL*a*b* uniform color space. The method is compared with several techniques for computing anaglyphs including approximation in CIE space using the Euclidean and Uniform metrics, the Photoshop method and its variants, and a method proposed by Peter Wimmer. We also discuss the methods of desaturation and gamma correction for reducing retinal rivalry.

  11. A Real-Time Marker-Based Visual Sensor Based on a FPGA and a Soft Core Processor

    PubMed Central

    Tayara, Hilal; Ham, Woonchul; Chong, Kil To

    2016-01-01

    This paper introduces a real-time marker-based visual sensor architecture for mobile robot localization and navigation. A hardware acceleration architecture for post video processing system was implemented on a field-programmable gate array (FPGA). The pose calculation algorithm was implemented in a System on Chip (SoC) with an Altera Nios II soft-core processor. For every frame, single pass image segmentation and Feature Accelerated Segment Test (FAST) corner detection were used for extracting the predefined markers with known geometries in FPGA. Coplanar PosIT algorithm was implemented on the Nios II soft-core processor supplied with floating point hardware for accelerating floating point operations. Trigonometric functions have been approximated using Taylor series and cubic approximation using Lagrange polynomials. Inverse square root method has been implemented for approximating square root computations. Real time results have been achieved and pixel streams have been processed on the fly without any need to buffer the input frame for further implementation. PMID:27983714

  12. A Real-Time Marker-Based Visual Sensor Based on a FPGA and a Soft Core Processor.

    PubMed

    Tayara, Hilal; Ham, Woonchul; Chong, Kil To

    2016-12-15

    This paper introduces a real-time marker-based visual sensor architecture for mobile robot localization and navigation. A hardware acceleration architecture for post video processing system was implemented on a field-programmable gate array (FPGA). The pose calculation algorithm was implemented in a System on Chip (SoC) with an Altera Nios II soft-core processor. For every frame, single pass image segmentation and Feature Accelerated Segment Test (FAST) corner detection were used for extracting the predefined markers with known geometries in FPGA. Coplanar PosIT algorithm was implemented on the Nios II soft-core processor supplied with floating point hardware for accelerating floating point operations. Trigonometric functions have been approximated using Taylor series and cubic approximation using Lagrange polynomials. Inverse square root method has been implemented for approximating square root computations. Real time results have been achieved and pixel streams have been processed on the fly without any need to buffer the input frame for further implementation.

  13. Functional magnetic resonance imaging of visual object construction and shape discrimination : relations among task, hemispheric lateralization, and gender.

    PubMed

    Georgopoulos, A P; Whang, K; Georgopoulos, M A; Tagaris, G A; Amirikian, B; Richter, W; Kim, S G; Uğurbil, K

    2001-01-01

    We studied the brain activation patterns in two visual image processing tasks requiring judgements on object construction (FIT task) or object sameness (SAME task). Eight right-handed healthy human subjects (four women and four men) performed the two tasks in a randomized block design while 5-mm, multislice functional images of the whole brain were acquired using a 4-tesla system using blood oxygenation dependent (BOLD) activation. Pairs of objects were picked randomly from a set of 25 oriented fragments of a square and presented to the subjects approximately every 5 sec. In the FIT task, subjects had to indicate, by pushing one of two buttons, whether the two fragments could match to form a perfect square, whereas in the SAME task they had to decide whether they were the same or not. In a control task, preceding and following each of the two tasks above, a single square was presented at the same rate and subjects pushed any of the two keys at random. Functional activation maps were constructed based on a combination of conservative criteria. The areas with activated pixels were identified using Talairach coordinates and anatomical landmarks, and the number of activated pixels was determined for each area. Altogether, 379 pixels were activated. The counts of activated pixels did not differ significantly between the two tasks or between the two genders. However, there were significantly more activated pixels in the left (n = 218) than the right side of the brain (n = 161). Of the 379 activated pixels, 371 were located in the cerebral cortex. The Talairach coordinates of these pixels were analyzed with respect to their overall distribution in the two tasks. These distributions differed significantly between the two tasks. With respect to individual dimensions, the two tasks differed significantly in the anterior--posterior and superior--inferior distributions but not in the left--right (including mediolateral, within the left or right side) distribution. Specifically, the FIT distribution was, overall, more anterior and inferior than that of the SAME task. A detailed analysis of the counts and spatial distributions of activated pixels was carried out for 15 brain areas (all in the cerebral cortex) in which a consistent activation (in > or = 3 subjects) was observed (n = 323 activated pixels). We found the following. Except for the inferior temporal gyrus, which was activated exclusively in the FIT task, all other areas showed activation in both tasks but to different extents. Based on the extent of activation, areas fell within two distinct groups (FIT or SAME) depending on which pixel count (i.e., FIT or SAME) was greater. The FIT group consisted of the following areas, in decreasing FIT/SAME order (brackets indicate ties): GTi, GTs, GC, GFi, GFd, [GTm, GF], GO. The SAME group consisted of the following areas, in decreasing SAME/FIT order : GOi, LPs, Sca, GPrC, GPoC, [GFs, GFm]. These results indicate that there are distributed, graded, and partially overlapping patterns of activation during performance of the two tasks. We attribute these overlapping patterns of activation to the engagement of partially shared processes. Activated pixels clustered to three types of clusters : FIT-only (111 pixels), SAME-only (97 pixels), and FIT + SAME (115 pixels). Pixels contained in FIT-only and SAME-only clusters were distributed approximately equally between the left and right hemispheres, whereas pixels in the SAME + FIT clusters were located mostly in the left hemisphere. With respect to gender, the left-right distribution of activated pixels was very similar in women and men for the SAME-only and FIT + SAME clusters but differed for the FIT-only case in which there was a prominent left side preponderance for women, in contrast to a right side preponderance for men. We conclude that (a) cortical mechanisms common for processing visual object construction and discrimination involve mostly the left hemisphere, (b) cortical mechanisms specific for these tasks engage both hemispheres, and (c) in object construction only, men engage predominantly the right hemisphere whereas women show a left-hemisphere preponderance.

  14. Accuracy of measurement of star images on a pixel array

    NASA Technical Reports Server (NTRS)

    King, I. R.

    1983-01-01

    Algorithms are developed for predicting the accuracy with which the brightness of a star can be determined from its image on a digital detector array, as a function of the brightness of the background. The assumption is made that a known profile is being fitted by least squares. The two profiles used correspond to ST images and to ground-based observations. The first result is an approximate rule of thumb for equivalent noise area. More rigorous results are then given in tabular form. The size of the pixels, relative to the image size, is taken into account. Astronometric accuracy is also discussed briefly; the error, relative to image size, is very similar to the photometric error relative to brightness.

  15. Toward high-resolution global topography of Mercury from MESSENGER orbital stereo imaging: A prototype model for the H6 (Kuiper) quadrangle

    NASA Astrophysics Data System (ADS)

    Preusker, Frank; Stark, Alexander; Oberst, Jürgen; Matz, Klaus-Dieter; Gwinner, Klaus; Roatsch, Thomas; Watters, Thomas R.

    2017-08-01

    We selected approximately 10,500 narrow-angle camera (NAC) and wide-angle camera (WAC) images of Mercury acquired from orbit by MESSENGER's Mercury Dual Imaging System (MDIS) with an average resolution of 150 m/pixel to compute a digital terrain model (DTM) for the H6 (Kuiper) quadrangle, which extends from 22.5°S to 22.5°N and from 288.0°E to 360.0°E. From the images, we identified about 21,100 stereo image combinations consisting of at least three images each. We applied sparse multi-image matching to derive approximately 250,000 tie-points representing 50,000 ground points. We used the tie-points to carry out a photogrammetric block adjustment, which improves the image pointing and the accuracy of the ground point positions in three dimensions from about 850 m to approximately 55 m. We then applied high-density (pixel-by-pixel) multi-image matching to derive about 45 billion tie-points. Benefitting from improved image pointing data achieved through photogrammetric block adjustment, we computed about 6.3 billion surface points. By interpolation, we generated a DTM with a lateral spacing of 221.7 m/pixel (192 pixels per degree) and a vertical accuracy of about 30 m. The comparison of the DTM with Mercury Laser Altimeter (MLA) profiles obtained over four years of MESSENGER orbital operations reveals that the DTM is geometrically very rigid. It may be used as a reference to identify MLA outliers (e.g., when MLA operated at its ranging limit) or to map offsets of laser altimeter tracks, presumably caused by residual spacecraft orbit and attitude errors. After the relevant outlier removals and corrections, MLA profiles show excellent agreement with topographic profiles from H6, with a root mean square height difference of only 88 m.

  16. Hubble Space Telescope: Faint object camera instrument handbook. Version 2.0

    NASA Technical Reports Server (NTRS)

    Paresce, Francesco (Editor)

    1990-01-01

    The Faint Object Camera (FOC) is a long focal ratio, photon counting device designed to take high resolution two dimensional images of areas of the sky up to 44 by 44 arcseconds squared in size, with pixel dimensions as small as 0.0007 by 0.0007 arcseconds squared in the 1150 to 6500 A wavelength range. The basic aim of the handbook is to make relevant information about the FOC available to a wide range of astronomers, many of whom may wish to apply for HST observing time. The FOC, as presently configured, is briefly described, and some basic performance parameters are summarized. Also included are detailed performance parameters and instructions on how to derive approximate FOC exposure times for the proposed targets.

  17. Precise calibration of spatial phase response nonuniformity arising in liquid crystal on silicon.

    PubMed

    Xu, Jingquan; Qin, SiYi; Liu, Chen; Fu, Songnian; Liu, Deming

    2018-06-15

    In order to calibrate the spatial phase response nonuniformity of liquid crystal on silicon (LCoS), we propose to use a Twyman-Green interferometer to characterize the wavefront distortion, due to the inherent curvature of the device. During the characterization, both the residual carrier frequency introduced by the Fourier transform evaluation method and the lens aberration are error sources. For the tilted phase error introduced by residual carrier frequency, the least mean square fitting method is used to obtain the tilted phase error. Meanwhile, we use Zernike polynomials fitting based on plane mirror calibration to mitigate the lens aberration. For a typical LCoS with 1×12,288 pixels after calibration, the peak-to-valley value of the inherent wavefront distortion is approximately 0.25λ at 1550 nm, leading to a half-suppression of wavefront distortion. All efforts can suppress the root mean squares value of the inherent wavefront distortion to approximately λ/34.

  18. Mars Exploration Rover engineering cameras

    USGS Publications Warehouse

    Maki, J.N.; Bell, J.F.; Herkenhoff, K. E.; Squyres, S. W.; Kiely, A.; Klimesh, M.; Schwochert, M.; Litwin, T.; Willson, R.; Johnson, Aaron H.; Maimone, M.; Baumgartner, E.; Collins, A.; Wadsworth, M.; Elliot, S.T.; Dingizian, A.; Brown, D.; Hagerott, E.C.; Scherr, L.; Deen, R.; Alexander, D.; Lorre, J.

    2003-01-01

    NASA's Mars Exploration Rover (MER) Mission will place a total of 20 cameras (10 per rover) onto the surface of Mars in early 2004. Fourteen of the 20 cameras are designated as engineering cameras and will support the operation of the vehicles on the Martian surface. Images returned from the engineering cameras will also be of significant importance to the scientific community for investigative studies of rock and soil morphology. The Navigation cameras (Navcams, two per rover) are a mast-mounted stereo pair each with a 45?? square field of view (FOV) and an angular resolution of 0.82 milliradians per pixel (mrad/pixel). The Hazard Avoidance cameras (Hazcams, four per rover) are a body-mounted, front- and rear-facing set of stereo pairs, each with a 124?? square FOV and an angular resolution of 2.1 mrad/pixel. The Descent camera (one per rover), mounted to the lander, has a 45?? square FOV and will return images with spatial resolutions of ???4 m/pixel. All of the engineering cameras utilize broadband visible filters and 1024 x 1024 pixel detectors. Copyright 2003 by the American Geophysical Union.

  19. Enhancing spatial resolution of (18)F positron imaging with the Timepix detector by classification of primary fired pixels using support vector machine.

    PubMed

    Wang, Qian; Liu, Zhen; Ziegler, Sibylle I; Shi, Kuangyu

    2015-07-07

    Position-sensitive positron cameras using silicon pixel detectors have been applied for some preclinical and intraoperative clinical applications. However, the spatial resolution of a positron camera is limited by positron multiple scattering in the detector. An incident positron may fire a number of successive pixels on the imaging plane. It is still impossible to capture the primary fired pixel along a particle trajectory by hardware or to perceive the pixel firing sequence by direct observation. Here, we propose a novel data-driven method to improve the spatial resolution by classifying the primary pixels within the detector using support vector machine. A classification model is constructed by learning the features of positron trajectories based on Monte-Carlo simulations using Geant4. Topological and energy features of pixels fired by (18)F positrons were considered for the training and classification. After applying the classification model on measurements, the primary fired pixels of the positron tracks in the silicon detector were estimated. The method was tested and assessed for [(18)F]FDG imaging of an absorbing edge protocol and a leaf sample. The proposed method improved the spatial resolution from 154.6   ±   4.2 µm (energy weighted centroid approximation) to 132.3   ±   3.5 µm in the absorbing edge measurements. For the positron imaging of a leaf sample, the proposed method achieved lower root mean square error relative to phosphor plate imaging, and higher similarity with the reference optical image. The improvements of the preliminary results support further investigation of the proposed algorithm for the enhancement of positron imaging in clinical and preclinical applications.

  20. Enhancing spatial resolution of 18F positron imaging with the Timepix detector by classification of primary fired pixels using support vector machine

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Liu, Zhen; Ziegler, Sibylle I.; Shi, Kuangyu

    2015-07-01

    Position-sensitive positron cameras using silicon pixel detectors have been applied for some preclinical and intraoperative clinical applications. However, the spatial resolution of a positron camera is limited by positron multiple scattering in the detector. An incident positron may fire a number of successive pixels on the imaging plane. It is still impossible to capture the primary fired pixel along a particle trajectory by hardware or to perceive the pixel firing sequence by direct observation. Here, we propose a novel data-driven method to improve the spatial resolution by classifying the primary pixels within the detector using support vector machine. A classification model is constructed by learning the features of positron trajectories based on Monte-Carlo simulations using Geant4. Topological and energy features of pixels fired by 18F positrons were considered for the training and classification. After applying the classification model on measurements, the primary fired pixels of the positron tracks in the silicon detector were estimated. The method was tested and assessed for [18F]FDG imaging of an absorbing edge protocol and a leaf sample. The proposed method improved the spatial resolution from 154.6   ±   4.2 µm (energy weighted centroid approximation) to 132.3   ±   3.5 µm in the absorbing edge measurements. For the positron imaging of a leaf sample, the proposed method achieved lower root mean square error relative to phosphor plate imaging, and higher similarity with the reference optical image. The improvements of the preliminary results support further investigation of the proposed algorithm for the enhancement of positron imaging in clinical and preclinical applications.

  1. Coded-Aperture X- or gamma -ray telescope with Least- squares image reconstruction. III. Data acquisition and analysis enhancements

    NASA Astrophysics Data System (ADS)

    Kohman, T. P.

    1995-05-01

    The design of a cosmic X- or gamma -ray telescope with least- squares image reconstruction and its simulated operation have been described (Rev. Sci. Instrum. 60, 3396 and 3410 (1989)). Use of an auxiliary open aperture ("limiter") ahead of the coded aperture limits the object field to fewer pixels than detector elements, permitting least-squares reconstruction with improved accuracy in the imaged field; it also yields a uniformly sensitive ("flat") central field. The design has been enhanced to provide for mask-antimask operation. This cancels and eliminates uncertainties in the detector background, and the simulated results have virtually the same statistical accuracy (pixel-by-pixel output-input RMSD) as with a single mask alone. The simulations have been made more realistic by incorporating instrumental blurring of sources. A second-stage least-squares procedure had been developed to determine the precise positions and total fluxes of point sources responsible for clusters of above-background pixels in the field resulting from the first-stage reconstruction. Another program converts source positions in the image plane to celestial coordinates and vice versa, the image being a gnomic projection of a region of the sky.

  2. PIXELS: Using field-based learning to investigate students' concepts of pixels and sense of scale

    NASA Astrophysics Data System (ADS)

    Pope, A.; Tinigin, L.; Petcovic, H. L.; Ormand, C. J.; LaDue, N.

    2015-12-01

    Empirical work over the past decade supports the notion that a high level of spatial thinking skill is critical to success in the geosciences. Spatial thinking incorporates a host of sub-skills such as mentally rotating an object, imagining the inside of a 3D object based on outside patterns, unfolding a landscape, and disembedding critical patterns from background noise. In this study, we focus on sense of scale, which refers to how an individual quantified space, and is thought to develop through kinesthetic experiences. Remote sensing data are increasingly being used for wide-reaching and high impact research. A sense of scale is critical to many areas of the geosciences, including understanding and interpreting remotely sensed imagery. In this exploratory study, students (N=17) attending the Juneau Icefield Research Program participated in a 3-hour exercise designed to study how a field-based activity might impact their sense of scale and their conceptions of pixels in remotely sensed imagery. Prior to the activity, students had an introductory remote sensing lecture and completed the Sense of Scale inventory. Students walked and/or skied the perimeter of several pixel types, including a 1 m square (representing a WorldView sensor's pixel), a 30 m square (a Landsat pixel) and a 500 m square (a MODIS pixel). The group took reflectance measurements using a field radiometer as they physically traced out the pixel. The exercise was repeated in two different areas, one with homogenous reflectance, and another with heterogeneous reflectance. After the exercise, students again completed the Sense of Scale instrument and a demographic survey. This presentation will share the effects and efficacy of the field-based intervention to teach remote sensing concepts and to investigate potential relationships between students' concepts of pixels and sense of scale.

  3. Perceptual Color Characterization of Cameras

    PubMed Central

    Vazquez-Corral, Javier; Connah, David; Bertalmío, Marcelo

    2014-01-01

    Color camera characterization, mapping outputs from the camera sensors to an independent color space, such as XY Z, is an important step in the camera processing pipeline. Until now, this procedure has been primarily solved by using a 3 × 3 matrix obtained via a least-squares optimization. In this paper, we propose to use the spherical sampling method, recently published by Finlayson et al., to perform a perceptual color characterization. In particular, we search for the 3 × 3 matrix that minimizes three different perceptual errors, one pixel based and two spatially based. For the pixel-based case, we minimize the CIE ΔE error, while for the spatial-based case, we minimize both the S-CIELAB error and the CID error measure. Our results demonstrate an improvement of approximately 3% for the ΔE error, 7% for the S-CIELAB error and 13% for the CID error measures. PMID:25490586

  4. The least-squares mixing models to generate fraction images derived from remote sensing multispectral data

    NASA Technical Reports Server (NTRS)

    Shimabukuro, Yosio Edemir; Smith, James A.

    1991-01-01

    Constrained-least-squares and weighted-least-squares mixing models for generating fraction images derived from remote sensing multispectral data are presented. An experiment considering three components within the pixels-eucalyptus, soil (understory), and shade-was performed. The generated fraction images for shade (shade image) derived from these two methods were compared by considering the performance and computer time. The derived shade images are related to the observed variation in forest structure, i.e., the fraction of inferred shade in the pixel is related to different eucalyptus ages.

  5. Investigating the Inverse Square Law with the Timepix Hybrid Silicon Pixel Detector: A CERN [at] School Demonstration Experiment

    ERIC Educational Resources Information Center

    Whyntie, T.; Parker, B.

    2013-01-01

    The Timepix hybrid silicon pixel detector has been used to investigate the inverse square law of radiation from a point source as a demonstration of the CERN [at] school detector kit capabilities. The experiment described uses a Timepix detector to detect the gamma rays emitted by an [superscript 241]Am radioactive source at a number of different…

  6. Image Edge Extraction via Fuzzy Reasoning

    NASA Technical Reports Server (NTRS)

    Dominquez, Jesus A. (Inventor); Klinko, Steve (Inventor)

    2008-01-01

    A computer-based technique for detecting edges in gray level digital images employs fuzzy reasoning to analyze whether each pixel in an image is likely on an edge. The image is analyzed on a pixel-by-pixel basis by analyzing gradient levels of pixels in a square window surrounding the pixel being analyzed. An edge path passing through the pixel having the greatest intensity gradient is used as input to a fuzzy membership function, which employs fuzzy singletons and inference rules to assigns a new gray level value to the pixel that is related to the pixel's edginess degree.

  7. A digital system for surface reconstruction

    USGS Publications Warehouse

    Zhou, Weiyang; Brock, Robert H.; Hopkins, Paul F.

    1996-01-01

    A digital photogrammetric system, STEREO, was developed to determine three dimensional coordinates of points of interest (POIs) defined with a grid on a textureless and smooth-surfaced specimen. Two CCD cameras were set up with unknown orientation and recorded digital images of a reference model and a specimen. Points on the model were selected as control or check points for calibrating or assessing the system. A new algorithm for edge-detection called local maximum convolution (LMC) helped extract the POIs from the stereo image pairs. The system then matched the extracted POIs and used a least squares “bundle” adjustment procedure to solve for the camera orientation parameters and the coordinates of the POIs. An experiment with STEREO found that the standard deviation of the residuals at the check points was approximately 24%, 49% and 56% of the pixel size in the X, Y and Z directions, respectively. The average of the absolute values of the residuals at the check points was approximately 19%, 36% and 49% of the pixel size in the X, Y and Z directions, respectively. With the graphical user interface, STEREO demonstrated a high degree of automation and its operation does not require special knowledge of photogrammetry, computers or image processing.

  8. Improved Discrete Approximation of Laplacian of Gaussian

    NASA Technical Reports Server (NTRS)

    Shuler, Robert L., Jr.

    2004-01-01

    An improved method of computing a discrete approximation of the Laplacian of a Gaussian convolution of an image has been devised. The primary advantage of the method is that without substantially degrading the accuracy of the end result, it reduces the amount of information that must be processed and thus reduces the amount of circuitry needed to perform the Laplacian-of- Gaussian (LOG) operation. Some background information is necessary to place the method in context. The method is intended for application to the LOG part of a process of real-time digital filtering of digitized video data that represent brightnesses in pixels in a square array. The particular filtering process of interest is one that converts pixel brightnesses to binary form, thereby reducing the amount of information that must be performed in subsequent correlation processing (e.g., correlations between images in a stereoscopic pair for determining distances or correlations between successive frames of the same image for detecting motions). The Laplacian is often included in the filtering process because it emphasizes edges and textures, while the Gaussian is often included because it smooths out noise that might not be consistent between left and right images or between successive frames of the same image.

  9. Clementine High Resolution Camera Mosaicking Project

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This report constitutes the final report for NASA Contract NASW-5054. This project processed Clementine I high resolution images of the Moon, mosaicked these images together, and created a 22-disk set of compact disk read-only memory (CD-ROM) volumes. The mosaics were produced through semi-automated registration and calibration of the high resolution (HiRes) camera's data against the geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic produced by the US Geological Survey (USGS). The HiRes mosaics were compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution nadir-looking observations. The images were spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel for sub-polar mosaics (below 80 deg. latitude) and using the stereographic projection at a scale of 30 m/pixel for polar mosaics. Only images with emission angles less than approximately 50 were used. Images from non-mapping cross-track slews, which tended to have large SPICE errors, were generally omitted. The locations of the resulting image population were found to be offset from the UV/Vis basemap by up to 13 km (0.4 deg.). Geometric control was taken from the 100 m/pixel global and 150 m/pixel polar USGS Clementine Basemap Mosaics compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Radiometric calibration was achieved by removing the image nonuniformity dominated by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap, that approximately transform the 8-bit HiRes data to photometric units. The sub-polar mosaics are divided into tiles that cover approximately 1.75 deg. of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. Polar mosaics are tiled into squares 2250 pixels on a side, which spans approximately 2.2 deg. Two mosaics are provided for each pole: one corresponding to data acquired while periapsis was in the south, the other while periapsis was in the north. The CD-ROMs also contain ancillary data files that support the HiRes mosaic. These files include browse images with UV/Vis context stored in a Joint Photographic Experts Group (JPEG) format, index files ('imgindx.tab' and 'srcindx.tab') that tabulate the contents of the CD, and documentation files.

  10. A novel method of the image processing on irregular triangular meshes

    NASA Astrophysics Data System (ADS)

    Vishnyakov, Sergey; Pekhterev, Vitaliy; Sokolova, Elizaveta

    2018-04-01

    The paper describes a novel method of the image processing based on irregular triangular meshes implementation. The triangular mesh is adaptive to the image content, least mean square linear approximation is proposed for the basic interpolation within the triangle. It is proposed to use triangular numbers to simplify using of the local (barycentric) coordinates for the further analysis - triangular element of the initial irregular mesh is to be represented through the set of the four equilateral triangles. This allows to use fast and simple pixels indexing in local coordinates, e.g. "for" or "while" loops for access to the pixels. Moreover, representation proposed allows to use discrete cosine transform of the simple "rectangular" symmetric form without additional pixels reordering (as it is used for shape-adaptive DCT forms). Furthermore, this approach leads to the simple form of the wavelet transform on triangular mesh. The results of the method application are presented. It is shown that advantage of the method proposed is a combination of the flexibility of the image-adaptive irregular meshes with the simple form of the pixel indexing in local triangular coordinates and the using of the common forms of the discrete transforms for triangular meshes. Method described is proposed for the image compression, pattern recognition, image quality improvement, image search and indexing. It also may be used as a part of video coding (intra-frame or inter-frame coding, motion detection).

  11. Computer program documentation for the patch subsampling processor

    NASA Technical Reports Server (NTRS)

    Nieves, M. J.; Obrien, S. O.; Oney, J. K. (Principal Investigator)

    1981-01-01

    The programs presented are intended to provide a way to extract a sample from a full-frame scene and summarize it in a useful way. The sample in each case was chosen to fill a 512-by-512 pixel (sample-by-line) image since this is the largest image that can be displayed on the Integrated Multivariant Data Analysis and Classification System. This sample size provides one megabyte of data for manipulation and storage and contains about 3% of the full-frame data. A patch image processor computes means for 256 32-by-32 pixel squares which constitute the 512-by-512 pixel image. Thus, 256 measurements are available for 8 vegetation indexes over a 100-mile square.

  12. SOM-based nonlinear least squares twin SVM via active contours for noisy image segmentation

    NASA Astrophysics Data System (ADS)

    Xie, Xiaomin; Wang, Tingting

    2017-02-01

    In this paper, a nonlinear least square twin support vector machine (NLSTSVM) with the integration of active contour model (ACM) is proposed for noisy image segmentation. Efforts have been made to seek the kernel-generated surfaces instead of hyper-planes for the pixels belonging to the foreground and background, respectively, using the kernel trick to enhance the performance. The concurrent self organizing maps (SOMs) are applied to approximate the intensity distributions in a supervised way, so as to establish the original training sets for the NLSTSVM. Further, the two sets are updated by adding the global region average intensities at each iteration. Moreover, a local variable regional term rather than edge stop function is adopted in the energy function to ameliorate the noise robustness. Experiment results demonstrate that our model holds the higher segmentation accuracy and more noise robustness.

  13. Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis.

    PubMed

    Kim, Hyunsoo; Park, Haesun

    2007-06-15

    Many practical pattern recognition problems require non-negativity constraints. For example, pixels in digital images and chemical concentrations in bioinformatics are non-negative. Sparse non-negative matrix factorizations (NMFs) are useful when the degree of sparseness in the non-negative basis matrix or the non-negative coefficient matrix in an NMF needs to be controlled in approximating high-dimensional data in a lower dimensional space. In this article, we introduce a novel formulation of sparse NMF and show how the new formulation leads to a convergent sparse NMF algorithm via alternating non-negativity-constrained least squares. We apply our sparse NMF algorithm to cancer-class discovery and gene expression data analysis and offer biological analysis of the results obtained. Our experimental results illustrate that the proposed sparse NMF algorithm often achieves better clustering performance with shorter computing time compared to other existing NMF algorithms. The software is available as supplementary material.

  14. Least-Squares Self-Calibration of Imaging Array Data

    NASA Technical Reports Server (NTRS)

    Arendt, R. G.; Moseley, S. H.; Fixsen, D. J.

    2004-01-01

    When arrays are used to collect multiple appropriately-dithered images of the same region of sky, the resulting data set can be calibrated using a least-squares minimization procedure that determines the optimal fit between the data and a model of that data. The model parameters include the desired sky intensities as well as instrument parameters such as pixel-to-pixel gains and offsets. The least-squares solution simultaneously provides the formal error estimates for the model parameters. With a suitable observing strategy, the need for separate calibration observations is reduced or eliminated. We show examples of this calibration technique applied to HST NICMOS observations of the Hubble Deep Fields and simulated SIRTF IRAC observations.

  15. Performance measurements of hybrid PIN diode arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jernigan, J.G.; Arens, J.F.; Kramer, G.

    We report on the successful effort to develop hybrid PIN diode arrays and to demonstrate their potential as components of vertex detectors. Hybrid pixel arrays have been fabricated by the Hughes Aircraft Co. by bump bonding readout chips developed by Hughes to an array of PIN diodes manufactured by Micron Semiconductor Inc. These hybrid pixel arrays were constructed in two configurations. One array format having 10 {times} 64 pixels, each 120 {mu}m square, and the other format having 256 {times} 256 pixels, each 30 {mu}m square. In both cases, the thickness of the PIN diode layer is 300 {mu}m. Measurementsmore » of detector performance show that excellent position resolution can be achieved by interpolation. By determining the centroid of the charge cloud which spreads charge into a number of neighboring pixels, a spatial resolution of a few microns has been attained. The noise has been measured to be about 300 electrons (rms) at room temperature, as expected from KTC and dark current considerations, yielding a signal-to-noise ratio of about 100 for minimum ionizing particles. 4 refs., 13 figs.« less

  16. MRO's High Resolution Imaging Science Experiment (HiRISE): Polar Science Expectations

    NASA Technical Reports Server (NTRS)

    McEwen, A.; Herkenhoff, K.; Hansen, C.; Bridges, N.; Delamere, W. A.; Eliason, E.; Grant, J.; Gulick, V.; Keszthelyi, L.; Kirk, R.

    2003-01-01

    The Mars Reconnaissance Orbiter (MRO) is expected to launch in August 2005, arrive at Mars in March 2006, and begin the primary science phase in November 2006. MRO will carry a suite of remote-sensing instruments and is designed to routinely point off-nadir to precisely target locations on Mars for high-resolution observations. The mission will have a much higher data return than any previous planetary mission, with 34 Tbits of returned data expected in the first Mars year in the mapping orbit (255 x 320 km). The HiRISE camera features a 0.5 m telescope, 12 m focal length, and 14 CCDs. We expect to acquire approximately 10,000 observations in the primary science phase (approximately 1 Mars year), including approximately 2,000 images for 1,000 stereo targets. Each observation will be accompanied by a approximately 6 m/pixel image over a 30 x 45 km region acquired by MRO s context imager. Many HiRISE images will be full resolution in the center portion of the swath width and binned (typically 4x4) on the sides. This provides two levels of context, so we step out from 0.3 m/pixel to 1.2 m/pixel to 6 m/pixel (at 300 km altitude). We expect to cover approximately 1% of Mars at better than 1.2 m/pixel, approximately 0.1% at 0.3 m/pixel, approximately 0.1% in 3 colors, and approximately 0.05% in stereo. Our major challenge is to find the dey contacts, exposures and type morphologies to observe.

  17. Clementine High Resolution Camera Mosaicking Project. Volume 21; CL 6021; 80 deg S to 90 deg S Latitude, North Periapsis; 1

    NASA Technical Reports Server (NTRS)

    Malin, Michael; Revine, Michael; Boyce, Joseph M. (Technical Monitor)

    1998-01-01

    This compact disk (CD) is part of the Clementine I high resolution (HiRes) camera lunar image mosaics developed by Malin Space Science Systems (MSSS). These mosaics were developed through calibration and semi-automated registration against the recently released geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic, which is available through the PDS, as CD-ROM volumes CL_3001-3015. The HiRes mosaics are compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution observations from the HiRes imaging system onboard the Clementine Spacecraft. The geometric control is provided by the U. S. Geological Survey (USGS) Clementine Basemap Mosaic compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Calibration was achieved by removing the image nonuniformity largely caused by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap that approximately transform the 8-bit HiRes data to photometric units. The mosaics on this CD are compiled from polar data (latitudes greater than 80 degrees), and are presented in the stereographic projection at a scale of 30 m/pixel at the pole, a resolution 5 times greater than that (150 m/pixel) of the corresponding UV/Vis polar basemap. This 5:1 scale ratio is in keeping with the sub-polar mosaic, in which the HiRes and UV/Vis mosaics had scales of 20 m/pixel and 100 m/pixel, respectively. The equal-area property of the stereographic projection made this preferable for the HiRes polar mosaic rather than the basemap's orthographic projection. Thus, a necessary first step in constructing the mosaic was the reprojection of the UV/Vis basemap to the stereographic projection. The HiRes polar data can be naturally grouped according to the orbital periapsis, which was in the south during the first half of the mapping mission and in the north during the second half. Images in each group have generally uniform intrinsic resolution, illumination, exposure and gain. Rather than mingle data from the two periapsis epochs, separate mosaics are provided for each, a total of 4 polar mosaics. The mosaics are divided into 100 square tiles of 2250 pixels (approximately 2.2 deg near the pole) on a side. Not all squares of this grid contain HiRes mosaic data, some inevitably since a square is not a perfect representation of a (latitude) circle, others due to the lack of HiRes data. This CD also contains ancillary data files that support the HiRes mosaic. These files include browse images with UV/Vis context stored in a Joint Photographic Experts Group (JPEG) format, index files ('imgindx.tab' and 'srcindx.tab') that tabulate the contents of the CD, and documentation files. For more information on the contents and organization of the CD volume set refer to the "FILES, DIRECTORIES AND DISK CONTENTS" section of this document. The image files are organized according to NASA's Planetary Data System (PDS) standards. An image file (tile) is organized as a PDS labeled file containing an "image object".

  18. Extent of Texas Flooding Shown in New NASA Map

    NASA Image and Video Library

    2017-08-30

    The Advanced Rapid Imaging and Analysis (ARIA) team at NASA's Jet Propulsion Laboratory in Pasadena, California, created this Flood Proxy Map depicting areas of Southeastern Texas that are likely flooded as a result of Hurricane Harvey, shown by light blue pixels. The map is derived from synthetic aperture radar amplitude images from the Japan Aerospace Exploration Agency's (JAXA) ALOS-2 PALSAR-2 satellite, taken before (July 30, 2017) and after (August 27, 2017) Hurricane Harvey made landfall. The map covers an area of 135 square miles (350 square kilometers). Each pixel measures about 538 square feet (50 square meters). Local ground observations provided anecdotal preliminary validation. This flood proxy map should be used as guidance to identify areas that are likely flooded, and may be less reliable over urban areas. ALOS-2 data were accessed through the International Charter. https://photojournal.jpl.nasa.gov/catalog/PIA21928

  19. Developing a CCD camera with high spatial resolution for RIXS in the soft X-ray range

    NASA Astrophysics Data System (ADS)

    Soman, M. R.; Hall, D. J.; Tutt, J. H.; Murray, N. J.; Holland, A. D.; Schmitt, T.; Raabe, J.; Schmitt, B.

    2013-12-01

    The Super Advanced X-ray Emission Spectrometer (SAXES) at the Swiss Light Source contains a high resolution Charge-Coupled Device (CCD) camera used for Resonant Inelastic X-ray Scattering (RIXS). Using the current CCD-based camera system, the energy-dispersive spectrometer has an energy resolution (E/ΔE) of approximately 12,000 at 930 eV. A recent study predicted that through an upgrade to the grating and camera system, the energy resolution could be improved by a factor of 2. In order to achieve this goal in the spectral domain, the spatial resolution of the CCD must be improved to better than 5 μm from the current 24 μm spatial resolution (FWHM). The 400 eV-1600 eV energy X-rays detected by this spectrometer primarily interact within the field free region of the CCD, producing electron clouds which will diffuse isotropically until they reach the depleted region and buried channel. This diffusion of the charge leads to events which are split across several pixels. Through the analysis of the charge distribution across the pixels, various centroiding techniques can be used to pinpoint the spatial location of the X-ray interaction to the sub-pixel level, greatly improving the spatial resolution achieved. Using the PolLux soft X-ray microspectroscopy endstation at the Swiss Light Source, a beam of X-rays of energies from 200 eV to 1400 eV can be focused down to a spot size of approximately 20 nm. Scanning this spot across the 16 μm square pixels allows the sub-pixel response to be investigated. Previous work has demonstrated the potential improvement in spatial resolution achievable by centroiding events in a standard CCD. An Electron-Multiplying CCD (EM-CCD) has been used to improve the signal to effective readout noise ratio achieved resulting in a worst-case spatial resolution measurement of 4.5±0.2 μm and 3.9±0.1 μm at 530 eV and 680 eV respectively. A method is described that allows the contribution of the X-ray spot size to be deconvolved from these worst-case resolution measurements, estimating the spatial resolution to be approximately 3.5 μm and 3.0 μm at 530 eV and 680 eV, well below the resolution limit of 5 μm required to improve the spectral resolution by a factor of 2.

  20. Initial On-Orbit Spatial Resolution Characterization of OrbView-3 Panchromatic Images

    NASA Technical Reports Server (NTRS)

    Blonski, Slawomir

    2006-01-01

    Characterization was conducted under the Memorandum of Understanding among Orbital Sciences Corp., ORBIMAGE, Inc., and NASA Applied Sciences Directorate. Acquired five OrbView-3 panchromatic images of the permanent Stennis Space Center edge targets painted on a concrete surface. Each image is available at two processing levels: Georaw and Basic. Georaw is an intermediate image in which individual pixels are aligned by a nominal shift in the along-scan direction to adjust for the staggered layout of the panchromatic detectors along the focal plane array. Georaw images are engineering data and are not delivered to customers. The Basic product includes a cubic interpolation to align the pixels better along the focal plane and to correct for sensor artifacts, such as smile and attitude smoothing. This product retains satellite geometry - no rectification is performed. Processing of the characterized images did not include image sharpening, which is applied by default to OrbView-3 image products delivered by ORBIMAGE to customers. Edge responses were extracted from images of tilted edges in two directions: along-scan and cross-scan. Each edge response was approximated with a superposition of three sigmoidal functions through a nonlinear least-squares curve-fitting. Line Spread Functions (LSF) were derived by differentiation of the analytical approximation. Modulation Transfer Functions (MTF) were obtained after applying the discrete Fourier transform to the LSF.

  1. Assessment of Thematic Mapper band-to-band registration by the block correlation method

    NASA Technical Reports Server (NTRS)

    Card, D. H.; Wrigley, R. C.; Mertz, F. C.; Hall, J. R.

    1983-01-01

    Rectangular blocks of pixels from one band image were statistically correlated against blocks centered on identical pixels from a second band image. The block pairs were shifted in pixel increments both vertically and horizontally with respect to each other and the correlation coefficient to the maximum correlation was taken as the best estimate of registration error for each block pair. For the band combinations of the Arkansas scene studied, the misregistration of TM spectral bands within the noncooled focal plane lie well within the 0.2 pixel target specification. Misregistration between the middle IR bands is well within this specification also. The thermal IR band has an apparent misregistration with TM band 7 of approximately 3 pixels in each direction. The TM band 3 has a misregistration of approximately 0.2 pixel in the across-scan direction and 0.5 pixel in the along-scan direction, with both TM bands 5 and 7.

  2. Assessment of Thematic Mapper Band-to-band Registration by the Block Correlation Method

    NASA Technical Reports Server (NTRS)

    Card, D. H.; Wrigley, R. C.; Mertz, F. C.; Hall, J. R.

    1985-01-01

    Rectangular blocks of pixels from one band image were statistically correlated against blocks centered on identical pixels from a second band image. The block pairs were shifted in pixel increments both vertically and horizontally with respect to each other and the correlation coefficient to the maximum correlation was taken as the best estimate of registration error for each block pair. For the band combinations of the Arkansas scene studied, the misregistration of TM spectral bands within the noncooled focal plane lie well within the 0.2 pixel target specification. Misregistration between the middle IR bands is well within this specification also. The thermal IR band has an apparent misregistration with TM band 7 of approximately 3 pixels in each direction. The TM band 3 has a misregistration of approximately 0.2 pixel in the across-scan direction and 0.5 pixel in the along-scan direction, with both TM bands 5 and 7.

  3. A least squares approach to estimating the probability distribution of unobserved data in multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Salama, Paul

    2008-02-01

    Multi-photon microscopy has provided biologists with unprecedented opportunities for high resolution imaging deep into tissues. Unfortunately deep tissue multi-photon microscopy images are in general noisy since they are acquired at low photon counts. To aid in the analysis and segmentation of such images it is sometimes necessary to initially enhance the acquired images. One way to enhance an image is to find the maximum a posteriori (MAP) estimate of each pixel comprising an image, which is achieved by finding a constrained least squares estimate of the unknown distribution. In arriving at the distribution it is assumed that the noise is Poisson distributed, the true but unknown pixel values assume a probability mass function over a finite set of non-negative values, and since the observed data also assumes finite values because of low photon counts, the sum of the probabilities of the observed pixel values (obtained from the histogram of the acquired pixel values) is less than one. Experimental results demonstrate that it is possible to closely estimate the unknown probability mass function with these assumptions.

  4. Estimation of proportions in mixed pixels through their region characterization

    NASA Technical Reports Server (NTRS)

    Chittineni, C. B. (Principal Investigator)

    1981-01-01

    A region of mixed pixels can be characterized through the probability density function of proportions of classes in the pixels. Using information from the spectral vectors of a given set of pixels from the mixed pixel region, expressions are developed for obtaining the maximum likelihood estimates of the parameters of probability density functions of proportions. The proportions of classes in the mixed pixels can then be estimated. If the mixed pixels contain objects of two classes, the computation can be reduced by transforming the spectral vectors using a transformation matrix that simultaneously diagonalizes the covariance matrices of the two classes. If the proportions of the classes of a set of mixed pixels from the region are given, then expressions are developed for obtaining the estmates of the parameters of the probability density function of the proportions of mixed pixels. Development of these expressions is based on the criterion of the minimum sum of squares of errors. Experimental results from the processing of remotely sensed agricultural multispectral imagery data are presented.

  5. Data Reduction Pipeline for the CHARIS Integral-Field Spectrograph I: Detector Readout Calibration and Data Cube Extraction

    NASA Technical Reports Server (NTRS)

    Groff, Tyler; Rizzo, Maxime; Greco, Johnny P.; Loomis, Craig; Mede, Kyle; Kasdin, N. Jeremy; Knapp, Gillian; Tamura, Motohide; Hayashi, Masahiko; Galvin, Michael; hide

    2017-01-01

    We present the data reduction pipeline for CHARIS, a high-contrast integral-field spectrograph for the Subaru Telescope. The pipeline constructs a ramp from the raw reads using the measured nonlinear pixel response and reconstructs the data cube using one of three extraction algorithms: aperture photometry, optimal extraction, or chi-squared fitting. We measure and apply both a detector flatfield and a lenslet flatfield and reconstruct the wavelength- and position-dependent lenslet point-spread function (PSF) from images taken with a tunable laser. We use these measured PSFs to implement a chi-squared-based extraction of the data cube, with typical residuals of approximately 5 percent due to imperfect models of the under-sampled lenslet PSFs. The full two-dimensional residual of the chi-squared extraction allows us to model and remove correlated read noise, dramatically improving CHARIS's performance. The chi-squared extraction produces a data cube that has been deconvolved with the line-spread function and never performs any interpolations of either the data or the individual lenslet spectra. The extracted data cube also includes uncertainties for each spatial and spectral measurement. CHARIS's software is parallelized, written in Python and Cython, and freely available on github with a separate documentation page. Astrometric and spectrophotometric calibrations of the data cubes and PSF subtraction will be treated in a forthcoming paper.

  6. Research on ionospheric tomography based on variable pixel height

    NASA Astrophysics Data System (ADS)

    Zheng, Dunyong; Li, Peiqing; He, Jie; Hu, Wusheng; Li, Chaokui

    2016-05-01

    A novel ionospheric tomography technique based on variable pixel height was developed for the tomographic reconstruction of the ionospheric electron density distribution. The method considers the height of each pixel as an unknown variable, which is retrieved during the inversion process together with the electron density values. In contrast to conventional computerized ionospheric tomography (CIT), which parameterizes the model with a fixed pixel height, the variable-pixel-height computerized ionospheric tomography (VHCIT) model applies a disturbance to the height of each pixel. In comparison with conventional CIT models, the VHCIT technique achieved superior results in a numerical simulation. A careful validation of the reliability and superiority of VHCIT was performed. According to the results of the statistical analysis of the average root mean square errors, the proposed model offers an improvement by 15% compared with conventional CIT models.

  7. Evaluation of fiber Bragg grating sensor interrogation using InGaAs linear detector arrays and Gaussian approximation on embedded hardware.

    PubMed

    Kumar, Saurabh; Amrutur, Bharadwaj; Asokan, Sundarrajan

    2018-02-01

    Fiber Bragg Grating (FBG) sensors have become popular for applications related to structural health monitoring, biomedical engineering, and robotics. However, for successful large scale adoption, FBG interrogation systems are as important as sensor characteristics. Apart from accuracy, the required number of FBG sensors per fiber and the distance between the device in which the sensors are used and the interrogation system also influence the selection of the interrogation technique. For several measurement devices developed for applications in biomedical engineering and robotics, only a few sensors per fiber are required and the device is close to the interrogation system. For these applications, interrogation systems based on InGaAs linear detector arrays provide a good choice. However, their resolution is dependent on the algorithms used for curve fitting. In this work, a detailed analysis of the choice of algorithm using the Gaussian approximation for the FBG spectrum and the number of pixels used for curve fitting on the errors is provided. The points where the maximum errors occur have been identified. All comparisons for wavelength shift detection have been made against another interrogation system based on the tunable swept laser. It has been shown that maximum errors occur when the wavelength shift is such that one new pixel is included for curve fitting. It has also been shown that an algorithm with lower computation cost compared to the more popular methods using iterative non-linear least squares estimation can be used without leading to the loss of accuracy. The algorithm has been implemented on embedded hardware, and a speed-up of approximately six times has been observed.

  8. Evaluation of fiber Bragg grating sensor interrogation using InGaAs linear detector arrays and Gaussian approximation on embedded hardware

    NASA Astrophysics Data System (ADS)

    Kumar, Saurabh; Amrutur, Bharadwaj; Asokan, Sundarrajan

    2018-02-01

    Fiber Bragg Grating (FBG) sensors have become popular for applications related to structural health monitoring, biomedical engineering, and robotics. However, for successful large scale adoption, FBG interrogation systems are as important as sensor characteristics. Apart from accuracy, the required number of FBG sensors per fiber and the distance between the device in which the sensors are used and the interrogation system also influence the selection of the interrogation technique. For several measurement devices developed for applications in biomedical engineering and robotics, only a few sensors per fiber are required and the device is close to the interrogation system. For these applications, interrogation systems based on InGaAs linear detector arrays provide a good choice. However, their resolution is dependent on the algorithms used for curve fitting. In this work, a detailed analysis of the choice of algorithm using the Gaussian approximation for the FBG spectrum and the number of pixels used for curve fitting on the errors is provided. The points where the maximum errors occur have been identified. All comparisons for wavelength shift detection have been made against another interrogation system based on the tunable swept laser. It has been shown that maximum errors occur when the wavelength shift is such that one new pixel is included for curve fitting. It has also been shown that an algorithm with lower computation cost compared to the more popular methods using iterative non-linear least squares estimation can be used without leading to the loss of accuracy. The algorithm has been implemented on embedded hardware, and a speed-up of approximately six times has been observed.

  9. The charge pump PLL clock generator designed for the 1.56 ns bin size time-to-digital converter pixel array of the Timepix3 readout ASIC

    NASA Astrophysics Data System (ADS)

    Fu, Y.; Brezina, C.; Desch, K.; Poikela, T.; Llopart, X.; Campbell, M.; Massimiliano, D.; Gromov, V.; Kluit, R.; van Beauzekom, M.; Zappon, F.; Zivkovic, V.

    2014-01-01

    Timepix3 is a newly developed pixel readout chip which is expected to be operated in a wide range of gaseous and silicon detectors. It is made of 256 × 256 pixels organized in a square pixel-array with 55 μm pitch. Oscillators running at 640 MHz are distributed across the pixel-array and allow for a highly accurate measurement of the arrival time of a hit. This paper concentrates on a low-jitter phase locked loop (PLL) that is located in the chip periphery. This PLL provides a control voltage which regulates the actual frequency of the individual oscillators, allowing for compensation of process, voltage, and temperature variations.

  10. [Restoration filtering based on projection power spectrum for single-photon emission computed tomography].

    PubMed

    Kubo, N

    1995-04-01

    To improve the quality of single-photon emission computed tomographic (SPECT) images, a restoration filter has been developed. This filter was designed according to practical "least squares filter" theory. It is necessary to know the object power spectrum and the noise power spectrum. The power spectrum is estimated from the power spectrum of a projection, when the high-frequency power spectrum of a projection is adequately approximated as a polynomial exponential expression. A study of the restoration with the filter based on a projection power spectrum was conducted, and compared with that of the "Butterworth" filtering method (cut-off frequency of 0.15 cycles/pixel), and "Wiener" filtering (signal-to-noise power spectrum ratio was a constant). Normalized mean-squared errors (NMSE) of the phantom, two line sources located in a 99mTc filled cylinder, were used. NMSE of the "Butterworth" filter, "Wiener" filter, and filtering based on a power spectrum were 0.77, 0.83, and 0.76 respectively. Clinically, brain SPECT images utilizing this new restoration filter improved the contrast. Thus, this filter may be useful in diagnosis of SPECT images.

  11. A CMOS image sensor with programmable pixel-level analog processing.

    PubMed

    Massari, Nicola; Gottardi, Massimo; Gonzo, Lorenzo; Stoppa, David; Simoni, Andrea

    2005-11-01

    A prototype of a 34 x 34 pixel image sensor, implementing real-time analog image processing, is presented. Edge detection, motion detection, image amplification, and dynamic-range boosting are executed at pixel level by means of a highly interconnected pixel architecture based on the absolute value of the difference among neighbor pixels. The analog operations are performed over a kernel of 3 x 3 pixels. The square pixel, consisting of 30 transistors, has a pitch of 35 microm with a fill-factor of 20%. The chip was fabricated in a 0.35 microm CMOS technology, and its power consumption is 6 mW with 3.3 V power supply. The device was fully characterized and achieves a dynamic range of 50 dB with a light power density of 150 nW/mm2 and a frame rate of 30 frame/s. The measured fixed pattern noise corresponds to 1.1% of the saturation level. The sensor's dynamic range can be extended up to 96 dB using the double-sampling technique.

  12. Characterisation of Vanilla—A novel active pixel sensor for radiation detection

    NASA Astrophysics Data System (ADS)

    Blue, A.; Bates, R.; Laing, A.; Maneuski, D.; O'Shea, V.; Clark, A.; Prydderch, M.; Turchetta, R.; Arvanitis, C.; Bohndiek, S.

    2007-10-01

    Novel features of a new monolithic active pixel sensor, Vanilla, with 520×520 pixels ( 25 μm square) has been characterised for the first time. Optimisation of the sensor operation was made through variation of frame rates, integration times and on-chip biases and voltages. Features such as flushed reset operation, ROI capturing and readout modes have been fully tested. Stability measurements were performed to test its suitablility for long-term applications. These results suggest the Vanilla sensor—along with bio-medical and space applications—is suitable for use in particle physics experiments.

  13. Mixed Linear/Square-Root Encoded Single Slope Ramp Provides a Fast, Low Noise Analog to Digital Converter with Very High Linearity for Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Wrigley, Christopher James (Inventor); Hancock, Bruce R. (Inventor); Cunningham, Thomas J. (Inventor); Newton, Kenneth W. (Inventor)

    2014-01-01

    An analog-to-digital converter (ADC) converts pixel voltages from a CMOS image into a digital output. A voltage ramp generator generates a voltage ramp that has a linear first portion and a non-linear second portion. A digital output generator generates a digital output based on the voltage ramp, the pixel voltages, and comparator output from an array of comparators that compare the voltage ramp to the pixel voltages. A return lookup table linearizes the digital output values.

  14. Land Surface Reflectance Retrieval from Hyperspectral Data Collected by an Unmanned Aerial Vehicle over the Baotou Test Site

    PubMed Central

    Duan, Si-Bo; Li, Zhao-Liang; Tang, Bo-Hui; Wu, Hua; Ma, Lingling; Zhao, Enyu; Li, Chuanrong

    2013-01-01

    To evaluate the in-flight performance of a new hyperspectral sensor onboard an unmanned aerial vehicle (UAV-HYPER), a comprehensive field campaign was conducted over the Baotou test site in China on 3 September 2011. Several portable reference reflectance targets were deployed across the test site. The radiometric performance of the UAV-HYPER sensor was assessed in terms of signal-to-noise ratio (SNR) and the calibration accuracy. The SNR of the different bands of the UAV-HYPER sensor was estimated to be between approximately 5 and 120 over the homogeneous targets, and the linear response of the apparent reflectance ranged from approximately 0.05 to 0.45. The uniform and non-uniform Lambertian land surface reflectance was retrieved and validated using in situ measurements, with root mean square error (RMSE) of approximately 0.01–0.07 and relative RMSE of approximately 5%–12%. There were small discrepancies between the retrieved uniform and non-uniform Lambertian land surface reflectance over the homogeneous targets and under low aerosol optical depth (AOD) conditions (AOD = 0.18). However, these discrepancies must be taken into account when adjacent pixels had large land surface reflectance contrast and under high AOD conditions (e.g. AOD = 1.0). PMID:23785513

  15. A 128 x 128 InGaAs detector array for 1.0 - 1.7 microns

    NASA Technical Reports Server (NTRS)

    Olsen, G.; Joshi, A.; Lange, M.; Woodruff, K.; Mykietyn, E.; Gay, D.; Ackley, D.; Erickson, G.; Ban, V.; Staller, C.

    1990-01-01

    A two-dimensional 128 x 128 detector array for the 1.0 - 1.7 micron spectral region has been demonstrated with indium gallium arsenide. The 30 micron square pixels had 60 micron spacing in both directions and were designed to be compatible with a 2D Reticon multiplexer. Dark currents below 100 pA, capacitance near 0.1 pF, and quantum efficiencies above 80 percent were measured. Probe maps of dark current and quantum efficiency are presented along with pixel dropout data and wafer yield which was as high as 99.89 percent (7 dropouts) in an area of 6528 pixels and 99.37 percent (103 dropouts) over an entire 128 x 128 pixel region.

  16. Transition-Edge Sensor Pixel Parameter Design of the Microcalorimeter Array for the X-Ray Integral Field Unit on Athena

    NASA Technical Reports Server (NTRS)

    Smith, S. J.; Adams, J. S.; Bandler, S. R.; Betancourt-Martinez, G. L.; Chervenak, J. A.; Chiao, M. P.; Eckart, M. E.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; hide

    2016-01-01

    The focal plane of the X-ray integral field unit (X-IFU) for ESA's Athena X-ray observatory will consist of approximately 4000 transition edge sensor (TES) x-ray microcalorimeters optimized for the energy range of 0.2 to 12 kiloelectronvolts. The instrument will provide unprecedented spectral resolution of approximately 2.5 electronvolts at energies of up to 7 kiloelectronvolts and will accommodate photon fluxes of 1 milliCrab (90 counts per second) for point source observations. The baseline configuration is a uniform large pixel array (LPA) of 4.28 arcseconds pixels that is read out using frequency domain multiplexing (FDM). However, an alternative configuration under study incorporates an 18 by × 18 small pixel array (SPA) of 2 arcseconds pixels in the central approximately 36 arcseconds region. This hybrid array configuration could be designed to accommodate higher fluxes of up to 10 milliCrabs (900 counts per second) or alternately for improved spectral performance (less than 1.5 electronvolts) at low count-rates. In this paper we report on the TES pixel designs that are being optimized to meet these proposed LPA and SPA configurations. In particular we describe details of how important TES parameters are chosen to meet the specific mission criteria such as energy resolution, count-rate and quantum efficiency, and highlight performance trade-offs between designs. The basis of the pixel parameter selection is discussed in the context of existing TES arrays that are being developed for solar and x-ray astronomy applications. We describe the latest results on DC biased diagnostic arrays as well as large format kilo-pixel arrays and discuss the technical challenges associated with integrating different array types on to a single detector die.

  17. Mars Science Laboratory Engineering Cameras

    NASA Technical Reports Server (NTRS)

    Maki, Justin N.; Thiessen, David L.; Pourangi, Ali M.; Kobzeff, Peter A.; Lee, Steven W.; Dingizian, Arsham; Schwochert, Mark A.

    2012-01-01

    NASA's Mars Science Laboratory (MSL) Rover, which launched to Mars in 2011, is equipped with a set of 12 engineering cameras. These cameras are build-to-print copies of the Mars Exploration Rover (MER) cameras, which were sent to Mars in 2003. The engineering cameras weigh less than 300 grams each and use less than 3 W of power. Images returned from the engineering cameras are used to navigate the rover on the Martian surface, deploy the rover robotic arm, and ingest samples into the rover sample processing system. The navigation cameras (Navcams) are mounted to a pan/tilt mast and have a 45-degree square field of view (FOV) with a pixel scale of 0.82 mrad/pixel. The hazard avoidance cameras (Haz - cams) are body-mounted to the rover chassis in the front and rear of the vehicle and have a 124-degree square FOV with a pixel scale of 2.1 mrad/pixel. All of the cameras utilize a frame-transfer CCD (charge-coupled device) with a 1024x1024 imaging region and red/near IR bandpass filters centered at 650 nm. The MSL engineering cameras are grouped into two sets of six: one set of cameras is connected to rover computer A and the other set is connected to rover computer B. The MSL rover carries 8 Hazcams and 4 Navcams.

  18. Novel Hyperspectral Anomaly Detection Methods Based on Unsupervised Nearest Regularized Subspace

    NASA Astrophysics Data System (ADS)

    Hou, Z.; Chen, Y.; Tan, K.; Du, P.

    2018-04-01

    Anomaly detection has been of great interest in hyperspectral imagery analysis. Most conventional anomaly detectors merely take advantage of spectral and spatial information within neighboring pixels. In this paper, two methods of Unsupervised Nearest Regularized Subspace-based with Outlier Removal Anomaly Detector (UNRSORAD) and Local Summation UNRSORAD (LSUNRSORAD) are proposed, which are based on the concept that each pixel in background can be approximately represented by its spatial neighborhoods, while anomalies cannot. Using a dual window, an approximation of each testing pixel is a representation of surrounding data via a linear combination. The existence of outliers in the dual window will affect detection accuracy. Proposed detectors remove outlier pixels that are significantly different from majority of pixels. In order to make full use of various local spatial distributions information with the neighboring pixels of the pixels under test, we take the local summation dual-window sliding strategy. The residual image is constituted by subtracting the predicted background from the original hyperspectral imagery, and anomalies can be detected in the residual image. Experimental results show that the proposed methods have greatly improved the detection accuracy compared with other traditional detection method.

  19. Mesoscale Waves in Jupiter's Atmosphere

    NASA Technical Reports Server (NTRS)

    1997-01-01

    These two images of Jupiter's atmosphere were taken with the violet filter of the Solid State Imaging (CCD) system aboard NASA's Galileo spacecraft. The images were obtained on June 26, 1996; the lower image was taken approximately one rotation (9 hours) later than the upper image.

    Mesoscale waves can be seen in the center of the upper image. They appear as a series of about 15 nearly vertical stripes; the wave crests are aligned north-south. The wave packet is about 300 kilometers in length and is aligned east-west. In the lower image there is no indication of the waves, though the clouds appear to have been disturbed. Such waves were seen also in images obtained by NASA's Voyager spacecraft in 1979, though lower spatial and time resolution made tracking of features such as these nearly impossible.

    Mesoscale waves occur when the wind shear is strong in an atmospheric layer that is sandwiched vertically between zones of stable stratification. The orientation of the wave crests is perpendicular to the shear. Thus, a wave observation gives information about how the wind direction changes with height in the atmosphere.

    North is at the top of these images which are centered at approximately 15 South latitude and 307 West longitude. In the upper image, each picture element (pixel) subtends a square of about 36 kilometers on a side, and the spacecraft was at a range of more than 1.7 million kilometers from Jupiter. In the lower image, each pixel subtends a square of about 30 kilometers on a side, and the spacecraft was at a range of more than 1.4 million kilometers from Jupiter.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  20. Experimental verification of multilevel spatial pattern generation from binary data page with four-step phase pattern (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Barada, Daisuke; Yatagai, Toyohiko

    2016-09-01

    Holographic memory is expected for cold storage because of the features of huge data capacity, high data transfer rate, and long life time. In holographic memory, a signal beam is modulated by a spatial light modulator according to data pages. The recording density is dependent on information amount per pixel in a data page. However, a binary spatial light modulator is used to realize high data transfer rate in general. In our previous study, an optical conversion method from binary data to multilevel data has been proposed. In this paper, the principle of the method is experimentally verified. In the proposed method, a data page consists of symbols with 2x2 pixels and a four-step phase mask is used. Then, the complex amplitudes of four pixels in a symbol become positive real, positive imaginary, negative real, and negative imaginary values, respectively. A square pixel pattern is spread by spatial frequency filtering with a square aperture in a Fourier plane. When the aperture size is too small, the complex amplitude of four pixels in a symbol is superposed and a symbol is regarded as a pixel with a complex number. In this work, a data page pattern with a four-step phase pattern was generated by using a computer-generated circular polarization hologram (CGCPH). The CGCPH was prepared by electron beam lithography. The page data pattern is Fourier transformed by a lens and spatially filtered by a variable rectangular aperture. The complex amplitude of the spatial filtered data page pattern was measured by digital holography and the principle was experimentally verified.

  1. Velocity map imaging using an in-vacuum pixel detector.

    PubMed

    Gademann, Georg; Huismans, Ymkje; Gijsbertsen, Arjan; Jungmann, Julia; Visschers, Jan; Vrakking, Marc J J

    2009-10-01

    The use of a new type in-vacuum pixel detector in velocity map imaging (VMI) is introduced. The Medipix2 and Timepix semiconductor pixel detectors (256 x 256 square pixels, 55 x 55 microm2) are well suited for charged particle detection. They offer high resolution, low noise, and high quantum efficiency. The Medipix2 chip allows double energy discrimination by offering a low and a high energy threshold. The Timepix detector allows to record the incidence time of a particle with a temporal resolution of 10 ns and a dynamic range of 160 micros. Results of the first time application of the Medipix2 detector to VMI are presented, investigating the quantum efficiency as well as the possibility to operate at increased background pressure in the vacuum chamber.

  2. Photogrammetric Method and Software for Stream Planform Identification

    NASA Astrophysics Data System (ADS)

    Stonedahl, S. H.; Stonedahl, F.; Lohberg, M. M.; Lusk, K.; Miller, D.

    2013-12-01

    Accurately characterizing the planform of a stream is important for many purposes, including recording measurement and sampling locations, monitoring change due to erosion or volumetric discharge, and spatial modeling of stream processes. While expensive surveying equipment or high resolution aerial photography can be used to obtain planform data, our research focused on developing a close-range photogrammetric method (and accompanying free/open-source software) to serve as a cost-effective alternative. This method involves securing and floating a wooden square frame on the stream surface at several locations, taking photographs from numerous angles at each location, and then post-processing and merging data from these photos using the corners of the square for reference points, unit scale, and perspective correction. For our test field site we chose a ~35m reach along Black Hawk Creek in Sunderbruch Park (Davenport, IA), a small, slow-moving stream with overhanging trees. To quantify error we measured 88 distances between 30 marked control points along the reach. We calculated error by comparing these 'ground truth' distances to the corresponding distances extracted from our photogrammetric method. We placed the square at three locations along our reach and photographed it from multiple angles. The square corners, visible control points, and visible stream outline were hand-marked in these photos using the GIMP (open-source image editor). We wrote an open-source GUI in Java (hosted on GitHub), which allows the user to load marked-up photos, designate square corners and label control points. The GUI also extracts the marked pixel coordinates from the images. We also wrote several scripts (currently in MATLAB) that correct the pixel coordinates for radial distortion using Brown's lens distortion model, correct for perspective by forcing the four square corner pixels to form a parallelogram in 3-space, and rotate the points in order to correctly orient all photos of the same square location. Planform data from multiple photos (and multiple square locations) are combined using weighting functions that mitigate the error stemming from the markup-process, imperfect camera calibration, etc. We have used our (beta) software to mark and process over 100 photos, yielding an average error of only 1.5% relative to our 88 measured lengths. Next we plan to translate the MATLAB scripts into Python and release their source code, at which point only free software, consumer-grade digital cameras, and inexpensive building materials will be needed for others to replicate this method at new field sites. Three sample photographs of the square with the created planform and control points

  3. A New Lunar Digital Elevation Model from the Lunar Orbiter Laser Altimeter and SELENE Terrain Camera

    NASA Technical Reports Server (NTRS)

    Barker, M. K.; Mazarico, E.; Neumann, G. A.; Zuber, M. T.; Haruyama, J.; Smith, D. E.

    2015-01-01

    We present an improved lunar digital elevation model (DEM) covering latitudes within +/-60 deg, at a horizontal resolution of 512 pixels per degree ( approx.60 m at the equator) and a typical vertical accuracy approx.3 to 4 m. This DEM is constructed from approx.4.5 ×10(exp 9) geodetically-accurate topographic heights from the Lunar Orbiter Laser Altimeter (LOLA) onboard the Lunar Reconnaissance Orbiter, to which we co-registered 43,200 stereo-derived DEMs (each 1 deg×1 deg) from the SELENE Terrain Camera (TC) ( approx.10(exp 10) pixels total). After co-registration, approximately 90% of the TC DEMs show root-mean-square vertical residuals with the LOLA data of < 5 m compared to approx.50% prior to co-registration. We use the co-registered TC data to estimate and correct orbital and pointing geolocation errors from the LOLA altimetric profiles (typically amounting to < 10 m horizontally and < 1 m vertically). By combining both co-registered datasets, we obtain a near-global DEM with high geodetic accuracy, and without the need for surface interpolation. We evaluate the resulting LOLA + TC merged DEM (designated as "SLDEM2015") with particular attention to quantifying seams and crossover errors.

  4. A Fast Multiple Sampling Method for Low-Noise CMOS Image Sensors With Column-Parallel 12-bit SAR ADCs.

    PubMed

    Kim, Min-Kyu; Hong, Seong-Kwan; Kwon, Oh-Kyong

    2015-12-26

    This paper presents a fast multiple sampling method for low-noise CMOS image sensor (CIS) applications with column-parallel successive approximation register analog-to-digital converters (SAR ADCs). The 12-bit SAR ADC using the proposed multiple sampling method decreases the A/D conversion time by repeatedly converting a pixel output to 4-bit after the first 12-bit A/D conversion, reducing noise of the CIS by one over the square root of the number of samplings. The area of the 12-bit SAR ADC is reduced by using a 10-bit capacitor digital-to-analog converter (DAC) with four scaled reference voltages. In addition, a simple up/down counter-based digital processing logic is proposed to perform complex calculations for multiple sampling and digital correlated double sampling. To verify the proposed multiple sampling method, a 256 × 128 pixel array CIS with 12-bit SAR ADCs was fabricated using 0.18 μm CMOS process. The measurement results shows that the proposed multiple sampling method reduces each A/D conversion time from 1.2 μs to 0.45 μs and random noise from 848.3 μV to 270.4 μV, achieving a dynamic range of 68.1 dB and an SNR of 39.2 dB.

  5. Short range shooting distance estimation using variable pressure SEM images of the surroundings of bullet holes in textiles.

    PubMed

    Hinrichs, Ruth; Frank, Paulo Ricardo Ost; Vasconcellos, M A Z

    2017-03-01

    Modifications of cotton and polyester textiles due to shots fired at short range were analyzed with a variable pressure scanning electron microscope (VP-SEM). Different mechanisms of fiber rupture as a function of fiber type and shooting distance were detected, namely fusing, melting, scorching, and mechanical breakage. To estimate the firing distance, the approximately exponential decay of GSR coverage as a function of radial distance from the entrance hole was determined from image analysis, instead of relying on chemical analysis with EDX, which is problematic in the VP-SEM. A set of backscattered electron images, with sufficient magnification to discriminate micrometer wide GSR particles, was acquired at different radial distances from the entrance hole. The atomic number contrast between the GSR particles and the organic fibers allowed to find a robust procedure to segment the micrographs into binary images, in which the white pixel count was attributed to GSR coverage. The decrease of the white pixel count followed an exponential decay, and it was found that the reciprocal of the decay constant, obtained from the least-square fitting of the coverage data, showed a linear dependence on the shooting distance. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  6. VizieR Online Data Catalog: OGLE Magellanic Clouds anomalous Cepheids (Soszynski+, 2015)

    NASA Astrophysics Data System (ADS)

    Soszynski, I.; Udalski, A.; Szymanski, M. K.; Pietrzynski, G.; Wyrzykowski, L.; Ulaczyk, K.; Poleski, R.; Pietrukowicz, P.; Kozlowski, S.; Skowron, J.; Mroz, P.; Pawlak, M.

    2016-06-01

    Time-series I and V-band photometry of the Magellanic Clouds was obtained in the years 2010-2015 using the 32-chip mosaic CCD camera mounted at the focus of the 1.3-m Warsaw Telescope located at Las Campanas Observatory in Chile. The observatory is operated by the Carnegie Institution for Science. The OGLE- IV camera has a total field of view of 1.4 square degrees and pixel scale of 0.26". The OGLE-IV fields cover approximately 650 square degrees in both Clouds and a region between both galaxies, the so-called Magellanic Bridge. For each field we obtained from 90 (in sparse regions far from the centers of the Magellanic Clouds) to over 750 observing points (in the densest fields) in the Cousins I-band and from several to over 260 points in the Johnson V-band. Data reduction of the OGLE images was performed using the Difference Image Analysis technique (Alard and Lupton 1998ApJ...503..325A, Wozniak 2000). Detailed descriptions of the instrumentation, photometric reductions and astrometric calibrations of the OGLE-IV data are provided by Udalski et al. (2015, Cat. J/AcA/50/421). (8 data files).

  7. Fast, large-scale hologram calculation in wavelet domain

    NASA Astrophysics Data System (ADS)

    Shimobaba, Tomoyoshi; Matsushima, Kyoji; Takahashi, Takayuki; Nagahama, Yuki; Hasegawa, Satoki; Sano, Marie; Hirayama, Ryuji; Kakue, Takashi; Ito, Tomoyoshi

    2018-04-01

    We propose a large-scale hologram calculation using WAvelet ShrinkAge-Based superpositIon (WASABI), a wavelet transform-based algorithm. An image-type hologram calculated using the WASABI method is printed on a glass substrate with the resolution of 65 , 536 × 65 , 536 pixels and a pixel pitch of 1 μm. The hologram calculation time amounts to approximately 354 s on a commercial CPU, which is approximately 30 times faster than conventional methods.

  8. Velocity map imaging using an in-vacuum pixel detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gademann, Georg; Huismans, Ymkje; Gijsbertsen, Arjan

    The use of a new type in-vacuum pixel detector in velocity map imaging (VMI) is introduced. The Medipix2 and Timepix semiconductor pixel detectors (256x256 square pixels, 55x55 {mu}m{sup 2}) are well suited for charged particle detection. They offer high resolution, low noise, and high quantum efficiency. The Medipix2 chip allows double energy discrimination by offering a low and a high energy threshold. The Timepix detector allows to record the incidence time of a particle with a temporal resolution of 10 ns and a dynamic range of 160 {mu}s. Results of the first time application of the Medipix2 detector to VMImore » are presented, investigating the quantum efficiency as well as the possibility to operate at increased background pressure in the vacuum chamber.« less

  9. A 75-ps Gated CMOS Image Sensor with Low Parasitic Light Sensitivity

    PubMed Central

    Zhang, Fan; Niu, Hanben

    2016-01-01

    In this study, a 40 × 48 pixel global shutter complementary metal-oxide-semiconductor (CMOS) image sensor with an adjustable shutter time as low as 75 ps was implemented using a 0.5-μm mixed-signal CMOS process. The implementation consisted of a continuous contact ring around each p+/n-well photodiode in the pixel array in order to apply sufficient light shielding. The parasitic light sensitivity of the in-pixel storage node was measured to be 1/8.5 × 107 when illuminated by a 405-nm diode laser and 1/1.4 × 104 when illuminated by a 650-nm diode laser. The pixel pitch was 24 μm, the size of the square p+/n-well photodiode in each pixel was 7 μm per side, the measured random readout noise was 217 e− rms, and the measured dynamic range of the pixel of the designed chip was 5500:1. The type of gated CMOS image sensor (CIS) that is proposed here can be used in ultra-fast framing cameras to observe non-repeatable fast-evolving phenomena. PMID:27367699

  10. A 75-ps Gated CMOS Image Sensor with Low Parasitic Light Sensitivity.

    PubMed

    Zhang, Fan; Niu, Hanben

    2016-06-29

    In this study, a 40 × 48 pixel global shutter complementary metal-oxide-semiconductor (CMOS) image sensor with an adjustable shutter time as low as 75 ps was implemented using a 0.5-μm mixed-signal CMOS process. The implementation consisted of a continuous contact ring around each p+/n-well photodiode in the pixel array in order to apply sufficient light shielding. The parasitic light sensitivity of the in-pixel storage node was measured to be 1/8.5 × 10⁷ when illuminated by a 405-nm diode laser and 1/1.4 × 10⁴ when illuminated by a 650-nm diode laser. The pixel pitch was 24 μm, the size of the square p+/n-well photodiode in each pixel was 7 μm per side, the measured random readout noise was 217 e(-) rms, and the measured dynamic range of the pixel of the designed chip was 5500:1. The type of gated CMOS image sensor (CIS) that is proposed here can be used in ultra-fast framing cameras to observe non-repeatable fast-evolving phenomena.

  11. Correlation and registration of ERTS multispectral imagery. [by a digital processing technique

    NASA Technical Reports Server (NTRS)

    Bonrud, L. O.; Henrikson, P. J.

    1974-01-01

    Examples of automatic digital processing demonstrate the feasibility of registering one ERTS multispectral scanner (MSS) image with another obtained on a subsequent orbit, and automatic matching, correlation, and registration of MSS imagery with aerial photography (multisensor correlation) is demonstrated. Excellent correlation was obtained with patch sizes exceeding 16 pixels square. Qualities which lead to effective control point selection are distinctive features, good contrast, and constant feature characteristics. Results of the study indicate that more than 300 degrees of freedom are required to register two standard ERTS-1 MSS frames covering 100 by 100 nautical miles to an accuracy of 0.6 pixel mean radial displacement error. An automatic strip processing technique demonstrates 600 to 1200 degrees of freedom over a quater frame of ERTS imagery. Registration accuracies in the range of 0.3 pixel to 0.5 pixel mean radial error were confirmed by independent error analysis. Accuracies in the range of 0.5 pixel to 1.4 pixel mean radial error were demonstrated by semi-automatic registration over small geographic areas.

