Science.gov

Sample records for aqp4 aqp5 amtb

  1. Abnormal distribution of AQP5 in labial salivary glands is associated with poor saliva secretion in patients with Sjögren's syndrome including neuromyelitis optica complicated patients.

    PubMed

    Yoshimura, Shunsuke; Nakamura, Hideki; Horai, Yoshiro; Nakajima, Hideki; Shiraishi, Hirokazu; Hayashi, Tomayoshi; Takahashi, Toshiyuki; Kawakami, Atsushi

    2016-01-01

    To investigate whether aquaporins (AQPs) are involved in salivary gland dysfunction in patients with neuromyelitis optica (NMO) complicated with Sjögren's syndrome (SS). Eight primary SS (pSS) patients, four NMO spectrum disorder (NMOsd) patients complicated with SS (NMOsd-SS), and three control subjects were enrolled. Immunohistochemistry of labial salivary glands (LSGs) was performed to determine the expressions of AQP4, AQP5, and tumor necrosis factor-alpha (TNF-α). In vitro expression of AQP5 was examined by Western blotting in cultured primary salivary gland epithelial cells (SGECs). No expression of AQP4 was shown in all LSGs. AQP5 was clearly expressed in the all acini, but the predominant localization of AQP5 in the apical side was diminished in the patients with pSS or NMOsd-SS compared with the controls and tended to be even lower in NMOsd-SS than pSS. The abnormal localization of AQP5 was associated with poor saliva secretion. No difference was found in TNF-α expression in the LSGs between patients with pSS and NMOsd-SS. AQP5 expression of SGECs in vitro was not changed by TNF-α or interleukin-10. Our results suggest that AQP5 but not AQP4 contributes to salivary secretion in patients with SS including those with NMO complicated with SS.

  2. Aquaporins in chicken: localization of ck-AQP5 along the small and large intestine.

    PubMed

    Ramírez-Lorca, Reposo; Muñoz-Cabello, Ana María; Toledo-Aral, Juan José; Ilundáin, Anunciación A; Echevarría, Miriam

    2006-02-01

    Aquaporins (AQPS) are transmembrane water channels poorly investigated in birds. Using degenerated primers and RT-PCR, we identified in kidney and gastrointestinal tract of Hubbard chickens (Gallus gallus) three fragments, corresponding to ck-AQP2, ck-AQP4, and ck-AQP5 mRNAs. Comparison of nucleotide ck-AQPs sequences to their rat and human orthologues revealed an overall identity of 75-90%. Expression in the renal and gastrointestinal systems of the three ck-AQPs mRNA was analysed by Northern assays. Transcript of ck-AQP2 was only identified in kidney. ck-AQP4 mRNA was highly expressed in brain, and to a lesser extent in kidney and stomach. ck-AQP5 mRNA was found in jejunum and ileum, and to a lesser extent in colon and lung. In situ hybridisation showed ck-AQP5 mRNA in the crypt cells of jejunum, ileum and colon, whereas it was absent from the cells lining the villi. Levels of ck-AQP5 mRNA (analyzed by Northern and in situ hybridisation assays) and protein (analysed by immunohistochemistry) decreased from the jejunum to the colon. This work confirmed the presence of AQPs in chicken, and showed that chicken and mammalian AQPs share a high degree of similarity in nucleotide sequence and tissue distribution.

  3. Neuroimmunological Implications of AQP4 in Astrocytes

    PubMed Central

    Ikeshima-Kataoka, Hiroko

    2016-01-01

    The brain has high-order functions and is composed of several kinds of cells, such as neurons and glial cells. It is becoming clear that many kinds of neurodegenerative diseases are more-or-less influenced by astrocytes, which are a type of glial cell. Aquaporin-4 (AQP4), a membrane-bound protein that regulates water permeability is a member of the aquaporin family of water channel proteins that is expressed in the endfeet of astrocytes in the central nervous system (CNS). Recently, AQP4 has been shown to function, not only as a water channel protein, but also as an adhesion molecule that is involved in cell migration and neuroexcitation, synaptic plasticity, and learning/memory through mechanisms involved in long-term potentiation or long-term depression. The most extensively examined role of AQP4 is its ability to act as a neuroimmunological inducer. Previously, we showed that AQP4 plays an important role in neuroimmunological functions in injured mouse brain in concert with the proinflammatory inducer osteopontin (OPN). The aim of this review is to summarize the functional implication of AQP4, focusing especially on its neuroimmunological roles. This review is a good opportunity to compile recent knowledge and could contribute to the therapeutic treatment of autoimmune diseases through strategies targeting AQP4. Finally, the author would like to hypothesize on AQP4’s role in interaction between reactive astrocytes and reactive microglial cells, which might occur in neurodegenerative diseases. Furthermore, a therapeutic strategy for AQP4-related neurodegenerative diseases is proposed. PMID:27517922

  4. Deletional tolerance prevents AQP4-directed autoimmunity in mice

    PubMed Central

    Vogel, Anna-Lena; Knier, Benjamin; Lammens, Katja; Kalluri, Sudhakar Reddy; Kuhlmann, Tanja; Bennett, Jeffrey L.; Korn, Thomas

    2017-01-01

    Neuromyelitis optica (NMO) is an autoimmune disorder of the central nervous system (CNS) mediated by antibodies to the water channel protein AQP4 expressed in astrocytes. The contribution of AQP4-specific T cells to the class switch recombination of pathogenic AQP4-specific antibodies and the inflammation of the blood–brain barrier is incompletely understood, as immunogenic naturally processed T-cell epitopes of AQP4 are unknown. By immunizing Aqp4−/− mice with full-length murine AQP4 protein followed by recall with overlapping peptides, we here identify AQP4(201-220) as the major immunogenic IAb-restricted epitope of AQP4. We show that WT mice do not harbor AQP4(201–220)-specific T-cell clones in their natural repertoire due to deletional tolerance. However, immunization with AQP4(201–220) of Rag1−/− mice reconstituted with the mature T-cell repertoire of Aqp4−/− mice elicits an encephalomyelitic syndrome. Similarly to the T-cell repertoire, the B-cell repertoire of WT mice is “purged” of AQP4-specific B cells, and robust serum responses to AQP4 are only mounted in Aqp4−/− mice. While AQP4 (201–220)-specific T cells alone induce encephalomyelitis, NMO-specific lesional patterns in the CNS and the retina only occur in the additional presence of anti-AQP4 antibodies. Thus, failure of deletional T-cell and B-cell tolerance against AQP4 is a prerequisite for clinically manifest NMO. PMID:28058717

  5. Upregulation of AQP3 and AQP5 induced by dexamethasone and ambroxol in A549 cells.

    PubMed

    Ben, Yong; Chen, Jie; Zhu, Rong; Gao, Lei; Bai, Chunxue

    2008-04-30

    Aquaporins (AQPs) are membrane channel proteins that play roles in the regulation of water permeability in many tissues. AQP1 and AQP5 expressed in lung provide the principal route for osmotically driven water transport. In the airways, AQP3 and AQP4 facilitate water transport. Dexamethasone and ambroxol are often used to treat patients with pulmonary diseases accompanied by airway hypersecretion. The role of AQPs in these effective treatments has not been addressed. In this study, we analyzed the expression of AQPs in a human airway epithelial cell line (A549 cells) and showed that AQP3 and 5, but not AQP1 and 4, were expressed in A549 cells. Both dexamethasone and ambroxol stimulated the expression of AQP3 and 5 at the mRNA and protein levels. The data suggest potential roles of AQP3 and 5 in the regulation of airway hypersecretion, perhaps ultimately providing a target for treating such diseases.

  6. Molecular characterization of water-selective AQP (EbAQP4) in hagfish: insight into ancestral origin of AQP4.

    PubMed

    Nishimoto, Goro; Sasaki, Go; Yaoita, Eishin; Nameta, Masaaki; Li, Huiping; Furuse, Kyoko; Fujinaka, Hidehiko; Yoshida, Yutaka; Mitsudome, Akihisa; Yamamoto, Tadashi

    2007-01-01

    Hagfish (Eptatretus burgeri) are agnathous and are the earliest vertebrates still in existence. Pavement cells adjacent to the mitochondria-rich cells show orthogonal arrays of particles (OAPs) in the gill of hagfish, a known ultrastructural morphology of aquaporin (AQP) in mammalian freeze-replica studies, suggesting that an AQP homolog exists in pavement cells. We therefore cloned water channels from hagfish gill and examined their molecular characteristics. The cloned AQP [E. burgeri AQP4 (EbAQP4)] encodes 288 amino acids, including two NPA motifs and six transmembrane regions. The deduced amino acid sequence of EbAQP4 showed high homology to mammalian and avian AQP4 (rat, 44%; quail, 43%) and clustered with AQP4 subsets by the molecular phylogenetic tree. The osmotic water permeability of Xenopus oocytes injected with EbAQP4 cRNA increased eightfold compared with water-injected controls and was not reversibly inhibited by 0.3 mM HgCl(2). EbAQP4 mRNA expression in the gill was demonstrated by the RNase protection assay; antibody raised against the COOH terminus of EbAQP4 also detected (by Western blot analysis) a major approximately 31-kDa band in the gill. Immunohistochemistry and immunoelectron microscopy showed EbAQP4 localized along the basolateral membranes of gill pavement cells. In freeze-replica studies, OAPs were detected on the protoplasmic face of the split membrane comprising particles 5-6 nm long on the basolateral side of the pavement cells. These observations suggest that EbAQP4 is an ancestral water channel of mammalian AQP4 and plays a role in basolateral water transport in the gill pavement cells.

  7. FREEZE-FRACTURE AND IMMUNOGOLD ANALYSIS OF AQUAPORIN-4 (AQP4) SQUARE ARRAYS, WITH MODELS OF AQP4 LATTICE ASSEMBLY

    PubMed Central

    RASH, J. E.; DAVIDSON, K. G. V.; YASUMURA, T.; FURMAN, C. S.

    2007-01-01

    Each day, approximately 0.5–0.9 l of water diffuses through (primarily) aquaporin-1 (AQP1) channels in the human choroid plexus, into the cerebrospinal fluid of the brain ventricles and spinal cord central canal, through the ependymal cell lining, and into the parenchyma of the CNS. Additional water is also derived from metabolism of glucose within the CNS parenchyma. To maintain osmotic homeostasis, an equivalent amount of water exits the CNS parenchyma by diffusion into interstitial capillaries and into the subarachnoid space that surrounds the brain and spinal cord. Most of that efflux is through AQP4 water channels concentrated in astrocyte endfeet that surround capillaries and form the glia limitans. This report extends the ultrastructural and immunocytochemical characterizations of the crystalline aggregates of intramembrane proteins that comprise the AQP4 “square arrays” of astrocyte and ependymocyte plasma membranes. We elaborate on recent demonstrations in Chinese hamster ovary cells of the effects on AQP4 array assembly resulting from separate vs. combined expression of M1 and M23 AQP4, which are two alternatively spliced variants of the AQP4 gene. Using improved shadowing methods, we demonstrate sub-molecular cross-bridges that link the constituent intramembrane particles (IMPs) into regular square lattices of AQP4 arrays. We show that the AQP4 core particle is 4.5 nm in diameter, which appears to be too small to accommodate four monomeric proteins in a tetrameric IMP. Several structural models are considered that incorporate freeze-fracture data for submolecular “cross-bridges” linking IMPs into the classical square lattices that characterize, in particular, naturally occurring AQP4. PMID:15561408

  8. Human AQP5 Plays a Role in the Progression of Chronic Myelogenous Leukemia (CML)

    PubMed Central

    Chae, Young Kwang; Kang, Sung Koo; Kim, Myoung Sook; Woo, Janghee; Lee, Juna; Chang, Steven; Kim, Dong-Wook; Kim, Myungshin; Park, Seonyang; Kim, Inho; Keam, Bhumsuk; Rhee, Jiyoung; Koo, Nam Hee; Park, Gyeongsin; Kim, Soo-Hyun; Jang, Se-Eun; Kweon, Il-Young; Sidransky, David; Moon, Chulso

    2008-01-01

    Aquaporins (AQPs) have previously been associated with increased expression in solid tumors. However, its expression in hematologic malignancies including CML has not been described yet. Here, we report the expression of AQP5 in CML cells by RT-PCR and immunohistochemistry. While normal bone marrow biopsy samples (n = 5) showed no expression of AQP5, 32% of CML patient samples (n = 41) demonstrated AQP5 expression. In addition, AQP5 expression level increased with the emergence of imatinib mesylate resistance in paired samples (p = 0.047). We have found that the overexpression of AQP5 in K562 cells resulted in increased cell proliferation. In addition, small interfering RNA (siRNA) targeting AQP5 reduced the cell proliferation rate in both K562 and LAMA84 CML cells. Moreover, by immunoblotting and flow cytometry, we show that phosphorylation of BCR-ABL1 is increased in AQP5-overexpressing CML cells and decreased in AQP5 siRNA-treated CML cells. Interestingly, caspase9 activity increased in AQP5 siRNA-treated cells. Finally, FISH showed no evidence of AQP5 gene amplification in CML from bone marrow. In summary, we report for the first time that AQP5 is overexpressed in CML cells and plays a role in promoting cell proliferation and inhibiting apoptosis. Furthermore, our findings may provide the basis for a novel CML therapy targeting AQP5. PMID:18612408

  9. Protective role of brain water channel AQP4 in murine cerebral malaria.

    PubMed

    Promeneur, Dominique; Lunde, Lisa Kristina; Amiry-Moghaddam, Mahmood; Agre, Peter

    2013-01-15

    Tragically common among children in sub-Saharan Africa, cerebral malaria is characterized by rapid progression to coma and death. In this study, we used a model of cerebral malaria appearing in C57BL/6 WT mice after infection with the rodent malaria parasite Plasmodium berghei ANKA. Expression and cellular localization of the brain water channel aquaporin-4 (AQP4) was investigated during the neurological syndrome. Semiquantitative real-time PCR comparing uninfected and infected mice showed a reduction of brain AQP4 transcript in cerebral malaria, and immunoblots revealed reduction of brain AQP4 protein. Reduction of brain AQP4 protein was confirmed in cerebral malaria by quantitative immunogold EM; however, polarized distribution of AQP4 at the perivascular and subpial astrocyte membranes was not altered. To further examine the role of AQP4 in cerebral malaria, WT mice and littermates genetically deficient in AQP4 were infected with P. berghei. Upon development of cerebral malaria, WT and AQP4-null mice exhibited similar increases in width of perivascular astroglial end-feet in brain. Nevertheless, the AQP4-null mice exhibited more severe signs of cerebral malaria with greater brain edema, although disruption of the blood-brain barrier was similar in both groups. In longitudinal studies, cerebral malaria appeared nearly 1 d earlier in the AQP4-null mice, and reduced survival was noted when chloroquine rescue was attempted. We conclude that the water channel AQP4 confers partial protection against cerebral malaria.

  10. Protective role of brain water channel AQP4 in murine cerebral malaria

    PubMed Central

    Promeneur, Dominique; Lunde, Lisa Kristina; Amiry-Moghaddam, Mahmood; Agre, Peter

    2013-01-01

    Tragically common among children in sub-Saharan Africa, cerebral malaria is characterized by rapid progression to coma and death. In this study, we used a model of cerebral malaria appearing in C57BL/6 WT mice after infection with the rodent malaria parasite Plasmodium berghei ANKA. Expression and cellular localization of the brain water channel aquaporin-4 (AQP4) was investigated during the neurological syndrome. Semiquantitative real-time PCR comparing uninfected and infected mice showed a reduction of brain AQP4 transcript in cerebral malaria, and immunoblots revealed reduction of brain AQP4 protein. Reduction of brain AQP4 protein was confirmed in cerebral malaria by quantitative immunogold EM; however, polarized distribution of AQP4 at the perivascular and subpial astrocyte membranes was not altered. To further examine the role of AQP4 in cerebral malaria, WT mice and littermates genetically deficient in AQP4 were infected with P. berghei. Upon development of cerebral malaria, WT and AQP4-null mice exhibited similar increases in width of perivascular astroglial end-feet in brain. Nevertheless, the AQP4-null mice exhibited more severe signs of cerebral malaria with greater brain edema, although disruption of the blood–brain barrier was similar in both groups. In longitudinal studies, cerebral malaria appeared nearly 1 d earlier in the AQP4-null mice, and reduced survival was noted when chloroquine rescue was attempted. We conclude that the water channel AQP4 confers partial protection against cerebral malaria. PMID:23277579

  11. Targeted deletion of Aqp4 promotes the formation of astrocytic gap junctions.

    PubMed

    Katoozi, Shirin; Skauli, Nadia; Rahmani, Soulmaz; Camassa, Laura M A; Boldt, Henning B; Ottersen, Ole P; Amiry-Moghaddam, Mahmood

    2017-05-27

    Aquaporin-4 (AQP4) is the predominant water channel in the brain and is expressed in high density in astrocytes. By fluxing water along osmotic gradients, AQP4 contributes to brain volume and ion homeostasis. Here we ask whether deletion of Aqp4 leads to upregulation of the gap junctional proteins connexin-43 (Cx43) and connexin-30 (Cx30). These molecules couple adjacent astrocytes to each other and allow water and ions to redistribute within the astrocyte syncytium. Immunogold analysis of parietal cortex and hippocampus showed that the number of gap junctions per capillary profile is increased in AQP4 knockout (AQP4 KO) mice. The most pronounced changes were observed for Cx43 in hippocampus where the number of connexin labeled gap junctions increased by 100% following AQP4 KO. Western blot analysis of whole tissue homogenates showed no change in the amount of Cx43 or Cx30 protein after AQP4 KO. However, AQP4 KO led to a significant increase in the amount of Cx43 in a Triton X-100 insoluble fraction. This fraction is associated with connexin assembly into gap junctional plaques in the plasma membrane. In line with our immunoblot data, RT-qPCR showed no significant increase in Cx43 and Cx30 mRNA levels after AQP4 KO. Our findings suggest that AQP4 KO leads to increased aggregation of Cx43 into gap junctions and provide a putative mechanistic basis for the enhanced tracer coupling in hippocampi of AQP4 KO mice. The increased number of gap junctions in AQP4 deficient mice may explain why Aqp4 deletion has rather modest effects on brain volume and K(+) homeostasis.

  12. AQP4-Dependent Water Transport Plays a Functional Role in Exercise-Induced Skeletal Muscle Adaptations

    PubMed Central

    Basco, Davide; Blaauw, Bert; Pisani, Francesco; Sparaneo, Angelo; Nicchia, Grazia Paola; Mola, Maria Grazia; Reggiani, Carlo; Svelto, Maria; Frigeri, Antonio

    2013-01-01

    In this study we assess the functional role of Aquaporin-4 (AQP4) in the skeletal muscle by analyzing whether physical activity modulates AQP4 expression and whether the absence of AQP4 has an effect on osmotic behavior, muscle contractile properties, and physical activity. To this purpose, rats and mice were trained on the treadmill for 10 (D10) and 30 (D30) days and tested with exercise to exhaustion, and muscles were used for immunoblotting, RT-PCR, and fiber-type distribution analysis. Taking advantage of the AQP4 KO murine model, functional analysis of AQP4 was performed on dissected muscle fibers and sarcolemma vesicles. Moreover, WT and AQP4 KO mice were subjected to both voluntary and forced activity. Rat fast-twitch muscles showed a twofold increase in AQP4 protein in D10 and D30 rats compared to sedentary rats. Such increase positively correlated with the animal performance, since highest level of AQP4 protein was found in high runner rats. Interestingly, no shift in muscle fiber composition nor an increase in AQP4-positive fibers was found. Furthermore, no changes in AQP4 mRNA after exercise were detected, suggesting that post-translational events are likely to be responsible for AQP4 modulation. Experiments performed on AQP4 KO mice revealed a strong impairment in osmotic responses as well as in forced and voluntary activities compared to WT mice, even though force development amplitude and contractile properties were unvaried. Our findings definitively demonstrate the physiological role of AQP4 in supporting muscle contractile activity and metabolic changes that occur in fast-twitch skeletal muscle during prolonged exercise. PMID:23520529

  13. AQP4-dependent water transport plays a functional role in exercise-induced skeletal muscle adaptations.

    PubMed

    Basco, Davide; Blaauw, Bert; Pisani, Francesco; Sparaneo, Angelo; Nicchia, Grazia Paola; Mola, Maria Grazia; Reggiani, Carlo; Svelto, Maria; Frigeri, Antonio

    2013-01-01

    In this study we assess the functional role of Aquaporin-4 (AQP4) in the skeletal muscle by analyzing whether physical activity modulates AQP4 expression and whether the absence of AQP4 has an effect on osmotic behavior, muscle contractile properties, and physical activity. To this purpose, rats and mice were trained on the treadmill for 10 (D10) and 30 (D30) days and tested with exercise to exhaustion, and muscles were used for immunoblotting, RT-PCR, and fiber-type distribution analysis. Taking advantage of the AQP4 KO murine model, functional analysis of AQP4 was performed on dissected muscle fibers and sarcolemma vesicles. Moreover, WT and AQP4 KO mice were subjected to both voluntary and forced activity. Rat fast-twitch muscles showed a twofold increase in AQP4 protein in D10 and D30 rats compared to sedentary rats. Such increase positively correlated with the animal performance, since highest level of AQP4 protein was found in high runner rats. Interestingly, no shift in muscle fiber composition nor an increase in AQP4-positive fibers was found. Furthermore, no changes in AQP4 mRNA after exercise were detected, suggesting that post-translational events are likely to be responsible for AQP4 modulation. Experiments performed on AQP4 KO mice revealed a strong impairment in osmotic responses as well as in forced and voluntary activities compared to WT mice, even though force development amplitude and contractile properties were unvaried. Our findings definitively demonstrate the physiological role of AQP4 in supporting muscle contractile activity and metabolic changes that occur in fast-twitch skeletal muscle during prolonged exercise.

  14. AQP5 is differentially regulated in astrocytes during metabolic and traumatic injuries.

    PubMed

    Chai, Rui Chao; Jiang, Jiao Hua; Wong, Ann Yuen Kwan; Jiang, Feng; Gao, Kai; Vatcher, Greg; Hoi Yu, Albert Cheung

    2013-10-01

    Water movement plays vital roles in both physiological and pathological conditions in the brain. Astrocytes are responsible for regulating this water movement and are the major contributors to brain edema in pathological conditions. Aquaporins (AQPs) in astrocytes play critical roles in the regulation of water movement in the brain. AQP1, 3, 4, 5, 8, and 9 have been reported in the brain. Compared with AQP1, 4, and 9, AQP3, 5, and 8 are less studied. Among the lesser known AQPs, AQP5, which has multiple functions identified outside the central nervous system, is also indicated to be involved in hypoxia injury in astrocytes. In our study, AQP5 expression could be detected both in primary cultures of astrocytes and neurons, and AQP5 expression in astrocytes was confirmed in 1- to 4-week old primary cultures of astrocytes. AQP5 was localized on the cytoplasmic membrane and in the cytoplasm of astrocytes. AQP5 expression was downregulated during ischemia treatment and upregulated after scratch-wound injury, which was also confirmed in a middle cerebral artery occlusion model and a stab-wound injury model in vivo. The AQP5 increased after scratch injury was polarized to the migrating processes and cytoplasmic membrane of astrocytes in the leading edge of the scratch-wound, and AQP5 over-expression facilitated astrocyte process elongation after scratch injury. Taken together, these results indicate that AQP5 might be an important water channel in astrocytes that is differentially expressed during various brain injuries.

  15. Conserved elements within first intron of aquaporin-5 (Aqp5) function as transcriptional enhancers

    PubMed Central

    Flodby, Per; Zhou, Beiyun; Ann, David K.; Kim, Kwang-Jin; Minoo, Parviz; Crandall, Edward D.; Borok, Zea

    2007-01-01

    A 4.3-kb rat aquaporin-5 (Aqp5) promoter that directs lung and salivary cell-specific expression in vitro directs low level expression of a GFP reporter in lungs of transgenic mice. Alignment of rat, mouse and human AQP5 genomic sequences identified a highly conserved region in the 3′ portion of intron 1, here termed ci1. To investigate the role of ci1 in Aqp5 expression, transient transfections were undertaken in AQP5-expressing mouse lung epithelial (MLE-15) and rat salivary (Pa-4) cells and AQP5-non-expressing NIH/3T3 cells. A 536 bp ci1 fragment enhanced transcriptional activity of the rat Aqp5 minimal promoter specifically in MLE-15 cells in an orientation-independent manner. Enhancer activity was Aqp5 promoter-specific, since no increase in activity was detected with the TK promoter. These results suggest that expression of transgenes in mouse lungs under direction of the 4.3 kb rat Aqp5 promoter may be augmented by inclusion of ci1 in transgenic constructs. PMID:17339032

  16. No association of AQP4 polymorphisms with neuromyelitis optica and multiple sclerosis

    PubMed Central

    Ao, Dong-Hui; Wang, Yang-Yang; Zhang, Qi; He, Xiang-Jun; Zhong, Shan-Shan; Wu, Jian

    2016-01-01

    Abstract Multiple sclerosis (MS) and neuromyelitis optica (NMO) are inflammatory demyelinating disorders of the central nervous system (CNS). Various genetic and environmental factors have been identified to contribute to etiology of MS and NMO. Aquaporin 4 (AQP4), is the most abundant water channel in CNS. AQP4 is expressed in astrocytes of the brain, spinal cord, optic nerve and supportive cells in sensory organs. In contrast to MS, immunoreactivity of AQP4 is abolished in NMO lesions. However, conflicting results have been reported regarding the association between AQP4 polymorphisms and demyelinating disorders. Considering the ethnic differences of genetic variations, replications in other cohorts are required. In this study, single nucleotide polymorphisms (SNPs) of AQP4 gene in patients with NMO/neuromyelitis optica spectrum disorders (NMOSD), and MS in the Northern Han Chinese population were examined. Six selected AQP4 SNPs were genotyped by high-resolution melting (HRM) method. Compared with healthy control (HC), there was no significant difference of AQP4 allele and genotype frequency in MS or NMO/NMOSD group. This study showed no significant association of common AQP4 SNPs with MS or NMO/NMOSD, strongly suggesting that polymorphisms of AQP4 gene are unlikely to confer MS or NMO/NMOSD susceptibility, at least in Northern Han Chinese population. PMID:28123825

  17. Aquaporin-4 Autoantibodies in Neuromyelitis Optica: AQP4 Isoform-Dependent Sensitivity and Specificity

    PubMed Central

    Pisani, Francesco; Sparaneo, Angelo; Tortorella, Carla; Ruggieri, Maddalena; Trojano, Maria; Mola, Maria Grazia; Nicchia, Grazia Paola; Frigeri, Antonio; Svelto, Maria

    2013-01-01

    Neuromyelitis Optica (NMO) is an autoimmune demyelinating disease, characterized by the presence of autoantibody (NMO-IgG) to Aquaporin-4 (AQP4). NMO-IgG identification supports NMO diagnosis and several diagnostic tests have been developed, but their sensitivity is too variable, and some assay show low sensitivity. This impairs correct diagnosis of NMO. By cell based assay (CBA) we here evaluate the efficacy of different strategies to express AQP4 in mammalian cells in terms of: a) AQP4 translation initiation signals; b) AQP4 isoforms (M1 and M23) and fluorescent tag position; c) NMO serum concentration and AQP4 degradation. Our results demonstrate that when using AQP4-M1, the nucleotide in position −3 of the AUG greatly affects the AQP4-M1/M23 protein ratio, NMO-IgG binding, and consequently test sensitivity. Test sensitivity was highest with M23 expressing cells (97.5%) and only 27.5% with AQP4-M1. The fluorescent tag added to the N-terminus of AQP4-M23 considerably affected the NMO-IgG binding, and test sensitivity, due to disruption of AQP4 suprastructures. Furthermore, sera used at high concentration resulted in AQP4 degradation which affected test sensitivity. To further evaluate the reliability of the M23 based CBA test, samples of one NMO patient collected during about 2 years clinical follow-up were tested. The results of serum titer correlated with disease activity and treatment response. In conclusion, we provide a molecular explanation for the contrasting CBA test data reported and suggest the use of M23 with a C-terminus fluorescent tag as the proper test for NMO diagnosis. PMID:24260168

  18. Aquaporin-4 autoantibodies in Neuromyelitis Optica: AQP4 isoform-dependent sensitivity and specificity.

    PubMed

    Pisani, Francesco; Sparaneo, Angelo; Tortorella, Carla; Ruggieri, Maddalena; Trojano, Maria; Mola, Maria Grazia; Nicchia, Grazia Paola; Frigeri, Antonio; Svelto, Maria

    2013-01-01

    Neuromyelitis Optica (NMO) is an autoimmune demyelinating disease, characterized by the presence of autoantibody (NMO-IgG) to Aquaporin-4 (AQP4). NMO-IgG identification supports NMO diagnosis and several diagnostic tests have been developed, but their sensitivity is too variable, and some assay show low sensitivity. This impairs correct diagnosis of NMO. By cell based assay (CBA) we here evaluate the efficacy of different strategies to express AQP4 in mammalian cells in terms of: a) AQP4 translation initiation signals; b) AQP4 isoforms (M1 and M23) and fluorescent tag position; c) NMO serum concentration and AQP4 degradation. Our results demonstrate that when using AQP4-M1, the nucleotide in position -3 of the AUG greatly affects the AQP4-M1/M23 protein ratio, NMO-IgG binding, and consequently test sensitivity. Test sensitivity was highest with M23 expressing cells (97.5%) and only 27.5% with AQP4-M1. The fluorescent tag added to the N-terminus of AQP4-M23 considerably affected the NMO-IgG binding, and test sensitivity, due to disruption of AQP4 suprastructures. Furthermore, sera used at high concentration resulted in AQP4 degradation which affected test sensitivity. To further evaluate the reliability of the M23 based CBA test, samples of one NMO patient collected during about 2 years clinical follow-up were tested. The results of serum titer correlated with disease activity and treatment response. In conclusion, we provide a molecular explanation for the contrasting CBA test data reported and suggest the use of M23 with a C-terminus fluorescent tag as the proper test for NMO diagnosis.