  12. 3D track reconstruction capability of a silicon hybrid active pixel detector

    NASA Astrophysics Data System (ADS)

    Bergmann, Benedikt; Pichotka, Martin; Pospisil, Stanislav; Vycpalek, Jiri; Burian, Petr; Broulim, Pavel; Jakubek, Jan

    2017-06-01

    Timepix3 detectors are the latest generation of hybrid active pixel detectors of the Medipix/Timepix family. Such detectors consist of an active sensor layer which is connected to the readout ASIC (application specific integrated circuit), segmenting the detector into a square matrix of 256 × 256 pixels (pixel pitch 55 μm). Particles interacting in the active sensor material create charge carriers, which drift towards the pixelated electrode, where they are collected. In each pixel, the time of the interaction (time resolution 1.56 ns) and the amount of created charge carriers are measured. Such a device was employed in an experiment in a 120 GeV/c pion beam. It is demonstrated, how the drift time information can be used for "4D" particle tracking, with the three spatial dimensions and the energy losses along the particle trajectory (dE/dx). Since the coordinates in the detector plane are given by the pixelation ( x, y), the x- and y-resolution is determined by the pixel pitch (55 μm). A z-resolution of 50.4 μm could be achieved (for a 500 μm thick silicon sensor at 130 V bias), whereby the drift time model independent z-resolution was found to be 28.5 μm.

  13. Development of n+-in-p planar pixel sensors for extremely high radiation environments, designed to retain high efficiency after irradiation

    NASA Astrophysics Data System (ADS)

    Unno, Y.; Kamada, S.; Yamamura, K.; Ikegami, Y.; Nakamura, K.; Takubo, Y.; Takashima, R.; Tojo, J.; Kono, T.; Hanagaki, K.; Yajima, K.; Yamauchi, Y.; Hirose, M.; Homma, Y.; Jinnouchi, O.; Kimura, K.; Motohashi, K.; Sato, S.; Sawai, H.; Todome, K.; Yamaguchi, D.; Hara, K.; Sato, Kz.; Sato, Kj.; Hagihara, M.; Iwabuchi, S.

    2016-09-01

    We have developed n+-in-p pixel sensors to obtain highly radiation tolerant sensors for extremely high radiation environments such as those found at the high-luminosity LHC. We have designed novel pixel structures to eliminate the sources of efficiency loss under the bias rails after irradiation by removing the bias rail out of the boundary region and routing the bias resistors inside the area of the pixel electrodes. After irradiation by protons with the fluence of approximately 3 ×1015neq /cm2, the pixel structure with the polysilicon bias resistor and the bias rails removed far away from the boundary shows an efficiency loss of < 0.5 % per pixel at the boundary region, which is as efficient as the pixel structure without a biasing structure. The pixel structure with the bias rails at the boundary and the widened p-stop's underneath the bias rail also exhibits an improved loss of approximately 1% per pixel at the boundary region. We have elucidated the physical mechanisms behind the efficiency loss under the bias rail with TCAD simulations. The efficiency loss is due to the interplay of the bias rail acting as a charge collecting electrode with the region of low electric field in the silicon near the surface at the boundary. The region acts as a "shield" for the electrode. After irradiation, the strong applied electric field nearly eliminates the region. The TCAD simulations have shown that wide p-stop and large Si-SiO2 interface charge (inversion layer, specifically) act to shield the weighting potential. The pixel sensor of the old design irradiated by γ-rays at 2.4 MGy is confirmed to exhibit only a slight efficiency loss at the boundary.

  14. VLSI for High-Speed Digital Signal Processing

    DTIC Science & Technology

    1994-09-30

    particular, the design, layout and fab - rication of integrated circuits. The primary project for this grant has been the design and implementation of a...targeted at 33.36 dB, and PSNR (dB) Rate ( bpp ) the FRSBC algorithm, targeted at 0.5 bits/pixel, respec- Filter FDSBC FRSBC FDSBC FRSBC tively. The filter...to mean square error d by as shown in Fig. 6, is used, yielding a total of 16 subbands. 255’ The rates, in bits per pixel ( bpp ), and the peak signal

  15. Segmentation and Quantitative Analysis of Apoptosis of Chinese Hamster Ovary Cells from Fluorescence Microscopy Images.

    PubMed

    Du, Yuncheng; Budman, Hector M; Duever, Thomas A

    2017-06-01

    Accurate and fast quantitative analysis of living cells from fluorescence microscopy images is useful for evaluating experimental outcomes and cell culture protocols. An algorithm is developed in this work to automatically segment and distinguish apoptotic cells from normal cells. The algorithm involves three steps consisting of two segmentation steps and a classification step. The segmentation steps are: (i) a coarse segmentation, combining a range filter with a marching square method, is used as a prefiltering step to provide the approximate positions of cells within a two-dimensional matrix used to store cells' images and the count of the number of cells for a given image; and (ii) a fine segmentation step using the Active Contours Without Edges method is applied to the boundaries of cells identified in the coarse segmentation step. Although this basic two-step approach provides accurate edges when the cells in a given image are sparsely distributed, the occurrence of clusters of cells in high cell density samples requires further processing. Hence, a novel algorithm for clusters is developed to identify the edges of cells within clusters and to approximate their morphological features. Based on the segmentation results, a support vector machine classifier that uses three morphological features: the mean value of pixel intensities in the cellular regions, the variance of pixel intensities in the vicinity of cell boundaries, and the lengths of the boundaries, is developed for distinguishing apoptotic cells from normal cells. The algorithm is shown to be efficient in terms of computational time, quantitative analysis, and differentiation accuracy, as compared with the use of the active contours method without the proposed preliminary coarse segmentation step.

  16. Automatic sub-pixel coastline extraction based on spectral mixture analysis using EO-1 Hyperion data

    NASA Astrophysics Data System (ADS)

    Hong, Zhonghua; Li, Xuesu; Han, Yanling; Zhang, Yun; Wang, Jing; Zhou, Ruyan; Hu, Kening

    2018-06-01

    Many megacities (such as Shanghai) are located in coastal areas, therefore, coastline monitoring is critical for urban security and urban development sustainability. A shoreline is defined as the intersection between coastal land and a water surface and features seawater edge movements as tides rise and fall. Remote sensing techniques have increasingly been used for coastline extraction; however, traditional hard classification methods are performed only at the pixel-level and extracting subpixel accuracy using soft classification methods is both challenging and time consuming due to the complex features in coastal regions. This paper presents an automatic sub-pixel coastline extraction method (ASPCE) from high-spectral satellite imaging that performs coastline extraction based on spectral mixture analysis and, thus, achieves higher accuracy. The ASPCE method consists of three main components: 1) A Water- Vegetation-Impervious-Soil (W-V-I-S) model is first presented to detect mixed W-V-I-S pixels and determine the endmember spectra in coastal regions; 2) The linear spectral mixture unmixing technique based on Fully Constrained Least Squares (FCLS) is applied to the mixed W-V-I-S pixels to estimate seawater abundance; and 3) The spatial attraction model is used to extract the coastline. We tested this new method using EO-1 images from three coastal regions in China: the South China Sea, the East China Sea, and the Bohai Sea. The results showed that the method is accurate and robust. Root mean square error (RMSE) was utilized to evaluate the accuracy by calculating the distance differences between the extracted coastline and the digitized coastline. The classifier's performance was compared with that of the Multiple Endmember Spectral Mixture Analysis (MESMA), Mixture Tuned Matched Filtering (MTMF), Sequential Maximum Angle Convex Cone (SMACC), Constrained Energy Minimization (CEM), and one classical Normalized Difference Water Index (NDWI). The results from the three test sites indicated that the proposed ASPCE method extracted coastlines more efficiently than did the compared methods, and its coastline extraction accuracy corresponded closely to the digitized coastline, with 0.39 pixels, 0.40 pixels, and 0.35 pixels in the three test regions, showing that the ASPCE method achieves an accuracy below 12.0 m (0.40 pixels). Moreover, in the quantitative accuracy assessment for the three test sites, the ASPCE method shows the best performance in coastline extraction, achieving a 0.35 pixel-level at the Bohai Sea, China test site. Therefore, the proposed ASPCE method can extract coastline more accurately than can the hard classification methods or other spectral unmixing methods.

  17. Optimal configuration of a low-dose breast-specific gamma camera based on semiconductor CdZnTe pixelated detectors

    NASA Astrophysics Data System (ADS)

    Genocchi, B.; Pickford Scienti, O.; Darambara, DG

    2017-05-01

    Breast cancer is one of the most frequent tumours in women. During the ‘90s, the introduction of screening programmes allowed the detection of cancer before the palpable stage, reducing its mortality up to 50%. About 50% of the women aged between 30 and 50 years present dense breast parenchyma. This percentage decreases to 30% for women between 50 to 80 years. In these women, mammography has a sensitivity of around 30%, and small tumours are covered by the dense parenchyma and missed in the mammogram. Interestingly, breast-specific gamma-cameras based on semiconductor CdZnTe detectors have shown to be of great interest to early diagnosis. Infact, due to the high energy, spatial resolution, and high sensitivity of CdZnTe, molecular breast imaging has been shown to have a sensitivity of about 90% independently of the breast parenchyma. The aim of this work is to determine the optimal combination of the detector pixel size, hole shape, and collimator material in a low dose dual head breast specific gamma camera based on a CdZnTe pixelated detector at 140 keV, in order to achieve high count rate, and the best possible image spatial resolution. The optimal combination has been studied by modeling the system using the Monte Carlo code GATE. Six different pixel sizes from 0.85 mm to 1.6 mm, two hole shapes, hexagonal and square, and two different collimator materials, lead and tungsten were considered. It was demonstrated that the camera achieved higher count rates, and better signal-to-noise ratio when equipped with square hole, and large pixels (> 1.3 mm). In these configurations, the spatial resolution was worse than using small pixel sizes (< 1.3 mm), but remained under 3.6 mm in all cases.

  18. Practical low-cost stereo head-mounted display

    NASA Astrophysics Data System (ADS)

    Pausch, Randy; Dwivedi, Pramod; Long, Allan C., Jr.

    1991-08-01

    A high-resolution head-mounted display has been developed from substantially cheaper components than previous systems. Monochrome displays provide 720 by 280 monochrome pixels to each eye in a one-inch-square region positioned approximately one inch from each eye. The display hardware is the Private Eye, manufactured by Reflection Technologies, Inc. The tracking system uses the Polhemus Isotrak, providing (x,y,z, azimuth, elevation and roll) information on the user''s head position and orientation 60 times per second. In combination with a modified Nintendo Power Glove, this system provides a full-functionality virtual reality/simulation system. Using two host 80386 computers, real-time wire frame images can be produced. Other virtual reality systems require roughly 250,000 in hardware, while this one requires only 5,000. Stereo is particularly useful for this system because shading or occlusion cannot be used as depth cues.

  19. Restoration of hot pixels in digital imagers using lossless approximation techniques

    NASA Astrophysics Data System (ADS)

    Hadar, O.; Shleifer, A.; Cohen, E.; Dotan, Y.

    2015-09-01

    During the last twenty years, digital imagers have spread into industrial and everyday devices, such as satellites, security cameras, cell phones, laptops and more. "Hot pixels" are the main defects in remote digital cameras. In this paper we prove an improvement of existing restoration methods that use (solely or as an auxiliary tool) some average of the surrounding single pixel, such as the method of the Chapman-Koren study 1,2. The proposed method uses the CALIC algorithm and adapts it to a full use of the surrounding pixels.

  20. Single image non-uniformity correction using compressive sensing

    NASA Astrophysics Data System (ADS)

    Jian, Xian-zhong; Lu, Rui-zhi; Guo, Qiang; Wang, Gui-pu

    2016-05-01

    A non-uniformity correction (NUC) method for an infrared focal plane array imaging system was proposed. The algorithm, based on compressive sensing (CS) of single image, overcame the disadvantages of "ghost artifacts" and bulk calculating costs in traditional NUC algorithms. A point-sampling matrix was designed to validate the measurements of CS on the time domain. The measurements were corrected using the midway infrared equalization algorithm, and the missing pixels were solved with the regularized orthogonal matching pursuit algorithm. Experimental results showed that the proposed method can reconstruct the entire image with only 25% pixels. A small difference was found between the correction results using 100% pixels and the reconstruction results using 40% pixels. Evaluation of the proposed method on the basis of the root-mean-square error, peak signal-to-noise ratio, and roughness index (ρ) proved the method to be robust and highly applicable.

  1. PRISM project optical instrument

    NASA Technical Reports Server (NTRS)

    Taylor, Charles R.

    1994-01-01

    The scientific goal of the Passively-cooled Reconnaissance of the InterStellar Medium (PRISM) project is to map the emission of molecular hydrogen at 17.035 micrometers and 28.221 micrometers. Since the atmosphere is opaque at these infrared wavelengths, an orbiting telescope is being studied. The availability of infrared focal plane arrays enables infrared imaging spectroscopy at the molecular hydrogen wavelengths. The array proposed for PRISM is 128 pixels square, with a pixel size of 75 micrometers. In order to map the sky in a period of six months, and to resolve the nearer molecular clouds, each pixel must cover 0.5 arcminutes. This sets the focal length at 51.6 cm. In order for the pixel size to be half the diameter of the central diffraction peak at 28 micrometers would require a telescope aperture of 24 cm; an aperture of 60 cm has been selected for the PRISM study for greater light gathering power.

  2. Demosaicking algorithm for the Kodak-RGBW color filter array

    NASA Astrophysics Data System (ADS)

    Rafinazari, M.; Dubois, E.

    2015-01-01

    Digital cameras capture images through different Color Filter Arrays and then reconstruct the full color image. Each CFA pixel only captures one primary color component; the other primary components will be estimated using information from neighboring pixels. During the demosaicking algorithm, the two unknown color components will be estimated at each pixel location. Most of the demosaicking algorithms use the RGB Bayer CFA pattern with Red, Green and Blue filters. The least-Squares Luma-Chroma demultiplexing method is a state of the art demosaicking method for the Bayer CFA. In this paper we develop a new demosaicking algorithm using the Kodak-RGBW CFA. This particular CFA reduces noise and improves the quality of the reconstructed images by adding white pixels. We have applied non-adaptive and adaptive demosaicking method using the Kodak-RGBW CFA on the standard Kodak image dataset and the results have been compared with previous work.

  3. SpArcFiRe: Scalable automated detection of spiral galaxy arm segments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Darren R.; Hayes, Wayne B., E-mail: drdavis@uci.edu, E-mail: whayes@uci.edu

    Given an approximately centered image of a spiral galaxy, we describe an entirely automated method that finds, centers, and sizes the galaxy (possibly masking nearby stars and other objects if necessary in order to isolate the galaxy itself) and then automatically extracts structural information about the spiral arms. For each arm segment found, we list the pixels in that segment, allowing image analysis on a per-arm-segment basis. We also perform a least-squares fit of a logarithmic spiral arc to the pixels in that segment, giving per-arc parameters, such as the pitch angle, arm segment length, location, etc. The algorithm takesmore » about one minute per galaxies, and can easily be scaled using parallelism. We have run it on all ∼644,000 Sloan objects that are larger than 40 pixels across and classified as 'galaxies'. We find a very good correlation between our quantitative description of a spiral structure and the qualitative description provided by Galaxy Zoo humans. Our objective, quantitative measures of structure demonstrate the difficulty in defining exactly what constitutes a spiral 'arm', leading us to prefer the term 'arm segment'. We find that pitch angle often varies significantly segment-to-segment in a single spiral galaxy, making it difficult to define the pitch angle for a single galaxy. We demonstrate how our new database of arm segments can be queried to find galaxies satisfying specific quantitative visual criteria. For example, even though our code does not explicitly find rings, a good surrogate is to look for galaxies having one long, low-pitch-angle arm—which is how our code views ring galaxies. SpArcFiRe is available at http://sparcfire.ics.uci.edu.« less

  4. The Dosepix detector—an energy-resolving photon-counting pixel detector for spectrometric measurements

    NASA Astrophysics Data System (ADS)

    Zang, A.; Anton, G.; Ballabriga, R.; Bisello, F.; Campbell, M.; Celi, J. C.; Fauler, A.; Fiederle, M.; Jensch, M.; Kochanski, N.; Llopart, X.; Michel, N.; Mollenhauer, U.; Ritter, I.; Tennert, F.; Wölfel, S.; Wong, W.; Michel, T.

    2015-04-01

    The Dosepix detector is a hybrid photon-counting pixel detector based on ideas of the Medipix and Timepix detector family. 1 mm thick cadmium telluride and 300 μm thick silicon were used as sensor material. The pixel matrix of the Dosepix consists of 16 x 16 square pixels with 12 rows of (200 μm)2 and 4 rows of (55 μm)2 sensitive area for the silicon sensor layer and 16 rows of pixels with 220 μm pixel pitch for CdTe. Besides digital energy integration and photon-counting mode, a novel concept of energy binning is included in the pixel electronics, allowing energy-resolved measurements in 16 energy bins within one acquisition. The possibilities of this detector concept range from applications in personal dosimetry and energy-resolved imaging to quality assurance of medical X-ray sources by analysis of the emitted photon spectrum. In this contribution the Dosepix detector, its response to X-rays as well as spectrum measurements with Si and CdTe sensor layer are presented. Furthermore, a first evaluation was carried out to use the Dosepix detector as a kVp-meter, that means to determine the applied acceleration voltage from measured X-ray tubes spectra.

  5. Signal-to-noise ratio enhancement on SEM images using a cubic spline interpolation with Savitzky-Golay filters and weighted least squares error.

    PubMed

    Kiani, M A; Sim, K S; Nia, M E; Tso, C P

    2015-05-01

    A new technique based on cubic spline interpolation with Savitzky-Golay smoothing using weighted least squares error filter is enhanced for scanning electron microscope (SEM) images. A diversity of sample images is captured and the performance is found to be better when compared with the moving average and the standard median filters, with respect to eliminating noise. This technique can be implemented efficiently on real-time SEM images, with all mandatory data for processing obtained from a single image. Noise in images, and particularly in SEM images, are undesirable. A new noise reduction technique, based on cubic spline interpolation with Savitzky-Golay and weighted least squares error method, is developed. We apply the combined technique to single image signal-to-noise ratio estimation and noise reduction for SEM imaging system. This autocorrelation-based technique requires image details to be correlated over a few pixels, whereas the noise is assumed to be uncorrelated from pixel to pixel. The noise component is derived from the difference between the image autocorrelation at zero offset, and the estimation of the corresponding original autocorrelation. In the few test cases involving different images, the efficiency of the developed noise reduction filter is proved to be significantly better than those obtained from the other methods. Noise can be reduced efficiently with appropriate choice of scan rate from real-time SEM images, without generating corruption or increasing scanning time. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  6. Least-squares dual characterization for ROI assessment in emission tomography

    NASA Astrophysics Data System (ADS)

    Ben Bouallègue, F.; Crouzet, J. F.; Dubois, A.; Buvat, I.; Mariano-Goulart, D.

    2013-06-01

    Our aim is to describe an original method for estimating the statistical properties of regions of interest (ROIs) in emission tomography. Drawn upon the works of Louis on the approximate inverse, we propose a dual formulation of the ROI estimation problem to derive the ROI activity and variance directly from the measured data without any image reconstruction. The method requires the definition of an ROI characteristic function that can be extracted from a co-registered morphological image. This characteristic function can be smoothed to optimize the resolution-variance tradeoff. An iterative procedure is detailed for the solution of the dual problem in the least-squares sense (least-squares dual (LSD) characterization), and a linear extrapolation scheme is described to compensate for sampling partial volume effect and reduce the estimation bias (LSD-ex). LSD and LSD-ex are compared with classical ROI estimation using pixel summation after image reconstruction and with Huesman's method. For this comparison, we used Monte Carlo simulations (GATE simulation tool) of 2D PET data of a Hoffman brain phantom containing three small uniform high-contrast ROIs and a large non-uniform low-contrast ROI. Our results show that the performances of LSD characterization are at least as good as those of the classical methods in terms of root mean square (RMS) error. For the three small tumor regions, LSD-ex allows a reduction in the estimation bias by up to 14%, resulting in a reduction in the RMS error of up to 8.5%, compared with the optimal classical estimation. For the large non-specific region, LSD using appropriate smoothing could intuitively and efficiently handle the resolution-variance tradeoff.

  7. Ground-truthing AVIRIS mineral mapping at Cuprite, Nevada

    NASA Technical Reports Server (NTRS)

    Swayze, Gregg; Clark, Roger N.; Kruse, Fred; Sutley, Steve; Gallagher, Andrea

    1992-01-01

    Mineral abundance maps of 18 minerals were made of the Cuprite Mining District using 1990 AVIRIS data and the Multiple Spectral Feature Mapping Algorithm (MSFMA) as discussed in Clark et al. This technique uses least-squares fitting between a scaled laboratory reference spectrum and ground calibrated AVIRIS data for each pixel. Multiple spectral features can be fitted for each mineral and an unlimited number of minerals can be mapped simultaneously. Quality of fit and depth from continuum numbers for each mineral are calculated for each pixel and the results displayed as a multicolor image.

  8. Fixed-point image orthorectification algorithms for reduced computational cost

    NASA Astrophysics Data System (ADS)

    French, Joseph Clinton

    Imaging systems have been applied to many new applications in recent years. With the advent of low-cost, low-power focal planes and more powerful, lower cost computers, remote sensing applications have become more wide spread. Many of these applications require some form of geolocation, especially when relative distances are desired. However, when greater global positional accuracy is needed, orthorectification becomes necessary. Orthorectification is the process of projecting an image onto a Digital Elevation Map (DEM), which removes terrain distortions and corrects the perspective distortion by changing the viewing angle to be perpendicular to the projection plane. Orthorectification is used in disaster tracking, landscape management, wildlife monitoring and many other applications. However, orthorectification is a computationally expensive process due to floating point operations and divisions in the algorithm. To reduce the computational cost of on-board processing, two novel algorithm modifications are proposed. One modification is projection utilizing fixed-point arithmetic. Fixed point arithmetic removes the floating point operations and reduces the processing time by operating only on integers. The second modification is replacement of the division inherent in projection with a multiplication of the inverse. The inverse must operate iteratively. Therefore, the inverse is replaced with a linear approximation. As a result of these modifications, the processing time of projection is reduced by a factor of 1.3x with an average pixel position error of 0.2% of a pixel size for 128-bit integer processing and over 4x with an average pixel position error of less than 13% of a pixel size for a 64-bit integer processing. A secondary inverse function approximation is also developed that replaces the linear approximation with a quadratic. The quadratic approximation produces a more accurate approximation of the inverse, allowing for an integer multiplication calculation to be used in place of the traditional floating point division. This method increases the throughput of the orthorectification operation by 38% when compared to floating point processing. Additionally, this method improves the accuracy of the existing integer-based orthorectification algorithms in terms of average pixel distance, increasing the accuracy of the algorithm by more than 5x. The quadratic function reduces the pixel position error to 2% and is still 2.8x faster than the 128-bit floating point algorithm.

  9. Noise suppression for dual-energy CT via penalized weighted least-square optimization with similarity-based regularization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harms, Joseph; Wang, Tonghe; Petrongolo, Michael

    Purpose: Dual-energy CT (DECT) expands applications of CT imaging in its capability to decompose CT images into material images. However, decomposition via direct matrix inversion leads to large noise amplification and limits quantitative use of DECT. Their group has previously developed a noise suppression algorithm via penalized weighted least-square optimization with edge-preservation regularization (PWLS-EPR). In this paper, the authors improve method performance using the same framework of penalized weighted least-square optimization but with similarity-based regularization (PWLS-SBR), which substantially enhances the quality of decomposed images by retaining a more uniform noise power spectrum (NPS). Methods: The design of PWLS-SBR is basedmore » on the fact that averaging pixels of similar materials gives a low-noise image. For each pixel, the authors calculate the similarity to other pixels in its neighborhood by comparing CT values. Using an empirical Gaussian model, the authors assign high/low similarity value to one neighboring pixel if its CT value is close/far to the CT value of the pixel of interest. These similarity values are organized in matrix form, such that multiplication of the similarity matrix to the image vector reduces image noise. The similarity matrices are calculated on both high- and low-energy CT images and averaged. In PWLS-SBR, the authors include a regularization term to minimize the L-2 norm of the difference between the images without and with noise suppression via similarity matrix multiplication. By using all pixel information of the initial CT images rather than just those lying on or near edges, PWLS-SBR is superior to the previously developed PWLS-EPR, as supported by comparison studies on phantoms and a head-and-neck patient. Results: On the line-pair slice of the Catphan{sup ©}600 phantom, PWLS-SBR outperforms PWLS-EPR and retains spatial resolution of 8 lp/cm, comparable to the original CT images, even at 90% reduction in noise standard deviation (STD). Similar performance on spatial resolution is observed on an anthropomorphic head phantom. In addition, results of PWLS-SBR show substantially improved image quality due to preservation of image NPS. On the Catphan{sup ©}600 phantom, NPS using PWLS-SBR has a correlation of 93% with that via direct matrix inversion, while the correlation drops to −52% for PWLS-EPR. Electron density measurement studies indicate high accuracy of PWLS-SBR. On seven different materials, the measured electron densities calculated from the decomposed material images using PWLS-SBR have a root-mean-square error (RMSE) of 1.20%, while the results of PWLS-EPR have a RMSE of 2.21%. In the study on a head-and-neck patient, PWLS-SBR is shown to reduce noise STD by a factor of 3 on material images with image qualities comparable to CT images, whereas fine structures are lost in the PWLS-EPR result. Additionally, PWLS-SBR better preserves low contrast on the tissue image. Conclusions: The authors propose improvements to the regularization term of an optimization framework which performs iterative image-domain decomposition for DECT with noise suppression. The regularization term avoids calculation of image gradient and is based on pixel similarity. The proposed method not only achieves a high decomposition accuracy, but also improves over the previous algorithm on NPS as well as spatial resolution.« less

  10. Noise suppression for dual-energy CT via penalized weighted least-square optimization with similarity-based regularization

    PubMed Central

    Harms, Joseph; Wang, Tonghe; Petrongolo, Michael; Niu, Tianye; Zhu, Lei

    2016-01-01

    Purpose: Dual-energy CT (DECT) expands applications of CT imaging in its capability to decompose CT images into material images. However, decomposition via direct matrix inversion leads to large noise amplification and limits quantitative use of DECT. Their group has previously developed a noise suppression algorithm via penalized weighted least-square optimization with edge-preservation regularization (PWLS-EPR). In this paper, the authors improve method performance using the same framework of penalized weighted least-square optimization but with similarity-based regularization (PWLS-SBR), which substantially enhances the quality of decomposed images by retaining a more uniform noise power spectrum (NPS). Methods: The design of PWLS-SBR is based on the fact that averaging pixels of similar materials gives a low-noise image. For each pixel, the authors calculate the similarity to other pixels in its neighborhood by comparing CT values. Using an empirical Gaussian model, the authors assign high/low similarity value to one neighboring pixel if its CT value is close/far to the CT value of the pixel of interest. These similarity values are organized in matrix form, such that multiplication of the similarity matrix to the image vector reduces image noise. The similarity matrices are calculated on both high- and low-energy CT images and averaged. In PWLS-SBR, the authors include a regularization term to minimize the L-2 norm of the difference between the images without and with noise suppression via similarity matrix multiplication. By using all pixel information of the initial CT images rather than just those lying on or near edges, PWLS-SBR is superior to the previously developed PWLS-EPR, as supported by comparison studies on phantoms and a head-and-neck patient. Results: On the line-pair slice of the Catphan©600 phantom, PWLS-SBR outperforms PWLS-EPR and retains spatial resolution of 8 lp/cm, comparable to the original CT images, even at 90% reduction in noise standard deviation (STD). Similar performance on spatial resolution is observed on an anthropomorphic head phantom. In addition, results of PWLS-SBR show substantially improved image quality due to preservation of image NPS. On the Catphan©600 phantom, NPS using PWLS-SBR has a correlation of 93% with that via direct matrix inversion, while the correlation drops to −52% for PWLS-EPR. Electron density measurement studies indicate high accuracy of PWLS-SBR. On seven different materials, the measured electron densities calculated from the decomposed material images using PWLS-SBR have a root-mean-square error (RMSE) of 1.20%, while the results of PWLS-EPR have a RMSE of 2.21%. In the study on a head-and-neck patient, PWLS-SBR is shown to reduce noise STD by a factor of 3 on material images with image qualities comparable to CT images, whereas fine structures are lost in the PWLS-EPR result. Additionally, PWLS-SBR better preserves low contrast on the tissue image. Conclusions: The authors propose improvements to the regularization term of an optimization framework which performs iterative image-domain decomposition for DECT with noise suppression. The regularization term avoids calculation of image gradient and is based on pixel similarity. The proposed method not only achieves a high decomposition accuracy, but also improves over the previous algorithm on NPS as well as spatial resolution. PMID:27147376

  11. A Fast Multiple Sampling Method for Low-Noise CMOS Image Sensors With Column-Parallel 12-bit SAR ADCs

    PubMed Central

    Kim, Min-Kyu; Hong, Seong-Kwan; Kwon, Oh-Kyong

    2015-01-01

    This paper presents a fast multiple sampling method for low-noise CMOS image sensor (CIS) applications with column-parallel successive approximation register analog-to-digital converters (SAR ADCs). The 12-bit SAR ADC using the proposed multiple sampling method decreases the A/D conversion time by repeatedly converting a pixel output to 4-bit after the first 12-bit A/D conversion, reducing noise of the CIS by one over the square root of the number of samplings. The area of the 12-bit SAR ADC is reduced by using a 10-bit capacitor digital-to-analog converter (DAC) with four scaled reference voltages. In addition, a simple up/down counter-based digital processing logic is proposed to perform complex calculations for multiple sampling and digital correlated double sampling. To verify the proposed multiple sampling method, a 256 × 128 pixel array CIS with 12-bit SAR ADCs was fabricated using 0.18 μm CMOS process. The measurement results shows that the proposed multiple sampling method reduces each A/D conversion time from 1.2 μs to 0.45 μs and random noise from 848.3 μV to 270.4 μV, achieving a dynamic range of 68.1 dB and an SNR of 39.2 dB. PMID:26712765

  12. Space-Time Data Fusion

    NASA Technical Reports Server (NTRS)

    Braverman, Amy; Nguyen, Hai; Olsen, Edward; Cressie, Noel

    2011-01-01

    Space-time Data Fusion (STDF) is a methodology for combing heterogeneous remote sensing data to optimally estimate the true values of a geophysical field of interest, and obtain uncertainties for those estimates. The input data sets may have different observing characteristics including different footprints, spatial resolutions and fields of view, orbit cycles, biases, and noise characteristics. Despite these differences all observed data can be linked to the underlying field, and therefore the each other, by a statistical model. Differences in footprints and other geometric characteristics are accounted for by parameterizing pixel-level remote sensing observations as spatial integrals of true field values lying within pixel boundaries, plus measurement error. Both spatial and temporal correlations in the true field and in the observations are estimated and incorporated through the use of a space-time random effects (STRE) model. Once the models parameters are estimated, we use it to derive expressions for optimal (minimum mean squared error and unbiased) estimates of the true field at any arbitrary location of interest, computed from the observations. Standard errors of these estimates are also produced, allowing confidence intervals to be constructed. The procedure is carried out on a fine spatial grid to approximate a continuous field. We demonstrate STDF by applying it to the problem of estimating CO2 concentration in the lower-atmosphere using data from the Atmospheric Infrared Sounder (AIRS) and the Japanese Greenhouse Gasses Observing Satellite (GOSAT) over one year for the continental US.

  13. A novel point cloud registration using 2D image features

    NASA Astrophysics Data System (ADS)

    Lin, Chien-Chou; Tai, Yen-Chou; Lee, Jhong-Jin; Chen, Yong-Sheng

    2017-01-01

    Since a 3D scanner only captures a scene of a 3D object at a time, a 3D registration for multi-scene is the key issue of 3D modeling. This paper presents a novel and an efficient 3D registration method based on 2D local feature matching. The proposed method transforms the point clouds into 2D bearing angle images and then uses the 2D feature based matching method, SURF, to find matching pixel pairs between two images. The corresponding points of 3D point clouds can be obtained by those pixel pairs. Since the corresponding pairs are sorted by their distance between matching features, only the top half of the corresponding pairs are used to find the optimal rotation matrix by the least squares approximation. In this paper, the optimal rotation matrix is derived by orthogonal Procrustes method (SVD-based approach). Therefore, the 3D model of an object can be reconstructed by aligning those point clouds with the optimal transformation matrix. Experimental results show that the accuracy of the proposed method is close to the ICP, but the computation cost is reduced significantly. The performance is six times faster than the generalized-ICP algorithm. Furthermore, while the ICP requires high alignment similarity of two scenes, the proposed method is robust to a larger difference of viewing angle.

  14. 75 FR 1401 - Notice of Intent To Prepare a Draft Environmental Impact Statement for the Baldwin Hills Crenshaw...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-11

    ... approximately 535,000 square feet), two grocery stores (totaling approximately 85,000 square feet), restaurants (both in mall and as stand-alone restaurants totaling approximately 156,000 square feet), a movie... with meeting rooms and two restaurants, and 551 condominium units, and 410 apartment units...

  15. Development of a universal water signature for the LANDSAT-3 Multispectral Scanner, part 2 of 2

    NASA Technical Reports Server (NTRS)

    Schlosser, E. H.

    1980-01-01

    A generalized four-channel hyperplane to discriminate water from non-water was developed using LANDSAT-3 multispectral scanner (MSS) scences and matching same/next-day color infrared aerial photography. The MSS scenes over upstate New York, eastern Washington, Montana and Louisiana taken between May and October 1978 varied in Sun elevation angle from 40 to 58 degrees. The 28 matching air photo frames selected for analysis contained over 1400 water bodies larger than one surface acre. A preliminary water discriminant was used to screen the data and eliminate from further consideration all pixels distant from water in MSS spectral space. Approximately 1300 pixels, half of them non-edge water pixels and half non-water pixels spectrally close to water, were labelled. A linear discriminant was iteratively fitted to the labelled pixels, giving more weight to those pixels that were difficult to discriminate. This discriminant correctly classified 98.7 percent of the water pixels and 98.6 percent of the non-water pixels.

  16. Measurement of 3-D Vibrational Motion by Dynamic Photogrammetry Using Least-Square Image Matching for Sub-Pixel Targeting to Improve Accuracy.

    PubMed

    Lee, Hyoseong; Rhee, Huinam; Oh, Jae Hong; Park, Jin Ho

    2016-03-11

    This paper deals with an improved methodology to measure three-dimensional dynamic displacements of a structure by digital close-range photogrammetry. A series of stereo images of a vibrating structure installed with targets are taken at specified intervals by using two daily-use cameras. A new methodology is proposed to accurately trace the spatial displacement of each target in three-dimensional space. This method combines the correlation and the least-square image matching so that the sub-pixel targeting can be obtained to increase the measurement accuracy. Collinearity and space resection theory are used to determine the interior and exterior orientation parameters. To verify the proposed method, experiments have been performed to measure displacements of a cantilevered beam excited by an electrodynamic shaker, which is vibrating in a complex configuration with mixed bending and torsional motions simultaneously with multiple frequencies. The results by the present method showed good agreement with the measurement by two laser displacement sensors. The proposed methodology only requires inexpensive daily-use cameras, and can remotely detect the dynamic displacement of a structure vibrating in a complex three-dimensional defection shape up to sub-pixel accuracy. It has abundant potential applications to various fields, e.g., remote vibration monitoring of an inaccessible or dangerous facility.

  17. Measurement of 3-D Vibrational Motion by Dynamic Photogrammetry Using Least-Square Image Matching for Sub-Pixel Targeting to Improve Accuracy

    PubMed Central

    Lee, Hyoseong; Rhee, Huinam; Oh, Jae Hong; Park, Jin Ho

    2016-01-01

    This paper deals with an improved methodology to measure three-dimensional dynamic displacements of a structure by digital close-range photogrammetry. A series of stereo images of a vibrating structure installed with targets are taken at specified intervals by using two daily-use cameras. A new methodology is proposed to accurately trace the spatial displacement of each target in three-dimensional space. This method combines the correlation and the least-square image matching so that the sub-pixel targeting can be obtained to increase the measurement accuracy. Collinearity and space resection theory are used to determine the interior and exterior orientation parameters. To verify the proposed method, experiments have been performed to measure displacements of a cantilevered beam excited by an electrodynamic shaker, which is vibrating in a complex configuration with mixed bending and torsional motions simultaneously with multiple frequencies. The results by the present method showed good agreement with the measurement by two laser displacement sensors. The proposed methodology only requires inexpensive daily-use cameras, and can remotely detect the dynamic displacement of a structure vibrating in a complex three-dimensional defection shape up to sub-pixel accuracy. It has abundant potential applications to various fields, e.g., remote vibration monitoring of an inaccessible or dangerous facility. PMID:26978366

  18. The Northwest Indiana Robotic Telescope

    NASA Astrophysics Data System (ADS)

    Slavin, Shawn D.; Rengstorf, A. W.; Aros, J. C.; Segally, W. B.

    2011-01-01

    The Northwest Indiana Robotic (NIRo) Telescope is a remote, automated observing facility recently built by Purdue University Calumet (PUC) at a site in Lowell, IN, approximately 30 miles from the PUC campus. The recently dedicated observatory will be used for broadband and narrowband optical observations by PUC students and faculty, as well as pre-college students through the implementation of standards-based, middle-school modules developed by PUC astronomers and education faculty. The NIRo observatory and its web portal are the central technical elements of a project to improve astronomy education at Purdue Calumet and, more broadly, to improve science education in middle schools of the surrounding region. The NIRo Telescope is a 0.5-meter (20-inch) Ritchey-Chrétien design on a Paramount ME robotic mount, featuring a seven-position filter wheel (UBVRI, Hα, Clear), Peltier (thermoelectrically) cooled CCD camera with 3056 x 3056, square, 12 μm pixels, and off-axis guiding. It provides a coma-free imaging field of 0.5 degrees square, with a plate scale of 0.6 arcseconds per pixel. The observatory has a wireless internet connection, local weather station which publishes data to an internet weather site, and a suite of CCTV security cameras on an IP-based, networked video server. Control of power to every piece of instrumentation is maintained via internet-accessible power distribution units. The telescope can be controlled on-site, or off-site in an attended fashion via an internet connection, but will be used primarily in an unattended mode of automated observation, where queued observations will be scheduled daily from a database of requests. Completed observational data from queued operation will be stored on a campus-based server, which also runs the web portal and observation database. Partial support for this work was provided by the National Science Foundation's Course, Curriculum, and Laboratory Improvement (CCLI) program under Award No. 0736592.

  19. Preliminary test results from a telescope of Hughes pixel arrays at FNAL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jernigan, J.G.; Arens, J.; Vezie, D.

    1992-09-01

    In December of 1991 three silicon hybrid pixel detectors each having 2.56 [times] 2.56 pixels 30 [mu]m square, made by the Hughes Aircraft Company, were placed in a high energy muon beam at the Fermi National Accelerator Laboratory. Straight tracks were recorded in these detectors at angles to the normal to the plane of the silicon ranging from 0 to 45[degrees]. In this note, preliminary results are presented on the straight through tracks, i.e., those passing through the telescope at normal incidence. Pulse height data, signal-to-noise data, and preliminary straight line fits to the data resulting in residual distributions aremore » presented. Preliminary calculations show spatial resolution of less than 5 [mu]m in two dimensions.« less

  20. Preliminary test results from a telescope of Hughes pixel arrays at FNAL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jernigan, J.G.; Arens, J.; Vezie, D.

    1992-09-01

    In December of 1991 three silicon hybrid pixel detectors each having 2.56 {times} 2.56 pixels 30 {mu}m square, made by the Hughes Aircraft Company, were placed in a high energy muon beam at the Fermi National Accelerator Laboratory. Straight tracks were recorded in these detectors at angles to the normal to the plane of the silicon ranging from 0 to 45{degrees}. In this note, preliminary results are presented on the straight through tracks, i.e., those passing through the telescope at normal incidence. Pulse height data, signal-to-noise data, and preliminary straight line fits to the data resulting in residual distributions aremore » presented. Preliminary calculations show spatial resolution of less than 5 {mu}m in two dimensions.« less

  1. Improved liver R2* mapping by pixel-wise curve fitting with adaptive neighborhood regularization.

    PubMed

    Wang, Changqing; Zhang, Xinyuan; Liu, Xiaoyun; He, Taigang; Chen, Wufan; Feng, Qianjin; Feng, Yanqiu

    2018-08-01

    To improve liver R2* mapping by incorporating adaptive neighborhood regularization into pixel-wise curve fitting. Magnetic resonance imaging R2* mapping remains challenging because of the serial images with low signal-to-noise ratio. In this study, we proposed to exploit the neighboring pixels as regularization terms and adaptively determine the regularization parameters according to the interpixel signal similarity. The proposed algorithm, called the pixel-wise curve fitting with adaptive neighborhood regularization (PCANR), was compared with the conventional nonlinear least squares (NLS) and nonlocal means filter-based NLS algorithms on simulated, phantom, and in vivo data. Visually, the PCANR algorithm generates R2* maps with significantly reduced noise and well-preserved tiny structures. Quantitatively, the PCANR algorithm produces R2* maps with lower root mean square errors at varying R2* values and signal-to-noise-ratio levels compared with the NLS and nonlocal means filter-based NLS algorithms. For the high R2* values under low signal-to-noise-ratio levels, the PCANR algorithm outperforms the NLS and nonlocal means filter-based NLS algorithms in the accuracy and precision, in terms of mean and standard deviation of R2* measurements in selected region of interests, respectively. The PCANR algorithm can reduce the effect of noise on liver R2* mapping, and the improved measurement precision will benefit the assessment of hepatic iron in clinical practice. Magn Reson Med 80:792-801, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.

  2. Preliminary investigations of active pixel sensors in Nuclear Medicine imaging

    NASA Astrophysics Data System (ADS)

    Ott, Robert; Evans, Noel; Evans, Phil; Osmond, J.; Clark, A.; Turchetta, R.

    2009-06-01

    Three CMOS active pixel sensors have been investigated for their application to Nuclear Medicine imaging. Startracker with 525×525 25 μm square pixels has been coupled via a fibre optic stud to a 2 mm thick segmented CsI(Tl) crystal. Imaging tests were performed using 99mTc sources, which emit 140 keV gamma rays. The system was interfaced to a PC via FPGA-based DAQ and optical link enabling imaging rates of 10 f/s. System noise was measured to be >100e and it was shown that the majority of this noise was fixed pattern in nature. The intrinsic spatial resolution was measured to be ˜80 μm and the system spatial resolution measured with a slit was ˜450 μm. The second sensor, On Pixel Intelligent CMOS (OPIC), had 64×72 40 μm pixels and was used to evaluate noise characteristics and to develop a method of differentiation between fixed pattern and statistical noise. The third sensor, Vanilla, had 520×520 25 μm pixels and a measured system noise of ˜25e. This sensor was coupled directly to the segmented phosphor. Imaging results show that even at this lower level of noise the signal from 140 keV gamma rays is small as the light from the phosphor is spread over a large number of pixels. Suggestions for the 'ideal' sensor are made.

  3. Unmixing AVHRR Imagery to Assess Clearcuts and Forest Regrowth in Oregon

    NASA Technical Reports Server (NTRS)

    Hlavka, Christine A.; Spanner, Michael A.

    1995-01-01

    Advanced Very High Resolution Radiometer imagery provides frequent and low-cost coverage of the earth, but its coarse spatial resolution (approx. 1.1 km by 1.1 km) does not lend itself to standard techniques of automated categorization of land cover classes because the pixels are generally mixed; that is, the extent of the pixel includes several land use/cover classes. Unmixing procedures were developed to extract land use/cover class signatures from mixed pixels, using Landsat Thematic Mapper data as a source for the training set, and to estimate fractions of class coverage within pixels. Application of these unmixing procedures to mapping forest clearcuts and regrowth in Oregon indicated that unmixing is a promising approach for mapping major trends in land cover with AVHRR bands 1 and 2. Including thermal bands by unmixing AVHRR bands 1-4 did not lead to significant improvements in accuracy, but experiments with unmixing these four bands did indicate that use of weighted least squares techniques might lead to improvements in other applications of unmixing.

  4. Phase holograms in PMMA with proximity effect correction

    NASA Technical Reports Server (NTRS)

    Maker, Paul D.; Muller, R. E.

    1993-01-01

    Complex computer generated phase holograms (CGPH's) have been fabricated in PMMA by partial e-beam exposure and subsequent partial development. The CGPH was encoded as a sequence of phase delay pixels and written by the JEOL JBX-5D2 E-beam lithography system, a different dose being assigned to each value of phase delay. Following carefully controlled partial development, the pattern appeared rendered in relief in the PMMA, which then acts as the phase-delay medium. The exposure dose was in the range 20-200 micro-C/sq cm, and very aggressive development in pure acetone led to low contrast. This enabled etch depth control to better than plus or minus lambda(sub vis)/60. That result was obtained by exposing isolated 50 micron square patches and measuring resist removal over the central area where the proximity effect dose was uniform and related only to the local exposure. For complex CGPH's with pixel size of the order of the e-beam proximity effect radius, the patterns must be corrected for the extra exposure caused by electrons scattered back up out of the substrate. This has been accomplished by deconvolving the two-dimensional dose deposition function with the desired dose pattern. The deposition function, which plays much the same role as an instrument response function, was carefully measured under the exact conditions used to expose the samples. The devices fabricated were designed with 16 equal phase steps per retardation cycle, were up to 1 cm square, and consisted of up to 100 million 0.3-2.0 micron square pixels. Data files were up to 500 MB long and exposure times ranged to tens of hours. A Fresnel phase lens was fabricated that had diffraction limited optical performance with better than 85 percent efficiency.

  5. 46 CFR 108.417 - Fire pump components and associated equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... discharge side that is set to relieve at 1.75 kilograms per square centimeter (approximately 25 pounds per square inch) in excess of the pump discharge pressure necessary to meet the pressure required in § 108.415 for the pump or 8.6 kilograms per square centimeters (approximately 125 pounds per square inch...

  6. 46 CFR 108.417 - Fire pump components and associated equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... discharge side that is set to relieve at 1.75 kilograms per square centimeter (approximately 25 pounds per square inch) in excess of the pump discharge pressure necessary to meet the pressure required in § 108.415 for the pump or 8.6 kilograms per square centimeters (approximately 125 pounds per square inch...

  7. 46 CFR 108.417 - Fire pump components and associated equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... discharge side that is set to relieve at 1.75 kilograms per square centimeter (approximately 25 pounds per square inch) in excess of the pump discharge pressure necessary to meet the pressure required in § 108.415 for the pump or 8.6 kilograms per square centimeters (approximately 125 pounds per square inch...

  8. 46 CFR 108.417 - Fire pump components and associated equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... discharge side that is set to relieve at 1.75 kilograms per square centimeter (approximately 25 pounds per square inch) in excess of the pump discharge pressure necessary to meet the pressure required in § 108.415 for the pump or 8.6 kilograms per square centimeters (approximately 125 pounds per square inch...

  9. 46 CFR 108.417 - Fire pump components and associated equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... discharge side that is set to relieve at 1.75 kilograms per square centimeter (approximately 25 pounds per square inch) in excess of the pump discharge pressure necessary to meet the pressure required in § 108.415 for the pump or 8.6 kilograms per square centimeters (approximately 125 pounds per square inch...

  10. Parametric vs. non-parametric statistics of low resolution electromagnetic tomography (LORETA).

    PubMed

    Thatcher, R W; North, D; Biver, C

    2005-01-01

    This study compared the relative statistical sensitivity of non-parametric and parametric statistics of 3-dimensional current sources as estimated by the EEG inverse solution Low Resolution Electromagnetic Tomography (LORETA). One would expect approximately 5% false positives (classification of a normal as abnormal) at the P < .025 level of probability (two tailed test) and approximately 1% false positives at the P < .005 level. EEG digital samples (2 second intervals sampled 128 Hz, 1 to 2 minutes eyes closed) from 43 normal adult subjects were imported into the Key Institute's LORETA program. We then used the Key Institute's cross-spectrum and the Key Institute's LORETA output files (*.lor) as the 2,394 gray matter pixel representation of 3-dimensional currents at different frequencies. The mean and standard deviation *.lor files were computed for each of the 2,394 gray matter pixels for each of the 43 subjects. Tests of Gaussianity and different transforms were computed in order to best approximate a normal distribution for each frequency and gray matter pixel. The relative sensitivity of parametric vs. non-parametric statistics were compared using a "leave-one-out" cross validation method in which individual normal subjects were withdrawn and then statistically classified as being either normal or abnormal based on the remaining subjects. Log10 transforms approximated Gaussian distribution in the range of 95% to 99% accuracy. Parametric Z score tests at P < .05 cross-validation demonstrated an average misclassification rate of approximately 4.25%, and range over the 2,394 gray matter pixels was 27.66% to 0.11%. At P < .01 parametric Z score cross-validation false positives were 0.26% and ranged from 6.65% to 0% false positives. The non-parametric Key Institute's t-max statistic at P < .05 had an average misclassification error rate of 7.64% and ranged from 43.37% to 0.04% false positives. The nonparametric t-max at P < .01 had an average misclassification rate of 6.67% and ranged from 41.34% to 0% false positives of the 2,394 gray matter pixels for any cross-validated normal subject. In conclusion, adequate approximation to Gaussian distribution and high cross-validation can be achieved by the Key Institute's LORETA programs by using a log10 transform and parametric statistics, and parametric normative comparisons had lower false positive rates than the non-parametric tests.

  11. Phase unwrapping algorithm using polynomial phase approximation and linear Kalman filter.

    PubMed

    Kulkarni, Rishikesh; Rastogi, Pramod

    2018-02-01

    A noise-robust phase unwrapping algorithm is proposed based on state space analysis and polynomial phase approximation using wrapped phase measurement. The true phase is approximated as a two-dimensional first order polynomial function within a small sized window around each pixel. The estimates of polynomial coefficients provide the measurement of phase and local fringe frequencies. A state space representation of spatial phase evolution and the wrapped phase measurement is considered with the state vector consisting of polynomial coefficients as its elements. Instead of using the traditional nonlinear Kalman filter for the purpose of state estimation, we propose to use the linear Kalman filter operating directly with the wrapped phase measurement. The adaptive window width is selected at each pixel based on the local fringe density to strike a balance between the computation time and the noise robustness. In order to retrieve the unwrapped phase, either a line-scanning approach or a quality guided strategy of pixel selection is used depending on the underlying continuous or discontinuous phase distribution, respectively. Simulation and experimental results are provided to demonstrate the applicability of the proposed method.

  12. X-ray microanalytical surveys of minor element concentrations in unsectioned biological samples

    NASA Astrophysics Data System (ADS)

    Schofield, R. M. S.; Lefevre, H. W.; Overley, J. C.; Macdonald, J. D.

    1988-03-01

    Approximate concentration maps of small unsectioned biological samples are made using the pixel by pixel ratio of PIXE images to areal density images. Areal density images are derived from scanning transmission ion microscopy (STIM) proton energy-loss images. Corrections for X-ray production cross section variations, X-ray attenuation, and depth averaging are approximated or ignored. Estimates of the magnitude of the resulting error are made. Approximate calcium concentrations within the head of a fruit fly are reported. Concentrations in the retinula cell region of the eye average about 1 mg/g dry weight. Concentrations of zinc in the mandible of several ant species average about 40 mg/g. Zinc concentrations in the stomachs of these ants are at least 1 mg/g.

  13. VizieR Online Data Catalog: Hα images of HD93521 (Rauw+, 2012)

    NASA Astrophysics Data System (ADS)

    Rauw, G.; Morel, T.; Palate, M.

    2012-09-01

    The best quality H-alpha images of the field around HD93521 are provided. These data were obtained by amateur astronomer Gaston Dessy (member of the Society Astronomique de Liege, Belgium) with a TMB-92 9.2cm refractor. The first image (haskyco1.fit) was taken with an Atik 16IC CCD and is the combination of 15 individual 5min exposures. The field of view covers 41x30.8-arcmin squared. HD93521 and BD+38 2183 are located on the pixels (328, 230) and (218, 390) respectively. A flat sky background was subtracted. The second image (haskyco2.fit) was taken with an Atik 4000M CCD and is the combination of 12 individual 5min exposures. The field of view covers 127.7x127.7arcmin squared. HD93521 and BD+38 2183 are located on the pixels (1109, 1545) and (989, 1385) respectively. A flat sky background was subtracted. (2 data files).

  14. Chemical images of marine bio-active compounds by surface enhanced Raman spectroscopy and transposed orthogonal partial least squares (T-OPLS).

    PubMed

    Abbas, Aamer; Josefson, Mats; Nylund, Göran M; Pavia, Henrik; Abrahamsson, Katarina

    2012-08-06

    Surface enhanced Raman spectroscopy combined with transposed Orthogonal Partial Least Squares (T-OPLS) was shown to produce chemical images of the natural antibacterial surface-active compound 1,1,3,3-tetrabromo-2-heptanone (TBH) on Bonnemaisonia hamifera. The use of gold colloids functionalised with the internal standard 4-mercapto-benzonitrile (MBN) made it possible to create images of the relative concentration of TBH over the surfaces. A gradient of TBH could be mapped over and in the close vicinity of the B. hamifera algal vesicles at the attomol/pixel level. T-OPLS produced a measure of the spectral correlation for each pixel of the hyperspectral images whilst not including spectral variation that was linearly independent of the target spectrum. In this paper we show the possibility to retrieve specific spectral information with a low magnitude in a complex matrix. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. SU-C-304-05: Use of Local Noise Power Spectrum and Wavelets in Comprehensive EPID Quality Assurance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S; Gopal, A; Yan, G

    2015-06-15

    Purpose: As EPIDs are increasingly used for IMRT QA and real-time treatment verification, comprehensive quality assurance (QA) of EPIDs becomes critical. Current QA with phantoms such as the Las Vegas and PIPSpro™ can fail in the early detection of EPID artifacts. Beyond image quality assessment, we propose a quantitative methodology using local noise power spectrum (NPS) to characterize image noise and wavelet transform to identify bad pixels and inter-subpanel flat-fielding artifacts. Methods: A total of 93 image sets including bar-pattern images and open exposure images were collected from four iViewGT a-Si EPID systems over three years. Quantitative metrics such asmore » modulation transform function (MTF), NPS and detective quantum efficiency (DQE) were computed for each image set. Local 2D NPS was calculated for each subpanel. A 1D NPS was obtained by radial averaging the 2D NPS and fitted to a power-law function. R-square and slope of the linear regression analysis were used for panel performance assessment. Haar wavelet transformation was employed to identify pixel defects and non-uniform gain correction across subpanels. Results: Overall image quality was assessed with DQE based on empirically derived area under curve (AUC) thresholds. Using linear regression analysis of 1D NPS, panels with acceptable flat fielding were indicated by r-square between 0.8 and 1, and slopes of −0.4 to −0.7. However, for panels requiring flat fielding recalibration, r-square values less than 0.8 and slopes from +0.2 to −0.4 were observed. The wavelet transform successfully identified pixel defects and inter-subpanel flat fielding artifacts. Standard QA with the Las Vegas and PIPSpro phantoms failed to detect these artifacts. Conclusion: The proposed QA methodology is promising for the early detection of imaging and dosimetric artifacts of EPIDs. Local NPS can accurately characterize the noise level within each subpanel, while the wavelet transforms can detect bad pixels and inter-subpanel flat fielding artifacts.« less

  16. A general rough-surface inversion algorithm: Theory and application to SAR data

    NASA Technical Reports Server (NTRS)

    Moghaddam, M.

    1993-01-01

    Rough-surface inversion has significant applications in interpretation of SAR data obtained over bare soil surfaces and agricultural lands. Due to the sparsity of data and the large pixel size in SAR applications, it is not feasible to carry out inversions based on numerical scattering models. The alternative is to use parameter estimation techniques based on approximate analytical or empirical models. Hence, there are two issues to be addressed, namely, what model to choose and what estimation algorithm to apply. Here, a small perturbation model (SPM) is used to express the backscattering coefficients of the rough surface in terms of three surface parameters. The algorithm used to estimate these parameters is based on a nonlinear least-squares criterion. The least-squares optimization methods are widely used in estimation theory, but the distinguishing factor for SAR applications is incorporating the stochastic nature of both the unknown parameters and the data into formulation, which will be discussed in detail. The algorithm is tested with synthetic data, and several Newton-type least-squares minimization methods are discussed to compare their convergence characteristics. Finally, the algorithm is applied to multifrequency polarimetric SAR data obtained over some bare soil and agricultural fields. Results will be shown and compared to ground-truth measurements obtained from these areas. The strength of this general approach to inversion of SAR data is that it can be easily modified for use with any scattering model without changing any of the inversion steps. Note also that, for the same reason it is not limited to inversion of rough surfaces, and can be applied to any parameterized scattering process.

  17. 76 FR 51383 - Commercial Leasing for Wind Power on the Outer Continental Shelf (OCS) Offshore Rhode Island and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-18

    ... section). This section of the Call Area is approximately 1.25 square nmi and contains 1 partial OCS lease...). This section of the Call Area is approximately 246 square nmi and contains 31 whole OCS lease blocks as... section of the Call Area is approximately 1.25 square nmi and contains 1 partial OCS lease block. The...

  18. High-speed femtosecond pump-probe spectroscopy with a smart pixel detector array.

    PubMed

    Bourquin, S; Prasankumar, R P; Kärtner, F X; Fujimoto, J G; Lasser, T; Salathé, R P

    2003-09-01

    A new femtosecond pump-probe spectroscopy technique is demonstrated that permits the high-speed, parallel acquisition of pump-probe measurements at multiple wavelengths. This is made possible by use of a novel, two-dimensional smart pixel detector array that performs amplitude demodulation in real time on each pixel. This detector array can not only achieve sensitivities comparable with lock-in amplification but also simultaneously performs demodulation of probe transmission signals at multiple wavelengths, thus permitting rapid time- and wavelength-resolved femtosecond pump-probe spectroscopy. Measurements on a thin sample of bulk GaAs are performed across 58 simultaneous wavelengths. Differential probe transmission changes as small as approximately 2 x 10(-4) can be measured over a 5-ps delay scan in only approximately 3 min. This technology can be applied to a wide range of pump-probe measurements in condensed matter, chemistry, and biology.

  19. Use of local noise power spectrum and wavelet analysis in quantitative image quality assurance for EPIDs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Soyoung

    Purpose: To investigate the use of local noise power spectrum (NPS) to characterize image noise and wavelet analysis to isolate defective pixels and inter-subpanel flat-fielding artifacts for quantitative quality assurance (QA) of electronic portal imaging devices (EPIDs). Methods: A total of 93 image sets including custom-made bar-pattern images and open exposure images were collected from four iViewGT a-Si EPID systems over three years. Global quantitative metrics such as modulation transform function (MTF), NPS, and detective quantum efficiency (DQE) were computed for each image set. Local NPS was also calculated for individual subpanels by sampling region of interests within each subpanelmore » of the EPID. The 1D NPS, obtained by radially averaging the 2D NPS, was fitted to a power-law function. The r-square value of the linear regression analysis was used as a singular metric to characterize the noise properties of individual subpanels of the EPID. The sensitivity of the local NPS was first compared with the global quantitative metrics using historical image sets. It was then compared with two commonly used commercial QA systems with images collected after applying two different EPID calibration methods (single-level gain and multilevel gain). To detect isolated defective pixels and inter-subpanel flat-fielding artifacts, Haar wavelet transform was applied on the images. Results: Global quantitative metrics including MTF, NPS, and DQE showed little change over the period of data collection. On the contrary, a strong correlation between the local NPS (r-square values) and the variation of the EPID noise condition was observed. The local NPS analysis indicated image quality improvement with the r-square values increased from 0.80 ± 0.03 (before calibration) to 0.85 ± 0.03 (after single-level gain calibration) and to 0.96 ± 0.03 (after multilevel gain calibration), while the commercial QA systems failed to distinguish the image quality improvement between the two calibration methods. With wavelet analysis, defective pixels and inter-subpanel flat-fielding artifacts were clearly identified as spikes after thresholding the inversely transformed images. Conclusions: The proposed local NPS (r-square values) showed superior sensitivity to the noise level variations of individual subpanels compared with global quantitative metrics such as MTF, NPS, and DQE. Wavelet analysis was effective in detecting isolated defective pixels and inter-subpanel flat-fielding artifacts. The proposed methods are promising for the early detection of imaging artifacts of EPIDs.« less

  20. Extraction of temporal information in functional MRI

    NASA Astrophysics Data System (ADS)

    Singh, M.; Sungkarat, W.; Jeong, Jeong-Won; Zhou, Yongxia

    2002-10-01

    The temporal resolution of functional MRI (fMRI) is limited by the shape of the haemodynamic response function (hrf) and the vascular architecture underlying the activated regions. Typically, the temporal resolution of fMRI is on the order of 1 s. We have developed a new data processing approach to extract temporal information on a pixel-by-pixel basis at the level of 100 ms from fMRI data. Instead of correlating or fitting the time-course of each pixel to a single reference function, which is the common practice in fMRI, we correlate each pixel's time-course to a series of reference functions that are shifted with respect to each other by 100 ms. The reference function yielding the highest correlation coefficient for a pixel is then used as a time marker for that pixel. A Monte Carlo simulation and experimental study of this approach were performed to estimate the temporal resolution as a function of signal-to-noise ratio (SNR) in the time-course of a pixel. Assuming a known and stationary hrf, the simulation and experimental studies suggest a lower limit in the temporal resolution of approximately 100 ms at an SNR of 3. The multireference function approach was also applied to extract timing information from an event-related motor movement study where the subjects flexed a finger on cue. The event was repeated 19 times with the event's presentation staggered to yield an approximately 100-ms temporal sampling of the haemodynamic response over the entire presentation cycle. The timing differences among different regions of the brain activated by the motor task were clearly visualized and quantified by this method. The results suggest that it is possible to achieve a temporal resolution of /spl sim/200 ms in practice with this approach.

  1. Characterization of a hybrid energy-resolving photon-counting detector

    NASA Astrophysics Data System (ADS)

    Zang, A.; Pelzer, G.; Anton, G.; Ballabriga Sune, R.; Bisello, F.; Campbell, M.; Fauler, A.; Fiederle, M.; Llopart Cudie, X.; Ritter, I.; Tennert, F.; Wölfel, S.; Wong, W. S.; Michel, T.

    2014-03-01

    Photon-counting detectors in medical x-ray imaging provide a higher dose efficiency than integrating detectors. Even further possibilities for imaging applications arise, if the energy of each photon counted is measured, as for example K-edge-imaging or optimizing image quality by applying energy weighting factors. In this contribution, we show results of the characterization of the Dosepix detector. This hybrid photon- counting pixel detector allows energy resolved measurements with a novel concept of energy binning included in the pixel electronics. Based on ideas of the Medipix detector family, it provides three different modes of operation: An integration mode, a photon-counting mode, and an energy-binning mode. In energy-binning mode, it is possible to set 16 energy thresholds in each pixel individually to derive a binned energy spectrum in every pixel in one acquisition. The hybrid setup allows using different sensor materials. For the measurements 300 μm Si and 1 mm CdTe were used. The detector matrix consists of 16 x 16 square pixels for CdTe (16 x 12 for Si) with a pixel pitch of 220 μm. The Dosepix was originally intended for applications in the field of radiation measurement. Therefore it is not optimized towards medical imaging. The detector concept itself still promises potential as an imaging detector. We present spectra measured in one single pixel as well as in the whole pixel matrix in energy-binning mode with a conventional x-ray tube. In addition, results concerning the count rate linearity for the different sensor materials are shown as well as measurements regarding energy resolution.

  2. Automatic Sub-Pixel Co-Registration of LandSat-8 OLI and Sentinel-2A MSI Images Using Phase Correlation and Machine Learning Based Mapping

    NASA Technical Reports Server (NTRS)

    Skakun, Sergii; Roger, Jean-Claude; Vermote, Eric F.; Masek, Jeffrey G.; Justice, Christopher O.

    2017-01-01

    This study investigates misregistration issues between Landsat-8/OLI and Sentinel-2A/MSI at 30 m resolution, and between multi-temporal Sentinel-2A images at 10 m resolution using a phase correlation approach and multiple transformation functions. Co-registration of 45 Landsat-8 to Sentinel-2A pairs and 37 Sentinel-2A to Sentinel-2A pairs were analyzed. Phase correlation proved to be a robust approach that allowed us to identify hundreds and thousands of control points on images acquired more than 100 days apart. Overall, misregistration of up to 1.6 pixels at 30 m resolution between Landsat-8 and Sentinel-2A images, and 1.2 pixels and 2.8 pixels at 10 m resolution between multi-temporal Sentinel-2A images from the same and different orbits, respectively, were observed. The non-linear Random Forest regression used for constructing the mapping function showed best results in terms of root mean square error (RMSE), yielding an average RMSE error of 0.07+/-0.02 pixels at 30 m resolution, and 0.09+/-0.05 and 0.15+/-0.06 pixels at 10 m resolution for the same and adjacent Sentinel-2A orbits, respectively, for multiple tiles and multiple conditions. A simpler 1st order polynomial function (affine transformation) yielded RMSE of 0.08+/-0.02 pixels at 30 m resolution and 0.12+/-0.06 (same Sentinel-2A orbits) and 0.20+/-0.09 (adjacent orbits) pixels at 10 m resolution.

  3. High Spectral Resolution, High Cadence, Imaging X-Ray Microcalorimeters for Solar Physics

    NASA Technical Reports Server (NTRS)

    Bandler, Simon R.; Bailey, Catherine N.; Bookbinder, Jay A.; DeLuca, Edward E.; Chervenak, Jay A.; Eckart, Megan E.; Finkbeiner, Fred M.; Kelley, Daniel P.; Kelley, Richard L.; Kilbourne, Caroline A.; hide

    2010-01-01

    High spectral resolution, high cadence, imaging x-ray spectroscopy has the potential to revolutionize the study of the solar corona. To that end we have been developing transition-edge-sensor (TES) based x-ray micro calorimeter arrays for future solar physics missions where imaging and high energy resolution spectroscopy will enable previously impossible studies of the dynamics and energetics of the solar corona. The characteristics of these x-ray microcalorimeters are significantly different from conventional micro calorimeters developed for astrophysics because they need to accommodate much higher count rates (300-1000 cps) while maintaining high energy resolution of less than 4 eV FWHM in the X-ray energy band of 0.2-10 keV. The other main difference is a smaller pixel size (less than 75 x 75 square microns) than is typical for x-ray micro calorimeters in order to provide angular resolution less than 1 arcsecond. We have achieved at energy resolution of 2.15 eV at 6 keV in a pixel with a 12 x 12 square micron TES sensor and 34 x 34 x 9.1 micron gold absorber, and a resolution of 2.30 eV at 6 keV in a pixel with a 35 x 35 micron TES and a 57 x 57 x 9.1 micron gold absorber. This performance has been achieved in pixels that are fabricated directly onto solid substrates, ie. they are not supported by silicon nitride membranes. We present the results from these detectors, the expected performance at high count-rates, and prospects for the use of this technology for future Solar missions.

  4. A Matlab Program for Textural Classification Using Neural Networks

    NASA Astrophysics Data System (ADS)

    Leite, E. P.; de Souza, C.

    2008-12-01

    A new MATLAB code that provides tools to perform classification of textural images for applications in the Geosciences is presented. The program, here coined TEXTNN, comprises the computation of variogram maps in the frequency domain for specific lag distances in the neighborhood of a pixel. The result is then converted back to spatial domain, where directional or ominidirectional semivariograms are extracted. Feature vectors are built with textural information composed of the semivariance values at these lag distances and, moreover, with histogram measures of mean, standard deviation and weighted fill-ratio. This procedure is applied to a selected group of pixels or to all pixels in an image using a moving window. A feed- forward back-propagation Neural Network can then be designed and trained on feature vectors of predefined classes (training set). The training phase minimizes the mean-squared error on the training set. Additionally, at each iteration, the mean-squared error for every validation is assessed and a test set is evaluated. The program also calculates contingency matrices, global accuracy and kappa coefficient for the three data sets, allowing a quantitative appraisal of the predictive power of the Neural Network models. The interpreter is able to select the best model obtained from a k-fold cross-validation or to use a unique split-sample data set for classification of all pixels in a given textural image. The code is opened to the geoscientific community and is very flexible, allowing the experienced user to modify it as necessary. The performance of the algorithms and the end-user program were tested using synthetic images, orbital SAR (RADARSAT) imagery for oil seepage detection, and airborne, multi-polarimetric SAR imagery for geologic mapping. The overall results proved very promising.

  5. A Regional View of the Libya Montes

    NASA Technical Reports Server (NTRS)

    2000-01-01

    [figure removed for brevity, see original site]

    The Libya Montes are a ring of mountains up-lifted by the giant impact that created the Isidis basin to the north. During 1999, this region became one of the top two that were being considered for the now-canceled Mars Surveyor 2001 Lander. The Isidis basin is very, very ancient. Thus, the mountains that form its rims would contain some of the oldest rocks available at the Martian surface, and a landing in this region might potentially provide information about conditions on early Mars. In May 1999, the wide angle cameras of the Mars Global Surveyor Mars Orbiter Camera system were used in what was called the 'Geodesy Campaign' to obtain nearly global maps of the planet in color and in stereo at resolutions of 240 m/pixel (787 ft/pixel) for the red camera and 480 m/pixel (1575 ft/pixel) for the blue. Shown here are color and stereo views constructed from mosaics of the Geodesy Campaign images for the Libya Montes region of Mars. After they formed by giant impact, the Libya Mountains and valleys were subsequently modified and eroded by other processes, including wind, impact cratering, and flow of liquid water to make the many small valleys that can be seen running northward in the scene. The pictures shown here cover nearly 122,000 square kilometers (47,000 square miles) between latitudes 0.1oN and 4.0oN, longitudes 271.5oW and 279.9oW. The mosaics are about 518 km (322 mi) wide by 235 km (146 mi)high. Red-blue '3-D' glasses are needed to view the stereo image.

  6. A high-resolution line sensor-based photostereometric system for measuring jaw movements in 6 degrees of freedom.

    PubMed

    Hayashi, T; Kurokawa, M; Miyakawa, M; Aizawa, T; Kanaki, A; Saitoh, A; Ishioka, K

    1994-01-01

    Photostereometry has widely been applied to the measurement of mandibular movements in 6 degrees of freedom. In order to improve the accuracy of this measurement, we developed a system utilizing small LEDs mounted on the jaws in redundant numbers and a 5000 pixel linear charge-coupled device (CCD) as a photo-sensor. A total of eight LEDs are mounted on the jaws, in two sets of four, by means of connecting facebows, each weighing approximately 55 g. The position of the LEDs are detected in three-dimensions by two sets of three CCD cameras, located bilaterally. The position and orientation of the mandible are estimated from the positions of all LEDs measured in the sense of least-squares, thereby effectively reducing the measurement errors. The static overall accuracy at all tooth and condylar points was considered to lie within 0.19 and 0.34 mm, respectively, from various accuracy verification tests.

  7. Asteroid Size-Frequency Distribution

    NASA Technical Reports Server (NTRS)

    Tedesco, Edward F.

    2001-01-01

    A total of six deep exposures (using AOT CAM01 with a 6 inch PFOV) through the ISOCAM LW10 filter (IRAS Band 1, i.e. 12 micron) were obtained on an approximately 15 arcminute square field centered on the ecliptic plane. Point sources were extracted using the technique described. Two known asteroids appear in these frames and 20 sources moving with velocities appropriate for main belt asteroids are present. Most of the asteroids detected have flux densities less than 1 mJy, i,e., between 150 and 350 times fainter than any of the asteroids observed by IRAS. These data provide the first direct measurement of the 12 pm sky-plane density for asteroids on the ecliptic equator. The median zodiacal foreground, as measured by ISOCAM during this survey, is found to be 22.1 +/- 1.5 mJy per pixel, i.e., 26.2 +/- 1.7 MJy/sr. The results presented here imply that the actual number of kilometer-sized asteroids is significantly greater than previously believed and in reasonable agreement with the Statistical Asteroid Model.

  8. Evaluation of the MTF for a-Si:H imaging arrays

    NASA Astrophysics Data System (ADS)

    Yorkston, John; Antonuk, Larry E.; Seraji, N.; Huang, Weidong; Siewerdsen, Jeffrey H.; El-Mohri, Youcef

    1994-05-01

    Hydrogenated amorphous silicon imaging arrays are being developed for numerous applications in medical imaging. Diagnostic and megavoltage images have previously been reported and a number of the intrinsic properties of the arrays have been investigated. This paper reports on the first attempt to characterize the intrinsic spatial resolution of the imaging pixels on a 450 micrometers pitch, n-i-p imaging array fabricated at Xerox P.A.R.C. The pre- sampled modulation transfer function was measured by scanning a approximately 25 micrometers wide slit of visible wavelength light across a pixel in both the DATA and FET directions. The results show that the response of the pixel in these orthogonal directions is well described by a simple model that accounts for asymmetries in the pixel response due to geometric aspects of the pixel design.

  9. Electron imaging with Medipix2 hybrid pixel detector.

    PubMed

    McMullan, G; Cattermole, D M; Chen, S; Henderson, R; Llopart, X; Summerfield, C; Tlustos, L; Faruqi, A R

    2007-01-01

    The electron imaging performance of Medipix2 is described. Medipix2 is a hybrid pixel detector composed of two layers. It has a sensor layer and a layer of readout electronics, in which each 55 microm x 55 microm pixel has upper and lower energy discrimination and MHz rate counting. The sensor layer consists of a 300 microm slab of pixellated monolithic silicon and this is bonded to the readout chip. Experimental measurement of the detective quantum efficiency, DQE(0) at 120 keV shows that it can reach approximately 85% independent of electron exposure, since the detector has zero noise, and the DQE(Nyquist) can reach approximately 35% of that expected for a perfect detector (4/pi(2)). Experimental measurement of the modulation transfer function (MTF) at Nyquist resolution for 120 keV electrons using a 60 keV lower energy threshold, yields a value that is 50% of that expected for a perfect detector (2/pi). Finally, Monte Carlo simulations of electron tracks and energy deposited in adjacent pixels have been performed and used to calculate expected values for the MTF and DQE as a function of the threshold energy. The good agreement between theory and experiment allows suggestions for further improvements to be made with confidence. The present detector is already very useful for experiments that require a high DQE at very low doses.

  10. First images of a digital autoradiography system based on a Medipix2 hybrid silicon pixel detector.

    PubMed

    Mettivier, Giovanni; Montesi, Maria Cristina; Russo, Paolo

    2003-06-21

    We present the first images of beta autoradiography obtained with the high-resolution hybrid pixel detector consisting of the Medipix2 single photon counting read-out chip bump-bonded to a 300 microm thick silicon pixel detector. This room temperature system has 256 x 256 square pixels of 55 microm pitch (total sensitive area of 14 x 14 mm2), with a double threshold discriminator and a 13-bit counter in each pixel. It is read out via a dedicated electronic interface and control software, also developed in the framework of the European Medipix2 Collaboration. Digital beta autoradiograms of 14C microscale standard strips (containing separate bands of increasing specific activity in the range 0.0038-32.9 kBq g(-1)) indicate system linearity down to a total background noise of 1.8 x 10(-3) counts mm(-2) s(-1). The minimum detectable activity is estimated to be 0.012 Bq for 36,000 s exposure and 0.023 Bq for 10,800 s exposure. The measured minimum detection threshold is less than 1600 electrons (equivalent to about 6 keV Si). This real-time system for beta autoradiography offers lower pixel pitch and higher sensitive area than the previous Medipix1-based system. It has a 14C sensitivity better than that of micro channel plate based systems, which, however, shows higher spatial resolution and sensitive area.

  11. X-ray ‘ghost images’ could cut radiation doses

    NASA Astrophysics Data System (ADS)

    Chen, Sophia

    2018-03-01

    On its own, a single-pixel camera captures pictures that are pretty dull: squares that are completely black, completely white, or some shade of gray in between. All it does, after all, is detect brightness. Yet by connecting a single-pixel camera to a patterned light source, a team of physicists in China has made detailed x-ray images using a statistical technique called ghost imaging, first pioneered 20 years ago in infrared and visible light. Researchers in the field say future versions of this system could take clear x-ray photographs with cheap cameras—no need for lenses and multipixel detectors—and less cancer-causing radiation than conventional techniques.

  12. Optical and electrical characterization of a back-thinned CMOS active pixel sensor

    NASA Astrophysics Data System (ADS)

    Blue, Andrew; Clark, A.; Houston, S.; Laing, A.; Maneuski, D.; Prydderch, M.; Turchetta, R.; O'Shea, V.

    2009-06-01

    This work will report on the first work on the characterization of a back-thinned Vanilla-a 512×512 (25 μm squared) active pixel sensor (APS). Characterization of the detectors was carried out through the analysis of photon transfer curves to yield a measurement of full well capacity, noise levels, gain constants and linearity. Spectral characterization of the sensors was also performed in the visible and UV regions. A full comparison against non-back-thinned front illuminated Vanilla sensors is included. Such measurements suggest that the Vanilla APS will be suitable for a wide range of applications, including particle physics and biomedical imaging.

  13. Development of an automated film-reading system for ballistic ranges

    NASA Technical Reports Server (NTRS)

    Yates, Leslie A.

    1992-01-01

    Software for an automated film-reading system that uses personal computers and digitized shadowgraphs is described. The software identifies pixels associated with fiducial-line and model images, and least-squares procedures are used to calculate the positions and orientations of the images. Automated position and orientation readings for sphere and cone models are compared to those obtained using a manual film reader. When facility calibration errors are removed from these readings, the accuracy of the automated readings is better than the pixel resolution, and it is equal to, or better than, the manual readings. The effects of film-reading and facility-calibration errors on calculated aerodynamic coefficients is discussed.

  14. Classification of multispectral image data by the Binary Diamond neural network and by nonparametric, pixel-by-pixel methods

    NASA Technical Reports Server (NTRS)

    Salu, Yehuda; Tilton, James

    1993-01-01

    The classification of multispectral image data obtained from satellites has become an important tool for generating ground cover maps. This study deals with the application of nonparametric pixel-by-pixel classification methods in the classification of pixels, based on their multispectral data. A new neural network, the Binary Diamond, is introduced, and its performance is compared with a nearest neighbor algorithm and a back-propagation network. The Binary Diamond is a multilayer, feed-forward neural network, which learns from examples in unsupervised, 'one-shot' mode. It recruits its neurons according to the actual training set, as it learns. The comparisons of the algorithms were done by using a realistic data base, consisting of approximately 90,000 Landsat 4 Thematic Mapper pixels. The Binary Diamond and the nearest neighbor performances were close, with some advantages to the Binary Diamond. The performance of the back-propagation network lagged behind. An efficient nearest neighbor algorithm, the binned nearest neighbor, is described. Ways for improving the performances, such as merging categories, and analyzing nonboundary pixels, are addressed and evaluated.

  15. Design and standalone characterisation of a capacitively coupled HV-CMOS sensor chip for the CLIC vertex detector

    NASA Astrophysics Data System (ADS)

    Kremastiotis, I.; Ballabriga, R.; Campbell, M.; Dannheim, D.; Fiergolski, A.; Hynds, D.; Kulis, S.; Peric, I.

    2017-09-01

    The concept of capacitive coupling between sensors and readout chips is under study for the vertex detector at the proposed high-energy CLIC electron positron collider. The CLICpix Capacitively Coupled Pixel Detector (C3PD) is an active High-Voltage CMOS sensor, designed to be capacitively coupled to the CLICpix2 readout chip. The chip is implemented in a commercial 180 nm HV-CMOS process and contains a matrix of 128×128 square pixels with 25μm pitch. First prototypes have been produced with a standard resistivity of ~20 Ωcm for the substrate and tested in standalone mode. The results show a rise time of ~20 ns, charge gain of 190 mV/ke- and ~40 e- RMS noise for a power consumption of 4.8μW/pixel. The main design aspects, as well as standalone measurement results, are presented.

  16. Estimation of saturated pixel values in digital color imaging

    PubMed Central

    Zhang, Xuemei; Brainard, David H.

    2007-01-01

    Pixel saturation, where the incident light at a pixel causes one of the color channels of the camera sensor to respond at its maximum value, can produce undesirable artifacts in digital color images. We present a Bayesian algorithm that estimates what the saturated channel's value would have been in the absence of saturation. The algorithm uses the non-saturated responses from the other color channels, together with a multivariate Normal prior that captures the correlation in response across color channels. The appropriate parameters for the prior may be estimated directly from the image data, since most image pixels are not saturated. Given the prior, the responses of the non-saturated channels, and the fact that the true response of the saturated channel is known to be greater than the saturation level, the algorithm returns the optimal expected mean square estimate for the true response. Extensions of the algorithm to the case where more than one channel is saturated are also discussed. Both simulations and examples with real images are presented to show that the algorithm is effective. PMID:15603065

  17. Shade images of forested areas obtained from LANDSAT MSS data

    NASA Technical Reports Server (NTRS)

    Shimabukuro, Yosio Edemir; Smith, James A.

    1989-01-01

    The pixel size in the present day Remote Sensing systems is large enough to include different types of land cover. Depending upon the target area, several components may be present within the pixel. In forested areas, generally, three main components are present: tree canopy, soil (understory), and shadow. The objective is to generate a shade (shadow) image of forested areas from multispectral measurements of LANDSAT MSS (Multispectral Scanner) data by implementing a linear mixing model, where shadow is considered as one of the primary components in a pixel. The shade images are related to the observed variation in forest structure, i.e., the proportion of inferred shadow in a pixel is related to different forest ages, forest types, and tree crown cover. The Constrained Least Squares (CLS) method is used to generate shade images for forest of eucalyptus and vegetation of cerrado using LANDSAT MSS imagery over Itapeva study area in Brazil. The resulted shade images may explain the difference on ages for forest of eucalyptus and the difference on three crown cover for vegetation of cerrado.

  18. A 7 ke-SD-FWC 1.2 e-RMS Temporal Random Noise 128×256 Time-Resolved CMOS Image Sensor With Two In-Pixel SDs for Biomedical Applications.

    PubMed

    Seo, Min-Woong; Kawahito, Shoji

    2017-12-01

    A large full well capacity (FWC) for wide signal detection range and low temporal random noise for high sensitivity lock-in pixel CMOS image sensor (CIS) embedded with two in-pixel storage diodes (SDs) has been developed and presented in this paper. For fast charge transfer from photodiode to SDs, a lateral electric field charge modulator (LEFM) is used for the developed lock-in pixel. As a result, the time-resolved CIS achieves a very large SD-FWC of approximately 7ke-, low temporal random noise of 1.2e-rms at 20 fps with true correlated double sampling operation and fast intrinsic response less than 500 ps at 635 nm. The proposed imager has an effective pixel array of and a pixel size of . The sensor chip is fabricated by Dongbu HiTek 1P4M 0.11 CIS process.

  19. Effects of autocorrelation upon LANDSAT classification accuracy. [Richmond, Virginia and Denver, Colorado

    NASA Technical Reports Server (NTRS)

    Craig, R. G. (Principal Investigator)

    1983-01-01

    Richmond, Virginia and Denver, Colorado were study sites in an effort to determine the effect of autocorrelation on the accuracy of a parallelopiped classifier of LANDSAT digital data. The autocorrelation was assumed to decay to insignificant levels when sampled at distances of at least ten pixels. Spectral themes developed using blocks of adjacent pixels, and using groups of pixels spaced at least 10 pixels apart were used. Effects of geometric distortions were minimized by using only pixels from the interiors of land cover sections. Accuracy was evaluated for three classes; agriculture, residential and "all other"; both type 1 and type 2 errors were evaluated by means of overall classification accuracy. All classes give comparable results. Accuracy is approximately the same in both techniques; however, the variance in accuracy is significantly higher using the themes developed from autocorrelated data. The vectors of mean spectral response were nearly identical regardless of sampling method used. The estimated variances were much larger when using autocorrelated pixels.

  20. Achieving subpixel resolution with time-correlated transient signals in pixelated CdZnTe gamma-ray sensors using a focused laser beam (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ocampo Giraldo, Luis A.; Bolotnikov, Aleksey E.; Camarda, Giuseppe S.; Cui, Yonggang; De Geronimo, Gianluigi; Gul, Rubi; Fried, Jack; Hossain, Anwar; Unlu, Kenan; Vernon, Emerson; Yang, Ge; James, Ralph B.

    2017-05-01

    High-resolution position-sensitive detectors have been proposed to correct response non-uniformities in Cadmium Zinc Telluride (CZT) crystals by virtually subdividing the detectors area into small voxels and equalizing responses from each voxel. 3D pixelated detectors coupled with multichannel readout electronics are the most advanced type of CZT devices offering many options in signal processing and enhancing detector performance. One recent innovation proposed for pixelated detectors is to use the induced (transient) signals from neighboring pixels to achieve high sub-pixel position resolution while keeping large pixel sizes. The main hurdle in achieving this goal is the relatively low signal induced on the neighboring pixels because of the electrostatic shielding effect caused by the collecting pixel. In addition, to achieve high position sensitivity one should rely on time-correlated transient signals, which means that digitized output signals must be used. We present the results of our studies to measure the amplitude of the pixel signals so that these can be used to measure positions of the interaction points. This is done with the processing of digitized correlated time signals measured from several adjacent pixels taking into account rise-time and charge-sharing effects. In these measurements we used a focused pulsed laser to generate a 10-micron beam at one milliwatt (650-nm wavelength) over the detector surface while the collecting pixel was moved in cardinal directions. The results include measurements that present the benefits of combining conventional pixel geometry with digital pulse processing for the best approach in achieving sub-pixel position resolution with the pixel dimensions of approximately 2 mm. We also present the sub-pixel resolution measurements at comparable energies from various gamma emitting isotopes.

  1. Rocking-beam spectrum images and ALCHEMI of Ni{sub 50}Al{sub 40}Fe{sub 10}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, I.M.; Bentley, J.

    1997-04-01

    A rocking-beam energy-dispersive X-ray (EDX) spectrum image was acquired near the [035] zone axis of a B2-ordered alloy of composition Ni{sub 50}Al{sub 40}Fe{sub 10}. Images comparable to those acquired by Rossouw et al. were formed a posteriori by integrating the X-ray intensities in windows enclosing the Al-K, Fe-K{sub {alpha}}, and Ni-K{sub {alpha}} characteristic X-ray peaks for each pixel of the spectrum image. These images are shown along with a bright-field transmission channeling pattern (TCP), which records the signal from the bright-field STEM detector as the incident beam direction is varied with the beam-tilt coils, and an EDX spectrum from onemore » pixel of the image. The range of orientations from which the spectrum image was acquired is indicated by the square superimposed on the TCP. ALCHEMI (atom-location by channeling-enhanced microanalysis) was performed on a subset of the spectrum image using standard methods. Spectra from a series of {approximately}30 pixels along lines parallel to the (200) band were summed at each of 31 orientations relative to the band in the range 0 {le} {theta}/{theta}{sub 200} {le} 2.3. Characteristic X-ray intensities of the K-shell X-rays of Ni, Fe, and Al were extracted from the 31 summed spectra with the simplex fitting procedure of the DTSA spectral analysis software. The fraction of Fe on the `Ni`-site from this analysis, p{sub Fe`Ni`} = 23.8 {+-} 2.1%, is in excellent agreement with p{sub Fe`Ni`} = 23.7 {+-} 0.9%, which was determined by an analysis of a series of ten spectra acquired at orientations of the crystal carefully chosen so that the contributions of nonsystematic reflections are negligible.« less

  2. Comparison of a CCD and an APS for soft X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Stewart, Graeme; Bates, R.; Blue, A.; Clark, A.; Dhesi, S. S.; Maneuski, D.; Marchal, J.; Steadman, P.; Tartoni, N.; Turchetta, R.

    2011-12-01

    We compare a new CMOS Active Pixel Sensor (APS) to a Princeton Instruments PIXIS-XO: 2048B Charge Coupled Device (CCD) with soft X-rays tested in a synchrotron beam line at the Diamond Light Source (DLS). Despite CCDs being established in the field of scientific imaging, APS are an innovative technology that offers advantages over CCDs. These include faster readout, higher operational temperature, in-pixel electronics for advanced image processing and reduced manufacturing cost. The APS employed was the Vanilla sensor designed by the MI3 collaboration and funded by an RCUK Basic technology grant. This sensor has 520 x 520 square pixels, of size 25 μm on each side. The sensor can operate at a full frame readout of up to 20 Hz. The sensor had been back-thinned, to the epitaxial layer. This was the first time that a back-thinned APS had been demonstrated at a beam line at DLS. In the synchrotron experiment soft X-rays with an energy of approximately 708 eV were used to produce a diffraction pattern from a permalloy sample. The pattern was imaged at a range of integration times with both sensors. The CCD had to be operated at a temperature of -55°C whereas the Vanilla was operated over a temperature range from 20°C to -10°C. We show that the APS detector can operate with frame rates up to two hundred times faster than the CCD, without excessive degradation of image quality. The signal to noise of the APS is shown to be the same as that of the CCD at identical integration times and the response is shown to be linear, with no charge blooming effects. The experiment has allowed a direct comparison of back thinned APS and CCDs in a real soft x-ray synchrotron experiment.

  3. Pure endmember extraction using robust kernel archetypoid analysis for hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Sun, Weiwei; Yang, Gang; Wu, Ke; Li, Weiyue; Zhang, Dianfa

    2017-09-01

    A robust kernel archetypoid analysis (RKADA) method is proposed to extract pure endmembers from hyperspectral imagery (HSI). The RKADA assumes that each pixel is a sparse linear mixture of all endmembers and each endmember corresponds to a real pixel in the image scene. First, it improves the re8gular archetypal analysis with a new binary sparse constraint, and the adoption of the kernel function constructs the principal convex hull in an infinite Hilbert space and enlarges the divergences between pairwise pixels. Second, the RKADA transfers the pure endmember extraction problem into an optimization problem by minimizing residual errors with the Huber loss function. The Huber loss function reduces the effects from big noises and outliers in the convergence procedure of RKADA and enhances the robustness of the optimization function. Third, the random kernel sinks for fast kernel matrix approximation and the two-stage algorithm for optimizing initial pure endmembers are utilized to improve its computational efficiency in realistic implementations of RKADA, respectively. The optimization equation of RKADA is solved by using the block coordinate descend scheme and the desired pure endmembers are finally obtained. Six state-of-the-art pure endmember extraction methods are employed to make comparisons with the RKADA on both synthetic and real Cuprite HSI datasets, including three geometrical algorithms vertex component analysis (VCA), alternative volume maximization (AVMAX) and orthogonal subspace projection (OSP), and three matrix factorization algorithms the preconditioning for successive projection algorithm (PreSPA), hierarchical clustering based on rank-two nonnegative matrix factorization (H2NMF) and self-dictionary multiple measurement vector (SDMMV). Experimental results show that the RKADA outperforms all the six methods in terms of spectral angle distance (SAD) and root-mean-square-error (RMSE). Moreover, the RKADA has short computational times in offline operations and shows significant improvement in identifying pure endmembers for ground objects with smaller spectrum differences. Therefore, the RKADA could be an alternative for pure endmember extraction from hyperspectral images.

  4. A Multipixel Time Series Analysis Method Accounting for Ground Motion, Atmospheric Noise, and Orbital Errors

    NASA Astrophysics Data System (ADS)

    Jolivet, R.; Simons, M.

    2018-02-01

    Interferometric synthetic aperture radar time series methods aim to reconstruct time-dependent ground displacements over large areas from sets of interferograms in order to detect transient, periodic, or small-amplitude deformation. Because of computational limitations, most existing methods consider each pixel independently, ignoring important spatial covariances between observations. We describe a framework to reconstruct time series of ground deformation while considering all pixels simultaneously, allowing us to account for spatial covariances, imprecise orbits, and residual atmospheric perturbations. We describe spatial covariances by an exponential decay function dependent of pixel-to-pixel distance. We approximate the impact of imprecise orbit information and residual long-wavelength atmosphere as a low-order polynomial function. Tests on synthetic data illustrate the importance of incorporating full covariances between pixels in order to avoid biased parameter reconstruction. An example of application to the northern Chilean subduction zone highlights the potential of this method.

  5. Bio-Inspired Asynchronous Pixel Event Tricolor Vision Sensor.

    PubMed

    Lenero-Bardallo, Juan Antonio; Bryn, D H; Hafliger, Philipp

    2014-06-01

    This article investigates the potential of the first ever prototype of a vision sensor that combines tricolor stacked photo diodes with the bio-inspired asynchronous pixel event communication protocol known as Address Event Representation (AER). The stacked photo diodes are implemented in a 22 × 22 pixel array in a standard STM 90 nm CMOS process. Dynamic range is larger than 60 dB and pixels fill factor is 28%. The pixels employ either simple pulse frequency modulation (PFM) or a Time-to-First-Spike (TFS) mode. A heuristic linear combination of the chip's inherent pseudo colors serves to approximate RGB color representation. Furthermore, the sensor outputs can be processed to represent the radiation in the near infrared (NIR) band without employing external filters, and to color-encode direction of motion due to an asymmetry in the update rates of the different diode layers.

  6. Imaging During MESSENGER's Second Flyby of Mercury

    NASA Astrophysics Data System (ADS)

    Chabot, N. L.; Prockter, L. M.; Murchie, S. L.; Robinson, M. S.; Laslo, N. R.; Kang, H. K.; Hawkins, S. E.; Vaughan, R. M.; Head, J. W.; Solomon, S. C.; MESSENGER Team

    2008-12-01

    During MESSENGER's second flyby of Mercury on October 6, 2008, the Mercury Dual Imaging System (MDIS) will acquire 1287 images. The images will include coverage of about 30% of Mercury's surface not previously seen by spacecraft. A portion of the newly imaged terrain will be viewed during the inbound portion of the flyby. On the outbound leg, MDIS will image additional previously unseen terrain as well as regions imaged under different illumination geometry by Mariner 10. These new images, when combined with images from Mariner 10 and from MESSENGER's first Mercury flyby, will enable the first regional- resolution global view of Mercury constituting a combined total coverage of about 96% of the planet's surface. MDIS consists of both a Wide Angle Camera (WAC) and a Narrow Angle Camera (NAC). During MESSENGER's second Mercury flyby, the following imaging activities are planned: about 86 minutes before the spacecraft's closest pass by the planet, the WAC will acquire images through 11 different narrow-band color filters of the approaching crescent planet at a resolution of about 5 km/pixel. At slightly less than 1 hour to closest approach, the NAC will acquire a 4-column x 11-row mosaic with an approximate resolution of 450 m/pixel. At 8 minutes after closest approach, the WAC will obtain the highest-resolution multispectral images to date of Mercury's surface, imaging a portion of the surface through 11 color filters at resolutions of about 250-600 m/pixel. A strip of high-resolution NAC images, with a resolution of approximately 100 m/pixel, will follow these WAC observations. The NAC will next acquire a 15-column x 13- row high-resolution mosaic of the northern hemisphere of the departing planet, beginning approximately 21 minutes after closest approach, with resolutions of 140-300 m/pixel; this mosaic will fill a large gore in the Mariner 10 data. At about 42 minutes following closest approach, the WAC will acquire a 3x3, 11-filter, full- planet mosaic with an average resolution of 2.5 km/pixel. Two NAC mosaics of the entire departing planet will be acquired beginning about 66 minutes after closest approach, with resolutions of 500-700 m/pixel. About 89 minutes following closest approach, the WAC will acquire a multispectral image set with a resolution of about 5 km/pixel. Following this WAC image set, MDIS will continue to acquire occasional images with both the WAC and NAC until 20 hours after closest approach, at which time the flyby data will begin being transmitted to Earth.

  7. An Alternating Least Squares Method for the Weighted Approximation of a Symmetric Matrix.

    ERIC Educational Resources Information Center

    ten Berge, Jos M. F.; Kiers, Henk A. L.

    1993-01-01

    R. A. Bailey and J. C. Gower explored approximating a symmetric matrix "B" by another, "C," in the least squares sense when the squared discrepancies for diagonal elements receive specific nonunit weights. A solution is proposed where "C" is constrained to be positive semidefinite and of a fixed rank. (SLD)

  8. Small pixel cross-talk MTF and its impact on MWIR sensor performance

    NASA Astrophysics Data System (ADS)

    Goss, Tristan M.; Willers, Cornelius J.

    2017-05-01

    As pixel sizes reduce in the development of modern High Definition (HD) Mid Wave Infrared (MWIR) detectors the interpixel cross-talk becomes increasingly difficult to regulate. The diffusion lengths required to achieve the quantum efficiency and sensitivity of MWIR detectors are typically longer than the pixel pitch dimension, and the probability of inter-pixel cross-talk increases as the pixel pitch/diffusion length fraction decreases. Inter-pixel cross-talk is most conveniently quantified by the focal plane array sampling Modulation Transfer Function (MTF). Cross-talk MTF will reduce the ideal sinc square pixel MTF that is commonly used when modelling sensor performance. However, cross-talk MTF data is not always readily available from detector suppliers, and since the origins of inter-pixel cross-talk are uniquely device and manufacturing process specific, no generic MTF models appear to satisfy the needs of the sensor designers and analysts. In this paper cross-talk MTF data has been collected from recent publications and the development for a generic cross-talk MTF model to fit this data is investigated. The resulting cross-talk MTF model is then included in a MWIR sensor model and the impact on sensor performance is evaluated in terms of the National Imagery Interoperability Rating Scale's (NIIRS) General Image Quality Equation (GIQE) metric for a range of fnumber/ detector pitch Fλ/d configurations and operating environments. By applying non-linear boost transfer functions in the signal processing chain, the contrast losses due to cross-talk may be compensated for. Boost transfer functions, however, also reduce the signal to noise ratio of the sensor. In this paper boost function limits are investigated and included in the sensor performance assessments.

  9. Pixel-based meshfree modelling of skeletal muscles.

    PubMed

    Chen, Jiun-Shyan; Basava, Ramya Rao; Zhang, Yantao; Csapo, Robert; Malis, Vadim; Sinha, Usha; Hodgson, John; Sinha, Shantanu

    2016-01-01

    This paper introduces the meshfree Reproducing Kernel Particle Method (RKPM) for 3D image-based modeling of skeletal muscles. This approach allows for construction of simulation model based on pixel data obtained from medical images. The material properties and muscle fiber direction obtained from Diffusion Tensor Imaging (DTI) are input at each pixel point. The reproducing kernel (RK) approximation allows a representation of material heterogeneity with smooth transition. A multiphase multichannel level set based segmentation framework is adopted for individual muscle segmentation using Magnetic Resonance Images (MRI) and DTI. The application of the proposed methods for modeling the human lower leg is demonstrated.

  10. A method of object recognition for single pixel imaging

    NASA Astrophysics Data System (ADS)

    Li, Boxuan; Zhang, Wenwen

    2018-01-01

    Computational ghost imaging(CGI), utilizing a single-pixel detector, has been extensively used in many fields. However, in order to achieve a high-quality reconstructed image, a large number of iterations are needed, which limits the flexibility of using CGI in practical situations, especially in the field of object recognition. In this paper, we purpose a method utilizing the feature matching to identify the number objects. In the given system, approximately 90% of accuracy of recognition rates can be achieved, which provides a new idea for the application of single pixel imaging in the field of object recognition

  11. Viking Lander Mosaics of Mars

    NASA Technical Reports Server (NTRS)

    Morris, E. C.

    1985-01-01

    The Viking Lander 1 and 2 cameras acquired many high-resolution pictures of the Chryse Planitia and Utopia Planitia landing sites. Based on computer-processed data of a selected number of these pictures, eight high-resolution mosaics were published by the U.S. Geological Survey as part of the Atlas of Mars, Miscellaneous Investigation Series. The mosaics are composites of the best picture elements (pixels) of all the Lander pictures used. Each complete mosaic extends 342.5 deg in azimuth, from approximately 5 deg above the horizon to 60 deg below, and incorporates approximately 15 million pixels. Each mosaic is shown in a set of five sheets. One sheet contains the full panorama from one camera taken in either morning or evening. The other four sheets show sectors of the panorama at an enlarged scale; when joined together they make a panorama approximately 2' X 9'.

  12. Cascaded image analysis for dynamic crack detection in material testing

    NASA Astrophysics Data System (ADS)

    Hampel, U.; Maas, H.-G.

    Concrete probes in civil engineering material testing often show fissures or hairline-cracks. These cracks develop dynamically. Starting at a width of a few microns, they usually cannot be detected visually or in an image of a camera imaging the whole probe. Conventional image analysis techniques will detect fissures only if they show a width in the order of one pixel. To be able to detect and measure fissures with a width of a fraction of a pixel at an early stage of their development, a cascaded image analysis approach has been developed, implemented and tested. The basic idea of the approach is to detect discontinuities in dense surface deformation vector fields. These deformation vector fields between consecutive stereo image pairs, which are generated by cross correlation or least squares matching, show a precision in the order of 1/50 pixel. Hairline-cracks can be detected and measured by applying edge detection techniques such as a Sobel operator to the results of the image matching process. Cracks will show up as linear discontinuities in the deformation vector field and can be vectorized by edge chaining. In practical tests of the method, cracks with a width of 1/20 pixel could be detected, and their width could be determined at a precision of 1/50 pixel.

  13. Submillimeter Bolometer Array for the CSO

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Hunter, T. R.; Benford, D. J.; Phillips, T. G.

    We are building a bolometer array for use as a submillimeter continuum camera for the Caltech Submillimeter Observatory (CSO) located on Mauna Kea. This effort is a collaboration with Moseley et al. at Goddard Space Flight Center, who have developed the technique for fabricating monolithic bolometer arrays on Si wafers, as well as a sophisticated data taking system to use with these arrays (Moseley et al. 1984). Our primary goal is to construct a camera with 1x24 bolometer pixels operating at 350 and 450 microns using a 3He refrigerator. The monolithic bolometer arrays are fabricated using the techniques of photolithography and micromachining. Each pixel of the array is suspended by four thin Si legs 2 mm long and 12x14 square microns in cross section. These thin legs, obtained by wet Si etching, provide the weak thermal link between the bolometer pixel and the heat sink. A thermistor is formed on each bolometer pixel by P implantation compensated with 50% B. The bolometer array to be used for the camera will have a pixel size of 1x2 square millimeters, which is about half of the CSO beam size at a wavelength of 400 microns. We plan to use mirrors to focus the beam onto the pixels intead of Winston cones. In order to eliminate background radiation from warm surroundings reaching the bolometers, cold baffles will be inserted along the beam passages. To increase the bolometer absorption to radiation, a thin metal film will be deposited on the back of each bolometer pixel. It has been demonstrated that a proper impedance match of the bolometer element can increase the bolometer absorption efficiency to about 50% (Clarke et al., 1978). The use of baffle approach to illumination will make it easier for us to expand to more pixels in the future. The first stage amplification will be performed with cold FETs, connected to each bolometer pixel. Signals from each bolometer will be digitized using a 16 bit A/D with differential inputs. The digitizing frequency will be up to 40 kHz, though 1 kHz should be sufficient for our application. The output from the A/D will be fed to a digital signal processing (DSP) board via fiber optic cables, which will minimize the RF interference to the bolometers. To date, we have assembled a 1x24 bolometer array, and we are in the process of testing it. We are also designing and bulding cryogenic optics. The data acquisition hardware is nearly completed, as well as the electronics. Our goal is to get the instrument working after a new chopping secondary mirror in installed at the CSO in the summer of 1994. References: Moseley, S.H. et al. 1984, J. Appl. Phys.,56,1257; Clarke et al. 1977, J. Appl. Phys., 48, 4865.

  14. Hyperspectral image classification by a variable interval spectral average and spectral curve matching combined algorithm

    NASA Astrophysics Data System (ADS)

    Senthil Kumar, A.; Keerthi, V.; Manjunath, A. S.; Werff, Harald van der; Meer, Freek van der

    2010-08-01

    Classification of hyperspectral images has been receiving considerable attention with many new applications reported from commercial and military sectors. Hyperspectral images are composed of a large number of spectral channels, and have the potential to deliver a great deal of information about a remotely sensed scene. However, in addition to high dimensionality, hyperspectral image classification is compounded with a coarse ground pixel size of the sensor for want of adequate sensor signal to noise ratio within a fine spectral passband. This makes multiple ground features jointly occupying a single pixel. Spectral mixture analysis typically begins with pixel classification with spectral matching techniques, followed by the use of spectral unmixing algorithms for estimating endmembers abundance values in the pixel. The spectral matching techniques are analogous to supervised pattern recognition approaches, and try to estimate some similarity between spectral signatures of the pixel and reference target. In this paper, we propose a spectral matching approach by combining two schemes—variable interval spectral average (VISA) method and spectral curve matching (SCM) method. The VISA method helps to detect transient spectral features at different scales of spectral windows, while the SCM method finds a match between these features of the pixel and one of library spectra by least square fitting. Here we also compare the performance of the combined algorithm with other spectral matching techniques using a simulated and the AVIRIS hyperspectral data sets. Our results indicate that the proposed combination technique exhibits a stronger performance over the other methods in the classification of both the pure and mixed class pixels simultaneously.

  15. A spatial light modulator that uses scattering in a cholesteric liquid crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, Mitsunori, E-mail: msaito@rins.ryukoku.ac.jp; Uemi, Hiroto

    2016-03-15

    When a cholesteric liquid crystal (helical pitch: 5 μm) was sandwiched between two glass plates with no alignment coating (gap: 20 μm), a random-domain texture appeared and a strong light scattering took place. This translucent texture turned to a transparent homeotropic phase when an electric voltage of 20 V was applied to the liquid crystal layer. This phase transition was used for constructing a spatial light modulator that needed no polarizers. Indium-tin-oxide electrodes (0.8 mm square) were arranged on a glass substrate to create a 20 × 20 pixel array (20 mm square). The liquid crystal was injected into amore » gap (20 μm thickness) between this substrate and another glass plate with a uniform electrode (ground). The transmittance of the pixels was originally below 10% and decreased to 0% by 7 V application because of increase in the scattering loss. As the voltage was raised, the transmittance increased gradually in the 7–17 V range and then rapidly in the 17–20 V range, attaining 40% at 27 V. Various transmittance distributions or gray-scale images were attainable by applying a suitable voltage (7–27 V) to each pixel. The transmission range of this spatial light modulator extended from ultraviolet (350 nm) to infrared wavelengths (>800 nm). Owing to this wide transmission range as well as capability of the polarizer-free operation, this spatial light modulator is useful to control a lamp spectrum in spectroscopic measurements.« less

  16. Central Brazil

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This Moderate resolution Imaging Spectroradiometer (MODIS) true-color image was acquired on October 19, 2000, over a region in Brazil large enough to show much of the country's diverse landscape. Spanning some 8.5 million square kilometers (3.2 million square miles), Brazil is by far the largest South American nation--both in terms of land and population. The region known as the Amazon Basin lies to the northwest (upper left) and extends well beyond the northern and western edges of this scene. Typically, from this perspective Amazonia appears as a lush, dark green carpet due to the thick canopy of vegetation growing there. Some of the Amazon Basin is visible in this image, but much is obscured by clouds (bright white pixels), as is the Amazon River. This region is home to countless plant and animal species and some 150,000 native South Americans. The clusters of square and rectangular patterns toward the center of the image (light green or reddish-brown pixels) are where people have cleared away trees and vegetation to make room for development and agriculture. Toward the western side of the scene there is considerable haze and smoke from widespread biomass burning in parts of Brazil and Bolivia, which shares its eastern border with Brazil. Toward the east in this image is the highland, or 'cerrado,' region, which is more sparsely vegetated and has a somewhat drier climate than the Amazon Basin. The capital city, Brasilia, lies within this region just southwest of the Geral de Goias Mountains (orangish pixels running north-south). There are two large water reservoirs visible in this scene--the Sobradinho Reservoir about 800 km (500 miles) northeast of Brasilia, and the Paranaiba about 500 km (300 miles) southwest of Brasilia. MODIS flies aboard NASA's Terra spacecraft. Image courtesy Brian Montgomery, Reto Stockli, and Robert Simmon, based on data from the MODIS Science Team.

  17. Continental-Scale Mapping of Adelie Penguin Colonies from Landsat Imagery

    NASA Technical Reports Server (NTRS)

    Schwaller, Mathew R.; Southwell, Colin; Emmerson, Louise

    2013-01-01

    Breeding distribution of the Adlie penguin, Pygoscelis adeliae, was surveyed with Landsat-7 Enhanced Thematic Mapper Plus (ETM+) data in an area covering approximately 330 of longitude along the coastline of Antarctica.An algorithm was designed to minimize radiometric noise and to retrieve Adlie penguin colony location and spatial extent from the ETM+data. In all, 9143 individual pixels were classified as belonging to an Adlie penguin colony class out of the entire dataset of 195 ETM+ scenes, where the dimension of each pixel is 30 m by 30 m,and each scene is approximately 180 km by 180 km. Pixel clustering identified a total of 187 individual Adlie penguin colonies, ranging in size from a single pixel (900 sq m) to a maximum of 875 pixels (0.788 sq km). Colony retrievals have a very low error of commission, on the order of 1% or less, and the error of omission was estimated to be 3% to 4% by population based on comparisons with direct observations from surveys across east Antarctica. Thus, the Landsat retrievals successfully located Adlie penguin colonies that accounted for 96 to 97% of the regional population used as ground truth. Geographic coordinates and the spatial extent of each colony retrieved from the Landsat data are available publically. Regional analysis found several areas where the Landsat retrievals suggest populations that are significantly larger than published estimates. Six Adlie penguin colonies were found that are believed to be previously unreported in the literature.

  18. MODIS Tree Cover Validation for the Circumpolar Taiga-Tundra Transition Zone

    NASA Technical Reports Server (NTRS)

    Montesano, P. M.; Nelson, R.; Sun, G.; Margolis, H.; Kerber, A.; Ranson, K. J.

    2009-01-01

    A validation of the 2005 500m MODIS vegetation continuous fields (VCF) tree cover product in the circumpolar taiga-tundra ecotone was performed using high resolution Quickbird imagery. Assessing the VCF's performance near the northern limits of the boreal forest can help quantify the accuracy of the product within this vegetation transition area. The circumpolar region was divided into longitudinal zones and validation sites were selected in areas of varying tree cover where Quickbird imagery is available in Google Earth. Each site was linked to the corresponding VCF pixel and overlaid with a regular dot grid within the VCF pixel's boundary to estimate percent tree crown cover in the area. Percent tree crown cover was estimated using Quickbird imagery for 396 sites throughout the circumpolar region and related to the VCF's estimates of canopy cover for 2000-2005. Regression results of VCF inter-annual comparisons (2000-2005) and VCF-Quickbird image-interpreted estimates indicate that: (1) Pixel-level, inter-annual comparisons of VCF estimates of percent canopy cover were linearly related (mean R(sup 2) = 0.77) and exhibited an average root mean square error (RMSE) of 10.1 % and an average root mean square difference (RMSD) of 7.3%. (2) A comparison of image-interpreted percent tree crown cover estimates based on dot counts on Quickbird color images by two different interpreters were more variable (R(sup 2) = 0.73, RMSE = 14.8%, RMSD = 18.7%) than VCF inter-annual comparisons. (3) Across the circumpolar boreal region, 2005 VCF-Quickbird comparisons were linearly related, with an R(sup 2) = 0.57, a RMSE = 13.4% and a RMSD = 21.3%, with a tendency to over-estimate areas of low percent tree cover and anomalous VCF results in Scandinavia. The relationship of the VCF estimates and ground reference indicate to potential users that the VCF's tree cover values for individual pixels, particularly those below 20% tree cover, may not be precise enough to monitor 500m pixel-level tree cover in the taiga-tundra transition zone.

  19. The MAT Experiment - Observing the CMB from the Chilean Andes

    NASA Astrophysics Data System (ADS)

    Miller, A. D.; Dorwart, R.; Herbig, T.; Page, L.; Torbet, E.; Tran, H.; Devlin, M.; Puchalla, J.

    1998-01-01

    The Mobile Anisotropy Telescope (MAT) is a microwave telescope designed to measure the anisotropy in the cosmic microwave background (CMB) on degree and sub-degree angular scales. MAT has successfully completed it's first season of observations during the months of October, November, and December of 1997. The site, at an altitude of 17,000 ft (5700 m), is located near San Pedro de Atacama, Chile. It is one of the highest and dryest places on the planet and is accessible nearly year-round by road. The observing strategy is similar to that used in the Saskatoon experiment. MAT observes at 30, 40, and 144 GHz with beam sizes of 0.95(deg) , 0.65(deg) , and 0.2(deg) respectively. We observe approximately 30,000 pixels at 144 GHz with an expected sensitivity of roughly 150 mu K per 0.2(deg) X 0.2(deg) pixel, 2800 pixels at 40 GHz with a sensitivity of roughly 30 mu K per 0.65 (deg) X 0.65(deg) pixel, and 1400 pixels at 30 GHz with a sensitivity of approximately 25 mu K per 0.95(deg) X 0.95(deg) pixel. The sky coverage results in a probe of the angular power spectrum from a multipole moment of l = 50 to l = 800. Jupiter is the primary calibration source. Other planets and eta Carinae are secondary calibrators. An additional benefit of the observing strategy is an unbiased survey of a 10 degree x 30 degree patch of the galaxy at 30, 40, and 144 GHz. We are compiling a list of observed point sources at these frequencies in the galactic plane. Observations will continue next year with improved SIS detectors and a longer observing time.

  20. Color moiré simulations in contact-type 3-D displays.

    PubMed

    Lee, B-R; Son, J-Y; Chernyshov, O O; Lee, H; Jeong, I-K

    2015-06-01

    A new method of color moiré fringe simulation in the contact-type 3-D displays is introduced. The method allows simulating color moirés appearing in the displays, which cannot be approximated by conventional cosine approximation of a line grating. The color moirés are mainly introduced by the line width of the boundary lines between the elemental optics in and plate thickness of viewing zone forming optics. This is because the lines are hiding some parts of pixels under the viewing zone forming optics, and the plate thickness induces a virtual contraction of the pixels. The simulated color moiré fringes are closely matched with those appearing at the displays.

  1. Improved accuracy in ground-based facilities - Development of an automated film-reading system for ballistic ranges

    NASA Technical Reports Server (NTRS)

    Yates, Leslie A.

    1992-01-01

    Software for an automated film-reading system that uses personal computers and digitized shadowgraphs is described. The software identifies pixels associated with fiducial-line and model images, and least-squares procedures are used to calculate the positions and orientations of the images. Automated position and orientation readings for sphere and cone models are compared to those obtained using a manual film reader. When facility calibration errors are removed from these readings, the accuracy of the automated readings is better than the pixel resolution, and it is equal to, or better than, the manual readings. The effects of film-reading and facility-calibration errors on calculated aerodynamic coefficients is discussed.

  2. RGB-D depth-map restoration using smooth depth neighborhood supports

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Xue, Haoyang; Yu, Zhongjie; Wu, Qiang; Yang, Jie

    2015-05-01

    A method to restore the depth map of an RGB-D image using smooth depth neighborhood (SDN) supports is presented. The SDN supports are computed based on the corresponding color image of the depth map. Compared with the most widely used square supports, the proposed SDN supports can well-capture the local structure of the object. Only pixels with similar depth values are allowed to be included in the support. We combine our SDN supports with the joint bilateral filter (JBF) to form the SDN-JBF and use it to restore depth maps. Experimental results show that our SDN-JBF can not only rectify the misaligned depth pixels but also preserve sharp depth discontinuities.

  3. 15 pixels digital autocorrelation spectrometer system

    NASA Astrophysics Data System (ADS)

    Lee, Changhoon; Kim, Hyo-Ryung; Kim, Kwang-Dong; Chung, Mun-Hee; Timoc, C.

    2006-06-01

    In this paper describes the system configuration and the some performance test results of the 15 pixels digital autocorrelation spectrometer to be used at the Taeduk Radio Astronomy Observatory (TRAO) of Korea. This autocorrelation spectrometer instrument enclosed in a 3-slot VXI module and controlled via a USB port by a backend PC. This spectrometer system consists of the 4 band-pass filters unit, the digitizer, the 512 lags correlator, the clock distribution unit, and USB controller. And here we describe the frequency accuracy and the root-mean-square noise characteristic of this spectrometer. After some calibration procedure, this spectrometer can be use as the back-end system at TRAO for the 3x5 focal plane array receivers.

  4. Effect of ambiguities on SAR picture quality

    NASA Technical Reports Server (NTRS)

    Korwar, V. N.; Lipes, R. G.

    1978-01-01

    The degradation of picture quality in a high-resolution, large-swath SAR mapping system caused by speckle, additive white Gaussian noise and range and azimuthal ambiguities occurring because of the nonfinite antenna pattern produced by a square aperture antenna was studied and simulated. The effect of the azimuth antenna pattern was accounted for by calculating the azimuth ambiguity function. Range ambiguities were accounted for by adding, to each pixel of interest, appropriate pixels at a range separation corresponding to one pulse repetition period, but attenuated by the antenna pattern. It is concluded that azimuth ambiguities do not cause any noticeable degradation (for large time bandwidth product systems, at least) but range ambiguities might.

  5. 46 CFR 108.201 - Size of sleeping spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... by the occupants, each sleeping space must have for each occupant— (1) 2.8 square meters (approximately 30 square feet) of deck area; and (2) 6 cubic meters (approximately 210 cubic feet) of volume. (c...

  6. Mean square cordial labelling related to some acyclic graphs and its rough approximations

    NASA Astrophysics Data System (ADS)

    Dhanalakshmi, S.; Parvathi, N.

    2018-04-01

    In this paper we investigate that the path Pn, comb graph Pn⊙K1, n-centipede graph,centipede graph (n,2) and star Sn admits mean square cordial labeling. Also we proved that the induced sub graph obtained by the upper approximation of any sub graph H of the above acyclic graphs admits mean square cordial labeling.

  7. Detector Sampling of Optical/IR Spectra: How Many Pixels per FWHM?

    NASA Astrophysics Data System (ADS)

    Robertson, J. Gordon

    2017-08-01

    Most optical and IR spectra are now acquired using detectors with finite-width pixels in a square array. Each pixel records the received intensity integrated over its own area, and pixels are separated by the array pitch. This paper examines the effects of such pixellation, using computed simulations to illustrate the effects which most concern the astronomer end-user. It is shown that coarse sampling increases the random noise errors in wavelength by typically 10-20 % at 2 pixels per Full Width at Half Maximum, but with wide variation depending on the functional form of the instrumental Line Spread Function (i.e. the instrumental response to a monochromatic input) and on the pixel phase. If line widths are determined, they are even more strongly affected at low sampling frequencies. However, the noise in fitted peak amplitudes is minimally affected by pixellation, with increases less than about 5%. Pixellation has a substantial but complex effect on the ability to see a relative minimum between two closely spaced peaks (or relative maximum between two absorption lines). The consistent scale of resolving power presented by Robertson to overcome the inadequacy of the Full Width at Half Maximum as a resolution measure is here extended to cover pixellated spectra. The systematic bias errors in wavelength introduced by pixellation, independent of signal/noise ratio, are examined. While they may be negligible for smooth well-sampled symmetric Line Spread Functions, they are very sensitive to asymmetry and high spatial frequency sub-structure. The Modulation Transfer Function for sampled data is shown to give a useful indication of the extent of improperly sampled signal in an Line Spread Function. The common maxim that 2 pixels per Full Width at Half Maximum is the Nyquist limit is incorrect and most Line Spread Functions will exhibit some aliasing at this sample frequency. While 2 pixels per Full Width at Half Maximum is nevertheless often an acceptable minimum for moderate signal/noise work, it is preferable to carry out simulations for any actual or proposed Line Spread Function to find the effects of various sampling frequencies. Where spectrograph end-users have a choice of sampling frequencies, through on-chip binning and/or spectrograph configurations, it is desirable that the instrument user manual should include an examination of the effects of the various choices.

  8. An image warping technique for rodent brain MRI-histology registration based on thin-plate splines with landmark optimization

    NASA Astrophysics Data System (ADS)

    Liu, Yutong; Uberti, Mariano; Dou, Huanyu; Mosley, R. Lee; Gendelman, Howard E.; Boska, Michael D.

    2009-02-01

    Coregistration of in vivo magnetic resonance imaging (MRI) with histology provides validation of disease biomarker and pathobiology studies. Although thin-plate splines are widely used in such image registration, point landmark selection is error prone and often time-consuming. We present a technique to optimize landmark selection for thin-plate splines and demonstrate its usefulness in warping rodent brain MRI to histological sections. In this technique, contours are drawn on the corresponding MRI slices and images of histological sections. The landmarks are extracted from the contours by equal spacing then optimized by minimizing a cost function consisting of the landmark displacement and contour curvature. The technique was validated using simulation data and brain MRI-histology coregistration in a murine model of HIV-1 encephalitis. Registration error was quantified by calculating target registration error (TRE). The TRE of approximately 8 pixels for 20-80 landmarks without optimization was stable at different landmark numbers. The optimized results were more accurate at low landmark numbers (TRE of approximately 2 pixels for 50 landmarks), while the accuracy decreased (TRE approximately 8 pixels for larger numbers of landmarks (70- 80). The results demonstrated that registration accuracy decreases with the increasing landmark numbers offering more confidence in MRI-histology registration using thin-plate splines.

  9. Backside illuminated CMOS-TDI line scanner for space applications

    NASA Astrophysics Data System (ADS)

    Cohen, O.; Ben-Ari, N.; Nevo, I.; Shiloah, N.; Zohar, G.; Kahanov, E.; Brumer, M.; Gershon, G.; Ofer, O.

    2017-09-01

    A new multi-spectral line scanner CMOS image sensor is reported. The backside illuminated (BSI) image sensor was designed for continuous scanning Low Earth Orbit (LEO) space applications including A custom high quality CMOS Active Pixels, Time Delayed Integration (TDI) mechanism that increases the SNR, 2-phase exposure mechanism that increases the dynamic Modulation Transfer Function (MTF), very low power internal Analog to Digital Converters (ADC) with resolution of 12 bit per pixel and on chip controller. The sensor has 4 independent arrays of pixels where each array is arranged in 2600 TDI columns with controllable TDI depth from 8 up to 64 TDI levels. A multispectral optical filter with specific spectral response per array is assembled at the package level. In this paper we briefly describe the sensor design and present some electrical and electro-optical recent measurements of the first prototypes including high Quantum Efficiency (QE), high MTF, wide range selectable Full Well Capacity (FWC), excellent linearity of approximately 1.3% in a signal range of 5-85% and approximately 1.75% in a signal range of 2-95% out of the signal span, readout noise of approximately 95 electrons with 64 TDI levels, negligible dark current and power consumption of less than 1.5W total for 4 bands sensor at all operation conditions .

  10. Model-based mean square error estimators for k-nearest neighbour predictions and applications using remotely sensed data for forest inventories

    Treesearch

    Steen Magnussen; Ronald E. McRoberts; Erkki O. Tomppo

    2009-01-01

    New model-based estimators of the uncertainty of pixel-level and areal k-nearest neighbour (knn) predictions of attribute Y from remotely-sensed ancillary data X are presented. Non-parametric functions predict Y from scalar 'Single Index Model' transformations of X. Variance functions generated...

  11. Initial results from a video-laser rangefinder device

    Treesearch

    Neil A. Clark

    2000-01-01

    Three hundred and nine width measurements at various heights to 10 m on a metal light pole were calculated from video images captured with a prototype video-laser rangefinder instrument. Data were captured at distances from 6 to 15 m. The endpoints for the width measurements were manually selected to the nearest pixel from individual video frames.Chi-square...

  12. A CMOS active pixel sensor for retinal stimulation

    NASA Astrophysics Data System (ADS)

    Prydderch, Mark L.; French, Marcus J.; Mathieson, Keith; Adams, Christopher; Gunning, Deborah; Laudanski, Jonathan; Morrison, James D.; Moodie, Alan R.; Sinclair, James

    2006-02-01

    Degenerative photoreceptor diseases, such as age-related macular degeneration and retinitis pigmentosa, are the most common causes of blindness in the western world. A potential cure is to use a microelectronic retinal prosthesis to provide electrical stimulation to the remaining healthy retinal cells. We describe a prototype CMOS Active Pixel Sensor capable of detecting a visual scene and translating it into a train of electrical pulses for stimulation of the retina. The sensor consists of a 10 x 10 array of 100 micron square pixels fabricated on a 0.35 micron CMOS process. Light incident upon each pixel is converted into output current pulse trains with a frequency related to the light intensity. These outputs are connected to a biocompatible microelectrode array for contact to the retinal cells. The flexible design allows experimentation with signal amplitudes and frequencies in order to determine the most appropriate stimulus for the retina. Neural processing in the retina can be studied by using the sensor in conjunction with a Field Programmable Gate Array (FPGA) programmed to behave as a neural network. The sensor has been integrated into a test system designed for studying retinal response. We present the most recent results obtained from this sensor.

  13. VizieR Online Data Catalog: New extreme trans-Neptunian objects (Sheppard+, 2016)

    NASA Astrophysics Data System (ADS)

    Sheppard, S. S.; Trujillo, C.

    2017-02-01

    The majority of the area surveyed was with the Cerro Tololo Inter-American Observatory (CTIO) 4m Blanco telescope in Chile with the 2.7 square degree Dark Energy Camera (DECam). DECam has 62 2048*4096 pixel CCD chips from Lawrence Livermore Berkeley Labs with a scale of 0.26arcsec per pixel. The r-band filter was used during the early observing runs (2012 November and December and 2013 March, May, and November) and the ultra-wide VR filter was used in the later observations (2014 March and September and 2015 April). Before DECam became operational, the initial IOC survey was begun using the 0.255 square degree SuprimeCam on the 8m Subaru telescope, the 0.16 square degree IMACS on the 6.5m Magellan telescope, and the 0.36 square degree Mosaic-1.1 on the Kitt Peak National Observatory (KPNO) 4m Mayall telescope. The observing nights and conditions of the survey fields are shown in Table1. Usable survey data required no significant extinction from clouds and seeing less than 1.5 arcsec at the CTIO 4m and KPNO 4m. In general, the exposure times were set to reach the 24th magnitude with the r-band filter and 24.5 magnitude with the VR filter during the night. In the best seeing of 0.8 arcsec, integration times were around 330s, while in the worst seeing exposure times were up to 700s. This allowed our survey to obtain a similar depth regardless of the seeing conditions. The Subaru and Magellan observations went deeper, with the target depth of around 25.5 magnitudes in the r-band and useful seeing being less than 1.0 arcsec. (4 data files).

  14. Aerosol-jet-printed, 1 volt H-bridge drive circuit on plastic with integrated electrochromic pixel.

    PubMed

    Ha, Mingjing; Zhang, Wei; Braga, Daniele; Renn, Michael J; Kim, Chris H; Frisbie, C Daniel

    2013-12-26

    In this report, we demonstrate a printed, flexible, and low-voltage circuit that successfully drives a polymer electrochromic (EC) pixel as large as 4 mm(2) that is printed on the same substrate. All of the key components of the drive circuitry, namely, resistors, capacitors, and transistors, were aerosol-jet-printed onto a plastic foil; metallic electrodes and interconnects were the only components prepatterned on the plastic by conventional photolithography. The large milliampere drive currents necessary to switch a 4 mm(2) EC pixel were controlled by printed electrolyte-gated transistors (EGTs) that incorporate printable ion gels for the gate insulator layers and poly(3-hexylthiophene) for the semiconductor channels. Upon application of a 1 V input pulse, the circuit switches the printed EC pixel ON (red) and OFF (blue) two times in approximately 4 s. The performance of the circuit and the behavior of the individual resistors, capacitors, EGTs, and the EC pixel are analyzed as functions of the printing parameters and operating conditions.

  15. 75 FR 7434 - Endangered and Threatened Species; Proposed Rule to Revise the Critical Habitat Designation for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-19

    ... include two adjacent marine areas totaling approximately 46,100 square miles (119,400 square km... of a line approximating the 2,000 meter depth contour. The areas proposed for designation comprise...

  16. Development of a long wave infrared detector for SGLI instrument

    NASA Astrophysics Data System (ADS)

    Dariel, Aurélien; Chorier, P.; Reeb, N.; Terrier, B.; Vuillermet, M.; Tribolet, P.

    2007-10-01

    The Japanese Aerospace Exploration Agency (JAXA) will be conducting the Global Change Observation Mission (GCOM) for monitoring of global environmental change. SGLI (Second Generation Global Imager) is an optical sensor on board GCOM-C (Climate), that includes a Long Wave IR Detector (LWIRD) sensitive up to about 13 μm. SGLI will provide high accuracy measurements of the atmosphere (aerosol, cloud ...), the cryosphere (glaciers, snow, sea ice ...), the biomass and the Earth temperature (sea and land). Sofradir is a major supplier of Space industry based on the use of a Space qualified MCT technology for detectors from 0.8 to 15 μm. This mature and reproducible technology has been used for 15 years to produce thousands of LWIR detectors with cut-off wavelengths between 9 and 12 μm. NEC Toshiba Space, prime contractor for the Second Generation Global Imager (SGLI), has selected SOFRADIR for its heritage in space projects and Mercury Cadmium Telluride (MCT) detectors to develop the LWIR detector. This detector includes two detection circuits for detection at 10.8 μm and 12.0 μm, hybridized on a single CMOS readout circuit. Each detection circuit is made of 20x2 square pixels of 140 μm. In order to optimize the overall performance, each pixel is made of 5x5 square sub-pixels of 28 μm and the readout circuit enables sub-pixel deselection. The MCT material and the photovoltaic technology are adapted to maximize response for the requested bandwidths: cut-off wavelengths of the 2 detection circuits are 12.6 and 13.4 μm at 55K. This detector is packaged into a sealed housing for full integration into a Dewar at 55K. This paper describes the main technical requirements, the design features of this detector, including trade-offs regarding performance optimization, and presents preliminary electro-optical results.

  17. Stereo pair design for cameras with a fovea

    NASA Technical Reports Server (NTRS)

    Chettri, Samir R.; Keefe, Michael; Zimmerman, John R.

    1992-01-01

    We describe the methodology for the design and selection of a stereo pair when the cameras have a greater concentration of sensing elements in the center of the image plane (fovea). Binocular vision is important for the purpose of depth estimation, which in turn is important in a variety of applications such as gaging and autonomous vehicle guidance. We assume that one camera has square pixels of size dv and the other has pixels of size rdv, where r is between 0 and 1. We then derive results for the average error, the maximum error, and the error distribution in the depth determination of a point. These results can be shown to be a general form of the results for the case when the cameras have equal sized pixels. We discuss the behavior of the depth estimation error as we vary r and the tradeoffs between the extra processing time and increased accuracy. Knowing these results makes it possible to study the case when we have a pair of cameras with a fovea.

  18. High-contrast X-ray micro-tomography of low attenuation samples using large area hybrid semiconductor pixel detector array of 10 × 5 Timepix chips

    NASA Astrophysics Data System (ADS)

    Karch, J.; Krejci, F.; Bartl, B.; Dudak, J.; Kuba, J.; Kvacek, J.; Zemlicka, J.

    2016-01-01

    State-of-the-art hybrid pixel semiconductor detectors provide excellent imaging properties such as unlimited dynamic range, high spatial resolution, high frame rate and energy sensitivity. Nevertheless, a limitation in the use of these devices for imaging has been the small sensitive area of a few square centimetres. In the field of microtomography we make use of a large area pixel detector assembled from 50 Timepix edgeless chips providing fully sensitive area of 14.3 × 7.15 cm2. We have successfully demonstrated that the enlargement of the sensitive area enables high-quality tomographic measurements of whole objects with high geometrical magnification without any significant degradation in resulting reconstructions related to the chip tilling and edgeless sensor technology properties. The technique of micro-tomography with the newly developed large area detector is applied for samples formed by low attenuation, low contrast materials such a seed from Phacelia tanacetifolia, a charcoalified wood sample and a beeswax seal sample.

  19. Reconstruction of 2D PET data with Monte Carlo generated system matrix for generalized natural pixels

    NASA Astrophysics Data System (ADS)

    Vandenberghe, Stefaan; Staelens, Steven; Byrne, Charles L.; Soares, Edward J.; Lemahieu, Ignace; Glick, Stephen J.

    2006-06-01

    In discrete detector PET, natural pixels are image basis functions calculated from the response of detector pairs. By using reconstruction with natural pixel basis functions, the discretization of the object into a predefined grid can be avoided. Here, we propose to use generalized natural pixel reconstruction. Using this approach, the basis functions are not the detector sensitivity functions as in the natural pixel case but uniform parallel strips. The backprojection of the strip coefficients results in the reconstructed image. This paper proposes an easy and efficient way to generate the matrix M directly by Monte Carlo simulation. Elements of the generalized natural pixel system matrix are formed by calculating the intersection of a parallel strip with the detector sensitivity function. These generalized natural pixels are easier to use than conventional natural pixels because the final step from solution to a square pixel representation is done by simple backprojection. Due to rotational symmetry in the PET scanner, the matrix M is block circulant and only the first blockrow needs to be stored. Data were generated using a fast Monte Carlo simulator using ray tracing. The proposed method was compared to a listmode MLEM algorithm, which used ray tracing for doing forward and backprojection. Comparison of the algorithms with different phantoms showed that an improved resolution can be obtained using generalized natural pixel reconstruction with accurate system modelling. In addition, it was noted that for the same resolution a lower noise level is present in this reconstruction. A numerical observer study showed the proposed method exhibited increased performance as compared to a standard listmode EM algorithm. In another study, more realistic data were generated using the GATE Monte Carlo simulator. For these data, a more uniform contrast recovery and a better contrast-to-noise performance were observed. It was observed that major improvements in contrast recovery were obtained with MLEM when the correct system matrix was used instead of simple ray tracing. The correct modelling was the major cause of improved contrast for the same background noise. Less important factors were the choice of the algorithm (MLEM performed better than ART) and the basis functions (generalized natural pixels gave better results than pixels).

  20. Development of EXITE2: a large-area imaging phoswich detector/telescope for hard x-ray astronomy

    NASA Astrophysics Data System (ADS)

    Manandhar, Raj P.; Lum, Kenneth S.; Eikenberry, Stephen S.; Krockenberger, Martin; Grindlay, Jonathan E.

    1993-11-01

    We review design considerations and present preliminary details of the performance of a new imaging system for hard X-ray astronomy in the 20 - 600 keV energy range. The detector is a 40 cm X 40 cm NaI(Tl)/CsI(Na) phoswich module, read out by a 7 X 7 array of square PMTs. The detector comprises the main part of the next generation Energetic X-ray Imaging Telescope Experiment (EXITE2), which had its first flight on 13 June 1993 from Palestine, Texas. Imaging is accomplished via the coded-aperture mask technique. The mask consists of 16 mm square lead/tin/copper pixels arranged in a cyclically repeated 13 X 11 uniformly redundant array pattern at a focal length of 2.5 m, giving 22 arcmin resolution. The field of view, determined by the lead/brass collimator (16 mm pitch) is 4.65 degrees FWHM. We anticipate a 3 sigma sensitivity of 1 X 10(superscript -5) photons cm(superscript -2) s(superscript -1) keV(superscript -1) at 100 keV in a 10(superscript 4) sec balloon observation. The electronics incorporate two on-board computers, providing a future capability to record the full data stream and telemeter compressed data. The design of the current detector and electronics allows an upgrade to EXITE3, which adds a proportional counter front-end to achieve lower background and better spatial and spectral resolution below approximately 100 keV.

  1. KOSMOS and COSMOS: new facility instruments for the NOAO 4-meter telescopes

    NASA Astrophysics Data System (ADS)

    Martini, Paul; Elias, J.; Points, S.; Sprayberry, D.; Derwent, Mark A.; Gonzalez, Raymond; Mason, J. A.; O'Brien, T. P.; Pappalardo, D. P.; Pogge, Richard W.; Stoll, R.; Zhelem, R.; Daly, Phil; Fitzpatrick, M.; George, J. R.; Hunten, M.; Marshall, R.; Poczulp, Gary; Rath, S.; Seaman, R.; Trueblood, M.; Zelaya, K.

    2014-07-01

    We describe the design, construction and measured performance of the Kitt Peak Ohio State Multi-Object Spectrograph (KOSMOS) for the 4-m Mayall telescope and the Cerro Tololo Ohio State Multi-Object Spectrograph (COSMOS) for the 4-m Blanco telescope. These nearly identical imaging spectrographs are modified versions of the OSMOS instrument; they provide a pair of new, high-efficiency instruments to the NOAO user community. KOSMOS and COSMOS may be used for imaging, long-slit, and multi-slit spectroscopy over a 100 square arcminute field of view with a pixel scale of 0.29 arcseconds. Each contains two VPH grisms that provide R~2500 with a one arcsecond slit and their wavelengths of peak diffraction efficiency are approximately 510nm and 750nm. Both may also be used with either a thin, blue-optimized CCD from e2v or a thick, fully depleted, red-optimized CCD from LBNL. These instruments were developed in response to the ReSTAR process. KOSMOS was commissioned in 2013B and COSMOS was commissioned in 2014A.

  2. Mapping Landslides in Lunar Impact Craters Using Chebyshev Polynomials and Dem's

    NASA Astrophysics Data System (ADS)

    Yordanov, V.; Scaioni, M.; Brunetti, M. T.; Melis, M. T.; Zinzi, A.; Giommi, P.

    2016-06-01

    Geological slope failure processes have been observed on the Moon surface for decades, nevertheless a detailed and exhaustive lunar landslide inventory has not been produced yet. For a preliminary survey, WAC images and DEM maps from LROC at 100 m/pixels have been exploited in combination with the criteria applied by Brunetti et al. (2015) to detect the landslides. These criteria are based on the visual analysis of optical images to recognize mass wasting features. In the literature, Chebyshev polynomials have been applied to interpolate crater cross-sections in order to obtain a parametric characterization useful for classification into different morphological shapes. Here a new implementation of Chebyshev polynomial approximation is proposed, taking into account some statistical testing of the results obtained during Least-squares estimation. The presence of landslides in lunar craters is then investigated by analyzing the absolute values off odd coefficients of estimated Chebyshev polynomials. A case study on the Cassini A crater has demonstrated the key-points of the proposed methodology and outlined the required future development to carry out.

  3. Asteroid Size-Frequency Distribution (The ISO Deep Asteroid Survey)

    NASA Technical Reports Server (NTRS)

    Tedesco, Edward F.

    2001-01-01

    A total of six deep exposures (using AOT CAM01 with a 6" PFOV) through the ISOCAM LW10 filter (IRAS Band 1, i.e., 12 micro-m) were obtained on an approximately 15 arcminute square field centered on the ecliptic plane. Point sources were extracted using the technique described by Desert, et al. Two known asteroids appear in these frames and 20 sources moving with velocities appropriate for main belt asteroids are present. Most of the asteroids detected have flux densities less than 1 mJy, i.e., between 150 and 350 times fainter than any of the asteroids observed by Infrared Astronomy Satellite (IRAS). These data provide the first direct measurement of the 12 micro-m sky-plane density for asteroids on the ecliptic equator. The median zodiacal foreground, as measured by ISOCAM during this survey, is found to be 22.1 +/- 1.5 mJy per pixel, i.e., 26.2 +/- 1.7 MJy/sr. The results presented here imply that the actual number of kilometer-sized asteroids is significantly greater than previously believed and in reasonable agreement with the Statistical Asteroid Model.

  4. 76 FR 51461 - Notice of Release From Quitclaim Deed and Federal Grant Assurance Obligations for Phoenix-Mesa...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-18

    ... of approximately 1,727 square feet of airport property at Phoenix-Mesa Gateway, Mesa, Arizona, from... conditions contained in the Quitclaim Deed and Grant Assurance obligations for approximately 1,727 square...

  5. 32 x 16 CMOS smart pixel array for optical interconnects

    NASA Astrophysics Data System (ADS)

    Kim, Jongwoo; Guilfoyle, Peter S.; Stone, Richard V.; Hessenbruch, John M.; Choquette, Kent D.; Kiamilev, Fouad E.

    2000-05-01

    Free space optical interconnects can increase throughput capacities and eliminate much of the energy consumption required for `all electronic' systems. High speed optical interconnects can be achieved by integrating optoelectronic devices with conventional electronics. Smart pixel arrays have been developed which use optical interconnects. An individual smart pixel cell is composed of a vertical cavity surface emitting laser (VCSEL), a photodetector, an optical receiver, a laser driver, and digital logic circuitry. Oxide-confined VCSELs are being developed to operate at 850 nm with a threshold current of approximately 1 mA. Multiple quantum well photodetectors are being fabricated from AlGaAs for use with the 850 nm VCSELs. The VCSELs and photodetectors are being integrated with complementary metal oxide semiconductor (CMOS) circuitry using flip-chip bonding. CMOS circuitry is being integrated with a 32 X 16 smart pixel array. The 512 smart pixels are serially linked. Thus, an entire data stream may be clocked through the chip and output electrically by the last pixel. Electrical testing is being performed on the CMOS smart pixel array. Using an on-chip pseudo random number generator, a digital data sequence was cycled through the chip verifying operation of the digital circuitry. Although, the prototype chip was fabricated in 1.2 micrometers technology, simulations have demonstrated that the array can operate at 1 Gb/s per pixel using 0.5 micrometers technology.

  6. Achieving sub-pixel geolocation accuracy in support of MODIS land science

    USGS Publications Warehouse

    Wolfe, R.E.; Nishihama, M.; Fleig, A.J.; Kuyper, J.A.; Roy, David P.; Storey, James C.; Patt, F.S.

    2002-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) was launched in December 1999 on the polar orbiting Terra spacecraft and since February 2000 has been acquiring daily global data in 36 spectral bands—29 with 1 km, five with 500 m, and two with 250 m nadir pixel dimensions. The Terra satellite has on-board exterior orientation (position and attitude) measurement systems designed to enable geolocation of MODIS data to approximately 150 m (1σ) at nadir. A global network of ground control points is being used to determine biases and trends in the sensor orientation. Biases have been removed by updating models of the spacecraft and instrument orientation in the MODIS geolocation software several times since launch and have improved the MODIS geolocation to approximately 50 m (1σ) at nadir. This paper overviews the geolocation approach, summarizes the first year of geolocation analysis, and overviews future work. The approach allows an operational characterization of the MODIS geolocation errors and enables individual MODIS observations to be geolocated to the sub-pixel accuracies required for terrestrial global change applications.

  7. Automation of Endmember Pixel Selection in SEBAL/METRIC Model

    NASA Astrophysics Data System (ADS)

    Bhattarai, N.; Quackenbush, L. J.; Im, J.; Shaw, S. B.

    2015-12-01

    The commonly applied surface energy balance for land (SEBAL) and its variant, mapping evapotranspiration (ET) at high resolution with internalized calibration (METRIC) models require manual selection of endmember (i.e. hot and cold) pixels to calibrate sensible heat flux. Current approaches for automating this process are based on statistical methods and do not appear to be robust under varying climate conditions and seasons. In this paper, we introduce a new approach based on simple machine learning tools and search algorithms that provides an automatic and time efficient way of identifying endmember pixels for use in these models. The fully automated models were applied on over 100 cloud-free Landsat images with each image covering several eddy covariance flux sites in Florida and Oklahoma. Observed land surface temperatures at automatically identified hot and cold pixels were within 0.5% of those from pixels manually identified by an experienced operator (coefficient of determination, R2, ≥ 0.92, Nash-Sutcliffe efficiency, NSE, ≥ 0.92, and root mean squared error, RMSE, ≤ 1.67 K). Daily ET estimates derived from the automated SEBAL and METRIC models were in good agreement with their manual counterparts (e.g., NSE ≥ 0.91 and RMSE ≤ 0.35 mm day-1). Automated and manual pixel selection resulted in similar estimates of observed ET across all sites. The proposed approach should reduce time demands for applying SEBAL/METRIC models and allow for their more widespread and frequent use. This automation can also reduce potential bias that could be introduced by an inexperienced operator and extend the domain of the models to new users.

  8. A robotic reflective Schmidt telescope for Dome C

    NASA Astrophysics Data System (ADS)

    Strassmeier, K. G.; Andersen, M. I.; Steinbach, M.

    2004-10-01

    This paper lays out a wide-field robotic Schmidt telescope (RST) for the Antarctic site Dome C. The telescope is based on 80/120cm reflective Schmidt optics, built originally for a space project, and a mosaic of four 7.5k×7.5k 8-μm thinned CCDs from the PEPSI/LBT wafer run. The telescope's total field of view (FOV) would be 5o circular (minimum 3o× 3o square) with a plate scale of 0.7 arcsec per pixel. Limiting magnitude is expected to be V=21.5mag in 60 sec for a field of 9 square degrees.

  9. Snow and Dust over Inner Mongolia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A severe snow-and-sand storm hit an 80,000 square-mile (205,000-square-km) stretch of the Chinese province of Mongolia on New Year's Eve, killing 21 people and leaving thousands of people to face possible starvation. The affected area is located about 250 miles (400 km) northwest of Beijing. It is the worst snowstorm to hit the region in more than 50 years. Lasting about 3 days, the storm dumped 24 inches (60 cm) of snow mixed with sand from the Gobi Desert, stranding many residents in deep drifts. The Chinese Red Cross reports that almost 1 million people were affected by the storm and at least 10,000 head of livestock are confirmed dead. As many as 120,000 residents are in need of food and other supplies. The Sea-viewing Wide Field-of-view Sensor (SeaWiFS), flying aboard the OrbView-2 satellite, acquired this image of the storm on January 2, 2001, as it approached China's eastern provinces. You can see storm clouds (white pixels) and windblown dust (brownish pixels) crossing the Yellow Sea and East China Sea toward Japan and the western Pacific. Provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  10. Complementary aspects of spatial resolution and signal-to-noise ratio in computational imaging

    NASA Astrophysics Data System (ADS)

    Gureyev, T. E.; Paganin, D. M.; Kozlov, A.; Nesterets, Ya. I.; Quiney, H. M.

    2018-05-01

    A generic computational imaging setup is considered which assumes sequential illumination of a semitransparent object by an arbitrary set of structured coherent illumination patterns. For each incident illumination pattern, all transmitted light is collected by a photon-counting bucket (single-pixel) detector. The transmission coefficients measured in this way are then used to reconstruct the spatial distribution of the object's projected transmission. It is demonstrated that the square of the spatial resolution of such a setup is usually equal to the ratio of the image area to the number of linearly independent illumination patterns. If the noise in the measured transmission coefficients is dominated by photon shot noise, then the ratio of the square of the mean signal to the noise variance is proportional to the ratio of the mean number of registered photons to the number of illumination patterns. The signal-to-noise ratio in a reconstructed transmission distribution is always lower if the illumination patterns are nonorthogonal, because of spatial correlations in the measured data. Examples of imaging methods relevant to the presented analysis include conventional imaging with a pixelated detector, computational ghost imaging, compressive sensing, super-resolution imaging, and computed tomography.

  11. Spatial noise and threshold contrasts in LCD displays

    NASA Astrophysics Data System (ADS)

    Roehrig, Hans; Krupinski, Elizabeth A.; Chawla, Amarpreet S.; Fan, Jiahua; Gandhi, Kunal

    2003-05-01

    This paper presents the results of initial physical and psycho-physical evaluations of the noise of high resolution LCDs. 5 LCDs were involved, having 4 different pixel structures. Spatial as well as temporal noise was physically measured with the aid of a high-performance CCD camera. Human contrast sensitivity in the presence of spatial noise was determined psycho-physically using periodic stimuli (square-wave patterns) as well as aperiodic stimuli (squares). For the measurements of the human contrast sensitivity, all LCDs were calibrated to the DICOM 14 Grayscale Standard Display Function (GSDF). The results demonstrate that spatial noise is the dominant noise in all LCDs, while temporal noise is insignificant and plays only a minor part. The magnitude of spatial noise of LCDs is in the range between that of CRTs with a P104 and that of CRTs with a P45. Of particular importance with respect to LCD noise is the contribution of the pixel structure to the Noise Power Spectrum, which shows up as sharp spikes at spatial frequencies beyond the LCDs" Nyquist frequency. The paper does not offer any clues about the importance of these spikes on the human contrast sensitivity.

  12. Automatic segmentation of fluorescence lifetime microscopy images of cells using multiresolution community detection--a first study.

    PubMed

    Hu, D; Sarder, P; Ronhovde, P; Orthaus, S; Achilefu, S; Nussinov, Z

    2014-01-01

    Inspired by a multiresolution community detection based network segmentation method, we suggest an automatic method for segmenting fluorescence lifetime (FLT) imaging microscopy (FLIM) images of cells in a first pilot investigation on two selected images. The image processing problem is framed as identifying segments with respective average FLTs against the background in FLIM images. The proposed method segments a FLIM image for a given resolution of the network defined using image pixels as the nodes and similarity between the FLTs of the pixels as the edges. In the resulting segmentation, low network resolution leads to larger segments, and high network resolution leads to smaller segments. Furthermore, using the proposed method, the mean-square error in estimating the FLT segments in a FLIM image was found to consistently decrease with increasing resolution of the corresponding network. The multiresolution community detection method appeared to perform better than a popular spectral clustering-based method in performing FLIM image segmentation. At high resolution, the spectral segmentation method introduced noisy segments in its output, and it was unable to achieve a consistent decrease in mean-square error with increasing resolution. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  13. Precise montaging and metric quantification of retinal surface area from ultra-widefield fundus photography and fluorescein angiography.