  19. Cloning and characterization of murine Aqp5: evidence for a conserved aquaporin gene cluster.

    PubMed

    Krane, C M; Towne, J E; Menon, A G

    1999-05-01

    Aquaporin 5 (Aqp5), a member of the aquaporin family of membrane water channels, is thought to modulate the osmolality of fluids in the eye, lung, and salivary gland. Here, we report the cloning and genomic characterization of murine Aqp5 and its expression in relevant mouse tissues. This gene, comprised of four exons encoding 265 amino acids (121, 55, 28, and 61 amino acids respectively), is transcribed into an approximate 1.8-kb mRNA detected in lung, parotid, submandibular, sublingual, and lacrimal tissues. Aqp5 encodes a protein that is 98% identical to rat Aqp5. An Aqp5 antibody detects an approximately 27-kDa protein band in mouse lung, and an additional 29 kDa band in salivary gland. Cloning and physical mapping genomic fragments contiguous with Aqp5 revealed two other members of the aquaporin family: Aqp2 and Aqp6, arrayed head to tail in the order Aqp2-Aqp5-Aqp6, and provides evidence of a gene cluster conserved in order and orientation in both mice and humans.

  20. NMO sera down-regulate AQP4 in human astrocyte and induce cytotoxicity independent of complement.

    PubMed

    Haruki, Hiroyo; Sano, Yasuteru; Shimizu, Fumitaka; Omoto, Masatoshi; Tasaki, Ayako; Oishi, Mariko; Koga, Michiaki; Saito, Kazuyuki; Takahashi, Toshiyuki; Nakada, Tsutomu; Kanda, Takashi

    2013-08-15

    Autoantibodies against astrocyte water channel aquaporin-4 (AQP4) are highly specific for neuromyelitis optica (NMO). However, the molecular mechanism of NMO still remains unclear. The purpose of this study was to identify the possible humoral mechanisms responsible for the occurrence of astrocytic damage. Human primary astrocytes (AST) were immortalized by retroviral vectors harboring temperature-sensitive SV40 T antigen gene and AQP4 cDNA (M23), designated as hAST-AQP4. The effects of NMO sera on the content and localization of AQP4, including cytotoxicity and astrocytic morphology, were evaluated. In addition, this study examined whether the amount and localization of AQP4 protein in astrocytes were influenced by direct contact with the immortalized human brain microvascular endothelial cell line, TY09. NMO sera alone induced cytotoxicity and addition of complement had a more harmful effect on hAST-AQP4. NMO sera also decreased AQP4 mRNA and protein. NMO sera alone up-regulated TNFα and IL-6 in astrocytes and co-incubation with anti-TNFα and anti-IL-6 neutralizing antibodies blocked both the cytotoxicity and reduction of AQP4 in astrocytes. In the experiment using the in vitro BBB models, AQP4 protein mainly localized at the astrocytic membrane after co-culture with TY09, in contact with TY09. The future elucidation of factors that up-regulate AQP4 in astrocytes presumably released by blood brain barrier forming endothelial cells and that block the production of inflammatory cytokines may therefore lead to the development of a novel therapeutic strategy.

  1. Activation of muscarinic receptors in rat parotid acinar cells induces AQP5 trafficking to nuclei and apical plasma membrane.

    PubMed

    Cho, Gota; Bragiel, Aneta M; Wang, Di; Pieczonka, Tomasz D; Skowronski, Mariusz T; Shono, Masayuki; Nielsen, Søren; Ishikawa, Yasuko

    2015-04-01

    The subcellular distribution of aquaporin-5 (AQP5) in rat parotid acinar cells in response to muscarinic acetylcholine receptor (mAChR) activation remains unclear. Immunoconfocal and immunoelectron microscopy were used to visualize the distribution of AQP5 in parotid acinar cells. Western blotting was used to analyze AQP5 levels in membranes. To clarify the characteristics of membrane domains associated with AQP5, detergent solubility and sucrose-density flotation experiments were performed. Under control conditions, AQP5 was diffusely distributed on the apical plasma membrane (APM) and apical plasmalemmal region and throughout the cytoplasm. Upon mAChR activation, AQP5 was predominantly located in the nucleus, APM and lateral plasma membrane (LPM). Subsequently, localization of AQP5 in the nucleus, APM and LPM was decreased. Prolonged atropine treatment inhibited mAChR agonist-induced translocation of AQP5 to the nucleus, APM and LPM. AQP5 levels were enhanced in isolated nuclei and nuclear membranes prepared from parotid tissues incubated with mAChR agonist. mAChR agonist induced AQP5 levels in both soluble and insoluble nuclear fractions solubilized with Triton X-100 or Lubrol WX. Small amounts of AQP5 in nuclei were detected using low-density sucrose gradient. When AQP5 was present in the nuclear membrane, nuclear size decreased. The activation of mAChR induced AQP5 translocation to the nucleus, APM and LPM, and AQP5 may trigger water transport across the nuclear membrane and plasma membrane in rat parotid acinar cells. AQP5 translocates to the nuclear membrane and may trigger the movement of water, inducing shrinkage of the nucleus and the start of nuclear functions. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Mutations in AQP5, encoding a water-channel protein, cause autosomal-dominant diffuse nonepidermolytic palmoplantar keratoderma.

    PubMed

    Blaydon, Diana C; Lind, Lisbet K; Plagnol, Vincent; Linton, Kenneth J; Smith, Francis J D; Wilson, Neil J; McLean, W H Irwin; Munro, Colin S; South, Andrew P; Leigh, Irene M; O'Toole, Edel A; Lundström, Anita; Kelsell, David P

    2013-08-08

    Autosomal-dominant diffuse nonepidermolytic palmoplantar keratoderma is characterized by the adoption of a white, spongy appearance of affected areas upon exposure to water. After exome sequencing, missense mutations were identified in AQP5, encoding water-channel protein aquaporin-5 (AQP5). Protein-structure analysis indicates that these AQP5 variants have the potential to elicit an effect on normal channel regulation. Immunofluorescence data reveal the presence of AQP5 at the plasma membrane in the stratum granulosum of both normal and affected palmar epidermis, indicating that the altered AQP5 proteins are trafficked in the normal manner. We demonstrate here a role for AQP5 in the palmoplantar epidermis and propose that the altered AQP5 proteins retain the ability to form open channels in the cell membrane and conduct water.

  3. Aquaporin Expression in Normal and Pathological Skeletal Muscles: A Brief Review with Focus on AQP4

    PubMed Central

    Wakayama, Yoshihiro

    2010-01-01

    Freeze-fracture electron microscopy enabled us to observe the molecular architecture of the biological membranes. We were studying the myofiber plasma membranes of health and disease by using this technique and were interested in the special assembly called orthogonal arrays (OAs). OAs were present in normal myofiber plasma membranes and were especially numerous in fast twitch type 2 myofibers; while OAs were lost from sarcolemmal plasma membranes of severely affected muscles with dystrophinopathy and dysferlinopathy but not with caveolinopathy. In the mid nineties of the last century, the OAs turned out to be a water channel named aquaporin 4 (AQP4). Since this discovery, several groups of investigators have been studying AQP4 expression in diseased muscles. This review summarizes the papers which describe the expression of OAs, AQP4, and other AQPs at the sarcolemma of healthy and diseased muscle and discusses the possible role of AQPs, especially that of AQP4, in normal and pathological skeletal muscles. PMID:20339523

  4. Distinction between MOG antibody-positive and AQP4 antibody-positive NMO spectrum disorders

    PubMed Central

    Sato, Douglas Kazutoshi; Callegaro, Dagoberto; Lana-Peixoto, Marco Aurelio; Waters, Patrick J.; Jorge, Frederico M. de Haidar; Takahashi, Toshiyuki; Nakashima, Ichiro; Apostolos-Pereira, Samira Luisa; Talim, Natalia; Simm, Renata Faria; Lino, Angelina Maria Martins; Misu, Tatsuro; Leite, Maria Isabel; Aoki, Masashi

    2014-01-01

    Objective: To evaluate clinical features among patients with neuromyelitis optica spectrum disorders (NMOSD) who have myelin oligodendrocyte glycoprotein (MOG) antibodies, aquaporin-4 (AQP4) antibodies, or seronegativity for both antibodies. Methods: Sera from patients diagnosed with NMOSD in 1 of 3 centers (2 sites in Brazil and 1 site in Japan) were tested for MOG and AQP4 antibodies using cell-based assays with live transfected cells. Results: Among the 215 patients with NMOSD, 7.4% (16/215) were positive for MOG antibodies and 64.7% (139/215) were positive for AQP4 antibodies. No patients were positive for both antibodies. Patients with MOG antibodies represented 21.1% (16/76) of the patients negative for AQP4 antibodies. Compared with patients with AQP4 antibodies or patients who were seronegative, patients with MOG antibodies were more frequently male, had a more restricted phenotype (optic nerve more than spinal cord), more frequently had bilateral simultaneous optic neuritis, more often had a single attack, had spinal cord lesions distributed in the lower portion of the spinal cord, and usually demonstrated better functional recovery after an attack. Conclusions: Patients with NMOSD with MOG antibodies have distinct clinical features, fewer attacks, and better recovery than patients with AQP4 antibodies or patients seronegative for both antibodies. PMID:24415568

  5. Spatial distributions of AQP5 and AQP0 in embryonic and postnatal mouse lens development

    PubMed Central

    Petrova, Rosica S.; Schey, Kevin L.; Donaldson, Paul J.; Grey, Angus C.

    2015-01-01

    The expression of the water channel protein aquaporin (AQP)-5 in adult rodent and human lenses was recently reported using immunohistochemistry, molecular biology, and mass spectrometry techniques, confirming a second transmembrane water channel that is present in lens fibre cells in addition to the abundant AQP0 protein. Interestingly, the sub-cellular distribution and level of post-translational modification of both proteins changes with fibre cell differentiation and location in the adult rodent lens. This study compares the sub-cellular distribution of AQP0 and AQP5 during embryonic and postnatal fibre cell development in the mouse lens to understand how the immunolabelling patterns for both AQPs observed in adult lens are first established. Immunohistochemistry was used to map the cellular and sub-cellular distribution of AQP5 and AQP0 throughout the lens in cryosections from adult (6 weeks to 8 months) and postnatal (0-2 weeks) mouse lenses and in sections from paraffin embedded mouse embryos (E10-E19). All sections were imaged by fluorescence confocal microscopy. Using antibodies directed against the C-terminus of each AQP, AQP5 was abundantly expressed early in development, being found in the cytoplasm of cells of the lens vesicle and surrounding tissues (E10), while AQP0 was detected later (E11), and only in the membranes of elongating primary fibre cells. During the course of subsequent embryonic and postnatal development the pattern of cytoplasmic AQP5 and membranous AQP0 labelling was maintained until postnatal day 6 (P6). From P6 AQP5 labelling became progressively more membranous initially in the lens nucleus and then later in all regions of the lens, while AQP0 labelling was abruptly lost in the lens nucleus due to C-terminal truncation. Our results show that the spatial distribution patterns of AQP0 and AQP5 observed in the adult lens are established during a narrow window of post natal development (P6-P15) that precedes eye opening and coincides

  6. Clinical utility of testing AQP4-IgG in CSF

    PubMed Central

    Majed, Masoud; Fryer, James P.; McKeon, Andrew; Lennon, Vanda A.

    2016-01-01

    Objective: To define, using assays of optimized sensitivity and specificity, the most informative specimen type for aquaporin-4 immunoglobulin G (AQP4-IgG) detection. Methods: Results were reviewed from longitudinal service testing for AQP4-IgG among specimens submitted to the Mayo Clinic Neuroimmunology Laboratory from 101,065 individual patients. Paired samples of serum/CSF were tested from 616 patients, using M1-AQP4-transfected cell-based assays (both fixed AQP4-CBA Euroimmun kit [commercial CBA] and live in-house flow cytometry [FACS]). Sensitivities were compared for 58 time-matched paired specimens (drawn ≤30 days apart) from patients with neuromyelitis optica (NMO) or high-risk patients. Results: The frequency of CSF submission as sole initial specimen was 1 in 50 in 2007 and 1 in 5 in 2015. In no case among 616 paired specimens was CSF positive and serum negative. In 58 time-matched paired specimens, AQP4-IgG was detected by FACS or by commercial CBA more sensitively in serum than in CSF (respectively, p = 0.06 and p < 0.001). A serum titer >1:100 predicted CSF positivity (p < 0.001). The probability of CSF positivity was greater around attack time (p = 0.03). No control specimen from 128 neurologic patients was positive by either assay. Conclusions: FACS and commercial CBA detection of AQP4-IgG is less sensitive in CSF than in serum. The data suggest that most AQP4-IgG is produced in peripheral lymphoid tissues and that a critical serum/CSF gradient is required for IgG to penetrate the CNS in pathogenic quantity. Serum is the optimal and most cost-effective specimen for AQP4-IgG testing. Classification of evidence: This study provides Class IV evidence that for patients with NMO or NMOSD, CSF is less sensitive than serum for detection of AQP4-IgG. PMID:27144221

  7. Striatal Adenosine Signaling Regulates EAAT2 and Astrocytic AQP4 Expression and Alcohol Drinking in Mice

    PubMed Central

    Lee, Moonnoh R; Ruby, Christina L; Hinton, David J; Choi, Sun; Adams, Chelsea A; Young Kang, Na; Choi, Doo-Sup

    2013-01-01

    Adenosine signaling is implicated in several neuropsychiatric disorders, including alcoholism. Among its diverse functions in the brain, adenosine regulates glutamate release and has an essential role in ethanol sensitivity and preference. However, the molecular mechanisms underlying adenosine-mediated glutamate signaling in neuroglial interaction remain elusive. We have previously shown that mice lacking the ethanol-sensitive adenosine transporter, type 1 equilibrative nucleoside transporter (ENT1), drink more ethanol compared with wild-type mice and have elevated striatal glutamate levels. In addition, ENT1 inhibition or knockdown reduces glutamate transporter expression in cultured astrocytes. Here, we examined how adenosine signaling in astrocytes contributes to ethanol drinking. Inhibition or deletion of ENT1 reduced the expression of type 2 excitatory amino-acid transporter (EAAT2) and the astrocyte-specific water channel, aquaporin 4 (AQP4). EAAT2 and AQP4 colocalization was also reduced in the striatum of ENT1 null mice. Ceftriaxone, an antibiotic compound known to increase EAAT2 expression and function, elevated not only EAAT2 but also AQP4 expression in the striatum. Furthermore, ceftriaxone reduced ethanol drinking, suggesting that ENT1-mediated downregulation of EAAT2 and AQP4 expression contributes to excessive ethanol consumption in our mouse model. Overall, our findings indicate that adenosine signaling regulates EAAT2 and astrocytic AQP4 expressions, which control ethanol drinking in mice. PMID:23032072

  8. Dystrophin-dependent and -independent AQP4 pools are expressed in the mouse brain.

    PubMed

    Nicchia, Grazia Paola; Rossi, Andrea; Nudel, Uri; Svelto, Maria; Frigeri, Antonio

    2008-06-01

    In a recent study, we demonstrated that in the plasma membrane AQP4 is organized into several distinct large multisubunit complexes. In this study, we analysed whether these pools are similarly affected in dystrophin-deficient mice and immunolocalized the sites of dystrophin-dependent and -independent AQP4 pools. Western blot performed on two-dimensional Blue Native/SDS-PAGE membranes indicated that, among the AQP4 pools, it was mainly a large multisubunit complex that was specifically affected in dystrophin-deficient mice (DP71 and mdx3cv mice). This dystrophin-dependent AQP4 pool was immunolocalized in perivascular astrocytes, since it was found to be significantly altered in both types of dystrophin-deficient mice. Dystrophin-independent pools were immunolocalized in the granular cell layer of the cerebellum and in the subpial endfoot layer and ependymal cells in the brain. These data provide a better understanding on the association between AQP4 and the dystrophin-glycoprotein complex in the central nervous system.

  9. Endocrinopathies in paediatric-onset neuromyelitis optica spectrum disorder with aquaporin 4 (AQP4) antibody.

    PubMed

    Hacohen, Yael; Messina, Silvia; Gan, Hoong-Wei; Wright, Sukhvir; Chandratre, Saleel; Leite, Maria Isabel; Fallon, Penny; Vincent, Angela; Ciccarelli, Olga; Wassmer, Evangeline; Lim, Ming; Palace, Jacqueline; Hemingway, Cheryl

    2017-08-01

    The involvement of the diencephalic regions in neuromyelitis optica spectrum disorder (NMOSD) may lead to endocrinopathies. In this study, we identified the following endocrinopathies in 60% (15/25) of young people with paediatric-onset aquaporin 4-Antibody (AQP4-Ab) NMOSD: morbid obesity ( n = 8), hyperinsulinaemia ( n = 5), hyperandrogenism ( n = 5), amenorrhoea ( n = 5), hyponatraemia ( n = 4), short stature ( n = 3) and central hypothyroidism ( n = 2) irrespective of hypothalamic lesions. Morbid obesity was seen in 88% (7/8) of children of Caribbean origin. As endocrinopathies were prevalent in the majority of paediatric-onset AQP4-Ab NMOSD, endocrine surveillance and in particular early aggressive weight management is required for patients with AQP4-Ab NMOSD.

  10. Variations in the expression and distribution pattern of AQP5 in acinar cells of patients with sialadenosis.

    PubMed

    Teymoortash, Afshin; Wiegand, Susanne; Borkeloh, Martin; Bette, Michael; Ramaswamy, Annette; Steinbach-Hundt, Silke; Neff, Andreas; Werner, Jochen A; Mandic, Robert

    2012-01-01

    Previously, we pointed out on a possible role of aquaporin 5 (AQP5) in the development of sialadenosis. The goal of the present study was to further assess the association of AQP5 in the development of this salivary gland disease. The acinar diameter and mean surface area appeared elevated in sialadenosis tissues, which is a typical observation in this disease. AQP5 expression was evaluated by immunohistochemistry using tissue samples derived from salivary glands of patients with confirmed sialadenosis either as a primary diagnosis or as a secondary diagnosis within the framework of other salivary gland diseases. Normal salivary gland tissue served as a control. In sialadenosis tissues, the AQP5 signal at the apical plasma membrane of acinar cells frequently appeared stronger compared with that in normal salivary glands. In addition, the distribution of AQP5 at the apical region seemed to differ between normal and sialadenosis tissues, where AQP5 frequently was diffusely distributed near or at the apical plasma membrane of the acinar cells in contrast to normal controls where the AQP5 signal was strictly confined to the apical plasma membrane. These observations suggest that sialadenosis is associated with a different AQP5 expression and distribution pattern in salivary acinar cells.

  11. Translational readthrough generates new astrocyte AQP4 isoforms that modulate supramolecular clustering, glial endfeet localization, and water transport.

    PubMed

    De Bellis, Manuela; Pisani, Francesco; Mola, Maria Grazia; Rosito, Stefania; Simone, Laura; Buccoliero, Cinzia; Trojano, Maria; Nicchia, Grazia Paola; Svelto, Maria; Frigeri, Antonio

    2017-05-01

    Regulation of water homeostasis is a central feature of central nervous system pathophysiology. In this context, several lines of evidence suggest a crucial role for the water channel aquaporin-4 (AQP4) and its plasma membrane supramolecular organization as the key element. Here, we demonstrate the expression in tissues of additional isoforms of AQP4 characterized by a C-terminal extension generated by programmed translational readthrough. These extended isoforms (AQP4ex) display a perivascular polarization and expression in dystrophin-dependent pools. AQP4ex reduces supramolecular clustering tendency and allows AQP4 interactions with syntrophin. Furthermore, site-directed mutagenesis of two serines in the extended C-terminus of AQP4ex showed potential regulation of water permeability by phosphorylation. Finally, AQP4ex expression can be positively modulated by gentamicin treatment, demonstrating the possibility of regulating the AQP4 translational readthrough frequency. This novel regulatory mechanism could have important pathophysiological implications for conditions in which alternations have been reported in AQP4 structure.

  12. Carvacrol alleviates cerebral edema by modulating AQP4 expression after intracerebral hemorrhage in mice.

    PubMed

    Zhong, Zhihong; Wang, Baofeng; Dai, Minchao; Sun, Yuhao; Sun, Qingfang; Yang, Guoyuan; Bian, Liuguan

    2013-10-25

    Carvacrol is a natural compound extracted from many plants of the family Lamiaceae. Previous studies have demonstrated that carvacrol has potential neuroprotective effects in central nervous system diseases such as Alzheimer's disease and cerebral ischemia. In this study, we investigated the preclinical effect of carvacrol on cerebral edema after intracerebral hemorrhage (ICH) using a bacterial collagenase-induced ICH mouse model. Mice were randomly divided into sham (n=43), vehicle-treated (n=51), and carvacrol-treated groups (n=101). In carvacrol-treated group, carvacrol was administrated to mice at 0h, 1h, or 3h after ICH induction. Carvacrol was injected intraperitoneally with single doses of 10, 25, 50, or 100mg/kg. Neurologic dysfunctions, brain water content, aquaporins (AQPs) mRNAs level and AQP4 protein expression in the perihematomal area were evaluated post ICH. Our results showed that carvacrol administration improved neurological deficits after day 3 following ICH (p<0.05). Carvacrol reduced cerebral edema and Evans Blue leakage at day 3 (p<0.05). We also found that carvacrol treatment decreased AQP4 mRNA in a dose-dependent manner at 24h. Furthermore, AQP4 protein expression in the perihematomal area was reduced by carvacrol significantly at day 3 after ICH (p<0.05). Our findings suggest that carvacrol may exert its protective effect on ICH injury by ameliorating AQP4-mediated cerebral edema.

  13. Analysis of AQP4 Trafficking Vesicle Dynamics Using a High-Content Approach

    PubMed Central

    Mazzaferri, Javier; Costantino, Santiago; Lefrancois, Stephane

    2013-01-01

    Aquaporin-4 (AQP4) is found on the basolateral plasma membrane of a variety of epithelial cells, and it is widely accepted that microtubules play an important role in protein trafficking to the plasma membrane. In the particular case of polarized trafficking, however, most evidence on the involvement of microtubules has been obtained via biochemistry experiments and single-shot microscopy. These approaches have provided essential information, even though they neglect the dynamical details of microtubule transport. In this work, we present a high-content framework in which time-lapse imaging, and single-particle-tracking algorithms were used to study a large number (∼104) of GFP-AQP4-carrying vesicles on a large number of cells (∼170). By analyzing several descriptors in this large sample of trajectories, we were able to obtain highly statistically significant results. Our results support the hypothesis that AQP4 is transported along microtubules, but to our surprise, this transport is not directed straight to the basolateral plasma membrane. On the contrary, these vesicles move stochastically along microtubules, changing direction repeatedly. We propose that the role of microtubules in the basolateral trafficking of AQP4 is to increase the efficiency, rather than determine the specificity of the target. PMID:23870254

  14. Accuracy of the Fluorescence-Activated Cell Sorting Assay for the Aquaporin-4 Antibody (AQP4-Ab): Comparison with the Commercial AQP4-Ab Assay Kit

    PubMed Central

    Kim, Yoo-Jin; Cheon, So Young; Kim, Boram; Jung, Kyeong Cheon; Park, Kyung Seok

    2016-01-01

    Background The aquaporin-4 antibody (AQP4-Ab) is a disease-specific autoantibody to neuromyelitis optica (NMO). We aimed to evaluate the accuracy of the FACS assay in detecting the AQP4-Ab compared with the commercial cell-based assay (C-CBA) kit. Methods Human embryonic kidney-293 cells were transfected with human aquaporin-4 (M23) cDNA. The optimal cut off values of FACS assay was tested using 1123 serum samples from patients with clinically definite NMO, those at high risk for NMO, patients with multiple sclerosis, patients with other idiopathic inflammatory demyelinating diseases, and negative controls. The accuracy of FACS assay and C-CBA were compared in consecutive 225 samples that were collected between January 2014 and June 2014. Results With a cut-off value of MFIi of 3.5 and MFIr of 2.0, the receiver operating characteristic curve for the FACS assay showed an area under the curve of 0.876. Among 225 consecutive sera, the FACS assay and C-CBA had a sensitivity of 77.3% and 69.7%, respectively, in differentiating the sera of definite NMO patients from sera of controls without IDD or of MS. Both assay had a good specificity of 100% in it. The overall positivity of the C-CBA among FACS-positive sera was 81.5%; moreover, its positivity was low as 50% among FACS-positive sera with relatively low MFIis. Conclusions Both the FACS assay and C-CBA are sensitive and highly specific assays in detecting AQP4-Ab. However, in some sera with relatively low antibody titer, FACS-assay can be a more sensitive assay option. In real practice, complementary use of FACS assay and C-CBA will benefit the diagnosis of NMO patients, because the former can be more sensitive among low titer sera and the latter are easier to use therefore can be widely used. PMID:27658059

  15. NFAT5 promotes proliferation and migration of lung adenocarcinoma cells in part through regulating AQP5 expression

    SciTech Connect

    Guo, Kai; Jin, Faguang

    2015-09-25

    The osmoregulated transcription factor nuclear factor of activated T-cells 5(NFAT5), has been found to play important roles in the development of many kinds of human cancers, including breast cancer, colon carcinoma, renal cell carcinoma and melanoma. The aim of the present study was to determine whether NFAT5 is involved in the proliferation and migration of lung adenocarcinoma cells. We found that NFAT5 was upregulated in lung adenocarcinoma cells and knockdown of NFAT5 decreased proliferation and migration of the cells, accompanied by a significant reduction in the expression of AQP5. AQP5 was upregulated in lung adenocarcinoma cells and knockdown of AQP5 also inhibited proliferation and migration of the cells as knockdown of NFAT5 did. Moreover, overexpression of NFAT5 promoted proliferation and migration of lung adenocarcinoma cells, accompanied by a significant increase in the expression of AQP5. These results indicate that NFAT5 plays important roles in proliferation and migration of human lung adenocarcinoma cells through regulating AQP5 expression, providing a new therapeutic option for lung adenocarcinoma therapy. - Highlights: • NFAT5 expression is higher in lung adenocarcinoma cells compared with normal cells. • NFAT5 knockdown decreases proliferation and migration of lung adenocarcinoma cells. • Knockdown of NFAT5 reduces AQP5 expression in human lung adenocarcinoma cells. • Overexpression of NFAT5 promotes proliferation and migration of lung adenocarcinoma cells. • Overexpression of NFAT5 increases AQP5 expression in human lung adenocarcinoma cells.