    PubMed

    Croft, Daniel E; van Hemert, Jano; Wykoff, Charles C; Clifton, David; Verhoek, Michael; Fleming, Alan; Brown, David M

    2014-01-01

    Accurate quantification of retinal surface area from ultra-widefield (UWF) images is challenging due to warping produced when the retina is projected onto a two-dimensional plane for analysis. By accounting for this, the authors sought to precisely montage and accurately quantify retinal surface area in square millimeters. Montages were created using Optos 200Tx (Optos, Dunfermline, U.K.) images taken at different gaze angles. A transformation projected the images to their correct location on a three-dimensional model. Area was quantified with spherical trigonometry. Warping, precision, and accuracy were assessed. Uncorrected, posterior pixels represented up to 79% greater surface area than peripheral pixels. Assessing precision, a standard region was quantified across 10 montages of the same eye (RSD: 0.7%; mean: 408.97 mm(2); range: 405.34-413.87 mm(2)). Assessing accuracy, 50 patients' disc areas were quantified (mean: 2.21 mm(2); SE: 0.06 mm(2)), and the results fell within the normative range. By accounting for warping inherent in UWF images, precise montaging and accurate quantification of retinal surface area in square millimeters were achieved. Copyright 2014, SLACK Incorporated.

  14. Comparing Pixel- and Object-Based Approaches in Effectively Classifying Wetland-Dominated Landscapes

    PubMed Central

    Berhane, Tedros M.; Lane, Charles R.; Wu, Qiusheng; Anenkhonov, Oleg A.; Chepinoga, Victor V.; Autrey, Bradley C.; Liu, Hongxing

    2018-01-01

    Wetland ecosystems straddle both terrestrial and aquatic habitats, performing many ecological functions directly and indirectly benefitting humans. However, global wetland losses are substantial. Satellite remote sensing and classification informs wise wetland management and monitoring. Both pixel- and object-based classification approaches using parametric and non-parametric algorithms may be effectively used in describing wetland structure and habitat, but which approach should one select? We conducted both pixel- and object-based image analyses (OBIA) using parametric (Iterative Self-Organizing Data Analysis Technique, ISODATA, and maximum likelihood, ML) and non-parametric (random forest, RF) approaches in the Barguzin Valley, a large wetland (~500 km2) in the Lake Baikal, Russia, drainage basin. Four Quickbird multispectral bands plus various spatial and spectral metrics (e.g., texture, Non-Differentiated Vegetation Index, slope, aspect, etc.) were analyzed using field-based regions of interest sampled to characterize an initial 18 ISODATA-based classes. Parsimoniously using a three-layer stack (Quickbird band 3, water ratio index (WRI), and mean texture) in the analyses resulted in the highest accuracy, 87.9% with pixel-based RF, followed by OBIA RF (segmentation scale 5, 84.6% overall accuracy), followed by pixel-based ML (83.9% overall accuracy). Increasing the predictors from three to five by adding Quickbird bands 2 and 4 decreased the pixel-based overall accuracy while increasing the OBIA RF accuracy to 90.4%. However, McNemar’s chi-square test confirmed no statistically significant difference in overall accuracy among the classifiers (pixel-based ML, RF, or object-based RF) for either the three- or five-layer analyses. Although potentially useful in some circumstances, the OBIA approach requires substantial resources and user input (such as segmentation scale selection—which was found to substantially affect overall accuracy). Hence, we conclude that pixel-based RF approaches are likely satisfactory for classifying wetland-dominated landscapes. PMID:29707381

  15. Comparing Pixel- and Object-Based Approaches in Effectively Classifying Wetland-Dominated Landscapes.

    PubMed

    Berhane, Tedros M; Lane, Charles R; Wu, Qiusheng; Anenkhonov, Oleg A; Chepinoga, Victor V; Autrey, Bradley C; Liu, Hongxing

    2018-01-01

    Wetland ecosystems straddle both terrestrial and aquatic habitats, performing many ecological functions directly and indirectly benefitting humans. However, global wetland losses are substantial. Satellite remote sensing and classification informs wise wetland management and monitoring. Both pixel- and object-based classification approaches using parametric and non-parametric algorithms may be effectively used in describing wetland structure and habitat, but which approach should one select? We conducted both pixel- and object-based image analyses (OBIA) using parametric (Iterative Self-Organizing Data Analysis Technique, ISODATA, and maximum likelihood, ML) and non-parametric (random forest, RF) approaches in the Barguzin Valley, a large wetland (~500 km 2 ) in the Lake Baikal, Russia, drainage basin. Four Quickbird multispectral bands plus various spatial and spectral metrics (e.g., texture, Non-Differentiated Vegetation Index, slope, aspect, etc.) were analyzed using field-based regions of interest sampled to characterize an initial 18 ISODATA-based classes. Parsimoniously using a three-layer stack (Quickbird band 3, water ratio index (WRI), and mean texture) in the analyses resulted in the highest accuracy, 87.9% with pixel-based RF, followed by OBIA RF (segmentation scale 5, 84.6% overall accuracy), followed by pixel-based ML (83.9% overall accuracy). Increasing the predictors from three to five by adding Quickbird bands 2 and 4 decreased the pixel-based overall accuracy while increasing the OBIA RF accuracy to 90.4%. However, McNemar's chi-square test confirmed no statistically significant difference in overall accuracy among the classifiers (pixel-based ML, RF, or object-based RF) for either the three- or five-layer analyses. Although potentially useful in some circumstances, the OBIA approach requires substantial resources and user input (such as segmentation scale selection-which was found to substantially affect overall accuracy). Hence, we conclude that pixel-based RF approaches are likely satisfactory for classifying wetland-dominated landscapes.

  16. Fabrication of X-ray Microcalorimeter Focal Planes Composed of Two Distinct Pixel Types.

    PubMed

    Wassell, E J; Adams, J S; Bandler, S R; Betancourt-Martinez, G L; Chiao, M P; Chang, M P; Chervenak, J A; Datesman, A M; Eckart, M E; Ewin, A J; Finkbeiner, F M; Ha, J Y; Kelley, R; Kilbourne, C A; Miniussi, A R; Sakai, K; Porter, F; Sadleir, J E; Smith, S J; Wakeham, N A; Yoon, W

    2017-06-01

    We are developing superconducting transition-edge sensor (TES) microcalorimeter focal planes for versatility in meeting specifications of X-ray imaging spectrometers including high count-rate, high energy resolution, and large field-of-view. In particular, a focal plane composed of two sub-arrays: one of fine-pitch, high count-rate devices and the other of slower, larger pixels with similar energy resolution, offers promise for the next generation of astrophysics instruments, such as the X-ray Integral Field Unit (X-IFU) instrument on the European Space Agency's Athena mission. We have based the sub-arrays of our current design on successful pixel designs that have been demonstrated separately. Pixels with an all gold X-ray absorber on 50 and 75 micron scales where the Mo/Au TES sits atop a thick metal heatsinking layer have shown high resolution and can accommodate high count-rates. The demonstrated larger pixels use a silicon nitride membrane for thermal isolation, thinner Au and an added bismuth layer in a 250 micron square absorber. To tune the parameters of each sub-array requires merging the fabrication processes of the two detector types. We present the fabrication process for dual production of different X-ray absorbers on the same substrate, thick Au on the small pixels and thinner Au with a Bi capping layer on the larger pixels to tune their heat capacities. The process requires multiple electroplating and etching steps, but the absorbers are defined in a single ion milling step. We demonstrate methods for integrating heatsinking of the two types of pixel into the same focal plane consistent with the requirements for each sub-array, including the limiting of thermal crosstalk. We also discuss fabrication process modifications for tuning the intrinsic transition temperature (T c ) of the bilayers for the different device types through variation of the bilayer thicknesses. The latest results on these "hybrid" arrays will be presented.

  17. Fabrication of X-ray Microcalorimeter Focal Planes Composed of Two Distinct Pixel Types

    PubMed Central

    Wassell, E. J.; Adams, J. S.; Bandler, S. R.; Betancourt-Martinez, G. L.; Chiao, M. P.; Chang, M. P.; Chervenak, J. A.; Datesman, A. M.; Eckart, M. E.; Ewin, A. J.; Finkbeiner, F. M.; Ha, J. Y.; Kelley, R.; Kilbourne, C. A.; Miniussi, A. R.; Sakai, K.; Porter, F.; Sadleir, J. E.; Smith, S. J.; Wakeham, N. A.; Yoon, W.

    2017-01-01

    We are developing superconducting transition-edge sensor (TES) microcalorimeter focal planes for versatility in meeting specifications of X-ray imaging spectrometers including high count-rate, high energy resolution, and large field-of-view. In particular, a focal plane composed of two sub-arrays: one of fine-pitch, high count-rate devices and the other of slower, larger pixels with similar energy resolution, offers promise for the next generation of astrophysics instruments, such as the X-ray Integral Field Unit (X-IFU) instrument on the European Space Agency’s Athena mission. We have based the sub-arrays of our current design on successful pixel designs that have been demonstrated separately. Pixels with an all gold X-ray absorber on 50 and 75 micron scales where the Mo/Au TES sits atop a thick metal heatsinking layer have shown high resolution and can accommodate high count-rates. The demonstrated larger pixels use a silicon nitride membrane for thermal isolation, thinner Au and an added bismuth layer in a 250 micron square absorber. To tune the parameters of each sub-array requires merging the fabrication processes of the two detector types. We present the fabrication process for dual production of different X-ray absorbers on the same substrate, thick Au on the small pixels and thinner Au with a Bi capping layer on the larger pixels to tune their heat capacities. The process requires multiple electroplating and etching steps, but the absorbers are defined in a single ion milling step. We demonstrate methods for integrating heatsinking of the two types of pixel into the same focal plane consistent with the requirements for each sub-array, including the limiting of thermal crosstalk. We also discuss fabrication process modifications for tuning the intrinsic transition temperature (Tc) of the bilayers for the different device types through variation of the bilayer thicknesses. The latest results on these “hybrid” arrays will be presented. PMID:28804229

  18. Coherent Anomaly Method Calculation on the Cluster Variation Method. II.

    NASA Astrophysics Data System (ADS)

    Wada, Koh; Watanabe, Naotosi; Uchida, Tetsuya

    The critical exponents of the bond percolation model are calculated in the D(= 2,3,…)-dimensional simple cubic lattice on the basis of Suzuki's coherent anomaly method (CAM) by making use of a series of the pair, the square-cactus and the square approximations of the cluster variation method (CVM) in the s-state Potts model. These simple approximations give reasonable values of critical exponents α, β, γ and ν in comparison with ones estimated by other methods. It is also shown that the results of the pair and the square-cactus approximations can be derived as exact results of the bond percolation model on the Bethe and the square-cactus lattice, respectively, in the presence of ghost field without recourse to the s→1 limit of the s-state Potts model.

  19. Shade images of forested areas obtained from Landsat MSS data

    NASA Technical Reports Server (NTRS)

    Shimabukuro, Yosio Edemir; Smith, James A.

    1989-01-01

    The objective of this report is to generate a shade (shadow) image of forested areas from Landsat MSS data by implementing a linear mixing model, where shadow is considered as one of the primary components in a pixel. The shade images are related to the observed variation in forest structure; i.e., the proportion of inferred shadow in a pixel is related to different forest ages, forest types, and tree crown cover. The constrained least-squares method is used to generate shade images for forest of eucalyptus and vegetation of 'cerrado' over the Itapeva study area in Brazil. The resulted shade images may explain the difference on ages for forest of eucalyptus and the difference on tree crown cover for vegetation of cerrado.

  20. CCD centroiding analysis for Nano-JASMINE observation data

    NASA Astrophysics Data System (ADS)

    Niwa, Yoshito; Yano, Taihei; Araki, Hiroshi; Gouda, Naoteru; Kobayashi, Yukiyasu; Yamada, Yoshiyuki; Tazawa, Seiichi; Hanada, Hideo

    2010-07-01

    Nano-JASMINE is a very small satellite mission for global space astrometry with milli-arcsecond accuracy, which will be launched in 2011. In this mission, centroids of stars in CCD image frames are estimated with sub-pixel accuracy. In order to realize such a high precision centroiding an algorithm utilizing a least square method is employed. One of the advantages is that centroids can be calculated without explicit assumption of the point spread functions of stars. CCD centroiding experiment has been performed to investigate whether this data analysis is available, and centroids of artificial star images on a CCD are determined with a precision of less than 0.001 pixel. This result indicates parallaxes of stars within 300 pc from Sun can be observed in Nano-JASMINE.

  1. Comparison of techniques for approximating ocean bottom topography in a wave-refraction computer model

    NASA Technical Reports Server (NTRS)

    Poole, L. R.

    1975-01-01

    A study of the effects of using different methods for approximating bottom topography in a wave-refraction computer model was conducted. Approximation techniques involving quadratic least squares, cubic least squares, and constrained bicubic polynomial interpolation were compared for computed wave patterns and parameters in the region of Saco Bay, Maine. Although substantial local differences can be attributed to use of the different approximation techniques, results indicated that overall computed wave patterns and parameter distributions were quite similar.

  2. Implementing Linear Algebra Related Algorithms on the TI-92+ Calculator.

    ERIC Educational Resources Information Center

    Alexopoulos, John; Abraham, Paul

    2001-01-01

    Demonstrates a less utilized feature of the TI-92+: its natural and powerful programming language. Shows how to implement several linear algebra related algorithms including the Gram-Schmidt process, Least Squares Approximations, Wronskians, Cholesky Decompositions, and Generalized Linear Least Square Approximations with QR Decompositions.…

  3. Coherent Anomaly Method Calculation on the Cluster Variation Method. II. Critical Exponents of Bond Percolation Model

    NASA Astrophysics Data System (ADS)

    Wada, Koh; Watanabe, Naotosi; Uchida, Tetsuya

    1991-10-01

    The critical exponents of the bond percolation model are calculated in the D(=2, 3, \\cdots)-dimensional simple cubic lattice on the basis of Suzuki’s coherent anomaly method (CAM) by making use of a series of the pair, the square-cactus and the square approximations of the cluster variation method (CVM) in the s-state Potts model. These simple approximations give reasonable values of critical exponents α, β, γ and ν in comparison with ones estimated by other methods. It is also shown that the results of the pair and the square-cactus approximations can be derived as exact results of the bond percolation model on the Bethe and the square-cactus lattice, respectively, in the presence of ghost field without recourse to the s→1 limit of the s-state Potts model.

  4. Signal dependence of inter-pixel capacitance in hybridized HgCdTe H2RG arrays for use in James Webb space telescope's NIRcam

    NASA Astrophysics Data System (ADS)

    Donlon, Kevan; Ninkov, Zoran; Baum, Stefi

    2016-08-01

    Interpixel capacitance (IPC) is a deterministic electronic coupling by which signal generated in one pixel is measured in neighboring pixels. Examination of dark frames from test NIRcam arrays corroborates earlier results and simulations illustrating a signal dependent coupling. When the signal on an individual pixel is larger, the fractional coupling to nearest neighbors is lesser than when the signal is lower. Frames from test arrays indicate a drop in average coupling from approximately 1.0% at low signals down to approximately 0.65% at high signals depending on the particular array in question. The photometric ramifications for this non-uniformity are not fully understood. This non-uniformity intro-duces a non-linearity in the current mathematical model for IPC coupling. IPC coupling has been mathematically formalized as convolution by a blur kernel. Signal dependence requires that the blur kernel be locally defined as a function of signal intensity. Through application of a signal dependent coupling kernel, the IPC coupling can be modeled computationally. This method allows for simultaneous knowledge of the intrinsic parameters of the image scene, the result of applying a constant IPC, and the result of a signal dependent IPC. In the age of sub-pixel precision in astronomy these effects must be properly understood and accounted for in order for the data to accurately represent the object of observation. Implementation of this method is done through python scripted processing of images. The introduction of IPC into simulated frames is accomplished through convolution of the image with a blur kernel whose parameters are themselves locally defined functions of the image. These techniques can be used to enhance the data processing pipeline for NIRcam.

  5. Review of the Probable Maximum Flood (PMF) Snowmelt Analysis for Success Dam

    DTIC Science & Technology

    2015-11-01

    118.53994 36.11754 7200 1981–2014 CA Dept. of Water Resources EGL Eagle Creek Air Temp. Hourly −118.641 35.983 6700 1995–2009 USACE HSS Hossack Air...is in the form of “tiles” with each tile ap- proximately 1200 × 1200 km in area and containing approximately 2400 × 2400 pixels. Each pixel is...District, U.S. Army Corps of Engineers. REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of

  6. Design and Calibration of a Novel Bio-Inspired Pixelated Polarized Light Compass.

    PubMed

    Han, Guoliang; Hu, Xiaoping; Lian, Junxiang; He, Xiaofeng; Zhang, Lilian; Wang, Yujie; Dong, Fengliang

    2017-11-14

    Animals, such as Savannah sparrows and North American monarch butterflies, are able to obtain compass information from skylight polarization patterns to help them navigate effectively and robustly. Inspired by excellent navigation ability of animals, this paper proposes a novel image-based polarized light compass, which has the advantages of having a small size and being light weight. Firstly, the polarized light compass, which is composed of a Charge Coupled Device (CCD) camera, a pixelated polarizer array and a wide-angle lens, is introduced. Secondly, the measurement method of a skylight polarization pattern and the orientation method based on a single scattering Rayleigh model are presented. Thirdly, the error model of the sensor, mainly including the response error of CCD pixels and the installation error of the pixelated polarizer, is established. A calibration method based on iterative least squares estimation is proposed. In the outdoor environment, the skylight polarization pattern can be measured in real time by our sensor. The orientation accuracy of the sensor increases with the decrease of the solar elevation angle, and the standard deviation of orientation error is 0 . 15 ∘ at sunset. Results of outdoor experiments show that the proposed polarization navigation sensor can be used for outdoor autonomous navigation.

  7. Design and Calibration of a Novel Bio-Inspired Pixelated Polarized Light Compass

    PubMed Central

    Hu, Xiaoping; Lian, Junxiang; He, Xiaofeng; Zhang, Lilian; Wang, Yujie; Dong, Fengliang

    2017-01-01

    Animals, such as Savannah sparrows and North American monarch butterflies, are able to obtain compass information from skylight polarization patterns to help them navigate effectively and robustly. Inspired by excellent navigation ability of animals, this paper proposes a novel image-based polarized light compass, which has the advantages of having a small size and being light weight. Firstly, the polarized light compass, which is composed of a Charge Coupled Device (CCD) camera, a pixelated polarizer array and a wide-angle lens, is introduced. Secondly, the measurement method of a skylight polarization pattern and the orientation method based on a single scattering Rayleigh model are presented. Thirdly, the error model of the sensor, mainly including the response error of CCD pixels and the installation error of the pixelated polarizer, is established. A calibration method based on iterative least squares estimation is proposed. In the outdoor environment, the skylight polarization pattern can be measured in real time by our sensor. The orientation accuracy of the sensor increases with the decrease of the solar elevation angle, and the standard deviation of orientation error is 0.15∘ at sunset. Results of outdoor experiments show that the proposed polarization navigation sensor can be used for outdoor autonomous navigation. PMID:29135927

  8. IR sensitivity enhancement of CMOS Image Sensor with diffractive light trapping pixels.

    PubMed

    Yokogawa, Sozo; Oshiyama, Itaru; Ikeda, Harumi; Ebiko, Yoshiki; Hirano, Tomoyuki; Saito, Suguru; Oinoue, Takashi; Hagimoto, Yoshiya; Iwamoto, Hayato

    2017-06-19

    We report on the IR sensitivity enhancement of back-illuminated CMOS Image Sensor (BI-CIS) with 2-dimensional diffractive inverted pyramid array structure (IPA) on crystalline silicon (c-Si) and deep trench isolation (DTI). FDTD simulations of semi-infinite thick c-Si having 2D IPAs on its surface whose pitches over 400 nm shows more than 30% improvement of light absorption at λ = 850 nm and the maximum enhancement of 43% with the 540 nm pitch at the wavelength is confirmed. A prototype BI-CIS sample with pixel size of 1.2 μm square containing 400 nm pitch IPAs shows 80% sensitivity enhancement at λ = 850 nm compared to the reference sample with flat surface. This is due to diffraction with the IPA and total reflection at the pixel boundary. The NIR images taken by the demo camera equip with a C-mount lens show 75% sensitivity enhancement in the λ = 700-1200 nm wavelength range with negligible spatial resolution degradation. Light trapping CIS pixel technology promises to improve NIR sensitivity and appears to be applicable to many different image sensor applications including security camera, personal authentication, and range finding Time-of-Flight camera with IR illuminations.

  9. Energy-correction photon counting pixel for photon energy extraction under pulse pile-up

    NASA Astrophysics Data System (ADS)

    Lee, Daehee; Park, Kyungjin; Lim, Kyung Taek; Cho, Gyuseong

    2017-06-01

    A photon counting detector (PCD) has been proposed as an alternative solution to an energy-integrating detector (EID) in medical imaging field due to its high resolution, high efficiency, and low noise. The PCD has expanded to variety of fields such as spectral CT, k-edge imaging, and material decomposition owing to its capability to count and measure the number and the energy of an incident photon, respectively. Nonetheless, pulse pile-up, which is a superimposition of pulses at the output of a charge sensitive amplifier (CSA) in each PC pixel, occurs frequently as the X-ray flux increases due to the finite pulse processing time (PPT) in CSAs. Pulse pile-up induces not only a count loss but also distortion in the measured X-ray spectrum from each PC pixel and thus it is a main constraint on the use of PCDs in high flux X-ray applications. To minimize these effects, an energy-correction PC (ECPC) pixel is proposed to resolve pulse pile-up without cutting off the PPT by adding an energy correction logic (ECL) via a cross detection method (CDM). The ECPC pixel with a size of 200×200 μm2 was fabricated by using a 6-metal 1-poly 0.18 μm CMOS process with a static power consumption of 7.2 μW/pixel. The maximum count rate of the ECPC pixel was extended by approximately three times higher than that of a conventional PC pixel with a PPT of 500 nsec. The X-ray spectrum of 90 kVp, filtered by 3 mm Al filter, was measured as the X-ray current was increased using the CdTe and the ECPC pixel. As a result, the ECPC pixel dramatically reduced the energy spectrum distortion at 2 Mphotons/pixel/s when compared to that of the ERCP pixel with the same 500 nsec PPT.

  10. Least-Squares Adaptive Control Using Chebyshev Orthogonal Polynomials

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Burken, John; Ishihara, Abraham

    2011-01-01

    This paper presents a new adaptive control approach using Chebyshev orthogonal polynomials as basis functions in a least-squares functional approximation. The use of orthogonal basis functions improves the function approximation significantly and enables better convergence of parameter estimates. Flight control simulations demonstrate the effectiveness of the proposed adaptive control approach.

  11. Estimating Single and Multiple Target Locations Using K-Means Clustering with Radio Tomographic Imaging in Wireless Sensor Networks

    DTIC Science & Technology

    2015-03-26

    dB) Lx, Ly, Lz Number of Pixels or Voxels in Respective Cartesian Dimension λ Width of Weighting Ellipse (ft) λi Diagonal Entries of Λ (Square Root...Barrett, and L. R. Furenlid, “Calibration Method for ML Estimation of 3D Interaction Position in a Thick Gamma-Ray Detector ,” IEEE Transactions on

  12. Performance of photovoltaic arrays in-vivo and characteristics of prosthetic vision in animals with retinal degeneration

    PubMed Central

    Lorach, Henri; Goetz, Georges; Mandel, Yossi; Lei, Xin; Kamins, Theodore I.; Mathieson, Keith; Huie, Philip; Dalal, Roopa; Harris, James S.; Palanker, Daniel

    2014-01-01

    Summary Loss of photoreceptors during retinal degeneration leads to blindness, but information can be reintroduced into the visual system using electrical stimulation of the remaining retinal neurons. Subretinal photovoltaic arrays convert pulsed illumination into pulsed electric current to stimulate the inner retinal neurons. Since required irradiance exceeds the natural luminance levels, an invisible near-infrared (915nm) light is used to avoid photophobic effects. We characterized the thresholds and dynamic range of cortical responses to prosthetic stimulation with arrays of various pixel sizes and with different number of photodiodes. Stimulation thresholds for devices with 140µm pixels were approximately half those of 70µm pixels, and with both pixel sizes, thresholds were lower with 2 diodes than with 3 diodes per pixel. In all cases these thresholds were more than two orders of magnitude below the ocular safety limit. At high stimulation frequencies (>20Hz), the cortical response exhibited flicker fusion. Over one order of magnitude of dynamic range could be achieved by varying either pulse duration or irradiance. However, contrast sensitivity was very limited. Cortical responses could be detected even with only a few illuminated pixels. Finally, we demonstrate that recording of the corneal electric potential in response to patterned illumination of the subretinal arrays allows monitoring the current produced by each pixel, and thereby assessing the changes in the implant performance over time. PMID:25255990

  13. Impact of sensor's point spread function on land cover characterization: Assessment and deconvolution

    USGS Publications Warehouse

    Huang, C.; Townshend, J.R.G.; Liang, S.; Kalluri, S.N.V.; DeFries, R.S.

    2002-01-01

    Measured and modeled point spread functions (PSF) of sensor systems indicate that a significant portion of the recorded signal of each pixel of a satellite image originates from outside the area represented by that pixel. This hinders the ability to derive surface information from satellite images on a per-pixel basis. In this study, the impact of the PSF of the Moderate Resolution Imaging Spectroradiometer (MODIS) 250 m bands was assessed using four images representing different landscapes. Experimental results showed that though differences between pixels derived with and without PSF effects were small on the average, the PSF generally brightened dark objects and darkened bright objects. This impact of the PSF lowered the performance of a support vector machine (SVM) classifier by 5.4% in overall accuracy and increased the overall root mean square error (RMSE) by 2.4% in estimating subpixel percent land cover. An inversion method based on the known PSF model reduced the signals originating from surrounding areas by as much as 53%. This method differs from traditional PSF inversion deconvolution methods in that the PSF was adjusted with lower weighting factors for signals originating from neighboring pixels than those specified by the PSF model. By using this deconvolution method, the lost classification accuracy due to residual impact of PSF effects was reduced to only 1.66% in overall accuracy. The increase in the RMSE of estimated subpixel land cover proportions due to the residual impact of PSF effects was reduced to 0.64%. Spatial aggregation also effectively reduced the errors in estimated land cover proportion images. About 50% of the estimation errors were removed after applying the deconvolution method and aggregating derived proportion images to twice their dimensional pixel size. ?? 2002 Elsevier Science Inc. All rights reserved.

  14. Evaluation of a photon counting Medipix3RX CZT spectral x-ray detector

    PubMed Central

    Jorgensen, Steven M.; Vercnocke, Andrew J.; Rundle, David S.; Butler, Philip H.; McCollough, Cynthia H.; Ritman, Erik L.

    2016-01-01

    We assessed the performance of a cadmium zinc telluride (CZT)-based Medipix3RX x-ray detector as a candidate for micro-computed tomography (micro-CT) imaging. This technology was developed at CERN for the Large Hadron Collider. It features an array of 128 by 128, 110 micrometer square pixels, each with eight simultaneous threshold counters, five of which utilize real-time charge summing, significantly reducing the charge sharing between contiguous pixels. Pixel response curves were created by imaging a range of x-ray intensities by varying x-ray tube current and by varying the exposure time with fixed x-ray current. Photon energy-related assessments were made by flooding the detector with the tin foil filtered emission of an I-125 radioisotope brachytherapy seed and sweeping the energy threshold of each of the four charge-summed counters of each pixel in 1 keV steps. Long term stability assessments were made by repeating exposures over the course of one hour. The high properly-functioning pixel yield (99%), long term stability (linear regression of whole-chip response over one hour of acquisitions: y = −0.0038x + 2284; standard deviation: 3.7 counts) and energy resolution (2.5 keV FWHM (single pixel), 3.7 keV FWHM across the full image) make this device suitable for spectral micro-CT. The charge summing performance effectively reduced the measurement corruption caused by charge sharing which, when unaccounted for, shifts the photon energy assignment to lower energies, degrading both count and energy accuracy. Effective charge summing greatly improves the potential for calibrated, energy-specific material decomposition and K edge difference imaging approaches. PMID:27795606

  15. Evaluation of a photon counting Medipix3RX CZT spectral x-ray detector.

    PubMed

    Jorgensen, Steven M; Vercnocke, Andrew J; Rundle, David S; Butler, Philip H; McCollough, Cynthia H; Ritman, Erik L

    2016-08-28

    We assessed the performance of a cadmium zinc telluride (CZT)-based Medipix3RX x-ray detector as a candidate for micro-computed tomography (micro-CT) imaging. This technology was developed at CERN for the Large Hadron Collider. It features an array of 128 by 128, 110 micrometer square pixels, each with eight simultaneous threshold counters, five of which utilize real-time charge summing, significantly reducing the charge sharing between contiguous pixels. Pixel response curves were created by imaging a range of x-ray intensities by varying x-ray tube current and by varying the exposure time with fixed x-ray current. Photon energy-related assessments were made by flooding the detector with the tin foil filtered emission of an I-125 radioisotope brachytherapy seed and sweeping the energy threshold of each of the four charge-summed counters of each pixel in 1 keV steps. Long term stability assessments were made by repeating exposures over the course of one hour. The high properly-functioning pixel yield (99%), long term stability (linear regression of whole-chip response over one hour of acquisitions: y = -0.0038x + 2284; standard deviation: 3.7 counts) and energy resolution (2.5 keV FWHM (single pixel), 3.7 keV FWHM across the full image) make this device suitable for spectral micro-CT. The charge summing performance effectively reduced the measurement corruption caused by charge sharing which, when unaccounted for, shifts the photon energy assignment to lower energies, degrading both count and energy accuracy. Effective charge summing greatly improves the potential for calibrated, energy-specific material decomposition and K edge difference imaging approaches.

  16. The fundamentals of average local variance--Part II: Sampling simple regular patterns with optical imagery.

    PubMed

    Bøcher, Peder Klith; McCloy, Keith R

    2006-02-01

    In this investigation, the characteristics of the average local variance (ALV) function is investigated through the acquisition of images at different spatial resolutions of constructed scenes of regular patterns of black and white squares. It is shown that the ALV plot consistently peaks at a spatial resolution in which the pixels has a size corresponding to half the distance between scene objects, and that, under very specific conditions, it also peaks at a spatial resolution in which the pixel size corresponds to the whole distance between scene objects. It is argued that the peak at object distance when present is an expression of the Nyquist sample rate. The presence of this peak is, hence, shown to be a function of the matching between the phase of the scene pattern and the phase of the sample grid, i.e., the image. When these phases match, a clear and distinct peak is produced on the ALV plot. The fact that the peak at half the distance consistently occurs in the ALV plot is linked to the circumstance that the sampling interval (distance between pixels) and the extent of the sampling unit (size of pixels) are equal. Hence, at twice the Nyquist sampling rate, each fundamental period of the pattern is covered by four pixels; therefore, at least one pixel is always completely embedded within one pattern element, regardless of sample scene phase. If the objects in the scene are scattered with a distance larger than their extent, the peak will be related to the size by a factor larger than 1/2. This is suggested to be the explanation to the results presented by others that the ALV plot is related to scene-object size by a factor of 1/2-3/4.

  17. Continuous Change Detection and Classification (CCDC) of Land Cover Using All Available Landsat Data

    NASA Astrophysics Data System (ADS)

    Zhu, Z.; Woodcock, C. E.

    2012-12-01

    A new algorithm for Continuous Change Detection and Classification (CCDC) of land cover using all available Landsat data is developed. This new algorithm is capable of detecting many kinds of land cover change as new images are collected and at the same time provide land cover maps for any given time. To better identify land cover change, a two step cloud, cloud shadow, and snow masking algorithm is used for eliminating "noisy" observations. Next, a time series model that has components of seasonality, trend, and break estimates the surface reflectance and temperature. The time series model is updated continuously with newly acquired observations. Due to the high variability in spectral response for different kinds of land cover change, the CCDC algorithm uses a data-driven threshold derived from all seven Landsat bands. When the difference between observed and predicted exceeds the thresholds three consecutive times, a pixel is identified as land cover change. Land cover classification is done after change detection. Coefficients from the time series models and the Root Mean Square Error (RMSE) from model fitting are used as classification inputs for the Random Forest Classifier (RFC). We applied this new algorithm for one Landsat scene (Path 12 Row 31) that includes all of Rhode Island as well as much of Eastern Massachusetts and parts of Connecticut. A total of 532 Landsat images acquired between 1982 and 2011 were processed. During this period, 619,924 pixels were detected to change once (91% of total changed pixels) and 60,199 pixels were detected to change twice (8% of total changed pixels). The most frequent land cover change category is from mixed forest to low density residential which occupies more than 8% of total land cover change pixels.

  18. Statistical analysis of low-voltage EDS spectrum images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, I.M.

    1998-03-01

    The benefits of using low ({le}5 kV) operating voltages for energy-dispersive X-ray spectrometry (EDS) of bulk specimens have been explored only during the last few years. This paper couples low-voltage EDS with two other emerging areas of characterization: spectrum imaging of a computer chip manufactured by a major semiconductor company. Data acquisition was performed with a Philips XL30-FEG SEM operated at 4 kV and equipped with an Oxford super-ATW detector and XP3 pulse processor. The specimen was normal to the electron beam and the take-off angle for acquisition was 35{degree}. The microscope was operated with a 150 {micro}m diameter finalmore » aperture at spot size 3, which yielded an X-ray count rate of {approximately}2,000 s{sup {minus}1}. EDS spectrum images were acquired as Adobe Photoshop files with the 4pi plug-in module. (The spectrum images could also be stored as NIH Image files, but the raw data are automatically rescaled as maximum-contrast (0--255) 8-bit TIFF images -- even at 16-bit resolution -- which poses an inconvenience for quantitative analysis.) The 4pi plug-in module is designed for EDS X-ray mapping and allows simultaneous acquisition of maps from 48 elements plus an SEM image. The spectrum image was acquired by re-defining the energy intervals of 48 elements to form a series of contiguous 20 eV windows from 1.25 kV to 2.19 kV. A spectrum image of 450 x 344 pixels was acquired from the specimen with a sampling density of 50 nm/pixel and a dwell time of 0.25 live seconds per pixel, for a total acquisition time of {approximately}14 h. The binary data files were imported into Mathematica for analysis with software developed by the author at Oak Ridge National Laboratory. A 400 x 300 pixel section of the original image was analyzed. MSA required {approximately}185 Mbytes of memory and {approximately}18 h of CPU time on a 300 MHz Power Macintosh 9600.« less

  19. New amorphous-silicon image sensor for x-ray diagnostic medical imaging applications

    NASA Astrophysics Data System (ADS)

    Weisfield, Richard L.; Hartney, Mark A.; Street, Robert A.; Apte, Raj B.

    1998-07-01

    This paper introduces new high-resolution amorphous Silicon (a-Si) image sensors specifically configured for demonstrating film-quality medical x-ray imaging capabilities. The devices utilizes an x-ray phosphor screen coupled to an array of a-Si photodiodes for detecting visible light, and a-Si thin-film transistors (TFTs) for connecting the photodiodes to external readout electronics. We have developed imagers based on a pixel size of 127 micrometer X 127 micrometer with an approximately page-size imaging area of 244 mm X 195 mm, and array size of 1,536 data lines by 1,920 gate lines, for a total of 2.95 million pixels. More recently, we have developed a much larger imager based on the same pixel pattern, which covers an area of approximately 406 mm X 293 mm, with 2,304 data lines by 3,200 gate lines, for a total of nearly 7.4 million pixels. This is very likely to be the largest image sensor array and highest pixel count detector fabricated on a single substrate. Both imagers connect to a standard PC and are capable of taking an image in a few seconds. Through design rule optimization we have achieved a light sensitive area of 57% and optimized quantum efficiency for x-ray phosphor output in the green part of the spectrum, yielding an average quantum efficiency between 500 and 600 nm of approximately 70%. At the same time, we have managed to reduce extraneous leakage currents on these devices to a few fA per pixel, which allows for very high dynamic range to be achieved. We have characterized leakage currents as a function of photodiode bias, time and temperature to demonstrate high stability over these large sized arrays. At the electronics level, we have adopted a new generation of low noise, charge- sensitive amplifiers coupled to 12-bit A/D converters. Considerable attention was given to reducing electronic noise in order to demonstrate a large dynamic range (over 4,000:1) for medical imaging applications. Through a combination of low data lines capacitance, readout amplifier design, optimized timing, and noise cancellation techniques, we achieve 1,000e to 2,000e of noise for the page size and large size arrays, respectively. This allows for true 12-bit performance and quantum limited images over a wide range of x-ray exposures. Various approaches to reducing line correlated noise have been implemented and will be discussed. Images documenting the improved performance will be presented. Avenues for improvement are under development, including higher resolution 97 micrometer pixel imagers, further improvements in detective quantum efficiency, and characterization of dynamic behavior.

  20. The primordial deuterium abundance at zabs = 2.504 from a high signal-to-noise spectrum of Q1009+2956

    NASA Astrophysics Data System (ADS)

    Zavarygin, E. O.; Webb, J. K.; Dumont, V.; Riemer-Sørensen, S.

    2018-04-01

    The spectrum of the zem = 2.63 quasar Q1009+2956 has been observed extensively on the Keck telescope. The Lyman limit absorption system zabs = 2.504 was previously used to measure D/H by Burles & Tytler using a spectrum with signal to noise approximately 60 per pixel in the continuum near Ly α at zabs = 2.504. The larger dataset now available combines to form an exceptionally high signal to noise spectrum, around 147 per pixel. Several heavy element absorption lines are detected in this LLS, providing strong constraints on the kinematic structure. We explore a suite of absorption system models and find that the deuterium feature is likely to be contaminated by weak interloping Ly α absorption from a low column density H I cloud, reducing the expected D/H precision. We find D/H =2.48^{+0.41}_{-0.35} × 10^{-5} for this system. Combining this new measurement with others from the literature and applying the method of Least Trimmed Squares to a statistical sample of 15 D/H measurements results in a "reliable" sample of 13 values. This sample yields a primordial deuterium abundance of (D/H)p = (2.545 ± 0.025) × 10-5. The corresponding mean baryonic density of the Universe is Ωbh2 = 0.02174 ± 0.00025. The quasar absorption data is of the same precision as, and marginally inconsistent with, the 2015 CMB Planck (TT+lowP+lensing) measurement, Ωbh2 = 0.02226 ± 0.00023. Further quasar and more precise nuclear data are required to establish whether this is a random fluctuation.

  1. Subpixel Snow-covered Area Including Differentiated Grain Size from AVIRIS Data Over the Sierra Nevada Mountain Range

    NASA Astrophysics Data System (ADS)

    Hill, R.; Calvin, W. M.; Harpold, A. A.

    2016-12-01

    Mountain snow storage is the dominant source of water for humans and ecosystems in western North America. Consequently, the spatial distribution of snow-covered area is fundamental to both hydrological, ecological, and climate models. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were collected along the entire Sierra Nevada mountain range extending from north of Lake Tahoe to south of Mt. Whitney during the 2015 and 2016 snow-covered season. The AVIRIS dataset used in this experiment consists of 224 contiguous spectral channels with wavelengths ranging 400-2500 nanometers at a 15-meter spatial pixel size. Data from the Sierras were acquired on four days: 2/24/15 during a very low snow year, 3/24/16 near maximum snow accumulation, and 5/12/16 and 5/18/16 during snow ablation and snow loss. Previous retrieval of subpixel snow-covered area in alpine regions used multiple snow endmembers due to the sensitivity of snow spectral reflectance to grain size. We will present a model that analyzes multiple endmembers of varying snow grain size, vegetation, rock, and soil in segmented regions along the Sierra Nevada to determine snow-cover spatial extent, snow sub-pixel fraction and approximate grain size or melt state. The root mean squared error will provide a spectrum-wide assessment of the mixture model's goodness-of-fit. Analysis will compare snow-covered area and snow-cover depletion in the 2016 year, and annual variation from the 2015 year. Field data were also acquired on three days concurrent with the 2016 flights in the Sagehen Experimental Forest and will support ground validation of the airborne data set.

  2. Hubble Space Telescope faint object camera instrument handbook (Post-COSTAR), version 5.0

    NASA Technical Reports Server (NTRS)

    Nota, A. (Editor); Jedrzejewski, R. (Editor); Greenfield, P. (Editor); Hack, W. (Editor)

    1994-01-01

    The faint object camera (FOC) is a long-focal-ratio, photon-counting device capable of taking high-resolution two-dimensional images of the sky up to 14 by 14 arc seconds squared in size with pixel dimensions as small as 0.014 by 0.014 arc seconds squared in the 1150 to 6500 A wavelength range. Its performance approaches that of an ideal imaging system at low light levels. The FOC is the only instrument on board the Hubble Space Telescope (HST) to fully use the spatial resolution capabilities of the optical telescope assembly (OTA) and is one of the European Space Agency's contributions to the HST program.

  3. Phase holograms in polymethyl methacrylate

    NASA Technical Reports Server (NTRS)

    Maker, P. D.; Muller, R. E.

    1992-01-01

    A procedure is described for the fabrication of complex computer-generated phase holograms in polymethyl methacrylate (PMMA) by means of partial-exposure e-beam lithography and subsequent carefully controlled partial development. Following the development, the pattern appears (rendered in relief) in the PMMA, which then acts as the phase-delay medium. The devices fabricated were designed with 16 equal phase steps per retardation cycle, were up to 3 mm square, and consisted of up to 10 millions of 0.3-2.0-micron square pixels. Data files were up to 60 Mb-long, and the exposure times ranged to several hours. A Fresnel phase lens was fabricated with a diffraction-limited optical performance of 83-percent efficiency.

  4. Graphics processing unit accelerated intensity-based optical coherence tomography angiography using differential frames with real-time motion correction.

    PubMed

    Watanabe, Yuuki; Takahashi, Yuhei; Numazawa, Hiroshi

    2014-02-01

    We demonstrate intensity-based optical coherence tomography (OCT) angiography using the squared difference of two sequential frames with bulk-tissue-motion (BTM) correction. This motion correction was performed by minimization of the sum of the pixel values using axial- and lateral-pixel-shifted structural OCT images. We extract the BTM-corrected image from a total of 25 calculated OCT angiographic images. Image processing was accelerated by a graphics processing unit (GPU) with many stream processors to optimize the parallel processing procedure. The GPU processing rate was faster than that of a line scan camera (46.9 kHz). Our OCT system provides the means of displaying structural OCT images and BTM-corrected OCT angiographic images in real time.

  5. Calibration method for video and radiation imagers

    DOEpatents

    Cunningham, Mark F [Oak Ridge, TN; Fabris, Lorenzo [Knoxville, TN; Gee, Timothy F [Oak Ridge, TN; Goddard, Jr., James S.; Karnowski, Thomas P [Knoxville, TN; Ziock, Klaus-peter [Clinton, TN

    2011-07-05

    The relationship between the high energy radiation imager pixel (HERIP) coordinate and real-world x-coordinate is determined by a least square fit between the HERIP x-coordinate and the measured real-world x-coordinates of calibration markers that emit high energy radiation imager and reflect visible light. Upon calibration, a high energy radiation imager pixel position may be determined based on a real-world coordinate of a moving vehicle. Further, a scale parameter for said high energy radiation imager may be determined based on the real-world coordinate. The scale parameter depends on the y-coordinate of the moving vehicle as provided by a visible light camera. The high energy radiation imager may be employed to detect radiation from moving vehicles in multiple lanes, which correspondingly have different distances to the high energy radiation imager.

  6. Volume and tissue composition preserving deformation of breast CT images to simulate breast compression in mammographic imaging

    NASA Astrophysics Data System (ADS)

    Han, Tao; Chen, Lingyun; Lai, Chao-Jen; Liu, Xinming; Shen, Youtao; Zhong, Yuncheng; Ge, Shuaiping; Yi, Ying; Wang, Tianpeng; Shaw, Chris C.

    2009-02-01

    Images of mastectomy breast specimens have been acquired with a bench top experimental Cone beam CT (CBCT) system. The resulting images have been segmented to model an uncompressed breast for simulation of various CBCT techniques. To further simulate conventional or tomosynthesis mammographic imaging for comparison with the CBCT technique, a deformation technique was developed to convert the CT data for an uncompressed breast to a compressed breast without altering the breast volume or regional breast density. With this technique, 3D breast deformation is separated into two 2D deformations in coronal and axial views. To preserve the total breast volume and regional tissue composition, each 2D deformation step was achieved by altering the square pixels into rectangular ones with the pixel areas unchanged and resampling with the original square pixels using bilinear interpolation. The compression was modeled by first stretching the breast in the superior-inferior direction in the coronal view. The image data were first deformed by distorting the voxels with a uniform distortion ratio. These deformed data were then deformed again using distortion ratios varying with the breast thickness and re-sampled. The deformation procedures were applied in the axial view to stretch the breast in the chest wall to nipple direction while shrinking it in the mediolateral to lateral direction re-sampled and converted into data for uniform cubic voxels. Threshold segmentation was applied to the final deformed image data to obtain the 3D compressed breast model. Our results show that the original segmented CBCT image data were successfully converted into those for a compressed breast with the same volume and regional density preserved. Using this compressed breast model, conventional and tomosynthesis mammograms were simulated for comparison with CBCT.

  7. Mapping conduction velocity of early embryonic hearts with a robust fitting algorithm

    PubMed Central

    Gu, Shi; Wang, Yves T; Ma, Pei; Werdich, Andreas A; Rollins, Andrew M; Jenkins, Michael W

    2015-01-01

    Cardiac conduction maturation is an important and integral component of heart development. Optical mapping with voltage-sensitive dyes allows sensitive measurements of electrophysiological signals over the entire heart. However, accurate measurements of conduction velocity during early cardiac development is typically hindered by low signal-to-noise ratio (SNR) measurements of action potentials. Here, we present a novel image processing approach based on least squares optimizations, which enables high-resolution, low-noise conduction velocity mapping of smaller tubular hearts. First, the action potential trace measured at each pixel is fit to a curve consisting of two cumulative normal distribution functions. Then, the activation time at each pixel is determined based on the fit, and the spatial gradient of activation time is determined with a two-dimensional (2D) linear fit over a square-shaped window. The size of the window is adaptively enlarged until the gradients can be determined within a preset precision. Finally, the conduction velocity is calculated based on the activation time gradient, and further corrected for three-dimensional (3D) geometry that can be obtained by optical coherence tomography (OCT). We validated the approach using published activation potential traces based on computer simulations. We further validated the method by adding artificially generated noise to the signal to simulate various SNR conditions using a curved simulated image (digital phantom) that resembles a tubular heart. This method proved to be robust, even at very low SNR conditions (SNR = 2-5). We also established an empirical equation to estimate the maximum conduction velocity that can be accurately measured under different conditions (e.g. sampling rate, SNR, and pixel size). Finally, we demonstrated high-resolution conduction velocity maps of the quail embryonic heart at a looping stage of development. PMID:26114034

  8. Global rotational motion and displacement estimation of digital image stabilization based on the oblique vectors matching algorithm

    NASA Astrophysics Data System (ADS)

    Yu, Fei; Hui, Mei; Zhao, Yue-jin

    2009-08-01

    The image block matching algorithm based on motion vectors of correlative pixels in oblique direction is presented for digital image stabilization. The digital image stabilization is a new generation of image stabilization technique which can obtains the information of relative motion among frames of dynamic image sequences by the method of digital image processing. In this method the matching parameters are calculated from the vectors projected in the oblique direction. The matching parameters based on the vectors contain the information of vectors in transverse and vertical direction in the image blocks at the same time. So the better matching information can be obtained after making correlative operation in the oblique direction. And an iterative weighted least square method is used to eliminate the error of block matching. The weights are related with the pixels' rotational angle. The center of rotation and the global emotion estimation of the shaking image can be obtained by the weighted least square from the estimation of each block chosen evenly from the image. Then, the shaking image can be stabilized with the center of rotation and the global emotion estimation. Also, the algorithm can run at real time by the method of simulated annealing in searching method of block matching. An image processing system based on DSP was used to exam this algorithm. The core processor in the DSP system is TMS320C6416 of TI, and the CCD camera with definition of 720×576 pixels was chosen as the input video signal. Experimental results show that the algorithm can be performed at the real time processing system and have an accurate matching precision.

  9. Reclamation of Bay wetlands and disposal of dredge spoils: meeting two goals simultaneously

    USGS Publications Warehouse

    Hostettler, Frances D.; Pereira, Wilfred E.; Kvenvolden, Keith A.; Jones, David R.; Murphy, Fred

    1997-01-01

    San Francisco Bay is one of the world's largest urbanized estuarine systems with a watershed that drains about 40 percent of the State of California. Its freshwater and saltwater marshes comprise approximately 125 square kilometers (48 square miles), compared to 2,200 square kilometers (850 square miles) before California began rapid development in 1850. This staggering reduction in tidal wetlands of approximately 95 percent has resulted in significant loss . of habitat for many species of fish and wildlife. The need for wetlands is well documented- healthy and adequate wetlands are critical to the proper functioning of an estuarine ecosystem like San Francisco Bay.

  10. Edge-Preserving Image Smoothing Constraint in Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) of Hyperspectral Data.

    PubMed

    Hugelier, Siewert; Vitale, Raffaele; Ruckebusch, Cyril

    2018-03-01

    This article explores smoothing with edge-preserving properties as a spatial constraint for the resolution of hyperspectral images with multivariate curve resolution-alternating least squares (MCR-ALS). For each constrained component image (distribution map), irrelevant spatial details and noise are smoothed applying an L 1 - or L 0 -norm penalized least squares regression, highlighting in this way big changes in intensity of adjacent pixels. The feasibility of the constraint is demonstrated on three different case studies, in which the objects under investigation are spatially clearly defined, but have significant spectral overlap. This spectral overlap is detrimental for obtaining a good resolution and additional spatial information should be provided. The final results show that the spatial constraint enables better image (map) abstraction, artifact removal, and better interpretation of the results obtained, compared to a classical MCR-ALS analysis of hyperspectral images.

  11. Characterisation of capacitively coupled HV/HR-CMOS sensor chips for the CLIC vertex detector

    NASA Astrophysics Data System (ADS)

    Kremastiotis, I.

    2017-12-01

    The capacitive coupling between an active sensor and a readout ASIC has been considered in the framework of the CLIC vertex detector study. The CLICpix Capacitively Coupled Pixel Detector (C3PD) is a High-Voltage CMOS sensor chip produced in a commercial 180 nm HV-CMOS process for this purpose. The sensor was designed to be connected to the CLICpix2 readout chip. It therefore matches the dimensions of the readout chip, featuring a matrix of 128×128 square pixels with 25μm pitch. The sensor chip has been produced with the standard value for the substrate resistivity (~20 Ωcm) and it has been characterised in standalone testing mode, before receiving and testing capacitively coupled assemblies. The standalone measurement results show a rise time of ~20 ns for a power consumption of 5μW/pixel. Production of the C3PD HV-CMOS sensor chip with higher substrate resistivity wafers (~20, 80, 200 and 1000 Ωcm) is foreseen. The expected benefits of the higher substrate resistivity will be studied using future assemblies with the readout chip.

  12. Correlation of ERTS MSS data and earth coordinate systems

    NASA Technical Reports Server (NTRS)

    Malila, W. A. (Principal Investigator); Hieber, R. H.; Mccleer, A. P.

    1973-01-01

    The author has identified the following significant results. Experience has revealed a problem in the analysis and interpretation of ERTS-1 multispectral scanner (MSS) data. The problem is one of accurately correlating ERTS-1 MSS pixels with analysis areas specified on aerial photographs or topographic maps for training recognition computers and/or evaluating recognition results. It is difficult for an analyst to accurately identify which ERTS-1 pixels on a digital image display belong to specific areas and test plots, especially when they are small. A computer-aided procedure to correlate coordinates from topographic maps and/or aerial photographs with ERTS-1 data coordinates has been developed. In the procedure, a map transformation from earth coordinates to ERTS-1 scan line and point numbers is calculated using selected ground control points nad the method of least squares. The map transformation is then applied to the earth coordinates of selected areas to obtain the corresponding ERTS-1 point and line numbers. An optional provision allows moving the boundaries of the plots inward by variable distances so the selected pixels will not overlap adjacent features.

  13. Approximate likelihood approaches for detecting the influence of primordial gravitational waves in cosmic microwave background polarization

    NASA Astrophysics Data System (ADS)

    Pan, Zhen; Anderes, Ethan; Knox, Lloyd

    2018-05-01

    One of the major targets for next-generation cosmic microwave background (CMB) experiments is the detection of the primordial B-mode signal. Planning is under way for Stage-IV experiments that are projected to have instrumental noise small enough to make lensing and foregrounds the dominant source of uncertainty for estimating the tensor-to-scalar ratio r from polarization maps. This makes delensing a crucial part of future CMB polarization science. In this paper we present a likelihood method for estimating the tensor-to-scalar ratio r from CMB polarization observations, which combines the benefits of a full-scale likelihood approach with the tractability of the quadratic delensing technique. This method is a pixel space, all order likelihood analysis of the quadratic delensed B modes, and it essentially builds upon the quadratic delenser by taking into account all order lensing and pixel space anomalies. Its tractability relies on a crucial factorization of the pixel space covariance matrix of the polarization observations which allows one to compute the full Gaussian approximate likelihood profile, as a function of r , at the same computational cost of a single likelihood evaluation.

  14. High Sensitivity Long-Wavelength Infrared QWIP Focal Plane Array Based Instrument for Remote Sensing of Icy Satellites

    NASA Technical Reports Server (NTRS)

    Gunapala, S.; Bandara, S.; Ivanov, A.

    2003-01-01

    GaAs based Quantum Well Infrared Photodetector (QWIP) technology has shown remarkable success in advancing low cost, highly uniform, high-operability, large format multi-color focal plane arrays. QWIPs afford greater flexibility than the usual extrinsically doped semiconductor IR detectors. The wavelength of the peak response and cutoff can be continuously tailored over a range wide enough to enable light detection at any wavelength range between 6 and 20 micron. The spectral band-width of these detectors can be tuned from narrow (Deltalambda/lambda is approximately 10%) to wide (Deltalambda/lambda is approximately 40%) allowing various applications. Furthermore, QWIPs offer low cost per pixel and highly uniform large format focal plane arrays due to mature GaAs/AlGaAs growth and processing technologies. The other advantages of GaAs/AlGaAs based QWIPS are higher yield, lower l/f noise and radiation hardness (1.5 Mrad). In this presentation, we will discuss our recent demonstrations of 640x512 pixel narrow-band, broad-band, multi-band focal plane arrays, and the current status of the development of 1024x1024 pixel long-wavelength infrared QWIP focal plane arrays.

  15. Normal versus Noncentral Chi-Square Asymptotics of Misspecified Models

    ERIC Educational Resources Information Center

    Chun, So Yeon; Shapiro, Alexander

    2009-01-01

    The noncentral chi-square approximation of the distribution of the likelihood ratio (LR) test statistic is a critical part of the methodology in structural equation modeling. Recently, it was argued by some authors that in certain situations normal distributions may give a better approximation of the distribution of the LR test statistic. The main…

  16. Least-Squares Approximation of an Improper Correlation Matrix by a Proper One.

    ERIC Educational Resources Information Center

    Knol, Dirk L.; ten Berge, Jos M. F.

    1989-01-01

    An algorithm, based on a solution for C. I. Mosier's oblique Procrustes rotation problem, is presented for the best least-squares fitting correlation matrix approximating a given missing value or improper correlation matrix. Results are of interest for missing value and tetrachoric correlation, indefinite matrix correlation, and constrained…

  17. Characterization and correction of charge-induced pixel shifts in DECam

    DOE PAGES

    Gruen, D.; Bernstein, G. M.; Jarvis, M.; ...

    2015-05-28

    Interaction of charges in CCDs with the already accumulated charge distribution causes both a flux dependence of the point-spread function (an increase of observed size with flux, also known as the brighter/fatter effect) and pixel-to-pixel correlations of the Poissonian noise in flat fields. We describe these effects in the Dark Energy Camera (DECam) with charge dependent shifts of effective pixel borders, i.e. the Antilogus et al. (2014) model, which we fit to measurements of flat-field Poissonian noise correlations. The latter fall off approximately as a power-law r -2.5 with pixel separation r, are isotropic except for an asymmetry in themore » direct neighbors along rows and columns, are stable in time, and are weakly dependent on wavelength. They show variations from chip to chip at the 20% level that correlate with the silicon resistivity. The charge shifts predicted by the model cause biased shape measurements, primarily due to their effect on bright stars, at levels exceeding weak lensing science requirements. We measure the flux dependence of star images and show that the effect can be mitigated by applying the reverse charge shifts at the pixel level during image processing. Differences in stellar size, however, remain significant due to residuals at larger distance from the centroid.« less

  18. JUNGFRAU 0.2: prototype characterization of a gain-switching, high dynamic range imaging system for photon science at SwissFEL and synchrotrons

    NASA Astrophysics Data System (ADS)

    Jungmann-Smith, J. H.; Bergamaschi, A.; Cartier, S.; Dinapoli, R.; Greiffenberg, D.; Johnson, I.; Maliakal, D.; Mezza, D.; Mozzanica, A.; Ruder, Ch; Schaedler, L.; Schmitt, B.; Shi, X.; Tinti, G.

    2014-12-01

    JUNGFRAU (adJUstiNg Gain detector FoR the Aramis User station) is a two-dimensional pixel detector for photon science applications at free electron lasers and synchrotron light sources. It is developed for the SwissFEL currently under construction at the Paul Scherrer Institute, Switzerland. Characteristics of this application-specific integrating circuit readout chip include single photon sensitivity and low noise over a dynamic range of over four orders of magnitude of photon input signal. These characteristics are achieved by a three-fold gain-switching preamplifier in each pixel, which automatically adjusts its gain to the amount of charge deposited on the pixel. The final JUNGFRAU chip comprises 256 × 256 pixels of 75 × 75 μm2 each. Arrays of 2 × 4 chips are bump-bonded to monolithic detector modules of about 4 × 8 cm2. Multi-module systems up to 16 Mpixels are planned for the end stations at SwissFEL. A readout rate in excess of 2 kHz is anticipated, which serves the readout requirements of SwissFEL and enables high count rate synchrotron experiments with a linear count rate capability of > 20 MHz/pixel. Promising characterization results from a 3.6 × 3.6 mm2 prototype (JUNGFRAU 0.2) with fluorescence X-ray, infrared laser and synchrotron irradiation are shown. The results include an electronic noise as low as 100 electrons root-mean-square, which enables single photon detection down to X-ray energies of about 2 keV. Noise below the Poisson fluctuation of the photon number and a linearity error of the pixel response of about 1% are demonstrated. First imaging experiments successfully show automatic gain switching. The edge spread function of the imaging system proves to be comparable in quality to single photon counting hybrid pixel detectors.

  19. Characterizing pixel and point patterns with a hyperuniformity disorder length

    NASA Astrophysics Data System (ADS)

    Chieco, A. T.; Dreyfus, R.; Durian, D. J.

    2017-09-01

    We introduce the concept of a "hyperuniformity disorder length" h that controls the variance of volume fraction fluctuations for randomly placed windows of fixed size. In particular, fluctuations are determined by the average number of particles within a distance h from the boundary of the window. We first compute special expectations and bounds in d dimensions, and then illustrate the range of behavior of h versus window size L by analyzing several different types of simulated two-dimensional pixel patterns—where particle positions are stored as a binary digital image in which pixels have value zero if empty and one if they contain a particle. The first are random binomial patterns, where pixels are randomly flipped from zero to one with probability equal to area fraction. These have long-ranged density fluctuations, and simulations confirm the exact result h =L /2 . Next we consider vacancy patterns, where a fraction f of particles on a lattice are randomly removed. These also display long-range density fluctuations, but with h =(L /2 )(f /d ) for small f , and h =L /2 for f →1 . And finally, for a hyperuniform system with no long-range density fluctuations, we consider "Einstein patterns," where each particle is independently displaced from a lattice site by a Gaussian-distributed amount. For these, at large L ,h approaches a constant equal to about half the root-mean-square displacement in each dimension. Then we turn to gray-scale pixel patterns that represent simulated arrangements of polydisperse particles, where the volume of a particle is encoded in the value of its central pixel. And we discuss the continuum limit of point patterns, where pixel size vanishes. In general, we thus propose to quantify particle configurations not just by the scaling of the density fluctuation spectrum but rather by the real-space spectrum of h (L ) versus L . We call this approach "hyperuniformity disorder length spectroscopy".

  20. Characterizing pixel and point patterns with a hyperuniformity disorder length.

    PubMed

    Chieco, A T; Dreyfus, R; Durian, D J

    2017-09-01

    We introduce the concept of a "hyperuniformity disorder length" h that controls the variance of volume fraction fluctuations for randomly placed windows of fixed size. In particular, fluctuations are determined by the average number of particles within a distance h from the boundary of the window. We first compute special expectations and bounds in d dimensions, and then illustrate the range of behavior of h versus window size L by analyzing several different types of simulated two-dimensional pixel patterns-where particle positions are stored as a binary digital image in which pixels have value zero if empty and one if they contain a particle. The first are random binomial patterns, where pixels are randomly flipped from zero to one with probability equal to area fraction. These have long-ranged density fluctuations, and simulations confirm the exact result h=L/2. Next we consider vacancy patterns, where a fraction f of particles on a lattice are randomly removed. These also display long-range density fluctuations, but with h=(L/2)(f/d) for small f, and h=L/2 for f→1. And finally, for a hyperuniform system with no long-range density fluctuations, we consider "Einstein patterns," where each particle is independently displaced from a lattice site by a Gaussian-distributed amount. For these, at large L,h approaches a constant equal to about half the root-mean-square displacement in each dimension. Then we turn to gray-scale pixel patterns that represent simulated arrangements of polydisperse particles, where the volume of a particle is encoded in the value of its central pixel. And we discuss the continuum limit of point patterns, where pixel size vanishes. In general, we thus propose to quantify particle configurations not just by the scaling of the density fluctuation spectrum but rather by the real-space spectrum of h(L) versus L. We call this approach "hyperuniformity disorder length spectroscopy".

  1. Multi-element least square HDMR methods and their applications for stochastic multiscale model reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Lijian, E-mail: ljjiang@hnu.edu.cn; Li, Xinping, E-mail: exping@126.com

    Stochastic multiscale modeling has become a necessary approach to quantify uncertainty and characterize multiscale phenomena for many practical problems such as flows in stochastic porous media. The numerical treatment of the stochastic multiscale models can be very challengeable as the existence of complex uncertainty and multiple physical scales in the models. To efficiently take care of the difficulty, we construct a computational reduced model. To this end, we propose a multi-element least square high-dimensional model representation (HDMR) method, through which the random domain is adaptively decomposed into a few subdomains, and a local least square HDMR is constructed in eachmore » subdomain. These local HDMRs are represented by a finite number of orthogonal basis functions defined in low-dimensional random spaces. The coefficients in the local HDMRs are determined using least square methods. We paste all the local HDMR approximations together to form a global HDMR approximation. To further reduce computational cost, we present a multi-element reduced least-square HDMR, which improves both efficiency and approximation accuracy in certain conditions. To effectively treat heterogeneity properties and multiscale features in the models, we integrate multiscale finite element methods with multi-element least-square HDMR for stochastic multiscale model reduction. This approach significantly reduces the original model's complexity in both the resolution of the physical space and the high-dimensional stochastic space. We analyze the proposed approach, and provide a set of numerical experiments to demonstrate the performance of the presented model reduction techniques. - Highlights: • Multi-element least square HDMR is proposed to treat stochastic models. • Random domain is adaptively decomposed into some subdomains to obtain adaptive multi-element HDMR. • Least-square reduced HDMR is proposed to enhance computation efficiency and approximation accuracy in certain conditions. • Integrating MsFEM and multi-element least square HDMR can significantly reduce computation complexity.« less

  2. Algorithm for Detecting a Bright Spot in an Image

    NASA Technical Reports Server (NTRS)

    2009-01-01

    An algorithm processes the pixel intensities of a digitized image to detect and locate a circular bright spot, the approximate size of which is known in advance. The algorithm is used to find images of the Sun in cameras aboard the Mars Exploration Rovers. (The images are used in estimating orientations of the Rovers relative to the direction to the Sun.) The algorithm can also be adapted to tracking of circular shaped bright targets in other diverse applications. The first step in the algorithm is to calculate a dark-current ramp a correction necessitated by the scheme that governs the readout of pixel charges in the charge-coupled-device camera in the original Mars Exploration Rover application. In this scheme, the fraction of each frame period during which dark current is accumulated in a given pixel (and, hence, the dark-current contribution to the pixel image-intensity reading) is proportional to the pixel row number. For the purpose of the algorithm, the dark-current contribution to the intensity reading from each pixel is assumed to equal the average of intensity readings from all pixels in the same row, and the factor of proportionality is estimated on the basis of this assumption. Then the product of the row number and the factor of proportionality is subtracted from the reading from each pixel to obtain a dark-current-corrected intensity reading. The next step in the algorithm is to determine the best location, within the overall image, for a window of N N pixels (where N is an odd number) large enough to contain the bright spot of interest plus a small margin. (In the original application, the overall image contains 1,024 by 1,024 pixels, the image of the Sun is about 22 pixels in diameter, and N is chosen to be 29.)

  3. Estimation of Noise Properties for TV-regularized Image Reconstruction in Computed Tomography

    PubMed Central

    Sánchez, Adrian A.

    2016-01-01

    A method for predicting the image covariance resulting from total-variation-penalized iterative image reconstruction (TV-penalized IIR) is presented and demonstrated in a variety of contexts. The method is validated against the sample covariance from statistical noise realizations for a small image using a variety of comparison metrics. Potential applications for the covariance approximation include investigation of image properties such as object- and signal-dependence of noise, and noise stationarity. These applications are demonstrated, along with the construction of image pixel variance maps for two-dimensional 128 × 128 pixel images. Methods for extending the proposed covariance approximation to larger images and improving computational efficiency are discussed. Future work will apply the developed methodology to the construction of task-based image quality metrics such as the Hotelling observer detectability for TV-based IIR. PMID:26308968

  4. Estimation of noise properties for TV-regularized image reconstruction in computed tomography.

    PubMed

    Sánchez, Adrian A

    2015-09-21

    A method for predicting the image covariance resulting from total-variation-penalized iterative image reconstruction (TV-penalized IIR) is presented and demonstrated in a variety of contexts. The method is validated against the sample covariance from statistical noise realizations for a small image using a variety of comparison metrics. Potential applications for the covariance approximation include investigation of image properties such as object- and signal-dependence of noise, and noise stationarity. These applications are demonstrated, along with the construction of image pixel variance maps for two-dimensional 128 × 128 pixel images. Methods for extending the proposed covariance approximation to larger images and improving computational efficiency are discussed. Future work will apply the developed methodology to the construction of task-based image quality metrics such as the Hotelling observer detectability for TV-based IIR.

  5. Estimation of noise properties for TV-regularized image reconstruction in computed tomography

    NASA Astrophysics Data System (ADS)

    Sánchez, Adrian A.

    2015-09-01

    A method for predicting the image covariance resulting from total-variation-penalized iterative image reconstruction (TV-penalized IIR) is presented and demonstrated in a variety of contexts. The method is validated against the sample covariance from statistical noise realizations for a small image using a variety of comparison metrics. Potential applications for the covariance approximation include investigation of image properties such as object- and signal-dependence of noise, and noise stationarity. These applications are demonstrated, along with the construction of image pixel variance maps for two-dimensional 128× 128 pixel images. Methods for extending the proposed covariance approximation to larger images and improving computational efficiency are discussed. Future work will apply the developed methodology to the construction of task-based image quality metrics such as the Hotelling observer detectability for TV-based IIR.

  6. VICS82: The VISTA–CFHT Stripe 82 Near-infrared Survey

    NASA Astrophysics Data System (ADS)

    Geach, J. E.; Lin, Y.-T.; Makler, M.; Kneib, J.-P.; Ross, N. P.; Wang, W.-H.; Hsieh, B.-C.; Leauthaud, A.; Bundy, K.; McCracken, H. J.; Comparat, J.; Caminha, G. B.; Hudelot, P.; Lin, L.; Van Waerbeke, L.; Pereira, M. E. S.; Mast, D.

    2017-07-01

    We present the VISTA–CFHT Stripe 82 (VICS82) survey: a near-infrared (J+Ks) survey covering 150 square degrees of the Sloan Digital Sky Survey (SDSS) equatorial Stripe 82 to an average depth of J = 21.9 AB mag and Ks = 21.4 AB mag (80% completeness limits; 5σ point-source depths are approximately 0.5 mag brighter). VICS82 contributes to the growing legacy of multiwavelength data in the Stripe 82 footprint. The addition of near-infrared photometry to the existing SDSS Stripe 82 coadd ugriz photometry reduces the scatter in stellar mass estimates to δ {log}({M}\\star )≈ 0.3 dex for galaxies with {M}\\star > {10}9 {M}ȯ at z≈ 0.5, and offers improvement compared to optical-only estimates out to z≈ 1, with stellar masses constrained within a factor of approximately 2.5. When combined with other multiwavelength imaging of the Stripe, including moderate-to-deep ultraviolet (GALEX), optical and mid-infrared (Spitzer-IRAC) coverage, as well as tens of thousands of spectroscopic redshifts, VICS82 gives access to approximately 0.5 Gpc3 of comoving volume. Some of the main science drivers of VICS82 include (a) measuring the stellar mass function of {L}\\star galaxies out to z∼ 1; (b) detecting intermediate-redshift quasars at 2≲ z≲ 3.5; (c) measuring the stellar mass function and baryon census of clusters of galaxies, and (d) performing cross-correlation experiments of cosmic microwave background lensing in the optical/near-infrared that link stellar mass to large-scale dark matter structure. Here we define and describe the survey, highlight some early science results, and present the first public data release, which includes an SDSS-matched catalog as well as the calibrated pixel data themselves.

  7. First-Order System Least-Squares for Second-Order Elliptic Problems with Discontinuous Coefficients

    NASA Technical Reports Server (NTRS)

    Manteuffel, Thomas A.; McCormick, Stephen F.; Starke, Gerhard

    1996-01-01

    The first-order system least-squares methodology represents an alternative to standard mixed finite element methods. Among its advantages is the fact that the finite element spaces approximating the pressure and flux variables are not restricted by the inf-sup condition and that the least-squares functional itself serves as an appropriate error measure. This paper studies the first-order system least-squares approach for scalar second-order elliptic boundary value problems with discontinuous coefficients. Ellipticity of an appropriately scaled least-squares bilinear form of the size of the jumps in the coefficients leading to adequate finite element approximation results. The occurrence of singularities at interface corners and cross-points is discussed. and a weighted least-squares functional is introduced to handle such cases. Numerical experiments are presented for two test problems to illustrate the performance of this approach.

  8. Theoretical Bounds of Direct Binary Search Halftoning.

    PubMed

    Liao, Jan-Ray

    2015-11-01

    Direct binary search (DBS) produces the images of the best quality among half-toning algorithms. The reason is that it minimizes the total squared perceived error instead of using heuristic approaches. The search for the optimal solution involves two operations: (1) toggle and (2) swap. Both operations try to find the binary states for each pixel to minimize the total squared perceived error. This error energy minimization leads to a conjecture that the absolute value of the filtered error after DBS converges is bounded by half of the peak value of the autocorrelation filter. However, a proof of the bound's existence has not yet been found. In this paper, we present a proof that shows the bound existed as conjectured under the condition that at least one swap occurs after toggle converges. The theoretical analysis also indicates that a swap with a pixel further away from the center of the autocorrelation filter results in a tighter bound. Therefore, we propose a new DBS algorithm which considers toggle and swap separately, and the swap operations are considered in the order from the edge to the center of the filter. Experimental results show that the new algorithm is more efficient than the previous algorithm and can produce half-toned images of the same quality as the previous algorithm.

  9. Detection of triterpene acids distribution in loquat (Eriobotrya japonica) leaf using hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Shi, Jiyong; Chen, Wu; Zou, Xiaobo; Xu, Yiwei; Huang, Xiaowei; Zhu, Yaodi; Shen, Tingting

    2018-01-01

    Hyperspectral images (431-962 nm) and partial least squares (PLS) were used to detect the distribution of triterpene acids within loquat (Eriobotrya japonica) leaves. 72 fresh loquat leaves in the young group, mature group and old group were collected for hyperspectral imaging; and triterpene acids content of the loquat leaves was analyzed using high performance liquid chromatography (HPLC). Then the spectral data of loquat leaf hyperspectral images and the triterpene acids content were employed to build calibration models. After spectra pre-processing and wavelength selection, an optimum calibration model (Rp = 0.8473, RMSEP = 2.61 mg/g) for predicting triterpene acids was obtained by synergy interval partial least squares (siPLS). Finally, spectral data of each pixel in the loquat leaf hyperspectral image were extracted and substituted into the optimum calibration model to predict triterpene acids content of each pixel. Therefore, the distribution map of triterpene acids content was obtained. As shown in the distribution map, triterpene acids are accumulated mainly in the leaf mesophyll regions near the main veins, and triterpene acids concentration of young group is less than that of mature and old groups. This study showed that hyperspectral imaging is suitable to determine the distribution of active constituent content in medical herbs in a rapid and non-invasive manner.

  10. Statistical image-domain multimaterial decomposition for dual-energy CT.

    PubMed

    Xue, Yi; Ruan, Ruoshui; Hu, Xiuhua; Kuang, Yu; Wang, Jing; Long, Yong; Niu, Tianye

    2017-03-01

    Dual-energy CT (DECT) enhances tissue characterization because of its basis material decomposition capability. In addition to conventional two-material decomposition from DECT measurements, multimaterial decomposition (MMD) is required in many clinical applications. To solve the ill-posed problem of reconstructing multi-material images from dual-energy measurements, additional constraints are incorporated into the formulation, including volume and mass conservation and the assumptions that there are at most three materials in each pixel and various material types among pixels. The recently proposed flexible image-domain MMD method decomposes pixels sequentially into multiple basis materials using a direct inversion scheme which leads to magnified noise in the material images. In this paper, we propose a statistical image-domain MMD method for DECT to suppress the noise. The proposed method applies penalized weighted least-square (PWLS) reconstruction with a negative log-likelihood term and edge-preserving regularization for each material. The statistical weight is determined by a data-based method accounting for the noise variance of high- and low-energy CT images. We apply the optimization transfer principles to design a serial of pixel-wise separable quadratic surrogates (PWSQS) functions which monotonically decrease the cost function. The separability in each pixel enables the simultaneous update of all pixels. The proposed method is evaluated on a digital phantom, Catphan©600 phantom and three patients (pelvis, head, and thigh). We also implement the direct inversion and low-pass filtration methods for a comparison purpose. Compared with the direct inversion method, the proposed method reduces noise standard deviation (STD) in soft tissue by 95.35% in the digital phantom study, by 88.01% in the Catphan©600 phantom study, by 92.45% in the pelvis patient study, by 60.21% in the head patient study, and by 81.22% in the thigh patient study, respectively. The overall volume fraction accuracy is improved by around 6.85%. Compared with the low-pass filtration method, the root-mean-square percentage error (RMSE(%)) of electron densities in the Catphan©600 phantom is decreased by 20.89%. As modulation transfer function (MTF) magnitude decreased to 50%, the proposed method increases the spatial resolution by an overall factor of 1.64 on the digital phantom, and 2.16 on the Catphan©600 phantom. The overall volume fraction accuracy is increased by 6.15%. We proposed a statistical image-domain MMD method using DECT measurements. The method successfully suppresses the magnified noise while faithfully retaining the quantification accuracy and anatomical structure in the decomposed material images. The proposed method is practical and promising for advanced clinical applications using DECT imaging. © 2017 American Association of Physicists in Medicine.