  16. Normal volumes and microstructural integrity of deep gray matter structures in AQP4+ NMOSD

    PubMed Central

    Heine, Josephine; Pache, Florence; Lacheta, Anna; Borisow, Nadja; Kuchling, Joseph; Bellmann-Strobl, Judith; Ruprecht, Klemens; Brandt, Alexander U.; Paul, Friedemann

    2016-01-01

    Objective: To assess volumes and microstructural integrity of deep gray matter structures in a homogeneous cohort of patients with neuromyelitis optica spectrum disorder (NMOSD). Methods: This was a cross-sectional study including 36 aquaporin-4 antibody-positive (AQP4 Ab-positive) Caucasian patients with NMOSD and healthy controls matched for age, sex, and education. Volumetry of deep gray matter structures (DGM; thalamus, caudate, putamen, globus pallidus, hippocampus, amygdala, nucleus accumbens) was performed using 2 independent automated methods. Microstructural integrity was assessed based on diffusion tensor imaging. Results: Both volumetric analysis methods consistently revealed similar volumes of DGM structures in patients and controls without significant group differences. Moreover, no differences in DGM microstructural integrity were observed between groups. Conclusions: Deep gray matter structures are not affected in AQP4 Ab-positive Caucasian patients with NMOSD. NMOSD imaging studies should be interpreted with respect to Ab status, educational background, and ethnicity of included patients. PMID:27144219

  17. Microstructural visual system changes in AQP4-antibody–seropositive NMOSD

    PubMed Central

    Oertel, Frederike C.; Kuchling, Joseph; Zimmermann, Hanna; Chien, Claudia; Schmidt, Felix; Knier, Benjamin; Bellmann-Strobl, Judith; Korn, Thomas; Scheel, Michael; Klistorner, Alexander; Ruprecht, Klemens; Paul, Friedemann

    2017-01-01

    Objective: To trace microstructural changes in patients with aquaporin-4 antibody (AQP4-ab)-seropositive neuromyelitis optica spectrum disorders (NMOSDs) by investigating the afferent visual system in patients without clinically overt visual symptoms or visual pathway lesions. Methods: Of 51 screened patients with NMOSD from a longitudinal observational cohort study, we compared 6 AQP4-ab–seropositive NMOSD patients with longitudinally extensive transverse myelitis (LETM) but no history of optic neuritis (ON) or other bout (NMOSD-LETM) to 19 AQP4-ab–seropositive NMOSD patients with previous ON (NMOSD-ON) and 26 healthy controls (HCs). Foveal thickness (FT), peripapillary retinal nerve fiber layer (pRNFL) thickness, and ganglion cell and inner plexiform layer (GCIPL) thickness were measured with optical coherence tomography (OCT). Microstructural changes in the optic radiation (OR) were investigated using diffusion tensor imaging (DTI). Visual function was determined by high-contrast visual acuity (VA). OCT results were confirmed in a second independent cohort. Results: FT was reduced in both patients with NMOSD-LETM (p = 3.52e−14) and NMOSD-ON (p = 1.24e−16) in comparison with HC. Probabilistic tractography showed fractional anisotropy reduction in the OR in patients with NMOSD-LETM (p = 0.046) and NMOSD-ON (p = 1.50e−5) compared with HC. Only patients with NMOSD-ON but not NMOSD-LETM showed neuroaxonal damage in the form of pRNFL and GCIPL thinning. VA was normal in patients with NMOSD-LETM and was not associated with OCT or DTI parameters. Conclusions: Patients with AQP4-ab–seropositive NMOSD without a history of ON have microstructural changes in the afferent visual system. The localization of retinal changes around the Müller-cell rich fovea supports a retinal astrocytopathy. PMID:28255575

  18. Microstructural visual system changes in AQP4-antibody-seropositive NMOSD.

    PubMed

    Oertel, Frederike C; Kuchling, Joseph; Zimmermann, Hanna; Chien, Claudia; Schmidt, Felix; Knier, Benjamin; Bellmann-Strobl, Judith; Korn, Thomas; Scheel, Michael; Klistorner, Alexander; Ruprecht, Klemens; Paul, Friedemann; Brandt, Alexander U

    2017-05-01

    To trace microstructural changes in patients with aquaporin-4 antibody (AQP4-ab)-seropositive neuromyelitis optica spectrum disorders (NMOSDs) by investigating the afferent visual system in patients without clinically overt visual symptoms or visual pathway lesions. Of 51 screened patients with NMOSD from a longitudinal observational cohort study, we compared 6 AQP4-ab-seropositive NMOSD patients with longitudinally extensive transverse myelitis (LETM) but no history of optic neuritis (ON) or other bout (NMOSD-LETM) to 19 AQP4-ab-seropositive NMOSD patients with previous ON (NMOSD-ON) and 26 healthy controls (HCs). Foveal thickness (FT), peripapillary retinal nerve fiber layer (pRNFL) thickness, and ganglion cell and inner plexiform layer (GCIPL) thickness were measured with optical coherence tomography (OCT). Microstructural changes in the optic radiation (OR) were investigated using diffusion tensor imaging (DTI). Visual function was determined by high-contrast visual acuity (VA). OCT results were confirmed in a second independent cohort. FT was reduced in both patients with NMOSD-LETM (p = 3.52e(-14)) and NMOSD-ON (p = 1.24e(-16)) in comparison with HC. Probabilistic tractography showed fractional anisotropy reduction in the OR in patients with NMOSD-LETM (p = 0.046) and NMOSD-ON (p = 1.50e(-5)) compared with HC. Only patients with NMOSD-ON but not NMOSD-LETM showed neuroaxonal damage in the form of pRNFL and GCIPL thinning. VA was normal in patients with NMOSD-LETM and was not associated with OCT or DTI parameters. Patients with AQP4-ab-seropositive NMOSD without a history of ON have microstructural changes in the afferent visual system. The localization of retinal changes around the Müller-cell rich fovea supports a retinal astrocytopathy.

  19. Aquaporin-4 antibody testing: direct comparison of M1-AQP4-DNA-transfected cells with leaky scanning versus M23-AQP4-DNA-transfected cells as antigenic substrate

    PubMed Central

    2014-01-01

    Background Neuromyelitis optica (NMO, Devic syndrome) is associated with antibodies to aquaporin-4 (NMO-IgG/AQP4-Ab) in the majority of cases. NMO-IgG/AQP4-Ab seropositivity in patients with NMO and its spectrum disorders has important differential diagnostic, prognostic and therapeutic implications. So-called cell-based assays (CBA) are thought to provide the best AQP4-Ab detection rates. Objective To compare directly the AQP4-IgG detection rates of the currently most widely used commercial CBA, which employs cells transfected with a full-length (M1)-human AQP4 DNA in a fashion that allows leaky scanning (LS) and thus expression of M23-AQP4 in addition to M1-AQP, to that of a newly developed CBA from the same manufacturer employing cells transfected with human M23-AQP4-DNA. Methods Results from 368 serum samples that had been referred for routine AQP4-IgG determination and had been tested in parallel in the two assays were compared. Results Seventy-seven out of 368 samples (20.9%) were positive for NMO-IgG/AQP4-Ab in at least one assay. Of these, 73 (94.8%) were positive in both assays. A single sample (1.3%) was exclusively positive in the novel assay; three samples (3.9%) were unequivocally positive only in the ‘classic’ assay due to high background intensity in the novel assay. Both median fluorescence intensity and background intensity were higher in the new assay. Conclusions This large study did not reveal significant differences in AQP4-IgG detection rates between the ‘classic’ CBA and a new M23-DNA-based CBA. Importantly, our results largely re-affirm the validity of previous studies that had used the ‘classic’ AQP4-CBA to establish NMO-IgG/AQP4-Ab seropositivity rates in NMO and in a variety of NMO spectrum disorders. PMID:25074611

  20. Low intensity ultrasound inhibits brain oedema formation in rats: potential action on AQP4 membrane localization.

    PubMed

    Karmacharya, Mrigendra Bir; Kim, Kil Hwan; Kim, See Yoon; Chung, Joonho; Min, Byoung-Hyun; Park, So Ra; Choi, Byung Hyune

    2015-06-01

    Brain oedema is a major contributing factor to the morbidity and mortality of a variety of brain disorders. Although there has been considerable progress in our understanding of pathophysiological and molecular mechanisms associated with brain oedema so far, more effective treatment is required and is still awaited. Here we intended to study the effects of low intensity ultrasound (LIUS) on brain oedema. We prepared the rat hippocampal slice in vitro and acute water intoxication in vivo models of brain oedema. We applied LIUS stimulation in these models and studied the molecular mechanisms of LIUS action on brain oedema. We found that LIUS stimulation markedly inhibited the oedema formation in both of these models. LIUS stimulation significantly reduced brain water content and intracranial pressure resulting in increased survival of the rats. Here, we showed that the AQP4 localization was increased in the astrocytic foot processes in the oedematous hippocampal slices, while it was significantly reduced in the LIUS-stimulated hippocampal slices. In the in vivo model too, AQP4 expression was markedly increased in the microvessels of the cerebral cortex and hippocampus after water intoxication but was reduced in the LIUS-stimulated rats. These data show that LIUS has an inhibitory effect on cytotoxic brain oedema and suggest its therapeutic potential to treat brain oedema. We propose that LIUS reduces the AQP4 localization around the astrocytic foot processes thereby decreasing water permeability into the brain tissue. © 2014 British Neuropathological Society.

  1. Expression of multiple AQP4 pools in the plasma membrane and their association with the dystrophin complex.

    PubMed

    Nicchia, Grazia Paola; Cogotzi, Laura; Rossi, Andrea; Basco, Davide; Brancaccio, Andrea; Svelto, Maria; Frigeri, Antonio

    2008-06-01

    Altered aquaporin-4 (AQP4) expression has been reported in brain edema, tumors, muscular dystrophy, and neuromyelitis optica. However, the plasma membrane organization of AQP4 and its interaction with proteins such as the dystrophin-associated protein complex are not well understood. In this study, we used sucrose density gradient ultracentrifugation and 2D blue native/sodium dodecyl sulfate-polyacrylamide gel electrophoresis and showed the expression of several AQP4 multi-subunit complexes (pools) of different sizes, ranging from > 1 MDa to approximately 500 kDa and containing different ratios of the 30/32 kDa AQP4 isoforms, indicative of orthogonal arrays of particles of various sizes. A high molecular weight pool co-purified with dystrophin and beta-dystroglycan and was drastically reduced in the skeletal muscle of mdx3cv mice, which have no dystrophin. The number and size of the AQP4 pools were the same in the kidney where dystrophin is not expressed, suggesting the presence of dystrophin-like proteins for their expression. We found that AQP2 is expressed only in one major pool of approximately 500 kDa, indicating that the presence of different pools is a peculiarity of AQP4 rather than a widespread feature in the AQP family. Finally, in skeletal muscle caveolin-3 did not co-purify with any AQP4 pool, indicating the absence of interaction of the two proteins and confirming that caveolae and orthogonal arrays of particles are two independent plasma membrane microdomains. These results contribute to a better understanding of AQP4 membrane organization and raise the possibility that abnormal expression of specific AQP4 pools may be found in pathological states.

  2. TRPV4 and AQP4 Channels Synergistically Regulate Cell Volume and Calcium Homeostasis in Retinal Müller Glia.

    PubMed

    Jo, Andrew O; Ryskamp, Daniel A; Phuong, Tam T T; Verkman, Alan S; Yarishkin, Oleg; MacAulay, Nanna; Križaj, David

    2015-09-30

    Brain edema formation occurs after dysfunctional control of extracellular volume partly through impaired astrocytic ion and water transport. Here, we show that such processes might involve synergistic cooperation between the glial water channel aquaporin 4 (AQP4) and the transient receptor potential isoform 4 (TRPV4), a polymodal swelling-sensitive cation channel. In mouse retinas, TRPV4 colocalized with AQP4 in the end feet and radial processes of Müller astroglia. Genetic ablation of TRPV4 did not affect the distribution of AQP4 and vice versa. However, retinas from Trpv4(-/-) and Aqp4(-/-) mice exhibited suppressed transcription of genes encoding Trpv4, Aqp4, and the Kir4.1 subunit of inwardly rectifying potassium channels. Swelling and [Ca(2+)]i elevations evoked in Müller cells by hypotonic stimulation were antagonized by the selective TRPV4 antagonist HC-067047 (2-methyl-1-[3-(4-morpholinyl)propyl]-5-phenyl-N-[3-(trifluoromethyl)phenyl]-1H-pyrrole-3-carboxamide) or Trpv4 ablation. Elimination of Aqp4 suppressed swelling-induced [Ca(2+)]i elevations but only modestly attenuated the amplitude of Ca(2+) signals evoked by the TRPV4 agonist GSK1016790A [(N-((1S)-1-{[4-((2S)-2-{[(2,4-dichlorophenyl)sulfonyl]amino}-3-hydroxypropanoyl)-1-piperazinyl]carbonyl}-3-methylbutyl)-1-benzothiophene-2-carboxamide]. Glial cells lacking TRPV4 but not AQP4 showed deficits in hypotonic swelling and regulatory volume decrease. Functional synergy between TRPV4 and AQP4 during cell swelling was confirmed in the heterologously expressing Xenopus oocyte model. Importantly, when the swelling rate was osmotically matched for AQP4-positive and AQP4-negative oocytes, TRPV4 activation became independent of AQP4. We conclude that AQP4-mediated water fluxes promote the activation of the swelling sensor, whereas Ca(2+) entry through TRPV4 channels reciprocally modulates volume regulation, swelling, and Aqp4 gene expression. Therefore, TRPV4-AQP4 interactions constitute a molecular system

  3. TRPV4 and AQP4 Channels Synergistically Regulate Cell Volume and Calcium Homeostasis in Retinal Müller Glia

    PubMed Central

    Jo, Andrew O.; Phuong, Tam T.T.; Verkman, Alan S.; Yarishkin, Oleg; MacAulay, Nanna

    2015-01-01

    Brain edema formation occurs after dysfunctional control of extracellular volume partly through impaired astrocytic ion and water transport. Here, we show that such processes might involve synergistic cooperation between the glial water channel aquaporin 4 (AQP4) and the transient receptor potential isoform 4 (TRPV4), a polymodal swelling-sensitive cation channel. In mouse retinas, TRPV4 colocalized with AQP4 in the end feet and radial processes of Müller astroglia. Genetic ablation of TRPV4 did not affect the distribution of AQP4 and vice versa. However, retinas from Trpv4−/− and Aqp4−/− mice exhibited suppressed transcription of genes encoding Trpv4, Aqp4, and the Kir4.1 subunit of inwardly rectifying potassium channels. Swelling and [Ca2+]i elevations evoked in Müller cells by hypotonic stimulation were antagonized by the selective TRPV4 antagonist HC-067047 (2-methyl-1-[3-(4-morpholinyl)propyl]-5-phenyl-N-[3-(trifluoromethyl)phenyl]-1H-pyrrole-3-carboxamide) or Trpv4 ablation. Elimination of Aqp4 suppressed swelling-induced [Ca2+]i elevations but only modestly attenuated the amplitude of Ca2+ signals evoked by the TRPV4 agonist GSK1016790A [(N-((1S)-1-{[4-((2S)-2-{[(2,4-dichlorophenyl)sulfonyl]amino}-3-hydroxypropanoyl)-1-piperazinyl]carbonyl}-3-methylbutyl)-1-benzothiophene-2-carboxamide]. Glial cells lacking TRPV4 but not AQP4 showed deficits in hypotonic swelling and regulatory volume decrease. Functional synergy between TRPV4 and AQP4 during cell swelling was confirmed in the heterologously expressing Xenopus oocyte model. Importantly, when the swelling rate was osmotically matched for AQP4-positive and AQP4-negative oocytes, TRPV4 activation became independent of AQP4. We conclude that AQP4-mediated water fluxes promote the activation of the swelling sensor, whereas Ca2+ entry through TRPV4 channels reciprocally modulates volume regulation, swelling, and Aqp4 gene expression. Therefore, TRPV4–AQP4 interactions constitute a molecular system that

  4. Functional down-regulation of volume-regulated anion channels in AQP4 knockdown cultured rat cortical astrocytes.

    PubMed

    Benfenati, Valentina; Nicchia, Grazia Paola; Svelto, Maria; Rapisarda, Carmela; Frigeri, Antonio; Ferroni, Stefano

    2007-01-01

    In the brain, the astroglial syncytium is crucially involved in the regulation of water homeostasis. Accumulating evidence indicates that a dysregulation of the astrocytic processes controlling water homeostasis has a pathogenetic role in several brain injuries. Here, we have analysed by RNA interference technology the functional interactions occurring between the most abundant water channel in the brain, aquaporin-4 (AQP4), and the swelling-activated Cl(-) current expressed by cultured rat cortical astrocytes. We show that in primary cultured rat cortical astrocytes transfected with control small interfering RNA (siRNA), hypotonic shock promotes an increase in cellular volume accompanied by augmented membrane conductance mediated by volume-regulated anion channels (VRAC). Conversely, astroglia in which AQP4 was knocked down (AQP4 KD) by transfection with AQP4 siRNA changed their morphology from polygonal to process-bearing, and displayed normal cell swelling but reduced VRAC activity. Pharmacological manipulations of actin cytoskeleton in rat astrocytes, and functional analysis in mouse astroglial cells, which retain their morphology upon knockdown of AQP4, suggest that stellation of AQP4 KD rat cortical astrocytes was not causally linked to reduction of VRAC current. Molecular analysis of possible candidates of swelling-activated Cl(-) current provided evidence that in AQP4 KD astrocytes, there was a down-regulation of chloride channel-2 (CIC-2), which, however, was not involved in VRAC conductance. Inclusion of ATP in the intracellular saline restored VRAC activity upon hypotonicity. Collectively, these results support the view that in cultured astroglial cells, plasma membrane proteins involved in cell volume homeostasis are assembled in a functional platform.

  5. Glial-conditional deletion of aquaporin-4 (Aqp4) reduces blood-brain water uptake and confers barrier function on perivascular astrocyte endfeet.

    PubMed

    Haj-Yasein, Nadia Nabil; Vindedal, Gry Fluge; Eilert-Olsen, Martine; Gundersen, Georg Andreas; Skare, Øivind; Laake, Petter; Klungland, Arne; Thorén, Anna Elisabeth; Burkhardt, John Michael; Ottersen, Ole Petter; Nagelhus, Erlend Arnulf

    2011-10-25

    Tissue- and cell-specific deletion of the Aqp4 gene is required to differentiate between the numerous pools of aquaporin-4 (AQP4) water channels. A glial-conditional Aqp4 knockout mouse line was generated to resolve whether astroglial AQP4 controls water exchange across the blood-brain interface. The conditional knockout was driven by the glial fibrillary acidic protein promoter. Brains from conditional Aqp4 knockouts were devoid of AQP4 as assessed by Western blots, ruling out the presence of a significant endothelial pool of AQP4. In agreement, immunofluorescence analysis of cryostate sections and quantitative immunogold analysis of ultrathin sections revealed no AQP4 signals in capillary endothelia. Compared with litter controls, glial-conditional Aqp4 knockout mice showed a 31% reduction in brain water uptake after systemic hypoosmotic stress and a delayed postnatal resorption of brain water. Deletion of astroglial Aqp4 did not affect the barrier function to macromolecules. Our data suggest that the blood-brain barrier (BBB) is more complex than anticipated. Notably, under certain conditions, the astrocyte covering of brain microvessels is rate limiting to water movement.

  6. Astaxanthin alleviates cerebral edema by modulating NKCC1 and AQP4 expression after traumatic brain injury in mice.

    PubMed

    Zhang, Mingkun; Cui, Zhenwen; Cui, Hua; Cao, Yang; Zhong, Chunlong; Wang, Yong

    2016-08-31

    Astaxanthin is a carotenoid pigment that possesses potent antioxidative, anti-inflammatory, antitumor, and immunomodulatory activities. Previous studies have demonstrated that astaxanthin displays potential neuroprotective properties for the treatment of central nervous system diseases, such as ischemic brain injury and subarachnoid hemorrhage. This study explored whether astaxanthin is neuroprotective and ameliorates neurological deficits following traumatic brain injury (TBI). Our results showed that, following CCI, treatment with astaxanthin compared to vehicle ameliorated neurologic dysfunctions after day 3 and alleviated cerebral edema and Evans blue extravasation at 24 h (p < 0.05). Astaxanthin treatment decreased AQP4 and NKCC1 mRNA levels in a dose-dependent manner at 24 h. AQP4 and NKCC1 protein expressions in the peri-contusional cortex were significantly reduced by astaxanthin at 24 h (p < 0.05). Furthermore, we also found that bumetanide (BU), an inhibitor of NKCC1, inhibited trauma-induced AQP4 upregulation (p < 0.05). Our data suggest that astaxanthin reduces TBI-related injury in brain tissue by ameliorating AQP4/NKCC1-mediated cerebral edema and that NKCC1 contributes to the upregulation of AQP4 after TBI.

  7. [Expression of HoxB5, SPC and AQP5 in neonatal rats with hyperoxia-induced chronic lung disease].

    PubMed

    Xu, Wei; Fu, Jian-Hua; Xue, Xin-Dong

    2009-01-01

    Alveolar epithelium impairment is one of pathological changes associated with chronic lung disease (CLD). Hoxb5 is one of the few homeobox genes strongly expressed in the developing lung. This study investigated the expression of HoxB5, SPC and AQP5 in rats with CLD in order to explore the role of Hoxb-5 in impairment and reparation of alveolar epithelium. Eighty neonatal rats were randomly exposed to hyperoxia (model group) or to room air (control group) (n=40 each). The CLD model was induced by hyperoxia exposure. The expression of HoxB5, SPC and AQP5 protein and mRNA in the lung tissue was detected by immunohistochemistry and RT-PCR 1, 3, 7, 14 and 21 days after exposure. In the model group HoxB5 expression significantly decreased 7, 14 and 21 days after hyperoxia exposure. SPC expression decreased 3 days after hyperoxia exposure but increased significantly 7, 14 and 21 days after hyperoxia exposure as compared to the control group. AQP5 expression was progressively reduced with prolonged hyperoxia exposure. Hyperoxia exposure may lead to alveolar epithelial cell (AEC) damage in neonatal rats. The increased SPC expression and decreased AQP5 expression suggested that the ability of differentiation and transformation of AECII into AECI decreased in neonatal rats with CLD. The decreased HoxB5 expression following hyperoxia exposure might contribute to a decreased ability of differentiation of AECII.

  8. Regulation of astrocyte glutamate transporter-1 (GLT1) and aquaporin-4 (AQP4) expression in a model of epilepsy

    PubMed Central

    Hubbard, Jacqueline A.; Szu, Jenny I.; Yonan, Jennifer M.; Binder, Devin K.

    2016-01-01

    Astrocytes regulate extracellular glutamate and water homeostasis through the astrocyte-specific membrane proteins glutamate transporter-1 (GLT1) and aquaporin-4 (AQP4), respectively. The role of astrocytes and the regulation of GLT1 and AQP4 in epilepsy are not fully understood. In this study, we investigated the expression of GLT1 and AQP4 in the intrahippocampal kainic acid (IHKA) model of temporal lobe epilepsy (TLE). We used real-time polymerase chain reaction (RT-PCR), Western blot, and immunohistochemical analysis at 1, 4, 7, and 30 days after kainic acid-induced status epilepticus (SE) to determine hippocampal glial fibrillary acidic protein (GFAP, a marker for reactive astrocytes), GLT1, and AQP4 expression changes during the development of epilepsy (epileptogenesis). Following IHKA, all mice had SE and progressive increases in GFAP immunoreactivity and GFAP protein expression out to 30 days post-SE. A significant initial increase in dorsal hippocampal GLT1 immunoreactivity and protein levels were observed 1 day post SE and followed by a marked downregulation at 4 and 7 days post SE with a return to near control levels by 30 days post SE. AQP4 dorsal hippocampal protein expression was significantly downregulated at 1 day post SE and was followed by a gradual return to baseline levels with a significant increase in ipsilateral protein levels by 30 days post SE. Transient increases in GFAP and AQP4 mRNA were also observed. Our findings suggest that specific molecular changes in astrocyte glutamate transporters and water channels occur during epileptogenesis in this model, and suggest the novel therapeutic strategy of restoring glutamate and water homeostasis. PMID:27155358

  9. Effect of progesterone intervention on the dynamic changes of AQP-4 in hypoxic-ischaemic brain damage

    PubMed Central

    Li, Xiaojuan; Bai, Ruiying; Zhang, Junhe; Wang, Xiaoyin

    2015-01-01

    To observe the effect of progesterone (PROG) on blood-brain barrier (BBB) permeability, brain tissue water content and dynamic changes of aquaporin-4 (AQP-4) in neonatal rats with hypoxic-ischaemic brain damage (HIBD). 72 neonatal Wistar rats, aged 7 days old, were randomly divided into control, hypoxic-ischaemic (6, 24 and 72 h, and 7 d subgroups) and drug groups (6, 24 and 72 h, and 7 d subgroups). The HIBD animal model was established. BBB was detected via an Evans blue tracer. Brain water content was determined by the dry/wet method. The AQP-4 expression in the cerebral cortex was observed through immunohistochemistry and Western blot. BBB permeability in the cerebral cortex of the neonatal rats, brain water content and AQP-4 expression in the hypoxia-ischaemia group were significantly higher than those of the control group after hypoxia for 6 h (P < 0.05), continued to rise within 24 h and then reached the peak at 72 h. BBB permeability in the cerebral cortex of the neonatal rats, brain water content and AQP-4 expression in the drug group were significantly lower than those of the hypoxia-ischaemia group after hypoxia for 6, 24 and 72 h (P < 0.05). Moreover, BBB permeability and BBB expression were positively correlated with the AQP-4 expression. In conclusion, PROG protects the brain of HIBD neonatal rats by alleviating the damage of BBB and cerebral oedema. The protective effect of PROG may be related to the down-regulation of AQP-4 expression in the cerebral cortex of neonatal rats. PMID:26770503

  10. Characterization of the spectrum of Korean inflammatory demyelinating diseases according to the diagnostic criteria and AQP4-Ab status

    PubMed Central

    2014-01-01

    Background The relative frequencies of demyelinating diseases among Korean patients with idiopathic inflammatory demyelinating disease of the central nervous system (IIDD) have not been sufficiently studied. We therefore describe a cohort of 203 patients with IIDD from three centers in Korea whose syndromes were identified precisely according to international clinical criteria and autoantibody to aquaporin 4 (AQP4-Ab) status. Methods In total, 260 consecutive patients were screened and 203 were included from three hospitals in Korea. All were tested for AQP4-Ab by using a cell-based assay. Patients who met the criteria for definite neuromyelitis optica (NMO) or had a positive AQP4-Ab test result were defined as the NMO group. Among the others, patients were assessed if they had acute disseminated encephalomyelitis, multiple sclerosis (MS), acute transverse myelitis, optic neuritis, or other demyelinating disease as a clinically isolated syndrome of the brain. Results Eighteen percent of patients were classified as the NMO group, 2% as acute disseminated encephalomyelitis, 18% as MS, 41% as acute transverse myelitis, 11% as optic neuritis, and 8% as other clinically isolated syndrome of the brain. AQP4-Ab was positive in 18% of patients and the relative frequency of NMO to MS (NMO/MS ratio) was 1.06. The mean duration of follow up in our patients was 64 months. Conclusions Among Korean patients with idiopathic inflammatory demyelinating diseases, the incidence of NMO may be similar to that of MS, and the overall positivity of AQP4-Ab could be lower than previously reported. In addition, acute transverse myelitis that is not associated with MS or NMO can be relatively common in these patients. Further population-based studies with AQP4-Ab are needed to determine the exact incidence of NMO and other idiopathic inflammatory demyelinating diseases in Korea. PMID:24779645

  11. Increased Expression of AQP 1 and AQP 5 in Rat Lungs Ventilated with Low Tidal Volume is Time Dependent

    PubMed Central

    Fabregat, Gustavo; García-de-la-Asunción, José; Sarriá, Benjamín; Cortijo, Julio; De Andrés, José; Mata, Manuel; Pastor, Ernesto; Belda, Francisco Javier

    2014-01-01

    Background and Goals Mechanical ventilation (MV) can induce or worsen pulmonary oedema. Aquaporins (AQPs) facilitate the selective and rapid bi-directional movement of water. Their role in the development and resolution of pulmonary oedema is controversial. Our objectives are to determine if prolonged MV causes lung oedema and changes in the expression of AQP 1 and AQP 5 in rats. Methods 25 male Wistar rats were subjected to MV with a tidal volume of 10 ml/kg, during 2 hours (n = 12) and 4 hours (n = 13). Degree of oedema was compared with a group of non-ventilated rats (n = 5). The expression of AQP 1 and AQP 5 were determined by western immunoblotting, measuring the amount of mRNA (previously amplified by RT-PCR) and immunohistochemical staining of AQPs 1 and 5 in lung samples from all groups. Results Lung oedema and alveolar-capillary membrane permeability did not change during MV. AQP-5 steady state levels in the western blot were increased (p<0.01) at 2 h and 4 h of MV. But in AQP-1 expression these differences were not found. However, the amount of mRNA for AQP-1 was increased at 2 h and 4 h of MV; and for AQP 5 at 4 h of MV. These findings were corroborated by representative immunohistochemical lung samples. Conclusion In lungs from rats ventilated with a low tidal volume the expression of AQP 5 increases gradually with MV duration, but does not cause pulmonary oedema or changes in lung permeability. AQPs may have a protective effect against the oedema induced by MV. PMID:25489856

  12. Berberine increases the expression of NHE3 and AQP4 in sennosideA-induced diarrhoea model.

    PubMed

    Zhang, Yongguo; Wang, Xin; Sha, Sumei; Liang, Shuli; Zhao, Lina; Liu, Lin; Chai, Na; Wang, Honghong; Wu, Kaichun

    2012-09-01

    Berberine, a compound isolated from Chinese Goldthread Rhizome, has been widely used as a non-prescription drug to treat diarrhoea in China. Previous studies have demonstrated multiple pharmacological activities for berberine, including its significant role in antimicrobial activity. However, its effect on ion exchange and water transfer remains unclear. The present study aims to explore the effect of berberine on the expression of Na(+)/H(+) exchanger3 (NHE3) and aquaporin4 (AQP4) in both diarrhoea mouse model induced by sennosideA and human intestinal epithelium cell line (HIEC). Semi-quantitative RT-PCR, immunohistochemistry and western blotting were adopted to detect the mRNA and protein expression levels of NHE3 and AQP4. Furthermore, the absorption of berberine and the PKC activity were detected by HPLC and PepTag® Assay to elucidate the underlying mechanisms. It was shown that the expression levels of NHE3 and AQP4 were significantly increased in the diarrhoea mice treated with berberine compared with the untreated diarrhoea mice. Similarly, the expression levels of NHE3 and AQP4 were strikingly enhanced in HIEC co-treated with sennosideA and berberine compared with samples treated with sennosideA only. We also found the maximal absorption of berberine to be approximately 0.01%. In addition, no significant change of PKC activity was observed in the different HIEC treated groups. These results showed that berberine was able to increase the expression of NHE3 and AQP4, suggesting that berberine might exhibit its anti-diarrhoeal effect partially by enhancing the absorption of Na(+) and water.