  11. Imaging Analysis of the Hard X-Ray Telescope ProtoEXIST2 and New Techniques for High-Resolution Coded-Aperture Telescopes

    NASA Technical Reports Server (NTRS)

    Hong, Jaesub; Allen, Branden; Grindlay, Jonathan; Barthelmy, Scott D.

    2016-01-01

    Wide-field (greater than or approximately equal to 100 degrees squared) hard X-ray coded-aperture telescopes with high angular resolution (greater than or approximately equal to 2 minutes) will enable a wide range of time domain astrophysics. For instance, transient sources such as gamma-ray bursts can be precisely localized without the assistance of secondary focusing X-ray telescopes to enable rapid followup studies. On the other hand, high angular resolution in coded-aperture imaging introduces a new challenge in handling the systematic uncertainty: the average photon count per pixel is often too small to establish a proper background pattern or model the systematic uncertainty in a timescale where the model remains invariant. We introduce two new techniques to improve detection sensitivity, which are designed for, but not limited to, a high-resolution coded-aperture system: a self-background modeling scheme which utilizes continuous scan or dithering operations, and a Poisson-statistics based probabilistic approach to evaluate the significance of source detection without subtraction in handling the background. We illustrate these new imaging analysis techniques in high resolution coded-aperture telescope using the data acquired by the wide-field hard X-ray telescope ProtoEXIST2 during a high-altitude balloon flight in fall 2012. We review the imaging sensitivity of ProtoEXIST2 during the flight, and demonstrate the performance of the new techniques using our balloon flight data in comparison with a simulated ideal Poisson background.

  12. Daily monitoring of the land surface of the Earth

    NASA Astrophysics Data System (ADS)

    Mascaro, J.

    2016-12-01

    Planet is an integrated aerospace and data analytics company that operates the largest fleet of Earth-imaging satellites. With more than 140 cube-sats successfully launched to date, Planet is now collecting approximately 10 million square kilometers of imagery per day (3-5m per pixel, in red, green, blue and near infrared spectral bands). By early 2017, Planet's constellation will image the entire land surface of the Earth on a daily basis. Due to investments in cloud storage and computing, approximately 75% of imagery collected is available to Planet's partners within 24 hours of capture through an Application Program Interface. This unique dataset has enormous applications for monitoring the status of Earth's natural ecosystems, as well as human settlements and agricultural welfare. Through our Ambassadors Program, Planet has made data available for researchers in areas as disparate as human rights monitoring in refugee camps, to assessments of the impact of hydroelectric installations, to tracking illegal gold mining in Amazon forests, to assessing the status of the cryosphere. Here, we share early results from Planet's research partner network, including enhanced spatial and temporal resolution of NDVI data for agricultural health in Saudi Arabia, computation of rates of illegal deforestation in Southern Peru, estimates of tropical forest carbon stocks based on data integration with active sensors, and estimates of glacial flow rates. We synthesize the potentially enormous research and scientific value of Planet's persistent monitoring capability, and discuss methods by which the data will be disseminated into the scientific community.

  13. Spatial optical crosstalk in CMOS image sensors integrated with plasmonic color filters.

    PubMed

    Yu, Yan; Chen, Qin; Wen, Long; Hu, Xin; Zhang, Hui-Fang

    2015-08-24

    Imaging resolution of complementary metal oxide semiconductor (CMOS) image sensor (CIS) keeps increasing to approximately 7k × 4k. As a result, the pixel size shrinks down to sub-2μm, which greatly increases the spatial optical crosstalk. Recently, plasmonic color filter was proposed as an alternative to conventional colorant pigmented ones. However, there is little work on its size effect and the spatial optical crosstalk in a model of CIS. By numerical simulation, we investigate the size effect of nanocross array plasmonic color filters and analyze the spatial optical crosstalk of each pixel in a Bayer array of a CIS with a pixel size of 1μm. It is found that the small pixel size deteriorates the filtering performance of nanocross color filters and induces substantial spatial color crosstalk. By integrating the plasmonic filters in the low Metal layer in standard CMOS process, the crosstalk reduces significantly, which is compatible to pigmented filters in a state-of-the-art backside illumination CIS.

  14. Aerosol and Surface Parameter Retrievals for a Multi-Angle, Multiband Spectrometer

    NASA Technical Reports Server (NTRS)

    Broderick, Daniel

    2012-01-01

    This software retrieves the surface and atmosphere parameters of multi-angle, multiband spectra. The synthetic spectra are generated by applying the modified Rahman-Pinty-Verstraete Bidirectional Reflectance Distribution Function (BRDF) model, and a single-scattering dominated atmosphere model to surface reflectance data from Multiangle Imaging SpectroRadiometer (MISR). The aerosol physical model uses a single scattering approximation using Rayleigh scattering molecules, and Henyey-Greenstein aerosols. The surface and atmosphere parameters of the models are retrieved using the Lavenberg-Marquardt algorithm. The software can retrieve the surface and atmosphere parameters with two different scales. The surface parameters are retrieved pixel-by-pixel while the atmosphere parameters are retrieved for a group of pixels where the same atmosphere model parameters are applied. This two-scale approach allows one to select the natural scale of the atmosphere properties relative to surface properties. The software also takes advantage of an intelligent initial condition given by the solution of the neighbor pixels.

  15. Temporal variability of the surface and atmosphere of Mars: Viking Orbiter color observations

    NASA Technical Reports Server (NTRS)

    Mcewen, A. S.

    1992-01-01

    We are near the final stages in the processing of a large Viking Orbiter global color dataset. Mosaics from 57 spacecraft revolutions (or 'revs' hereafter) were produced, most in both red and violet or red, green, and violet filters. Phase angles range from 13 deg to 85 deg. A total of approximately 2000 frames were processed through radiometric calibration, cosmetic cleanup, geometric control, reprojection, and mosaicking into single-rev mosaics at a scale of 1 km/pixel. All of the mosaics are geometrically tied to the 1/256 deg/pixel Mars Digital Image Mosaic (MDIM). Photometric normalization is in progress, to be followed by production of a 'best coverage' global mosaic at a scale of 1/64 deg/pixel (0.923 km/pixel). Global coverage is near 100 percent in red-filter mosaics and 98 percent and 60 percent in corresponding violet- and green-filter mosaics, respectively. Soon after completion, all final datasets (including single-rev mosaics) will be distributed to the planetary community on compact disks.

  16. The Relationship between Root Mean Square Error of Approximation and Model Misspecification in Confirmatory Factor Analysis Models

    ERIC Educational Resources Information Center

    Savalei, Victoria

    2012-01-01

    The fit index root mean square error of approximation (RMSEA) is extremely popular in structural equation modeling. However, its behavior under different scenarios remains poorly understood. The present study generates continuous curves where possible to capture the full relationship between RMSEA and various "incidental parameters," such as…

  17. Experimental study of digital image processing techniques for LANDSAT data

    NASA Technical Reports Server (NTRS)

    Rifman, S. S. (Principal Investigator); Allendoerfer, W. B.; Caron, R. H.; Pemberton, L. J.; Mckinnon, D. M.; Polanski, G.; Simon, K. W.

    1976-01-01

    The author has identified the following significant results. Results are reported for: (1) subscene registration, (2) full scene rectification and registration, (3) resampling techniques, (4) and ground control point (GCP) extraction. Subscenes (354 pixels x 234 lines) were registered to approximately 1/4 pixel accuracy and evaluated by change detection imagery for three cases: (1) bulk data registration, (2) precision correction of a reference subscene using GCP data, and (3) independently precision processed subscenes. Full scene rectification and registration results were evaluated by using a correlation technique to measure registration errors of 0.3 pixel rms thoughout the full scene. Resampling evaluations of nearest neighbor and TRW cubic convolution processed data included change detection imagery and feature classification. Resampled data were also evaluated for an MSS scene containing specular solar reflections.

  18. Active pixel imagers incorporating pixel-level amplifiers based on polycrystalline-silicon thin-film transistors.

    PubMed

    El-Mohri, Youcef; Antonuk, Larry E; Koniczek, Martin; Zhao, Qihua; Li, Yixin; Street, Robert A; Lu, Jeng-Ping

    2009-07-01

    Active matrix, flat-panel imagers (AMFPIs) employing a 2D matrix of a-Si addressing TFTs have become ubiquitous in many x-ray imaging applications due to their numerous advantages. However, under conditions of low exposures and/or high spatial resolution, their signal-to-noise performance is constrained by the modest system gain relative to the electronic additive noise. In this article, a strategy for overcoming this limitation through the incorporation of in-pixel amplification circuits, referred to as active pixel (AP) architectures, using polycrystalline-silicon (poly-Si) TFTs is reported. Compared to a-Si, poly-Si offers substantially higher mobilities, enabling higher TFT currents and the possibility of sophisticated AP designs based on both n- and p-channel TFTs. Three prototype indirect detection arrays employing poly-Si TFTs and a continuous a-Si photodiode structure were characterized. The prototypes consist of an array (PSI-1) that employs a pixel architecture with a single TFT, as well as two arrays (PSI-2 and PSI-3) that employ AP architectures based on three and five TFTs, respectively. While PSI-1 serves as a reference with a design similar to that of conventional AMFPI arrays, PSI-2 and PSI-3 incorporate additional in-pixel amplification circuitry. Compared to PSI-1, results of x-ray sensitivity demonstrate signal gains of approximately 10.7 and 20.9 for PSI-2 and PSI-3, respectively. These values are in reasonable agreement with design expectations, demonstrating that poly-Si AP circuits can be tailored to provide a desired level of signal gain. PSI-2 exhibits the same high levels of charge trapping as those observed for PSI-1 and other conventional arrays employing a continuous photodiode structure. For PSI-3, charge trapping was found to be significantly lower and largely independent of the bias voltage applied across the photodiode. MTF results indicate that the use of a continuous photodiode structure in PSI-1, PSI-2, and PSI-3 results in optical fill factors that are close to unity. In addition, the greater complexity of PSI-2 and PSI-3 pixel circuits, compared to that of PSI-1, has no observable effect on spatial resolution. Both PSI-2 and PSI-3 exhibit high levels of additive noise, resulting in no net improvement in the signal-to-noise performance of these early prototypes compared to conventional AMFPIs. However, faster readout rates, coupled with implementation of multiple sampling protocols allowed by the nondestructive nature of pixel readout, resulted in a significantly lower noise level of approximately 560 e (rms) for PSI-3.

  19. Charge Resolution of the Silicon Matrix of the ATIC Experiment

    NASA Technical Reports Server (NTRS)

    Zatsepin, V. I.; Adams, J. H., Jr.; Ahn, H. S.; Bashindzhagyan, G. L.; Batkov, K. E.; Case, G.; Christl, M.; Ganel, O.; Fazely, A. R.; Ganel, O.; hide

    2002-01-01

    ATIC (Advanced Thin Ionization Calorimeter) is a balloon borne experiment designed to measure the cosmic ray composition for elements from hydrogen to iron and their energy spectra from approx.50 GeV to near 100 TeV. It consists of a Si-matrix detector to determine the charge of a CRT particle, a scintillator hodoscope for tracking, carbon interaction targets and a fully active BGO calorimeter. ATIC had its first flight from McMurdo, Antarctica from 28/12/2000 to 13/01/2001. The ATIC flight collected approximately 25 million events. The silicon matrix of the ATIC spectrometer is designed to resolve individual elements from proton to iron. To provide this resolution careful calibration of each pixel of the silicon matrix is required. Firstly, for each electronic channel of the matrix the pedestal value was subtracted taking into account its drift during the flight. The muon calibration made before the flight was used then to convert electric signals (in ADC channel number) to energy deposits in each pixel. However, the preflight muon calibration was not accurate enough for the purpose, because of lack of statistics in each pixel. To improve charge resolution the correction was done for the position of Helium peak in each pixel during the flight . The other way to set electric signals in electronics channels of the Si-matrix to one scale was correction for electric channel gains accurately measured in laboratory. In these measurements it was found that small different nonlinearities for different channels are present in the region of charge Z > 20. The correction for these non-linearities was not done yet. In linear approximation the method provides practically the same resolution as muon calibration plus He-peak correction. For searching a pixel with the signal of primary particle an indication from the cascade in the calorimeter was used. For this purpose a trajectory was reconstructed using weight centers of energy deposits in BGO layers. The point of intersection of this trajectory with Si-matrix and its RMS was determined. The pixel with maximal signal in 3sigma region was taken as sought. The signal in this pixel was corrected by trajectory zenith angle. The preliminary results on charge resolution of the Si-matrix in the range from protons to iron are presented.

  20. Practical target location and accuracy indicator in digital close range photogrammetry using consumer grade cameras

    NASA Astrophysics Data System (ADS)

    Moriya, Gentaro; Chikatsu, Hirofumi

    2011-07-01

    Recently, pixel numbers and functions of consumer grade digital camera are amazingly increasing by modern semiconductor and digital technology, and there are many low-priced consumer grade digital cameras which have more than 10 mega pixels on the market in Japan. In these circumstances, digital photogrammetry using consumer grade cameras is enormously expected in various application fields. There is a large body of literature on calibration of consumer grade digital cameras and circular target location. Target location with subpixel accuracy had been investigated as a star tracker issue, and many target location algorithms have been carried out. It is widely accepted that the least squares models with ellipse fitting is the most accurate algorithm. However, there are still problems for efficient digital close range photogrammetry. These problems are reconfirmation of the target location algorithms with subpixel accuracy for consumer grade digital cameras, relationship between number of edge points along target boundary and accuracy, and an indicator for estimating the accuracy of normal digital close range photogrammetry using consumer grade cameras. With this motive, an empirical testing of several algorithms for target location with subpixel accuracy and an indicator for estimating the accuracy are investigated in this paper using real data which were acquired indoors using 7 consumer grade digital cameras which have 7.2 mega pixels to 14.7 mega pixels.

  1. High event rate ROICs (HEROICs) for astronomical UV photon counting detectors

    NASA Astrophysics Data System (ADS)

    Harwit, Alex; France, Kevin; Argabright, Vic; Franka, Steve; Freymiller, Ed; Ebbets, Dennis

    2014-07-01

    The next generation of astronomical photocathode / microchannel plate based UV photon counting detectors will overcome existing count rate limitations by replacing the anode arrays and external cabled electronics with anode arrays integrated into imaging Read Out Integrated Circuits (ROICs). We have fabricated a High Event Rate ROIC (HEROIC) consisting of a 32 by 32 array of 55 μm square pixels on a 60 μm pitch. The pixel sensitivity (threshold) has been designed to be globally programmable between 1 × 103 and 1 × 106 electrons. To achieve the sensitivity of 1 × 103 electrons, parasitic capacitances had to be minimized and this was achieved by fabricating the ROIC in a 65 nm CMOS process. The ROIC has been designed to support pixel counts up to 4096 events per integration period at rates up to 1 MHz per pixel. Integration time periods can be controlled via an external signal with a time resolution of less than 1 microsecond enabling temporally resolved imaging and spectroscopy of astronomical sources. An electrical injection port is provided to verify functionality and performance of each ROIC prior to vacuum integration with a photocathode and microchannel plate amplifier. Test results on the first ROICs using the electrical injection port demonstrate sensitivities between 3 × 103 and 4 × 105 electrons are achieved. A number of fixes are identified for a re-spin of this ROIC.

  2. Preliminary evaluation of a novel energy-resolved photon-counting gamma ray detector.

    PubMed

    Meng, L-J; Tan, J W; Spartiotis, K; Schulman, T

    2009-06-11

    In this paper, we present the design and preliminary performance evaluation of a novel energy-resolved photon-counting (ERPC) detector for gamma ray imaging applications. The prototype ERPC detector has an active area of 4.4 cm × 4.4 cm, which is pixelated into 128 × 128 square pixels with a pitch size of 350 µm × 350µm. The current detector consists of multiple detector hybrids, each with a CdTe crystal of 1.1 cm × 2.2 cm × 1 mm, bump-bonded onto a custom-designed application-specific integrated circuit (ASIC). The ERPC ASIC has 2048 readout channels arranged in a 32 × 64 array. Each channel is equipped with pre- and shaping-amplifiers, a discriminator, peak/hold circuitry and an analog-to-digital converter (ADC) for digitizing the signal amplitude. In order to compensate for the pixel-to-pixel variation, two 8-bit digital-to-analog converters (DACs) are implemented into each channel for tuning the gain and offset. The ERPC detector is designed to offer a high spatial resolution, a wide dynamic range of 12-200 keV and a good energy resolution of 3-4 keV. The hybrid detector configuration provides a flexible detection area that can be easily tailored for different imaging applications. The intrinsic performance of a prototype ERPC detector was evaluated with various gamma ray sources, and the results are presented.

  3. A patch-based convolutional neural network for remote sensing image classification.

    PubMed

    Sharma, Atharva; Liu, Xiuwen; Yang, Xiaojun; Shi, Di

    2017-11-01

    Availability of accurate land cover information over large areas is essential to the global environment sustainability; digital classification using medium-resolution remote sensing data would provide an effective method to generate the required land cover information. However, low accuracy of existing per-pixel based classification methods for medium-resolution data is a fundamental limiting factor. While convolutional neural networks (CNNs) with deep layers have achieved unprecedented improvements in object recognition applications that rely on fine image structures, they cannot be applied directly to medium-resolution data due to lack of such fine structures. In this paper, considering the spatial relation of a pixel to its neighborhood, we propose a new deep patch-based CNN system tailored for medium-resolution remote sensing data. The system is designed by incorporating distinctive characteristics of medium-resolution data; in particular, the system computes patch-based samples from multidimensional top of atmosphere reflectance data. With a test site from the Florida Everglades area (with a size of 771 square kilometers), the proposed new system has outperformed pixel-based neural network, pixel-based CNN and patch-based neural network by 24.36%, 24.23% and 11.52%, respectively, in overall classification accuracy. By combining the proposed deep CNN and the huge collection of medium-resolution remote sensing data, we believe that much more accurate land cover datasets can be produced over large areas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. 10000 pixels wide CMOS frame imager for earth observation from a HALE UAV

    NASA Astrophysics Data System (ADS)

    Delauré, B.; Livens, S.; Everaerts, J.; Kleihorst, R.; Schippers, Gert; de Wit, Yannick; Compiet, John; Banachowicz, Bartosz

    2009-09-01

    MEDUSA is the lightweight high resolution camera, designed to be operated from a solar-powered Unmanned Aerial Vehicle (UAV) flying at stratospheric altitudes. The instrument is a technology demonstrator within the Pegasus program and targets applications such as crisis management and cartography. A special wide swath CMOS imager has been developed by Cypress Semiconductor Cooperation Belgium to meet the specific sensor requirements of MEDUSA. The CMOS sensor has a stitched design comprising a panchromatic and color sensor on the same die. Each sensor consists of 10000*1200 square pixels (5.5μm size, novel 6T architecture) with micro-lenses. The exposure is performed by means of a high efficiency snapshot shutter. The sensor is able to operate at a rate of 30fps in full frame readout. Due to a novel pixel design, the sensor has low dark leakage of the memory elements (PSNL) and low parasitic light sensitivity (PLS). Still it maintains a relative high QE (Quantum efficiency) and a FF (fill factor) of over 65%. It features an MTF (Modulation Transfer Function) higher than 60% at Nyquist frequency in both X and Y directions The measured optical/electrical crosstalk (expressed as MTF) of this 5.5um pixel is state-of-the art. These properties makes it possible to acquire sharp images also in low-light conditions.

  5. Improved Reference Sampling and Subtraction: A Technique for Reducing the Read Noise of Near-infrared Detector Systems

    NASA Astrophysics Data System (ADS)

    Rauscher, Bernard J.; Arendt, Richard G.; Fixsen, D. J.; Greenhouse, Matthew A.; Lander, Matthew; Lindler, Don; Loose, Markus; Moseley, S. H.; Mott, D. Brent; Wen, Yiting; Wilson, Donna V.; Xenophontos, Christos

    2017-10-01

    Near-infrared array detectors, like the James Webb Space Telescope (JWST) NIRSpec’s Teledyne’s H2RGs, often provide reference pixels and a reference output. These are used to remove correlated noise. Improved reference sampling and subtraction (IRS2) is a statistical technique for using this reference information optimally in a least-squares sense. Compared with the traditional H2RG readout, IRS2 uses a different clocking pattern to interleave many more reference pixels into the data than is otherwise possible. Compared with standard reference correction techniques, IRS2 subtracts the reference pixels and reference output using a statistically optimized set of frequency-dependent weights. The benefits include somewhat lower noise variance and much less obvious correlated noise. NIRSpec’s IRS2 images are cosmetically clean, with less 1/f banding than in traditional data from the same system. This article describes the IRS2 clocking pattern and presents the equations needed to use IRS2 in systems other than NIRSpec. For NIRSpec, applying these equations is already an option in the calibration pipeline. As an aid to instrument builders, we provide our prototype IRS2 calibration software and sample JWST NIRSpec data. The same techniques are applicable to other detector systems, including those based on Teledyne’s H4RG arrays. The H4RG’s interleaved reference pixel readout mode is effectively one IRS2 pattern.

  6. PET-CT image fusion using random forest and à-trous wavelet transform.

    PubMed

    Seal, Ayan; Bhattacharjee, Debotosh; Nasipuri, Mita; Rodríguez-Esparragón, Dionisio; Menasalvas, Ernestina; Gonzalo-Martin, Consuelo

    2018-03-01

    New image fusion rules for multimodal medical images are proposed in this work. Image fusion rules are defined by random forest learning algorithm and a translation-invariant à-trous wavelet transform (AWT). The proposed method is threefold. First, source images are decomposed into approximation and detail coefficients using AWT. Second, random forest is used to choose pixels from the approximation and detail coefficients for forming the approximation and detail coefficients of the fused image. Lastly, inverse AWT is applied to reconstruct fused image. All experiments have been performed on 198 slices of both computed tomography and positron emission tomography images of a patient. A traditional fusion method based on Mallat wavelet transform has also been implemented on these slices. A new image fusion performance measure along with 4 existing measures has been presented, which helps to compare the performance of 2 pixel level fusion methods. The experimental results clearly indicate that the proposed method outperforms the traditional method in terms of visual and quantitative qualities and the new measure is meaningful. Copyright © 2017 John Wiley & Sons, Ltd.

  7. New approach to CT pixel-based photon dose calculations in heterogeneous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, J.W.; Henkelman, R.M.

    The effects of small cavities on dose in water and the dose in a homogeneous nonunit density medium illustrate that inhomogeneities do not act independently in photon dose perturbation, and serve as two constraints which should be satisfied by approximate methods of computed tomography (CT) pixel-based dose calculations. Current methods at best satisfy only one of the two constraints and show inadequacies in some intermediate geometries. We have developed an approximate method that satisfies both these constraints and treats much of the synergistic effect of multiple inhomogeneities correctly. The method calculates primary and first-scatter doses by first-order ray tracing withmore » the first-scatter contribution augmented by a component of second scatter that behaves like first scatter. Multiple-scatter dose perturbation values extracted from small cavity experiments are used in a function which approximates the small residual multiple-scatter dose. For a wide range of geometries tested, our method agrees very well with measurements. The average deviation is less than 2% with a maximum of 3%. In comparison, calculations based on existing methods can have errors larger than 10%.« less

  8. [Glossary of terms used by radiologists in image processing].

    PubMed

    Rolland, Y; Collorec, R; Bruno, A; Ramée, A; Morcet, N; Haigron, P

    1995-01-01

    We give the definition of 166 words used in image processing. Adaptivity, aliazing, analog-digital converter, analysis, approximation, arc, artifact, artificial intelligence, attribute, autocorrelation, bandwidth, boundary, brightness, calibration, class, classification, classify, centre, cluster, coding, color, compression, contrast, connectivity, convolution, correlation, data base, decision, decomposition, deconvolution, deduction, descriptor, detection, digitization, dilation, discontinuity, discretization, discrimination, disparity, display, distance, distorsion, distribution dynamic, edge, energy, enhancement, entropy, erosion, estimation, event, extrapolation, feature, file, filter, filter floaters, fitting, Fourier transform, frequency, fusion, fuzzy, Gaussian, gradient, graph, gray level, group, growing, histogram, Hough transform, Houndsfield, image, impulse response, inertia, intensity, interpolation, interpretation, invariance, isotropy, iterative, JPEG, knowledge base, label, laplacian, learning, least squares, likelihood, matching, Markov field, mask, matching, mathematical morphology, merge (to), MIP, median, minimization, model, moiré, moment, MPEG, neural network, neuron, node, noise, norm, normal, operator, optical system, optimization, orthogonal, parametric, pattern recognition, periodicity, photometry, pixel, polygon, polynomial, prediction, pulsation, pyramidal, quantization, raster, reconstruction, recursive, region, rendering, representation space, resolution, restoration, robustness, ROC, thinning, transform, sampling, saturation, scene analysis, segmentation, separable function, sequential, smoothing, spline, split (to), shape, threshold, tree, signal, speckle, spectrum, spline, stationarity, statistical, stochastic, structuring element, support, syntaxic, synthesis, texture, truncation, variance, vision, voxel, windowing.

  9. Fifty Years of Mars Imaging: from Mariner 4 to HiRISE

    NASA Image and Video Library

    2017-11-20

    This image from NASA's Mars Reconnaissance Orbiter (MRO) shows Mars' surface in detail. Mars has captured the imagination of astronomers for thousands of years, but it wasn't until the last half a century that we were able to capture images of its surface in detail. This particular site on Mars was first imaged in 1965 by the Mariner 4 spacecraft during the first successful fly-by mission to Mars. From an altitude of around 10,000 kilometers, this image (the ninth frame taken) achieved a resolution of approximately 1.25 kilometers per pixel. Since then, this location has been observed by six other visible cameras producing images with varying resolutions and sizes. This includes HiRISE (highlighted in yellow), which is the highest-resolution and has the smallest "footprint." This compilation, spanning Mariner 4 to HiRISE, shows each image at full-resolution. Beginning with Viking 1 and ending with our HiRISE image, this animation documents the historic imaging of a particular site on another world. In 1976, the Viking 1 orbiter began imaging Mars in unprecedented detail, and by 1980 had successfully mosaicked the planet at approximately 230 meters per pixel. In 1999, the Mars Orbiter Camera onboard the Mars Global Surveyor (1996) also imaged this site with its Wide Angle lens, at around 236 meters per pixel. This was followed by the Thermal Emission Imaging System on Mars Odyssey (2001), which also provided a visible camera producing the image we see here at 17 meters per pixel. Later in 2012, the High-Resolution Stereo Camera on the Mars Express orbiter (2003) captured this image of the surface at 25 meters per pixel. In 2010, the Context Camera on the Mars Reconnaissance Orbiter (2005) imaged this site at about 5 meters per pixel. Finally, in 2017, HiRISE acquired the highest resolution image of this location to date at 50 centimeters per pixel. When seen at this unprecedented scale, we can discern a crater floor strewn with small rocky deposits, boulders several meters across, and wind-blown deposits in the floors of small craters and depressions. This compilation of Mars images spanning over 50 years gives us a visual appreciation of the evolution of orbital Mars imaging over a single site. The map is projected here at a scale of 50 centimeters (19.7 inches) per pixel. [The original image scale is 52.2 centimeters (20.6 inches) per pixel (with 2 x 2 binning); objects on the order of 156 centimeters (61.4 inches) across are resolved.] North is up. https://photojournal.jpl.nasa.gov/catalog/PIA22115

  10. Sub-Pixel Accuracy Crack Width Determination on Concrete Beams in Load Tests by Triangle Mesh Geometry Analysis

    NASA Astrophysics Data System (ADS)

    Liebold, F.; Maas, H.-G.

    2018-05-01

    This paper deals with the determination of crack widths of concrete beams during load tests from monocular image sequences. The procedure starts in a reference image of the probe with suitable surface texture under zero load, where a large number of points is defined by an interest operator. Then a triangulated irregular network is established to connect the points. Image sequences are recorded during load tests with the load increasing continuously or stepwise, or at intermittently changing load. The vertices of the triangles are tracked through the consecutive images of the sequence with sub-pixel accuracy by least squares matching. All triangles are then analyzed for changes by principal strain calculation. For each triangle showing significant strain, a crack width is computed by a thorough geometric analysis of the relative movement of the vertices.

  11. Subpixel resolution from multiple images

    NASA Technical Reports Server (NTRS)

    Cheeseman, Peter; Kanefsky, Rob; Stutz, John; Kraft, Richard

    1994-01-01

    Multiple images taken from similar locations and under similar lighting conditions contain similar, but not identical, information. Slight differences in instrument orientation and position produces mismatches between the projected pixel grids. These mismatches ensure that any point on the ground is sampled differently in each image. If all the images can be registered with respect to each other to a small fraction of a pixel accuracy, then the information from the multiple images can be combined to increase linear resolution by roughly the square root of the number of images. In addition, the gray-scale resolution of the composite image is also improved. We describe methods for multiple image registration and combination, and discuss some of the problems encountered in developing and extending them. We display test results with 8:1 resolution enhancement, and Viking Orbiter imagery with 2:1 and 4:1 enhancements.

  12. SU-E-T-458: Determining Threshold-Of-Failure for Dead Pixel Rows in EPID-Based Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gersh, J; Wiant, D

    Purpose: A pixel correction map is applied to all EPID-based applications on the TrueBeam (Varian Medical Systems, Palo Alto, CA). When dead pixels are detected, an interpolative smoothing algorithm is applied using neighboring-pixel information to supplement missing-pixel information. The vendor suggests that when the number of dead pixels exceeds 70,000, the panel should be replaced. It is common for entire detector rows to be dead, as well as their neighboring rows. Approximately 70 rows can be dead before the panel reaches this threshold. This study determines the number of neighboring dead-pixel rows that would create a large enough deviation inmore » measured fluence to cause failures in portal dosimetry (PD). Methods: Four clinical two-arc VMAT plans were generated using Eclipse's AXB algorithm and PD plans were created using the PDIP algorithm. These plans were chosen to represent those commonly encountered in the clinic: prostate, lung, abdomen, and neck treatments. During each iteration of this study, an increasing number of dead-pixel rows are artificially applied to the correction map and a fluence QA is performed using the EPID (corrected with this map). To provide a worst-case-scenario, the dead-pixel rows are chosen so that they present artifacts in the highfluence region of the field. Results: For all eight arc-fields deemed acceptable via a 3%/3mm gamma analysis (pass rate greater than 99%), VMAT QA yielded identical results with a 5 pixel-width dead zone. When 10 dead lines were present, half of the fields had pass rates below the 99% pass rate. With increasing dead rows, the pass rates were reduced substantially. Conclusion: While the vendor still suggests to request service at the point where 70,000 dead rows are measured (as recommended by the vendor), the authors suggest that service should be requested when there are greater than 5 consecutive dead rows.« less

  13. Design methodology: edgeless 3D ASICs with complex in-pixel processing for pixel detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fahim Farah, Fahim Farah; Deptuch, Grzegorz W.; Hoff, James R.

    The design methodology for the development of 3D integrated edgeless pixel detectors with in-pixel processing using Electronic Design Automation (EDA) tools is presented. A large area 3 tier 3D detector with one sensor layer and two ASIC layers containing one analog and one digital tier, is built for x-ray photon time of arrival measurement and imaging. A full custom analog pixel is 65μm x 65μm. It is connected to a sensor pixel of the same size on one side, and on the other side it has approximately 40 connections to the digital pixel. A 32 x 32 edgeless array withoutmore » any peripheral functional blocks constitutes a sub-chip. The sub-chip is an indivisible unit, which is further arranged in a 6 x 6 array to create the entire 1.248cm x 1.248cm ASIC. Each chip has 720 bump-bond I/O connections, on the back of the digital tier to the ceramic PCB. All the analog tier power and biasing is conveyed through the digital tier from the PCB. The assembly has no peripheral functional blocks, and hence the active area extends to the edge of the detector. This was achieved by using a few flavors of almost identical analog pixels (minimal variation in layout) to allow for peripheral biasing blocks to be placed within pixels. The 1024 pixels within a digital sub-chip array have a variety of full custom, semi-custom and automated timing driven functional blocks placed together. The methodology uses a modified mixed-mode on-top digital implementation flow to not only harness the tool efficiency for timing and floor-planning but also to maintain designer control over compact parasitically aware layout. The methodology uses the Cadence design platform, however it is not limited to this tool.« less

  14. Design methodology: edgeless 3D ASICs with complex in-pixel processing for pixel detectors

    NASA Astrophysics Data System (ADS)

    Fahim, Farah; Deptuch, Grzegorz W.; Hoff, James R.; Mohseni, Hooman

    2015-08-01

    The design methodology for the development of 3D integrated edgeless pixel detectors with in-pixel processing using Electronic Design Automation (EDA) tools is presented. A large area 3 tier 3D detector with one sensor layer and two ASIC layers containing one analog and one digital tier, is built for x-ray photon time of arrival measurement and imaging. A full custom analog pixel is 65μm x 65μm. It is connected to a sensor pixel of the same size on one side, and on the other side it has approximately 40 connections to the digital pixel. A 32 x 32 edgeless array without any peripheral functional blocks constitutes a sub-chip. The sub-chip is an indivisible unit, which is further arranged in a 6 x 6 array to create the entire 1.248cm x 1.248cm ASIC. Each chip has 720 bump-bond I/O connections, on the back of the digital tier to the ceramic PCB. All the analog tier power and biasing is conveyed through the digital tier from the PCB. The assembly has no peripheral functional blocks, and hence the active area extends to the edge of the detector. This was achieved by using a few flavors of almost identical analog pixels (minimal variation in layout) to allow for peripheral biasing blocks to be placed within pixels. The 1024 pixels within a digital sub-chip array have a variety of full custom, semi-custom and automated timing driven functional blocks placed together. The methodology uses a modified mixed-mode on-top digital implementation flow to not only harness the tool efficiency for timing and floor-planning but also to maintain designer control over compact parasitically aware layout. The methodology uses the Cadence design platform, however it is not limited to this tool.

  15. Locality-preserving sparse representation-based classification in hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Gao, Lianru; Yu, Haoyang; Zhang, Bing; Li, Qingting

    2016-10-01

    This paper proposes to combine locality-preserving projections (LPP) and sparse representation (SR) for hyperspectral image classification. The LPP is first used to reduce the dimensionality of all the training and testing data by finding the optimal linear approximations to the eigenfunctions of the Laplace Beltrami operator on the manifold, where the high-dimensional data lies. Then, SR codes the projected testing pixels as sparse linear combinations of all the training samples to classify the testing pixels by evaluating which class leads to the minimum approximation error. The integration of LPP and SR represents an innovative contribution to the literature. The proposed approach, called locality-preserving SR-based classification, addresses the imbalance between high dimensionality of hyperspectral data and the limited number of training samples. Experimental results on three real hyperspectral data sets demonstrate that the proposed approach outperforms the original counterpart, i.e., SR-based classification.

  16. Dot Against the Dark

    NASA Image and Video Library

    2014-09-02

    As if trying to get our attention, Mimas is positioned against the shadow of Saturn's rings, bright on dark. As we near summer in Saturn's northern hemisphere, the rings cast ever larger shadows on the planet. With a reflectivity of about 96 percent, Mimas (246 miles, or 396 kilometers across) appears bright against the less-reflective Saturn. This view looks toward the sunlit side of the rings from about 10 degrees above the ringplane. The image was taken with the Cassini spacecraft wide-angle camera on July 13, 2014 using a spectral filter which preferentially admits wavelengths of near-infrared light centered at 752 nanometers. The view was acquired at a distance of approximately 1.1 million miles (1.8 million kilometers) from Saturn and approximately 1 million miles (1.6 million kilometers) from Mimas. Image scale is 67 miles (108 kilometers) per pixel at Saturn and 60 miles (97 kilometers) per pixel at Mimas. http://photojournal.jpl.nasa.gov/catalog/PIA18282

  17. Measuring earthquakes from optical satellite images.

    PubMed

    Van Puymbroeck, N; Michel, R; Binet, R; Avouac, J P; Taboury, J

    2000-07-10

    Système pour l'Observation de la Terre images are used to map ground displacements induced by earthquakes. Deformations (offsets) induced by stereoscopic effect and roll, pitch, and yaw of satellite and detector artifacts are estimated and compensated. Images are then resampled in a cartographic projection with a low-bias interpolator. A subpixel correlator in the Fourier domain provides two-dimensional offset maps with independent measurements approximately every 160 m. Biases on offsets are compensated from calibration. High-frequency noise (0.125 m(-1)) is approximately 0.01 pixels. Low-frequency noise (lower than 0.001 m(-1)) exceeds 0.2 pixels and is partially compensated from modeling. Applied to the Landers earthquake, measurements show the fault with an accuracy of a few tens of meters and yields displacement on the fault with an accuracy of better than 20 cm. Comparison with a model derived from geodetic data shows that offsets bring new insights into the faulting process.

  18. Least Squares Procedures.

    ERIC Educational Resources Information Center

    Hester, Yvette

    Least squares methods are sophisticated mathematical curve fitting procedures used in all classical parametric methods. The linear least squares approximation is most often associated with finding the "line of best fit" or the regression line. Since all statistical analyses are correlational and all classical parametric methods are least…

  19. Data Analysis Challenges

    DTIC Science & Technology

    2008-12-01

    projects have either resorted to partitioned smaller databases, or to a hybrid scheme where meta - data are stored in the database, along with pointers to...comes from the briefing of Dr. Mark Duchaineau from LLNL. If we assume that a pixel from a modern airborne sensor covers a square meter, then one can... airborne platform. After surveillance is complete, the data (in fact the disks them- selves) are sent to a ground station for processing. Despite the

  20. A new measuring machine in Paris

    NASA Technical Reports Server (NTRS)

    Guibert, J.; Charvin, P.

    1984-01-01

    A new photographic measuring machine is under construction at the Paris Observatory. The amount of transmitted light is measured by a linear array of 1024 photodiodes. Carriage control, data acquisition and on line processing are performed by microprocessors, a S.E.L. 32/27 computer, and an AP 120-B Array Processor. It is expected that a Schmidt telescope plate of size 360 mm square will be scanned in one hour with pixel size of ten microns.

  1. Nanoscale Quantum Confined Structures with Photon Controlling Cavities

    DTIC Science & Technology

    2011-07-13

    cleanroom using standard techniques of mesa etching, passivation and contact metal deposition. The pixels consisted of top- illuminated 410x410 µm2 mesas ...the fabricated detector. The mesa , top metal, bottom metal and plasmonic metal can be observed. The square pattern at the center is the fabricated...hollow symbols) 400x400m2 mesa device. Approved for public release; distribution is unlimited. 16 control sample. Secondly, since the R.M.S

  2. Improved accuracy of quantitative parameter estimates in dynamic contrast-enhanced CT study with low temporal resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sun Mo, E-mail: Sunmo.Kim@rmp.uhn.on.ca; Haider, Masoom A.; Jaffray, David A.

    Purpose: A previously proposed method to reduce radiation dose to patient in dynamic contrast-enhanced (DCE) CT is enhanced by principal component analysis (PCA) filtering which improves the signal-to-noise ratio (SNR) of time-concentration curves in the DCE-CT study. The efficacy of the combined method to maintain the accuracy of kinetic parameter estimates at low temporal resolution is investigated with pixel-by-pixel kinetic analysis of DCE-CT data. Methods: The method is based on DCE-CT scanning performed with low temporal resolution to reduce the radiation dose to the patient. The arterial input function (AIF) with high temporal resolution can be generated with a coarselymore » sampled AIF through a previously published method of AIF estimation. To increase the SNR of time-concentration curves (tissue curves), first, a region-of-interest is segmented into squares composed of 3 × 3 pixels in size. Subsequently, the PCA filtering combined with a fraction of residual information criterion is applied to all the segmented squares for further improvement of their SNRs. The proposed method was applied to each DCE-CT data set of a cohort of 14 patients at varying levels of down-sampling. The kinetic analyses using the modified Tofts’ model and singular value decomposition method, then, were carried out for each of the down-sampling schemes between the intervals from 2 to 15 s. The results were compared with analyses done with the measured data in high temporal resolution (i.e., original scanning frequency) as the reference. Results: The patients’ AIFs were estimated to high accuracy based on the 11 orthonormal bases of arterial impulse responses established in the previous paper. In addition, noise in the images was effectively reduced by using five principal components of the tissue curves for filtering. Kinetic analyses using the proposed method showed superior results compared to those with down-sampling alone; they were able to maintain the accuracy in the quantitative histogram parameters of volume transfer constant [standard deviation (SD), 98th percentile, and range], rate constant (SD), blood volume fraction (mean, SD, 98th percentile, and range), and blood flow (mean, SD, median, 98th percentile, and range) for sampling intervals between 10 and 15 s. Conclusions: The proposed method of PCA filtering combined with the AIF estimation technique allows low frequency scanning for DCE-CT study to reduce patient radiation dose. The results indicate that the method is useful in pixel-by-pixel kinetic analysis of DCE-CT data for patients with cervical cancer.« less

  3. A Christoffel function weighted least squares algorithm for collocation approximations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narayan, Akil; Jakeman, John D.; Zhou, Tao

    Here, we propose, theoretically investigate, and numerically validate an algorithm for the Monte Carlo solution of least-squares polynomial approximation problems in a collocation framework. Our investigation is motivated by applications in the collocation approximation of parametric functions, which frequently entails construction of surrogates via orthogonal polynomials. A standard Monte Carlo approach would draw samples according to the density defining the orthogonal polynomial family. Our proposed algorithm instead samples with respect to the (weighted) pluripotential equilibrium measure of the domain, and subsequently solves a weighted least-squares problem, with weights given by evaluations of the Christoffel function. We present theoretical analysis tomore » motivate the algorithm, and numerical results that show our method is superior to standard Monte Carlo methods in many situations of interest.« less

  4. A Christoffel function weighted least squares algorithm for collocation approximations

    DOE PAGES

    Narayan, Akil; Jakeman, John D.; Zhou, Tao

    2016-11-28

    Here, we propose, theoretically investigate, and numerically validate an algorithm for the Monte Carlo solution of least-squares polynomial approximation problems in a collocation framework. Our investigation is motivated by applications in the collocation approximation of parametric functions, which frequently entails construction of surrogates via orthogonal polynomials. A standard Monte Carlo approach would draw samples according to the density defining the orthogonal polynomial family. Our proposed algorithm instead samples with respect to the (weighted) pluripotential equilibrium measure of the domain, and subsequently solves a weighted least-squares problem, with weights given by evaluations of the Christoffel function. We present theoretical analysis tomore » motivate the algorithm, and numerical results that show our method is superior to standard Monte Carlo methods in many situations of interest.« less

  5. 3D Spatial and Spectral Fusion of Terrestrial Hyperspectral Imagery and Lidar for Hyperspectral Image Shadow Restoration Applied to a Geologic Outcrop

    NASA Astrophysics Data System (ADS)

    Hartzell, P. J.; Glennie, C. L.; Hauser, D. L.; Okyay, U.; Khan, S.; Finnegan, D. C.

    2016-12-01

    Recent advances in remote sensing technology have expanded the acquisition and fusion of active lidar and passive hyperspectral imagery (HSI) from an exclusively airborne technique to terrestrial modalities. This enables high resolution 3D spatial and spectral quantification of vertical geologic structures for applications such as virtual 3D rock outcrop models for hydrocarbon reservoir analog analysis and mineral quantification in open pit mining environments. In contrast to airborne observation geometry, the vertical surfaces observed by horizontal-viewing terrestrial HSI sensors are prone to extensive topography-induced solar shadowing, which leads to reduced pixel classification accuracy or outright removal of shadowed pixels from analysis tasks. Using a precisely calibrated and registered offset cylindrical linear array camera model, we demonstrate the use of 3D lidar data for sub-pixel HSI shadow detection and the restoration of the shadowed pixel spectra via empirical methods that utilize illuminated and shadowed pixels of similar material composition. We further introduce a new HSI shadow restoration technique that leverages collocated backscattered lidar intensity, which is resistant to solar conditions, obtained by projecting the 3D lidar points through the HSI camera model into HSI pixel space. Using ratios derived from the overlapping lidar laser and HSI wavelengths, restored shadow pixel spectra are approximated using a simple scale factor. Simulations of multiple lidar wavelengths, i.e., multi-spectral lidar, indicate the potential for robust HSI spectral restoration that is independent of the complexity and costs associated with rigorous radiometric transfer models, which have yet to be developed for horizontal-viewing terrestrial HSI sensors. The spectral restoration performance is quantified through HSI pixel classification consistency between full sun and partial sun exposures of a single geologic outcrop.

  6. Improving absolute gravity estimates by the L p -norm approximation of the ballistic trajectory

    NASA Astrophysics Data System (ADS)

    Nagornyi, V. D.; Svitlov, S.; Araya, A.

    2016-04-01

    Iteratively re-weighted least squares (IRLS) were used to simulate the L p -norm approximation of the ballistic trajectory in absolute gravimeters. Two iterations of the IRLS delivered sufficient accuracy of the approximation without a significant bias. The simulations were performed on different samplings and perturbations of the trajectory. For the platykurtic distributions of the perturbations, the L p -approximation with 3  <  p  <  4 was found to yield several times more precise gravity estimates compared to the standard least-squares. The simulation results were confirmed by processing real gravity observations performed at the excessive noise conditions.

  7. A balloon-borne instrument for high-resolution astrophysical spectroscopy in the 20-8000 keV energy range

    NASA Technical Reports Server (NTRS)

    Paciesas, W. S.; Baker, R.; Boclet, D.; Brown, S.; Cline, T.; Costlow, H.; Durouchoux, P.; Ehrmann, C.; Gehrels, N.; Hameury, J. M.

    1983-01-01

    The Low Energy Gamma ray Spectrometer (LEGS) is designed to perform fine energy resolution measurements of astrophysical sources. The instrument is configured for a particular balloon flight with either of two sets of high purity germanium detectors. In one configuration, the instrument uses an array of three coaxial detectors (effective volume equal to or approximately 230 cubic cm) inside an NaI (T1) shield and collimator (field of view equal to or approximately 16 deg FWHM) and operates in the 80 to 8000 keV energy range. In the other configuration, three planar detectors (effective area equal to or approximately square cm) surrounded by a combination of passive Fe and active NaI for shielding and collimation (field of view equal to or approximately 5 deg x 10 deg FWHM) are optimized for the 20 to 200 keV energy range. In a typical one day balloon flight, LEGS sensitivity limit (3 sigma) for narrow line features is less than or approximately .0008 ph/cm/s square (coaxial array: 80 to 2000 keV) and less than or approximately .0003 ph/square cm/s (planar array: 50 to 150 keV).

  8. An efficient approach for pixel decomposition to increase the spatial resolution of land surface temperature images from MODIS thermal infrared band data.

    PubMed

    Wang, Fei; Qin, Zhihao; Li, Wenjuan; Song, Caiying; Karnieli, Arnon; Zhao, Shuhe

    2014-12-25

    Land surface temperature (LST) images retrieved from the thermal infrared (TIR) band data of Moderate Resolution Imaging Spectroradiometer (MODIS) have much lower spatial resolution than the MODIS visible and near-infrared (VNIR) band data. The coarse pixel scale of MODIS LST images (1000 m under nadir) have limited their capability in applying to many studies required high spatial resolution in comparison of the MODIS VNIR band data with pixel scale of 250-500 m. In this paper we intend to develop an efficient approach for pixel decomposition to increase the spatial resolution of MODIS LST image using the VNIR band data as assistance. The unique feature of this approach is to maintain the thermal radiance of parent pixels in the MODIS LST image unchanged after they are decomposed into the sub-pixels in the resulted image. There are two important steps in the decomposition: initial temperature estimation and final temperature determination. Therefore the approach can be termed double-step pixel decomposition (DSPD). Both steps involve a series of procedures to achieve the final result of decomposed LST image, including classification of the surface patterns, establishment of LST change with normalized difference of vegetation index (NDVI) and building index (NDBI), reversion of LST into thermal radiance through Planck equation, and computation of weights for the sub-pixels of the resulted image. Since the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) with much higher spatial resolution than MODIS data was on-board the same platform (Terra) as MODIS for Earth observation, an experiment had been done in the study to validate the accuracy and efficiency of our approach for pixel decomposition. The ASTER LST image was used as the reference to compare with the decomposed LST image. The result showed that the spatial distribution of the decomposed LST image was very similar to that of the ASTER LST image with a root mean square error (RMSE) of 2.7 K for entire image. Comparison with the evaluation DisTrad (E-DisTrad) and re-sampling methods for pixel decomposition also indicate that our DSPD has the lowest RMSE in all cases, including urban region, water bodies, and natural terrain. The obvious increase in spatial resolution remarkably uplifts the capability of the coarse MODIS LST images in highlighting the details of LST variation. Therefore it can be concluded that, in spite of complicated procedures, the proposed DSPD approach provides an alternative to improve the spatial resolution of MODIS LST image hence expand its applicability to the real world.

  9. 76 FR 44655 - Transfer of Federally Assisted Land or Facility

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-26

    ... square feet (the ``Property''). NICTD wishes to transfer ownership of the Property to Amtrak for Amtrak's... square feet (the ``Property''). The Northern Indiana Commuter Transportation District (NICTD) requests... approximately 5900 square feet in South Bend, Indiana, to the National Railroad Passenger Corporation (Amtrak...

  10. Application of low-noise CID imagers in scientific instrumentation cameras

    NASA Astrophysics Data System (ADS)

    Carbone, Joseph; Hutton, J.; Arnold, Frank S.; Zarnowski, Jeffrey J.; Vangorden, Steven; Pilon, Michael J.; Wadsworth, Mark V.

    1991-07-01

    CIDTEC has developed a PC-based instrumentation camera incorporating a preamplifier per row CID imager and a microprocessor/LCA camera controller. The camera takes advantage of CID X-Y addressability to randomly read individual pixels and potentially overlapping pixel subsets in true nondestructive (NDRO) as well as destructive readout modes. Using an oxy- nitride fabricated CID and the NDRO readout technique, pixel full well and noise levels of approximately 1*10(superscript 6) and 40 electrons, respectively, were measured. Data taken from test structures indicates noise levels (which appear to be 1/f limited) can be reduced by a factor of two by eliminating the nitride under the preamplifier gate. Due to software programmability, versatile readout capabilities, wide dynamic range, and extended UV/IR capability, this camera appears to be ideally suited for use in spectroscopy and other scientific applications.

  11. An RBF-based compression method for image-based relighting.

    PubMed

    Leung, Chi-Sing; Wong, Tien-Tsin; Lam, Ping-Man; Choy, Kwok-Hung

    2006-04-01

    In image-based relighting, a pixel is associated with a number of sampled radiance values. This paper presents a two-level compression method. In the first level, the plenoptic property of a pixel is approximated by a spherical radial basis function (SRBF) network. That means that the spherical plenoptic function of each pixel is represented by a number of SRBF weights. In the second level, we apply a wavelet-based method to compress these SRBF weights. To reduce the visual artifact due to quantization noise, we develop a constrained method for estimating the SRBF weights. Our proposed approach is superior to JPEG, JPEG2000, and MPEG. Compared with the spherical harmonics approach, our approach has a lower complexity, while the visual quality is comparable. The real-time rendering method for our SRBF representation is also discussed.

  12. Test beam measurement of the first prototype of the fast silicon pixel monolithic detector for the TT-PET project

    NASA Astrophysics Data System (ADS)

    Paolozzi, L.; Bandi, Y.; Benoit, M.; Cardarelli, R.; Débieux, S.; Forshaw, D.; Hayakawa, D.; Iacobucci, G.; Kaynak, M.; Miucci, A.; Nessi, M.; Ratib, O.; Ripiccini, E.; Rücker, H.; Valerio, P.; Weber, M.

    2018-04-01

    The TT-PET collaboration is developing a PET scanner for small animals with 30 ps time-of-flight resolution and sub-millimetre 3D detection granularity. The sensitive element of the scanner is a monolithic silicon pixel detector based on state-of-the-art SiGe BiCMOS technology. The first ASIC prototype for the TT-PET was produced and tested in the laboratory and with minimum ionizing particles. The electronics exhibit an equivalent noise charge below 600 e‑ RMS and a pulse rise time of less than 2 ns , in accordance with the simulations. The pixels with a capacitance of 0.8 pF were measured to have a detection efficiency greater than 99% and, although in the absence of the post-processing, a time resolution of approximately 200 ps .

  13. A robust rotation-invariance displacement measurement method for a micro-/nano-positioning system

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang; Zhang, Xianmin; Wu, Heng; Li, Hai; Gan, Jinqiang

    2018-05-01

    A robust and high-precision displacement measurement method for a compliant mechanism-based micro-/nano-positioning system is proposed. The method is composed of an integer-pixel and a sub-pixel matching procedure. In the proposed algorithm (Pro-A), an improved ring projection transform (IRPT) and gradient information are used as features for approximating the coarse candidates and fine locations, respectively. Simulations are conducted and the results show that the Pro-A has the ability of rotation-invariance and strong robustness, with a theoretical accuracy of 0.01 pixel. To validate the practical performance, a series of experiments are carried out using a computer micro-vision and laser interferometer system (LIMS). The results demonstrate that both the LIMS and Pro-A can achieve high precision, while the Pro-A has better stability and adaptability.

  14. Least-squares collocation meshless approach for radiative heat transfer in absorbing and scattering media

    NASA Astrophysics Data System (ADS)

    Liu, L. H.; Tan, J. Y.

    2007-02-01

    A least-squares collocation meshless method is employed for solving the radiative heat transfer in absorbing, emitting and scattering media. The least-squares collocation meshless method for radiative transfer is based on the discrete ordinates equation. A moving least-squares approximation is applied to construct the trial functions. Except for the collocation points which are used to construct the trial functions, a number of auxiliary points are also adopted to form the total residuals of the problem. The least-squares technique is used to obtain the solution of the problem by minimizing the summation of residuals of all collocation and auxiliary points. Three numerical examples are studied to illustrate the performance of this new solution method. The numerical results are compared with the other benchmark approximate solutions. By comparison, the results show that the least-squares collocation meshless method is efficient, accurate and stable, and can be used for solving the radiative heat transfer in absorbing, emitting and scattering media.

  15. 76 FR 17752 - Notice of Intent To Prepare an Environmental Impact Statement for the San Francisco Veterans...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-30

    ... issues associated with 945,000 square feet of new construction and approximately 500,000 square feet of... an additional 945,000 square feet of medical facility space (in addition to the existing 1.02 million square feet of medical facility space) to meet the needs of San Francisco Bay Area and northern...

  16. Light-controlled biphasic current stimulator IC using CMOS image sensors for high-resolution retinal prosthesis and in vitro experimental results with rd1 mouse.

    PubMed

    Oh, Sungjin; Ahn, Jae-Hyun; Lee, Sangmin; Ko, Hyoungho; Seo, Jong Mo; Goo, Yong-Sook; Cho, Dong-il Dan

    2015-01-01

    Retinal prosthetic devices stimulate retinal nerve cells with electrical signals proportional to the incident light intensities. For a high-resolution retinal prosthesis, it is necessary to reduce the size of the stimulator pixels as much as possible, because the retinal nerve cells are concentrated in a small area of approximately 5 mm × 5 mm. In this paper, a miniaturized biphasic current stimulator integrated circuit is developed for subretinal stimulation and tested in vitro. The stimulator pixel is miniaturized by using a complementary metal-oxide-semiconductor (CMOS) image sensor composed of three transistors. Compared to a pixel that uses a four-transistor CMOS image sensor, this new design reduces the pixel size by 8.3%. The pixel size is further reduced by simplifying the stimulation-current generating circuit, which provides a 43.9% size reduction when compared to the design reported to be the most advanced version to date for subretinal stimulation. The proposed design is fabricated using a 0.35 μm bipolar-CMOS-DMOS process. Each pixel is designed to fit in a 50 μ m × 55 μm area, which theoretically allows implementing more than 5000 pixels in the 5 mm × 5 mm area. Experimental results show that a biphasic current in the range of 0 to 300 μA at 12 V can be generated as a function of incident light intensities. Results from in vitro experiments with rd1 mice indicate that the proposed method can be effectively used for retinal prosthesis with a high resolution.

  17. Blood vessel segmentation in color fundus images based on regional and Hessian features.

    PubMed

    Shah, Syed Ayaz Ali; Tang, Tong Boon; Faye, Ibrahima; Laude, Augustinus

    2017-08-01

    To propose a new algorithm of blood vessel segmentation based on regional and Hessian features for image analysis in retinal abnormality diagnosis. Firstly, color fundus images from the publicly available database DRIVE were converted from RGB to grayscale. To enhance the contrast of the dark objects (blood vessels) against the background, the dot product of the grayscale image with itself was generated. To rectify the variation in contrast, we used a 5 × 5 window filter on each pixel. Based on 5 regional features, 1 intensity feature and 2 Hessian features per scale using 9 scales, we extracted a total of 24 features. A linear minimum squared error (LMSE) classifier was trained to classify each pixel into a vessel or non-vessel pixel. The DRIVE dataset provided 20 training and 20 test color fundus images. The proposed algorithm achieves a sensitivity of 72.05% with 94.79% accuracy. Our proposed algorithm achieved higher accuracy (0.9206) at the peripapillary region, where the ocular manifestations in the microvasculature due to glaucoma, central retinal vein occlusion, etc. are most obvious. This supports the proposed algorithm as a strong candidate for automated vessel segmentation.

  18. Determination of Spatially Resolved Tablet Density and Hardness Using Near-Infrared Chemical Imaging (NIR-CI).

    PubMed

    Talwar, Sameer; Roopwani, Rahul; Anderson, Carl A; Buckner, Ira S; Drennen, James K

    2017-08-01

    Near-infrared chemical imaging (NIR-CI) combines spectroscopy with digital imaging, enabling spatially resolved analysis and characterization of pharmaceutical samples. Hardness and relative density are critical quality attributes (CQA) that affect tablet performance. Intra-sample density or hardness variability can reveal deficiencies in formulation design or the tableting process. This study was designed to develop NIR-CI methods to predict spatially resolved tablet density and hardness. The method was implemented using a two-step procedure. First, NIR-CI was used to develop a relative density/solid fraction (SF) prediction method for pure microcrystalline cellulose (MCC) compacts only. A partial least squares (PLS) model for predicting SF was generated by regressing the spectra of certain representative pixels selected from each image against the compact SF. Pixel selection was accomplished with a threshold based on the Euclidean distance from the median tablet spectrum. Second, micro-indentation was performed on the calibration compacts to obtain hardness values. A univariate model was developed by relating the empirical hardness values to the NIR-CI predicted SF at the micro-indented pixel locations: this model generated spatially resolved hardness predictions for the entire tablet surface.

  19. Spectral Unmixing Analysis of Time Series Landsat 8 Images

    NASA Astrophysics Data System (ADS)

    Zhuo, R.; Xu, L.; Peng, J.; Chen, Y.

    2018-05-01

    Temporal analysis of Landsat 8 images opens up new opportunities in the unmixing procedure. Although spectral analysis of time series Landsat imagery has its own advantage, it has rarely been studied. Nevertheless, using the temporal information can provide improved unmixing performance when compared to independent image analyses. Moreover, different land cover types may demonstrate different temporal patterns, which can aid the discrimination of different natures. Therefore, this letter presents time series K-P-Means, a new solution to the problem of unmixing time series Landsat imagery. The proposed approach is to obtain the "purified" pixels in order to achieve optimal unmixing performance. The vertex component analysis (VCA) is used to extract endmembers for endmember initialization. First, nonnegative least square (NNLS) is used to estimate abundance maps by using the endmember. Then, the estimated endmember is the mean value of "purified" pixels, which is the residual of the mixed pixel after excluding the contribution of all nondominant endmembers. Assembling two main steps (abundance estimation and endmember update) into the iterative optimization framework generates the complete algorithm. Experiments using both simulated and real Landsat 8 images show that the proposed "joint unmixing" approach provides more accurate endmember and abundance estimation results compared with "separate unmixing" approach.

  20. Mapping the Apollo 17 landing site area based on Lunar Reconnaissance Orbiter Camera images and Apollo surface photography

    NASA Astrophysics Data System (ADS)

    Haase, I.; Oberst, J.; Scholten, F.; Wählisch, M.; Gläser, P.; Karachevtseva, I.; Robinson, M. S.

    2012-05-01

    Newly acquired high resolution Lunar Reconnaissance Orbiter Camera (LROC) images allow accurate determination of the coordinates of Apollo hardware, sampling stations, and photographic viewpoints. In particular, the positions from where the Apollo 17 astronauts recorded panoramic image series, at the so-called “traverse stations”, were precisely determined for traverse path reconstruction. We analyzed observations made in Apollo surface photography as well as orthorectified orbital images (0.5 m/pixel) and Digital Terrain Models (DTMs) (1.5 m/pixel and 100 m/pixel) derived from LROC Narrow Angle Camera (NAC) and Wide Angle Camera (WAC) images. Key features captured in the Apollo panoramic sequences were identified in LROC NAC orthoimages. Angular directions of these features were measured in the panoramic images and fitted to the NAC orthoimage by applying least squares techniques. As a result, we obtained the surface panoramic camera positions to within 50 cm. At the same time, the camera orientations, North azimuth angles and distances to nearby features of interest were also determined. Here, initial results are shown for traverse station 1 (northwest of Steno Crater) as well as the Apollo Lunar Surface Experiment Package (ALSEP) area.

  1. North Polar Cap

    NASA Technical Reports Server (NTRS)

    2004-01-01

    7 September 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a 1.4 m/pixel (5 ft/pixel) view of a typical martian north polar ice cap texture. The surface is pitted and rough at the scale of several meters. The north polar residual cap of Mars consists mainly of water ice, while the south polar residual cap is mostly carbon dioxide. This picture is located near 85.2oN, 283.2oW. The image covers an area approximately 1 km wide by 1.4 km high (0.62 by 0.87 miles). Sunlight illuminates this scene from the lower left.

  2. A 400 KHz line rate 2048-pixel stitched SWIR linear array

    NASA Astrophysics Data System (ADS)

    Anchlia, Ankur; Vinella, Rosa M.; Gielen, Daphne; Wouters, Kristof; Vervenne, Vincent; Hooylaerts, Peter; Deroo, Pieter; Ruythooren, Wouter; De Gaspari, Danny; Das, Jo; Merken, Patrick

    2016-05-01

    Xenics has developed a family of stitched SWIR long linear arrays that operate up to 400 KHz of line rate. These arrays serve medical and industrial applications that require high line rates as well as space applications that require long linear arrays. The arrays are based on a modular ROIC design concept: modules of 512 pixels are stitched during fabrication to achieve 512, 1024 and 2048 pixel arrays. Each 512-pixel module has its own on-chip digital sequencer, analog readout chain and 4 output buffers. This modular concept enables a long array to run at a high line rates irrespective of the array length, which limits the line rate in a traditional linear array. The ROIC is flip-chipped with InGaAs detector arrays. The FPA has a pixel pitch of 12.5μm and has two pixel flavors: square (12.5μm) and rectangular (250μm). The frontend circuit is based on Capacitive Trans-impedance Amplifier (CTIA) to attain stable detector bias, and good linearity and signal integrity, especially at high speeds. The CTIA has an input auto-zero mechanism that allows to have low detector bias (<20mV). An on-chip Correlated Double Sample (CDS) facilitates removal of CTIA KTC and 1/f noise, and other offsets, achieving low noise performance. There are five gain modes in the FPA giving the full well range from 85Ke- to 40Me-. The measured input referred noise is 35e-rms in the highest gain mode. The FPA operates in Integrate While Read mode and, at a master clock rate of 60MHz and a minimum integration time of 1.4μs, achieves the highest line rate of 400 KHz. In this paper, design details and measurements results are presented in order to demonstrate the array performance.

  3. Plasma-panel based detectors

    NASA Astrophysics Data System (ADS)

    Friedman, Peter

    2017-09-01

    The plasma panel sensor (PPS) is a novel micropattern gas detector inspired by plasma display panels (PDPs), the core component of plasma-TVs. A PDP comprises millions of discrete cells per square meter, each of which, when provided with a signal pulse, can initiate and sustain a plasma discharge. Configured as a detector, a pixel or cell is biased to discharge when a free-electron is generated in the gas. The PPS consists of an array of small plasma discharge pixels, and can be configured to have either an ``open-cell'' or ``closed-cell'' structure, operating with high gain in the Geiger region. We describe both configurations and their application to particle physics. The open-cell PPS lends itself to ultra-low-mass, ultrathin structures, whereas the closed-cell microhexcavity PPS is capable of higher performance. For the ultrathin-PPS, we are fabricating 3-inch devices based on two types of extremely thin, inorganic, transparent, substrate materials: one being 8-10 µm thick, and the other 25-27 µm thick. These gas-filled ultrathin devices are designed to operate in a beam-line vacuum environment, yet must be hermetically-sealed and gas-filled in an ambient environment at atmospheric pressure. We have successfully fabricated high resolution, submillimeter pixel electrodes on both types of ultrathin substrates. We will also report on the fabrication, staging and operation of the first microhexcavity detectors (µH-PPS). The first µH-PPS prototype devices have a 16 by 16 matrix of closed packed hexagon pixels, each having a 2 mm width. Initial tests of these detectors, conducted with Ne based gases at atmospheric pressure, indicate that each pixel responds independent of its neighboring cells, producing volt level pulse amplitudes in response to ionizing radiation. Results will include the hit rate response to a radioactive beta source, cosmic ray muons, the background from spontaneous discharge, pixel isolation and uniformity, and efficiency measurements. This work was funded in part by a DOE Office of Nuclear Physics SBIR Phase-II Grant.

  4. Automatic Coregistration Algorithm to Remove Canopy Shaded Pixels in UAV-Borne Thermal Images to Improve the Estimation of Crop Water Stress Index of a Drip-Irrigated Cabernet Sauvignon Vineyard.

    PubMed

    Poblete, Tomas; Ortega-Farías, Samuel; Ryu, Dongryeol

    2018-01-30

    Water stress caused by water scarcity has a negative impact on the wine industry. Several strategies have been implemented for optimizing water application in vineyards. In this regard, midday stem water potential (SWP) and thermal infrared (TIR) imaging for crop water stress index (CWSI) have been used to assess plant water stress on a vine-by-vine basis without considering the spatial variability. Unmanned Aerial Vehicle (UAV)-borne TIR images are used to assess the canopy temperature variability within vineyards that can be related to the vine water status. Nevertheless, when aerial TIR images are captured over canopy, internal shadow canopy pixels cannot be detected, leading to mixed information that negatively impacts the relationship between CWSI and SWP. This study proposes a methodology for automatic coregistration of thermal and multispectral images (ranging between 490 and 900 nm) obtained from a UAV to remove shadow canopy pixels using a modified scale invariant feature transformation (SIFT) computer vision algorithm and Kmeans++ clustering. Our results indicate that our proposed methodology improves the relationship between CWSI and SWP when shadow canopy pixels are removed from a drip-irrigated Cabernet Sauvignon vineyard. In particular, the coefficient of determination (R²) increased from 0.64 to 0.77. In addition, values of the root mean square error (RMSE) and standard error (SE) decreased from 0.2 to 0.1 MPa and 0.24 to 0.16 MPa, respectively. Finally, this study shows that the negative effect of shadow canopy pixels was higher in those vines with water stress compared with well-watered vines.

  5. A practical approach for deriving all-weather soil moisture content using combined satellite and meteorological data

    NASA Astrophysics Data System (ADS)

    Leng, Pei; Li, Zhao-Liang; Duan, Si-Bo; Gao, Mao-Fang; Huo, Hong-Yuan

    2017-09-01

    Soil moisture has long been recognized as one of the essential variables in the water cycle and energy budget between Earth's surface and atmosphere. The present study develops a practical approach for deriving all-weather soil moisture using combined satellite images and gridded meteorological products. In this approach, soil moisture over the Moderate Resolution Imaging Spectroradiometer (MODIS) clear-sky pixels are estimated from the Vegetation Index/Temperature (VIT) trapezoid scheme in which theoretical dry and wet edges were determined pixel to pixel by China Meteorological Administration Land Data Assimilation System (CLDAS) meteorological products, including air temperature, solar radiation, wind speed and specific humidity. For cloudy pixels, soil moisture values are derived by the calculation of surface and aerodynamic resistances from wind speed. The approach is capable of filling the soil moisture gaps over remaining cloudy pixels by traditional optical/thermal infrared methods, allowing for a spatially complete soil moisture map over large areas. Evaluation over agricultural fields indicates that the proposed approach can produce an overall generally reasonable distribution of all-weather soil moisture. An acceptable accuracy between the estimated all-weather soil moisture and in-situ measurements at different depths could be found with an Root Mean Square Error (RMSE) varying from 0.067 m3/m3 to 0.079 m3/m3 and a slight bias ranging from 0.004 m3/m3 to -0.011 m3/m3. The proposed approach reveals significant potential to derive all-weather soil moisture using currently available satellite images and meteorological products at a regional or global scale in future developments.

  6. Effect of manmade pixels on the inherent dimension of natural material distributions

    NASA Astrophysics Data System (ADS)

    Schlamm, Ariel; Messinger, David; Basener, William

    2009-05-01

    The inherent dimension of hyperspectral data may be a useful metric for discriminating between the presence of manmade and natural materials in a scene without reliance on spectral signatures take from libraries. Previously, a simple geometric method for approximating the inherent dimension was introduced along with results from application to single material clusters. This method uses an estimate of the slope from a graph based on the point density estimation in the spectral space. Other information can be gathered from the plot which may aid in the discrimination between manmade and natural materials. In order to use these measures to differentiate between the two material types, the effect of the inclusion of manmade pixels on the phenomenology of the background distribution must be evaluated. Here, a procedure for injecting manmade pixels into a natural region of a scene is discussed. The results of dimension estimation on natural scenes with varying amounts of manmade pixels injected are presented here, indicating that these metrics can be sensitive to the presence of manmade phenomenology in an image.

  7. CdZnTe Image Detectors for Hard-X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    Chen, C. M. Hubert; Cook, Walter R.; Harrison, Fiona A.; Lin, Jiao Y. Y.; Mao, Peter H.; Schindler, Stephen M.

    2005-01-01

    Arrays of CdZnTe photodetectors and associated electronic circuitry have been built and tested in a continuing effort to develop focal-plane image sensor systems for hard-x-ray telescopes. Each array contains 24 by 44 pixels at a pitch of 498 m. The detector designs are optimized to obtain low power demand with high spectral resolution in the photon- energy range of 5 to 100 keV. More precisely, each detector array is a hybrid of a CdZnTe photodetector array and an application-specific integrated circuit (ASIC) containing an array of amplifiers in the same pixel pattern as that of the detectors. The array is fabricated on a single crystal of CdZnTe having dimensions of 23.6 by 12.9 by 2 mm. The detector-array cathode is a monolithic platinum contact. On the anode plane, the contact metal is patterned into the aforementioned pixel array, surrounded by a guard ring that is 1 mm wide on three sides and is 0.1 mm wide on the fourth side so that two such detector arrays can be placed side-by-side to form a roughly square sensor area with minimal dead area between them. Figure 1 shows two anode patterns. One pattern features larger pixel anode contacts, with a 30-m gap between them. The other pattern features smaller pixel anode contacts plus a contact for a shaping electrode in the form of a grid that separates all the pixels. In operation, the grid is held at a potential intermediate between the cathode and anode potentials to steer electric charges toward the anode in order to reduce the loss of charges in the inter-anode gaps. The CdZnTe photodetector array is mechanically and electrically connected to the ASIC (see Figure 2), either by use of indium bump bonds or by use of conductive epoxy bumps on the CdZnTe array joined to gold bumps on the ASIC. Hence, the output of each pixel detector is fed to its own amplifier chain.

  8. Oriented modulation for watermarking in direct binary search halftone images.

    PubMed

    Guo, Jing-Ming; Su, Chang-Cheng; Liu, Yun-Fu; Lee, Hua; Lee, Jiann-Der

    2012-09-01

    In this paper, a halftoning-based watermarking method is presented. This method enables high pixel-depth watermark embedding, while maintaining high image quality. This technique is capable of embedding watermarks with pixel depths up to 3 bits without causing prominent degradation to the image quality. To achieve high image quality, the parallel oriented high-efficient direct binary search (DBS) halftoning is selected to be integrated with the proposed orientation modulation (OM) method. The OM method utilizes different halftone texture orientations to carry different watermark data. In the decoder, the least-mean-square-trained filters are applied for feature extraction from watermarked images in the frequency domain, and the naïve Bayes classifier is used to analyze the extracted features and ultimately to decode the watermark data. Experimental results show that the DBS-based OM encoding method maintains a high degree of image quality and realizes the processing efficiency and robustness to be adapted in printing applications.

  9. Single-shot full resolution region-of-interest (ROI) reconstruction in image plane digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Singh, Mandeep; Khare, Kedar

    2018-05-01

    We describe a numerical processing technique that allows single-shot region-of-interest (ROI) reconstruction in image plane digital holographic microscopy with full pixel resolution. The ROI reconstruction is modelled as an optimization problem where the cost function to be minimized consists of an L2-norm squared data fitting term and a modified Huber penalty term that are minimized alternately in an adaptive fashion. The technique can provide full pixel resolution complex-valued images of the selected ROI which is not possible to achieve with the commonly used Fourier transform method. The technique can facilitate holographic reconstruction of individual cells of interest from a large field-of-view digital holographic microscopy data. The complementary phase information in addition to the usual absorption information already available in the form of bright field microscopy can make the methodology attractive to the biomedical user community.

  10. Automatic weld torch guidance control system

    NASA Technical Reports Server (NTRS)

    Smaith, H. E.; Wall, W. A.; Burns, M. R., Jr.

    1982-01-01

    A highly reliable, fully digital, closed circuit television optical, type automatic weld seam tracking control system was developed. This automatic tracking equipment is used to reduce weld tooling costs and increase overall automatic welding reliability. The system utilizes a charge injection device digital camera which as 60,512 inidividual pixels as the light sensing elements. Through conventional scanning means, each pixel in the focal plane is sequentially scanned, the light level signal digitized, and an 8-bit word transmitted to scratch pad memory. From memory, the microprocessor performs an analysis of the digital signal and computes the tracking error. Lastly, the corrective signal is transmitted to a cross seam actuator digital drive motor controller to complete the closed loop, feedback, tracking system. This weld seam tracking control system is capable of a tracking accuracy of + or - 0.2 mm, or better. As configured, the system is applicable to square butt, V-groove, and lap joint weldments.

  11. Argus: A W-band 16-pixel focal plane array for the Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Devaraj, Kiruthika; Church, Sarah; Cleary, Kieran; Frayer, David; Gawande, Rohit; Goldsmith, Paul; Gundersen, Joshua; Harris, Andrew; Kangaslahti, Pekka; Readhead, Tony; Reeves, Rodrigo; Samoska, Lorene; Sieth, Matt; Voll, Patricia

    2015-05-01

    We are building Argus, a 16-pixel square-packed focal plane array that will cover the 75-115.3 GHz frequency range on the Robert C. Byrd Green Bank Telescope (GBT). The primary research area for Argus is the study of star formation within our Galaxy and nearby galaxies. Argus will map key molecules that trace star formation, including carbon monoxide (CO) and hydrogen cyanide (HCN). An additional key science area is astrochemistry, which will be addressed by observing complex molecules in the interstellar medium, and the study of formation of solar systems, which will be addressed by identifying dense pre-stellar cores and by observing comets in our solar system. Argus has a highly scalable architecture and will be a technology path finder for larger arrays. The array is modular in construction, which will allow easy replacement of malfunctioning and poorly performing components.

  12. Impact of LANDSAT MSS sensor differences on change detection analysis

    NASA Technical Reports Server (NTRS)

    Likens, W. C.; Wrigley, R. C.

    1983-01-01

    Some 512 by 512 pixel subwindows for simultaneously acquired scene pairs obtained by LANDSAT 2,3 and 4 multispectral band scanners were coregistered using LANDSAT 4 scenes as the base to which the other images were registered. Scattergrams between the coregistered scenes (a form of contingency analysis) were used to radiometrically compare data from the various sensors. Mode values were derived and used to visually fit a linear regression. Root mean square errors of the registration varied between .1 and 1.5 pixels. There appear to be no major problem preventing the use of LANDSAT 4 MSS with previous MSS sensors for change detection, provided the noise interference can be removed or minimized. Data normalizations for change detection should be based on the data rather than solely on calibration information. This allows simultaneous normalization of the atmosphere as well as the radiometry.

  13. 76 FR 15042 - Transfer of Federally Assisted Land or Facility

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-18

    ... comprised of approximately Two- hundred Twenty-eight Thousand (228,000) square feet of parking structure...[ccedil]ade. The transfer does not include Eighteen Thousand Three Hundred (18,300) square feet on the... Hundred Forty-six Thousand, Three Hundred (246,300) square feet of which Two Hundred Twenty-eight Thousand...

  14. On the best mean-square approximations to a planet's gravitational potential

    NASA Astrophysics Data System (ADS)

    Lobkova, N. I.

    1985-02-01

    The continuous problem of approximating the gravitational potential of a planet in the form of polynomials of solid spherical functions is considered. The best mean-square polynomials, referred to different parts of space, are compared with each other. The harmonic coefficients corresponding to the surface of a planet are shown to be unstable with respect to the degree of the polynomial and to differ from the Stokes constants.

  15. Least-Squares Approximation of an Improper by a Proper Correlation Matrix Using a Semi-Infinite Convex Program. Research Report 87-7.

    ERIC Educational Resources Information Center

    Knol, Dirk L.; ten Berge, Jos M. F.

    An algorithm is presented for the best least-squares fitting correlation matrix approximating a given missing value or improper correlation matrix. The proposed algorithm is based on a solution for C. I. Mosier's oblique Procrustes rotation problem offered by J. M. F. ten Berge and K. Nevels (1977). It is shown that the minimization problem…

  16. Two-body perturbation theory versus first order perturbation theory: A comparison based on the square-well fluid.

    PubMed

    Mercier Franco, Luís Fernando; Castier, Marcelo; Economou, Ioannis G

    2017-12-07

    We show that the Zwanzig first-order perturbation theory can be obtained directly from a truncated Taylor series expansion of a two-body perturbation theory and that such truncation provides a more accurate prediction of thermodynamic properties than the full two-body perturbation theory. This unexpected result is explained by the quality of the resulting approximation for the fluid radial distribution function. We prove that the first-order and the two-body perturbation theories are based on different approximations for the fluid radial distribution function. To illustrate the calculations, the square-well fluid is adopted. We develop an analytical expression for the two-body perturbed Helmholtz free energy for the square-well fluid. The equation of state obtained using such an expression is compared to the equation of state obtained from the first-order approximation. The vapor-liquid coexistence curve and the supercritical compressibility factor of a square-well fluid are calculated using both equations of state and compared to Monte Carlo simulation data. Finally, we show that the approximation for the fluid radial distribution function given by the first-order perturbation theory provides closer values to the ones calculated via Monte Carlo simulations. This explains why such theory gives a better description of the fluid thermodynamic behavior.

  17. Evaluation and validity of a LORETA normative EEG database.

    PubMed

    Thatcher, R W; North, D; Biver, C

    2005-04-01

    To evaluate the reliability and validity of a Z-score normative EEG database for Low Resolution Electromagnetic Tomography (LORETA), EEG digital samples (2 second intervals sampled 128 Hz, 1 to 2 minutes eyes closed) were acquired from 106 normal subjects, and the cross-spectrum was computed and multiplied by the Key Institute's LORETA 2,394 gray matter pixel T Matrix. After a log10 transform or a Box-Cox transform the mean and standard deviation of the *.lor files were computed for each of the 2394 gray matter pixels, from 1 to 30 Hz, for each of the subjects. Tests of Gaussianity were computed in order to best approximate a normal distribution for each frequency and gray matter pixel. The relative sensitivity of a Z-score database was computed by measuring the approximation to a Gaussian distribution. The validity of the LORETA normative database was evaluated by the degree to which confirmed brain pathologies were localized using the LORETA normative database. Log10 and Box-Cox transforms approximated Gaussian distribution in the range of 95.64% to 99.75% accuracy. The percentage of normative Z-score values at 2 standard deviations ranged from 1.21% to 3.54%, and the percentage of Z-scores at 3 standard deviations ranged from 0% to 0.83%. Left temporal lobe epilepsy, right sensory motor hematoma and a right hemisphere stroke exhibited maximum Z-score deviations in the same locations as the pathologies. We conclude: (1) Adequate approximation to a Gaussian distribution can be achieved using LORETA by using a log10 transform or a Box-Cox transform and parametric statistics, (2) a Z-Score normative database is valid with adequate sensitivity when using LORETA, and (3) the Z-score LORETA normative database also consistently localized known pathologies to the expected Brodmann areas as an hypothesis test based on the surface EEG before computing LORETA.

  18. Determination of the Interaction Position of Gamma Photons in Monolithic Scintillators Using Neural Network Fitting

    NASA Astrophysics Data System (ADS)

    Conde, P.; Iborra, A.; González, A. J.; Hernández, L.; Bellido, P.; Moliner, L.; Rigla, J. P.; Rodríguez-Álvarez, M. J.; Sánchez, F.; Seimetz, M.; Soriano, A.; Vidal, L. F.; Benlloch, J. M.

    2016-02-01

    In Positron Emission Tomography (PET) detectors based on monolithic scintillators, the photon interaction position needs to be estimated from the light distribution (LD) on the photodetector pixels. Due to the finite size of the scintillator volume, the symmetry of the LD is truncated everywhere except for the crystal center. This effect produces a poor estimation of the interaction positions towards the edges, an especially critical situation when linear algorithms, such as Center of Gravity (CoG), are used. When all the crystal faces are painted black, except the one in contact with the photodetector, the LD can be assumed to behave as the inverse square law, providing a simple theoretical model. Using this LD model, the interaction coordinates can be determined by means of fitting each event to a theoretical distribution. In that sense, the use of neural networks (NNs) has been shown to be an effective alternative to more traditional fitting techniques as nonlinear least squares (LS). The multilayer perceptron is one type of NN which can model non-linear functions well and can be trained to accurately generalize when presented with new data. In this work we have shown the capability of NNs to approximate the LD and provide the interaction coordinates of γ-photons with two different photodetector setups. One experimental setup was based on analog Silicon Photomultipliers (SiPMs) and a charge division diode network, whereas the second setup was based on digital SiPMs (dSiPMs). In both experiments NNs minimized border effects. Average spatial resolutions of 1.9 ±0.2 mm and 1.7 ±0.2 mm for the entire crystal surface were obtained for the analog and dSiPMs approaches, respectively.

  19. Fast detection and visualization of minced lamb meat adulteration using NIR hyperspectral imaging and multivariate image analysis.

    PubMed

    Kamruzzaman, Mohammed; Sun, Da-Wen; ElMasry, Gamal; Allen, Paul

    2013-01-15

    Many studies have been carried out in developing non-destructive technologies for predicting meat adulteration, but there is still no endeavor for non-destructive detection and quantification of adulteration in minced lamb meat. The main goal of this study was to develop and optimize a rapid analytical technique based on near-infrared (NIR) hyperspectral imaging to detect the level of adulteration in minced lamb. Initial investigation was carried out using principal component analysis (PCA) to identify the most potential adulterate in minced lamb. Minced lamb meat samples were then adulterated with minced pork in the range 2-40% (w/w) at approximately 2% increments. Spectral data were used to develop a partial least squares regression (PLSR) model to predict the level of adulteration in minced lamb. Good prediction model was obtained using the whole spectral range (910-1700 nm) with a coefficient of determination (R(2)(cv)) of 0.99 and root-mean-square errors estimated by cross validation (RMSECV) of 1.37%. Four important wavelengths (940, 1067, 1144 and 1217 nm) were selected using weighted regression coefficients (Bw) and a multiple linear regression (MLR) model was then established using these important wavelengths to predict adulteration. The MLR model resulted in a coefficient of determination (R(2)(cv)) of 0.98 and RMSECV of 1.45%. The developed MLR model was then applied to each pixel in the image to obtain prediction maps to visualize the distribution of adulteration of the tested samples. The results demonstrated that the laborious and time-consuming tradition analytical techniques could be replaced by spectral data in order to provide rapid, low cost and non-destructive testing technique for adulterate detection in minced lamb meat. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Facial recognition using simulated prosthetic pixelized vision.

    PubMed

    Thompson, Robert W; Barnett, G David; Humayun, Mark S; Dagnelie, Gislin

    2003-11-01

    To evaluate a model of simulated pixelized prosthetic vision using noncontiguous circular phosphenes, to test the effects of phosphene and grid parameters on facial recognition. A video headset was used to view a reference set of four faces, followed by a partially averted image of one of those faces viewed through a square pixelizing grid that contained 10x10 to 32x32 dots separated by gaps. The grid size, dot size, gap width, dot dropout rate, and gray-scale resolution were varied separately about a standard test condition, for a total of 16 conditions. All tests were first performed at 99% contrast and then repeated at 12.5% contrast. Discrimination speed and performance were influenced by all stimulus parameters. The subjects achieved highly significant facial recognition accuracy for all high-contrast tests except for grids with 70% random dot dropout and two gray levels. In low-contrast tests, significant facial recognition accuracy was achieved for all but the most adverse grid parameters: total grid area less than 17% of the target image, 70% dropout, four or fewer gray levels, and a gap of 40.5 arcmin. For difficult test conditions, a pronounced learning effect was noticed during high-contrast trials, and a more subtle practice effect on timing was evident during subsequent low-contrast trials. These findings suggest that reliable face recognition with crude pixelized grids can be learned and may be possible, even with a crude visual prosthesis.

  1. A Method for Deriving All-Sky Evapotranspiration From the Synergistic Use of Remotely Sensed Images and Meteorological Data

    NASA Astrophysics Data System (ADS)

    Leng, Pei; Li, Zhao-Liang; Duan, Si-Bo; Tang, Ronglin; Gao, Mao-Fang

    2017-12-01

    Evapotranspiration (ET) is an important component of the water and energy cycle. The present study develops a practical approach for generating all-sky ET with the synergistic use of satellite images and meteorological data. In this approach, the ET over clear-sky pixels is estimated from a two-stage land surface temperature (LST)/fractional vegetation cover feature space method where the dry/wet edges are determined from theoretical calculations. For cloudy pixels, the Penman-Monteith equation is used to calculate the ET where no valid remotely sensed LST is available. An evaluation of the method with ET collected at ground-based large aperture scintillometer measurements at the Yucheng Comprehensive Experimental Station (YCES) in China is performed over a growth period from April to October 2010. The results show that the root-mean-square error (RMSE) and bias over clear-sky pixels are 57.3 W/m2 and 18.2 W/m2, respectively, whereas an RMSE of 69.3 W/m2 with a bias of 12.3 W/m2 can be found over cloudy pixels. Moreover, a reasonable overall RMSE of 65.3 W/m2 with a bias of 14.4 W/m2 at the YCES can be obtained under all-sky conditions, indicating a promising prospect for the derivation of all-sky ET using currently available satellite and meteorological data at a regional or global scale in future developments.

  2. Automated determination of arterial input function for DCE-MRI of the prostate

    NASA Astrophysics Data System (ADS)

    Zhu, Yingxuan; Chang, Ming-Ching; Gupta, Sandeep

    2011-03-01

    Prostate cancer is one of the commonest cancers in the world. Dynamic contrast enhanced MRI (DCE-MRI) provides an opportunity for non-invasive diagnosis, staging, and treatment monitoring. Quantitative analysis of DCE-MRI relies on determination of an accurate arterial input function (AIF). Although several methods for automated AIF detection have been proposed in literature, none are optimized for use in prostate DCE-MRI, which is particularly challenging due to large spatial signal inhomogeneity. In this paper, we propose a fully automated method for determining the AIF from prostate DCE-MRI. Our method is based on modeling pixel uptake curves as gamma variate functions (GVF). First, we analytically compute bounds on GVF parameters for more robust fitting. Next, we approximate a GVF for each pixel based on local time domain information, and eliminate the pixels with false estimated AIFs using the deduced upper and lower bounds. This makes the algorithm robust to signal inhomogeneity. After that, according to spatial information such as similarity and distance between pixels, we formulate the global AIF selection as an energy minimization problem and solve it using a message passing algorithm to further rule out the weak pixels and optimize the detected AIF. Our method is fully automated without training or a priori setting of parameters. Experimental results on clinical data have shown that our method obtained promising detection accuracy (all detected pixels inside major arteries), and a very good match with expert traced manual AIF.

  3. Visible-regime polarimetric imager: a fully polarimetric, real-time imaging system.

    PubMed

    Barter, James D; Thompson, Harold R; Richardson, Christine L

    2003-03-20

    A fully polarimetric optical camera system has been constructed to obtain polarimetric information simultaneously from four synchronized charge-coupled device imagers at video frame rates of 60 Hz and a resolution of 640 x 480 pixels. The imagers view the same scene along the same optical axis by means of a four-way beam-splitting prism similar to ones used for multiple-imager, common-aperture color TV cameras. Appropriate polarizing filters in front of each imager provide the polarimetric information. Mueller matrix analysis of the polarimetric response of the prism, analyzing filters, and imagers is applied to the detected intensities in each imager as a function of the applied state of polarization over a wide range of linear and circular polarization combinations to obtain an average polarimetric calibration consistent to approximately 2%. Higher accuracies can be obtained by improvement of the polarimetric modeling of the splitting prism and by implementation of a pixel-by-pixel calibration.

  4. Liquid-crystal projection image depixelization by spatial phase scrambling

    NASA Astrophysics Data System (ADS)

    Yang, Xiangyang; Jutamulia, Suganda; Li, Nan

    1996-08-01

    A technique that removes the pixel structure by scrambling the relative phases among multiple spatial spectra is described. Because of the pixel structure of the liquid-crystal-display (LCD) panel, multiple spectra are generated at the Fourier-spectrum plane (usually at the back focal plane of the imaging lens). A transparent phase mask is placed at the Fourier-spectrum plane such that each spectral order is modulated by one of the subareas of the phase mask, and the phase delay resulting from each pair of subareas is longer than the coherent length of the light source, which is approximately 1 m for the wideband white light sources used in most of LCD s. Such a phase-scrambling technique eliminates the coherence between different spectral orders; therefore, the reconstructed images from the multiple spectra will superimpose incoherently, and the pixel structure will not be observed in the projection image.

  5. Resolving the percentage of component terrains within single resolution elements

    NASA Technical Reports Server (NTRS)

    Marsh, S. E.; Switzer, P.; Kowalik, W. S.; Lyon, R. J. P.

    1980-01-01

    An approximate maximum likelihood technique employing a widely available discriminant analysis program is discussed that has been developed for resolving the percentage of component terrains within single resolution elements. The method uses all four channels of Landsat data simultaneously and does not require prior knowledge of the percentage of components in mixed pixels. It was tested in five cases that were chosen to represent mixtures of outcrop, soil and vegetation which would typically be encountered in geologic studies with Landsat data. For all five cases, the method proved to be superior to single band weighted average and linear regression techniques and permitted an estimate of the total area occupied by component terrains to within plus or minus 6% of the true area covered. Its major drawback is a consistent overestimation of the pixel component percent of the darker materials (vegetation) and an underestimation of the pixel component percent of the brighter materials (sand).

  6. Spectral Unmixing With Multiple Dictionaries

    NASA Astrophysics Data System (ADS)

    Cohen, Jeremy E.; Gillis, Nicolas

    2018-02-01

    Spectral unmixing aims at recovering the spectral signatures of materials, called endmembers, mixed in a hyperspectral or multispectral image, along with their abundances. A typical assumption is that the image contains one pure pixel per endmember, in which case spectral unmixing reduces to identifying these pixels. Many fully automated methods have been proposed in recent years, but little work has been done to allow users to select areas where pure pixels are present manually or using a segmentation algorithm. Additionally, in a non-blind approach, several spectral libraries may be available rather than a single one, with a fixed number (or an upper or lower bound) of endmembers to chose from each. In this paper, we propose a multiple-dictionary constrained low-rank matrix approximation model that address these two problems. We propose an algorithm to compute this model, dubbed M2PALS, and its performance is discussed on both synthetic and real hyperspectral images.

  7. High-angular-resolution NIR astronomy with large arrays (SHARP I and SHARP II)

    NASA Astrophysics Data System (ADS)

    Hofmann, Reiner; Brandl, Bernhard; Eckart, Andreas; Eisenhauer, Frank; Tacconi-Garman, Lowell E.

    1995-06-01

    SHARP I and SHARP II are near infrared cameras for high-angular-resolution imaging. Both cameras are built around a 256 X 256 pixel NICMOS 3 HgCdTe array from Rockwell which is sensitive in the 1 - 2.5 micrometers range. With a 0.05'/pixel scale, they can produce diffraction limited K-band images at 4-m-class telescopes. For a 256 X 256 array, this pixel scale results in a field of view of 12.8' X 12.8' which is well suited for the observation of galactic and extragalactic near-infrared sources. Photometric and low resolution spectroscopic capabilities are added by photometric band filters (J, H, K), narrow band filters ((lambda) /(Delta) (lambda) approximately equals 100) for selected spectral lines, and a CVF ((lambda) /(Delta) (lambda) approximately equals 70). A cold shutter permits short exposure times down to about 10 ms. The data acquisition electronics permanently accepts the maximum frame rate of 8 Hz which is defined by the detector time constants (data rate 1 Mbyte/s). SHARP I has been especially designed for speckle observations at ESO's 3.5 m New Technology Telescope and is in operation since 1991. SHARP II is used at ESO's 3.6 m telescope together with the adaptive optics system COME-ON + since 1993. A new version of SHARP II is presently under test, which incorporates exchangeable camera optics for observations with scales of 0.035, 0.05, and 0.1'/pixel. The first scale extends diffraction limited observations down to the J-band, while the last one provides a larger field of view. To demonstrate the power of the cameras, images of the galactic center obtained with SHARP I, and images of the R136 region in 30 Doradus observed with SHARP II are presented.

  8. LANDSAT demonstration/application and GIS integration in south central Alaska

    NASA Technical Reports Server (NTRS)

    Burns, A. W.; Derrenbacher, W.

    1981-01-01

    Automated geographic information systems were developed for two sites in Southcentral Alaska to serve as tests for both the process of integrating classified LANDSAT data into a comprehensive environmental data base and the process of using automated information in land capability/suitability analysis and environmental planning. The Big Lake test site, located approximately 20 miles north of the City of Anchorage, comprises an area of approximately 150 square miles. The Anchorage Hillside test site, lying approximately 5 miles southeast of the central part of the city, extends over an area of some 25 square miles. Map construction and content is described.

  9. Application of Geographical Information System Arc/info Grid-Based Surface Hyrologic Modeling to the Eastern Hellas Region, Mars

    NASA Astrophysics Data System (ADS)

    Mest, S. C.; Harbert, W.; Crown, D. A.

    2001-05-01

    Geographical Information System GRID-based raster modeling of surface water runoff in the eastern Hellas region of Mars has been completed. We utilized the 0.0625 by 0.0625 degree topographic map of Mars collected by the Mars Global Surveyor Mars Orbiter Laser Altimeter (MOLA) instrument to model watershed and surface runoff drainage systems. Scientific interpretation of these models with respect to ongoing geological mapping is presented in Mest et al., (2001). After importing a region of approximately 77,000,000 square kilometers into Arc/Info 8.0.2 we reprojected this digital elevation model (DEM) from a Mars sphere into a Mars ellipsoid. Using a simple cylindrical geographic projection and horizontal spatial units of decimal degrees and then an Albers projection with horizontal spatial units of meters, we completed basic hydrological modeling. Analysis of the raw DEM to determine slope, aspect, flow direction, watershed and flow accumulation grids demonstrated the need for correction of single pixel sink anomalies. After analysis of zonal elevation statistics associated with single pixel sinks, which identified 0.8 percent of the DEM points as having undefined surface water flow directions, we filled single pixel sink values of 89 meters or less. This correction is comparable with terrestrial DEMs that contain 0.9 percent to 4.7 percent of cells, which are sinks (Tarboton et al., 1991). The fill-corrected DEM was then used to determine slope, aspect, surface water flow direction and surface water flow accumulation. Within the region of interest 8,776 watersheds were identified. Using Arc/Info GRID flow direction and flow accumulation tools, regions of potential surface water flow accumulation were identified. These networks were then converted to a Strahler ordered stream network. Surface modeling produced Strahler orders one through six. As presented in Mest et al., (2001) comparisons of mapped features may prove compatible with drainage networks and watersheds derived using this methodology. Mest, Scott C., Crown, David A., and Harbert, William, 2001, Highland drainage basins and valley networks in the eastern Hellas Region of Mars, Abstract 1419, Lunar and Planetary Science XXXII Meeting Houston (CDROM). Tarboton D. G., Bras, R. L., and Rodriguez-Iturbe, 1991, On the Extraction of Channel Networks from Digital Elevation Data, Hydrological Processes, v. 5, 81-100. http://viking.eps.pitt.edu

  10. Superpixel-Augmented Endmember Detection for Hyperspectral Images

    NASA Technical Reports Server (NTRS)

    Thompson, David R.; Castano, Rebecca; Gilmore, Martha

    2011-01-01

    Superpixels are homogeneous image regions comprised of several contiguous pixels. They are produced by shattering the image into contiguous, homogeneous regions that each cover between 20 and 100 image pixels. The segmentation aims for a many-to-one mapping from superpixels to image features; each image feature could contain several superpixels, but each superpixel occupies no more than one image feature. This conservative segmentation is relatively easy to automate in a robust fashion. Superpixel processing is related to the more general idea of improving hyperspectral analysis through spatial constraints, which can recognize subtle features at or below the level of noise by exploiting the fact that their spectral signatures are found in neighboring pixels. Recent work has explored spatial constraints for endmember extraction, showing significant advantages over techniques that ignore pixels relative positions. Methods such as AMEE (automated morphological endmember extraction) express spatial influence using fixed isometric relationships a local square window or Euclidean distance in pixel coordinates. In other words, two pixels covariances are based on their spatial proximity, but are independent of their absolute location in the scene. These isometric spatial constraints are most appropriate when spectral variation is smooth and constant over the image. Superpixels are simple to implement, efficient to compute, and are empirically effective. They can be used as a preprocessing step with any desired endmember extraction technique. Superpixels also have a solid theoretical basis in the hyperspectral linear mixing model, making them a principled approach for improving endmember extraction. Unlike existing approaches, superpixels can accommodate non-isometric covariance between image pixels (characteristic of discrete image features separated by step discontinuities). These kinds of image features are common in natural scenes. Analysts can substitute superpixels for image pixels during endmember analysis that leverages the spatial contiguity of scene features to enhance subtle spectral features. Superpixels define populations of image pixels that are independent samples from each image feature, permitting robust estimation of spectral properties, and reducing measurement noise in proportion to the area of the superpixel. This permits improved endmember extraction, and enables automated search for novel and constituent minerals in very noisy, hyperspatial images. This innovation begins with a graph-based segmentation based on the work of Felzenszwalb et al., but then expands their approach to the hyperspectral image domain with a Euclidean distance metric. Then, the mean spectrum of each segment is computed, and the resulting data cloud is used as input into sequential maximum angle convex cone (SMACC) endmember extraction.

  11. Delay Line Detectors for the UVCS and Sumer Instruments on the SOHO Satellite

    NASA Technical Reports Server (NTRS)

    Seigmund, O. H. W.; Stock, J. M.; Marsh, D. R.; Gummin, M. A.; Raffanti, R.; Hull, J.; Gaines, G. A.; Welsh, B.; Donakowski, B.; Jelinsky, P.; hide

    1994-01-01

    Microchannel plate based detectors with cross delay line image readout have been rapidly implemented for the SUMER and UVCS instruments aboard the Solar Orbiting Heliospheric Observatory (SOHO) mission to be launched in July 1995. In October 1993 a fast track program to build and characterize detectors and detector control electronics was initiated. We present the detector system design for the SOHO UVCS and SUMER detector programs, and results from the detector test program. Two deliverable detectors have been built at this point, a demonstration model for UVCS, and the flight Ly alpha detector for UVCS, both of which are to be delivered in the next few weeks. Test results have also been obtained with one other demonstration detector system. The detector format is 26mm x 9mm, with 1024 x 360 digitized pixels, using a low resistance Z stack of microchannel plates (MCP's) and a multilayer cross delay line anode (XDL). This configuration provides gains of approximately 2 x 10(exp 7) with good pulse height distributions (less than 50% FWHM) under uniform flood illumination, and background levels typical for this configuration (approximately 0.6 event cm (exp -2)sec(exp -1)). Local counting rates up to about 400 events/pixel/sec have been achieved with no degradation of the MCP gain. The detector and event encoding electronics achieves about 25 millimeter FVHM with good linearity (plus or minus approximately 1 pixel) and is stable to high global counting rates (greater than 4 x 10(exp 5) events sec(exp -1)). Flat field images are dominated by MCP fixed pattern noise and are stable, but the MCP multifiber modulation usually expected is uncharacteristically absent. The detector and electronics have also successfully passed both thermal vacuum and vibration tests.

  12. Pseudospin symmetry of the Dirac equation for a Möbius square plus Mie type potential with a Coulomb-like tensor interaction via SUSYQM

    NASA Astrophysics Data System (ADS)

    Akpan, N. Ikot; Zarrinkamar, S.; Eno, J. Ibanga; Maghsoodi, E.; Hassanabadi, H.

    2014-01-01

    We investigate the approximate solution of the Dirac equation for a combination of Möbius square and Mie type potentials under the pseudospin symmetry limit by using supersymmetry quantum mechanics. We obtain the bound-state energy equation and the corresponding spinor wave functions in an approximate analytical manner. We comment on the system via various useful figures and tables.

  13. Approximating a free-field blast environment in the test section of an explosively driven conical shock tube

    NASA Astrophysics Data System (ADS)

    Stewart, J. B.

    2018-02-01

    This paper presents experimental data on incident overpressures and the corresponding impulses obtained in the test section of an explosively driven 10° (full angle) conical shock tube. Due to the shock tube's steel walls approximating the boundary conditions seen by a spherical sector cut out of a detonating sphere of energetic material, a 5.3-g pentolite shock tube driver charge produces peak overpressures corresponding to a free-field detonation from an 816-g sphere of pentolite. The four test section geometries investigated in this paper (open air, cylindrical, 10° inscribed square frustum, and 10° circumscribed square frustum) provide a variety of different time histories for the incident overpressures and impulses, with a circumscribed square frustum yielding the best approximation of the estimated blast environment that would have been produced by a free-field detonation.

  14. Charge Gain, Voltage Gain, and Node Capacitance of the SAPHIRA Detector Pixel by Pixel

    NASA Astrophysics Data System (ADS)

    Pastrana, Izabella M.; Hall, Donald N. B.; Baker, Ian M.; Jacobson, Shane M.; Goebel, Sean B.

    2018-01-01

    The University of Hawai`i Institute for Astronomy has partnered with Leonardo (formerly Selex) in the development of HgCdTe linear mode avalanche photodiode (L-APD) SAPHIRA detectors. The SAPHIRA (Selex Avalanche Photodiode High-speed Infra-Red Array) is ideally suited for photon-starved astronomical observations, particularly near infrared (NIR) adaptive optics (AO) wave-front sensing. I have measured the stability, and linearity with current, of a 1.7-um (10% spectral bandpass) infrared light emitting diode (IR LED) used to illuminate the SAPHIRA and have then utilized this source to determine the charge gain (in e-/ADU), voltage gain (in uV/ADU), and node capacitance (in fF) for each pixel of the 320x256@24um SAPHIRA. These have previously only been averages over some sub-array. Determined from the ratio of the temporal averaged signal level to variance under constant 1.7-um LED illumination, I present the charge gain pixel-by-pixel in a 64x64 sub-array at the center of the active area of the SAPHIRA (analyzed separately as four 32x32 sub-arrays) to be about 1.6 e-/ADU (σ=0.5 e-/ADU). Additionally, the standard technique of varying the pixel reset voltage (PRV) in 10 mV increments and recording output frames for the same 64x64 subarray found the voltage gain per pixel to be about 11.7 uV/ADU (σ=0.2 uV/ADU). Finally, node capacitance was found to be approximately 23 fF (σ=6 fF) utilizing the aforementioned charge and voltage gain measurements. I further discuss the linearity measurements of the 1.7-um LED used in the charge gain characterization procedure.

  15. Effect of Using 2 mm Voxels on Observer Performance for PET Lesion Detection

    NASA Astrophysics Data System (ADS)

    Morey, A. M.; Noo, Frédéric; Kadrmas, Dan J.

    2016-06-01

    Positron emission tomography (PET) images are typically reconstructed with an in-plane pixel size of approximately 4 mm for cancer imaging. The objective of this work was to evaluate the effect of using smaller pixels on general oncologic lesion-detection. A series of observer studies was performed using experimental phantom data from the Utah PET Lesion Detection Database, which modeled whole-body FDG PET cancer imaging of a 92 kg patient. The data comprised 24 scans over 4 days on a Biograph mCT time-of-flight (TOF) PET/CT scanner, with up to 23 lesions (diam. 6-16 mm) distributed throughout the phantom each day. Images were reconstructed with 2.036 mm and 4.073 mm pixels using ordered-subsets expectation-maximization (OSEM) both with and without point spread function (PSF) modeling and TOF. Detection performance was assessed using the channelized non-prewhitened numerical observer with localization receiver operating characteristic (LROC) analysis. Tumor localization performance and the area under the LROC curve were then analyzed as functions of the pixel size. In all cases, the images with 2 mm pixels provided higher detection performance than those with 4 mm pixels. The degree of improvement from the smaller pixels was larger than that offered by PSF modeling for these data, and provided roughly half the benefit of using TOF. Key results were confirmed by two human observers, who read subsets of the test data. This study suggests that a significant improvement in tumor detection performance for PET can be attained by using smaller voxel sizes than commonly used at many centers. The primary drawback is a 4-fold increase in reconstruction time and data storage requirements.

  16. Quantitative pixel grey measurement of the "high-risk" sign, darkening of third molar roots: a pilot study.

    PubMed

    Szalma, J; Bata, Z; Lempel, E; Jeges, S; Olasz, L

    2013-01-01

    Our aim was to examine the panoramic darkening of the root, which is a "high-risk" sign, using quantitative measurements of pixel grey values to determine different aetiological backgrounds, namely inferior alveolar nerve (IAN) exposure with or without groove formation of the third molar roots or thinning/fenestration of the lingual cortex (LCTF). 38 impacted third molars that had been surgically removed and had darkened roots on panoramic radiographs were included in this retrospective case-control study. 15 IAN exposure cases were selected for the case group, and 23 cases with proven lingual cortical thinning or fenestration were chosen for the control group. The mean pixel grey values of selected areas in the dark band (D) and control areas within the same roots (R) were determined with the ImageTool (University of Texas Health Science Center, San Antonio, TX) software. The differences in pixel values (R-D) of the IAN and LCTF groups were analysed using the Mann-Whitney U-test and Pearson's χ(2) test. The medians of the R-D pixel values were 45.7 in the IAN group and 34.3 in the LCTF group, whereas the interquartile ranges were 12.0 (IAN) and 18.3 (LCTF) (p < 0.001). The R-D critical value at which the outcomes differed significantly was 38. If the differences in pixel grey values (R-D) were higher than 38, the chance of IAN exposure was approximately 32 times higher than the chance of LCTF (χ(2) test, p < 0.001; odds ratio, 32.0; 95% confidence interval, 3.5-293.1). The pre-operative prediction of IAN exposure or lingual cortical thinning in cases with "darkening" is possible based on pixel grey measurements of digital panoramic radiographs.

  17. The Challenge of New and Emerging Information Operations

    DTIC Science & Technology

    1999-06-01

    Information Dominance Center (IDC) are addressing the operational and technological needs. The IDC serves as a model for the DoD and a proposed virtual hearing room for Congress. As the IDC and its supporting technologies mature, individuals will be able to freely enter, navigate, plan, and execute operations within Perceptual and Knowledge Landscapes. This capability begins the transition from Information Dominance to Knowledge Dominance. The IDC is instantiating such entities as smart rooms, avatars, square pixel displays, polymorphic views, and

  18. The multicategory case of the sequential Bayesian pixel selection and estimation procedure

    NASA Technical Reports Server (NTRS)

    Pore, M. D.; Dennis, T. B. (Principal Investigator)

    1980-01-01

    A Bayesian technique for stratified proportion estimation and a sampling based on minimizing the mean squared error of this estimator were developed and tested on LANDSAT multispectral scanner data using the beta density function to model the prior distribution in the two-class case. An extention of this procedure to the k-class case is considered. A generalization of the beta function is shown to be a density function for the general case which allows the procedure to be extended.

  19. Entangled-photon compressive ghost imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zerom, Petros; Chan, Kam Wai Clifford; Howell, John C.

    2011-12-15

    We have experimentally demonstrated high-resolution compressive ghost imaging at the single-photon level using entangled photons produced by a spontaneous parametric down-conversion source and using single-pixel detectors. For a given mean-squared error, the number of photons needed to reconstruct a two-dimensional image is found to be much smaller than that in quantum ghost imaging experiments employing a raster scan. This procedure not only shortens the data acquisition time, but also suggests a more economical use of photons for low-light-level and quantum image formation.

  20. Imaging single cells in a beam of live cyanobacteria with an X-ray laser (CXIDB ID 27)

    DOE Data Explorer

    Schot, Gijs, vander

    2015-02-10

    Diffraction pattern of a micron-sized S. elongatus cell at 1,100 eV photon energy (1.13 nm wavelength) with ~10^11 photons per square micron on the sample in ~70 fs. The signal to noise ratio at 4 nm resolution is 3.7 with 0.24 photons per Nyquist pixel. The cell was alive at the time of the exposure. The central region of the pattern (dark red) is saturated and this prevented reliable image reconstruction.

  1. Dawn LAMO Image 5

    NASA Image and Video Library

    2016-01-13

    This view of the Cerean crater Victa was captured by NASA Dawn spacecraft on Dec. 19, 2015. The steep-walled crater is approximately 19 miles 30 kilometers in diameter, and was named for the Roman goddess of food and nourishment. Dawn took this image from its low-altitude mapping orbit (LAMO), at an approximate altitude of 240 miles (385 kilometers) above Ceres. The image resolution is 120 feet (35 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20195

  2. An Efficient Approach for Pixel Decomposition to Increase the Spatial Resolution of Land Surface Temperature Images from MODIS Thermal Infrared Band Data

    PubMed Central

    Wang, Fei; Qin, Zhihao; Li, Wenjuan; Song, Caiying; Karnieli, Arnon; Zhao, Shuhe

    2015-01-01

    Land surface temperature (LST) images retrieved from the thermal infrared (TIR) band data of Moderate Resolution Imaging Spectroradiometer (MODIS) have much lower spatial resolution than the MODIS visible and near-infrared (VNIR) band data. The coarse pixel scale of MODIS LST images (1000 m under nadir) have limited their capability in applying to many studies required high spatial resolution in comparison of the MODIS VNIR band data with pixel scale of 250–500 m. In this paper we intend to develop an efficient approach for pixel decomposition to increase the spatial resolution of MODIS LST image using the VNIR band data as assistance. The unique feature of this approach is to maintain the thermal radiance of parent pixels in the MODIS LST image unchanged after they are decomposed into the sub-pixels in the resulted image. There are two important steps in the decomposition: initial temperature estimation and final temperature determination. Therefore the approach can be termed double-step pixel decomposition (DSPD). Both steps involve a series of procedures to achieve the final result of decomposed LST image, including classification of the surface patterns, establishment of LST change with normalized difference of vegetation index (NDVI) and building index (NDBI), reversion of LST into thermal radiance through Planck equation, and computation of weights for the sub-pixels of the resulted image. Since the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) with much higher spatial resolution than MODIS data was on-board the same platform (Terra) as MODIS for Earth observation, an experiment had been done in the study to validate the accuracy and efficiency of our approach for pixel decomposition. The ASTER LST image was used as the reference to compare with the decomposed LST image. The result showed that the spatial distribution of the decomposed LST image was very similar to that of the ASTER LST image with a root mean square error (RMSE) of 2.7 K for entire image. Comparison with the evaluation DisTrad (E-DisTrad) and re-sampling methods for pixel decomposition also indicate that our DSPD has the lowest RMSE in all cases, including urban region, water bodies, and natural terrain. The obvious increase in spatial resolution remarkably uplifts the capability of the coarse MODIS LST images in highlighting the details of LST variation. Therefore it can be concluded that, in spite of complicated procedures, the proposed DSPD approach provides an alternative to improve the spatial resolution of MODIS LST image hence expand its applicability to the real world. PMID:25609048

  3. ASTER First Views of Red Sea, Ethiopia - Thermal-Infrared TIR Image monochrome

    NASA Image and Video Library

    2000-03-11

    ASTER succeeded in acquiring this image at night, which is something Visible/Near Infrared VNIR) and Shortwave Infrared (SWIR) sensors cannot do. The scene covers the Red Sea coastline to an inland area of Ethiopia. White pixels represent areas with higher temperature material on the surface, while dark pixels indicate lower temperatures. This image shows ASTER's ability as a highly sensitive, temperature-discerning instrument and the first spaceborne TIR multi-band sensor in history. The size of image: 60 km x 60 km approx., ground resolution 90 m x 90 m approximately. http://photojournal.jpl.nasa.gov/catalog/PIA02452

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbosa, F.; Somov, A. S.; Somov, S. V.

    Here, silicon photomultipliers (SiPMs) are used in detectors of the GlueX experiment devoted to studying the nature of confinement. These detectors are operable at counting rates as high as 2 MHz with a time resolution (FWHM) of approximately 0.3 ns and a number of excited pixels of up to 10 4. For SiPMs that operate under these conditions, the measured dependences of the recovery time and the time resolution are presented as functions of the number of excited pixels and the excitation frequency. Using a picosecond laser, the time resolution has been measured for an array of 4 × 4more » SiPMs, which was specially developed for the experiment.« less

  5. Enhancing Students' Understanding of Square Roots

    ERIC Educational Resources Information Center

    Wiesman, Jeff L.

    2015-01-01

    Students enrolled in a middle school prealgebra or algebra course often struggle to conceptualize and understand the meaning of radical notation when it is introduced. For example, although it is important for students to approximate the decimal value of a number such as [square root of] 30 and estimate the value of a square root in the form of…

  6. 40 CFR 761.302 - Proportion of the total surface area to sample.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... surface into approximately 1 meter square portions and mark the portions so that they are clearly... surfaces contaminated by a single source of PCBs with a uniform concentration, assign each 1 meter square surface a unique sequential number. (i) For three or fewer 1 meter square areas, sample all of the areas...

  7. 40 CFR 761.302 - Proportion of the total surface area to sample.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... surface into approximately 1 meter square portions and mark the portions so that they are clearly... surfaces contaminated by a single source of PCBs with a uniform concentration, assign each 1 meter square surface a unique sequential number. (i) For three or fewer 1 meter square areas, sample all of the areas...

  8. 40 CFR 761.302 - Proportion of the total surface area to sample.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... surface into approximately 1 meter square portions and mark the portions so that they are clearly... surfaces contaminated by a single source of PCBs with a uniform concentration, assign each 1 meter square surface a unique sequential number. (i) For three or fewer 1 meter square areas, sample all of the areas...

  9. 40 CFR 761.302 - Proportion of the total surface area to sample.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... surface into approximately 1 meter square portions and mark the portions so that they are clearly... surfaces contaminated by a single source of PCBs with a uniform concentration, assign each 1 meter square surface a unique sequential number. (i) For three or fewer 1 meter square areas, sample all of the areas...

  10. 40 CFR 761.302 - Proportion of the total surface area to sample.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... surface into approximately 1 meter square portions and mark the portions so that they are clearly... surfaces contaminated by a single source of PCBs with a uniform concentration, assign each 1 meter square surface a unique sequential number. (i) For three or fewer 1 meter square areas, sample all of the areas...

  11. Affine Transform to Reform Pixel Coordinates of EOG Signals for Controlling Robot Manipulators Using Gaze Motions

    PubMed Central

    Rusydi, Muhammad Ilhamdi; Sasaki, Minoru; Ito, Satoshi

    2014-01-01

    Biosignals will play an important role in building communication between machines and humans. One of the types of biosignals that is widely used in neuroscience are electrooculography (EOG) signals. An EOG has a linear relationship with eye movement displacement. Experiments were performed to construct a gaze motion tracking method indicated by robot manipulator movements. Three operators looked at 24 target points displayed on a monitor that was 40 cm in front of them. Two channels (Ch1 and Ch2) produced EOG signals for every single eye movement. These signals were converted to pixel units by using the linear relationship between EOG signals and gaze motion distances. The conversion outcomes were actual pixel locations. An affine transform method is proposed to determine the shift of actual pixels to target pixels. This method consisted of sequences of five geometry processes, which are translation-1, rotation, translation-2, shear and dilatation. The accuracy was approximately 0.86° ± 0.67° in the horizontal direction and 0.54° ± 0.34° in the vertical. This system successfully tracked the gaze motions not only in direction, but also in distance. Using this system, three operators could operate a robot manipulator to point at some targets. This result shows that the method is reliable in building communication between humans and machines using EOGs. PMID:24919013

  12. Effect of spatial noise of medical grade Liquid Crystal Displays (LCD) on the detection of micro-calcification

    NASA Astrophysics Data System (ADS)

    Roehrig, Hans; Fan, Jiahua; Dallas, William J.; Krupinski, Elizabeth A.; Johnson, Jeffrey

    2009-08-01

    This presentation describes work in progress that is the result of an NIH SBIR Phase 1 project that addresses the wide- spread concern for the large number of breast-cancers and cancer victims [1,2]. The primary goal of the project is to increase the detection rate of microcalcifications as a result of the decrease of spatial noise of the LCDs used to display the mammograms [3,4]. Noise reduction is to be accomplished with the aid of a high performance CCD camera and subsequent application of local-mean equalization and error diffusion [5,6]. A second goal of the project is the actual detection of breast cancer. Contrary to the approach to mammography, where the mammograms typically have a pixel matrix of approximately 1900 x 2300 pixels, otherwise known as FFDM or Full-Field Digital Mammograms, we will only use sections of mammograms with a pixel matrix of 256 x 256 pixels. This is because at this time, reduction of spatial noise on an LCD can only be done on relatively small areas like 256 x 256 pixels. In addition, judging the efficacy for detection of breast cancer will be done using two methods: One is a conventional ROC study [7], the other is a vision model developed over several years starting at the Sarnoff Research Center and continuing at the Siemens Corporate Research in Princeton NJ [8].

  13. Nondestructive and intuitive determination of circadian chlorophyll rhythms in soybean leaves using multispectral imaging

    PubMed Central

    Pan, Wen-Juan; Wang, Xia; Deng, Yong-Ren; Li, Jia-Hang; Chen, Wei; Chiang, John Y.; Yang, Jian-Bo; Zheng, Lei

    2015-01-01

    The circadian clock, synchronized by daily cyclic environmental cues, regulates diverse aspects of plant growth and development and increases plant fitness. Even though much is known regarding the molecular mechanism of circadian clock, it remains challenging to quantify the temporal variation of major photosynthesis products as well as their metabolic output in higher plants in a real-time, nondestructive and intuitive manner. In order to reveal the spatial-temporal scenarios of photosynthesis and yield formation regulated by circadian clock, multispectral imaging technique has been employed for nondestructive determination of circadian chlorophyll rhythms in soybean leaves. By utilizing partial least square regression analysis, the determination coefficients R2, 0.9483 for chlorophyll a and 0.8906 for chlorophyll b, were reached, respectively. The predicted chlorophyll contents extracted from multispectral data showed an approximately 24-h rhythm which could be entrained by external light conditions, consistent with the chlorophyll contents measured by chemical analyses. Visualization of chlorophyll map in each pixel offers an effective way to analyse spatial-temporal distribution of chlorophyll. Our results revealed the potentiality of multispectral imaging as a feasible nondestructive universal assay for examining clock function and robustness, as well as monitoring chlorophyll a and b and other biochemical components in plants. PMID:26059057

  14. Digital Image Quality And Interpretability: Database And Hardcopy Studies

    NASA Astrophysics Data System (ADS)

    Snyder, H. L.; Maddox, M. E.; Shedivy, D. I.; Turpin, J. A.; Burke, J. J.; Strickland, R. N.

    1982-02-01

    Two hundred fifty transparencies, displaying a new digital database consisting of 25 degraded versions (5 blur levels x 5 noise levels) of each of 10 digitized, first-generation positive transparencies, were used in two experiments involving 15 trained military photointer-preters. Each image is 86 mm square and represents 40962 8-bit pixels. In the "interpretation" experiment, each photointerpreter (judge) spent approximately two days extracting essential elements of information (EEls) from one degraded version of each scene at a constant Gaussian blur level (FWHM = 40, 84, or 322 Am). In the scaling experiment, each judge assigned a numerical value to each of the 250 images, according to its perceived position on a 10-point NATO-standardized scale (0 = useless through 9 = nearly perfect), to the nearest 0.1 unit. Eighty-eight of the 100 possible values were used by the judges, indicating that 62 categories, based on the Shannon-Wiener measure of information, are needed to scale these hardcopy images. The overall correlation between the scaling and interpretation results was 0.9. Though the main effect of blur was not statistically significant in the interpretation experiment, that of noise was significant, and all main factors (blur, noise, scene, order of battle) and most interactions were statistically significant in the scaling experiment.

  15. Quality Metrics Of Digitally Derived Imagery And Their Relation To Interpreter Performance

    NASA Astrophysics Data System (ADS)

    Burke, James J.; Snyder, Harry L.

    1981-12-01

    Two hundred-fifty transparencies, displaying a new digital database consisting of 25 degraded versions (5 blur levels x 5 noise levels) of each of 10 digitized, first-generation positive transparencies, were used in two experiments involving 15 trained military photo-interpreters. Each image is 86 mm square and represents 40962 8-bit pixels. In the "interpretation" experiment, each photo-interpreter (judge) spent approximately two days extracting Essential Elements of Information (EEI's) from one degraded version of each scene at a constant blur level (FWHM = 40, 84 or 322 μm). In the scaling experiment, each judge assigned a numerical value to each of the 250 images, according to its perceived position on a 10-point NATO-standardized scale (0 = useless through 9 = nearly perfect), to the nearest 0.1 unit. Eighty-eight of the 100 possible values were used by the judges, indicating that 62 categories are needed to scale these hardcopy images. The overall correlation between the scaling and interpretation results was 0.9. Though the main effect of blur was not significant (p = 0.146) in the interpretation experiment, that of noise was significant (p = 0.005), and all main factors (blur, noise, scene, order of battle) and most interactions were statistically significant in the scaling experiment.

  16. Nondestructive and intuitive determination of circadian chlorophyll rhythms in soybean leaves using multispectral imaging

    NASA Astrophysics Data System (ADS)

    Pan, Wen-Juan; Wang, Xia; Deng, Yong-Ren; Li, Jia-Hang; Chen, Wei; Chiang, John Y.; Yang, Jian-Bo; Zheng, Lei

    2015-06-01

    The circadian clock, synchronized by daily cyclic environmental cues, regulates diverse aspects of plant growth and development and increases plant fitness. Even though much is known regarding the molecular mechanism of circadian clock, it remains challenging to quantify the temporal variation of major photosynthesis products as well as their metabolic output in higher plants in a real-time, nondestructive and intuitive manner. In order to reveal the spatial-temporal scenarios of photosynthesis and yield formation regulated by circadian clock, multispectral imaging technique has been employed for nondestructive determination of circadian chlorophyll rhythms in soybean leaves. By utilizing partial least square regression analysis, the determination coefficients R2, 0.9483 for chlorophyll a and 0.8906 for chlorophyll b, were reached, respectively. The predicted chlorophyll contents extracted from multispectral data showed an approximately 24-h rhythm which could be entrained by external light conditions, consistent with the chlorophyll contents measured by chemical analyses. Visualization of chlorophyll map in each pixel offers an effective way to analyse spatial-temporal distribution of chlorophyll. Our results revealed the potentiality of multispectral imaging as a feasible nondestructive universal assay for examining clock function and robustness, as well as monitoring chlorophyll a and b and other biochemical components in plants.

  17. Submillimeter Spectroscopy of the R Coronae Australis Molecular Cloud Region

    NASA Astrophysics Data System (ADS)

    Dunn, Marina Madeline; Walker, Christopher K.; Pat, Terrance; Sirsi, Siddhartha; Swift, Brandon J.; Peters, William L.

    2018-01-01

    The Interstellar Medium is comprised of large amounts of gas and dust which coalesce to form stars. Observing in the Terahertz regime of the electromagnetic spectrum, approximately 0.3 -300 microns, allows astronomers to study the ISM in unprecedented detail. Using the high spectral resolution imaging system of the SuperCam receiver, a 64-pixel array previously installed on the Submillimeter Telescope on Mt. Graham, AZ, we have begun a 500 square degree survey of the galactic plane. This instrument was designed to do a complete survey of the Milky Way from the ground, with the main focus being to observe two specific transitions of the carbon monoxide molecule, 12CO(3-2) and 13CO(3-2), at 345 GHz. In this work, we present results from these observations for the R Coronae Australis (R Cr A) complex, a region in the southern hemisphere of the sky, using spectroscopic data from a portion of the survey to gain better insight into the life cycle of the ISM. The majority of stars being formed here are similar to the stellar class of the Sun, making it an excellent area of observing interest. Using these results, we attempt to better ascertain the large-scale structure and kinematics inside of the molecular cloud.

  18. On-Orbit Solar Dynamics Observatory (SDO) Star Tracker Warm Pixel Analysis

    NASA Technical Reports Server (NTRS)

    Felikson, Denis; Ekinci, Matthew; Hashmall, Joseph A.; Vess, Melissa

    2011-01-01

    This paper describes the process of identification and analysis of warm pixels in two autonomous star trackers on the Solar Dynamics Observatory (SDO) mission. A brief description of the mission orbit and attitude regimes is discussed and pertinent star tracker hardware specifications are given. Warm pixels are defined and the Quality Index parameter is introduced, which can be explained qualitatively as a manifestation of a possible warm pixel event. A description of the algorithm used to identify warm pixel candidates is given. Finally, analysis of dumps of on-orbit star tracker charge coupled devices (CCD) images is presented and an operational plan going forward is discussed. SDO, launched on February 11, 2010, is operated from the NASA Goddard Space Flight Center (GSFC). SDO is in a geosynchronous orbit with a 28.5 inclination. The nominal mission attitude points the spacecraft X-axis at the Sun, with the spacecraft Z-axis roughly aligned with the Solar North Pole. The spacecraft Y-axis completes the triad. In attitude, SDO moves approximately 0.04 per hour, mostly about the spacecraft Z-axis. The SDO star trackers, manufactured by Galileo Avionica, project the images of stars in their 16.4deg x 16.4deg fields-of-view onto CCD detectors consisting of 512 x 512 pixels. The trackers autonomously identify the star patterns and provide an attitude estimate. Each unit is able to track up to 9 stars. Additionally, each tracker calculates a parameter called the Quality Index, which is a measure of the quality of the attitude solution. Each pixel in the CCD measures the intensity of light and a warns pixel is defined as having a measurement consistently and significantly higher than the mean background intensity level. A warns pixel should also have lower intensity than a pixel containing a star image and will not move across the field of view as the attitude changes (as would a dim star image). It should be noted that the maximum error introduced in the star tracker attitude solution during suspected warm pixel corruptions is within the specified 36 attitude error budget requirement of [35, 70, 70] arcseconds. Thus, the star trackers provided attitude accuracy within the specification for SDO. The star tracker images are intentionally defocused so each star image is detected in more than one CCD pixel. The position of each star is calculated as an intensity-weighted average of the illuminated pixels. The exact method of finding the positions is proprietary to the tracker manufacturer. When a warm pixel happens to be in the vicinity of a star, it can corrupt the calculation of the position of that particular star, thereby corrupting the estimate of the attitude.

  19. Digital simulation of staining in histopathology multispectral images: enhancement and linear transformation of spectral transmittance.

    PubMed

    Bautista, Pinky A; Yagi, Yukako

    2012-05-01

    Hematoxylin and eosin (H&E) stain is currently the most popular for routine histopathology staining. Special and/or immuno-histochemical (IHC) staining is often requested to further corroborate the initial diagnosis on H&E stained tissue sections. Digital simulation of staining (or digital staining) can be a very valuable tool to produce the desired stained images from the H&E stained tissue sections instantaneously. We present an approach to digital staining of histopathology multispectral images by combining the effects of spectral enhancement and spectral transformation. Spectral enhancement is accomplished by shifting the N-band original spectrum of the multispectral pixel with the weighted difference between the pixel's original and estimated spectrum; the spectrum is estimated using M < N principal component (PC) vectors. The pixel's enhanced spectrum is transformed to the spectral configuration associated to its reaction to a specific stain by utilizing an N × N transformation matrix, which is derived through application of least mean squares method to the enhanced and target spectral transmittance samples of the different tissue components found in the image. Results of our experiments on the digital conversion of an H&E stained multispectral image to its Masson's trichrome stained equivalent show the viability of the method.

  20. Lossless medical image compression using geometry-adaptive partitioning and least square-based prediction.

    PubMed

    Song, Xiaoying; Huang, Qijun; Chang, Sheng; He, Jin; Wang, Hao

    2018-06-01

    To improve the compression rates for lossless compression of medical images, an efficient algorithm, based on irregular segmentation and region-based prediction, is proposed in this paper. Considering that the first step of a region-based compression algorithm is segmentation, this paper proposes a hybrid method by combining geometry-adaptive partitioning and quadtree partitioning to achieve adaptive irregular segmentation for medical images. Then, least square (LS)-based predictors are adaptively designed for each region (regular subblock or irregular subregion). The proposed adaptive algorithm not only exploits spatial correlation between pixels but it utilizes local structure similarity, resulting in efficient compression performance. Experimental results show that the average compression performance of the proposed algorithm is 10.48, 4.86, 3.58, and 0.10% better than that of JPEG 2000, CALIC, EDP, and JPEG-LS, respectively. Graphical abstract ᅟ.

  1. Modelling electron distributions within ESA's Gaia satellite CCD pixels to mitigate radiation damage

    NASA Astrophysics Data System (ADS)

    Seabroke, G. M.; Holland, A. D.; Burt, D.; Robbins, M. S.

    2009-08-01

    The Gaia satellite is a high-precision astrometry, photometry and spectroscopic ESA cornerstone mission, currently scheduled for launch in 2012. Its primary science drivers are the composition, formation and evolution of the Galaxy. Gaia will achieve its unprecedented positional accuracy requirements with detailed calibration and correction for radiation damage. At L2, protons cause displacement damage in the silicon of CCDs. The resulting traps capture and emit electrons from passing charge packets in the CCD pixel, distorting the image PSF and biasing its centroid. Microscopic models of Gaia's CCDs are being developed to simulate this effect. The key to calculating the probability of an electron being captured by a trap is the 3D electron density within each CCD pixel. However, this has not been physically modelled for the Gaia CCD pixels. In Seabroke, Holland & Cropper (2008), the first paper of this series, we motivated the need for such specialised 3D device modelling and outlined how its future results will fit into Gaia's overall radiation calibration strategy. In this paper, the second of the series, we present our first results using Silvaco's physics-based, engineering software: the ATLAS device simulation framework. Inputting a doping profile, pixel geometry and materials into ATLAS and comparing the results to other simulations reveals that ATLAS has a free parameter, fixed oxide charge, that needs to be calibrated. ATLAS is successfully benchmarked against other simulations and measurements of a test device, identifying how to use it to model Gaia pixels and highlighting the affect of different doping approximations.

  2. Preliminary Performance of CdZnTe Imaging Detector Prototypes

    NASA Technical Reports Server (NTRS)

    Ramsey, B.; Sharma, D. P.; Meisner, J.; Gostilo, V.; Ivanov, V.; Loupilov, A.; Sokolov, A.; Sipila, H.

    1999-01-01

    The promise of good energy and spatial resolution coupled with high efficiency and near-room-temperature operation has fuelled a large International effort to develop Cadmium-Zinc-Telluride (CdZnTe) for the hard-x-ray region. We present here preliminary results from our development of small-pixel imaging arrays fabricated on 5x5x1-mm and 5x5x2-mm spectroscopy and discriminator-grade material. Each array has 16 (4x4) 0.65-mm gold readout pads on a 0.75-mm pitch, with each pad connected to a discrete preamplifier via a pulse-welded gold wire. Each array is mounted on a 3-stage Peltier cooler and housed in an ion-pump-evacuated housing which also contains a hybrid micro-assembly for the 16 channels of electronics. We have investigated the energy resolution and approximate photopeak efficiency for each pixel at several energies and have used an ultra-fine beam x-ray generator to probe the performance at the pixel boundaries. Both arrays gave similar results, and at an optimum temperature of -20 C we achieved between 2 and 3% FWHM energy resolution at 60 keV and around 15% at 5.9 keV. We found that all the charge was contained within 1 pixel until very close to the pixels edge, where it would start to be shared with its neighbor. Even between pixels, all the charge would be appropriately shared with no apparently loss of efficiency or resolution. Full details of these measurements will be presented, together with their implications for future imaging-spectroscopy applications.

  3. The Transition-Edge-Sensor Array for the Micro-X Sounding Rocket

    NASA Technical Reports Server (NTRS)

    Eckart, M. E.; Adams, J. S.; Bailey, C. N.; Bandler, S. R.; Busch, Sarah Elizabeth; Chervenak J. A.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Porst, J. P.; hide

    2012-01-01

    The Micro-X sounding rocket program will fly a 128-element array of transition-edge-sensor microcalorimeters to enable high-resolution X-ray imaging spectroscopy of the Puppis-A supernova remnant. To match the angular resolution of the optics while maximizing the field-of-view and retaining a high energy resolution (< 4 eV at 1 keV), we have designed the pixels using 600 x 600 sq. micron Au/Bi absorbers, which overhang 140 x 140 sq. micron Mo/Au sensors. The data-rate capabilities of the rocket telemetry system require the pulse decay to be approximately 2 ms to allow a significant portion of the data to be telemetered during flight. Here we report experimental results from the flight array, including measurements of energy resolution, uniformity, and absorber thermalization. In addition, we present studies of test devices that have a variety of absorber contact geometries, as well as a variety of membrane-perforation schemes designed to slow the pulse decay time to match the telemetry requirements. Finally, we describe the reduction in pixel-to-pixel crosstalk afforded by an angle-evaporated Cu backside heatsinking layer, which provides Cu coverage on the four sidewalls of the silicon wells beneath each pixel.

  4. Spatiotemporal Pixelization to Increase the Recognition Score of Characters for Retinal Prostheses

    PubMed Central

    Kim, Hyun Seok; Park, Kwang Suk

    2017-01-01

    Most of the retinal prostheses use a head-fixed camera and a video processing unit. Some studies proposed various image processing methods to improve visual perception for patients. However, previous studies only focused on using spatial information. The present study proposes a spatiotemporal pixelization method mimicking fixational eye movements to generate stimulation images for artificial retina arrays by combining spatial and temporal information. Input images were sampled with a resolution that was four times higher than the number of pixel arrays. We subsampled this image and generated four different phosphene images. We then evaluated the recognition scores of characters by sequentially presenting phosphene images with varying pixel array sizes (6 × 6, 8 × 8 and 10 × 10) and stimulus frame rates (10 Hz, 15 Hz, 20 Hz, 30 Hz, and 60 Hz). The proposed method showed the highest recognition score at a stimulus frame rate of approximately 20 Hz. The method also significantly improved the recognition score for complex characters. This method provides a new way to increase practical resolution over restricted spatial resolution by merging the higher resolution image into high-frame time slots. PMID:29073735

  5. Using polynomials to simplify fixed pattern noise and photometric correction of logarithmic CMOS image sensors.

    PubMed

    Li, Jing; Mahmoodi, Alireza; Joseph, Dileepan

    2015-10-16

    An important class of complementary metal-oxide-semiconductor (CMOS) image sensors are those where pixel responses are monotonic nonlinear functions of light stimuli. This class includes various logarithmic architectures, which are easily capable of wide dynamic range imaging, at video rates, but which are vulnerable to image quality issues. To minimize fixed pattern noise (FPN) and maximize photometric accuracy, pixel responses must be calibrated and corrected due to mismatch and process variation during fabrication. Unlike literature approaches, which employ circuit-based models of varying complexity, this paper introduces a novel approach based on low-degree polynomials. Although each pixel may have a highly nonlinear response, an approximately-linear FPN calibration is possible by exploiting the monotonic nature of imaging. Moreover, FPN correction requires only arithmetic, and an optimal fixed-point implementation is readily derived, subject to a user-specified number of bits per pixel. Using a monotonic spline, involving cubic polynomials, photometric calibration is also possible without a circuit-based model, and fixed-point photometric correction requires only a look-up table. The approach is experimentally validated with a logarithmic CMOS image sensor and is compared to a leading approach from the literature. The novel approach proves effective and efficient.

  6. Verification of intensity modulated profiles using a pixel segmented liquid-filled linear array.

    PubMed

    Pardo, J; Roselló, J V; Sánchez-Doblado, F; Gómez, F

    2006-06-07

    A liquid isooctane (C8H18) filled ionization chamber linear array developed for radiotherapy quality assurance, consisting of 128 pixels (each of them with a 1.7 mm pitch), has been used to acquire profiles of several intensity modulated fields. The results were compared with film measurements using the gamma test. The comparisons show a very good matching, even in high gradient dose regions. The volume-averaging effect of the pixels is negligible and the spatial resolution is enough to verify these regions. However, some mismatches between the detectors have been found in regions where low-energy scattered photons significantly contribute to the total dose. These differences are not very important (in fact, the measurements of both detectors are in agreement using the gamma test with tolerances of 3% and 3 mm in most of those regions), and may be associated with the film energy dependence. In addition, the linear array repeatability (0.27% one standard deviation) is much better than the film one ( approximately 3%). The good repeatability, small pixel size and high spatial resolution make the detector ideal for the real time profile verification of high gradient beam profiles like those present in intensity modulated radiation therapy and radiosurgery.

  7. Evaluation of color encodings for high dynamic range pixels

    NASA Astrophysics Data System (ADS)

    Boitard, Ronan; Mantiuk, Rafal K.; Pouli, Tania

    2015-03-01

    Traditional Low Dynamic Range (LDR) color spaces encode a small fraction of the visible color gamut, which does not encompass the range of colors produced on upcoming High Dynamic Range (HDR) displays. Future imaging systems will require encoding much wider color gamut and luminance range. Such wide color gamut can be represented using floating point HDR pixel values but those are inefficient to encode. They also lack perceptual uniformity of the luminance and color distribution, which is provided (in approximation) by most LDR color spaces. Therefore, there is a need to devise an efficient, perceptually uniform and integer valued representation for high dynamic range pixel values. In this paper we evaluate several methods for encoding colour HDR pixel values, in particular for use in image and video compression. Unlike other studies we test both luminance and color difference encoding in a rigorous 4AFC threshold experiments to determine the minimum bit-depth required. Results show that the Perceptual Quantizer (PQ) encoding provides the best perceptual uniformity in the considered luminance range, however the gain in bit-depth is rather modest. More significant difference can be observed between color difference encoding schemes, from which YDuDv encoding seems to be the most efficient.

  8. Evaluation of the breakdown behaviour of ATLAS silicon pixel sensors after partial guard-ring removal

    NASA Astrophysics Data System (ADS)

    Goessling, C.; Klingenberg, R.; Muenstermann, D.; Wittig, T.

    2010-12-01

    To avoid geometrical inefficiencies in the ATLAS pixel detector, the concept of shingling is used up to now in the barrel section. For the upgrades of ATLAS, it is desired to avoid this as it increases the volume and material budget of the pixel layers and complicates the cooling. A direct planar edge-to-edge arrangement of pixel modules has not been possible in the past due to about 1100 μm of inactive edge composed of approximately 600 μm of guard rings and 500 μm of safety margin. In this work, the safety margin and guard rings of ATLAS SingleChip sensors were cut at different positions using a standard diamond dicing saw and irradiated afterwards to explore the breakdown behaviour and the leakage current development. It is found that the inactive edge can be reduced to about 400 μm of guard rings with almost no reduction in pre-irradiation testability and leakage current performance. This is in particular important for the insertable b-layer upgrade of ATLAS (IBL) where inactive edges of less than 450 μm width are required.

  9. Planet Detection: The Kepler Mission

    NASA Astrophysics Data System (ADS)

    Jenkins, Jon M.; Smith, Jeffrey C.; Tenenbaum, Peter; Twicken, Joseph D.; Van Cleve, Jeffrey

    2012-03-01

    The search for exoplanets is one of the hottest topics in astronomy and astrophysics in the twenty-first century, capturing the public's attention as well as that of the astronomical community. This nascent field was conceived in 1989 with the discovery of a candidate planetary companion to HD114762 [35] and was born in 1995 with the discovery of the first extrasolar planet 51 Peg-b [37] orbiting a main sequence star. As of March, 2011, over 500 exoplanets have been discovered* and 106 are known to transit or cross their host star, as viewed from Earth. Of these transiting planets, 15 have been announced by the Kepler Mission, which was launched into an Earth-trailing, heliocentric orbit in March, 2009 [1,4,6,15,18,20,22,31,32,34,36,43]. In addition, over 1200 candidate transiting planets have already been detected by Kepler [5], and vigorous follow-up observations are being conducted to vet these candidates. As the false-positive rate for Kepler is expected to be quite low [39], Kepler has effectively tripled the number of known exoplanets. Moreover, Kepler will provide an unprecedented data set in terms of photometric precision, duration, contiguity, and number of stars. Kepler's primary science objective is to determine the frequency of Earth-size planets transiting their Sun-like host stars in the habitable zone, that range of orbital distances for which liquid water would pool on the surface of a terrestrial planet such as Earth, Mars, or Venus. This daunting task demands an instrument capable of measuring the light output from each of over 100,000 stars simultaneously with an unprecedented photometric precision of 20 parts per million (ppm) at 6.5-h intervals. The large number of stars is required because the probability of the geometrical alignment of planetary orbits that permit observation of transits is the ratio of the size of the star to the size of the planetary orbit. For Earth-like planets in 1-astronomical unit (AU) orbits† about sun-like stars, only ˜0.5% will exhibit transits. By observing such a large number of stars, Kepler is guaranteed to produce a robust null result in the unhappy event that no Earth-size planets are detected in or near the habitable zone. Such a result would indicate that worlds like ours are extremely rare in the Milky Way galaxy and perhaps the cosmos, and that we might be solitary sojourners in the quest to answer the age-old question: "Are we alone?" Kepler is an audacious mission that places rigorous demands on the science pipeline used to process the ever-accumulating, large amount of data and to identify and characterize the minute planetary signatures hiding in the data haystack. Kepler observes over 160,000 stars simultaneously over a field of view (FOV) of 115 square degrees with a focal plane consisting of 42 charge-coupled devices‡ (CCDs), each of which images 2.75 square degrees of sky onto 2200×1024 pixels. The photometer, which contains the CCD array, reads out each CCD every 6.54 s [10,11] and co-adds the images for 29.4 min, called a long cadence (LC) interval. Due to storage and bandwidth constraints, only the pixels of interest, those that contain images of target stars, are saved onboard the solid-state recorder (SSR), which can store 66+ days of data. An average of 32 pixels per star is allowed for up to 170,000 stellar target definitions. In addition, a total of 512 targets are sampled at 58.85-s short cadence (SC) intervals, permitting further characterization of the planet-star systems for the brighter stars with a Kepler magnitude,* Kp, brighter than 12 (Kp < 12) stars via asteroseismology [17], and more precise transit timing. In addition to the stellar images, collateral data used for calibration (CAL) are also collected and stored on the SSR. For each of the 84 CCD readout channels these data include up to 4500 background sky pixels used to estimate and remove diffuse stellar background and zodiacal light; 1100 pixels containing masked smear measurements and another 1100 pixels containing virtual smear measurements used to remove artifacts caused by the lack of a shutter and a finite 0.51-s readout time; and 1070 trailing black measurements that monitor the bias voltage presented at the input of the analog-to-digital converter so that the zero point can be restored to the digitized data during processing [24]. There are a total of up to 6,092,680 pixels containing the stellar and collateral data collected for each LC, with 48 LCs/day. While only 512 SC targets are defined at any given time, there are 30 SC intervals for each LC interval, and an average of 85 pixels are allocated for each SC target star. Smear and black-level measurements are collected for each SC target, but only for the rows and columns occupied by SC stellar target pixels. Approximately 21% of the pixel data returned by Kepler are SC data. The total data rate for both LC and SC data is 1.3 GB/day when the data are expanded to 4 bytes/pixel from the compressed bit stream. Raw pixel data are downlinked at monthly intervals through National Aeronautics and Space Administration's (NASA's) Deep Space Network (DSN) and routed through the ground system to the Kepler Science Operations Center (SOC) at NASA Ames Research Center. The SOC performs a number of critical functions for the mission, including management of the target definitions which specify the pixels needed for each stellar target and the compression tables that allow a ˜5:1 compression of the science data onboard the SSR (from 23 bits/pixel to 4.6 bits/pixel), but its two major tasks are to: 1. Process raw pixel data to produce archival science data products, including calibrated pixels, measurements of the location or centroid of each star in each frame, flux time series representing the brightness of each star in each data frame, and systematic error-corrected flux time series that have instrumental artifacts removed. 2. Search each target-star light curve to identify transit-like features and to perform a suite of diagnostic tests on each such event to make or break confidence in each transit-like signature by eliminating eclipsing binaries and other false positives. This chapter focuses on two of the most important subtasks, as they represent the most challenging ones from the perspective of the major themes of this book: machine learning and data mining. First, Section 17.2 gives a brief overview of the SOC science processing pipeline. This includes a special subsection detailing the adaptive, wavelet-based transit detector in the transiting planet search (TPS) pipeline component that performs the automated search through each of the hundreds of thousands of light curves for transit signatures of Earth-size planets. Following the overview, Section 17.3 describes an approach under development to improve the science pipeline’s ability to identify and remove instrumental signatures from the light curves while minimizing distortion of astrophysical signals in the data and preventing the introduction of additional noise that may mask small transit features. The chapter concludes with some thoughts about the future of large transit surveys in the context of the Kepler experience.

  10. Creating a Business Plan and Projecting Revenue for a Cosmetic Laser Center in a Community Hospital

    DTIC Science & Technology

    2000-05-01

    at $300.00. Expenses for physician faculty were borne by ESC Sharplan. Overhead. Overhead was based upon $2.75 per square foot per month, or...33.00 per square foot per year. Total square footage of the laser center is approximately 300 square foot ($9,900 per year) (Sound Shore Finance...of holistic nursing therapies, including self- hypnosis, guided imagery, reflexology and therapeutic touch, into patient care. Establishing a Laser

  11. CdTe focal plane detector for hard x-ray focusing optics

    NASA Astrophysics Data System (ADS)

    Seller, Paul; Wilson, Matthew D.; Veale, Matthew C.; Schneider, Andreas; Gaskin, Jessica; Wilson-Hodge, Colleen; Christe, Steven; Shih, Albert Y.; Gregory, Kyle; Inglis, Andrew; Panessa, Marco

    2015-08-01

    The demand for higher resolution x-ray optics (a few arcseconds or better) in the areas of astrophysics and solar science has, in turn, driven the development of complementary detectors. These detectors should have fine pixels, necessary to appropriately oversample the optics at a given focal length, and an energy response also matched to that of the optics. Rutherford Appleton Laboratory have developed a 3-side buttable, 20 mm x 20 mm CdTe-based detector with 250 μm square pixels (80x80 pixels) which achieves 1 keV FWHM @ 60 keV and gives full spectroscopy between 5 keV and 200 keV. An added advantage of these detectors is that they have a full-frame readout rate of 10 kHz. Working with NASA Goddard Space Flight Center and Marshall Space Flight Center, 4 of these 1mm-thick CdTe detectors are tiled into a 2x2 array for use at the focal plane of a balloon-borne hard-x-ray telescope, and a similar configuration could be suitable for astrophysics and solar space-based missions. This effort encompasses the fabrication and testing of flightsuitable front-end electronics and calibration of the assembled detector arrays. We explain the operation of the pixelated ASIC readout and measurements, front-end electronics development, preliminary X-ray imaging and spectral performance, and plans for full calibration of the detector assemblies. Work done in conjunction with the NASA Centers is funded through the NASA Science Mission Directorate Astrophysics Research and Analysis Program.

  12. A noiseless, kHz frame rate imaging detector for AO wavefront sensors based on MCPs read out with the Medipix2 CMOS pixel chip

    NASA Astrophysics Data System (ADS)

    Vallerga, J. V.; McPhate, J. B.; Tremsin, A. S.; Siegmund, O. H. W.; Mikulec, B.; Clark, A. G.