  13. Neuromyelitis optica spectrum disorders: comparison of clinical and magnetic resonance imaging characteristics of AQP4-IgG versus MOG-IgG seropositive cases in the Netherlands.

    PubMed

    van Pelt, E D; Wong, Y Y M; Ketelslegers, I A; Hamann, D; Hintzen, R Q

    2016-03-01

    Neuromyelitis optica spectrum disorders (NMOSDs) are a group of rare inflammatory demyelinating disorders of the central nervous system. The identification of specific antibodies directed to aquaporin 4 (AQP4-IgG) led to the distinction from multiple sclerosis. However, up to 25% of the clinically diagnosed NMO patients are seronegative for AQP4-IgG. A subgroup of these patients might be identified by antibodies directed to myelin oligodendrocyte glycoprotein (MOG-IgG). Our objective was to investigate whether the clinical characteristics of these patients differ. Using a cell-based assay, samples of 61 AQP4-IgG seronegative patients and 41 AQP4-IgG seropositive patients with clinically NMOSD were analysed for the presence of MOG-IgG. Clinical characteristics of the AQP4-IgG, MOG-IgG seropositive and double seronegative NMOSD patients were compared. Twenty of the 61 AQP4-IgG seronegative patients tested MOG-IgG seropositive (33%). MOG-IgG seropositive patients were more frequently males in contrast to AQP4-IgG seropositive patients (55% vs. 15%, P < 0.01) and Caucasians (90% vs. 63%, P = 0.03). They more frequently presented with coincident optic neuritis and transverse myelitis (40% vs. 12%, P = 0.02) and had a monophasic disease course (70% vs. 29%, P < 0.01). AQP4-IgG seropositive patients were 2.4 times more likely to suffer from relapses compared with MOG-IgG seropositive patients (relative risk 2.4, 95% confidence interval 1.2-4.7). AQP4-IgG seropositive patients had higher Expanded Disability Status Scale levels at last follow-up (P < 0.01). Antibodies directed to MOG identify a subgroup of AQP4-IgG seronegative NMO patients with generally a favourable monophasic disease course. © 2015 EAN.

  14. Antibodies to MOG and AQP4 in adults with neuromyelitis optica and suspected limited forms of the disease

    PubMed Central

    Armangue, Thaís; Blanco, Yolanda; Rostásy, Kevin; Calvo, Alvaro Cobo; Olascoaga, Javier; Ramió-Torrentà, Lluís; Reindl, Markus; Benito-León, Julián; Casanova, Bonaventura; Arrambide, Georgina; Sabater, Lidia; Graus, Francesc; Dalmau, Josep; Saiz, Albert

    2016-01-01

    Objective We aimed to report the frequency and implications of antibodies to myelin oligodendrocyte glycoprotein (MOG-ab) in adults with demyelinating syndromes suspicious for neuromyelitis optica (NMO). Methods Samples from 174 patients (48 NMO, 84 longitudinally extensive myelitis (LETM), 39 optic neuritis (ON), and three acute disseminated encephalomyelitis (ADEM) who presented initially with isolated LETM) were retrospectively examined for AQP4-ab and MOG-ab using cell-based assays. Results MOG-ab were found in 17 (9.8%) patients, AQP4-ab in 59 (34%), and both antibodies in two (1.1%). Among the 17 patients with MOG-ab alone, seven (41%) had ON, five (29%) LETM, four (24%) NMO, and one (6%) ADEM. Compared with patients with AQP4-ab, those with MOG-ab were significantly younger (median: 27 vs. 40.5 years), without female predominance (53% vs. 90%), and the clinical course was more frequently monophasic (41% vs. 7%) with a benign outcome (median Expanded Disability Status Scale: 1.5 vs. 4.0). In eight patients with paired serum-cerebrospinal fluid (CSF) samples, five had MOG-ab in both samples and three only in serum. Antibody titres did not differ among clinical phenotypes or disease course. MOG-ab remained detectable in 12/14 patients (median follow-up: 23 months) without correlation between titres' evolution and outcome. Conclusion MOG-ab identify a subgroup of adult patients with NMO, LETM and ON that have better outcome than those associated with AQP4-ab. MOG-ab are more frequently detected in serum than CSF and the follow-up of titres does not correlate with outcome. PMID:25344373

  15. Curcumin attenuates brain edema in mice with intracerebral hemorrhage through inhibition of AQP4 and AQP9 expression

    PubMed Central

    Wang, Bao-feng; Cui, Zhen-wen; Zhong, Zhi-hong; Sun, Yu-hao; Sun, Qing-fang; Yang, Guo-yuan; Bian, Liu-guan

    2015-01-01

    Aim: Aquaporins (AQPs) are the water-channels that play important roles in brain water homeostasis and in cerebral edema induced by brain injury. In this study we investigated the relationship between AQPs and a neuroprotective agent curcumin that was effective in the treatment of brain edema in mice with intracerebral hemorrhage (ICH). Methods: ICH was induced in mice by autologous blood infusion. The mice immediately received curcumin (75, 150, 300 mg/kg, ip). The Rotarod test scores, brain water content and brain expression of AQPs were measured post ICH. Cultured primary mouse astrocytes were used for in vitro experiments. The expression of AQP1, AQP4 and AQP9 and NF-κB p65 were detected using Western blotting or immunochemistry staining. Results: Curcumin administration dose-dependently reduced the cerebral edema at d 3 post ICH, and significantly attenuated the neurological deficits at d 5 post ICH. Furthermore, curcumin dose-dependently decreased the gene and protein expression of AQP4 and AQP9, but not AQP1 post ICH. Treatment of the cultured astrocytes with Fe2+ (10–100 μmol/L) dose-dependently increased the expression and nuclear translocation of NF-κB p65 and the expression of AQP4 and AQP9, which were partly blocked by co-treatment with curcumin (20 μmol/L) or the NF-κB inhibitor PDTC (10 μmol/L). Conclusion: Curcumin effectively attenuates brain edema in mice with ICH through inhibition of the NF-κB pathway and subsequently the expression of AQP4 and AQP9. Curcumin may serve as a potential therapeutic agent for ICH. PMID:26119880

  16. Curcumin attenuates brain edema in mice with intracerebral hemorrhage through inhibition of AQP4 and AQP9 expression.

    PubMed

    Wang, Bao-feng; Cui, Zhen-wen; Zhong, Zhi-hong; Sun, Yu-hao; Sun, Qing-fang; Yang, Guo-yuan; Bian, Liu-guan

    2015-08-01

    Aquaporins (AQPs) are the water-channels that play important roles in brain water homeostasis and in cerebral edema induced by brain injury. In this study we investigated the relationship between AQPs and a neuroprotective agent curcumin that was effective in the treatment of brain edema in mice with intracerebral hemorrhage (ICH). ICH was induced in mice by autologous blood infusion. The mice immediately received curcumin (75, 150, 300 mg/kg, ip). The Rotarod test scores, brain water content and brain expression of AQPs were measured post ICH. Cultured primary mouse astrocytes were used for in vitro experiments. The expression of AQP1, AQP4 and AQP9 and NF-κB p65 were detected using Western blotting or immunochemistry staining. Curcumin administration dose-dependently reduced the cerebral edema at d 3 post ICH, and significantly attenuated the neurological deficits at d 5 post ICH. Furthermore, curcumin dose-dependently decreased the gene and protein expression of AQP4 and AQP9, but not AQP1 post ICH. Treatment of the cultured astrocytes with Fe(2+) (10-100 μmol/L) dose-dependently increased the expression and nuclear translocation of NF-κB p65 and the expression of AQP4 and AQP9, which were partly blocked by co-treatment with curcumin (20 μmol/L) or the NF-κB inhibitor PDTC (10 μmol/L). Curcumin effectively attenuates brain edema in mice with ICH through inhibition of the NF-κB pathway and subsequently the expression of AQP4 and AQP9. Curcumin may serve as a potential therapeutic agent for ICH.

  17. Simvastatin pretreatment protects cerebrum from neuronal injury by decreasing the expressions of phosphor-CaMK II and AQP4 in ischemic stroke rats.

    PubMed

    Zhu, Min-xia; Lu, Chao; Xia, Chun-mei; Qiao, Zhong-wei; Zhu, Da-nian

    2014-12-01

    Excitotoxicity and cytotoxic edema are the two major factors resulting in neuronal injury during brain ischemia and reperfusion. Ca2+/calmodulin-dependent protein kinase II (CaMK II), the downstream signal molecular of N-methyl-D-aspartate receptors (NMDARs), is a mediator in the excitotoxicity. Aquaporin 4 (AQP4), expressed mainly in the brain, is an important aquaporin to control the flux of water. In a previous study, we had reported that pretreatment of simvastatin protected the cerebrum from ischemia and reperfusion injury by decreasing neurological deficit score and infarct area (Zhu et al. PLoS One 7:e51552, 2012). The present study used a middle cerebral artery occlusion (MCAO) model to further explore the pleiotropic effect of simvastatin via CaMK II and AQP4. The results showed that simvastatin reduced degenerated cells and brain edema while decreasing the protein expressions of phosphor-CaMK II and AQP4, and increasing the ratios of Bcl-2/Bax, which was independent of cholesterol-lowering effect. Immunocomplexes formed between the subunit of NMDARs-NR3A and AQP4 were detected for the first time. It was concluded that simvastatin could protect the cerebrum from neuronal excitotoxicity and cytotoxic edema by downregulating the expressions of phosphor-CaMK II and AQP4, and that the interaction between NR3A and AQP4 might provide the base for AQP4 involving in the signaling pathways mediated by NMDARs.

  18. Role of AQP4 Antibody Serostatus and its Prediction of Visual Outcome in Neuromyelitis Optica: A Systematic Review and Meta-Analysis.

    PubMed

    Lin, Nan; Liu, Qing; Wang, Xiaoyu; Ma, Jianmei; Li, Yuyuan

    2017-01-01

    Backgroud: Neuromyelitis optica (NMO) is an autoimmune inflammatory disorder, which is characterized by severe attacks of optic neuritis and myelitis. Antibodies (Ab) to aquaporin-4 (AQP4) (or NMO-IgG) as a serological biomarker of NMO have been widespread used. Nevertheless, some NMO patients remain seronegative for AQP4-Ab and/or have no detected optic nerve involvement. In addition, no consensus exists on the association between AQP4-Ab serostatus and visual outcome in NMO. To drive a more precise estimate of this postulated relationship, a metaanalysis was performed based on existing relevant studies. Studies were searched by PubMed and MEDLINE up to March 2016. Study quality was assessed, and meta-analysis was conducted using the RevMan 5.1. Odds ratios with 95% confidence interval were calculated and funnel plot was applied to assess the potential publication bias. In a total of 1288 relevant studies, 18 studies satisfied the eligibility criteria and were included in the systemic review. Only 9 studies appeared eligible for the meta-analysis, together including 624 AQP4-Ab-positive and 119 AQP4-Ab-negative NMO patients. The results revealed associations between AQP4-Ab seropositivity and visual impairment in NMO (OR, 3.16; 95% CI, 1.09, 9.19; P = 0.03). The results of subgroup analyses based on different methods of AQP-4 detection also showed significantly differences between AQP4-Ab seropositivity and visual impairment in NMO, especially in CBA subgroup. This meta-analysis indicates that AQP4-Ab serostatus has the positive with poor visual outcome in NMO. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Mechanisms Underlying Activation of α1-Adrenergic Receptor-Induced Trafficking of AQP5 in Rat Parotid Acinar Cells under Isotonic or Hypotonic Conditions

    PubMed Central

    Bragiel, Aneta M.; Wang, Di; Pieczonka, Tomasz D.; Shono, Masayuki; Ishikawa, Yasuko

    2016-01-01

    Defective cellular trafficking of aquaporin-5 (AQP5) to the apical plasma membrane (APM) in salivary glands is associated with the loss of salivary fluid secretion. To examine mechanisms of α1-adrenoceptor (AR)-induced trafficking of AQP5, immunoconfocal microscopy and Western blot analysis were used to analyze AQP5 localization in parotid tissues stimulated with phenylephrine under different osmolality. Phenylephrine-induced trafficking of AQP5 to the APM and lateral plasma membrane (LPM) was mediated via the α1A-AR subtype, but not the α1B- and α1D-AR subtypes. Phenylephrine-induced trafficking of AQP5 was inhibited by ODQ and KT5823, inhibitors of nitric oxide (NO)-stimulated guanylcyclase (GC) and protein kinase (PK) G, respectively, indicating the involvement of the NO/ soluble (c) GC/PKG signaling pathway. Under isotonic conditions, phenylephrine-induced trafficking was inhibited by La3+, implying the participation of store-operated Ca2+ channel. Under hypotonic conditions, phenylephrine-induced trafficking of AQP5 to the APM was higher than that under isotonic conditions. Under non-stimulated conditions, hypotonicity-induced trafficking of AQP5 to the APM was inhibited by ruthenium red and La3+, suggesting the involvement of extracellular Ca2+ entry. Thus, α1A-AR activation induced the trafficking of AQP5 to the APM and LPM via the Ca2+/ cyclic guanosine monophosphate (cGMP)/PKG signaling pathway, which is associated with store-operated Ca2+ entry. PMID:27367668

  20. Hypoxia and Hypoxia Mimetics Decrease Aquaporin 5 (AQP5) Expression through Both Hypoxia Inducible Factor-1α and Proteasome-Mediated Pathways

    PubMed Central

    Kawedia, Jitesh D.; Yang, Fan; Sartor, Maureen A.; Gozal, David; Czyzyk-Krzeska, Maria; Menon, Anil G.

    2013-01-01

    The alveolar epithelium plays a central role in gas exchange and fluid transport, and is therefore critical for normal lung function. Since the bulk of water flux across this epithelium depends on the membrane water channel Aquaporin 5 (AQP5), we asked whether hypoxia had any effect on AQP5 expression. We show that hypoxia causes a significant (70%) decrease in AQP5 expression in the lungs of mice exposed to hypoxia. Hypoxia and the hypoxia mimetic, cobalt, also caused similar decreases in AQP5 mRNA and protein expression in the mouse lung epithelial cell line MLE-12. The action of hypoxia and cobalt on AQP5 transcription was demonstrated by directly quantifying heternonuclear RNA by real-time PCR. Dominant negative mutants of Hypoxia Inducible Factor (HIF-1α) and HIF-1α siRNA blocked the action of cobalt, showing that HIF-1α is a key component in this mechanism. The proteasome inhibitors, lactacystin or proteasome inhibitor-III completely abolished the effect of hypoxia and cobalt both at the protein and mRNA level indicating that the proteasome pathway is probably involved not only for the stability of HIF-1α protein, but for the stability of unidentified transcription factors that regulate AQP5 transcription. These studies reveal a potentially important physiological mechanism linking hypoxic stress and membrane water channels. PMID:23469202

  1. Effects of naturally occurring G103D point mutation of AQP5 on its water permeability, trafficking and cellular localization in the submandibular gland of rats.

    PubMed

    Karabasil, Mileva Ratko; Hasegawa, Takahiro; Azlina, Ahmad; Purwanti, Nunuk; Yao, Chenjuan; Akamatsu, Tetsuya; Tomioka, Shigemasa; Hosoi, Kazuo

    2011-02-01

    AQPs (aquaporins) are water channel proteins that are expressed in almost all living things. In mammalians, 13 members of AQPs (AQP0-12) have been identified so far. AQP5 is known to be expressed mostly in the exocrine cells, including the salivary gland acinar cells. A naturally occurring point mutation (G308A, Gly103 > Asp103) was earlier found in the rat AQP5 gene [Murdiastuti, Purwanti, Karabasil, Li, Yao, Akamatsu, Kanamori and Hosoi (2006) Am. J. Physiol. 291, G1081-G1088]; in this mutant, the rate of initial saliva secretion under stimulated and unstimulated conditions is less than that for the wt (wild-type) animals. Here the mutant molecule was characterized in detail. Using the Xenopus oocyte system, we demonstrated the mutant AQP5 to have water permeability almost the same as that of the wt molecule. Mutant and wt AQP5s, tagged with GFP (green fluorescent protein; GFP-AQP5s) and expressed in polarized MDCK-II (Madin-Darby canine kidney II) cells, first appeared in the vesicular structure(s) in the cytoplasm, and were translocated to the upper plasma membrane or apical membrane during cultivation, with the mutant GFP-AQP5 being translocated less efficiently. Thapsigargin and H-89 both induced translocation in vitro of either molecule, whereas colchicine inhibited this activity; the fraction of cells showing apical localization of mutant GFP-AQP5 was less than that showing that of the wt molecule under any of the experimental conditions used. In the mutant SMG (submandibular gland) tissue, localization of AQP5 in the apical membrane of acinar cells was extremely reduced. Vesicular structures positive for AQP5 and present in the cytoplasm of the acinar cells were co-localized with LAMP2 (lysosome-associated membrane protein 2) or cathepsin D in the mutant gland, whereas such co-localizations were very rare in the wt gland, suggesting that the mutant molecules largely entered lysosomes for degradation. Replacement of highly conserved hydrophobic Gly103 with

  2. 'Hit & Run' model of closed-skull traumatic brain injury (TBI) reveals complex patterns of post-traumatic AQP4 dysregulation.

    PubMed

    Ren, Zeguang; Iliff, Jeffrey J; Yang, Lijun; Yang, Jiankai; Chen, Xiaolin; Chen, Michael J; Giese, Rebecca N; Wang, Baozhi; Shi, Xuefang; Nedergaard, Maiken

    2013-06-01

    Cerebral edema is a major contributor to morbidity associated with traumatic brain injury (TBI). The methods involved in most rodent models of TBI, including head fixation, opening of the skull, and prolonged anesthesia, likely alter TBI development and reduce secondary injury. We report the development of a closed-skull model of murine TBI, which minimizes time of anesthesia, allows the monitoring of intracranial pressure (ICP), and can be modulated to produce mild and moderate grade TBI. In this model, we characterized changes in aquaporin-4 (AQP4) expression and localization after mild and moderate TBI. We found that global AQP4 expression after TBI was generally increased; however, analysis of AQP4 localization revealed that the most prominent effect of TBI on AQP4 was the loss of polarized localization at endfoot processes of reactive astrocytes. This AQP4 dysregulation peaked at 7 days after injury and was largely indistinguishable between mild and moderate grade TBI for the first 2 weeks after injury. Within the same model, blood-brain barrieranalysis of variance permeability, cerebral edema, and ICP largely normalized within 7 days after moderate TBI. These findings suggest that changes in AQP4 expression and localization may not contribute to cerebral edema formation, but rather may represent a compensatory mechanism to facilitate its resolution.

  3. Status of diagnostic approaches to AQP4-IgG seronegative NMO and NMO/MS overlap syndromes

    PubMed Central

    Weinshenker, Brian; Akman-Demir, Gulsen; Asgari, Nasrin; Barnes, David; Boggild, Mike; Chaudhuri, Abhijit; D’hooghe, Marie; Evangelou, Nikos; Geraldes, Ruth; Illes, Zsolt; Jacob, Anu; Kim, Ho Jin; Kleiter, Ingo; Levy, Michael; Marignier, Romain; McGuigan, Christopher; Murray, Katy; Nakashima, Ichiro; Pandit, Lekha; Paul, Friedemann; Pittock, Sean; Selmaj, Krzysztof; de Sèze, Jérôme; Siva, Aksel; Tanasescu, Radu; Vukusic, Sandra; Wingerchuk, Dean; Wren, Damian; Leite, Isabel

    2016-01-01

    Distinguishing aquaporin-4 IgG(AQP4-IgG)-negative neuromyelitis optica spectrum disorders (NMOSD) from opticospinal predominant multiple sclerosis (MS) is a clinical challenge with important treatment implications. The objective of the study was to examine whether expert clinicians diagnose and treat NMO/MS overlapping patients in a similar way. 12 AQP4-IgG-negative patients were selected to cover the range of clinical scenarios encountered in an NMO clinic. 27 NMO and MS experts reviewed their clinical vignettes, including relevant imaging and laboratory tests. Diagnoses were categorized into four groups (NMO, MS, indeterminate, other) and management into three groups (MS drugs, immunosuppression, no treatment). The mean proportion of agreement for the diagnosis was low (po = 0.51) and ranged from 0.25 to 0.73 for individual patients. The majority opinion was divided between NMOSD versus: MS (nine cases), monophasic longitudinally extensive transverse myelitis (LETM) (1), acute disseminated encephalomyelitis (ADEM) (1) and recurrent isolated optic neuritis (RION) (1). Typical NMO features (e.g., LETM) influenced the diagnosis more than features more consistent with MS (e.g., short TM). Agreement on the treatment of patients was higher (po = 0.64) than that on the diagnosis with immunosuppression being the most common choice not only in patients with the diagnosis of NMO (98 %) but also in those indeterminate between NMO and MS (74 %). The diagnosis in AQP4-IgG-negative NMO/MS overlap syndromes is challenging and diverse. The classification of such patients currently requires new diagnostic categories, which incorporate lesser degrees of diagnostic confidence. Long-term follow-up may identify early features or biomarkers, which can more accurately distinguish the underlying disorder. PMID:26530512

  4. Challenging AQP4 druggability for NMO-IgG antibody binding using molecular dynamics and molecular interaction fields.

    PubMed

    Mangiatordi, Giuseppe Felice; Alberga, Domenico; Siragusa, Lydia; Goracci, Laura; Lattanzi, Gianluca; Nicolotti, Orazio

    2015-07-01

    Neuromyelitis optica (NMO) is a multiple sclerosis-like immunopathology disease affecting optic nerves and the spinal cord. Its pathological hallmark is the deposition of a typical immunoglobulin, called NMO-IgG, against the water channel Aquaporin-4 (AQP4). Preventing NMO-IgG binding would represent a valuable molecular strategy for a focused NMO therapy. The recent observation that aspartate in position 69 (D69) is determinant for the formation of NMO-IgG epitopes prompted us to carry out intensive Molecular Dynamics (MD) studies on a number of single-point AQP4 mutants. Here, we report a domino effect originating from the point mutation at position 69: we find that the side chain of T62 is reoriented far from its expected position leaning on the lumen of the pore. More importantly, the strength of the H-bond interaction between L53 and T56, at the basis of the loop A, is substantially weakened. These events represent important pieces of a clear-cut mechanistic rationale behind the failure of the NMO-IgG binding, while the water channel function as well as the propensity to aggregate into OAPs remains unaltered. The molecular interaction fields (MIF)-based analysis of cavities complemented MD findings indicating a putative binding site comprising the same residues determining epitope reorganization. In this respect, docking studies unveiled an intriguing perspective to address the future design of small drug-like compounds against NMO. In agreement with recent experimental observations, the present study is the first computational attempt to elucidate NMO-IgG binding at the molecular level, as well as a first effort toward a less elusive AQP4 druggability. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Retinal Nerve Fiber Layer May Be Better Preserved in MOG-IgG versus AQP4-IgG Optic Neuritis: A Cohort Study

    PubMed Central

    Chodick, Gabriel; Bialer, Omer; Marignier, Romain; Bach, Michael; Hellmann, Mark Andrew

    2017-01-01

    Background Optic neuritis (ON) in patients with anti-myelin oligodendrocyte glycoprotein (MOG)-IgG antibodies has been associated with a better clinical outcome than anti-aquaporin 4 (AQP4)- IgG ON. Average retinal nerve fiber layer thickness (RNFL) correlates with visual outcome after ON. Objectives The aim of this study was to examine whether anti-MOG-IgG ON is associated with better average RNFL compared to anti-AQP4-IgG ON, and whether this corresponds with a better visual outcome. Methods A retrospective study was done in a consecutive cohort of patients following anti-AQP4-IgG and anti-MOG-IgG ON. A generalized estimating equation (GEE) models analysis was used to compare average RNFL outcomes in ON eyes of patients with MOG-IgG to AQP4-IgG-positive patients, after adjusting for the number of ON events. The final mean visual field defect and visual acuity were compared between ON eyes of MOG-IgG and AQP4-IgG-positive patients. A correlation between average RNFL and visual function was performed in all study eyes. Results Sixteen patients were analyzed; ten AQP4-IgG-positive and six MOG-IgG-positive. The six patients with MOG-IgG had ten ON events with disc edema, five of which were bilateral. In the AQP4-IgG-positive ON events, 1/10 patients had disc edema. Final average RNFL was significantly better in eyes following MOG-IgG-ON (75.33μm), compared to 63.63μm in AQP4-IgG-ON, after adjusting for the number of ON attacks (GEE, p = 0.023). Mean visual field defects were significantly smaller (GEE, p = 0.046) among MOG-IgG positive ON eyes compared to AQP-IgG positive ON eyes, but last visual acuity did not differ between the groups (GEE, p = 0.153). Among all eyes, average RNFL positively correlated with mean visual field defect (GEE, p = 0.00015) and negatively correlated with final visual acuity (GEE, p = 0.00005). Conclusions Following ON, RNFL is better preserved in eyes of patients with MOG-IgG antibodies compared to those with AQP4-IgG antibodies

  6. Sevenfold-reduced osmotic water permeability in primary astrocyte cultures from AQP-4-deficient mice, measured by a fluorescence quenching method.

    PubMed

    Solenov, Eugen; Watanabe, Hiroyuki; Manley, Geoffrey T; Verkman, A S

    2004-02-01

    A calcein fluorescence quenching method was applied to measure osmotic water permeability in highly differentiated primary cultures of brain astrocytes from wild-type and aquaporin-4 (AQP-4)-deficient mice. Cells grown on coverglasses were loaded with calcein for measurement of volume changes after osmotic challenge. Hypotonic shock producing twofold cell swelling resulted in a reversible approximately 12% increase in calcein fluorescence, which was independent of cytosolic calcein concentration at levels well below where calcein self-quenching occurs. Calcein fluorescence was quenched in <200 ms in response to addition of cytosol in vitro, indicating that the fluorescence signal arises from changes in cytosol concentration. In astrocytes from wild-type CD1 mice, calcein fluorescence increased reversibly in response to hypotonic challenge with a half-time of 0.92 +/- 0.05 s at 23 degrees C, corresponding to an osmotic water permeability (Pf) of approximately 0.05 cm/s. Pf was reduced 7.1-fold in astrocytes from AQP-4-deficient mice. Temperature dependence studies indicated an increased Arrhenius activation energy for water transport in AQP-4-deficient astrocytes (11.3 +/- 0.5 vs. 5.5 +/- 0.4 kcal/mol). Our studies establish a calcein quenching method for measurement of cell membrane water permeability and indicate that AQP-4 provides the principal route for water transport in astrocytes.

  7. Distribution of the AQP4 water channel in normal human tissues: protein and tissue microarrays reveal expression in several new anatomical locations, including the prostate gland and seminal vesicles.

    PubMed

    Mobasheri, Ali; Marples, David; Young, Iain S; Floyd, Rachel V; Moskaluk, Christopher A; Frigeri, Antonio

    2007-01-01

    Aquaporins facilitate osmotically driven water movement across cell membranes. Aquaporin 4 (AQP4) is a major water channel in the central nervous system where it participates in cerebral water balance. AQP4 is also present in basolateral membranes of lower respiratory tract airway and renal collecting duct epithelial cells, gastric parietal cells and skeletal muscle cells. However, the distribution of AQP4 in many other tissues is still unknown. The aim of this study was to determine the expression and relative abundance of AQP4 in human Tissue MicroArrays (TMAs) and human protein microarrays by immunohistochemistry and chemiluminescence. In the central nervous system AQP4 was abundantly expressed in the cerebral cortex, cerebellar cortex (purkinje/granular layer), ependymal cell layer, hippocampus and spinal cord. Lower levels were detected in choroid plexus, white matter and meninges. In the musculoskeletal system AQP4 was highly expressed in the sarcolemma of skeletal muscle from the chest and neck. In the male genital system AQP4 was moderately expressed in seminiferous tubules, seminal vesicles, prostate and epidiymis. In the respiratory system AQP4 was moderately expressed in lung and bronchus. AQP expression was abundant in the kidney. In the gastrointestinal system AQP4 was moderately present in basolateral membranes of parietal cells at the base of gastric glands. AQP4 was also detected in salivary glands, adrenals, anterior pituitary, prostate and seminal vesicles. Human protein microarrays verified the TMA data. Our findings suggest that AQP4 is expressed more widely than previously thought in human organs and may be involved in prostatic and seminal fluid formation.

  8. Gene expression and localization of two types of AQP5 in Xenopus tropicalis under hydration and dehydration.

    PubMed

    Shibata, Yuki; Sano, Takahiro; Tsuchiya, Nobuhito; Okada, Reiko; Mochida, Hiroshi; Tanaka, Shigeyasu; Suzuki, Masakazu

    2014-07-01

    Two types of aquaporin 5 (AQP5) genes (aqp-xt5a and aqp-xt5b) were identified in the genome of Xenopus tropicalis by synteny comparison and molecular phylogenetic analysis. When the frogs were in water, AQP-xt5a mRNA was expressed in the skin and urinary bladder. The expression of AQP-xt5a mRNA was significantly increased in dehydrated frogs. AQP-xt5b mRNA was also detected in the skin and increased in response to dehydration. Additionally, AQP-xt5b mRNA began to be slightly expressed in the lung and stomach after dehydration. For the pelvic skin of hydrated frogs, immunofluorescence staining localized AQP-xt5a and AQP-xt5b to the cytoplasm of secretory cells of the granular glands and the apical plasma membrane of secretory cells of the small granular glands, respectively. After dehydration, the locations of both AQPs in their respective glands did not change, but AQP-xt5a was visualized in the cytoplasm of secretory cells of the small granular glands. For the urinary bladder, AQP-xt5a was observed in the apical plasma membrane and cytoplasm of a number of granular cells under normal hydration. After dehydration, AQP-xt5a was found in the apical membrane and cytoplasm of most granular cells. Injection of vasotocin into hydrated frogs did not induce these changes in the localization of AQP-xt5a in the small granular glands and urinary bladder, however. The results suggest that AQP-xt5a might be involved in water reabsorption from the urinary bladder during dehydration, whereas AQP-xt5b might play a role in water secretion from the small granular gland.

  9. Hypothermia increases aquaporin 4 (AQP4) plasma membrane abundance in human primary cortical astrocytes via a calcium/ transient receptor potential vanilloid 4 (TRPV4)- and calmodulin-mediated mechanism.

    PubMed

    Salman, Mootaz M; Kitchen, Philip; Woodroofe, M Nicola; Brown, James E; Bill, Roslyn M; Conner, Alex C; Conner, Matthew T

    2017-09-19

    Human aquaporin 4 (AQP4) is the primary water channel protein in brain astrocytes. Hypothermia is known to cause astrocyte swelling in culture, but the precise role of AQP4 in this process is unknown. Primary human cortical astrocytes were cultured under hypothermic (32°C) or normothermic (37°C) conditions. AQP4 transcript, total protein and surface localized protein were quantified using RT-qPCR, sandwich ELISA with whole cell lysates, or cell-surface biotinylation followed by ELISA analysis of the surface-localized protein, respectively. Four-hour mild hypothermic treatment increased the surface localization of AQP4 in human astrocytes to 155 ± 4% of normothermic controls, despite no change in total protein expression levels. The hypothermia-mediated increase in AQP4 surface abundance on human astrocytes was blocked using either calmodulin antagonist (trifluoperazine; TFP); TRPV4 antagonist, HC-067047 or calcium chelation using EGTA-AM. The TRPV4 agonist (GSK1016790A) mimicked the effect of hypothermia compared with untreated normothermic astrocytes. Hypothermia led to an increase in surface localization of AQP4 in human astrocytes through a mechanism likely dependent on the TRPV4 calcium channel and calmodulin activation. Understanding the effects of hypothermia on astrocytic AQP4 cell-surface expression may help develop new treatments for brain swelling based on an in-depth mechanistic understanding of AQP4 translocation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. S-allylmercapto-l-cysteine modulates MUC5AC and AQP5 secretions in a COPD model via NF-кB signaling pathway.

    PubMed

    Yang, Min; Wang, Yongjie; Zhang, Yongchun; Zhang, Fang; Zhao, Zhongxi; Li, Siying; Zhang, Jianqiang; Cao, Xinke; Zhang, Daizhou

    2016-10-01

    Garlic has shown versatile medicinal activities in the prevention and treatment of diseases such as chronic obstructive pulmonary disease (COPD). However, no individual garlic bioactive components have yet been determined in the COPD treatment effects. In this work, S-allylmercapto-l-cysteine (SAMC) identified in the aged garlic was selected as a model compound to determine its COPD therapeutic potential. The COPD model was established by using lipopolysaccharides (LPS) to stimulate the human airway submucosal gland cell line SPC-A1. Previous studies show that both MUC5AC up-regulation and AQP5 down-regulation play an important role in viscous COPD mucus secretions. The modulation effects of SAMC on LPS-induced MUC5AC and AQP5 productions in SPC-A1 cells were then evaluated. Pretreatment of the SPC-A1 cells with SAMC attenuated MUC5AC secretion and increased AQP5 expression in a dose-dependent manner in the non-cytotoxic concentration range of 20 to 100μM. Mechanistic studies suggested that SAMC could suppress the accumulation of MUC5AC mRNA and inhibit IкBα degradation and NF-кB p65 translocation. These results suggest that SAMC could be a promising candidate in the prevention and treatment of MUC5AC-associated disorders such as COPD. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Closely spaced tandem arrangement of AQP2, AQP5, and AQP6 genes in a 27-kilobase segment at chromosome locus 12q13.

    PubMed

    Ma, T; Yang, B; Umenishi, F; Verkman, A S

    1997-08-01

    The aquaporins (AQPs) are a family of water-transporting proteins that facilitate osmotically driven water movement across cell plasma membranes. Among the seven human aquaporins cloned to date (AQPs 0-6), genes encoding the four most closely related aquaporins (AQP0, AQP2, AQP5, and AQP6) have been mapped to chromosome band 12q13, suggesting an aquaporin family gene cluster at this locus. To construct a physical map and identify novel aquaporin gene members on this cluster, a human CEPH B yeast artificial chromosome (YAC) library was screened by PCR using primers derived from exon 4 of AQP2 and AQP0 genes. A YAC clone with 200 kb of human DNA was isolated and analyzed. Primary pulsed-field gel electrophoresis and Southern blot analysis indicated the presence of AQP2, AQP5, and AQP6 genes, but not AQP0. Restriction mapping and PCR analysis yielded a precise physical map in which the three aquaporin genes span only approximately 27 kb in the order, transcriptional orientation, and spacer length 5'-AQP2-5 kb spacer-AQP5-7 kb spacer-AQP6-3'.

  12. Eculizumab in AQP4-IgG-positive relapsing neuromyelitis optica spectrum disorders: an open-label pilot study.

    PubMed

    Pittock, Sean J; Lennon, Vanda A; McKeon, Andrew; Mandrekar, Jay; Weinshenker, Brian G; Lucchinetti, Claudia F; O'Toole, Orna; Wingerchuk, Dean M

    2013-06-01

    Complement activation after binding of an IgG autoantibody to aquaporin 4 (AQP4) is thought to be a major determinant of CNS inflammation and astrocytic injury in neuromyelitis optica. The aim of this study was to investigate the use of eculizumab--a therapeutic monoclonal IgG that neutralises the complement protein C5--in neuromyelitis optica spectrum disorders. Between Oct 20, 2009, and Nov 3, 2010, we recruited patients from two US centres into an open-label trial. Patients were AQP4-IgG-seropositive, aged at least 18 years, had a neuromyelitis optica spectrum disorder, and had at least two attacks in the preceding 6 months or three in the previous 12 months. Patients received meningococcal vaccine at a screening visit and 2 weeks later began eculizumab treatment. They received 600 mg intravenous eculizumab weekly for 4 weeks, 900 mg in the fifth week, and then 900 mg every 2 weeks for 48 weeks. The coprimary endpoints were efficacy (measured by number of attacks [new worsening of neurological function lasting for more than 24 h and not attributable to an identifiable cause]) and safety. Secondary endpoints were disability (measured by expanded disability status scale), ambulation (Hauser score), and visual acuity. At follow-up visits (after 6 weeks and 3, 6, 9, and 12 months of treatment; and 3 and 12 months after discontinuation), complete neurological examination was undertaken and an adverse event questionnaire completed. This trial is registered with ClinicalTrials.gov, number NCT00904826. We enrolled 14 patients, all of whom were women. After 12 months of eculizumab treatment, 12 patients were relapse free; two had had possible attacks. The median number of attacks per year fell from three before treatment (range two to four) to zero (zero to one) during treatment (p<0·0001). No patient had worsened disability by any outcome measure. Median score on the expanded disability status scale improved from 4·3 (range 1·0-8·0) before treatment to 3·5 (0-8·0

  13. Periplasmic Vestibule Determines the Ligand Selectivity in E.Coli AMTB

    NASA Astrophysics Data System (ADS)

    Akgun, Ugur; Khademi, Shahram

    2010-03-01

    The transport of ammonia, fundamental to the nitrogen metabolism in all domains of life, is carried out by the Rh/Amt/MEP membrane protein superfamily. The first structure of this family, AmtB from E.Coli shows a pathway for ammonia that includes two vestibules connected by a long and narrow hydrophobic lumen. The accepted mechanism for AmtB is to recruit NH4^+ and conduct neutral NH3 by deprotonation of NH4^+ at the end of periplasmic vestibule. Here we report from various MD simulations performed using a model of trimeric AmtB embedded into POPE lipid bilayer to determine the mechanism of ligands selectivity and conduction in the ammonia channels. Our total more than 500ns simulations reveal that the AmtB periplasmic vestibule prefers NH4^+ over NH3 and CO2. And the rate of ammonia conduction is regulated by the motion of the phenyl rings at the bottom of the vestibule. We also report that the conserved D160 is essential for ligand conduction by stabilizing the NH4^+ at the recruitment site through charge interactions. Our simulations also suggest NH4^+ most likely releases its proton to the bulk of water as it enters to the hydrophobic lumen.

  14. Effects of curcumin on levels of nitric oxide synthase and AQP-4 in a rat model of hypoxia-ischemic brain damage.

    PubMed

    Yu, Linsheng; Yi, Jipu; Ye, Guanghua; Zheng, Yuanyuan; Song, Zhijian; Yang, Yanmei; Song, Yulong; Wang, Zhenyuan; Bao, Qiyu

    2012-09-26

    This study examines the preventive and therapeutic effects of curcumin on brain edema after hypoxic-ischemic brain damage (HIBD) in a rat model. Male Sprague-Dawley rats were divided into four groups: a sham group (SH), a hypoxic-ischemic group (HI) without drug treatment, a hypoxic-ischemic group (CU) with curcumin injection, and a hypoxic-ischemic group with DMSO injection (solvent control, SC). HIBD treatment led to edema and ultrastructural changes in the hippocampus, increased the activity levels of nitric oxide synthase (NOS) in the brain (P<0.05), and raised the expression of water channel protein 4 (Aquaporin-4, AQP-4) in the blood-brain barrier (BBB) (P<0.05). Curcumin injection, but not the control DMSO injection, partially reversed HIBD-induced brain edema and morphological changes, as well as HIBD-induced increase in NOS activities and AQP-4 expression (P<0.05). In conclusion, our results showed that BBB ultrastructural changes may play an important role in the formation and development of brain edema after HIBD. Curcumin may protect the BBB ultrastructure and thus decrease brain edema following HIBD by down-regulating HIBD-induced increase in NOS activities and AQP-4 protein expression. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Difference in expression between AQP1 and AQP5 in porcine endometrium and myometrium in response to steroid hormones, oxytocin, arachidonic acid, forskolin and cAMP during the mid-luteal phase of the estrous cycle and luteolysis.

    PubMed

    Skowronska, Agnieszka; Mlotkowska, Patrycja; Nielsen, Soren; Skowronski, Mariusz T

    2015-12-01

    Recently, we demonstrated in vitro that AQP1 and AQP5 in the porcine uterus are regulated by steroid hormones (P4, E2), arachidonic acid (AA), forskolin (FSK) and cAMP during the estrous cycle. However, the potential of the porcine separated uterine tissues, the endometrium and myometrium, to express these AQPs remains unknown. Thus, in this study, the responses of AQP1 and AQP5 to P4, E2 oxytocin (OT), AA, FSK and cAMP in the porcine endometrium and myometrium were examined during the mid-luteal phase of the estrous cycle and luteolysis. Real-time PCR and western blot analysis. Progesterone up-regulated the expression of AQP1/AQP5 mRNAs and proteins in the endometrium and myometrium, especially during luteolysis. Similarly, E2 also stimulated the expression of both AQPs, but only in the endometrium. AA led to the upregulation of AQP1/AQP5 in the endometrium during luteolysis. In turn, OT increased the expression of AQP1/AQP5 mRNAs and proteins in the myometrium during mid-luteal phase. Moreover, a stimulatory effect of forskolin and cAMP on the expression of AQP1/AQP5 mRNAs and proteins in the endometrium and myometrium dominated during luteolysis, but during the mid-luteal phase their influence on the expression of these AQPs was differentiated depending on the type of tissue and the incubation duration. These results seem to indicate that uterine tissues; endometrium and myometrium, exhibit their own AQP expression profiles in response to examined factors. Moreover, the responses of AQP1/AQP5 at mRNA and protein levels to the studied factors in the endometrium and myometrium are more pronounced during luteolysis. This suggests that the above effects of the studied factors are connected with morphological and physiological changes taking place in the pig uterus during the estrous cycle.

  16. Ammonium recruitment and ammonia transport by E. coli ammonia channel AmtB.

    PubMed

    Nygaard, Thomas P; Rovira, Carme; Peters, Günther H; Jensen, Morten Ø

    2006-12-15

    To investigate substrate recruitment and transport across the Escherichia coli Ammonia transporter B (AmtB) protein, we performed molecular dynamics simulations of the AmtB trimer. We have identified residues important in recruitment of ammonium and intraluminal binding sites selective of ammonium, which provide a means of cation selectivity. Our results indicate that A162 guides translocation of an extraluminal ammonium into the pore lumen. We propose a mechanism for transporting the intraluminally recruited proton back to periplasm. Our mechanism conforms to net transport of ammonia and can explain why ammonia conduction is lost upon mutation of the conserved residue D160. We unify previous suggestions of D160 having either a structural or an ammonium binding function. Finally, our simulations show that the channel lumen is hydrated from the cytoplasmic side via the formation of single file water, while the F107/F215 stack at the inner-most part of the periplasmic vestibule constitutes a hydrophobic filter preventing AmtB from conducting water.

  17. Ammonium Recruitment and Ammonia Transport by E. coli Ammonia Channel AmtB

    PubMed Central

    Nygaard, Thomas P.; Rovira, Carme; Peters, Günther H.; Jensen, Morten Ø.

    2006-01-01

    To investigate substrate recruitment and transport across the Escherichia coli Ammonia transporter B (AmtB) protein, we performed molecular dynamics simulations of the AmtB trimer. We have identified residues important in recruitment of ammonium and intraluminal binding sites selective of ammonium, which provide a means of cation selectivity. Our results indicate that A162 guides translocation of an extraluminal ammonium into the pore lumen. We propose a mechanism for transporting the intraluminally recruited proton back to periplasm. Our mechanism conforms to net transport of ammonia and can explain why ammonia conduction is lost upon mutation of the conserved residue D160. We unify previous suggestions of D160 having either a structural or an ammonium binding function. Finally, our simulations show that the channel lumen is hydrated from the cytoplasmic side via the formation of single file water, while the F107/F215 stack at the inner-most part of the periplasmic vestibule constitutes a hydrophobic filter preventing AmtB from conducting water. PMID:17012311

  18. Age-Related Modulations of AQP4 and Caveolin-1 in the Hippocampus Predispose the Toxic Effect of Phoneutria nigriventer Spider Venom.

    PubMed

    Soares, Edilene S; Stávale, Leila M; Mendonça, Monique C P; Coope, Andressa; Cruz-Höfling, Maria Alice da

    2016-11-23

    We have previously demonstrated that Phoneutria nigriventer venom (PNV) causes blood-brain barrier (BBB) breakdown, swelling of astrocytes end-feet and fluid permeation into brain interstitium in rats. Caveolae and water channels respond to BBB alterations by co-participation in shear stress response and edema formation/resolution. Herein, we showed post-natal developmental-related changes of two BBB-associated transporter proteins: the endothelial caveolin-1 (Cav-1), the major scaffolding protein from caveolae frame, and the astroglial aquaporin-4 (AQP4), the main water channel protein expressed in astrocytic peri-vascular end-feet processes, in the hippocampus of rats intraperitoneally-administered PNV. Western blotting protein levels; immunohistochemistry (IHC) protein distribution in CA1, CA2, and CA3 subfields; and gene expression by Real Time-Polymerase Chain Reaction (qPCR) were assessed in post-natal Day 14 (P14) and 8-10-week-old rats over critical periods of envenomation. The intensity and duration of the toxic manifestations indicate P14 neonate rats more vulnerable to PNV than adults. Histologically, the capillaries of P14 and 8-10-week-old rats treated with PNV showed perivascular edema, while controls did not. The intensity of the toxic manifestations in P14 decreases temporally (2 > 5 > 24 h), while inversely the expression of AQP4 and Cav-1 peaked at 24 h when clinically PNV-treated animals do not differ from saline controls. IHC of AQP4 revealed that hippocampal CA1 showed the least expression at 2 h when toxic manifestation was maximal. Subfield IHC quantification revealed that in P14 rats Cav-1 peaked at 24 h when toxic manifestations were absent, whereas in 8-10-week-old rats Cav-1 peaked at 2 h when toxic signs were highest, and progressively attenuated such increases until 24 h, remaining though significantly above baseline. Considering astrocyte-endothelial physical and functional interactions, we hypothesize that age-related modulations of

  19. Age-Related Modulations of AQP4 and Caveolin-1 in the Hippocampus Predispose the Toxic Effect of Phoneutria nigriventer Spider Venom

    PubMed Central

    Soares, Edilene S.; Stávale, Leila M.; Mendonça, Monique C. P.; Coope, Andressa; da Cruz-Höfling, Maria Alice

    2016-01-01

    We have previously demonstrated that Phoneutria nigriventer venom (PNV) causes blood–brain barrier (BBB) breakdown, swelling of astrocytes end-feet and fluid permeation into brain interstitium in rats. Caveolae and water channels respond to BBB alterations by co-participation in shear stress response and edema formation/resolution. Herein, we showed post-natal developmental-related changes of two BBB-associated transporter proteins: the endothelial caveolin-1 (Cav-1), the major scaffolding protein from caveolae frame, and the astroglial aquaporin-4 (AQP4), the main water channel protein expressed in astrocytic peri-vascular end-feet processes, in the hippocampus of rats intraperitoneally-administered PNV. Western blotting protein levels; immunohistochemistry (IHC) protein distribution in CA1, CA2, and CA3 subfields; and gene expression by Real Time-Polymerase Chain Reaction (qPCR) were assessed in post-natal Day 14 (P14) and 8–10-week-old rats over critical periods of envenomation. The intensity and duration of the toxic manifestations indicate P14 neonate rats more vulnerable to PNV than adults. Histologically, the capillaries of P14 and 8–10-week-old rats treated with PNV showed perivascular edema, while controls did not. The intensity of the toxic manifestations in P14 decreases temporally (2 > 5 > 24 h), while inversely the expression of AQP4 and Cav-1 peaked at 24 h when clinically PNV-treated animals do not differ from saline controls. IHC of AQP4 revealed that hippocampal CA1 showed the least expression at 2 h when toxic manifestation was maximal. Subfield IHC quantification revealed that in P14 rats Cav-1 peaked at 24 h when toxic manifestations were absent, whereas in 8–10-week-old rats Cav-1 peaked at 2 h when toxic signs were highest, and progressively attenuated such increases until 24 h, remaining though significantly above baseline. Considering astrocyte-endothelial physical and functional interactions, we hypothesize that age

  20. Dexmedetomidine alleviates pulmonary edema by upregulating AQP1 and AQP5 expression in rats with acute lung injury induced by lipopolysaccharide.

    PubMed

    Jiang, Yuan-xu; Dai, Zhong-liang; Zhang, Xue-ping; Zhao, Wei; Huang, Qiang; Gao, Li-kun

    2015-10-01

    This study aims to elucidate the mechanisms by which dexmedetomidine alleviates pulmonary edema in rats with acute lung injury induced by lipopolysaccharide (LPS). Male Wistar rats were randomly divided into five groups: normal saline control (NS) group, receiving intravenous 0.9% normal saline (5 mL/kg); LPS group, receiving intravenous LPS (10 mg/kg); small-dose dexmedetomidine (S) group, treated with a small dose of dexmedetomidine (0.5 μg · kg(-1) · h(-1)); medium-dose dexmedetomidine (M) group, treated with a medium dose of dexmedetomidine (2.5 μg · kg(-1) · h(-1)); high-dose dexmedetomidine (H) group, treated with a high dose of dexmedetomidine (5 μg · kg(-1) · h(-1)). The rats were sacrificed 6 h after intravenous injection of LPS or NS, and the lungs were removed for evaluating histological characteristics and determining the lung wet/dry weight ratio (W/D). The levels of tumor necrosis factor-alpha (TNF-α) and interleukin-1β (IL-1β) in the lung tissues were assessed by enzyme- linked immunosorbent assay (ELISA). The mRNA and protein expression levels of aquaporin-1 (AQP1) and aquaporin-5 (AQP5) were detected by RT-PCR, immunohistochemistry, and Western blotting. The lung tissues from the LPS groups were significantly damaged, which were less pronounced in the H group but not in the small-dose dexmedetomidine group or medium-dose dexmedetomidine group. The W/D and the concentrations of TNF-α and IL-1β in the pulmonary tissues were increased in the LPS group as compared with those in NS group, which were reduced in the H group but not in S group or M group (P<0.01). The expression of AQP1 and AQP5 was lower in the LPS group than in the NS group, and significantly increased in the H group but not in the S group or M group (P<0.01). Our findings suggest that dexmedetomidine may alleviate pulmonary edema by increasing the expression of AQP-1 and AQP-5.

  1. The pivotal twin histidines and aromatic triad of the Escherichia coli ammonium channel AmtB can be replaced

    PubMed Central

    Hall, Jason A.; Kustu, Sydney

    2011-01-01

    In Escherichia coli, each subunit of the trimeric channel protein AmtB carries a hydrophobic pore for transport of NH4+ across the cytoplasmic membrane. Positioned along this substrate conduction pathway are two conserved elements—a pair of hydrogen-bonded histidines (H168/H318) located within the pore itself and a set of aromatic residues (F107/W148/F215) at its periplasmic entrance—thought to be critical to AmtB function. Using site-directed mutagenesis and suppressor genetics, we examined the requirement for these elements in NH4+ transport. This analysis shows that AmtB can accommodate, by either direct substitution or suppressor generation, acidic residues at one or both positions of the H168/H318 twin-histidine site while retaining near wild-type activity. Similarly, study of the F107/W148/F215 triad indicates that good-to-excellent AmtB function is preserved upon individual and simultaneous replacement of these aromatic amino acids with aliphatic residues. Our findings lead us to conclude that these elements and their component parts are not required for AmtB function, but instead serve to optimize its performance. PMID:21775672

  2. The pivotal twin histidines and aromatic triad of the Escherichia coli ammonium channel AmtB can be replaced.

    PubMed

    Hall, Jason A; Kustu, Sydney

    2011-08-09

    In Escherichia coli, each subunit of the trimeric channel protein AmtB carries a hydrophobic pore for transport of NH(4)(+) across the cytoplasmic membrane. Positioned along this substrate conduction pathway are two conserved elements--a pair of hydrogen-bonded histidines (H168/H318) located within the pore itself and a set of aromatic residues (F107/W148/F215) at its periplasmic entrance--thought to be critical to AmtB function. Using site-directed mutagenesis and suppressor genetics, we examined the requirement for these elements in NH(4)(+) transport. This analysis shows that AmtB can accommodate, by either direct substitution or suppressor generation, acidic residues at one or both positions of the H168/H318 twin-histidine site while retaining near wild-type activity. Similarly, study of the F107/W148/F215 triad indicates that good-to-excellent AmtB function is preserved upon individual and simultaneous replacement of these aromatic amino acids with aliphatic residues. Our findings lead us to conclude that these elements and their component parts are not required for AmtB function, but instead serve to optimize its performance.

  3. Increased occurrence of anti-AQP4 seropositivity and unique HLA Class II associations with neuromyelitis optica (NMO), among Muslim Arabs in Israel.

    PubMed

    Brill, Livnat; Mandel, Micha; Karussis, Dimitrios; Petrou, Panayiota; Miller, Keren; Ben-Hur, Tamir; Karni, Arnon; Paltiel, Ora; Israel, Shoshana; Vaknin-Dembinsky, Adi

    2016-04-15

    Previous studies have revealed different human leukocyte antigen (HLA) associations in multiple sclerosis (MS) and neuromyelitis optica (NMO), further discriminating these two demyelinating pathological conditions. In worldwide analyses, NMO and opticospinal MS are represented at higher proportions among demyelinating conditions in African, East-Asian and Latin American populations. There are currently no data regarding the prevalence of NMO in Middle East Muslims. The population in Israel is diverse in many ways, and includes subpopulations, based on religion and ethnicity; some exhibit genetic homogeneity. In Israel, the incidence of MS is lower in the Muslim population than the Jewish population and Muslims carry different allele frequency distribution of HLA haplotypes. To evaluate the occurrence of anti-AQP4 seropositivity in the Israeli Muslim population among patients with central nervous system (CNS) demyelinating conditions; and to identify the HLA DR and DQ profiles of Muslim Arab Israeli patients with NMO spectrum of diseases (NMOSD). The prevalence of anti-AQP4 seropositivity was analyzed in 342 samples, obtained from patients with various CNS demyelinating conditions and in a validation set of 310 samples. HLA class II alleles (HLA-DRB1 and DQB1) were examined in DNA samples from 35 Israeli Muslim Arabs NMO patients and compared to available data from 74 Israeli Muslim controls. Our data reveal a significantly increased prevalence of anti-AQP4 seropositivity, indicative of NMOSD, in Muslim Arab Israeli patients with initial diagnosis of a CNS demyelinating syndrome. In this population, there was a positive association with the HLA-DRB1*04:04 and HLA-DRB1*10:01 alleles (p=0.03), and a strong negative association with the HLA-DRB1*07 and HLA-DQB1*02:02 alleles (p=0.003, p=0.002). Our findings indicate a possibly increased prevalence of NMOSD in Muslim Arabs in Israel with distinct (positive and negative) HLA associations. Further studies in patients with

  4. Co-localisation of K(ir)4.1 and AQP4 in rat and human cochleae reveals a gap in water channel expression at the transduction sites of endocochlear K(+) recycling routes.

    PubMed

    Eckhard, Andreas; Gleiser, Corinna; Rask-Andersen, Helge; Arnold, Heinz; Liu, Wei; Mack, Andreas; Müller, Marcus; Löwenheim, Hubert; Hirt, Bernhard

    2012-10-01

    Sensory transduction in the cochlea depends on perilymphatic-endolymphatic potassium (K(+)) recycling. It has been suggested that the epithelial supporting cells (SCs) of the cochlear duct may form the intracellular K(+) recycling pathway. Thus, they must be endowed with molecular mechanisms that facilitate K(+) uptake and release, along with concomitant osmotically driven water movements. As yet, no molecules have been described that would allow for volume-equilibrated transepithelial K(+) fluxes across the SCs. This study describes the subcellular co-localisation of the K(ir)4.1 K(+) channel (K(ir)4.1) and the aquaporin-4 water channel (AQP4) in SCs, on the basis of immunohistochemical double-labelling experiments in rat and human cochleae. The results of this study reveal the expression of K(ir)4.1 in the basal or basolateral membranes of the SCs in the sensory domain of the organ of Corti that are adjacent to hair cells and in the non-sensory domains of the inner and outer sulci that abut large extracellular fluid spaces. The SCs of the inner sulcus (interdental cells, inner sulcus cells) and the outer sulcus (Hensen's cells, outer sulcus cells) display the co-localisation of K(ir)4.1 and AQP4 expression. However, the SCs in the sensory domain of the organ of Corti reveal a gap in the expression of AQP4. The outer pillar cell is devoid of both K(ir)4.1 and AQP4. The subcellular co-localisation of K(ir)4.1 and AQP4 in the SCs of the cochlea described in this study resembles that of the astroglia of the central nervous system and the glial Mueller cells in the retina.