    2004-12-01

    Future wavefront sensors in adaptive optics (AO) systems for the next generation of large telescopes (> 30 m diameter) will require large formats (512x512) , kHz frame rates, low readout noise (<3 electrons) and high optical QE. The current generation of CCDs cannot achieve the first three of these specifications simultaneously. We present a detector scheme that can meet the first three requirements with an optical QE > 40%. This detector consists of a vacuum tube with a proximity focused GaAs photocathode whose photoelectrons are amplified by microchannel plates and the resulting output charge cloud counted by a pixelated CMOS application specific integrated circuit (ASIC) called the Medipix2 (http://medipix.web.cern.ch/MEDIPIX/). Each 55 micron square pixel of the Medipix2 chip has an amplifier, discriminator and 14 bit counter and the 256x256 array can be read out in 287 microseconds. The chip is 3 side abuttable so a 512x512 array is feasible in one vacuum tube. We will present the first results with an open-faced, demountable version of the detector where we have mounted a pair of MCPs 500 microns above a Medipix2 readout inside a vacuum chamber and illuminated it with UV light. The results include: flat field response, spatial resolution, spatial linearity on the sub-pixel level and global event counting rate. We will also discuss the vacuum tube design and the fabrication issues associated with the Medipix2 surviving the tube making process.

  13. CdTe Focal Plane Detector for Hard X-Ray Focusing Optics

    NASA Technical Reports Server (NTRS)

    Seller, Paul; Wilson, Matthew D.; Veale, Matthew C.; Schneider, Andreas; Gaskin, Jessica; Wilson-Hodge, Colleen; Christe, Steven; Shih, Albert Y.; Inglis, Andrew; Panessa, Marco

    2015-01-01

    The demand for higher resolution x-ray optics (a few arcseconds or better) in the areas of astrophysics and solar science has, in turn, driven the development of complementary detectors. These detectors should have fine pixels, necessary to appropriately oversample the optics at a given focal length, and an energy response also matched to that of the optics. Rutherford Appleton Laboratory have developed a 3-side buttable, 20 millimeter x 20 millimeter CdTe-based detector with 250 micrometer square pixels (80 x 80 pixels) which achieves 1 kiloelectronvolt FWHM (Full-Width Half-Maximum) @ 60 kiloelectronvolts and gives full spectroscopy between 5 kiloelectronvolts and 200 kiloelectronvolts. An added advantage of these detectors is that they have a full-frame readout rate of 10 kilohertz. Working with NASA Goddard Space Flight Center and Marshall Space Flight Center, 4 of these 1 millimeter-thick CdTe detectors are tiled into a 2 x 2 array for use at the focal plane of a balloon-borne hard-x-ray telescope, and a similar configuration could be suitable for astrophysics and solar space-based missions. This effort encompasses the fabrication and testing of flight-suitable front-end electronics and calibration of the assembled detector arrays. We explain the operation of the pixelated ASIC readout and measurements, front-end electronics development, preliminary X-ray imaging and spectral performance, and plans for full calibration of the detector assemblies. Work done in conjunction with the NASA Centers is funded through the NASA Science Mission Directorate Astrophysics Research and Analysis Program.

  14. Edge Probability and Pixel Relativity-Based Speckle Reducing Anisotropic Diffusion.

    PubMed

    Mishra, Deepak; Chaudhury, Santanu; Sarkar, Mukul; Soin, Arvinder Singh; Sharma, Vivek

    2018-02-01

    Anisotropic diffusion filters are one of the best choices for speckle reduction in the ultrasound images. These filters control the diffusion flux flow using local image statistics and provide the desired speckle suppression. However, inefficient use of edge characteristics results in either oversmooth image or an image containing misinterpreted spurious edges. As a result, the diagnostic quality of the images becomes a concern. To alleviate such problems, a novel anisotropic diffusion-based speckle reducing filter is proposed in this paper. A probability density function of the edges along with pixel relativity information is used to control the diffusion flux flow. The probability density function helps in removing the spurious edges and the pixel relativity reduces the oversmoothing effects. Furthermore, the filtering is performed in superpixel domain to reduce the execution time, wherein a minimum of 15% of the total number of image pixels can be used. For performance evaluation, 31 frames of three synthetic images and 40 real ultrasound images are used. In most of the experiments, the proposed filter shows a better performance as compared to the state-of-the-art filters in terms of the speckle region's signal-to-noise ratio and mean square error. It also shows a comparative performance for figure of merit and structural similarity measure index. Furthermore, in the subjective evaluation, performed by the expert radiologists, the proposed filter's outputs are preferred for the improved contrast and sharpness of the object boundaries. Hence, the proposed filtering framework is suitable to reduce the unwanted speckle and improve the quality of the ultrasound images.

  15. As-built design specification for PARHIS

    NASA Technical Reports Server (NTRS)

    Tompkins, M. A. (Principal Investigator)

    1981-01-01

    The program is part of the CLASFYG package. It produces histograms of the greeness profile derived parameters alpha, beta, t sub o, and chi squared, which are computed by the CLASFYG program. Alpha is the approximate greeness rise time, beta is the approximate greeness decay time, t sub o is the spectral crop emergence date, and chi squared per degree of freedom is the goodness of fit of the actual data to the computed greeness profile. The program also produces statistical information concerning the parameters.

  16. A new finite element formulation for computational fluid dynamics. IX - Fourier analysis of space-time Galerkin/least-squares algorithms

    NASA Technical Reports Server (NTRS)

    Shakib, Farzin; Hughes, Thomas J. R.

    1991-01-01

    A Fourier stability and accuracy analysis of the space-time Galerkin/least-squares method as applied to a time-dependent advective-diffusive model problem is presented. Two time discretizations are studied: a constant-in-time approximation and a linear-in-time approximation. Corresponding space-time predictor multi-corrector algorithms are also derived and studied. The behavior of the space-time algorithms is compared to algorithms based on semidiscrete formulations.

  17. A higher-order split-step Fourier parabolic-equation sound propagation solution scheme.

    PubMed

    Lin, Ying-Tsong; Duda, Timothy F

    2012-08-01

    A three-dimensional Cartesian parabolic-equation model with a higher-order approximation to the square-root Helmholtz operator is presented for simulating underwater sound propagation in ocean waveguides. The higher-order approximation includes cross terms with the free-space square-root Helmholtz operator and the medium phase speed anomaly. It can be implemented with a split-step Fourier algorithm to solve for sound pressure in the model. Two idealized ocean waveguide examples are presented to demonstrate the performance of this numerical technique.

  18. Environmental Assessment for Construction at US Central Command Headquarters Complex MacDill AFB, Florida

    DTIC Science & Technology

    2005-12-01

    facility would cover approximately 85,000 square-feet, which would include an approximately 15,000 square-foot auditorium wing . The entire JICCENT...1992. US Air Force, 1986. From the 1940s to Now … A Historical Synopsis of the 56th Tactical Training Wing … and MacDill Air Force Base, Florida...leucocephalus T T Wood stork Mycteria americana E E Brown pelican Pelecanus occidentalis - sse Least tern Sterna antillarum - T Roseate tern Sterna dou!{alii

  19. 77 FR 77076 - Notice of Intent: Designation of an Expanded Ocean Dredged Material Disposal Site (ODMDS) off...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-31

    ... area includes an area approximately 7.18 square miles in size, for the disposal of dredged material from the proposed harbor deepening dredging at Charleston Harbor (4.04 square miles are within the current ODMDS and 3.14 square miles are outside the current ODMDS). The size of an expanded ODMDS will...

  20. A multi-pixel InSAR time series analysis method: Simultaneous estimation of atmospheric noise, orbital errors and deformation

    NASA Astrophysics Data System (ADS)

    Jolivet, R.; Simons, M.

    2016-12-01

    InSAR time series analysis allows reconstruction of ground deformation with meter-scale spatial resolution and high temporal sampling. For instance, the ESA Sentinel-1 Constellation is capable of providing 6-day temporal sampling, thereby opening a new window on the spatio-temporal behavior of tectonic processes. However, due to computational limitations, most time series methods rely on a pixel-by-pixel approach. This limitation is a concern because (1) accounting for orbital errors requires referencing all interferograms to a common set of pixels before reconstruction of the time series and (2) spatially correlated atmospheric noise due to tropospheric turbulence is ignored. Decomposing interferograms into statistically independent wavelets will mitigate issues of correlated noise, but prior estimation of orbital uncertainties will still be required. Here, we explore a method that considers all pixels simultaneously when solving for the spatio-temporal evolution of interferometric phase Our method is based on a massively parallel implementation of a conjugate direction solver. We consider an interferogram as the sum of the phase difference between 2 SAR acquisitions and the corresponding orbital errors. In addition, we fit the temporal evolution with a physically parameterized function while accounting for spatially correlated noise in the data covariance. We assume noise is isotropic for any given InSAR pair with a covariance described by an exponential function that decays with increasing separation distance between pixels. We regularize our solution in space using a similar exponential function as model covariance. Given the problem size, we avoid matrix multiplications of the full covariances by computing convolutions in the Fourier domain. We first solve the unregularized least squares problem using the LSQR algorithm to approach the final solution, then run our conjugate direction solver to account for data and model covariances. We present synthetic tests showing the efficiency of our method. We then reconstruct a 20-year continuous time series covering Northern Chile. Without input from any additional GNSS data, we recover the secular deformation rate, seasonal oscillations and the deformation fields from the 2005 Mw 7.8 Tarapaca and 2007 Mw 7.7 Tocopilla earthquakes.

  1. Image quality analysis of a color LCD as well as a monochrome LCD using a Foveon color CMOS camera

    NASA Astrophysics Data System (ADS)

    Dallas, William J.; Roehrig, Hans; Krupinski, Elizabeth A.

    2007-09-01

    We have combined a CMOS color camera with special software to compose a multi-functional image-quality analysis instrument. It functions as a colorimeter as well as measuring modulation transfer functions (MTF) and noise power spectra (NPS). It is presently being expanded to examine fixed-pattern noise and temporal noise. The CMOS camera has 9 μm square pixels and a pixel matrix of 2268 x 1512 x 3. The camera uses a sensor that has co-located pixels for all three primary colors. We have imaged sections of both a color and a monochrome LCD monitor onto the camera sensor with LCD-pixel-size to camera-pixel-size ratios of both 12:1 and 17.6:1. When used as an imaging colorimeter, each camera pixel is calibrated to provide CIE color coordinates and tristimulus values. This capability permits the camera to simultaneously determine chromaticity in different locations on the LCD display. After the color calibration with a CS-200 colorimeter the color coordinates of the display's primaries determined from the camera's luminance response are very close to those found from the CS-200. Only the color coordinates of the display's white point were in error. For calculating the MTF a vertical or horizontal line is displayed on the monitor. The captured image is color-matrix preprocessed, Fourier transformed then post-processed. For NPS, a uniform image is displayed on the monitor. Again, the image is pre-processed, transformed and processed. Our measurements show that the horizontal MTF's of both displays have a larger negative slope than that of the vertical MTF's. This behavior indicates that the horizontal MTF's are poorer than the vertical MTF's. However the modulations at the Nyquist frequency seem lower for the color LCD than for the monochrome LCD. The spatial noise of the color display in both directions is larger than that of the monochrome display. Attempts were also made to analyze the total noise in terms of spatial and temporal noise by applying subtractions of images taken at exactly the same exposure. Temporal noise seems to be significantly lower than spatial noise.

  2. Stability of phases of a square-well fluid within superposition approximation

    NASA Astrophysics Data System (ADS)

    Piasecki, Jarosław; Szymczak, Piotr; Kozak, John J.

    2013-04-01

    The analytic and numerical methods introduced previously to study the phase behavior of hard sphere fluids starting from the Yvon-Born-Green (YBG) equation under the Kirkwood superposition approximation (KSA) are adapted to the square-well fluid. We are able to show conclusively that the YBG equation under the KSA closure when applied to the square-well fluid: (i) predicts the existence of an absolute stability limit corresponding to freezing where undamped oscillations appear in the long-distance behavior of correlations, (ii) in accordance with earlier studies reveals the existence of a liquid-vapor transition by the appearance of a "near-critical region" where monotonically decaying correlations acquire very long range, although the system never loses stability.

  3. A method of bias correction for maximal reliability with dichotomous measures.

    PubMed

    Penev, Spiridon; Raykov, Tenko

    2010-02-01

    This paper is concerned with the reliability of weighted combinations of a given set of dichotomous measures. Maximal reliability for such measures has been discussed in the past, but the pertinent estimator exhibits a considerable bias and mean squared error for moderate sample sizes. We examine this bias, propose a procedure for bias correction, and develop a more accurate asymptotic confidence interval for the resulting estimator. In most empirically relevant cases, the bias correction and mean squared error correction can be performed simultaneously. We propose an approximate (asymptotic) confidence interval for the maximal reliability coefficient, discuss the implementation of this estimator, and investigate the mean squared error of the associated asymptotic approximation. We illustrate the proposed methods using a numerical example.

  4. Saturn's Hexagon as Summer Solstice Approaches

    NASA Image and Video Library

    2017-05-24

    These natural color views from NASA's Cassini spacecraft compare the appearance of Saturn's north-polar region in June 2013 and April 2017. In both views, Saturn's polar hexagon dominates the scene. The comparison shows how clearly the color of the region changed in the interval between the two views, which represents the latter half of Saturn's northern hemisphere spring. In 2013, the entire interior of the hexagon appeared blue. By 2017, most of the hexagon's interior was covered in yellowish haze, and only the center of the polar vortex retained the blue color. The seasonal arrival of the sun's ultraviolet light triggers the formation of photochemical aerosols, leading to haze formation. The general yellowing of the polar region is believed to be caused by smog particles produced by increasing solar radiation shining on the polar region as Saturn approached the northern summer solstice on May 24, 2017. Scientists are considering several ideas to explain why the center of the polar vortex remains blue while the rest of the polar region has turned yellow. One idea is that, because the atmosphere in the vortex's interior is the last place in the northern hemisphere to be exposed to spring and summer sunlight, smog particles have not yet changed the color of the region. A second explanation hypothesizes that the polar vortex may have an internal circulation similar to hurricanes on Earth. If the Saturnian polar vortex indeed has an analogous structure to terrestrial hurricanes, the circulation should be downward in the eye of the vortex. The downward circulation should keep the atmosphere clear of the photochemical smog particles, and may explain the blue color. Images captured with Cassini's wide-angle camera using red, green and blue spectral filters were combined to create these natural-color views. The 2013 view (left in the combined view), was captured on June 25, 2013, when the spacecraft was about 430,000 miles (700,000 kilometers) away from Saturn. The original versions of these images, as sent by the spacecraft, have a size of 512 by 512 pixels and an image scale of about 52 miles (80 kilometers) per pixel; the images have been mapped in polar stereographic projection to the resolution of approximately 16 miles (25 kilometers) per pixel. The second and third frames in the animation were taken approximately 130 and 260 minutes after the first image. The 2017 sequence (right in the combined view) was captured on April 25, 2017, just before Cassini made its first dive between Saturn and its rings. During the imaging sequence, the spacecraft's distance from the center of the planet changed from 450,000 miles (725,000 kilometers) to 143,000 miles (230,000 kilometers). The original versions of these images, as sent by the spacecraft, have a size of 512 by 512 pixels. The resolution of the original images changed from about 52 miles (80 kilometers) per pixel at the beginning to about 9 miles (14 kilometers) per pixel at the end. The images have been mapped in polar stereographic projection to the resolution of approximately 16 miles (25 kilometers) per pixel. The average interval between the frames in the movie sequence is 230 minutes. Corresponding animated movie sequences are available at https://photojournal.jpl.nasa.gov/catalog/PIA21611 https://photojournal.jpl.nasa.gov/catalog/PIA21611

  5. Soil sail content estimation in the yellow river delta with satellite hyperspectral data

    USGS Publications Warehouse

    Weng, Yongling; Gong, Peng; Zhu, Zhi-Liang

    2008-01-01

    Soil salinization is one of the most common land degradation processes and is a severe environmental hazard. The primary objective of this study is to investigate the potential of predicting salt content in soils with hyperspectral data acquired with EO-1 Hyperion. Both partial least-squares regression (PLSR) and conventional multiple linear regression (MLR), such as stepwise regression (SWR), were tested as the prediction model. PLSR is commonly used to overcome the problem caused by high-dimensional and correlated predictors. Chemical analysis of 95 samples collected from the top layer of soils in the Yellow River delta area shows that salt content was high on average, and the dominant chemicals in the saline soil were NaCl and MgCl2. Multivariate models were established between soil contents and hyperspectral data. Our results indicate that the PLSR technique with laboratory spectral data has a strong prediction capacity. Spectral bands at 1487-1527, 1971-1991, 2032-2092, and 2163-2355 nm possessed large absolute values of regression coefficients, with the largest coefficient at 2203 nm. We obtained a root mean squared error (RMSE) for calibration (with 61 samples) of RMSEC = 0.753 (R2 = 0.893) and a root mean squared error for validation (with 30 samples) of RMSEV = 0.574. The prediction model was applied on a pixel-by-pixel basis to a Hyperion reflectance image to yield a quantitative surface distribution map of soil salt content. The result was validated successfully from 38 sampling points. We obtained an RMSE estimate of 1.037 (R2 = 0.784) for the soil salt content map derived by the PLSR model. The salinity map derived from the SWR model shows that the predicted value is higher than the true value. These results demonstrate that the PLSR method is a more suitable technique than stepwise regression for quantitative estimation of soil salt content in a large area. ?? 2008 CASI.

  6. Gross Primary Productivity

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's new Moderate-resolution Imaging Spectroradiometer (MODIS) allows scientists to gauge our planet's metabolism on an almost daily basis. GPP, gross primary production, is the technical term for plant photosynthesis. This composite image over the continental United States, acquired during the period March 26-April 10, 2000, shows regions where plants were more or less productive-i.e., where they 'inhaled' carbon dioxide and then used the carbon from photosynthesis to build new plant structures. This false-color image provides a map of how much carbon was absorbed out of the atmosphere and fixed within land vegetation. Areas colored blue show where plants used as much as 60 grams of carbon per square meter. Areas colored green and yellow indicate a range of anywhere from 40 to 20 grams of carbon absorbed per square meter. Red pixels show an absorption of less than 10 grams of carbon per square meter and white pixels (often areas covered by snow or masked as urban) show little or no absorption. This is one of a number of new measurements that MODIS provides to help scientists understand how the Earth's landscapes are changing over time. Scientists' goal is use of these GPP measurements to refine computer models to simulate how the land biosphere influences the natural cycles of water, carbon, and energy throughout the Earth system. The GPP will be an integral part of global carbon cycle source and sink analysis, an important aspect of Kyoto Protocol assessments. This image is the first of its kind from the MODIS instrument, which launched in December 1999 aboard the Terra spacecraft. MODIS began acquiring scientific data on February 24, 2000, when it first opened its aperture door. The MODIS instrument and Terra spacecraft are both managed by NASA's Goddard Space Flight Center, Greenbelt, MD. Image courtesy Steven Running, MODIS Land Group Member, University of Montana

  7. The NuSTAR Extragalactic Surveys: The Number Counts Of Active Galactic Nuclei And The Resolved Fraction Of The Cosmic X-ray Background

    NASA Technical Reports Server (NTRS)

    Harrison, F. A.; Aird, J.; Civano, F.; Lansbury, G.; Mullaney, J. R.; Ballentyne, D. R.; Alexander, D. M.; Stern, D.; Ajello, M.; Barret, D.; hide

    2016-01-01

    We present the 3-8 kiloelectronvolts and 8-24 kiloelectronvolts number counts of active galactic nuclei (AGNs) identified in the Nuclear Spectroscopic Telescope Array (NuSTAR) extragalactic surveys. NuSTAR has now resolved 33 percent -39 percent of the X-ray background in the 8-24 kiloelectronvolts band, directly identifying AGNs with obscuring columns up to approximately 10 (exp 25) per square centimeter. In the softer 3-8 kiloelectronvolts band the number counts are in general agreement with those measured by XMM-Newton and Chandra over the flux range 5 times 10 (exp -15) less than or approximately equal to S (3-8 kiloelectronvolts) divided by ergs per second per square centimeter less than or approximately equal to 10 (exp -12) probed by NuSTAR. In the hard 8-24 kiloelectronvolts band NuSTAR probes fluxes over the range 2 times 10 (exp -14) less than or approximately equal to S (8-24 kiloelectronvolts) divided by ergs per second per square centimeter less than or approximately equal to 10 (exp -12), a factor approximately 100 times fainter than previous measurements. The 8-24 kiloelectronvolts number counts match predictions from AGN population synthesis models, directly confirming the existence of a population of obscured and/or hard X-ray sources inferred from the shape of the integrated cosmic X-ray background. The measured NuSTAR counts lie significantly above simple extrapolation with a Euclidian slope to low flux of the Swift/BAT15-55 kiloelectronvolts number counts measured at higher fluxes (S (15-55 kiloelectronvolts) less than or approximately equal to 10 (exp -11) ergs per second per square centimeter), reflecting the evolution of the AGN population between the Swift/BAT local (redshift is less than 0.1) sample and NuSTAR's redshift approximately equal to 1 sample. CXB (Cosmic X-ray Background) synthesis models, which account for AGN evolution, lie above the Swift/BAT measurements, suggesting that they do not fully capture the evolution of obscured AGNs at low redshifts

  8. Transparent Fingerprint Sensor System for Large Flat Panel Display.

    PubMed

    Seo, Wonkuk; Pi, Jae-Eun; Cho, Sung Haeung; Kang, Seung-Youl; Ahn, Seong-Deok; Hwang, Chi-Sun; Jeon, Ho-Sik; Kim, Jong-Uk; Lee, Myunghee

    2018-01-19

    In this paper, we introduce a transparent fingerprint sensing system using a thin film transistor (TFT) sensor panel, based on a self-capacitive sensing scheme. An armorphousindium gallium zinc oxide (a-IGZO) TFT sensor array and associated custom Read-Out IC (ROIC) are implemented for the system. The sensor panel has a 200 × 200 pixel array and each pixel size is as small as 50 μm × 50 μm. The ROIC uses only eight analog front-end (AFE) amplifier stages along with a successive approximation analog-to-digital converter (SAR ADC). To get the fingerprint image data from the sensor array, the ROIC senses a capacitance, which is formed by a cover glass material between a human finger and an electrode of each pixel of the sensor array. Three methods are reviewed for estimating the self-capacitance. The measurement result demonstrates that the transparent fingerprint sensor system has an ability to differentiate a human finger's ridges and valleys through the fingerprint sensor array.

  9. Masking Strategies for Image Manifolds.

    PubMed

    Dadkhahi, Hamid; Duarte, Marco F

    2016-07-07

    We consider the problem of selecting an optimal mask for an image manifold, i.e., choosing a subset of the pixels of the image that preserves the manifold's geometric structure present in the original data. Such masking implements a form of compressive sensing through emerging imaging sensor platforms for which the power expense grows with the number of pixels acquired. Our goal is for the manifold learned from masked images to resemble its full image counterpart as closely as possible. More precisely, we show that one can indeed accurately learn an image manifold without having to consider a large majority of the image pixels. In doing so, we consider two masking methods that preserve the local and global geometric structure of the manifold, respectively. In each case, the process of finding the optimal masking pattern can be cast as a binary integer program, which is computationally expensive but can be approximated by a fast greedy algorithm. Numerical experiments show that the relevant manifold structure is preserved through the datadependent masking process, even for modest mask sizes.

  10. VizieR Online Data Catalog: Spectroscopy of standard stars (Joner+, 2015)

    NASA Astrophysics Data System (ADS)

    Joner, M. D.; Hintz, E. G.

    2016-06-01

    Between 2005 and 2015, spectroscopic data were obtained using the 1.2-m McKellar Telescope of the Dominion Astrophysical Observatory (DAO). In total, data were secured on 153 nights using the telescope in robotic mode. Observations were made using the Coude spectrograph with the 3231 grating, which provided 40.9Å/mm. Using the Site4 CCD with 15μm pixels gives 0.614Å/pixel. With 4096 pixels along the dispersion axis, this provided a total coverage of approximately 2500Å. Aligning the grating to give a central wavelength of 5710Å allowed a spectral coverage from 4450 to 6970Å, which provided coverage of both Hα and Hβ. In total we examined 75 field stars (table2), 12 stars from the Coma star cluster (table3), 24 from the Hyades (table4), 17 from the Pleiades (table5), and 8 from NGC 752 (table6). These stars cover a spectral type range from O9 to K2. (5 data files).

  11. Continuous phase and amplitude holographic elements

    NASA Technical Reports Server (NTRS)

    Maker, Paul D. (Inventor); Muller, Richard E. (Inventor)

    1995-01-01

    A method for producing a phase hologram using e-beam lithography provides n-ary levels of phase and amplitude by first producing an amplitude hologram on a transparent substrate by e-beam exposure of a resist over a film of metal by exposing n is less than or equal to m x m spots of an array of spots for each pixel, where the spots are randomly selected in proportion to the amplitude assigned to each pixel, and then after developing and etching the metal film producing a phase hologram by e-beam lithography using a low contrast resist, such as PMMA, and n-ary levels of low doses less than approximately 200 micro-C/sq cm and preferably in the range of 20-200 micro-C/sq cm, and aggressive development using pure acetone for an empirically determined time (about 6 s) controlled to within 1/10 s to produce partial development of each pixel in proportion to the n-ary level of dose assigned to it.

  12. Transparent Fingerprint Sensor System for Large Flat Panel Display

    PubMed Central

    Seo, Wonkuk; Pi, Jae-Eun; Cho, Sung Haeung; Kang, Seung-Youl; Ahn, Seong-Deok; Hwang, Chi-Sun; Jeon, Ho-Sik; Kim, Jong-Uk

    2018-01-01

    In this paper, we introduce a transparent fingerprint sensing system using a thin film transistor (TFT) sensor panel, based on a self-capacitive sensing scheme. An armorphousindium gallium zinc oxide (a-IGZO) TFT sensor array and associated custom Read-Out IC (ROIC) are implemented for the system. The sensor panel has a 200 × 200 pixel array and each pixel size is as small as 50 μm × 50 μm. The ROIC uses only eight analog front-end (AFE) amplifier stages along with a successive approximation analog-to-digital converter (SAR ADC). To get the fingerprint image data from the sensor array, the ROIC senses a capacitance, which is formed by a cover glass material between a human finger and an electrode of each pixel of the sensor array. Three methods are reviewed for estimating the self-capacitance. The measurement result demonstrates that the transparent fingerprint sensor system has an ability to differentiate a human finger’s ridges and valleys through the fingerprint sensor array. PMID:29351218

  13. Comparison of the information content of data from the LANDSAT 4 Thematic Mapper and the multispectral scanner

    NASA Technical Reports Server (NTRS)

    Price, J. C.

    1984-01-01

    Evaluation of information contained in data from the visible and near-IR channels of LANDSAT 4 TM and MSS for five agricultural scenes shows that the TM provides a significant advance in information gathering capability as expressed in terms of bits per pixel or bits per unit area. The six reflective channels of the TM acquire 18 bits of information per pixel out of a possible 48 bits, while the four MSS channels acquire 10 bits of information per pixel out of a possible 28 bits. Thus the TM and MSS are equally efficient in gathering information (18/48 to approximately 10/28), contrary to the expected tendency toward lower efficiency as spatial resolution is improved and spectral channels are added to an observing system. The TM thermal IR data appear to be of interest mainly for mapping water bodies, which do not change temperature during the day, for assessing surface moisture, and for monitoring thermal features associated with human activity.

  14. Global and Local Translation Designs of Quantum Image Based on FRQI

    NASA Astrophysics Data System (ADS)

    Zhou, Ri-Gui; Tan, Canyun; Ian, Hou

    2017-04-01

    In this paper, two kinds of quantum image translation are designed based on FRQI, including global translation and local translation. Firstly, global translation is realized by employing adder modulo N, where all pixels in the image will be moved, and the circuit of right translation is designed. Meanwhile, left translation can also be implemented by using right translation. Complexity analysis shows that the circuits of global translation in this paper have lower complexity and cost less qubits. Secondly, local translation, consisted of single-column translation, multiple-columns translation and translation in the restricted area, is designed by adopting Gray code. In local translation, any parts of pixels in the image can be translated while other pixels remain unchanged. In order to lower complexity when the number of columns needing to be translated are more than one, multiple-columns translation is proposed, which has the approximate complexity with single-column translation. To perform multiple-columns translation, three conditions must be satisfied. In addition, all translations in this paper are cyclic.

  15. Square-Wave Model for a Pendulum with Oscillating Suspension

    ERIC Educational Resources Information Center

    Yorke, Ellen D.

    1978-01-01

    Demonstrates that if a sinusoidal oscillation of the point of support of a pendulum is approximated by a square wave, a matrix method may be used to discuss parametric resonance and the stability of the inverted pendulum. (Author/SL)

  16. 15 CFR 922.161 - Boundary.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE OCEAN AND COASTAL RESOURCE MANAGEMENT NATIONAL... Sanctuary consists of an area of approximately 2900 square nautical miles (9,800 square kilometers) of coastal and ocean waters, and the submerged lands thereunder, surrounding the Florida Keys in Florida...

  17. Classifying multispectral data by neural networks

    NASA Technical Reports Server (NTRS)

    Telfer, Brian A.; Szu, Harold H.; Kiang, Richard K.

    1993-01-01

    Several energy functions for synthesizing neural networks are tested on 2-D synthetic data and on Landsat-4 Thematic Mapper data. These new energy functions, designed specifically for minimizing misclassification error, in some cases yield significant improvements in classification accuracy over the standard least mean squares energy function. In addition to operating on networks with one output unit per class, a new energy function is tested for binary encoded outputs, which result in smaller network sizes. The Thematic Mapper data (four bands were used) is classified on a single pixel basis, to provide a starting benchmark against which further improvements will be measured. Improvements are underway to make use of both subpixel and superpixel (i.e. contextual or neighborhood) information in tile processing. For single pixel classification, the best neural network result is 78.7 percent, compared with 71.7 percent for a classical nearest neighbor classifier. The 78.7 percent result also improves on several earlier neural network results on this data.

  18. Dose-dependent X-ray measurements using a 64×64 hybrid GaAs pixel detector with photon counting

    NASA Astrophysics Data System (ADS)

    Schwarz, C.; Campbell, M.; Goeppert, R.; Ludwig, J.; Mikulec, B.; Rogalla, M.; Runge, K.; Soeldner-Rembold, A.; Smith, K. M.; Snoeys, W.; Watt, J.

    2001-03-01

    New developments in medical imaging head towards semiconductor detectors flip-chip bonded to CMOS readout chips. In this work, detectors fabricated on SI-GaAs bulk material were bonded to Photon Counting Chips. This PCC consists of a matrix of 64×64 identical square pixels (170 μm×170 μm) with a 15-bit counter in each cell. We investigated the imaging properties of these detector systems under exposure of a dental X-ray tube. First, a dose calibration of the X-ray tube was performed. Fixed pattern noise in flood exposure images was determined for a fixed dose and an image correction method, which uses a gain map, was applied. For characterising the imaging properties, the signal-to-noise ratio (SNR) was calculated as function of exposure dose. Finally, the dynamic range of the system was estimated. Developed in the framework of the MEDIPIX collaboration: CERN, Universities of Freiburg, Glasgow, Naples and Pisa.

  19. Incoherent coincidence imaging of space objects

    NASA Astrophysics Data System (ADS)

    Mao, Tianyi; Chen, Qian; He, Weiji; Gu, Guohua

    2016-10-01

    Incoherent Coincidence Imaging (ICI), which is based on the second or higher order correlation of fluctuating light field, has provided great potentialities with respect to standard conventional imaging. However, the deployment of reference arm limits its practical applications in the detection of space objects. In this article, an optical aperture synthesis with electronically connected single-pixel photo-detectors was proposed to remove the reference arm. The correlation in our proposed method is the second order correlation between the intensity fluctuations observed by any two detectors. With appropriate locations of single-pixel detectors, this second order correlation is simplified to absolute-square Fourier transform of source and the unknown object. We demonstrate the image recovery with the Gerchberg-Saxton-like algorithms and investigate the reconstruction quality of our approach. Numerical experiments has been made to show that both binary and gray-scale objects can be recovered. This proposed method provides an effective approach to promote detection of space objects and perhaps even the exo-planets.

  20. Superpixel-based spatial amplitude and phase modulation using a digital micromirror device.

    PubMed

    Goorden, Sebastianus A; Bertolotti, Jacopo; Mosk, Allard P

    2014-07-28

    We present a superpixel method for full spatial phase and amplitude control of a light beam using a digital micromirror device (DMD) combined with a spatial filter. We combine square regions of nearby micromirrors into superpixels by low pass filtering in a Fourier plane of the DMD. At each superpixel we are able to independently modulate the phase and the amplitude of light, while retaining a high resolution and the very high speed of a DMD. The method achieves a measured fidelity F = 0.98 for a target field with fully independent phase and amplitude at a resolution of 8 × 8 pixels per diffraction limited spot. For the LG10 orbital angular momentum mode the calculated fidelity is F = 0.99993, using 768 × 768 DMD pixels. The superpixel method reduces the errors when compared to the state of the art Lee holography method for these test fields by 50% and 18%, with a comparable light efficiency of around 5%. Our control software is publicly available.

  1. White-light Interferometry using a Channeled Spectrum: II. Calibration Methods, Numerical and Experimental Results

    NASA Technical Reports Server (NTRS)

    Zhai, Chengxing; Milman, Mark H.; Regehr, Martin W.; Best, Paul K.

    2007-01-01

    In the companion paper, [Appl. Opt. 46, 5853 (2007)] a highly accurate white light interference model was developed from just a few key parameters characterized in terms of various moments of the source and instrument transmission function. We develop and implement the end-to-end process of calibrating these moment parameters together with the differential dispersion of the instrument and applying them to the algorithms developed in the companion paper. The calibration procedure developed herein is based on first obtaining the standard monochromatic parameters at the pixel level: wavenumber, phase, intensity, and visibility parameters via a nonlinear least-squares procedure that exploits the structure of the model. The pixel level parameters are then combined to obtain the required 'global' moment and dispersion parameters. The process is applied to both simulated scenarios of astrometric observations and to data from the microarcsecond metrology testbed (MAM), an interferometer testbed that has played a prominent role in the development of this technology.

  2. Performance of an X-ray Microcalorimeter with a 240 μm Absorber and a 50 μm TES Bilayer

    NASA Astrophysics Data System (ADS)

    Miniussi, Antoine R.; Adams, Joseph S.; Bandler, Simon R.; Chervenak, James A.; Datesman, Aaron M.; Eckart, Megan E.; Ewin, Audrey J.; Finkbeiner, Fred M.; Kelley, Richard L.; Kilbourne, Caroline A.; Porter, Frederick S.; Sadleir, John E.; Sakai, Kazuhiro; Smith, Stephen J.; Wakeham, Nicholas A.; Wassell, Edward J.; Yoon, Wonsik

    2018-05-01

    Superconducting transition-edge sensor (TES) microcalorimeters are being developed for a variety of potential astrophysics missions, including Athena. The X-ray integral field unit instrument on this mission requires close-packed pixels on a 0.25 mm pitch, and high quantum efficiency between 0.2 and 12 keV. In this work, we describe a new approach with 50 μm square TESs consisting of a Mo/Au bilayer, deposited on silicon nitride membranes to provide a weak thermal conductance to a 50 mK heat bath. Larger TESs usually have additional normal metal stripes on top of the bilayer to reduce the noise. However, we have found that excellent spectral performance can be achieved without the need for any normal metal stripes on top of the TES. A spectral performance of 1.58 ± 0.12 eV at 5.9 keV has been achieved, the best resolution seen in any of our devices with this pixel size.

  3. Design and development of a fiber optic TDI CCD-based slot-scan digital mammography system

    NASA Astrophysics Data System (ADS)

    Toker, Emre; Piccaro, Michele F.

    1993-12-01

    We previously reported on the development, design, and clinical evaluation of a CCD-based, high performance, filmless imaging system for stereotactic needle biopsy procedures in mammography. The MammoVision system has a limited imaging area of 50 mm X 50 mm, since it is designed specifically for breast biopsy applications. We are currently developing a new filmless imaging system designed to cover the 18 cm X 24 cm imaging area required for screening and diagnostic mammography. The diagnostic mammography system is based on four 1100 X 330 pixel format, full-frame, scientific grade, front illuminated, MPP mode CCDs, with 24 micrometers X 24 micrometers square pixels Each CCD is coupled to an x-ray intensifying screen via a 1.7:1 fiber optic reducer. The detector assembly (180 mm long and 13.5 mm wide) is scanned across the patient's breast synchronously with the x-ray source, with the CCDs operated in time-delay integration (TDI) mode. The total scan time is 4.0 seconds.

  4. Automated brain tumor segmentation in magnetic resonance imaging based on sliding-window technique and symmetry analysis.

    PubMed

    Lian, Yanyun; Song, Zhijian

    2014-01-01

    Brain tumor segmentation from magnetic resonance imaging (MRI) is an important step toward surgical planning, treatment planning, monitoring of therapy. However, manual tumor segmentation commonly used in clinic is time-consuming and challenging, and none of the existed automated methods are highly robust, reliable and efficient in clinic application. An accurate and automated tumor segmentation method has been developed for brain tumor segmentation that will provide reproducible and objective results close to manual segmentation results. Based on the symmetry of human brain, we employed sliding-window technique and correlation coefficient to locate the tumor position. At first, the image to be segmented was normalized, rotated, denoised, and bisected. Subsequently, through vertical and horizontal sliding-windows technique in turn, that is, two windows in the left and the right part of brain image moving simultaneously pixel by pixel in two parts of brain image, along with calculating of correlation coefficient of two windows, two windows with minimal correlation coefficient were obtained, and the window with bigger average gray value is the location of tumor and the pixel with biggest gray value is the locating point of tumor. At last, the segmentation threshold was decided by the average gray value of the pixels in the square with center at the locating point and 10 pixels of side length, and threshold segmentation and morphological operations were used to acquire the final tumor region. The method was evaluated on 3D FSPGR brain MR images of 10 patients. As a result, the average ratio of correct location was 93.4% for 575 slices containing tumor, the average Dice similarity coefficient was 0.77 for one scan, and the average time spent on one scan was 40 seconds. An fully automated, simple and efficient segmentation method for brain tumor is proposed and promising for future clinic use. Correlation coefficient is a new and effective feature for tumor location.

  5. Validation of ET maps derived from MODIS imagery

    NASA Astrophysics Data System (ADS)

    Hong, S.; Hendrickx, J. M.; Borchers, B.

    2005-12-01

    In previous work we have used the New Mexico Tech implementation of the Surface Energy Balance Algorithm for Land (SEBAL-NMT) for the generation of ET maps from LandSat imagery. Comparison of these SEBAL ET estimates versus ET ground measurements using eddy covariance showed satisfactory agreement between the two methods in the heterogeneous arid landscape of the Middle Rio Grande Basin. The objective of this study is to validate SEBAL ET estimates obtained from MODIS imagery. The use of MODIS imagery is attractive since MODIS images are available at a much higher frequency than LandSat images at no cost to the user. MODIS images have a pixel size in the thermal band of 1000x1000 m which is much coarser than the 60x60 m pixel size of LandSat 7. This large pixel size precludes the use of eddy covariance measurements for validation of ET maps derived from MODIS imagery since the eddy covariance measurement is not representative of a 1000x1000 m MODIS pixel. In our experience, a typical foot print of an ET rate measured by eddy covariance on a clear day in New Mexico around 11 am is less than then thousand square meters or two orders of magnitude smaller than a MODIS thermal pixel. Therefore, we have validated ET maps derived from MODIS imagery by comparison with up-scaled ET maps derived from LandSat imagery. The results of our study demonstrate: (1) There is good agreement between ET maps derived from LandSat and MODIS images; (2) Up-scaling of LandSat ET maps over the Middle Rio Grande Basin produces ET maps that are very similar to ET maps directly derived from MODIS images; (3) ET maps derived from free MODIS imagery using SEBAL-NMT can provide reliable regional ET information for water resource managers.

  6. Ultrahigh resolution topographic mapping of Mars with MRO HiRISE stereo images: Meter-scale slopes of candidate Phoenix landing sites

    USGS Publications Warehouse

    Kirk, R.L.; Howington-Kraus, E.; Rosiek, M.R.; Anderson, J.A.; Archinal, B.A.; Becker, K.J.; Cook, D.A.; Galuszka, D.M.; Geissler, P.E.; Hare, T.M.; Holmberg, I.M.; Keszthelyi, L.P.; Redding, B.L.; Delamere, W.A.; Gallagher, D.; Chapel, J.D.; Eliason, E.M.; King, R.; McEwen, A.S.

    2009-01-01

    The objectives of this paper are twofold: first, to report our estimates of the meter-to-decameter-scale topography and slopes of candidate landing sites for the Phoenix mission, based on analysis of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) images with a typical pixel scale of 3 m and Mars Reconnaissance Orbiter (MRO) High Resolution Imaging Science Experiment (HiRISE) images at 0.3 m pixel-1 and, second, to document in detail the geometric calibration, software, and procedures on which the photogrammetric analysis of HiRISE data is based. A combination of optical design modeling, laboratory observations, star images, and Mars images form the basis for software in the U.S. Geological Survey Integrated Software for Imagers and Spectrometers (ISIS) 3 system that corrects the images for a variety of distortions with single-pixel or subpixel accuracy. Corrected images are analyzed in the commercial photogrammetric software SOCET SET (??BAE Systems), yielding digital topographic models (DTMs) with a grid spacing of 1 m (3-4 pixels) that require minimal interactive editing. Photoclinometry yields DTMs with single-pixel grid spacing. Slopes from MOC and HiRISE are comparable throughout the latitude zone of interest and compare favorably with those where past missions have landed successfully; only the Mars Exploration Rover (MER) B site in Meridiani Planum is smoother. MOC results at multiple locations have root-mean-square (RMS) bidirectional slopes of 0.8-4.5?? at baselines of 3-10 m. HiRISE stereopairs (one per final candidate site and one in the former site) yield 1.8-2.8?? slopes at 1-m baseline. Slopes at 1 m from photoclinometry are also in the range 2-3?? after correction for image blur. Slopes exceeding the 16?? Phoenix safety limit are extremely rare. Copyright 2008 by the American Geophysical Union.

  7. Dynamic least-squares kernel density modeling of Fokker-Planck equations with application to neural population.

    PubMed

    Shotorban, Babak

    2010-04-01

    The dynamic least-squares kernel density (LSQKD) model [C. Pantano and B. Shotorban, Phys. Rev. E 76, 066705 (2007)] is used to solve the Fokker-Planck equations. In this model the probability density function (PDF) is approximated by a linear combination of basis functions with unknown parameters whose governing equations are determined by a global least-squares approximation of the PDF in the phase space. In this work basis functions are set to be Gaussian for which the mean, variance, and covariances are governed by a set of partial differential equations (PDEs) or ordinary differential equations (ODEs) depending on what phase-space variables are approximated by Gaussian functions. Three sample problems of univariate double-well potential, bivariate bistable neurodynamical system [G. Deco and D. Martí, Phys. Rev. E 75, 031913 (2007)], and bivariate Brownian particles in a nonuniform gas are studied. The LSQKD is verified for these problems as its results are compared against the results of the method of characteristics in nondiffusive cases and the stochastic particle method in diffusive cases. For the double-well potential problem it is observed that for low to moderate diffusivity the dynamic LSQKD well predicts the stationary PDF for which there is an exact solution. A similar observation is made for the bistable neurodynamical system. In both these problems least-squares approximation is made on all phase-space variables resulting in a set of ODEs with time as the independent variable for the Gaussian function parameters. In the problem of Brownian particles in a nonuniform gas, this approximation is made only for the particle velocity variable leading to a set of PDEs with time and particle position as independent variables. Solving these PDEs, a very good performance by LSQKD is observed for a wide range of diffusivities.

  8. Estimating Daily Evapotranspiration Based on A Model of Evapotranspiration Fraction (EF) for Mixed Pixels

    NASA Astrophysics Data System (ADS)

    Xin, X.; Li, F.; Peng, Z.; Qinhuo, L.

    2017-12-01

    Land surface heterogeneities significantly affect the reliability and accuracy of remotely sensed evapotranspiration (ET), and it gets worse for lower resolution data. At the same time, temporal scale extrapolation of the instantaneous latent heat flux (LE) at satellite overpass time to daily ET are crucial for applications of such remote sensing product. The purpose of this paper is to propose a simple but efficient model for estimating daytime evapotranspiration considering heterogeneity of mixed pixels. In order to do so, an equation to calculate evapotranspiration fraction (EF) of mixed pixels was derived based on two key assumptions. Assumption 1: the available energy (AE) of each sub-pixel equals approximately to that of any other sub-pixels in the same mixed pixel within acceptable margin of bias, and as same as the AE of the mixed pixel. It's only for a simpification of the equation, and its uncertainties and resulted errors in estimated ET are very small. Assumption 2: EF of each sub-pixel equals to the EF of the nearest pure pixel(s) of same land cover type. This equation is supposed to be capable of correcting the spatial scale error of the mixed pixels EF and can be used to calculated daily ET with daily AE data.The model was applied to an artificial oasis in the midstream of Heihe River. HJ-1B satellite data were used to estimate the lumped fluxes at the scale of 300 m after resampling the 30-m resolution datasets to 300 m resolution, which was used to carry on the key step of the model. The results before and after correction were compare to each other and validated using site data of eddy-correlation systems. Results indicated that the new model is capable of improving accuracy of daily ET estimation relative to the lumped method. Validations at 12 sites of eddy-correlation systems for 9 days of HJ-1B overpass showed that the R² increased to 0.82 from 0.62; the RMSE decreased to 1.60 MJ/m² from 2.47MJ/m²; the MBE decreased from 1.92 MJ/m² to 1.18MJ/m², which is a quite significant enhancement.The model is easy to apply. And the moduler of inhomogeneous surfaces is independent and easy to be embedded in the traditional remote sensing algorithms of heat fluxes to get daily ET, which were mainly designed to calculate LE or ET under unsaturated conditions and did not consider heterogeneities of land surface.

  9. Evaluation of large format electron bombarded virtual phase CCDs as ultraviolet imaging detectors

    NASA Technical Reports Server (NTRS)

    Opal, Chet B.; Carruthers, George R.

    1989-01-01

    In conjunction with an external UV-sensitive cathode, an electron-bombarded CCD may be used as a high quantum efficiency/wide dynamic range photon-counting UV detector. Results are presented for the case of a 1024 x 1024, 18-micron square pixel virtual phase CCD used with an electromagnetically focused f/2 Schmidt camera, which yields excellent simgle-photoevent discrimination and counting efficiency. Attention is given to the vacuum-chamber arrangement used to conduct system tests and the CCD electronics and data-acquisition systems employed.

  10. Identifying High-Traffic Patterns in the Workplace with Radio Tomographic Imaging in 3D Wireless Sensor Networks

    DTIC Science & Technology

    2014-03-27

    TOMOGRAPHIC IMAGING IN 3D WIRELESS SENSOR NETWORKS Thea S. Danella, B.S.E.E. Captain, USAF Approved: //signed// Richard K. Martin , PhD (Chairman) //signed...have every one of them in my life. I want to also thank my advisor, Dr. Richard K. Martin , and fellow student, Mr. Jason Pennington. They were...of the Fisher Information Matrix (FIM) J, and as such are the lower bounds on the Normalized Mean Squared Error (NMSE)R for pixel p. In [49], Martin et

  11. Demonstration of Reduced False Alarm Rates using Simulated L-Band Polarimetric SAR Imagery of Concealed Targets

    DTIC Science & Technology

    2005-04-14

    of Joensuu, Finland. These take the form of collections of dielectric cylinders, with detailed information concerning sapwood and heartwood dimensions...centre, and at 3km height above the minimum height of the DEM. The imaged area was 91m square, with pixels spaced at 0.5m. A Hamming weighted PSF was...correlation length was 0.1510m. Wood permittivity ranged from 2.2-i0.4 (deadwood) to 26.8-i5.3 ( sapwood ) via 6.7-i1.9 (heartwood). Total attenuation

  12. Quantitative characterization of color Doppler images: reproducibility, accuracy, and limitations.

    PubMed

    Delorme, S; Weisser, G; Zuna, I; Fein, M; Lorenz, A; van Kaick, G

    1995-01-01

    A computer-based quantitative analysis for color Doppler images of complex vascular formations is presented. The red-green-blue-signal from an Acuson XP10 is frame-grabbed and digitized. By matching each image pixel with the color bar, color pixels are identified and assigned to the corresponding flow velocity (color value). Data analysis consists of delineation of a region of interest and calculation of the relative number of color pixels in this region (color pixel density) as well as the mean color value. The mean color value was compared to flow velocities in a flow phantom. The thyroid and carotid artery in a volunteer were repeatedly examined by a single examiner to assess intra-observer variability. The thyroids in five healthy controls were examined by three experienced physicians to assess the extent of inter-observer variability and observer bias. The correlation between the mean color value and flow velocity ranged from 0.94 to 0.96 for a range of velocities determined by pulse repetition frequency. The average deviation of the mean color value from the flow velocity was 22% to 41%, depending on the selected pulse repetition frequency (range of deviations, -46% to +66%). Flow velocity was underestimated with inadequately low pulse repetition frequency, or inadequately high reject threshold. An overestimation occurred with inadequately high pulse repetition frequency. The highest intra-observer variability was 22% (relative standard deviation) for the color pixel density, and 9.1% for the mean color value. The inter-observer variation was approximately 30% for the color pixel density, and 20% for the mean color value. In conclusion, computer assisted image analysis permits an objective description of color Doppler images. However, the user must be aware that image acquisition under in vivo conditions as well as physical and instrumental factors may considerably influence the results.

  13. SVGA and XGA LCOS microdisplays for HMD applications

    NASA Astrophysics Data System (ADS)

    Bolotski, Michael; Alvelda, Phillip

    1999-07-01

    MicroDisplay liquid crystal on silicon (LCOS) display devices are based on a combination of technologies combined with the extreme integration capability of conventionally fabricated CMOS substrates. Two recent SVGA (800 X 600) pixel resolution designs were demonstrated based on 10 micron and 12.5-micron pixel pitch architectures. The resulting microdisplays measure approximately 10 mm and 12 mm in diagonal respectively. Further, an XGA (1024 X 768) resolution display fabricated with a 12.5-micron pixel pitch with a 16-mm diagonal was also demonstrated. Both the larger SVGA and the XGA design were based on the same 12.5-micron pixel-pitch design, demonstrating a quickly scalable design architecture for rapid prototyping life-cycles. All three microdisplay designs described above function in grayscale and high-performance Field-Sequential-Color (FSC) operating modes. The fast liquid crystal operating modes and new scalable high- performance pixel addressing architectures presented in this paper enable substantially improved color, contrast, and brightness while still satisfying the optical, packaging, and power requirements of portable commercial and defense applications including ultra-portable helmet, eyeglass, and heat-mounted systems. The entire suite of The MicroDisplay Corporation's technologies was devised to create a line of mixed-signal application-specific integrated circuits (ASIC) in single-chip display systems. Mixed-signal circuits can integrate computing, memory, and communication circuitry on the same substrate as the display drivers and pixel array for a multifunctional complete system-on-a-chip. For helmet and head-mounted displays this can include capabilities such as the incorporation of customized symbology and information storage directly on the display substrate. System-on-a-chip benefits also include reduced head supported weight requirements through the elimination of off-chip drive electronics.

  14. A BLIND METHOD TO DETREND INSTRUMENTAL SYSTEMATICS IN EXOPLANETARY LIGHT CURVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morello, G., E-mail: giuseppe.morello.11@ucl.ac.uk

    2015-07-20

    The study of the atmospheres of transiting exoplanets requires a photometric precision, and repeatability, of one part in ∼10{sup 4}. This is beyond the original calibration plans of current observatories, hence the necessity to disentangle the instrumental systematics from the astrophysical signals in raw data sets. Most methods used in the literature are based on an approximate instrument model. The choice of parameters of the model and their functional forms can sometimes be subjective, causing controversies in the literature. Recently, Morello et al. (2014, 2015) have developed a non-parametric detrending method that gave coherent and repeatable results when applied tomore » Spitzer/IRAC data sets that were debated in the literature. Said method is based on independent component analysis (ICA) of individual pixel time-series, hereafter “pixel-ICA”. The main purpose of this paper is to investigate the limits and advantages of pixel-ICA on a series of simulated data sets with different instrument properties, and a range of jitter timescales and shapes, non-stationarity, sudden change points, etc. The performances of pixel-ICA are compared against the ones of other methods, in particular polynomial centroid division, and pixel-level decorrelation method. We find that in simulated cases pixel-ICA performs as well or better than other methods, and it also guarantees a higher degree of objectivity, because of its purely statistical foundation with no prior information on the instrument systematics. The results of this paper, together with previous analyses of Spitzer/IRAC data sets, suggest that photometric precision and repeatability of one part in 10{sup 4} can be achieved with current infrared space instruments.« less

  15. Sloan Digital Sky Survey III photometric quasar clustering: Probing the initial conditions of the Universe

    DOE PAGES

    Ho, Shirley; Agarwal, Nishant; Myers, Adam D.; ...

    2015-05-22

    Here, the Sloan Digital Sky Survey has surveyed 14,555 square degrees of the sky, and delivered over a trillion pixels of imaging data. We present the large-scale clustering of 1.6 million quasars between z=0.5 and z=2.5 that have been classified from this imaging, representing the highest density of quasars ever studied for clustering measurements. This data set spans 0~ 11,00 square degrees and probes a volume of 80 h –3 Gpc 3. In principle, such a large volume and medium density of tracers should facilitate high-precision cosmological constraints. We measure the angular clustering of photometrically classified quasars using an optimalmore » quadratic estimator in four redshift slices with an accuracy of ~ 25% over a bin width of δ l ~ 10–15 on scales corresponding to matter-radiation equality and larger (0ℓ ~ 2–3).« less

  16. A CCD search for geosynchronous debris

    NASA Technical Reports Server (NTRS)

    Gehrels, Tom; Vilas, Faith

    1986-01-01

    Using the Spacewatch Camera, a search was conducted for objects in geosynchronous earth orbit. The system is equipped with a CCD camera cooled with dry ice; the image scale is 1.344 arcsec/pixel. The telescope drive was off so that during integrations the stars were trailed while geostationary objects appeared as round images. The technique should detect geostationary objects to a limiting apparent visual magnitude of 19. A sky area of 8.8 square degrees was searched for geostationary objects while geosynchronous debris passing through was 16.4 square degrees. Ten objects were found of which seven are probably geostationary satellites having apparent visual magnitudes brighter than 13.1. Three objects having magnitudes equal to or fainter than 13.7 showed motion in the north-south direction. The absence of fainter stationary objects suggests that a gap in debris size exists between satellites and particles having diameters in the millimeter range.

  17. ChromAIX2: A large area, high count-rate energy-resolving photon counting ASIC for a Spectral CT Prototype

    NASA Astrophysics Data System (ADS)

    Steadman, Roger; Herrmann, Christoph; Livne, Amir

    2017-08-01

    Spectral CT based on energy-resolving photon counting detectors is expected to deliver additional diagnostic value at a lower dose than current state-of-the-art CT [1]. The capability of simultaneously providing a number of spectrally distinct measurements not only allows distinguishing between photo-electric and Compton interactions but also discriminating contrast agents that exhibit a K-edge discontinuity in the absorption spectrum, referred to as K-edge Imaging [2]. Such detectors are based on direct converting sensors (e.g. CdTe or CdZnTe) and high-rate photon counting electronics. To support the development of Spectral CT and show the feasibility of obtaining rates exceeding 10 Mcps/pixel (Poissonian observed count-rate), the ChromAIX ASIC has been previously reported showing 13.5 Mcps/pixel (150 Mcps/mm2 incident) [3]. The ChromAIX has been improved to offer the possibility of a large area coverage detector, and increased overall performance. The new ASIC is called ChromAIX2, and delivers count-rates exceeding 15 Mcps/pixel with an rms-noise performance of approximately 260 e-. It has an isotropic pixel pitch of 500 μm in an array of 22×32 pixels and is tile-able on three of its sides. The pixel topology consists of a two stage amplifier (CSA and Shaper) and a number of test features allowing to thoroughly characterize the ASIC without a sensor. A total of 5 independent thresholds are also available within each pixel, allowing to acquire 5 spectrally distinct measurements simultaneously. The ASIC also incorporates a baseline restorer to eliminate excess currents induced by the sensor (e.g. dark current and low frequency drifts) which would otherwise cause an energy estimation error. In this paper we report on the inherent electrical performance of the ChromAXI2 as well as measurements obtained with CZT (CdZnTe)/CdTe sensors and X-rays and radioactive sources.

  18. 18F-FDG positron autoradiography with a particle counting silicon pixel detector.

    PubMed

    Russo, P; Lauria, A; Mettivier, G; Montesi, M C; Marotta, M; Aloj, L; Lastoria, S

    2008-11-07

    We report on tests of a room-temperature particle counting silicon pixel detector of the Medipix2 series as the detector unit of a positron autoradiography (AR) system, for samples labelled with (18)F-FDG radiopharmaceutical used in PET studies. The silicon detector (1.98 cm(2) sensitive area, 300 microm thick) has high intrinsic resolution (55 microm pitch) and works by counting all hits in a pixel above a certain energy threshold. The present work extends the detector characterization with (18)F-FDG of a previous paper. We analysed the system's linearity, dynamic range, sensitivity, background count rate, noise, and its imaging performance on biological samples. Tests have been performed in the laboratory with (18)F-FDG drops (37-37 000 Bq initial activity) and ex vivo in a rat injected with 88.8 MBq of (18)F-FDG. Particles interacting in the detector volume produced a hit in a cluster of pixels whose mean size was 4.3 pixels/event at 11 keV threshold and 2.2 pixels/event at 37 keV threshold. Results show a sensitivity for beta(+) of 0.377 cps Bq(-1), a dynamic range of at least five orders of magnitude and a lower detection limit of 0.0015 Bq mm(-2). Real-time (18)F-FDG positron AR images have been obtained in 500-1000 s exposure time of thin (10-20 microm) slices of a rat brain and compared with 20 h film autoradiography of adjacent slices. The analysis of the image contrast and signal-to-noise ratio in a rat brain slice indicated that Poisson noise-limited imaging can be approached in short (e.g. 100 s) exposures, with approximately 100 Bq slice activity, and that the silicon pixel detector produced a higher image quality than film-based AR.

  19. The Pendulum Equation

    ERIC Educational Resources Information Center

    Fay, Temple H.

    2002-01-01

    We investigate the pendulum equation [theta] + [lambda][squared] sin [theta] = 0 and two approximations for it. On the one hand, we suggest that the third and fifth-order Taylor series approximations for sin [theta] do not yield very good differential equations to approximate the solution of the pendulum equation unless the initial conditions are…

  20. Spot auto-focusing and spot auto-stigmation methods with high-definition auto-correlation function in high-resolution TEM.

    PubMed

    Isakozawa, Shigeto; Fuse, Taishi; Amano, Junpei; Baba, Norio

    2018-04-01

    As alternatives to the diffractogram-based method in high-resolution transmission electron microscopy, a spot auto-focusing (AF) method and a spot auto-stigmation (AS) method are presented with a unique high-definition auto-correlation function (HD-ACF). The HD-ACF clearly resolves the ACF central peak region in small amorphous-thin-film images, reflecting the phase contrast transfer function. At a 300-k magnification for a 120-kV transmission electron microscope, the smallest areas used are 64 × 64 pixels (~3 nm2) for the AF and 256 × 256 pixels for the AS. A useful advantage of these methods is that the AF function has an allowable accuracy even for a low s/n (~1.0) image. A reference database on the defocus dependency of the HD-ACF by the pre-acquisition of through-focus amorphous-thin-film images must be prepared to use these methods. This can be very beneficial because the specimens are not limited to approximations of weak phase objects but can be extended to objects outside such approximations.

  1. Learning to represent spatial transformations with factored higher-order Boltzmann machines.

    PubMed

    Memisevic, Roland; Hinton, Geoffrey E

    2010-06-01

    To allow the hidden units of a restricted Boltzmann machine to model the transformation between two successive images, Memisevic and Hinton (2007) introduced three-way multiplicative interactions that use the intensity of a pixel in the first image as a multiplicative gain on a learned, symmetric weight between a pixel in the second image and a hidden unit. This creates cubically many parameters, which form a three-dimensional interaction tensor. We describe a low-rank approximation to this interaction tensor that uses a sum of factors, each of which is a three-way outer product. This approximation allows efficient learning of transformations between larger image patches. Since each factor can be viewed as an image filter, the model as a whole learns optimal filter pairs for efficiently representing transformations. We demonstrate the learning of optimal filter pairs from various synthetic and real image sequences. We also show how learning about image transformations allows the model to perform a simple visual analogy task, and we show how a completely unsupervised network trained on transformations perceives multiple motions of transparent dot patterns in the same way as humans.

  2. Solar heating and hot water system installed at Shoney's Restaurant, North Little Rock, Arkansas

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A solar heating system designed to supply a major portion of the space and water heating requirements for a restaurant is described. The restaurant has a floor space of approximately 4,650 square feet and requires approximate 1500 gallons of hot water daily. The solar energy system consists of 1,428 square feet of Chamberlain flat plate liquid collector subsystem, and a 1500 gallon storage subsystem circulating hot water producing 321 x 10 to the 6th power Btu/Yr (specified) building heating and hot water heating.

  3. Wave refraction diagrams for the Baltimore Canyon region of the mid-Atlantic continental shelf computed by using three bottom topography approximation techniques

    NASA Technical Reports Server (NTRS)

    Poole, L. R.

    1976-01-01

    The Langley Research Center and Virginia Institute of Marine Science wave refraction computer model was applied to the Baltimore Canyon region of the mid-Atlantic continental shelf. Wave refraction diagrams for a wide range of normally expected wave periods and directions were computed by using three bottom topography approximation techniques: quadratic least squares, cubic least squares, and constrained bicubic interpolation. Mathematical or physical interpretation of certain features appearing in the computed diagrams is discussed.

  4. Solar heating and hot water system installed at Shoney's Restaurant, North Little Rock, Arkansas

    NASA Astrophysics Data System (ADS)

    1980-08-01

    A solar heating system designed to supply a major portion of the space and water heating requirements for a restaurant is described. The restaurant has a floor space of approximately 4,650 square feet and requires approximate 1500 gallons of hot water daily. The solar energy system consists of 1,428 square feet of Chamberlain flat plate liquid collector subsystem, and a 1500 gallon storage subsystem circulating hot water producing 321 x 10 to the 6th power Btu/Yr (specified) building heating and hot water heating.

  5. Vision System Measures Motions of Robot and External Objects

    NASA Technical Reports Server (NTRS)

    Talukder, Ashit; Matthies, Larry

    2008-01-01

    A prototype of an advanced robotic vision system both (1) measures its own motion with respect to a stationary background and (2) detects other moving objects and estimates their motions, all by use of visual cues. Like some prior robotic and other optoelectronic vision systems, this system is based partly on concepts of optical flow and visual odometry. Whereas prior optoelectronic visual-odometry systems have been limited to frame rates of no more than 1 Hz, a visual-odometry subsystem that is part of this system operates at a frame rate of 60 to 200 Hz, given optical-flow estimates. The overall system operates at an effective frame rate of 12 Hz. Moreover, unlike prior machine-vision systems for detecting motions of external objects, this system need not remain stationary: it can detect such motions while it is moving (even vibrating). The system includes a stereoscopic pair of cameras mounted on a moving robot. The outputs of the cameras are digitized, then processed to extract positions and velocities. The initial image-data-processing functions of this system are the same as those of some prior systems: Stereoscopy is used to compute three-dimensional (3D) positions for all pixels in the camera images. For each pixel of each image, optical flow between successive image frames is used to compute the two-dimensional (2D) apparent relative translational motion of the point transverse to the line of sight of the camera. The challenge in designing this system was to provide for utilization of the 3D information from stereoscopy in conjunction with the 2D information from optical flow to distinguish between motion of the camera pair and motions of external objects, compute the motion of the camera pair in all six degrees of translational and rotational freedom, and robustly estimate the motions of external objects, all in real time. To meet this challenge, the system is designed to perform the following image-data-processing functions: The visual-odometry subsystem (the subsystem that estimates the motion of the camera pair relative to the stationary background) utilizes the 3D information from stereoscopy and the 2D information from optical flow. It computes the relationship between the 3D and 2D motions and uses a least-mean-squares technique to estimate motion parameters. The least-mean-squares technique is suitable for real-time implementation when the number of external-moving-object pixels is smaller than the number of stationary-background pixels.

  6. Spatial Upscaling of Long-term In Situ LAI Measurements from Global Network Sites for Validation of Remotely Sensed Products

    NASA Astrophysics Data System (ADS)

    Xu, B.; Jing, L.; Qinhuo, L.; Zeng, Y.; Yin, G.; Fan, W.; Zhao, J.

    2015-12-01

    Leaf area index (LAI) is a key parameter in terrestrial ecosystem models, and a series of global LAI products have been derived from satellite data. To effectively apply these LAI products, it is necessary to evaluate their accuracy reasonablely. The long-term LAI measurements from the global network sites are an important supplement to the product validation dataset. However, the spatial scale mismatch between the site measurement and the pixel grid hinders the utilization of these measurements in LAI product validation. In this study, a pragmatic approach based on the Bayesian linear regression between long-term LAI measurements and high-resolution images is presented for upscaling the point-scale measurements to the pixel-scale. The algorithm was evaluated using high-resolution LAI reference maps provided by the VALERI project at the Järvselja site and was implemented to upscale the long-term LAI measurements at the global network sites. Results indicate that the spatial scaling algorithm can reduce the root mean square error (RMSE) from 0.42 before upscaling to 0.21 after upscaling compared with the aggregated LAI reference maps at the pixel-scale. Meanwhile, the algorithm shows better reliability and robustness than the ordinary least square (OLS) method for upscaling some LAI measurements acquired at specific dates without high-resolution images. The upscaled LAI measurements were employed to validate three global LAI products, including MODIS, GLASS and GEOV1. Results indicate that (i) GLASS and GEOV1 show consistent temporal profiles over most sites, while MODIS exhibits temporal instability over a few forest sites. The RMSE of seasonality between products and upscaled LAI measurement is 0.25-1.72 for MODIS, 0.17-1.29 for GLASS and 0.36-1.35 for GEOV1 along with different sites. (ii) The uncertainty for products varies over different months. The lowest and highest uncertainty for MODIS are 0.67 in March and 1.53 in August, for GLASS are 0.67 in November and 0.99 in July, and for GEOV1 are 0.61 in March and 1.23 in August, respectively. (iii) The overall uncertainty for MODIS, GLASS and GEOV1 is 1.36, 0.90 and 0.99, respectively. According to this study, the long-term LAI measurements can be used to validate time series remote sensing products by spatial upscaling from point-scale to pixel-scale.

  7. Using Polynomials to Simplify Fixed Pattern Noise and Photometric Correction of Logarithmic CMOS Image Sensors

    PubMed Central

    Li, Jing; Mahmoodi, Alireza; Joseph, Dileepan

    2015-01-01

    An important class of complementary metal-oxide-semiconductor (CMOS) image sensors are those where pixel responses are monotonic nonlinear functions of light stimuli. This class includes various logarithmic architectures, which are easily capable of wide dynamic range imaging, at video rates, but which are vulnerable to image quality issues. To minimize fixed pattern noise (FPN) and maximize photometric accuracy, pixel responses must be calibrated and corrected due to mismatch and process variation during fabrication. Unlike literature approaches, which employ circuit-based models of varying complexity, this paper introduces a novel approach based on low-degree polynomials. Although each pixel may have a highly nonlinear response, an approximately-linear FPN calibration is possible by exploiting the monotonic nature of imaging. Moreover, FPN correction requires only arithmetic, and an optimal fixed-point implementation is readily derived, subject to a user-specified number of bits per pixel. Using a monotonic spline, involving cubic polynomials, photometric calibration is also possible without a circuit-based model, and fixed-point photometric correction requires only a look-up table. The approach is experimentally validated with a logarithmic CMOS image sensor and is compared to a leading approach from the literature. The novel approach proves effective and efficient. PMID:26501287

  8. An Active Fire Temperature Retrieval Model Using Hyperspectral Remote Sensing

    NASA Astrophysics Data System (ADS)

    Quigley, K. W.; Roberts, D. A.; Miller, D.

    2017-12-01

    Wildfire is both an important ecological process and a dangerous natural threat that humans face. In situ measurements of wildfire temperature are notoriously difficult to collect due to dangerous conditions. Imaging spectrometry data has the potential to provide some of the most accurate and highest temporally-resolved active fire temperature retrieval information for monitoring and modeling. Recent studies on fire temperature retrieval have used have used Multiple Endmember Spectral Mixture Analysis applied to Airborne Visible applied to Airborne Visible / Infrared Imaging Spectrometer (AVIRIS) bands to model fire temperatures within the regions marked to contain fire, but these methods are less effective at coarser spatial resolutions, as linear mixing methods are degraded by saturation within the pixel. The assumption of a distribution of temperatures within pixels allows us to model pixels with an effective maximum and likely minimum temperature. This assumption allows a more robust approach to modeling temperature at different spatial scales. In this study, instrument-corrected radiance is forward-modeled for different ranges of temperatures, with weighted temperatures from an effective maximum temperature to a likely minimum temperature contributing to the total radiance of the modeled pixel. Effective maximum fire temperature is estimated by minimizing the Root Mean Square Error (RMSE) between modeled and measured fires. The model was tested using AVIRIS collected over the 2016 Sherpa Fire in Santa Barbara County, California,. While only in situ experimentation would be able to confirm active fire temperatures, the fit of the data to modeled radiance can be assessed, as well as the similarity in temperature distributions seen on different spatial resolution scales. Results show that this model improves upon current modeling methods in producing similar effective temperatures on multiple spatial scales as well as a similar modeled area distribution of those temperatures.

  9. Influence of the Laser Spot Size, Focal Beam Profile, and Tissue Type on the Lipid Signals Obtained by MALDI-MS Imaging in Oversampling Mode

    NASA Astrophysics Data System (ADS)

    Wiegelmann, Marcel; Dreisewerd, Klaus; Soltwisch, Jens

    2016-12-01

    To improve the lateral resolution in matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) beyond the dimensions of the focal laser spot oversampling techniques are employed. However, few data are available on the effect of the laser spot size and its focal beam profile on the ion signals recorded in oversampling mode. To investigate these dependencies, we produced 2 times six spots with dimensions between 30 and 200 μm. By optional use of a fundamental beam shaper, square flat-top and Gaussian beam profiles were compared. MALDI-MSI data were collected using a fixed pixel size of 20 μm and both pixel-by-pixel and continuous raster oversampling modes on a QSTAR mass spectrometer. Coronal mouse brain sections coated with 2,5-dihydroxybenzoic acid matrix were used as primary test systems. Sizably higher phospholipid ion signals were produced with laser spots exceeding a dimension of 100 μm, although the same amount of material was essentially ablated from the 20 μm-wide oversampling pixel at all spot size settings. Only on white matter areas of the brain these effects were less apparent to absent. Scanning electron microscopy images showed that these findings can presumably be attributed to different matrix morphologies depending on tissue type. We propose that a transition in the material ejection mechanisms from a molecular desorption at large to ablation at smaller spot sizes and a concomitant reduction in ion yields may be responsible for the observed spot size effects. The combined results indicate a complex interplay between tissue type, matrix crystallization, and laser-derived desorption/ablation and finally analyte ionization.

  10. Influence of the Laser Spot Size, Focal Beam Profile, and Tissue Type on the Lipid Signals Obtained by MALDI-MS Imaging in Oversampling Mode.

    PubMed

    Wiegelmann, Marcel; Dreisewerd, Klaus; Soltwisch, Jens

    2016-12-01

    To improve the lateral resolution in matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) beyond the dimensions of the focal laser spot oversampling techniques are employed. However, few data are available on the effect of the laser spot size and its focal beam profile on the ion signals recorded in oversampling mode. To investigate these dependencies, we produced 2 times six spots with dimensions between ~30 and 200 μm. By optional use of a fundamental beam shaper, square flat-top and Gaussian beam profiles were compared. MALDI-MSI data were collected using a fixed pixel size of 20 μm and both pixel-by-pixel and continuous raster oversampling modes on a QSTAR mass spectrometer. Coronal mouse brain sections coated with 2,5-dihydroxybenzoic acid matrix were used as primary test systems. Sizably higher phospholipid ion signals were produced with laser spots exceeding a dimension of ~100 μm, although the same amount of material was essentially ablated from the 20 μm-wide oversampling pixel at all spot size settings. Only on white matter areas of the brain these effects were less apparent to absent. Scanning electron microscopy images showed that these findings can presumably be attributed to different matrix morphologies depending on tissue type. We propose that a transition in the material ejection mechanisms from a molecular desorption at large to ablation at smaller spot sizes and a concomitant reduction in ion yields may be responsible for the observed spot size effects. The combined results indicate a complex interplay between tissue type, matrix crystallization, and laser-derived desorption/ablation and finally analyte ionization. Graphical Abstract ᅟ.

  11. Remote Sensing of Lake Ice Phenology in Alaska

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Pavelsky, T.

    2017-12-01

    Lake ice phenology (e.g. ice break-up and freeze-up timing) in Alaska is potentially sensitive to climate change. However, there are few current lake ice records in this region, which hinders the comprehensive understanding of interactions between climate change and lake processes. To provide a lake ice database with over a comparatively long time period (2000 - 2017) and large spatial coverage (4000+ lakes) in Alaska, we have developed an algorithm to detect the timing of lake ice using Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data. This approach generally consists of three major steps. First, we use a cloud mask (MOD09GA) to filter out satellite images with heavy cloud contamination. Second, daily MODIS reflectance values (MOD09GQ) of lake surface are used to extract ice pixels from water pixels. The ice status of lakes can be further identified based on the fraction of ice pixels. Third, to improve the accuracy of ice phenology detection, we execute post-processing quality control to reduce false ice events caused by outliers. We validate the proposed algorithm over six lakes by comparing with Landsat-based reference data. Validation results indicate a high correlation between the MODIS results and reference data, with normalized root mean square error (NRMSE) ranging from 1.7% to 4.6%. The time series of this lake ice product is then examined to analyze the spatial and temporal patterns of lake ice phenology.

  12. Position, rotation, and intensity invariant recognizing method

    DOEpatents

    Ochoa, E.; Schils, G.F.; Sweeney, D.W.

    1987-09-15

    A method for recognizing the presence of a particular target in a field of view which is target position, rotation, and intensity invariant includes the preparing of a target-specific invariant filter from a combination of all eigen-modes of a pattern of the particular target. Coherent radiation from the field of view is then imaged into an optical correlator in which the invariant filter is located. The invariant filter is rotated in the frequency plane of the optical correlator in order to produce a constant-amplitude rotational response in a correlation output plane when the particular target is present in the field of view. Any constant response is thus detected in the output plane to determine whether a particular target is present in the field of view. Preferably, a temporal pattern is imaged in the output plane with a optical detector having a plurality of pixels and a correlation coefficient for each pixel is determined by accumulating the intensity and intensity-square of each pixel. The orbiting of the constant response caused by the filter rotation is also preferably eliminated either by the use of two orthogonal mirrors pivoted correspondingly to the rotation of the filter or the attaching of a refracting wedge to the filter to remove the offset angle. Detection is preferably performed of the temporal pattern in the output plane at a plurality of different angles with angular separation sufficient to decorrelate successive frames. 1 fig.