  5. Substrate recognition in the Escherichia coli ammonia channel AmtB: a QM/MM investigation.

    PubMed

    Nygaard, Thomas P; Alfonso-Prieto, Mercedes; Peters, Günther H; Jensen, Morten Ø; Rovira, Carme

    2010-09-16

    Although the Escherichia coli ammonia transporter B (AmtB) protein has been the focus of several recent studies, there are still many questions and controversies regarding substrate binding and recognition. Specifically, how and where AmtB differentiates between substrates is not yet fully understood. The present computational study addresses the importance of intermolecular interactions with respect to substrate recruitment and recognition by means of ab initio QM/MM simulations. On the basis of calculations with substrates NH(3), NH(4)(+), Na(+), and K(+) positioned at the periplasmic binding site (Am1) and NH(3) and NH(4)(+) at intraluminal binding sites (Am1a/b), we conclude that D160 is the single most important residue for substrate recruitment, whereas cation-π interactions to W148 and F107 are found to be less important. Regarding substrate recruitment and recognition, we find that only NH(4)(+) and K(+) reach the Am1 site. However, NH(4)(+) has the largest affinity for this site due to its better dehydration compensation, while charge stabilization effects favor the binding of NH(4)(+) over NH(3) (i.e., if NH(3) would enter the Am1 site, it is likely to be protonated). Therefore, we conclude that the Am1 site selects NH(4)(+) over Na(+), K(+) and NH(3). Our calculations also suggest that translocation of NH(4)(+) from Am1 into the channel lumen is driven by rotation of the A162-G163 peptide bond, which coordinates NH(4)(+) but not NH(3) at both Am1 and Am1a/b sites.

  6. Deprotonation by Dehydration: The Origin of Ammonium Sensing in the AmtB Channel

    PubMed Central

    Bostick, David L; III, Charles L. Brooks

    2007-01-01

    The AmtB channel passively allows the transport of NH4 + across the membranes of bacteria via a “gas” NH3 intermediate and is related by homology (sequentially, structurally, and functionally) to many forms of Rh protein (both erythroid and nonerythroid) found in animals and humans. New structural information on this channel has inspired computational studies aimed at clarifying various aspects of NH4 + recruitment and binding in the periplasm, as well as its deprotonation. However, precise mechanisms for these events are still unknown, and, so far, explanations for subsequent NH3 translocation and reprotonation at the cytoplasmic end of the channel have not been rigorously addressed. We employ molecular dynamics simulations and free energy methods on a full AmtB trimer system in membrane and bathed in electrolyte. Combining the potential of mean force for NH4 +/NH3 translocation with data from thermodynamic integration calculations allows us to find the apparent pKa of NH4 + as a function of the transport axis. Our calculations reveal the specific sites at which its deprotonation (at the periplasmic end) and reprotonation (at the cytoplasmic end) occurs. Contrary to most hypotheses, which ascribe a proton-accepting role to various periplasmic or luminal residues of the channel, our results suggest that the most plausible proton donor/acceptor at either of these sites is water. Free-energetic analysis not only verifies crystallographically determined binding sites for NH4 + and NH3 along the transport axis, but also reveals a previously undetermined binding site for NH4 + at the cytoplasmic end of the channel. Analysis of dynamics and the free energies of all possible loading states for NH3 inside the channel also reveal that hydrophobic pressure and the free-energetic profile provided by the pore lumen drives this species toward the cytoplasm for protonation just before reaching the newly discovered site. PMID:17291160

  7. Inhibition and transcriptional silencing of a subtilisin-like proprotein convertase, PACE4/SPC4, reduces the branching morphogenesis of and AQP5 expression in rat embryonic submandibular gland.

    PubMed

    Akamatsu, Tetsuya; Azlina, Ahmad; Purwanti, Nunuk; Karabasil, Mileva Ratko; Hasegawa, Takahiro; Yao, Chenjuan; Hosoi, Kazuo

    2009-01-15

    The submandibular gland (SMG) develops through the epithelial-mesenchymal interaction mediated by many growth/differentiation factors including activin and BMPs, which are synthesized as inactive precursors and activated by subtilisin-like proprotein convertases (SPC) following cleavage at their R-X-K/R-R site. Here, we found that Dec-RVKR-CMK, a potent inhibitor of SPC, inhibited the branching morphogenesis of the rat embryonic SMG, and caused low expression of a water channel AQP5, in an organ culture system. Dec-RVKR-CMK also decreased the expression of PACE4, a SPC member, but not furin, another SPC member, suggesting the involvement of PACE4 in the SMG development. Heparin, which is known to translocate PACE4 in the extracellular matrix into the medium, and an antibody specific for the catalytic domain of PACE4, both reduced the branching morphogenesis and AQP5 expression in the SMG. The inhibitory effects of Dec-RVKR-CMK were partially rescued by the addition of recombinant BMP2, whose precursor is one of the candidate substrates for PACE4 in vivo. Further, the suppression of PACE4 expression by siRNAs resulted in decreased expression of AQP5 and inhibition of the branching morphogenesis in the present organ culture system. These observations suggest that PACE4 regulates the SMG development via the activation of some growth/differentiation factors.

  8. Selective vasopressin-1a receptor antagonist prevents brain edema, reduces astrocytic cell swelling and GFAP, V1aR and AQP4 expression after focal traumatic brain injury.

    PubMed

    Marmarou, Christina R; Liang, Xiuyin; Abidi, Naqeeb H; Parveen, Shanaz; Taya, Keisuke; Henderson, Scott C; Young, Harold F; Filippidis, Aristotelis S; Baumgarten, Clive M

    2014-09-18

    A secondary and often lethal consequence of traumatic brain injury is cellular edema that we posit is due to astrocytic swelling caused by transmembrane water fluxes augmented by vasopressin-regulated aquaporin-4 (AQP4). We therefore tested whether vasopressin 1a receptor (V1aR) inhibition would suppress astrocyte AQP4, reduce astrocytic edema, and thereby diminish TBI-induced edematous changes. V1aR inhibition by SR49059 significantly reduced brain edema after cortical contusion injury (CCI) in rat 5h post-injury. Injured-hemisphere brain water content (n=6 animals/group) and astrocytic area (n=3/group) were significantly higher in CCI-vehicle (80.5±0.3%; 18.0±1.4 µm(2)) versus sham groups (78.3±0.1%; 9.5±0.9 µm(2)), and SR49059 blunted CCI-induced increases in brain edema (79.0±0.2%; 9.4±0.8µm(2)). CCI significantly up-regulated GFAP, V1aR and AQP4 protein levels and SR49059 suppressed injury induced up regulation (n=6/group). In CCI-vehicle, sham and CCI-SR49059 groups, GFAP was 1.58±0.04, 0.47±0.02, and 0.81±0.03, respectively; V1aR was 1.00±0.06, 0.45±0.05, and 0.46±0.09; and AQP4 was 2.03±0.34, 0.49±0.04, and 0.92±0.22. Confocal immunohistochemistry gave analogous results. In CCI-vehicle, sham and CCI-SR49059 groups, fluorescence intensity of GFAP was 349±38, 56±5, and 244±30, respectively, V1aR was 601±71, 117.8±14, and 390±76, and AQP4 was 818±117, 158±5, and 458±55 (n=3/group). The results support that edema was predominantly cellular following CCI and documented that V1aR inhibition with SR49059 suppressed injury-induced up regulation of GFAP, V1A and AQP4, blunting edematous changes. Our findings suggest V1aR inhibitors may be potential therapeutic tools to prevent cellular swelling and provide treatment for post-traumatic brain edema.

  9. The W148L substitution in the Escherichia coli ammonium channel AmtB increases flux and indicates that the substrate is an ion

    PubMed Central

    Fong, Rebecca N.; Kim, Kwang-Seo; Yoshihara, Corinne; Inwood, William B.; Kustu, Sydney

    2007-01-01

    The Amt/Mep ammonium channels are trimers in which each monomer contains a long, narrow, hydrophobic pore. Whether the substrate conducted by these pores is NH3 or NH4+ remains controversial. Substitution of leucine for the highly conserved tryptophan 148 residue at the external opening to Escherichia coli AmtB pores allowed us to address this issue. A strain carrying AmtBW148L accumulates much larger amounts of both [14C]methylammonium and [14C]methylglutamine in a washed cell assay than a strain carrying wild-type AmtB. Accumulation of methylammonium occurs within seconds and appears to reflect channel conductance, whereas accumulation of methylglutamine, which depends on the ATP-dependent activity of glutamine synthetase, increases for many minutes. Concentration of methylammonium was most easily studied in strains that lack glutamine synthetase. It is eliminated by the protonophore carbonyl cyanide m-chlorophenyl hydrazone and is ≈10-fold higher in the strain carrying AmtBW148L than wild-type AmtB. The results indicate that AmtB allows accumulation of CH3NH3+ ion in response to the electrical potential across the membrane and that the rate of flux through AmtBW148L is ≈10 times faster than through wild-type AmtB. We infer that both mutant and wild-type proteins also carry NH4+. Contrary to our previous views, we assess that E. coli AmtB does not differ from plant Amt proteins in this regard; both carry ions. We address the role of W148 in decreasing the activity and increasing the selectivity of AmtB and the implications of our findings with respect to the function of Rh proteins, the only known homologues of Amt/Mep proteins. PMID:17998534

  10. Inhibitory complex of the transmembrane ammonia channel, AmtB, and the cytosolic regulatory protein, GlnK, at 1.96 Å

    PubMed Central

    Gruswitz, Franz; O'Connell, Joseph; Stroud, Robert M.

    2007-01-01

    Ammonia conductance is highly regulated. A PII signal transduction protein, GlnK, is the final regulator of transmembrane ammonia conductance by the ammonia channel AmtB in Escherichia coli. The complex formed between AmtB and inhibitory GlnK at 1.96-Å resolution shows that the trimeric channel is blocked directly by GlnK and how, in response to intracellular nitrogen status, the ability of GlnK to block the channel is regulated by uridylylation/deuridylylation at Y51. ATP and Mg2+ augment the interaction of GlnK. The hydrolyzed product, adenosine 5′-diphosphate orients the surface of GlnK for AmtB blockade. 2-Oxoglutarate diminishes AmtB/GlnK association, and sites for 2-oxoglutarate are evaluated. PMID:17190799

  11. Substrate binding, deprotonation, and selectivity at the periplasmic entrance of the Escherichia coli ammonia channel AmtB.

    PubMed

    Javelle, Arnaud; Lupo, Domenico; Ripoche, Pierre; Fulford, Tim; Merrick, Mike; Winkler, Fritz K

    2008-04-01

    The conduction mechanism of Escherichia coli AmtB, the structurally and functionally best characterized representative of the ubiquitous Amt/Rh family, has remained controversial in several aspects. The predominant view has been that it facilitates the movement of ammonium in its uncharged form as indicated by the hydrophobic nature of a pore located in the center of each subunit of the homotrimer. Using site-directed mutagenesis and a combination of biochemical and crystallographic methods, we have investigated mechanistic questions concerning the putative periplasmic ammonium ion binding site S1 and the adjacent periplasmic "gate" formed by two highly conserved phenylalanine residues, F107 and F215. Our results challenge models that propose that NH(4)(+) deprotonation takes place at S1 before NH(3) conduction through the pore. The presence of S1 confers two critical features on AmtB, both essential for its function: ammonium scavenging efficiency at very low ammonium concentration and selectivity against water and physiologically important cations. We show that AmtB activity absolutely requires F215 but not F107 and that removal or obstruction of the phenylalanine gate produces an open but inactive channel. The phenyl ring of F215 must thus play a very specific role in promoting transfer and deprotonation of substrate from S1 to the central pore. We discuss these results with respect to three distinct mechanisms of conduction that have been considered so far. We conclude that substrate deprotonation is an essential part of the conduction mechanism, but we do not rule out net electrogenic transport.

  12. Substrate binding, deprotonation, and selectivity at the periplasmic entrance of the Escherichia coli ammonia channel AmtB

    PubMed Central

    Javelle, Arnaud; Lupo, Domenico; Ripoche, Pierre; Fulford, Tim; Merrick, Mike; Winkler, Fritz K.

    2008-01-01

    The conduction mechanism of Escherichia coli AmtB, the structurally and functionally best characterized representative of the ubiquitous Amt/Rh family, has remained controversial in several aspects. The predominant view has been that it facilitates the movement of ammonium in its uncharged form as indicated by the hydrophobic nature of a pore located in the center of each subunit of the homotrimer. Using site-directed mutagenesis and a combination of biochemical and crystallographic methods, we have investigated mechanistic questions concerning the putative periplasmic ammonium ion binding site S1 and the adjacent periplasmic “gate” formed by two highly conserved phenylalanine residues, F107 and F215. Our results challenge models that propose that NH4+ deprotonation takes place at S1 before NH3 conduction through the pore. The presence of S1 confers two critical features on AmtB, both essential for its function: ammonium scavenging efficiency at very low ammonium concentration and selectivity against water and physiologically important cations. We show that AmtB activity absolutely requires F215 but not F107 and that removal or obstruction of the phenylalanine gate produces an open but inactive channel. The phenyl ring of F215 must thus play a very specific role in promoting transfer and deprotonation of substrate from S1 to the central pore. We discuss these results with respect to three distinct mechanisms of conduction that have been considered so far. We conclude that substrate deprotonation is an essential part of the conduction mechanism, but we do not rule out net electrogenic transport. PMID:18362341

  13. On the Equivalence Point for Ammonium (De)protonation during Its Transport through the AmtB Channel

    PubMed Central

    Bostick, David L.; Brooks, Charles L.

    2007-01-01

    Structural characterization of the bacterial channel, AmtB, provides a glimpse of how members of its family might control the protonated state of permeant ammonium to allow for its selective passage across the membrane. In a recent study, we employed a combination of simulation techniques that suggested ammonium is deprotonated and reprotonated near dehydrative phenylalanine landmarks (F107 and F31, respectively) during its passage from the periplasm to the cytoplasm. At these landmarks, ammonium is forced to maintain a critical number (∼3) of hydrogen bonds, suggesting that the channel controls ammonium (de)protonation by controlling its coordination/hydration. In the work presented here, a free energy-based analysis of ammonium hydration in dilute aqueous solution indicates, explicitly, that at biological pH, the transition from ammonium (\\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}{\\mathrm{NH}}_{4}^{+}\\end{equation*}\\end{document}) to ammonia (NH3) occurs when these species are constrained to donate three hydrogen bonds or less. This result demonstrates the viability of the proposal that AmtB indirectly controls ammonium (de)protonation by directly controlling its hydration. PMID:17434945

  14. On the equivalence point for ammonium (de)protonation during its transport through the AmtB channel.

    PubMed

    Bostick, David L; Brooks, Charles L

    2007-06-15

    Structural characterization of the bacterial channel, AmtB, provides a glimpse of how members of its family might control the protonated state of permeant ammonium to allow for its selective passage across the membrane. In a recent study, we employed a combination of simulation techniques that suggested ammonium is deprotonated and reprotonated near dehydrative phenylalanine landmarks (F107 and F31, respectively) during its passage from the periplasm to the cytoplasm. At these landmarks, ammonium is forced to maintain a critical number ( approximately 3) of hydrogen bonds, suggesting that the channel controls ammonium (de)protonation by controlling its coordination/hydration. In the work presented here, a free energy-based analysis of ammonium hydration in dilute aqueous solution indicates, explicitly, that at biological pH, the transition from ammonium (NH(4)(+)) to ammonia (NH(3)) occurs when these species are constrained to donate three hydrogen bonds or less. This result demonstrates the viability of the proposal that AmtB indirectly controls ammonium (de)protonation by directly controlling its hydration.

  15. The Escherichia coli AmtB protein as a model system for understanding ammonium transport by Amt and Rh proteins.

    PubMed

    Merrick, M; Javelle, A; Durand, A; Severi, E; Thornton, J; Avent, N D; Conroy, M J; Bullough, P A

    2006-01-01

    The Escherichia coli ammonium transport protein (AmtB) has become the model system of choice for analysis of the process of ammonium uptake by the ubiquitous Amt family of inner membrane proteins. Over the past 6 years we have developed a range of genetic and biochemical tools in this system. These have allowed structure/function analysis to develop rapidly, offering insight initially into the membrane topology of the protein and most recently leading to the solution of high-resolution 3D structures. Genetic analysis has revealed a novel regulatory mechanism that is apparently conserved in prokaryotic Amt proteins and genetic approaches are also now being used to dissect structure/function relationships in Amt proteins. The now well-recognised homology between the Amt proteins, found in archaea, eubacteria, fungi and plants, and the Rhesus proteins, found characteristically in animals, also means that studies on E. coli AmtB can potentially shed light on structure/function relationships in the clinically important Rh proteins.

  16. Therapeutic effects of Euphorbia Pekinensis and Glycyrrhiza glabra on Hepatocellular Carcinoma Ascites Partially Via Regulating the Frk-Arhgdib-Inpp5d-Avpr2-Aqp4 Signal Axis

    PubMed Central

    Zhang, Yanqiong; Yan, Chen; Li, Yuting; Mao, Xia; Tao, Weiwei; Tang, Yuping; Lin, Ya; Guo, Qiuyan; Duan, Jingao; Lin, Na

    2017-01-01

    To clarify unknown rationalities of herbaceous compatibility of Euphorbia Pekinensis (DJ) and Glycyrrhiza glabra (GC) acting on hepatocellular carcinoma (HCC) ascites, peritoneum transcriptomics profiling of 15 subjects, including normal control (Con), HCC ascites mouse model (Mod), DJ-alone, DJ/GC-synergy and DJ/GC-antagonism treatment groups were performed on OneArray platform, followed by differentially expressed genes (DEGs) screening. DEGs between Mod and Con groups were considered as HCC ascites-related genes, and those among different drug treatment and Mod groups were identified as DJ/GC-combination-related genes. Then, an interaction network of HCC ascites-related gene-DJ/GC combination-related gene-known therapeutic target gene for ascites was constructed. Based on nodes’ degree, closeness, betweenness and k-coreness, the Frk-Arhgdib-Inpp5d-Avpr2-Aqp4 axis with highly network topological importance was demonstrated to be a candidate target of DJ/GC combination acting on HCC ascites. Importantly, both qPCR and western blot analyses verified this regulatory effects based on HCC ascites mice in vivo and M-1 collecting duct cells in vitro. Collectively, different combination designs of DJ and GC may lead to synergistic or antagonistic effects on HCC ascites partially via regulating the Frk-Arhgdib-Inpp5d-Avpr2-Aqp4 axis, implying that global gene expression profiling combined with network analysis can offer an effective way to understand pharmacological mechanisms of traditional Chinese medicine prescriptions. PMID:28165501

  17. Therapeutic effects of Euphorbia Pekinensis and Glycyrrhiza glabra on Hepatocellular Carcinoma Ascites Partially Via Regulating the Frk-Arhgdib-Inpp5d-Avpr2-Aqp4 Signal Axis.

    PubMed

    Zhang, Yanqiong; Yan, Chen; Li, Yuting; Mao, Xia; Tao, Weiwei; Tang, Yuping; Lin, Ya; Guo, Qiuyan; Duan, Jingao; Lin, Na

    2017-02-06

    To clarify unknown rationalities of herbaceous compatibility of Euphorbia Pekinensis (DJ) and Glycyrrhiza glabra (GC) acting on hepatocellular carcinoma (HCC) ascites, peritoneum transcriptomics profiling of 15 subjects, including normal control (Con), HCC ascites mouse model (Mod), DJ-alone, DJ/GC-synergy and DJ/GC-antagonism treatment groups were performed on OneArray platform, followed by differentially expressed genes (DEGs) screening. DEGs between Mod and Con groups were considered as HCC ascites-related genes, and those among different drug treatment and Mod groups were identified as DJ/GC-combination-related genes. Then, an interaction network of HCC ascites-related gene-DJ/GC combination-related gene-known therapeutic target gene for ascites was constructed. Based on nodes' degree, closeness, betweenness and k-coreness, the Frk-Arhgdib-Inpp5d-Avpr2-Aqp4 axis with highly network topological importance was demonstrated to be a candidate target of DJ/GC combination acting on HCC ascites. Importantly, both qPCR and western blot analyses verified this regulatory effects based on HCC ascites mice in vivo and M-1 collecting duct cells in vitro. Collectively, different combination designs of DJ and GC may lead to synergistic or antagonistic effects on HCC ascites partially via regulating the Frk-Arhgdib-Inpp5d-Avpr2-Aqp4 axis, implying that global gene expression profiling combined with network analysis can offer an effective way to understand pharmacological mechanisms of traditional Chinese medicine prescriptions.

  18. Therapeutic effects of Euphorbia Pekinensis and Glycyrrhiza glabra on Hepatocellular Carcinoma Ascites Partially Via Regulating the Frk-Arhgdib-Inpp5d-Avpr2-Aqp4 Signal Axis

    NASA Astrophysics Data System (ADS)

    Zhang, Yanqiong; Yan, Chen; Li, Yuting; Mao, Xia; Tao, Weiwei; Tang, Yuping; Lin, Ya; Guo, Qiuyan; Duan, Jingao; Lin, Na

    2017-02-01

    To clarify unknown rationalities of herbaceous compatibility of Euphorbia Pekinensis (DJ) and Glycyrrhiza glabra (GC) acting on hepatocellular carcinoma (HCC) ascites, peritoneum transcriptomics profiling of 15 subjects, including normal control (Con), HCC ascites mouse model (Mod), DJ-alone, DJ/GC-synergy and DJ/GC-antagonism treatment groups were performed on OneArray platform, followed by differentially expressed genes (DEGs) screening. DEGs between Mod and Con groups were considered as HCC ascites-related genes, and those among different drug treatment and Mod groups were identified as DJ/GC-combination-related genes. Then, an interaction network of HCC ascites-related gene-DJ/GC combination-related gene-known therapeutic target gene for ascites was constructed. Based on nodes’ degree, closeness, betweenness and k-coreness, the Frk-Arhgdib-Inpp5d-Avpr2-Aqp4 axis with highly network topological importance was demonstrated to be a candidate target of DJ/GC combination acting on HCC ascites. Importantly, both qPCR and western blot analyses verified this regulatory effects based on HCC ascites mice in vivo and M-1 collecting duct cells in vitro. Collectively, different combination designs of DJ and GC may lead to synergistic or antagonistic effects on HCC ascites partially via regulating the Frk-Arhgdib-Inpp5d-Avpr2-Aqp4 axis, implying that global gene expression profiling combined with network analysis can offer an effective way to understand pharmacological mechanisms of traditional Chinese medicine prescriptions.

  19. The mechanism of ammonia transport based on the crystal structure of AmtB of Escherichia coli.

    PubMed

    Zheng, Lei; Kostrewa, Dirk; Bernèche, Simon; Winkler, Fritz K; Li, Xiao-Dan

    2004-12-07

    Ammonium is one of the most important nitrogen sources for bacteria, fungi, and plants, but it is toxic to animals. The ammonium transport proteins (methylamine permeases/ammonium transporters/rhesus) are present in all domains of life; however, functional studies with members of this family have yielded controversial results with respect to the chemical identity (NH(4)(+) or NH(3)) of the transported species. We have solved the structure of wild-type AmtB from Escherichia coli in two crystal forms at 1.8- and 2.1-A resolution, respectively. Substrate transport occurs through a narrow mainly hydrophobic pore located at the center of each monomer of the trimeric AmtB. At the periplasmic entry, a binding site for NH(4)(+) is observed. Two phenylalanine side chains (F107 and F215) block access into the pore from the periplasmic side. Further into the pore, the side chains of two highly conserved histidine residues (H168 and H318) bridged by a H-bond lie adjacent, with their edges pointing into the cavity. These histidine residues may facilitate the deprotonation of an ammonium ion entering the pore. Adiabatic free energy calculations support the hypothesis that an electrostatic barrier between H168 and H318 hinders the permeation of cations but not that of the uncharged NH(3.) The structural data and energetic considerations strongly indicate that the methylamine permeases/ammonium transporters/rhesus proteins are ammonia gas channels. Interestingly, at the cytoplasmic exit of the pore, two different conformational states are observed that might be related to the inactivation mechanism by its regulatory partner.

  20. The mechanism of ammonia transport based on the crystal structure of AmtB of Escherichia coli

    PubMed Central

    Zheng, Lei; Kostrewa, Dirk; Bernèche, Simon; Winkler, Fritz K.; Li, Xiao-Dan

    2004-01-01

    Ammonium is one of the most important nitrogen sources for bacteria, fungi, and plants, but it is toxic to animals. The ammonium transport proteins (methylamine permeases/ammonium transporters/rhesus) are present in all domains of life; however, functional studies with members of this family have yielded controversial results with respect to the chemical identity (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\mathrm{NH}}_{4}^{+}\\end{equation*}\\end{document} or NH3) of the transported species. We have solved the structure of wild-type AmtB from Escherichia coli in two crystal forms at 1.8- and 2.1-Å resolution, respectively. Substrate transport occurs through a narrow mainly hydrophobic pore located at the center of each monomer of the trimeric AmtB. At the periplasmic entry, a binding site for \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\mathrm{NH}}_{4}^{+}\\end{equation*}\\end{document} is observed. Two phenylalanine side chains (F107 and F215) block access into the pore from the periplasmic side. Further into the pore, the side chains of two highly conserved histidine residues (H168 and H318) bridged by a H-bond lie adjacent, with their edges pointing into the cavity. These histidine residues may facilitate the deprotonation of an ammonium ion entering the pore. Adiabatic free energy calculations support the hypothesis that an electrostatic barrier between H168 and H318 hinders the permeation of cations but not that of the uncharged NH3. The structural data and energetic considerations strongly indicate that the methylamine permeases/ammonium transporters/rhesus proteins are

  1. Nitrogen regulation of protein-protein interactions and transcript levels of GlnK PII regulator and AmtB ammonium transporter homologs in Archaea.

    PubMed

    Pedro-Roig, Laia; Lange, Christian; Bonete, María José; Soppa, Jörg; Maupin-Furlow, Julie

    2013-10-01

    Gene homologs of GlnK PII regulators and AmtB-type ammonium transporters are often paired on prokaryotic genomes, suggesting these proteins share an ancient functional relationship. Here, we demonstrate for the first time in Archaea that GlnK associates with AmtB in membrane fractions after ammonium shock, thus, providing a further insight into GlnK-AmtB as an ancient nitrogen sensor pair. For this work, Haloferax mediterranei was advanced for study through the generation of a pyrE2-based counterselection system that was used for targeted gene deletion and expression of Flag-tagged proteins from their native promoters. AmtB1-Flag was detected in membrane fractions of cells grown on nitrate and was found to coimmunoprecipitate with GlnK after ammonium shock. Thus, in analogy to bacteria, the archaeal GlnK PII may block the AmtB1 ammonium transporter under nitrogen-rich conditions. In addition to this regulated protein-protein interaction, the archaeal amtB-glnK gene pairs were found to be highly regulated by nitrogen availability with transcript levels high under conditions of nitrogen limitation and low during nitrogen excess. While transcript levels of glnK-amtB are similarly regulated by nitrogen availability in bacteria, transcriptional regulators of the bacterial glnK promoter including activation by the two-component signal transduction proteins NtrC (GlnG, NRI) and NtrB (GlnL, NRII) and sigma factor σ(N) (σ(54) ) are not conserved in archaea suggesting a novel mechanism of transcriptional control. © 2013 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  2. Influence of ammonium availability on expression of nifD and amtB genes during biostimulation of a U(VI) contaminated aquifer: implications for U(VI) removal and monitoring the metabolic state of Geobacteraceae

    SciTech Connect

    Mouser, Paula J.; N'Guessan, A. Lucie; Elifantz, Hila; Holmes, Dawn E.; Williams, Kenneth H; Wilkins, Michael J.; Long, Philip E.; Lovley, Derek R.

    2009-03-25

    The influence of ammonium availability on bacterial community structure and the physiological status of Geobacter species during in situ bioremediation of uranium-contaminated groundwater was evaluated. Ammonium concentrations varied by 2 orders of magnitude (<4 to 400 ?M) across the study site. Analysis of 16S rRNA sequences suggested that ammonium may have been one factor influencing the community composition prior to acetate amendment with Rhodoferax species predominating over Geobacter species with higher ammonium and Dechloromonas species dominating at the site with lowest ammonium. However, once acetate was added and dissimilatory metal reduction was stimulated, Geobacter species became the predominant organisms at all locations. Rates of U(VI) reduction appeared to be more related to acetate concentrations rather than ammonium levels. In situ mRNA transcript abundance of the nitrogen fixation gene, nifD, and the ammonium transporter gene, amtB, in Geobacter species indicated that ammonium was the primary source of nitrogen during uranium reduction. The abundance of amtB was inversely correlated to ammonium levels, whereas nifD transcript levels were similar across all sites examined. These results suggest that nifD and amtB expression are closely regulated in response to ammonium availability to ensure an adequate supply of nitrogen while conserving cell resources. Thus, quantifying nifD and amtB transcript expression appears to be a useful approach for monitoring the nitrogen-related physiological status of subsurface Geobacter species. This study also emphasizes the need for more detailed analysis of geochemical and physiological interactions at the field scale in order to adequately model subsurface microbial processes during bioremediation.