  13. Performance evaluations of demons and free form deformation algorithms for the liver region.

    PubMed

    Wang, Hui; Gong, Guanzhong; Wang, Hongjun; Li, Dengwang; Yin, Yong; Lu, Jie

    2014-04-01

    We investigated the influence of breathing motion on radiation therapy according to four- dimensional computed tomography (4D-CT) technology and indicated the registration of 4D-CT images was significant. The demons algorithm in two interpolation modes was compared to the FFD model algorithm to register the different phase images of 4D-CT in tumor tracking, using iodipin as verification. Linear interpolation was used in both mode 1 and mode 2. Mode 1 set outside pixels to nearest pixel, while mode 2 set outside pixels to zero. We used normalized mutual information (NMI), sum of squared differences, modified Hausdorff-distance, and registration speed to evaluate the performance of each algorithm. The average NMI after demons registration method in mode 1 improved 1.76% and 4.75% when compared to mode 2 and FFD model algorithm, respectively. Further, the modified Hausdorff-distance was no different between demons modes 1 and 2, but mode 1 was 15.2% lower than FFD. Finally, demons algorithm has the absolute advantage in registration speed. The demons algorithm in mode 1 was therefore found to be much more suitable for the registration of 4D-CT images. The subtractions of floating images and reference image before and after registration by demons further verified that influence of breathing motion cannot be ignored and the demons registration method is feasible.

  14. Demonstration of the CDMA-mode CAOS smart camera.

    PubMed

    Riza, Nabeel A; Mazhar, Mohsin A

    2017-12-11

    Demonstrated is the code division multiple access (CDMA)-mode coded access optical sensor (CAOS) smart camera suited for bright target scenarios. Deploying a silicon CMOS sensor and a silicon point detector within a digital micro-mirror device (DMD)-based spatially isolating hybrid camera design, this smart imager first engages the DMD starring mode with a controlled factor of 200 high optical attenuation of the scene irradiance to provide a classic unsaturated CMOS sensor-based image for target intelligence gathering. Next, this CMOS sensor provided image data is used to acquire a focused zone more robust un-attenuated true target image using the time-modulated CDMA-mode of the CAOS camera. Using four different bright light test target scenes, successfully demonstrated is a proof-of-concept visible band CAOS smart camera operating in the CDMA-mode using up-to 4096 bits length Walsh design CAOS pixel codes with a maximum 10 KHz code bit rate giving a 0.4096 seconds CAOS frame acquisition time. A 16-bit analog-to-digital converter (ADC) with time domain correlation digital signal processing (DSP) generates the CDMA-mode images with a 3600 CAOS pixel count and a best spatial resolution of one micro-mirror square pixel size of 13.68 μm side. The CDMA-mode of the CAOS smart camera is suited for applications where robust high dynamic range (DR) imaging is needed for un-attenuated un-spoiled bright light spectrally diverse targets.

  15. Three dimensional modelling for the target asteroid of HAYABUSA

    NASA Astrophysics Data System (ADS)

    Demura, H.; Kobayashi, S.; Asada, N.; Hashimoto, T.; Saito, J.

    Hayabusa program is the first sample return mission of Japan. This was launched at May 9 2003, and will arrive at the target asteroid 25143 Itokawa on June 2005. The spacecraft has three optical navigation cameras, which are two wide angle ones and a telescopic one. The telescope with a filter wheel was named AMICA (Asteroid Multiband Imaging CAmera). We are going to model a shape of the target asteroid by this telescope; expected resolution: 1m/pixel at 10 km in distanc, field of view: 5.7 squared degrees, MPP-type CCD with 1024 x 1000 pixels. Because size of the Hayabusa is about 1x1x1 m, our goal is shape modeling with about 1m in precision on the basis of a camera system with scanning by rotation of the asteroid. This image-based modeling requires sequential images via AMICA and a history of distance between the asteroid and Hayabusa provided by a Laser Range Finder. We established a system of hierarchically recursive search with sub-pixel matching of Ground Control Points, which are picked up with Susan Operator. The matched dataset is restored with a restriction of epipolar geometry, and the obtained a group of three dimensional points are converted to a polygon model with Delaunay Triangulation. The current status of our development for the shape modeling is displayed.

  16. Intelligent identification of remnant ridge edges in region west of Yongxing Island, South China Sea

    NASA Astrophysics Data System (ADS)

    Wang, Weiwei; Guo, Jing; Cai, Guanqiang; Wang, Dawei

    2018-02-01

    Edge detection enables identification of geomorphologic unit boundaries and thus assists with geomorphical mapping. In this paper, an intelligent edge identification method is proposed and image processing techniques are applied to multi-beam bathymetry data. To accomplish this, a color image is generated by the bathymetry, and a weighted method is used to convert the color image to a gray image. As the quality of the image has a significant influence on edge detection, different filter methods are applied to the gray image for de-noising. The peak signal-to-noise ratio and mean square error are calculated to evaluate which filter method is most appropriate for depth image filtering and the edge is subsequently detected using an image binarization method. Traditional image binarization methods cannot manage the complicated uneven seafloor, and therefore a binarization method is proposed that is based on the difference between image pixel values; the appropriate threshold for image binarization is estimated according to the probability distribution of pixel value differences between two adjacent pixels in horizontal and vertical directions, respectively. Finally, an eight-neighborhood frame is adopted to thin the binary image, connect the intermittent edge, and implement contour extraction. Experimental results show that the method described here can recognize the main boundaries of geomorphologic units. In addition, the proposed automatic edge identification method avoids use of subjective judgment, and reduces time and labor costs.

  17. Adaptive Morphological Feature-Based Object Classifier for a Color Imaging System

    NASA Technical Reports Server (NTRS)

    McDowell, Mark; Gray, Elizabeth

    2009-01-01

    Utilizing a Compact Color Microscope Imaging System (CCMIS), a unique algorithm has been developed that combines human intelligence along with machine vision techniques to produce an autonomous microscope tool for biomedical, industrial, and space applications. This technique is based on an adaptive, morphological, feature-based mapping function comprising 24 mutually inclusive feature metrics that are used to determine the metrics for complex cell/objects derived from color image analysis. Some of the features include: Area (total numbers of non-background pixels inside and including the perimeter), Bounding Box (smallest rectangle that bounds and object), centerX (x-coordinate of intensity-weighted, center-of-mass of an entire object or multi-object blob), centerY (y-coordinate of intensity-weighted, center-of-mass, of an entire object or multi-object blob), Circumference (a measure of circumference that takes into account whether neighboring pixels are diagonal, which is a longer distance than horizontally or vertically joined pixels), . Elongation (measure of particle elongation given as a number between 0 and 1. If equal to 1, the particle bounding box is square. As the elongation decreases from 1, the particle becomes more elongated), . Ext_vector (extremal vector), . Major Axis (the length of a major axis of a smallest ellipse encompassing an object), . Minor Axis (the length of a minor axis of a smallest ellipse encompassing an object), . Partial (indicates if the particle extends beyond the field of view), . Perimeter Points (points that make up a particle perimeter), . Roundness [(4(pi) x area)/perimeter(squared)) the result is a measure of object roundness, or compactness, given as a value between 0 and 1. The greater the ratio, the rounder the object.], . Thin in center (determines if an object becomes thin in the center, (figure-eight-shaped), . Theta (orientation of the major axis), . Smoothness and color metrics for each component (red, green, blue) the minimum, maximum, average, and standard deviation within the particle are tracked. These metrics can be used for autonomous analysis of color images from a microscope, video camera, or digital, still image. It can also automatically identify tumor morphology of stained images and has been used to detect stained cell phenomena (see figure).

  18. SU-G-BRA-07: An Innovative Fiducial-Less Tracking Method for Radiation Treatment of Abdominal Tumors by Diaphragm Disparity Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dick, D; Zhao, W; Wu, X

    2016-06-15

    Purpose: To investigate the feasibility of tracking abdominal tumors without the use of gold fiducial markers Methods: In this simulation study, an abdominal 4DCT dataset, acquired previously and containing 8 phases of the breathing cycle, was used as the testing data. Two sets of DRR images (45 and 135 degrees) were generated for each phase. Three anatomical points along the lung-diaphragm interface on each of the Digital Reconstructed Radiograph(DRR) images were identified by cross-correlation. The gallbladder, which simulates the tumor, was contoured for each phase of the breathing cycle and the corresponding centroid values serve as the measured center ofmore » the tumor. A linear model was created to correlate the diaphragm’s disparity of the three identified anatomical points with the center of the tumor. To verify the established linear model, we sequentially removed one phase of the data (i.e., 3 anatomical points and the corresponding tumor center) and created new linear models with the remaining 7 phases. Then we substituted the eliminated phase data (disparities of the 3 anatomical points) into the corresponding model to compare model-generated tumor center and the measured tumor center. Results: The maximum difference between the modeled and the measured centroid values across the 8 phases were 0.72, 0.29 and 0.30 pixels in the x, y and z directions respectively, which yielded a maximum mean-squared-error value of 0.75 pixels. The outcomes of the verification process, by eliminating each phase, produced mean-squared-errors ranging from 0.41 to 1.28 pixels. Conclusion: Gold fiducial markers, requiring surgical procedures to be implanted, are conventionally used in radiation therapy. The present work shows the feasibility of a fiducial-less tracking method for localizing abdominal tumors. Through developed diaphragm disparity analysis, the established linear model was verified with clinically accepted errors. The tracking method in real time under different radiation therapy platforms will be further investigated.« less

  19. Exact and Approximate Statistical Inference for Nonlinear Regression and the Estimating Equation Approach.

    PubMed

    Demidenko, Eugene

    2017-09-01

    The exact density distribution of the nonlinear least squares estimator in the one-parameter regression model is derived in closed form and expressed through the cumulative distribution function of the standard normal variable. Several proposals to generalize this result are discussed. The exact density is extended to the estimating equation (EE) approach and the nonlinear regression with an arbitrary number of linear parameters and one intrinsically nonlinear parameter. For a very special nonlinear regression model, the derived density coincides with the distribution of the ratio of two normally distributed random variables previously obtained by Fieller (1932), unlike other approximations previously suggested by other authors. Approximations to the density of the EE estimators are discussed in the multivariate case. Numerical complications associated with the nonlinear least squares are illustrated, such as nonexistence and/or multiple solutions, as major factors contributing to poor density approximation. The nonlinear Markov-Gauss theorem is formulated based on the near exact EE density approximation.

  20. Nonlinear programming extensions to rational function approximation methods for unsteady aerodynamic forces

    NASA Technical Reports Server (NTRS)

    Tiffany, Sherwood H.; Adams, William M., Jr.

    1988-01-01

    The approximation of unsteady generalized aerodynamic forces in the equations of motion of a flexible aircraft are discussed. Two methods of formulating these approximations are extended to include the same flexibility in constraining the approximations and the same methodology in optimizing nonlinear parameters as another currently used extended least-squares method. Optimal selection of nonlinear parameters is made in each of the three methods by use of the same nonlinear, nongradient optimizer. The objective of the nonlinear optimization is to obtain rational approximations to the unsteady aerodynamics whose state-space realization is lower order than that required when no optimization of the nonlinear terms is performed. The free linear parameters are determined using the least-squares matrix techniques of a Lagrange multiplier formulation of an objective function which incorporates selected linear equality constraints. State-space mathematical models resulting from different approaches are described and results are presented that show comparative evaluations from application of each of the extended methods to a numerical example.

  1. Detection of melamine in milk powders using near-infrared hyperspectral imaging combined with regression coefficient of partial least square regression model.

    PubMed

    Lim, Jongguk; Kim, Giyoung; Mo, Changyeun; Kim, Moon S; Chao, Kuanglin; Qin, Jianwei; Fu, Xiaping; Baek, Insuck; Cho, Byoung-Kwan

    2016-05-01

    Illegal use of nitrogen-rich melamine (C3H6N6) to boost perceived protein content of food products such as milk, infant formula, frozen yogurt, pet food, biscuits, and coffee drinks has caused serious food safety problems. Conventional methods to detect melamine in foods, such as Enzyme-linked immunosorbent assay (ELISA), High-performance liquid chromatography (HPLC), and Gas chromatography-mass spectrometry (GC-MS), are sensitive but they are time-consuming, expensive, and labor-intensive. In this research, near-infrared (NIR) hyperspectral imaging technique combined with regression coefficient of partial least squares regression (PLSR) model was used to detect melamine particles in milk powders easily and quickly. NIR hyperspectral reflectance imaging data in the spectral range of 990-1700nm were acquired from melamine-milk powder mixture samples prepared at various concentrations ranging from 0.02% to 1%. PLSR models were developed to correlate the spectral data (independent variables) with melamine concentration (dependent variables) in melamine-milk powder mixture samples. PLSR models applying various pretreatment methods were used to reconstruct the two-dimensional PLS images. PLS images were converted to the binary images to detect the suspected melamine pixels in milk powder. As the melamine concentration was increased, the numbers of suspected melamine pixels of binary images were also increased. These results suggested that NIR hyperspectral imaging technique and the PLSR model can be regarded as an effective tool to detect melamine particles in milk powders. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Per-pixel bias-variance decomposition of continuous errors in data-driven geospatial modeling: A case study in environmental remote sensing

    NASA Astrophysics Data System (ADS)

    Gao, Jing; Burt, James E.

    2017-12-01

    This study investigates the usefulness of a per-pixel bias-variance error decomposition (BVD) for understanding and improving spatially-explicit data-driven models of continuous variables in environmental remote sensing (ERS). BVD is a model evaluation method originated from machine learning and have not been examined for ERS applications. Demonstrated with a showcase regression tree model mapping land imperviousness (0-100%) using Landsat images, our results showed that BVD can reveal sources of estimation errors, map how these sources vary across space, reveal the effects of various model characteristics on estimation accuracy, and enable in-depth comparison of different error metrics. Specifically, BVD bias maps can help analysts identify and delineate model spatial non-stationarity; BVD variance maps can indicate potential effects of ensemble methods (e.g. bagging), and inform efficient training sample allocation - training samples should capture the full complexity of the modeled process, and more samples should be allocated to regions with more complex underlying processes rather than regions covering larger areas. Through examining the relationships between model characteristics and their effects on estimation accuracy revealed by BVD for both absolute and squared errors (i.e. error is the absolute or the squared value of the difference between observation and estimate), we found that the two error metrics embody different diagnostic emphases, can lead to different conclusions about the same model, and may suggest different solutions for performance improvement. We emphasize BVD's strength in revealing the connection between model characteristics and estimation accuracy, as understanding this relationship empowers analysts to effectively steer performance through model adjustments.

  3. Micro Coronal Bright Points Observed in the Quiet Magnetic Network by SOHO/EIT

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Moore, R. L.; Porter, J. G.

    1997-01-01

    When one looks at SOHO/EIT Fe XII images of quiet regions, one can see the conventional coronal bright points (> 10 arcsec in diameter), but one will also notice many smaller faint enhancements in brightness (Figure 1). Do these micro coronal bright points belong to the same family as the conventional bright points? To investigate this question we compared SOHO/EIT Fe XII images with Kitt Peak magnetograms to determine whether the micro bright points are in the magnetic network and mark magnetic bipoles within the network. To identify the coronal bright points, we applied a picture frame filter to the Fe XII images; this brings out the Fe XII network and bright points (Figure 2) and allows us to study the bright points down to the resolution limit of the SOHO/EIT instrument. This picture frame filter is a square smoothing function (hlargelyalf a network cell wide) with a central square (quarter of a network cell wide) removed so that a bright point's intensity does not effect its own background. This smoothing function is applied to the full disk image. Then we divide the original image by the smoothed image to obtain our filtered image. A bright point is defined as any contiguous set of pixels (including diagonally) which have enhancements of 30% or more above the background; a micro bright point is any bright point 16 pixels or smaller in size. We then analyzed the bright points that were fully within quiet regions (0.6 x 0.6 solar radius) centered on disk center on six different days.

  4. The Kepler DB: a database management system for arrays, sparse arrays, and binary data

    NASA Astrophysics Data System (ADS)

    McCauliff, Sean; Cote, Miles T.; Girouard, Forrest R.; Middour, Christopher; Klaus, Todd C.; Wohler, Bill

    2010-07-01

    The Kepler Science Operations Center stores pixel values on approximately six million pixels collected every 30 minutes, as well as data products that are generated as a result of running the Kepler science processing pipeline. The Kepler Database management system (Kepler DB)was created to act as the repository of this information. After one year of flight usage, Kepler DB is managing 3 TiB of data and is expected to grow to over 10 TiB over the course of the mission. Kepler DB is a non-relational, transactional database where data are represented as one-dimensional arrays, sparse arrays or binary large objects. We will discuss Kepler DB's APIs, implementation, usage and deployment at the Kepler Science Operations Center.

  5. The Kepler DB, a Database Management System for Arrays, Sparse Arrays and Binary Data

    NASA Technical Reports Server (NTRS)

    McCauliff, Sean; Cote, Miles T.; Girouard, Forrest R.; Middour, Christopher; Klaus, Todd C.; Wohler, Bill

    2010-01-01

    The Kepler Science Operations Center stores pixel values on approximately six million pixels collected every 30-minutes, as well as data products that are generated as a result of running the Kepler science processing pipeline. The Kepler Database (Kepler DB) management system was created to act as the repository of this information. After one year of ight usage, Kepler DB is managing 3 TiB of data and is expected to grow to over 10 TiB over the course of the mission. Kepler DB is a non-relational, transactional database where data are represented as one dimensional arrays, sparse arrays or binary large objects. We will discuss Kepler DB's APIs, implementation, usage and deployment at the Kepler Science Operations Center.

  6. VizieR Online Data Catalog: The FIRST Survey Catalog, Version 2014Dec17 (Helfand+ 2015)

    NASA Astrophysics Data System (ADS)

    Helfand, D. J.; White, R. L.; Becker, R. H.

    2015-05-01

    The Faint Images of the Radio Sky at Twenty centimeters (FIRST) began in 1993. It uses the VLA (Very Large Array, a facility of the National Radio Observatory (NRAO)) at a frequency of 1.4GHz, and it is slated to 10,000 deg2 of the North and South Galactic Caps, to a sensitivity of about 1mJy with an angular resolution of about 5''. The images produced by an automated mapping pipeline have pixels of 1.8'', a typical rms of 0.15mJy, and a resolution of 5''; the images are available on the Internet (see the FIRST home page at http://sundog.stsci.edu/ for details). The source catalogue is derived from the images. This catalog from the 1993 through 2011 observations contains 946,432 sources from the north and south Galactic caps. It covers a total of 10,575 square degrees of the sky (8444 square degrees in the north and 2131 square degrees in the south). In this version of the catalog, images taken in the the new EVLA configuration have been re-reduced using shallower CLEAN thresholds in order to reduce the "CLEAN bias" in those images. Also, the EVLA images are not co-added with older VLA images to avoid problems resulting from the different frequencies and noise properties of the configurations. That leads to small gaps in the sky coverage at boundaries between the EVLA and VLA regions. As a result, the area covered by this release of the catalog is about 60 square degrees smaller than the earlier release of the catalog (13Jun05, also available here as the "first13.dat" file), and the total number of sources is reduced by nearly 25,000. The previous version of the catalog does have sources in the overlap regions, but their flux densities are considered unreliable due to calibration errors. The flux densities should be more accurate in this catalog, biases are smaller, and the incidence of spurious sources is also reduced. Over most of the survey area, the detection limit is 1 mJy. A region along the equatorial strip (RA=21.3 to 3.3hr, Dec=-1 to 1deg) has a deeper detection threshold because two epochs of observation were combined. The typical detection threshold in this region is 0.75mJy. There are approximately 4,500 sources below the 1mJy threshold used for most previous versions of the catalog. The previous versions http://sundog.stsci.edu/first/catalogs/ (2 data files).

  7. On the accuracy of least squares methods in the presence of corner singularities

    NASA Technical Reports Server (NTRS)

    Cox, C. L.; Fix, G. J.

    1985-01-01

    Elliptic problems with corner singularities are discussed. Finite element approximations based on variational principles of the least squares type tend to display poor convergence properties in such contexts. Moreover, mesh refinement or the use of special singular elements do not appreciably improve matters. It is shown that if the least squares formulation is done in appropriately weighted space, then optimal convergence results in unweighted spaces like L(2).

  8. Clay Bearing Units in the Region around Mawrth Vallis: Stratigraphy, Extent, and Possible Alteration Fronts

    NASA Technical Reports Server (NTRS)

    Dobrea, E. Z. Noe; Bishop, J. L.; McKeown, N. K.; Swayze, G.; Michalski, J. R.; Poulet, F.; Bibring, J.-P.; Mustard, J. F.; Ehlmann, B. L.; Arvidson, R.; hide

    2007-01-01

    The largest exposure of phyllosilicates on Mars occurs on the highland plains around Mawrth Vallis. This exposure extends for about 300 km southward from the edge of the dichotomy boundary, covering an area greater than 200 x 300 kilometers over an elevation range of approximately 2000 meters. At least two different types of hydrated phyllosilicates (Fe/Mg-rich and Al-rich phyllosilicates) have been identified in OMEGA data based on absorption bands near 2.3 and 2.2 micrometers, respectively. These clay-bearing units are associated with layered, indurated light-toned units with complex spatial and stratigraphic relationships, and are unconfomably overlain by a darker, indurated, more heavily cratered unit. Ongoing analysis of OMEGA (approximately 1 kilometer/pixel) and CRISM multi-spectral (MSP, 200 meters/pixel) data reveal hydrated minerals with absorptions at approximately 2.2 or 2.3 micrometers in locations up to 300 kilometers away from the borders of the previously identified extent of clay-bearing units. We seek to: 1) further constrain the mineralogy of the hydrated species identified in [5], and 2) understand spatial and stratigraphic relationships between the different hydrated minerals and the cratered plains units in which they are found. In this work we perform mineralogical and stratigraphic comparisons between units to test whether these extended units may be related, in order to establish a broad zone of alteration.

  9. 46 CFR 108.415 - Fire pump: General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... have at least two independently driven fire pumps that can each deliver water at a continuous pitot tube pressure of at least 3.5 kilograms per square centimeter (approximately 50 pounds per square inch) at least two fire hose nozzles that are connected to the highest two fire hydrants on the unit...

  10. 46 CFR 108.415 - Fire pump: General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... have at least two independently driven fire pumps that can each deliver water at a continuous pitot tube pressure of at least 3.5 kilograms per square centimeter (approximately 50 pounds per square inch) at least two fire hose nozzles that are connected to the highest two fire hydrants on the unit...

  11. 46 CFR 108.415 - Fire pump: General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... have at least two independently driven fire pumps that can each deliver water at a continuous pitot tube pressure of at least 3.5 kilograms per square centimeter (approximately 50 pounds per square inch) at least two fire hose nozzles that are connected to the highest two fire hydrants on the unit...

  12. 46 CFR 108.415 - Fire pump: General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... have at least two independently driven fire pumps that can each deliver water at a continuous pitot tube pressure of at least 3.5 kilograms per square centimeter (approximately 50 pounds per square inch) at least two fire hose nozzles that are connected to the highest two fire hydrants on the unit...

  13. 46 CFR 108.415 - Fire pump: General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... have at least two independently driven fire pumps that can each deliver water at a continuous pitot tube pressure of at least 3.5 kilograms per square centimeter (approximately 50 pounds per square inch) at least two fire hose nozzles that are connected to the highest two fire hydrants on the unit...

  14. A Comparison of Normal and Elliptical Estimation Methods in Structural Equation Models.

    ERIC Educational Resources Information Center

    Schumacker, Randall E.; Cheevatanarak, Suchittra

    Monte Carlo simulation compared chi-square statistics, parameter estimates, and root mean square error of approximation values using normal and elliptical estimation methods. Three research conditions were imposed on the simulated data: sample size, population contamination percent, and kurtosis. A Bentler-Weeks structural model established the…

  15. An Examination of Statistical Power in Multigroup Dynamic Structural Equation Models

    ERIC Educational Resources Information Center

    Prindle, John J.; McArdle, John J.

    2012-01-01

    This study used statistical simulation to calculate differential statistical power in dynamic structural equation models with groups (as in McArdle & Prindle, 2008). Patterns of between-group differences were simulated to provide insight into how model parameters influence power approximations. Chi-square and root mean square error of…

  16. Approximate l-fold cross-validation with Least Squares SVM and Kernel Ridge Regression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, Richard E; Zhang, Hao; Parker, Lynne Edwards

    2013-01-01

    Kernel methods have difficulties scaling to large modern data sets. The scalability issues are based on computational and memory requirements for working with a large matrix. These requirements have been addressed over the years by using low-rank kernel approximations or by improving the solvers scalability. However, Least Squares Support VectorMachines (LS-SVM), a popular SVM variant, and Kernel Ridge Regression still have several scalability issues. In particular, the O(n^3) computational complexity for solving a single model, and the overall computational complexity associated with tuning hyperparameters are still major problems. We address these problems by introducing an O(n log n) approximate l-foldmore » cross-validation method that uses a multi-level circulant matrix to approximate the kernel. In addition, we prove our algorithm s computational complexity and present empirical runtimes on data sets with approximately 1 million data points. We also validate our approximate method s effectiveness at selecting hyperparameters on real world and standard benchmark data sets. Lastly, we provide experimental results on using a multi-level circulant kernel approximation to solve LS-SVM problems with hyperparameters selected using our method.« less

  17. 15 CFR 922.150 - Boundary.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE OCEAN AND COASTAL RESOURCE MANAGEMENT NATIONAL... Olympic Coast National Marine Sanctuary (Sanctuary) consists of an area of approximately 2500 square nautical miles (NM) (approximately 8577 sq. kilometers) of coastal and ocean waters, and the submerged...

  18. Blue Orb on the Horizon

    NASA Image and Video Library

    2014-05-01

    This view from NASA's Cassini spacecraft features a blue planet, imaged by Cassini for the first time. Uranus is a pale blue in this natural color image because its visible atmosphere contains methane gas and few aerosols or clouds. Methane on Uranus -- and its sapphire-colored sibling, Neptune -- absorbs red wavelengths of incoming sunlight, but allows blue wavelengths to escape back into space, resulting in the predominantly bluish color seen here. Cassini imaging scientists combined red, green and blue spectral filter images to create a final image that represents what human eyes might see from the vantage point of the spacecraft. Uranus has been brightened by a factor of 4.5 to make it more easily visible. The outer portion of Saturn's A ring, seen at bottom right, has been brightened by a factor of two. The bright ring cutting across the image center is Saturn's narrow F ring. Uranus was approximately 28.6 astronomical units from Cassini and Saturn when this view was obtained. An astronomical unit is the average distance from Earth to the sun, equal to 93,000,000 miles (150,000,000 kilometers). This view was acquired by the Cassini narrow-angle camera at a distance of approximately 614,300 miles (988,600 kilometers) from Saturn on April 11, 2014. Image scale at Uranus is approximately 16,000 miles (25,700 kilometers) per pixel. Image scale at Saturn's rings is approximately 4 miles (6 kilometers) per pixel. In the image, the disk of Uranus is just barely resolved. The solar phase angle at Uranus, seen from Cassini, is 11.9 degrees. http://photojournal.jpl.nasa.gov/catalog/PIA17178

  19. a Spiral-Based Downscaling Method for Generating 30 M Time Series Image Data

    NASA Astrophysics Data System (ADS)

    Liu, B.; Chen, J.; Xing, H.; Wu, H.; Zhang, J.

    2017-09-01

    The spatial detail and updating frequency of land cover data are important factors influencing land surface dynamic monitoring applications in high spatial resolution scale. However, the fragmentized patches and seasonal variable of some land cover types (e. g. small crop field, wetland) make it labor-intensive and difficult in the generation of land cover data. Utilizing the high spatial resolution multi-temporal image data is a possible solution. Unfortunately, the spatial and temporal resolution of available remote sensing data like Landsat or MODIS datasets can hardly satisfy the minimum mapping unit and frequency of current land cover mapping / updating at the same time. The generation of high resolution time series may be a compromise to cover the shortage in land cover updating process. One of popular way is to downscale multi-temporal MODIS data with other high spatial resolution auxiliary data like Landsat. But the usual manner of downscaling pixel based on a window may lead to the underdetermined problem in heterogeneous area, result in the uncertainty of some high spatial resolution pixels. Therefore, the downscaled multi-temporal data can hardly reach high spatial resolution as Landsat data. A spiral based method was introduced to downscale low spatial and high temporal resolution image data to high spatial and high temporal resolution image data. By the way of searching the similar pixels around the adjacent region based on the spiral, the pixel set was made up in the adjacent region pixel by pixel. The underdetermined problem is prevented to a large extent from solving the linear system when adopting the pixel set constructed. With the help of ordinary least squares, the method inverted the endmember values of linear system. The high spatial resolution image was reconstructed on the basis of high spatial resolution class map and the endmember values band by band. Then, the high spatial resolution time series was formed with these high spatial resolution images image by image. Simulated experiment and remote sensing image downscaling experiment were conducted. In simulated experiment, the 30 meters class map dataset Globeland30 was adopted to investigate the effect on avoid the underdetermined problem in downscaling procedure and a comparison between spiral and window was conducted. Further, the MODIS NDVI and Landsat image data was adopted to generate the 30m time series NDVI in remote sensing image downscaling experiment. Simulated experiment results showed that the proposed method had a robust performance in downscaling pixel in heterogeneous region and indicated that it was superior to the traditional window-based methods. The high resolution time series generated may be a benefit to the mapping and updating of land cover data.

  20. Application of pixel-cell detector technology for Advanced Neutron Beam Monitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopp, Daniel M.

    2011-01-11

    Application of Pixel-Cell Detector Technology for Advanced Neutron Beam Monitors Specifications of currently available neutron beam detectors limit their usefulness at intense neutron beams of large-scale national user facilities used for the advanced study of materials. A large number of neutron-scattering experiments require beam monitors to operate in an intense neutron beam flux of >10E+7 neutrons per second per square centimeter. For instance, a 4 cm x 4 cm intense beam flux of 6.25 x 10E+7 n/s/cm2 at the Spallation Neutron Source will put a flux of 1.00 x 10E+9 n/s at the beam monitor. Currently available beam monitors withmore » a typical efficiency of 1 x 10E-4 will need to be replaced in less than two years of operation due to wire and gas degradation issues. There is also a need at some instruments for beam position information that are beyond the capabilities of currently available He-3 and BF3 neutron beam monitors. ORDELA, Inc.’s research under USDOE SBIR Grant (DE-FG02-07ER84844) studied the feasibility of using pixel-cell technology for developing a new generation of stable, long-life neutron beam monitors. The research effort has led to the development and commercialization of advanced neutron beam detectors that will directly benefit the Spallation Neutron Source and other intense neutron sources such as the High Flux Isotope Reactor. A prototypical Pixel-Cell Neutron Beam Monitor was designed and constructed during this research effort. This prototype beam monitor was exposed to an intense neutron beam at the HFIR SNS HB-2 test beam site. Initial measurements on efficiency, uniformity across the detector, and position resolution yielded excellent results. The development and test results have provided the required data to initiate the fabrication and commercialization of this next generation of neutron-detector systems. ORDELA, Inc. has (1) identified low-cost design and fabrication strategies, (2) developed and built pixel-cell detectors and instrumented a 64-pixel-cell detector to specifications for the Cold-Neutron Chopper Spectrometer and POWGEN instruments, (3) investigated the general characteristics of this technology, (4) studied pixel-cell configurations and arrived at an optimized modular design, and (5) evaluated fabrication costs of mass production for these configurations. The resulting technology will enable a complete line of pixel-cell-based neutron detectors to be commercially under available. ORDELA, Inc has a good track history of application of innovative technology into the marketplace. Our commercialization record reflects this. For additional information, please contact Daniel Kopp at ORDELA, Inc. at +1 (865) 483-8675 or check our website at www.ordela.com.« less

  1. Advances in Small Pixel TES-Based X-Ray Microcalorimeter Arrays for Solar Physics and Astrophysics

    NASA Technical Reports Server (NTRS)

    Bandler, S. R.; Adams, J. S.; Bailey, C. N.; Busch, S. E.; Chervenak, J. A.; Eckart, M. E.; Ewin, A. E.; Finkbeiner, F. M.; Kelley, R. L.; Kelly, D. P.; hide

    2012-01-01

    We are developing small-pixel transition-edge-sensor (TES) for solar physics and astrophysics applications. These large format close-packed arrays are fabricated on solid silicon substrates and are designed to accommodate count-rates of up to a few hundred counts/pixel/second at a FWHM energy resolution approximately 2 eV at 6 keV. We have fabricated versions that utilize narrow-line planar and stripline wiring. We present measurements of the performance and uniformity of kilo-pixel arrays, incorporating TESs with single 65-micron absorbers on a 7s-micron pitch, as well as versions with more than one absorber attached to the TES, 4-absorber and 9-absorber "Hydras". We have also fabricated a version of this detector optimized for lower energies and lower count-rate applications. These devices have a lower superconducting transition temperature and are operated just above the 40mK heat sink temperature. This results in a lower heat capacity and low thermal conductance to the heat sink. With individual single pixels of this type we have achieved a FWHM energy resolution of 0.9 eV with 1.5 keV Al K x-rays, to our knowledge the first x-ray microcalorimeter with sub-eV energy resolution. The 4-absorber and 9-absorber versions of this type achieved FWHM energy resolutions of 1.4 eV and 2.1 eV at 1.5 keV respectively. We will discuss the application of these devices for new astrophysics mission concepts.

  2. Equilibrium radionuclide gated angiography in patients with tricuspid regurgitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Handler, B.; Pavel, D.G.; Pietras, R.

    Equilibrium gated radionuclide angiography was performed in 2 control groups (15 patients with no organic heart disease and 24 patients with organic heart disease but without right- or left-sided valvular regurgitation) and in 9 patients with clinical tricuspid regurgitation. The regurgitant index, or ratio of left to right ventricular stroke counts, was significantly lower in patients with tricuspid regurgitation than in either control group. Time-activity variation over the liver was used to compute a hepatic expansion fraction which was significantly higher in patients with tricuspid regurgitation than in either control group. Fourier analysis of time-activity variation in each pixel wasmore » used to generate amplitude and phase images. Only pixels with values for amplitude at least 7% of the maximum in the image were retained in the final display. All patients with tricuspid regurgitation had greater than 100 pixels over the liver automatically retained by the computer. These pixels were of phase comparable to that of the right atrium and approximately 180 degrees out of phase with the right ventricle. In contrast, no patient with no organic heart disease and only 1 of 24 patients with organic heart disease had any pixels retained by the computer. In conclusion, patients with tricuspid regurgitation were characterized on equilibrium gated angiography by an abnormally low regurgitant index (7 of 9 patients) reflecting increased right ventricular stroke volume, increased hepatic expansion fraction (7 of 9 patients), and increased amplitude of count variation over the liver in phase with the right atrium (9 of 9 patients).« less

  3. Stochastic resonance-enhanced laser-based particle detector.

    PubMed

    Dutta, A; Werner, C

    2009-01-01

    This paper presents a Laser-based particle detector whose response was enhanced by modulating the Laser diode with a white-noise generator. A Laser sheet was generated to cast a shadow of the object on a 200 dots per inch, 512 x 1 pixels linear sensor array. The Laser diode was modulated with a white-noise generator to achieve stochastic resonance. The white-noise generator essentially amplified the wide-bandwidth (several hundred MHz) noise produced by a reverse-biased zener diode operating in junction-breakdown mode. The gain in the amplifier in the white-noise generator was set such that the Receiver Operating Characteristics plot provided the best discriminability. A monofiber 40 AWG (approximately 80 microm) wire was detected with approximately 88% True Positive rate and approximately 19% False Positive rate in presence of white-noise modulation and with approximately 71% True Positive rate and approximately 15% False Positive rate in absence of white-noise modulation.

  4. Robust inverse kinematics using damped least squares with dynamic weighting

    NASA Technical Reports Server (NTRS)

    Schinstock, D. E.; Faddis, T. N.; Greenway, R. B.

    1994-01-01

    This paper presents a general method for calculating the inverse kinematics with singularity and joint limit robustness for both redundant and non-redundant serial-link manipulators. Damped least squares inverse of the Jacobian is used with dynamic weighting matrices in approximating the solution. This reduces specific joint differential vectors. The algorithm gives an exact solution away from the singularities and joint limits, and an approximate solution at or near the singularities and/or joint limits. The procedure is here implemented for a six d.o.f. teleoperator and a well behaved slave manipulator resulted under teleoperational control.

  5. Correlated noise in the COBE DMR sky maps

    NASA Technical Reports Server (NTRS)

    Lineweaver, C. H.; Smoot, G. F.; Bennett, C. L.; Wright, E. L.; Tenorio, L.; Kogut, A.; Keegstra, P. B.; Hinshaw, G.; Banday, A. J.

    1994-01-01

    The Cosmic Background Explorer Satellite Differential Radiometer (COBE DMR) sky maps contain low-level correlated noise. We obtain estimates of the amplitude and pattern of the correlated noise from three techniques: angular averages of the covariance matrix, Monte Carlo simulations of two-point correlation functions and direct analysis of the DMR maps. The results from the three methods are mutually consistent. The noise covariance matrix of a DMR sky maps is diagonal to an accuracy of better than 1%. For a given sky pixel, the dominant noise covariance occure with the ring of pixels at an angular separation of 60 deg due to the 60 deg separation of the DMR horns. The mean covariance at 60 deg is 0.45%((sup +0.18)(sub -0.14)) of the mean variance. Additionally, the variance in a given pixel is 0.7% greater than would be expected from a single beam experiment with the same noise properties. Autocorrelation functions suffer from a approximately 1.5 sigma positive bias at 60 deg while cross-correlations have no bias. Published COBE DMR results are not significantly affected by correlated noise.

  6. Fluorescence X-ray absorption spectroscopy using a Ge pixel array detector: application to high-temperature superconducting thin-film single crystals.

    PubMed

    Oyanagi, H; Tsukada, A; Naito, M; Saini, N L; Lampert, M O; Gutknecht, D; Dressler, P; Ogawa, S; Kasai, K; Mohamed, S; Fukano, A

    2006-07-01

    A Ge pixel array detector with 100 segments was applied to fluorescence X-ray absorption spectroscopy, probing the local structure of high-temperature superconducting thin-film single crystals (100 nm in thickness). Independent monitoring of pixel signals allows real-time inspection of artifacts owing to substrate diffractions. By optimizing the grazing-incidence angle theta and adjusting the azimuthal angle phi, smooth extended X-ray absorption fine structure (EXAFS) oscillations were obtained for strained (La,Sr)2CuO4 thin-film single crystals grown by molecular beam epitaxy. The results of EXAFS data analysis show that the local structure (CuO6 octahedron) in (La,Sr)2CuO4 thin films grown on LaSrAlO4 and SrTiO3 substrates is uniaxially distorted changing the tetragonality by approximately 5 x 10(-3) in accordance with the crystallographic lattice mismatch. It is demonstrated that the local structure of thin-film single crystals can be probed with high accuracy at low temperature without interference from substrates.

  7. Hyperspectral image denoising and anomaly detection based on low-rank and sparse representations

    NASA Astrophysics Data System (ADS)

    Zhuang, Lina; Gao, Lianru; Zhang, Bing; Bioucas-Dias, José M.

    2017-10-01

    The very high spectral resolution of Hyperspectral Images (HSIs) enables the identification of materials with subtle differences and the extraction subpixel information. However, the increasing of spectral resolution often implies an increasing in the noise linked with the image formation process. This degradation mechanism limits the quality of extracted information and its potential applications. Since HSIs represent natural scenes and their spectral channels are highly correlated, they are characterized by a high level of self-similarity and are well approximated by low-rank representations. These characteristic underlies the state-of-the-art in HSI denoising. However, in presence of rare pixels, the denoising performance of those methods is not optimal and, in addition, it may compromise the future detection of those pixels. To address these hurdles, we introduce RhyDe (Robust hyperspectral Denoising), a powerful HSI denoiser, which implements explicit low-rank representation, promotes self-similarity, and, by using a form of collaborative sparsity, preserves rare pixels. The denoising and detection effectiveness of the proposed robust HSI denoiser is illustrated using semi-real data.

  8. A Monte Carlo Application to Approximate the Integral from a to b of e Raised to the x Squared.

    ERIC Educational Resources Information Center

    Easterday, Kenneth; Smith, Tommy

    1992-01-01

    Proposes an alternative means of approximating the value of complex integrals, the Monte Carlo procedure. Incorporating a discrete approach and probability, an approximation is obtained from the ratio of computer-generated points falling under the curve to the number of points generated in a predetermined rectangle. (MDH)

  9. Discrete Tchebycheff orthonormal polynomials and applications

    NASA Technical Reports Server (NTRS)

    Lear, W. M.

    1980-01-01

    Discrete Tchebycheff orthonormal polynomials offer a convenient way to make least squares polynomial fits of uniformly spaced discrete data. Computer programs to do so are simple and fast, and appear to be less affected by computer roundoff error, for the higher order fits, than conventional least squares programs. They are useful for any application of polynomial least squares fits: approximation of mathematical functions, noise analysis of radar data, and real time smoothing of noisy data, to name a few.

  10. Coupled Research in Ocean Acoustics and Signal Processing for the Next Generation of Underwater Acoustic Communication Systems

    DTIC Science & Technology

    2016-08-05

    technique which used unobserved ”intermediate” variables to break a high-dimensional estimation problem such as least- squares (LS) optimization of a large...Least Squares (GEM-LS). The estimator is iterative and the work in this time period focused on characterizing the convergence properties of this...ap- proach by relaxing the statistical assumptions which is termed the Relaxed Approximate Graph-Structured Recursive Least Squares (RAGS-RLS). This

  11. Asian longhorned beetle cooperative eradication program: program accomplishments 2001

    Treesearch

    Christine Markham

    2003-01-01

    APHIS spent approximately $3 million to continue ALB eradication activities in New York and Illinois in FY 2001. In New York 6,615 trees were removed, over 4,500 trees replanted, and approximately 121 square miles were under quarantine.

  12. VizieR Online Data Catalog: PMA Catalogue (Akhmetov+, 2017)

    NASA Astrophysics Data System (ADS)

    Akhmetov, V. S.; Fedorov, P. N.; Velichko, A. B.; Shulga, V. M.

    2017-06-01

    The idea for creating the catalogue is very simple. The PMA catalogue has been derived from a combination of two catalogues, namely 2MASS and Gaia DR1. The difference of epochs of observations for these catalogues is approximately 15 yr. The positions of objects in the Gaia DR1 catalogue are referred to the reference frame, which is consistent with ICRF to better than 0.1 mas for the J2015.0 epoch. The positions of objects in 2MASS are referred to HCRF, which, as was shown in Kovalevsky et al. (1997A&A...323..620K), is aligned with the ICRF to within ±0.6 mas at the epoch 1991.25 and is non-rotating with respect to distant extragalactic objects to within ±0.25mas/yr. By comparing the positions of the common objects contained in the catalogues, it is possible to determine their proper motions within their common range of stellar magnitudes by dividing differences of positions over the time interval between their observations. Formally, proper motions derived in such a way are given in the ICRF system, because the positions of both Gaia DR1 stars and those of 2MASS objects (through Hipparcos/Tycho-2 stars) are given in the ICRF and cover the whole sphere without gaps. We designate them further in this paper as relative, with the aim of discriminating them from absolute ones, which refer to the reference frame defined by the positions of about 1.6 million galaxies from Gaia DR1. There is no possibility of obtaining estimates of individual errors of proper motions of stars for the PMA Catalogue from the intrinsic convergence, because the direct errors for positions are not indicated in 2MASS. Therefore we use some indirect methods to obtain the estimates of uncertainties for proper motions. After elimination of the systematic errors, the root-mean-squared deviation of the coordinate differences of extended sources is about 200mas, and the mean number of galaxies inside each pixel is about 1300, so we expect the error of the absolute calibration to be 0.35mas/yr. We compared the proper motions of common objects from PMA and from the TGAS and UCAC4 catalogues. Knowing the mean-square errors of (PMA-TGAS) and (PMA-UCAC4) proper motion differences in each pixel, the appropriate errors in PMA vary from 2 to 10mas/yr, depending on magnitude, which are consistent with the errors calculated above. In case of any problems or questions, please contact by e-mail V.S. Akhmetov (akhmetovvs(at)gmail.com or akhmetov(at)astron.kharkov.ua). (1 data file).

  13. Wrinkle Ridges and Pit Craters

    NASA Image and Video Library

    2016-10-19

    Tectonic stresses highly modified this area of Ganges Catena, north of Valles Marineris. The long, skinny ridges (called "wrinkle ridges") are evidence of compressional stresses in Mars' crust that created a crack (fault) where one side was pushed on top of the other side, also known as a thrust fault. As shown by cross-cutting relationships, however, extensional stresses have more recently pulled the crust of Mars apart in this region. (HiRISE imaged this area in 2-by-2 binning mode, so a pixel represents a 50 x 50 square centimeter.) http://photojournal.jpl.nasa.gov/catalog/PIA21112

  14. Optics Design for the U.S. SKA Technology Development Project Design Verification Antenna

    NASA Technical Reports Server (NTRS)

    Imbriale, W. A.; Baker, L.; Cortes-Medellin, G.

    2012-01-01

    The U.S. design concept for the Square Kilometer Array (SKA) program is based on utilizing a large number of 15 meter dish antennas. The Technology Development Project (TDP) is planning to design and build the first of these antennas to provide a demonstration of the technology and a solid base on which to estimate costs. This paper describes the performance of the selected optics design. It is a dual-shaped offset Gregorian design with a feed indexer that can accommodate corrugated horns, wide band single pixel feeds or phased array feeds.

  15. Perimetric Complexity of Binary Digital Images: Notes on Calculation and Relation to Visual Complexity

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.

    2011-01-01

    Perimetric complexity is a measure of the complexity of binary pictures. It is defined as the sum of inside and outside perimeters of the foreground, squared, divided by the foreground area, divided by 4p . Difficulties arise when this definition is applied to digital images composed of binary pixels. In this paper we identify these problems and propose solutions. Perimetric complexity is often used as a measure of visual complexity, in which case it should take into account the limited resolution of the visual system. We propose a measure of visual perimetric complexity that meets this requirement.

  16. Synchrotron radiation microtomography of Taylor bubbles in capillary two-phase flow

    NASA Astrophysics Data System (ADS)

    Boden, Stephan; dos Santos Rolo, Tomy; Baumbach, Tilo; Hampel, Uwe

    2014-07-01

    We report on a study to measure the three-dimensional shape of Taylor bubbles in capillaries using synchrotron radiation in conjunction with ultrafast radiographic imaging. Moving Taylor bubbles in 2-mm round and square capillaries were radiographically scanned with an ultrahigh frame rate of up to 36,000 fps and 5.6-µm pixel separation. Consecutive images were properly processed to yield 2D transmission radiographs of high contrast-to-noise ratio. Application of 3D tomographic image reconstruction disclosed the 3D bubble shape. The results provide a reference data base for development of sophisticated interface resolving CFD computations.

  17. Cursor Control Device Test Battery

    NASA Technical Reports Server (NTRS)

    Holden, Kritina; Sandor, Aniko; Pace, John; Thompson, Shelby

    2013-01-01

    The test battery was developed to provide a standard procedure for cursor control device evaluation. The software was built in Visual Basic and consists of nine tasks and a main menu that integrates the set-up of the tasks. The tasks can be used individually, or in a series defined in the main menu. Task 1, the Unidirectional Pointing Task, tests the speed and accuracy of clicking on targets. Two rectangles with an adjustable width and adjustable center- to-center distance are presented. The task is to click back and forth between the two rectangles. Clicks outside of the rectangles are recorded as errors. Task 2, Multidirectional Pointing Task, measures speed and accuracy of clicking on targets approached from different angles. Twenty-five numbered squares of adjustable width are arranged around an adjustable diameter circle. The task is to point and click on the numbered squares (placed on opposite sides of the circle) in consecutive order. Clicks outside of the squares are recorded as errors. Task 3, Unidirectional (horizontal) Dragging Task, is similar to dragging a file into a folder on a computer desktop. Task 3 requires dragging a square of adjustable width from one rectangle and dropping it into another. The width of each rectangle is adjustable, as well as the distance between the two rectangles. Dropping the square outside of the rectangles is recorded as an error. Task 4, Unidirectional Path Following, is similar to Task 3. The task is to drag a square through a tunnel consisting of two lines. The size of the square and the width of the tunnel are adjustable. If the square touches any of the lines, it is counted as an error and the task is restarted. Task 5, Text Selection, involves clicking on a Start button, and then moving directly to the underlined portion of the displayed text and highlighting it. The pointing distance to the text is adjustable, as well as the to-be-selected font size and the underlined character length. If the selection does not include all of the underlined characters, or includes non-underlined characters, it is recorded as an error. Task 6, Multi-size and Multi-distance Pointing, presents the participant with 24 consecutively numbered buttons of different sizes (63 to 163 pixels), and at different distances (60 to 80 pixels) from the Start button. The task is to click on the Start button, and then move directly to, and click on, each numbered target button in consecutive order. Clicks outside of the target area are errors. Task 7, Standard Interface Elements Task, involves interacting with standard interface elements as instructed in written procedures, including: drop-down menus, sliders, text boxes, radio buttons, and check boxes. Task completion time is recorded. In Task 8, a circular track is presented with a disc in it at the top. Track width and disc size are adjustable. The task is to move the disc with circular motion within the path without touching the boundaries of the track. Time and errors are recorded. Task 9 is a discrete task that allows evaluation of discrete cursor control devices that tab from target to target, such as a castle switch. The task is to follow a predefined path and to click on the yellow targets along the path.

  18. Spatial resolution and chest nodule detection: an interesting incidental finding

    NASA Astrophysics Data System (ADS)

    Toomey, R. J.; McEntee, M. F.; Ryan, J. T.; Evanoff, M. G.; Hayes, A.; Brennan, P. C.

    2010-02-01

    This study reports an incidental finding from a larger work. It examines the relationship between spatial resolution and nodule detection for chest radiographs. Twelve examining radiologists with the American Board of Radiology read thirty chest radiographs in two conditions - full (1500 × 1500 pixel) resolution, and 300 × 300 pixel resolution linearly interpolated to 1500 × 1500 pixels. All images were surrounded by a 10-pixel sharp grey border to aid in focussing the observer's eye when viewing the comparatively unsharp interpolated images. Fifteen of the images contained a single simulated pulmonary nodule. Observers were asked to rate their confidence that a nodule was present on each radiograph on a scale of 1 (least confidence, certain no lesion is present) to 6 (most confidence, certain a lesion was present). All other abnormalities were to be ignored. No windowing, levelling or magnification of the images was permitted and viewing distance was constrained to approximately 70cm. Images were displayed on a 3 megapixel greyscale monitor. Receiver operating characteristic (ROC) analysis was applied to the results of the readings using the Dorfman-Berbaum-Metz multiplereader, multiple-case method. No statistically significant differences were found with either readers and cases treated as random or with cases treated as fixed. Low spatial frequency information appears to be sufficient for the detection of chest lesion of the type used in this study.

  19. Absorbing film assisted laser induced forward transfer of fungi (Trichoderma conidia)

    NASA Astrophysics Data System (ADS)

    Hopp, B.; Smausz, T.; Antal, Zs.; Kresz, N.; Bor, Zs.; Chrisey, D.

    2004-09-01

    We present an investigation on absorbing film assisted laser induced forward transfer (AFA-LIFT) of fungus (Trichoderma) conidia. A KrF excimer laser beam [λ =248nm,FWHM=30ns (FWHM, full width at half maximum)] was directed through a quartz plate and focused onto its silver coated surface where conidia of the Trichoderma strain were uniformly spread. The laser fluence was varied in the range of 0-2600mJ/cm2 and each laser pulse transferred a pixel of target material. The average irradiated area was 8×10-2mm2. After the transfer procedure, the yeast extract medium covered glass slide and the transferred conidia patterns were incubated for 20 h and then observed using an optical microscope. The transferred conidia pixels were germinated and the areas of the culture medium surfaces covered by the pixels were evaluated as a function of laser fluence. As the laser fluence was increased from 0 to 355mJ/cm2 the transferred and germinated pixel area increased from 0 to 0.25mm2. Further increase in fluence resulted in a drastic decrease down to an approximately constant value of 0.06mm2. The yield of successful transfer by AFA-LIFT and germination was as much as 75% at 355mJ/cm2. The results prove that AFA-LIFT can successfully be applied for the controlled transfer of biological objects.

  20. Understanding quantum phenomena without solving the Schrödinger equation: the case of the finite square well

    NASA Astrophysics Data System (ADS)

    Barsan, Victor

    2015-11-01

    An approximate formula for the energy levels of the bound states of a particle in a finite square well are obtained, without using the Schrödinger equation. The physics and mathematics involved in this approach are accessible to a gifted high school student.

  1. A Least-Squares-Based Weak Galerkin Finite Element Method for Second Order Elliptic Equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Lin; Wang, Junping; Ye, Xiu

    Here, in this article, we introduce a least-squares-based weak Galerkin finite element method for the second order elliptic equation. This new method is shown to provide very accurate numerical approximations for both the primal and the flux variables. In contrast to other existing least-squares finite element methods, this new method allows us to use discontinuous approximating functions on finite element partitions consisting of arbitrary polygon/polyhedron shapes. We also develop a Schur complement algorithm for the resulting discretization problem by eliminating all the unknowns that represent the solution information in the interior of each element. Optimal order error estimates for bothmore » the primal and the flux variables are established. An extensive set of numerical experiments are conducted to demonstrate the robustness, reliability, flexibility, and accuracy of the least-squares-based weak Galerkin finite element method. Finally, the numerical examples cover a wide range of applied problems, including singularly perturbed reaction-diffusion equations and the flow of fluid in porous media with strong anisotropy and heterogeneity.« less

  2. A Least-Squares-Based Weak Galerkin Finite Element Method for Second Order Elliptic Equations

    DOE PAGES

    Mu, Lin; Wang, Junping; Ye, Xiu

    2017-08-17

    Here, in this article, we introduce a least-squares-based weak Galerkin finite element method for the second order elliptic equation. This new method is shown to provide very accurate numerical approximations for both the primal and the flux variables. In contrast to other existing least-squares finite element methods, this new method allows us to use discontinuous approximating functions on finite element partitions consisting of arbitrary polygon/polyhedron shapes. We also develop a Schur complement algorithm for the resulting discretization problem by eliminating all the unknowns that represent the solution information in the interior of each element. Optimal order error estimates for bothmore » the primal and the flux variables are established. An extensive set of numerical experiments are conducted to demonstrate the robustness, reliability, flexibility, and accuracy of the least-squares-based weak Galerkin finite element method. Finally, the numerical examples cover a wide range of applied problems, including singularly perturbed reaction-diffusion equations and the flow of fluid in porous media with strong anisotropy and heterogeneity.« less

  3. MOCCA: A 4k-Pixel Molecule Camera for the Position- and Energy-Resolving Detection of Neutral Molecule Fragments at CSR

    NASA Astrophysics Data System (ADS)

    Gamer, L.; Schulz, D.; Enss, C.; Fleischmann, A.; Gastaldo, L.; Kempf, S.; Krantz, C.; Novotný, O.; Schwalm, D.; Wolf, A.

    2016-08-01

    We present the design of MOCCA, a large-area particle detector that is developed for the position- and energy-resolving detection of neutral molecule fragments produced in electron-ion interactions at the Cryogenic Storage Ring at the Max Planck Institute for Nuclear Physics in Heidelberg. The detector is based on metallic magnetic calorimeters and consists of 4096 particle absorbers covering a total detection area of 44.8 mathrm {mm} × 44.8 mathrm {mm}. Groups of four absorbers are thermally coupled to a common paramagnetic temperature sensor where the strength of the thermal link is different for each absorber. This allows attributing a detector event within this group to the corresponding absorber by discriminating the signal rise times. A novel readout scheme further allows reading out all 1024 temperature sensors that are arranged in a 32 × 32 square array using only 16+16 current-sensing superconducting quantum interference devices. Numerical calculations taking into account a simplified detector model predict an energy resolution of Δ E_mathrm {FWHM} le 80 mathrm {eV} for all pixels of this detector.

  4. Super-resolution for imagery from integrated microgrid polarimeters.

    PubMed

    Hardie, Russell C; LeMaster, Daniel A; Ratliff, Bradley M

    2011-07-04

    Imagery from microgrid polarimeters is obtained by using a mosaic of pixel-wise micropolarizers on a focal plane array (FPA). Each distinct polarization image is obtained by subsampling the full FPA image. Thus, the effective pixel pitch for each polarization channel is increased and the sampling frequency is decreased. As a result, aliasing artifacts from such undersampling can corrupt the true polarization content of the scene. Here we present the first multi-channel multi-frame super-resolution (SR) algorithms designed specifically for the problem of image restoration in microgrid polarization imagers. These SR algorithms can be used to address aliasing and other degradations, without sacrificing field of view or compromising optical resolution with an anti-aliasing filter. The new SR methods are designed to exploit correlation between the polarimetric channels. One of the new SR algorithms uses a form of regularized least squares and has an iterative solution. The other is based on the faster adaptive Wiener filter SR method. We demonstrate that the new multi-channel SR algorithms are capable of providing significant enhancement of polarimetric imagery and that they outperform their independent channel counterparts.

  5. Statistical mechanics of image processing by digital halftoning

    NASA Astrophysics Data System (ADS)

    Inoue, Jun-Ichi; Norimatsu, Wataru; Saika, Yohei; Okada, Masato

    2009-03-01

    We consider the problem of digital halftoning (DH). The DH is an image processing representing each grayscale in images in terms of black and white dots, and it is achieved by making use of the threshold dither mask, namely, each pixel is determined as black if the grayscale pixel is greater than or equal to the mask value and as white vice versa. To determine the mask for a given grayscale image, we assume that human-eyes might recognize the BW dots as the corresponding grayscale by linear filters. Then, the Hamiltonian is constructed as a distance between the original and recognized images which is written in terms of the mask. Finding the ground state of the Hamiltonian via deterministic annealing, we obtain the optimal mask and the BW dots simultaneously. From the spectrum analysis, we find that the BW dots are desirable from the view point of human-eyes modulation properties. We also show that the lower bound of the mean square error for the inverse process of the DH is minimized on the Nishimori line which is well-known in the research field of spin glasses.

  6. Evaluation of Origin Ensemble algorithm for image reconstruction for pixelated solid-state detectors with large number of channels

    NASA Astrophysics Data System (ADS)

    Kolstein, M.; De Lorenzo, G.; Mikhaylova, E.; Chmeissani, M.; Ariño, G.; Calderón, Y.; Ozsahin, I.; Uzun, D.

    2013-04-01

    The Voxel Imaging PET (VIP) Pathfinder project intends to show the advantages of using pixelated solid-state technology for nuclear medicine applications. It proposes designs for Positron Emission Tomography (PET), Positron Emission Mammography (PEM) and Compton gamma camera detectors with a large number of signal channels (of the order of 106). For PET scanners, conventional algorithms like Filtered Back-Projection (FBP) and Ordered Subset Expectation Maximization (OSEM) are straightforward to use and give good results. However, FBP presents difficulties for detectors with limited angular coverage like PEM and Compton gamma cameras, whereas OSEM has an impractically large time and memory consumption for a Compton gamma camera with a large number of channels. In this article, the Origin Ensemble (OE) algorithm is evaluated as an alternative algorithm for image reconstruction. Monte Carlo simulations of the PET design are used to compare the performance of OE, FBP and OSEM in terms of the bias, variance and average mean squared error (MSE) image quality metrics. For the PEM and Compton camera designs, results obtained with OE are presented.

  7. Hyper Suprime-Cam: characteristics of 116 fully depleted back-illuminated CCDs

    NASA Astrophysics Data System (ADS)

    Kamata, Yukiko; Miyazaki, Satoshi; Nakaya, Hidehiko; Komiyama, Yutaka; Obuchi, Yoshiyuki; Kawanomoto, Satoshi; Uraguchi, Fumihiro; Utsumi, Yosuke; Suzuki, Hisanori; Miyazaki, Yasuhito; Muramatsu, Masaharu

    2012-07-01

    Hyper Suprime-Cam (HSC)1,2 is a wide field imaging camera with the field of view (FOV) 1.5 degree diameter, which is to be installed at the prime focus of the Subaru Telescope. The large FOV is realized by the 116 2K × 4K pixels fully depleted back-illuminated CCD (FDCCD) with 15 μm pixel square. The acceptance inspection of the CCDs started around the end of 2009 and finished June 2011. We measured basic characteristics such as charge transfer efficiency (CTE), dark current, readout noise, linearity and the number of the dead column for all CCDs, and measured the quantum effciency (QE) of 21 CCDs. As a result, we confirmed exceptional quality and performance fdor all CCDs ans were able to select the best pissible 116 CCDs. We also measured the flatness of each CCD at room temperature, and optimally placed them on the focal plane plate. In this paper, we report the results of the acceptance inspection asn the installation process into the HSC dewar3,4.

  8. Angles-centroids fitting calibration and the centroid algorithm applied to reverse Hartmann test

    NASA Astrophysics Data System (ADS)

    Zhao, Zhu; Hui, Mei; Xia, Zhengzheng; Dong, Liquan; Liu, Ming; Liu, Xiaohua; Kong, Lingqin; Zhao, Yuejin

    2017-02-01

    In this paper, we develop an angles-centroids fitting (ACF) system and the centroid algorithm to calibrate the reverse Hartmann test (RHT) with sufficient precision. The essence of ACF calibration is to establish the relationship between ray angles and detector coordinates. Centroids computation is used to find correspondences between the rays of datum marks and detector pixels. Here, the point spread function of RHT is classified as circle of confusion (CoC), and the fitting of a CoC spot with 2D Gaussian profile to identify the centroid forms the basis of the centroid algorithm. Theoretical and experimental results of centroids computation demonstrate that the Gaussian fitting method has a less centroid shift or the shift grows at a slower pace when the quality of the image is reduced. In ACF tests, the optical instrumental alignments reach an overall accuracy of 0.1 pixel with the application of laser spot centroids tracking program. Locating the crystal at different positions, the feasibility and accuracy of ACF calibration are further validated to 10-6-10-4 rad root-mean-square error of the calibrations differences.

  9. VizieR Online Data Catalog: Coordinates and photometry of stars in Haffner 16 (Davidge, 2017)

    NASA Astrophysics Data System (ADS)

    Davidge, T. J.

    2017-11-01

    The images and spectra that are the basis of this study were recorded with Gemini Multi-Object Spectrograph (GMOS) on Gemini South as part of program GS-2014A-Q-84 (PI: Davidge). GMOS is the facility visible-light imager and spectrograph. The detector was (the CCDs that make up the GMOS detector have since been replaced) a mosaic of three 2048*4068 EEV CCDs. Each 13.5μm square pixel subtended 0.073arcsec on the sky. The three CCDs covered an area that is larger than that illuminated by the sky so that spectra could be dispersed outside of the sky field. The images and spectra were both recorded with 2*2 pixel binning. The g' (FWHM=0.55) and i' (FWHM=0.45) images of Haffner 16 were recorded on the night of 2013 December 31. The GMOS spectra were recorded during five nights in 2014 March (Mar 19, Mar 27, and Mar 30) and April (Apr 2, and Apr 3). The spectra were dispersed with the R400 grating (λblaze=7640Å, 400lines/mm). (1 data file).

  10. VizieR Online Data Catalog: BVRI photometry of luminous stars in M31 and M33 (Martin+, 2017)

    NASA Astrophysics Data System (ADS)

    Martin, J. C.; Humphreys, R. M.

    2017-11-01

    Images were obtained of M31 and M33 using an Apogee U42 CCD Camera with a back-illuminated E2v CCD42-40 chip on the F/13 20-inch (0.51m) telescope at the University of Illinois Springfield Henry R. Barber Research Observatory near Pleasant Plains, IL. The images are 19.4*19.4 arc minutes squares with a pixel scale of 0.57 arcseconds per pixel. Images were exposed in four high-throughput broad-band filters manufactured by Astrodon: Johnson B and V, and Cousins R and I. The B-filter does not have the red-leak present in most Astrodon B-filers manufactured prior to 2013. Images were taken in V at every epoch except one in 2012. In 2012, many fields were also imaged in R. Imaging in the B-filter started in 2013, and imaging in the I-filter started in 2015. Table 1 gives a record of the 199 images of M31 and 77 images of M33. (5 data files).

  11. Spatial-heterodyne sampling requirements in the off-axis pupil plane recording geometry for deep-turbulence wavefront sensing

    NASA Astrophysics Data System (ADS)

    Banet, Matthias T.; Spencer, Mark F.

    2017-09-01

    Spatial-heterodyne interferometry is a robust solution for deep-turbulence wavefront sensing. With that said, this paper analyzes the focal-plane array sampling requirements for spatial-heterodyne systems operating in the off-axis pupil plane recording geometry. To assess spatial-heterodyne performance, we use a metric referred to as the field-estimated Strehl ratio. We first develop an analytical description of performance with respect to the number of focal-plane array pixels across the Fried coherence diameter and then verify our results with wave-optics simulations. The analysis indicates that at approximately 5 focal-plane array pixels across the Fried coherence diameter, the field-estimated Strehl ratios begin to exceed 0:9 which is indicative of largely diffraction-limited results.

  12. Perceptually stable regions for arbitrary polygons.

    PubMed

    Rocha, J

    2003-01-01

    Zou and Yan have recently developed a skeletonization algorithm of digital shapes based on a regularity/singularity analysis; they use the polygon whose vertices are the boundary pixels of the image to compute a constrained Delaunay triangulation (CDT) in order to find local symmetries and stable regions. Their method has produced good results but it is slow since its complexity depends on the number of contour pixels. This paper presents an extension of their technique to handle arbitrary polygons, not only polygons of short edges. Consequently, not only can we achieve results as good as theirs for digital images, but we can also compute skeletons of polygons of any number of edges. Since we can handle polygonal approximations of figures, the skeletons are more resilient to noise and faster to process.

  13. 640 x 512 Pixels Long-Wavelength Infrared (LWIR) Quantum-Dot Infrared Photodetector (QDIP) Imaging Focal Plane Array

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath D.; Bandara, Sumith V.; Hill, Cory J.; Ting, David Z.; Liu, John K.; Rafol, Sir B.; Blazejewski, Edward R.; Mumolo, Jason M.; Keo, Sam A.; Krishna, Sanjay; hide

    2007-01-01

    Epitaxially grown self-assembled. InAs-InGaAs-GaAs quantum dots (QDs) are exploited for the development of large-format long-wavelength infrared focal plane arrays (FPAs). The dot-in-a-well (DWELL) structures were experimentally shown to absorb both 45 degrees and normal incident light, therefore, a reflection grating structure was used to enhance the quantum efficiency. The devices exhibit peak responsivity out to 8.1 micrometers, with peak detectivity reaching approximately 1 X 10(exp 10) Jones at 77 K. The devices were fabricated into the first long-wavelength 640 x 512 pixel QD infrared photodetector imaging FPA, which has produced excellent infrared imagery with noise equivalent temperature difference of 40 mK at 60-K operating temperature.

  14. Constrained Chebyshev approximations to some elementary functions suitable for evaluation with floating point arithmetic

    NASA Technical Reports Server (NTRS)

    Manos, P.; Turner, L. R.

    1972-01-01

    Approximations which can be evaluated with precision using floating-point arithmetic are presented. The particular set of approximations thus far developed are for the function TAN and the functions of USASI FORTRAN excepting SQRT and EXPONENTIATION. These approximations are, furthermore, specialized to particular forms which are especially suited to a computer with a small memory, in that all of the approximations can share one general purpose subroutine for the evaluation of a polynomial in the square of the working argument.

  15. Accuracy of least-squares methods for the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Bochev, Pavel B.; Gunzburger, Max D.

    1993-01-01

    Recently there has been substantial interest in least-squares finite element methods for velocity-vorticity-pressure formulations of the incompressible Navier-Stokes equations. The main cause for this interest is the fact that algorithms for the resulting discrete equations can be devised which require the solution of only symmetric, positive definite systems of algebraic equations. On the other hand, it is well-documented that methods using the vorticity as a primary variable often yield very poor approximations. Thus, here we study the accuracy of these methods through a series of computational experiments, and also comment on theoretical error estimates. It is found, despite the failure of standard methods for deriving error estimates, that computational evidence suggests that these methods are, at the least, nearly optimally accurate. Thus, in addition to the desirable matrix properties yielded by least-squares methods, one also obtains accurate approximations.

  16. Enhancing Least-Squares Finite Element Methods Through a Quantity-of-Interest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaudhry, Jehanzeb Hameed; Cyr, Eric C.; Liu, Kuo

    2014-12-18

    Here, we introduce an approach that augments least-squares finite element formulations with user-specified quantities-of-interest. The method incorporates the quantity-of-interest into the least-squares functional and inherits the global approximation properties of the standard formulation as well as increased resolution of the quantity-of-interest. We establish theoretical properties such as optimality and enhanced convergence under a set of general assumptions. Central to the approach is that it offers an element-level estimate of the error in the quantity-of-interest. As a result, we introduce an adaptive approach that yields efficient, adaptively refined approximations. Several numerical experiments for a range of situations are presented to supportmore » the theory and highlight the effectiveness of our methodology. Notably, the results show that the new approach is effective at improving the accuracy per total computational cost.« less

  17. First THEMIS Infrared and Visible Images of Mars

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This picture shows both a visible and a thermal infrared image taken by the thermal emission imaging system on NASA's 2001 Mars Odyssey spacecraft on November 2, 2001. The images were taken as part of the ongoing calibration and testing of the camera system as the spacecraft orbited Mars on its 13threvolution of the planet.

    The visible wavelength image, shown on the right in black and white, was obtained using one of the instrument's five visible filters. The spacecraft was approximately 22,000 kilometers (about 13,600 miles) above Mars looking down toward the south pole when this image was acquired. It is late spring in the martian southern hemisphere.

    The thermal infrared image, center, shows the temperature of the surface in color. The circular feature seen in blue is the extremely cold martian south polar carbon dioxide ice cap. The instrument has measured a temperature of minus 120 degrees Celsius (minus 184 degrees Fahrenheit) on the south polar ice cap. The polar cap is more than 900 kilometers (540 miles) in diameter at this time.

    The visible image shows additional details along the edge of the ice cap, as well as atmospheric hazes near the cap. The view of the surface appears hazy due to dust that still remains in the martian atmosphere from the massive martian dust storms that have occurred over the past several months.

    The infrared image covers a length of over 6,500 kilometers (3,900 miles)spanning the planet from limb to limb, with a resolution of approximately 5.5 kilometers per picture element, or pixel, (3.4 miles per pixel) at the point directly beneath the spacecraft. The visible image has a resolution of approximately 1 kilometer per pixel (.6 miles per pixel) and covers an area roughly the size of the states of Arizona and New Mexico combined.

    An annotated image is available at the same resolution in tiff format. Click the image to download (note: it is a 5.2 mB file) [figure removed for brevity, see original site]

    NASA's Jet Propulsion Laboratory, Pasadena, Calif. manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington D.C. The thermal-emission imaging system was developed at Arizona State University,Tempe, with Raytheon Santa Barbara Remote Sensing, Santa Barbara, Calif. Lockheed Martin Astronautics, Denver, is the prime contractor for the project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  18. Can a Forest/Nonforest Change Map Improve the Precision of Forest Area, Volume, Growth, Removals, and Mortality Estimates?

    Treesearch

    Dale D. Gormanson; Mark H. Hansen; Ronald E. McRoberts

    2005-01-01

    In an extensive forest inventory, stratifications that use dual-date forest/nonforest classifications of Landsat Thematic Mapper data approximately 10 years apart are tested against similar classifications that use data from only one date. Alternative stratifications that further define edge strata as pixels adjacent to a forest/nonforest boundary are included in the...

  19. Simulation analysis of the unconfined aquifer, Raft River geothermal area, Idaho-Utah

    USGS Publications Warehouse

    Nichols, William D.

    1979-01-01

    This study covers about 1,000 mi2 (2,600 km2 ) of the southern Raft River drainage basin in south-central Idaho and northwest Utah. The main area of interest, approximately 200 mi2 (520 km2 ) of semiarid agricultural and rangeland in the southern Raft River Valley that includes the known Geothermal Resource Area near Bridge, Idaho, was modelled numerically to evaluate the hydrodynamics of the unconfined aquifer. Computed and estimated transmissivity values range from 1,200 feet squared per day (110 meters squared per day) to 73,500 feet squared per day (6,830 meters squared per day). Water budgets, including ground-water recharge and discharge for approximate equilibrium conditions, have been computed by several previous investigators; their estimates of available ground-water recharge range from about 46,000 acre-feet per year (57 cubic hectometers per year) to 100,000 acre-feet per year (123 cubic hectometers per year).Simulation modeling of equilibrium conditions represented by 1952 water levels suggests: (1) recharge to the water-table aquifer is about 63,000 acre-feet per year (77 cubic hectometers per year); (2) a significant volume of ground water is discharged through evapotranspiration by phreatophytes growing on the valley bottomlands; (3) the major source of recharge may be from upward leakage of water from a deeper, confined reservoir; and (4) the aquifer transmissivity probably does not exceed about 12,000 feet squared per day (3,100 meters squared per day). Additional analysis carried out by simulating transient conditions from 1952 to 1965 strongly suggests that aquifer transmissivity does not exceed about 7,700 feet squared per day (700 meters squared per day). The model was calibrated using slightly modified published pumpage data; it satisfactorily reproduced the historic water-level decline over the period 1952-65.

  20. The Spacelab IPS Star Simulator

    NASA Astrophysics Data System (ADS)

    Wessling, Francis C., III

    The cost of doing business in space is very high. If errors occur while in orbit the costs grow and desired scientific data may be corrupted or even lost. The Spacelab Instrument Pointing System (IPS) Star Simulator is a unique test bed that allows star trackers to interface with simulated stars in a laboratory before going into orbit. This hardware-in-the-loop testing of equipment on earth increases the probability of success while in space. The IPS Star Simulator provides three fields of view 2.55 x 2.55 deg each for input into star trackers. The fields of view are produced on three separate monitors. Each monitor has 4096 x 4096 addressable points and can display 50 stars (pixels) maximum at a given time. The pixel refresh rate is 1000 Hz. The spectral output is approximately 550 nm. The available relative visual magnitude range is two to eight visual magnitudes. The star size is less than 100 arcsec. The minimum star movement is less than 5 arcsec and the relative position accuracy is approximately 40 arcsec. The purpose of this paper is to describe the IPS Star Simulator design and to provide an operational scenario so others may gain from the approach and possible use of the system.

Top