  3. Distinct roles of P(II)-like signal transmitter proteins and amtB in regulation of nif gene expression, nitrogenase activity, and posttranslational modification of NifH in Azoarcus sp. strain BH72.

    PubMed

    Martin, Dietmar E; Reinhold-Hurek, Barbara

    2002-04-01

    P(II)-like signal transmitter proteins, found in Bacteria, Archaea, and plants, are known to mediate control of carbon and nitrogen assimilation. They indirectly regulate the activity of key metabolic enzymes and transcription factors by protein-protein interactions with signal transduction proteins. Many Proteobacteria harbor two paralogous P(II)-like proteins, GlnB and GlnK, whereas a novel third P(II) paralogue (GlnY) was recently identified in Azoarcus sp. strain BH72, a diazotrophic endophyte of grasses. In the present study, evidence was obtained that the P(II)-like proteins have distinct roles in mediating nitrogen and oxygen control of nif gene transcription and nitrogenase activity. Full repression of nif gene transcription in the presence of a combined nitrogen source or high oxygen concentrations was observed in wild-type and glnB and glnK knockout mutants, revealing that GlnB and GlnK can complement each other in mediating the repression. In contrast, in a glnBK double mutant strain in the presence of only GlnY, nif gene transcription was still detectable, albeit at a lower level, on nitrate or 20% oxygen. As another level of control, nitrogenase activity was regulated by at least three types of mechanisms in strain BH72: covalent modification of dinitrogenase reductase (NifH), probably by ADP-ribosylation, and two other, unknown means. Functional inactivation upon ammonium addition (switch-off) required the putative high-affinity ammonium transporter AmtB and GlnK, but not GlnB or GlnY. Functional inactivation in response to anaerobiosis did not depend on AmtB, GlnK, or GlnB. In contrast, covalent modification of NifH required both GlnB and GlnK and AmtB as response to ammonium addition, whereas it required either GlnB or GlnK and not AmtB when cells were shifted to anaerobiosis. In a glnBK double mutant expressing only GlnY, NifH modification was completely abolished, further revealing functional differences between the three P(II) paralogues.

  4. Changes of Aquaporins in the Lacrimal Glands of a Rabbit Model of Sjögren’s Syndrome

    PubMed Central

    Ding, Chuanqing; Nandoskar, Prachi; Lu, Michael; Thomas, Padmaja; Trousdale, Melvin D.; Wang, Yanru

    2013-01-01

    Aims To test the hypothesis that the expression of aquaporins (AQPs) 4 and 5 is altered in the lacrimal glands (LG) of rabbits with induced autoimmune dacryoadenitis (IAD). Materials and Methods LGs were obtained from adult female rabbits with IAD, and age-matched female control rabbits. LGs were processed for laser capture microdissection (LCM), real time RT-PCR, Western blot, and immunofluorescence for the detection and quantification of protein and mRNAs of AQP4 and AQP5 in whole LGs, and purified acinar cells and duct cells from specific duct segments. Results In rabbits with IAD, abundances of mRNAs for AQP4 and AQP5 from whole LGs were significantly lower than controls. Levels of mRNA for AQP4 were lower in most duct segments from rabbits with IAD. However, the mRNA abundance for AQP5 was significantly lower in acini from rabbits with IAD, while its abundance was higher in each duct segment. Western blot showed that the expression of AQP4 in LGs from rabbits with IAD was 36% more abundant than normal controls, whereas AQP5 was 72% less abundant. Immunofluorescence indicated that AQP4 immunoreactivity (AQP4-IR) was present on the basolateral membranes of acinar and ductal cells in control and diseased LGs, with ductal cells showing stronger AQP4-IR than acinar cells. AQP5-IR was found on apical and basolateral membranes of acinar cells, and showed a “mosaic” pattern, i.e., with some acini and/or acinar cells showing stronger AQP5-IR than others. Minimal AQP5-IR was detected in ductal cells from control animals, while its intensity was significantly increased in rabbits with IAD. Conclusions These data strongly support our hypothesis that expressions of AQPs are altered in rabbits with IAD, and that specific ductal segment play important roles in lacrimal secretion. PMID:21524183

  5. AQP4 autoantibody assay performance in clinical laboratory service

    PubMed Central

    Fryer, J.P.; Lennon, V.A.; Pittock, S.J.; Jenkins, S.M.; Fallier-Becker, P.; Clardy, S.L.; Horta, E.; Jedynak, E.A.; Lucchinetti, C.F.; Shuster, E.A.; Weinshenker, B.G.; Wingerchuk, D.M.

    2014-01-01

    Objective: To compare performance of contemporary aquaporin-4–immunoglobulin (Ig) G assays in clinical service. Methods: Sera from neurologic patients (4 groups) and controls were tested initially by service ELISA (recombinant human aquaporin-4, M1 isoform) and then by cell-based fluorescence assays: fixed (CBA, M1-aquaporin-4, observer-scored) and live (fluorescence-activated cell sorting [FACS], M1 and M23 aquaporin-4 isoforms). Group 1: all Mayo Clinic patients tested from January to May 2012; group 2: consecutive aquaporin-4-IgG–positive patients from September 2011 (Mayo and non-Mayo); group 3: suspected ELISA false-negatives from 2011 to 2013 (physician-reported, high likelihood of neuromyelitis optica spectrum disorders [NMOSDs] clinically); group 4: suspected ELISA false-positives (physician-reported, not NMOSD clinically). Results: Group 1 (n = 388): M1-FACS assay performed optimally (areas under the curves: M1 = 0.64; M23 = 0.57 [p = 0.02]). Group 2 (n = 30): NMOSD clinical diagnosis was confirmed by: M23-FACS, 24; M1-FACS, 23; M1-CBA, 20; and M1-ELISA, 18. Six results were suspected false-positive: M23-FACS, 2; M1-ELISA, 2; and M23-FACS, M1-FACS, and M1-CBA, 2. Group 3 (n = 31, suspected M1-ELISA false-negatives): results were positive for 5 sera: M1-FACS, 5; M23-FACS, 3; and M1-CBA, 2. Group 4 (n = 41, suspected M1-ELISA false-positives): all negative except 1 (positive only by M1-CBA). M1/M23-cotransfected cells expressing smaller membrane arrays of aquaporin-4 yielded fewer false- positive FACS results than M23-transfected cells. Conclusion: Aquaporin-4-transfected CBAs, particularly M1-FACS, perform optimally in aiding NMOSD serologic diagnosis. High-order arrays of M23-aquaporin-4 may yield false-positive results by binding IgG nonspecifically. PMID:25340055

  6. Changes in aquaporin 5 in the non-ciliated cells of mouse oviduct according to sexual maturation and oestrous cycle.

    PubMed

    Nah, Won Heum; Oh, Yeong Seok; Hwang, Jung Hye; Gye, M C

    2015-08-14

    Aquaporin (AQP) water channels play an important role in fluid homeostasis and the control of epithelial cell volume. To understand the oviductal fluid homeostasis, the expression of aqp5 was examined in mouse oviduct. In the oviduct of cycling females, aqp1, aqp3, aqp4, aqp5, aqp6, aqp7, aqp8, and aqp11 mRNA were detected. Of these, expression of aqp5 mRNA increased significantly from the early prepubertal period to puberty. Epithelial AQP5 immunoreactivity was markedly increased during the same period and was most notable in the infundibulum. In immature female mice (3 weeks old), gonadotropin (pregnant mare's serum gonadotropin (5 IU/head) and human chorionic gonadotropin (5 IU/head), single intraperitoneal injection) significantly increased oviductal aqp5 mRNA and AQP5 immunoreactivity in oviduct epithelia. In adult mouse oviduct epithelia, AQP5 was primarily found in the apical membrane, subapical cytoplasm and basolateral membrane of secretory non-ciliated cells, whereas weak to negligible immunoreactivity was found in β-tubulin-positive ciliated cells. Taking into account the fact that non-ciliated cells are well developed with subapical secretory vesicles as well as endosomes, AQP5 may also participate in the secretion and endocytosis in addition to water movement through non-ciliated secretory cells. AQP5 immunoreactivity was also found in the isthmic muscle and lamina propria beneath the epithelia. In cycling females, oviductal aqp5 mRNA levels were the highest at oestrus and the lowest at di-oestrus. AQP5 immunoreactivity in non-ciliated cells was notable in the infundibulum, where AQP5 immunoreactivity was relatively high at oestrus but low at dioestrus and pro-oestrus, indicating synchrony between aqp5 gene activation and the ovarian cycle. Together, the findings of the present study indicate that aqp5 specific to non-ciliated cells is activated during sexual maturation, supporting fluid homeostasis in mouse oviduct.

  7. Expression and Localization of Aquaporin 4 and Aquaporin 5 along the Large Intestine of Colostrum-Suckling Buffalo Calves.

    PubMed

    Pelagalli, A; Squillacioti, C; De Luca, A; Pero, M E; Vassalotti, G; Lombardi, P; Avallone, L; Mirabella, N

    2016-12-01

    Aquaporins (AQPs) are membrane channel proteins that play a role in regulating water permeability in many tissues. To date, seven isoforms of AQPs have been reported in the gastrointestinal tract in different mammalian species. In contrast, both tissue distribution and expression of AQPs are unknown in the buffalo. The purpose of this study was to investigate the expression of both AQP4 and AQP5 mRNAs and their relative proteins in the large intestinal tracts of buffalo calves after colostrum suckling using reverse transcriptase polymerase chain reaction (RT-PCR), Western blotting and immunohistochemistry. Our results revealed a diversified tissue AQP4 and AQP5 immunolocalization accompanied by their highest expression in the tissues of colostrum-suckling buffalo calves confirmed by Western blotting. In particular, AQP4 was distributed along the endothelium and enterocytes while AQP5 in the endocrine cells. These findings provide direct evidence for AQP4 and AQP5 expression in the large intestine, suggesting that different AQPs collaborate functionally and distinctively in water handling during intestinal development, especially during the first period after delivery.

  8. Expression of aquaporin isoforms during human and mouse tooth development.

    PubMed

    Felszeghy, S; Módis, L; Németh, P; Nagy, G; Zelles, T; Agre, P; Laurikkala, J; Fejerskov, O; Thesleff, I; Nielsen, S

    2004-04-01

    Previously, we described the development of hyaluronan (HA) deposition in human tooth germ tissues that are consistent with water transport in different stages of tooth development. The aquaporins (AQP) constitute a family of membrane water channels that are expressed in many organs. However, there are no data available about the expression pattern of aquaporin water channels in dental structures. In the present study we have characterised the expression of six different aquaporin isoforms (AQP1-5, AQP-9) in developing human and mouse tooth germs by immunohistochemistry using isoform specific antibodies. In the "bell stage" AQP1 was expressed in endothelial cells of small vessels whereas no other structures of the tooth primordial were labeled. AQP2, AQP3 and AQP9 immunoreactivity was not observed in tooth germs, whereas strong AQP4 and AQP5 expression was observed in dental lamina, inner enamel epithelium, stratum intermedium, stellate reticulum and the outer enamel epithelium. Oral epithelium also exhibited AQP4 and AQP5 immunolabeling. During development of the matrices of the dental hard tissues AQP4 and AQP5 immunostaining was observed in the odontoblasts and their processes, as well as in the secretory ameloblast and their apical processes. Immunolabeling controls were negative. In conclusion, AQP4 and AQP5 are expressed in tooth germ tissues in early development in cells that previously have been shown to express HA and/or CD44, indicating that AQP water channels may play a role for ECM hydration during tooth development.

  9. Expression and Distribution Pattern of Aquaporin 4, 5 and 11 in Retinas of 15 Different Species.

    PubMed

    Amann, Barbara; Kleinwort, Kristina J H; Hirmer, Sieglinde; Sekundo, Walter; Kremmer, Elisabeth; Hauck, Stefanie M; Deeg, Cornelia A

    2016-07-16

    Aquaporins (AQPs) are small integral membrane proteins with 13 members in mammals and are essential for water transport across membranes. They are found in many different tissues and cells. Currently, there are conflicting results regarding retinal aquaporin expression and subcellular localization between genome and protein analyses and among various species. AQP4, 7, 9 and 11 were described in the retina of men; whereas AQP6, 8 and 10 were earlier identified in rat retinas and AQP4, 5 and 11 in horses. Since there is a lack of knowledge regarding AQP expression on protein level in retinas of different animal models, we decided to analyze retinal cellular expression of AQP4, 5 and 11 in situ with immunohistochemistry. AQP4 was detected in all 15 explored species, AQP5 and AQP11 in 14 out of 15. Interestingly, AQP4 was unambiguously expressed in Muller glial cells, whereas AQP5 was differentially allocated among the species analyzed. AQP11 expression was Muller glial cell-specific in 50% of the animals, whereas in the others, AQP11 was detected in ganglion cell layer and at photoreceptor outer segments. Our data indicate a disparity in aquaporin distribution in retinas of various animals, especially for AQP5 and 11.

  10. Expression and Distribution Pattern of Aquaporin 4, 5 and 11 in Retinas of 15 Different Species

    PubMed Central

    Amann, Barbara; Kleinwort, Kristina J. H.; Hirmer, Sieglinde; Sekundo, Walter; Kremmer, Elisabeth; Hauck, Stefanie M.; Deeg, Cornelia A.

    2016-01-01

    Aquaporins (AQPs) are small integral membrane proteins with 13 members in mammals and are essential for water transport across membranes. They are found in many different tissues and cells. Currently, there are conflicting results regarding retinal aquaporin expression and subcellular localization between genome and protein analyses and among various species. AQP4, 7, 9 and 11 were described in the retina of men; whereas AQP6, 8 and 10 were earlier identified in rat retinas and AQP4, 5 and 11 in horses. Since there is a lack of knowledge regarding AQP expression on protein level in retinas of different animal models, we decided to analyze retinal cellular expression of AQP4, 5 and 11 in situ with immunohistochemistry. AQP4 was detected in all 15 explored species, AQP5 and AQP11 in 14 out of 15. Interestingly, AQP4 was unambiguously expressed in Muller glial cells, whereas AQP5 was differentially allocated among the species analyzed. AQP11 expression was Muller glial cell-specific in 50% of the animals, whereas in the others, AQP11 was detected in ganglion cell layer and at photoreceptor outer segments. Our data indicate a disparity in aquaporin distribution in retinas of various animals, especially for AQP5 and 11. PMID:27438827

  11. The Neuroepithelium Disruption Could Generate Autoantibodies against AQP4 and Cause Neuromyelitis Optica and Hydrocephalus

    PubMed Central

    Castañeyra-Ruiz, Leandro; González-Marrero, Ibrahim; Castañeyra-Ruiz, Agustín; González-Toledo, Juan M.; Castañeyra-Ruiz, María; Perez-Molto, Francisco J.; Carmona-Calero, Emilia M.; Castañeyra-Perdomo, Agustín

    2014-01-01

    Neuromyelitis optica is an inflammatory disease characterized by neuritis and myelitis of the optic nerve. Its physiopathology is connected with the aquaporin-4 water channel, since antibodies against aquaporin-4 have been found in the cerebrospinal fluid and blood of neuromyelitis optica patients. The seropositivity for aquaporin-4 antibodies is used for the diagnosis of neuromyelitis optica or neuromyelitis optica spectrum disease. On the other hand, aquaporin-4 is expressed in astrocyte feet in the brain-blood barrier and subventricular zones of the brain ventricles. Aquaporin-4 expression is high in cerebrospinal fluid in hydrocephalus. Furthermore, neuroepithelial denudation precedes noncommunicating hydrocephalus and this neuroepithelial disruption could allow aquaporin-4 to reach anomalous brain areas where it is unrecognized and induce the generation of aquaporin-4 antibodies which could cause the neuromyelitis optica and certain types of hydrocephalus. PMID:27379319

  12. Effects of estradiol on ischemic factor-induced astrocyte swelling and AQP4 protein abundance.

    PubMed

    Rutkowsky, Jennifer M; Wallace, Breanna K; Wise, Phyllis M; O'Donnell, Martha E

    2011-07-01

    In the early hours of ischemic stroke, cerebral edema forms as Na, Cl, and water are secreted across the blood-brain barrier (BBB) and astrocytes swell. We have shown previously that ischemic factors, including hypoxia, aglycemia, and arginine vasopressin (AVP), stimulate BBB Na-K-Cl cotransporter (NKCC) and Na/H exchanger (NHE) activities and that inhibiting NKCC and/or NHE by intravenous bumetanide and/or HOE-642 reduces edema and infarct in a rat model of ischemic stroke. Estradiol also reduces edema and infarct in this model and abolishes ischemic factor stimulation of BBB NKCC and NHE. There is evidence that NKCC and NHE also participate in ischemia-induced swelling of astrocytes. However, little is known about estradiol effects on astrocyte cell volume. In this study, we evaluated the effects of AVP (100 nM), hypoxia (7.5% O(2)), aglycemia, hypoxia (2%)/aglycemia [oxygen glucose deprivation (OGD)], and estradiol (1-100 nM) on astrocyte cell volume using 3-O-methyl-d-[(3)H]glucose equilibration methods. We found that AVP, hypoxia, aglycemia, and OGD (30 min to 5 h) each significantly increased astrocyte cell volume, and that estradiol (30-180 min) abolished swelling induced by AVP or hypoxia, but not by aglycemia or OGD. Bumetanide and/or HOE-642 also abolished swelling induced by AVP but not aglycemia. Abundance of aquaporin-4, known to participate in ischemia-induced astrocyte swelling, was significantly reduced following 7-day but not 2- or 3-h estradiol exposures. Our findings suggest that hypoxia, aglycemia, and AVP each contribute to ischemia-induced astrocyte swelling, and that the edema-attenuating effects of estradiol include reduction of hypoxia- and AVP-induced astrocyte swelling and also reduction of aquaporin-4 abundance.

  13. Aquaporin expression profiles in normal sinonasal mucosa and chronic rhinosinusitis.

    PubMed

    Frauenfelder, Claire; Woods, Charmaine; Hussey, Damian; Ooi, Eng; Klebe, Sonja; Carney, A Simon

    2014-11-01

    Thickened secretions, mucosal edema, and polyp formation are pathological features in chronic rhinosinusitis (CRS) that could theoretically be caused by aberrant water flow through sinonasal mucosa. Aquaporins (AQPs) are a family of proteins with roles in water transport, with tissue-specific expression profiles. This study aims to determine if AQP expression in sinonasal mucosa is different between normal controls and patients with CRS, either with (CRSwNP) or without (CRSsNP) nasal polyps. During endoscopic sinus surgery or transsphenoidal surgery, sinonasal tissue was collected and classified as CRSwNP (n = 13), CRSsNP (n = 10), or normal (n = 10). Messenger RNA (mRNA) expression of human AQP0 to AQP12b was determined using quantitative real-time polymerase chain reaction (qRT-PCR). Cellular localization of AQP1, AQP3, AQP4, AQP5, AQP7, and AQP11 was determined by immunohistochemistry. mRNA of AQP0 to AQP11 was identified in all samples. AQP12b mRNA was not detected. Significant differences in the mRNA expression levels of AQP4 and AQP11 were identified between normal and CRSwNP patients (p < 0.05). Differences in the cellular localization of AQPs were observed in both CRSsNP and CRSwNP patients vs normal controls. More intense localization to the cell cytoplasm was observed for AQP5 in glandular epithelium (CRSwNP; p < 0.05) and surface epithelium (CRSsNP; p < 0.05), and AQP4 in glandular epithelium (CRSsNP; p < 0.05). This study characterized AQP mRNA expression and protein localization in normal human sinonasal tissue. Significant differences in mRNA expression were found for AQP4 and AQP11 in CRSwNP and differences in protein localization patterns of AQP4 and AQP5 were identified in both types of CRS. © 2014 ARS-AAOA, LLC.

  14. Identification and Expression Analysis of Aquaporins in the Potato Psyllid, Bactericera cockerelli

    PubMed Central

    Ibanez, Freddy; Hancock, Joseph; Tamborindeguy, Cecilia

    2014-01-01

    Aquaporin (AQPs) proteins transport water and uncharged low molecular-weight solutes across biological membranes. Six to 8 AQP genes have been identified in many insect species, but presently only three aquaporins have been characterized in phloem feeding insects. The objective of this study was to identify candidate AQPs in the potato psyllid, Bactericera cockerelli. Herein, we identified four candidate aquaporin cDNAs in B. cockerelli transcriptome. Phylogenetic analysis showed that candidate BcAQP2-like had high similarity to PRIP aquaporins; while candidates BcAQP4-like, BcAQP5-like and BcAQP9-like clustered within clade B. In particular, candidates BcAQP4-like and BcAQP5-like clustered with functionally validated insect aquaglyceroporin proteins. Expression analyses using RT-qPCR showed that all candidates were expressed in all life stages and tissues. Candidates BcAQP4-like and BcAQP5-like were highly expressed in bacteriocytes, while BcAQP9-like appeared to be expressed at high levels in whole body but not in the assayed tissues. This study is the first global attempt to identify putative aquaporins in a phloem feeding insect. PMID:25354208

  15. Aquaporins in Digestive System.

    PubMed

    Zhu, Shuai; Ran, Jianhua; Yang, Baoxue; Mei, Zhechuan

    2017-01-01

    In this chapter, we mainly discuss the expression and function of aquaporins (AQPs ) expressed in digestive system . AQPs in gastrointestinal tract include four members of aquaporin subfamily: AQP1, AQP4, AQP5 and AQP8, and a member of aquaglyceroporin subfamily: AQP3. In the digestive glands, especially the liver, we discuss three members of aquaporin subfamily: AQP1, AQP5 and AQP8, a member of aquaglyceroporin subfamily: AQP9. AQP3 is involved in the diarrhea and inflammatory bowel disease; AQP5 is relevant to gastric carcinoma cell proliferation and migration; AQP9 plays considerable role in glycerol metabolism , urea transport and hepatocellular carcinoma. Further investigation is necessary for specific locations and functions of AQPs in digestive system.

  16. Interleukin-13 interferes with CFTR and AQP5 expression and localization during human airway epithelial cell differentiation

    SciTech Connect

    Skowron-zwarg, Marie; Boland, Sonja; Caruso, Nathalie; Coraux, Christelle; Marano, Francelyne; Tournier, Frederic . E-mail: f-tournier@paris7.jussieu.fr

    2007-07-15

    Interleukin-13 (IL-13) is a central regulator of Th2-dominated respiratory disorders such as asthma. Lesions of the airway epithelial barrier frequently observed in chronic respiratory inflammatory diseases are repaired through proliferation, migration and differentiation of epithelial cells. Our work is focused on the effects of IL-13 in human cellular models of airway epithelial cell regeneration. We have previously shown that IL-13 altered epithelial cell polarity during mucociliary differentiation of human nasal epithelial cells. In particular, the cytokine inhibited ezrin expression and interfered with its apical localization during epithelial cell differentiation in vitro. Here we show that CFTR expression is enhanced in the presence of the cytokine, that two additional CFTR protein isoforms are expressed in IL-13-treated cells and that part of the protein is retained within the endoplasmic reticulum. We further show that aquaporin 5 expression, a water channel localized within the apical membrane of epithelial cells, is completely abolished in the presence of the cytokine. These results show that IL-13 interferes with ion and water channel expression and localization during epithelial regeneration and may thereby influence mucus composition and hydration.

  17. Effect of P2X7 Receptor Knockout on AQP-5 Expression of Type I Alveolar Epithelial Cells

    PubMed Central

    Ebeling, Georg; Bläsche, Robert; Hofmann, Falk; Augstein, Antje; Kasper, Michael; Barth, Kathrin

    2014-01-01

    P2X7 receptors, ATP-gated cation channels, are specifically expressed in alveolar epithelial cells. The pathophysiological function of this lung cell type, except a recently reported putative involvement in surfactant secretion, is unknown. In addition, P2X7 receptor-deficient mice show reduced inflammation and lung fibrosis after exposure with bleomycin. To elucidate the role of the P2X7 receptor in alveolar epithelial type I cells we characterized the pulmonary phenotype of P2X7 receptor knockout mice by using immunohistochemistry, western blot analysis and real-time RT PCR. No pathomorphological signs of fibrosis were found. Results revealed, however, a remarkable loss of aquaporin-5 protein and mRNA in young knockout animals. Additional in vitro experiments with bleomycin treated precision cut lung slices showed a greater sensitivity of the P2X7 receptor knockout mice in terms of aquaporin-5 reduction as wild type animals. Finally, P2X7 receptor function was examined by using the alveolar epithelial cell lines E10 and MLE-12 for stimulation experiments with bleomycin. The in vitro activation of P2X7 receptor was connected with an increase of aquaporin-5, whereas the inhibition of the receptor with oxidized ATP resulted in down regulation of aquaporin-5. The early loss of aquaporin-5 which can be found in different pulmonary fibrosis models does not implicate a specific pathogenetic role during fibrogenesis. PMID:24941004

  18. Morphology and Aquaporin Immunohistochemistry of the Uterine Tube of Saanen Goats (Capra hircus): Comparison Throughout the Reproductive Cycle.

    PubMed

    Arrighi, S; Bosi, G; Frattini, S; Coizet, B; Groppetti, D; Pecile, A

    2016-06-01

    The expression of six different aquaporins (AQP1, 2, 3, 4, 5 and 9), integral membrane water channels that facilitate bi-directional passive movement of water, was investigated by immunohistochemistry in the uterine tube of pre-pubertal and adult Saanen goats (Capra hircus), comparing the different phases of the oestrous cycle. Regional morphology and secretory processes were markedly different during the goat oestrous cycle. The tested AQP molecules showed different expression patterns in comparison with already studied species. AQP1-immunoreactivity was evidenced at the endothelium of blood vessels and in nerve fibres, regardless of the tubal tract and cycle period. AQP4-immunoreactivity was shown on the lateral plasmalemma in the basal third of the epithelial cells at infundibulum and ampulla level in the cycling goats, more evidently during follicular than during luteal phase. No AQP4-immunoreactivity was noticed at the level of the isthmus region, regardless of the cycle phase. AQP5-immunoreactivity, localized at the apical surface of epithelial cells, increased from pre-puberty to adulthood. Thereafter, AQP5-immunoreactivity was prominent during the follicular phase, when it strongly decorated the apical plasmalemma of all epithelial cells at ampullary level. During luteal phase, immunoreactivity was discontinuous, being weak to strong at the apex of the secretory cells protruding into the lumen. In the isthmus region, the strongest AQP5-immunoreactivity was seen during follicular phase, with a clear localization in the apical plasmalemma of all the epithelial cells and also on the lateral plasmalemma. AQP2, 3 and 9 were undetectable all along the goat uterine tube. Likely, a collaboration of different AQP molecules sustains the fluid production in the goat uterine tube. AQP1-mediated transudation from the blood capillaries, together with permeation of the epithelium by AQP4 in the basal rim of the epithelial cells and final intervening of apical AQP5, could

  19. Role of Aquaporin-4 in Airspace-to-Capillary Water Permeability in Intact Mouse Lung Measured by a Novel Gravimetric Method

    PubMed Central

    Song, Yuanlin; Ma, Tonghui; Matthay, Michael A.; Verkman, A.S.

    2000-01-01

    The mammalian peripheral lung contains at least three aquaporin (AQP) water channels: AQP1 in microvascular endothelia, AQP4 in airway epithelia, and AQP5 in alveolar epithelia. In this study, we determined the role of AQP4 in airspace-to-capillary water transport by comparing water permeability in wild-type mice and transgenic null mice lacking AQP1, AQP4, or AQP1/AQP4 together. An apparatus was constructed to measure lung weight continuously during pulmonary artery perfusion of isolated mouse lungs. Osmotically induced water flux (Jv) between the airspace and capillary compartments was measured from the kinetics of lung weight change in saline-filled lungs in response to changes in perfusate osmolality. Jv in wild-type mice varied linearly with osmotic gradient size (4.4 × 10−5 cm3 s−1 mOsm−1) and was symmetric, independent of perfusate osmolyte size, weakly temperature dependent, and decreased 11-fold by AQP1 deletion. Transcapillary osmotic water permeability was greatly reduced by AQP1 deletion, as measured by the same method except that the airspace saline was replaced by an inert perfluorocarbon. Hydrostatically induced lung edema was characterized by lung weight changes in response to changes in pulmonary arterial inflow or pulmonary venous outflow pressure. At 5 cm H2O outflow pressure, the filtration coefficient was 4.7 cm3 s−1 mOsm−1 and reduced 1.4-fold by AQP1 deletion. To study the role of AQP4 in lung water transport, AQP1/AQP4 double knockout mice were generated by crossbreeding of AQP1 and AQP4 null mice. Jv were (cm3 s−1 mOsm−1 × 10−5, SEM, n = 7–12 mice): 3.8 ± 0.4 (wild type), 0.35 ± 0.02 (AQP1 null), 3.7 ± 0.4 (AQP4 null), and 0.25 ± 0.01 (AQP1/AQP4 null). The significant reduction in Pf in AQP1 vs. AQP1/AQP4 null mice was confirmed by an independent pleural surface fluorescence method showing a 1.6 ± 0.2-fold (SEM, five mice) reduced Pf in the AQP1/AQP4 double knockout mice vs. AQP1 null mice. These results establish a

  20. Expression and Function of Water Channels (Aquaporins) in Migrating Malignant Astrocytes

    PubMed Central

    McCOY, ERIC; SONTHEIMER, HARALD

    2008-01-01

    Aquaporins (AQP) constitute the principal pathway for water movement across biological membranes. Consequently, their expression and function is important for cell volume regulation. Glioma cells quickly adjust their cell volume in response to osmotic challenges or spontaneously as they invade into the narrow and tortuous extracellular spaces of the brain. These cell volume changes are likely to engage water movements across the cell membrane through AQP. AQP expression in glioma cells is poorly understood. In this study, we examined the expression of AQP in several commonly used human glioma cell lines (D54, D65, STTG1, U87, U251) and in numerous acute patient biopsies by PCR, Western blot, and immunocytochemistry and compared them to nonmalignant astrocytes and normal brain. All glioma patient biopsies expressed AQP1, AQP4 and some expressed AQP5. However, when isolated and grown as cell lines they lose all AQP proteins except a few cell lines that maintain expression of AQP1 (D65, U251, GBM62). Reintroducing either AQP1 or AQP4 stably into glioma cell lines allowed us to show that each AQP is sufficient to restore water permeability. Yet, only the presence of AQP1, but not AQP4, enhanced cell growth and migration, typical properties of gliomas, while AQP4 enhanced cell adhesion suggesting differential biological roles for AQP1 and AQP4 in glioma cell biology. PMID:17549682

  1. Relative CO(2)/NH(3) selectivities of mammalian aquaporins 0-9.

    PubMed

    Geyer, R Ryan; Musa-Aziz, Raif; Qin, Xue; Boron, Walter F

    2013-05-15

    Previous work showed that aquaporin 1 (AQP1), AQP4-M23, and AQP5 each has a characteristic CO(2)/NH(3) and CO(2)/H(2)O permeability ratio. The goal of the present study is to characterize AQPs 0-9, which traffic to the plasma membrane when heterologously expressed in Xenopus oocytes. We use video microscopy to compute osmotic water permeability (P(f)) and microelectrodes to record transient changes in surface pH (ΔpH(S)) caused by CO(2) or NH(3) influx. Subtracting respective values for day-matched, H(2)O-injected control oocytes yields the channel-specific values P(f)* and ΔpH(S)*. We find that P(f)* is significantly >0 for all AQPs tested except AQP6. (ΔpH(S)*)(CO(2)) is significantly >0 for AQP0, AQP1, AQP4-M23, AQP5, AQP6, and AQP9. (ΔpH(S)*)(NH(3)) is >0 for AQP1, AQP3, AQP6, AQP7, AQP8, and AQP9. The ratio (ΔpH(S)*)(CO(2))/P(f)* falls in the sequence AQP6 (∞) > AQP5 > AQP4-M23 > AQP0 ≅ AQP1 ≅ AQP9 > others (0). The ratio (ΔpH(S)*)(NH(3))/P(f)* falls in the sequence AQP6 (∞) > AQP3 ≅ AQP7 ≅ AQP8 ≅ AQP9 > AQP1 > others (0). Finally, the ratio (ΔpH(S)*)(CO(2))/(-ΔpH(S)*)(NH(3)) falls in the sequence AQP0 (∞) ≅ AQP4-M23 ≅ AQP5 > AQP6 > AQP1 > AQP9 > AQP3 (0) ≅ AQP7 ≅ AQP8. The ratio (ΔpH(S)*)(CO(2))/(-ΔpH(S)*)(NH(3)) is indeterminate for both AQP2 and AQP4-M1. In summary, we find that mammalian AQPs exhibit a diverse range of selectivities for CO(2) vs. NH(3) vs. H(2)O. As a consequence, by expressing specific combinations of AQPs, cells could exert considerable control over the movements of each of these three substances.

  2. Role of aquaporin water channels in eye function.

    PubMed

    Verkman, A S

    2003-02-01

    The aquaporins (AQPs) are a family of more than 10 homologous water transporting proteins expressed in many mammalian epithelia and endothelia. At least five AQPs are expressed in the eye: AQP0 (MIP) in lens fiber, AQP1 in cornea endothelium, ciliary and lens epithelia and trabecular meshwork, AQP3 in conjunctiva, AQP4 in ciliary epithelium and retinal Müller cells, and AQP5 in corneal and lacrimal gland epithelia. This cell-specific expression pattern suggests involvement of AQPs in corneal and lens transparency, intraocular pressure (IOP) regulation, retinal signal transduction, and tear secretion. Indeed, humans with mutant AQP0 develop cataracts. Mice lacking AQP1 have reduced IOP and impaired corneal transparency after swelling, and mice lacking AQP4 have reduced light-evoked potentials by electroretinography. There is evidence for impaired cellular processing of AQP5 in lacrimal glands of humans with Sjogren's syndrome. AQPs facilitate fluid secretion and absorption in the eye, and hence are involved in the regulation of pressure, volume and tissue hydration. Pharmacological alteration of AQP function may provide a new approach for therapy of glaucoma, corneal edema, and other diseases of the eye associated with abnormalities in IOP or tissue hydration. Copyright 2003 Elsevier Science Ltd.

  3. Salinity responsive aquaporins in the anal papillae of the larval mosquito, Aedes aegypti.

    PubMed

    Akhter, Hina; Misyura, Lidiya; Bui, Phuong; Donini, Andrew

    2017-01-01

    The larvae of the mosquito, Aedes aegypti normally inhabit freshwater (FW) where they face dilution of body fluids by osmotic influx of water. In response, the physiological actions of the anal papillae result in ion uptake while the Malpighian tubules and rectum work in concert to excrete excess water. In an apparent paradox, the anal papillae express aquaporins (AQPs) and are sites of water permeability which, if AQPs are expressed by the epithelium, apparently exaggerates the influx of water from their dilute environment. Recently, naturally breeding populations of A. aegypti were found in brackish water (BW), an environment which limits the osmotic gradient. Given that salinization of FW is an emerging environmental issue and that these larvae would presumably need to adjust to these changing conditions, this study investigates the expression of AQPs in the anal papillae and their response to rearing in hypo-osmotic and near isosmotic conditions. Transcripts of all six Aedes AQP homologs were detectable in the anal papillae and the transcript abundance of three AQP homologs in the papillae was different between rearing conditions. Using custom made antibodies, expression of two of these AQP homologs (AQP4 and AQP5) was localized to the syncytial epithelium of the anal papillae. Furthermore, the changes in transcript abundance of these two AQPs between the rearing conditions, were manifested at the protein level. Results suggest that AQP4 and AQP5 play an important physiological role in larval responses to changes in environmental salinity.

  4. Altered aquaporin expression in glaucoma eyes.

    PubMed

    Tran, Thuy Linh; Bek, Toke; la Cour, Morten; Nielsen, Søren; Prause, Jan Ulrik; Hamann, Steffen; Heegaard, Steffen

    2014-09-01

    Aquaporins (AQP) are channels in the cell membrane that mainly facilitate a passive transport of water. In the eye, AQPs are expressed in the ciliary body and retina and may contribute to the pathogenesis of glaucoma and optic neuropathy. We investigated the expression of AQP1, AQP3, AQP4, AQP5, AQP7 and AQP9 in human glaucoma eyes compared with normal eyes. Nine glaucoma eyes were examined. Of these, three eyes were diagnosed with primary open angle glaucoma; three eyes had neovascular glaucoma; and three eyes had chronic angle-closure glaucoma. Six eyes with normal intraocular pressure and without glaucoma were used as control. Immunohistochemistry was performed using antibodies against AQP1, AQP3, AQP4, AQP5, AQP7 and AQP9. For each specimen, optical densities of immunoprecipitates were measured using Photoshop and the staining intensities were calculated. Immunostaining showed labelling of AQP7 and AQP9 in the nonpigmented ciliary epithelium and the staining intensities were significantly decreased in glaucoma eyes (p = 0.003; p = 0.018). AQP7 expression in the Müller cell endfeet was increased (p = 0.046), and AQP9 labelling of the retinal ganglion cells (RGC) showed decreased intensity (p = 0.037). No difference in AQP1, AQP4 and AQP9 expression was found in the optic nerve fibres. This study is the first investigating AQPs in human glaucoma eyes. We found a reduced expression of AQP9 in the retinal ganglion cells of glaucoma eyes. Glaucoma also induced increased AQP7 expression in the Müller cell endfeet. In the ciliary body of glaucoma eyes, the expression of AQP7 and AQP9 was reduced. Therefore, the expression of AQPs seems to play a role in glaucoma.

  5. Aquaporins in Nervous System.

    PubMed

    Xu, Mengmeng; Xiao, Ming; Li, Shao; Yang, Baoxue

    2017-01-01

    Aquaporins (AQPs ) mediate water flux between the four distinct water compartments in the central nervous system (CNS). In the present chapter, we mainly focus on the expression and function of the 9 AQPs expressed in the CNS, which include five members of aquaporin subfamily: AQP1, AQP4, AQP5, AQP6, and AQP8; three members of aquaglyceroporin subfamily: AQP3, AQP7, and AQP9; and one member of superaquaporin subfamily: AQP11. In addition, AQP1, AQP2 and AQP4 expressed in the peripheral nervous system (PNS) are also reviewed. AQP4, the predominant water channel in the CNS, is involved both in the astrocyte swelling of cytotoxic edema and the resolution of vasogenic edema, and is of pivotal importance in the pathology of brain disorders such as neuromyelitis optica , brain tumors and Alzheimer's disease. Other AQPs are also involved in a variety of important physiological and pathological process in the brain. It has been suggested that AQPs could represent an important target in treatment of brain disorders like cerebral edema. Future investigations are necessary to elucidate the pathological significance of AQPs in the CNS.

  6. Aquaporins in the digestive system.

    PubMed

    Matsuzaki, Toshiyuki; Tajika, Yuki; Ablimit, Abdushukur; Aoki, Takeo; Hagiwara, Haruo; Takata, Kuniaki

    2004-06-01

    Fluid transfer such as secretion and absorption is one of the major functions of the digestive system. Aquaporins are water channel proteins providing water transfer across the cellular membrane. At least six aquaporin isoforms are expressed in the digestive system. Aquaporin-1 (AQP1) is widely distributed in endothelial cells of capillaries and small vessels as well as in the central lacteals in the small intestine. AQP1 is also present in the duct system in the pancreas, liver, and bile duct. AQP3 is mainly expressed in the epithelia of the upper digestive tract from the oral cavity to the stomach and of the lower digestive tract from the distal colon to the anus. AQP4 is present in the parietal cells of the stomach and in the intestinal epithelia. AQP5 is expressed in acinar cells of the salivary, pyloric, and duodenal glands. AQP8 is expressed in the intestinal epithelia, salivary glands, pancreas, and liver. AQP9 is present in the liver and intestinal goblet cells. Aquaporins have important roles in the digestive system, such as AQP5 in saliva secretion, as shown by the studies on AQP5-null mice. In addition, water transfer across the digestive epithelia seems to occur not only via aquaporins but also via other transporter or channel systems. Copyright 2004 The Clinical Electron Microscopy Society of Japan

  7. Proteomic knowledge of human aquaporins.

    PubMed

    Magni, Fulvio; Sarto, Cecilia; Ticozzi, Davide; Soldi, Monica; Bosso, Niccolò; Mocarelli, Paolo; Kienle, Marzia Galli

    2006-10-01

    Aquaporins (AQPs) are an ubiquitous family of proteins characterized by sequence similarity and the presence of two NPA (Asp-Pro-Ala) motifs. At present, 13 human AQPs are known and they are divided into two subgroups according to their ability to transport only water molecules (AQP0, AQP1, AQP2, AQP4, AQP5, AQP6, and AQP8), or also glycerol and other small solutes (AQP3, AQP7, AQP9, AQP10, AQP12). The genomic, structural, and functional aspects of this family are briefly described. In particular, proteomic approaches to identify and characterize the most studied AQPs, mainly through SDS-PAGE followed by MS analysis, are discussed. Moreover, the clinical importance of the best studied aquaporin (AQP1) in human diseases is also provided.

  8. A case of neuromyelitis optica spectrum disorder (NMOSD) with Sjögren's syndrome manifested only brain involvement by preceding parotitis.

    PubMed

    Furukawa, Takahiro; Matsui, Naoko; Tanaka, Keiko; Izumi, Yuishin; Kaji, Ryuji

    2017-02-25

    A 33 year-old woman presented with intentional incontinence, motor aphasia, supranuclear gaze palsy, and spasticity after parotitis. Brain magnetic resonance images (MRI) showed abnormal signaling in long corticospinal tract involving internal capsules and cerebral peduncles, middle cerebellar peduncle, and frontal subcortical white matter lesions. She had a long history of dry eye and mouth. Immunoserological study showed that she was positive for anti-SS-A, aquaporin 4 (AQP4), and AQP5 antibodies. She clinically showed not only Sjögren's syndrome but also neuromyelitis optica spectrum disorder (NMOSD) without optic neuritis or myelitis. She responded to steroid followed by plasma exchange dramatically. Thereafter, the relapse of brain lesion was once detected while tapering of steroid, but her symptoms have been stable for several years after administration of immunosuppressant. This case suggested that salivary gland inflammation might be associated with the pathogenesis of NMOSD.

  9. Putative new groups of invertebrate water channels based on the snail Helix pomatia L. (Helicidae) MIP protein identification and phylogenetic analysis.

    PubMed

    Kosicka, Ewa; Grobys, Daria; Kmita, Hanna; Lesicki, Andrzej; Pieńkowska, Joanna R

    2016-12-01

    Water channel proteins, classified as a family of Membrane Intrinsic Proteins (MIPs) superfamily, enable rapid movement of water and small uncharged molecules through biological membranes. Although water channel proteins are required in several important processes characteristic for the animals, such as osmoregulation, mucus secretion, or defense against desiccation, molluscs, until now, have been very poorly explored in this aspect. Therefore, we decided to study MIPs in Helix pomatia L. applied as a model in studies on terrestrial snail physiology. Our studies consisted in: the snail organ transcriptome sequencing and consecutive bioinformatic analysis of the predicted protein, estimation of the encoding transcript expression (qPCR), investigation of the predicted protein function in the yeast Saccharomyces cerevisiae cells, and the phylogenetic analysis. We identified six water channel proteins, named HpAQP1 to HpAQP6. All of them were proven to transport water, two of them (HpAQP3 and HpAQP4) were also shown to be able to transport glycerol, and other two (HpAQP5 and HpAQP6) to transport H2O2. Phylogenetic analysis indicated that the proteins either fell into aquaporins (HpAQP1, HpAQP2 and HpAQP5) or formed new groups of invertebrate water channel proteins, not described until now, that we suggest to term malacoglyceroporins (HpAQP3 and HpAQP4) and malacoaquaporins (HpAQP6). Thus, the classification of animal water channels based on the vertebrate proteins and including aquaporin, aquaglyceroporin, S-aquaporin and AQP8-type grades does not reflect diversity of these proteins in invertebrates. The obtained results provide important data concerning diversity of water channel protein repertoire in aquatic and terrestrial invertebrates and should also contribute to the improvement of animal water channel classification system. Copyright © 2016 Elsevier GmbH. All rights reserved.

  10. Distribution and roles of aquaporins in salivary glands.

    PubMed

    Delporte, Christine; Steinfeld, Serge

    2006-08-01

    Salivary glands are involved in secretion of saliva, which is known to participate in the protection and hydratation of mucosal structures within the oral cavity, oropharynx and oesophagus, the initiation of digestion, some antimicrobial defence, and the protection from chemical and mechanical stress. Saliva secretion is a watery fluid containing electrolytes and a mixture of proteins and can be stimulated by muscarinic and adrenergic agonists. Since water movement is involved in saliva secretion, the expression, localization and function of aquaporins (AQPs) have been studied in salivary glands. This review will focus on the expression, localization and functional roles of the AQPs identified in salivary glands. The presence of AQP1, AQP5 and AQP8 has been generally accepted by many, while the presence of AQP3, AQP4, AQP6 and AQP7 still remains controversial. Functionally, AQP5 seems to be the only AQP thus far to be clearly playing a major role in the salivary secretion process. Modifications in AQPs expression and/or distribution have been reported in xerostomic conditions.

  11. Utilization of different aquaporin water channels in the mouse cervix during pregnancy and parturition and in models of preterm and delayed cervical ripening.

    PubMed

    Anderson, Judy; Brown, Naoko; Mahendroo, Mala S; Reese, Jeff

    2006-01-01

    Biochemical changes of cervical connective tissue, including progressive disorganization of the collagen network and increased water content, occur during gestation to allow for cervical dilatation during labor, but the mechanisms that regulate cervical fluid balance are not fully understood. We examined whether aquaporins (AQPs), a family of membrane channel proteins that facilitate water transport, help mediate fluid balance in the mouse cervix during parturition. Of the 13 known murine AQPs, AQP0-2, 6, 7, 9, 11, and 12 were absent or at the limits of detection. By Northern blot and real-time PCR, AQP3 expression was low in nongravid and mid-pregnancy cervices with peak expression on d 19 and postpartum d 1 (PP1). AQP4 expression was generally low throughout pregnancy but showed a small upward trend at the time of parturition. AQP5 and AQP8 expression were significantly increased on d 12-15 but fell to nongravid/baseline by d 19 and PP1. By in situ hybridization and immunohistochemistry, AQP3 was preferentially expressed in basal cell layers of the cervical epithelium, whereas AQP4, 5, and 8 were primarily expressed in apical cell layers. Females with LPS-induced preterm labor had similar trends in AQP4, 5, and 8 expression to mice with natural labor at term gestation. Mice with delayed cervical remodeling due to deletion of the steroid 5alpha-reductase type 1 gene showed significant reduction in the levels of AQP3, 4, and 8 on d 19 or PP1. Together, these studies suggest that AQPs 3, 4, 5, and 8 regulate distinct aspects of cervical water balance during pregnancy and parturition.

  12. pH regulated anion permeability of aquaporin-6.

    PubMed

    Yasui, Masato

    2009-01-01

    The kidney is a model organ for transport physiology (Nielsen 1996). AQPs are well-characterized in mammalian kidneys, where they facilitate transepithelial water reabsorption. Most renal AQPs are expressed either in proximal tubule cells or in collecting duct principal cells, which are known as sites for water reabsorption. AQP1 is present in both apical and basolateral membranes of proximal tubules, and in descending limbs of Henle's loop where 70% of filtrated water is isoosmotically reabsorbed (King and Agre 1996). AQP2 is expressed in principal cells of the collecting duct; in response to vasopressin, AQP2 translocates from intracellular vesicles to the apical plasma membranes, thereby increasing water permeability to concentrate urine (Nielsen et al. 1993, 1995; Knepper 1997; Schrier 2006). AQP3 and AQP4 reside in the basolateral membranes of collecting duct principal cells, where they may provide the exit pathways for urine. AQP7, AQP8, and AQP11 are also present in the proximal tubules (Nielsen et al. 1998).A rat cDNA clone encoding AQP6 was isolated by PCR-based homologous cloning from a rat kidney cDNA library (Ma et al. 1993; Yasui et al. 1999). AQP6 has high sequence homology to AQP0, AQP2, and AQP5. A human AQP6 was also cloned (Ma et al. 1996). Interestingly, the genes encoding AQP2, AQP5, and AQP6 are mapped to chromosome band 12q13 as a family gene cluster at this locus (Ma et al. 1997). Nevertheless, AQP6 is distinct from AQP0, AQP2, and AQP5 in terms of function. Among the renal aquaporins mentioned above, AQP6 has a unique distribution and a distinct function.

  13. The Amt/MEP/Rh family: structure of AmtB and the mechanism of ammonia gas conduction.

    PubMed

    Khademi, Shahram; Stroud, Robert M

    2006-12-01

    The atomic structures of the first members of the Amt/MEP/Rh family show that they are 11-crossing membrane proteins that form trimers in the membrane. Each monomer supports a hydrophobic channel that conducts NH(3) but not any water or ions. The reprotonation of NH(3) on the receiving side raises the pH on that side in the absence of metabolism of NH(3), and there is no transfer of protons through the protein.

  14. Expression and localisation of aquaporin water channels in human urothelium in situ and in vitro.

    PubMed

    Rubenwolf, Peter C; Georgopoulos, Nikolaos T; Clements, Lisa A; Feather, Sally; Holland, Philip; Thomas, David F M; Southgate, Jennifer

    2009-12-01

    Urothelium is generally considered to be impermeable to water and constituents of urine. The possibility that human urothelium expresses aquaporin (AQP) water channels as the basis for water and solute transport has not previously been investigated. To investigate the expression of AQP water channels by human urothelium in situ, in proliferating urothelial cell cultures and in differentiated tissue constructs. AQP expression by human urothelium in situ and cultured urothelial cells was assessed by reverse transcriptase-polymerase chain reaction (RT-PCR) and immunolabelling. Expression screening was carried out on samples of freshly isolated urothelia from multiple surgical (bladder and ureteric) specimens and on proliferating and differentiated normal human urothelial (NHU) cells in culture. Urothelial tissue constructs were established and investigated for expression of urothelial differentiation markers and AQPs. Qualitative study. Transcripts for AQP3, AQP4, AQP7, AQP9, and AQP11 were expressed consistently by freshly isolated urothelia as well as by cultured NHU cells. AQP0, AQP1, AQP2, AQP5, AQP6, AQP8, AQP10, and AQP12 were not expressed. Immunochemistry confirmed expression of AQP3, AQP4, AQP7, and AQP9 at the protein level. AQP3 was shown to be intensely expressed at cell borders in the basal and intermediate layers in both urothelium in situ and differentiated tissue constructs in vitro. This is the first study to demonstrate that AQPs are expressed by human urothelium, suggesting a potential role in transurothelial water and solute transport. Our findings challenge the traditional concept of the urinary tract as an impermeable transit and storage unit and provide a versatile platform for further investigations into the biological and clinical relevance of AQPs in human urothelium.

  15. Aquaporins: water channel proteins of the cell membrane.

    PubMed

    Takata, Kuniaki; Matsuzaki, Toshiyuki; Tajika, Yuki

    2004-01-01

    Aquaporins (AQP) are integral membrane proteins that serve as channels in the transfer of water, and in some cases, small solutes across the membrane. They are conserved in bacteria, plants, and animals. Structural analyses of the molecules have revealed the presence of a pore in the center of each aquaporin molecule. In mammalian cells, more than 10 isoforms (AQP0-AQP10) have been identified so far. They are differentially expressed in many types of cells and tissues in the body. AQP0 is abundant in the lens. AQP1 is found in the blood vessels, kidney proximal tubules, eye, and ear. AQP2 is expressed in the kidney collecting ducts, where it shuttles between the intracellular storage sites and the plasma membrane under the control of antidiuretic hormone (ADH). Mutations of AQP2 result in diabetes insipidus. AQP3 is present in the kidney collecting ducts, epidermis, urinary, respiratory, and digestive tracts. AQP3 in organs other than the kidney may be involved in the supply of water to them. AQP4 is present in the brain astrocytes, eye, ear, skeletal muscle, stomach parietal cells, and kidney collecting ducts. AQP5 is in the secretory cells such as salivary, lacrimal, and sweat glands. AQP5 is also expressed in the ear and eye. AQP6 is localized intracellular vesicles in the kidney collecting duct cells. AQP7 is expressed in the adipocytes, testis, and kidney. AQP8 is expressed in the kidney, testis, and liver. AQP9 is present in the liver and leukocytes. AQP10 is expressed in the intestine. The diverse and characteristic distribution of aquaporins in the body suggests their important and specific roles in each organ.

  16. Differential expression of inwardly rectifying K+ channels and aquaporins 4 and 5 in autoimmune uveitis indicates misbalance in Müller glial cell-dependent ion and water homeostasis.

    PubMed

    Eberhardt, Christina; Amann, Barbara; Feuchtinger, Annette; Hauck, Stefanie M; Deeg, Cornelia A

    2011-05-01

    Reactive gliosis is a well-established response to virtually every retinal disease. Autoimmune uveitis, a sight threatening disease, is characterized by recurrent relapses through autoaggressive T-cells. The purpose of this study was to assess retinal Müller glial cell function in equine recurrent uveitis (ERU), a spontaneous disease model resembling the human disease, by investigating membrane proteins implicated in ion and water homeostasis. We found that Kir2.1 was highly expressed in diseased retinas, whereas Kir4.1 was downregulated in comparison to controls. Distribution of Kir2.1 appeared Müller cell associated in controls, whereas staining of cell somata in the inner nuclear layer was observed in uveitis. In contrast to other subunits, Kir4.1 was evenly expressed along equine Müller cells, whereas in ERU, Kir4.1 almost disappeared from Müller cells. Hence, we suggest a different mechanism for potassium buffering in the avascular equine retina and, moreover, an impairment in uveitis. Uveitic retinas showed significantly increased expression of AQP4 as well as a displaced expression from Müller cells in healthy specimens to an intense circular expression pattern in the outer nuclear layer in ERU cases. Most interestingly, we detected the aquaporin family member protein AQP5 to be expressed in Müller cells with strong enrichments in Müller cell secondary processes. This finding indicates that fluid regulation within the equine retina may be achieved by an additional aquaporin. Furthermore, AQP5 was significantly decreased in uveitis. We conclude that the Müller cell response in autoimmune uveitis implies considerable changes in its potassium and water physiology.

  17. Aquaporin water channels in the mammary gland: from physiology to pathophysiology and neoplasia.

    PubMed

    Mobasheri, Ali; Barrett-Jolley, Richard

    2014-03-01

    Aquaporins are membrane proteins that play fundamental roles in water and small solute transport across epithelial and endothelial barriers. Recent studies suggest that several aquaporin proteins are present in the mammary gland. Immunohistochemical techniques have confirmed the presence of aquaporin 1 (AQP1) and AQP3 water channels in rat, mouse, bovine and human mammary glands. Studies suggest that in addition to AQP1 and AQP3 AQP4, AQP5 and AQP7 proteins are expressed in different locations in the mammary gland. Aquaporins play key roles in tumor biology and are involved in cell growth, migration and formation of ascites via increased water permeability of micro-vessels. Emerging evidence suggests that expression of these proteins is altered in mammary tumors and in breast cancer cell lines although it is not yet clear whether this is a cause or a consequence of neoplastic development. This review analyzes the expression and potential functional roles of aquaporin water channels in the mammary gland. The physiological mechanisms involved in the transport of water and small solutes across mammary endothelial and epithelial barriers are discussed in the context of milk production and lactation. This paper also reviews papers from the recent cancer literature that implicate aquaporins in mammary neoplasia.

  18. Aquaporins in the adult mouse submandibular and sublingual salivary glands.

    PubMed

    Aure, Marit H; Ruus, Ann-Kristin; Galtung, Hilde K

    2014-02-01

    Aquaporins (AQPs) is a family of membrane bound water channels found in most tissues. In addition to contribute to transepithelial water movement, AQPs are shown to be involved in a variety of processes such as proliferation, cell migration, and apoptosis. In salivary glands, it is well known that AQP5 plays an important role in fluid secretion. In recent years, several AQPs that demonstrate specific expression trends during development have been found in the mouse submandibular gland (SMG). In this study, we wanted to further investigate the presence and localization of the AQP family in the adult mouse SMG in addition to the less studied sublingual gland. Real time PCR and Western blot demonstrated the presence of AQP3, 4, 8, 9, and 11 transcripts and proteins. AQP1 and AQP7 were shown to be localized in endothelial cells, while AQP4 was found in the satellite cells of the parasympathetic ganglia in both glands. The result from this study shows that AQPs are found in defined subpopulations of cells in salivary glands, providing novel insights to their specific roles in salivary glands.

  19. Effects of Radix Astragali and Its Split Components on Gene Expression Profiles Related to Water Metabolism in Rats with the Dampness Stagnancy due to Spleen Deficiency Syndrome

    PubMed Central

    Cui, Ning; Jiang, Hai-Qiang; Han, Xiao-Chun; Han, Bing-Bing; Wang, Tong

    2017-01-01

    Radix Astragali (RA) with slight sweet and warm property is a significant “qi tonifying” herb; it is indicated for the syndrome of dampness stagnancy due to spleen deficiency (DSSD). The purpose of this research was to explore effects of RA and its split components on gene expression profiles related to water metabolism in rats with the DSSD syndrome for identifying components representing property and flavor of RA. The results indicated that RA and its split components, especially polysaccharides component, significantly increased the body weight and the urine volume and decreased the water load index of model rats. Our data also indicated differentially expressed genes (DEGs) related to water metabolism involved secretion, ion transport, water homeostasis, regulation of body fluid levels, and water channel activity; the expression of AQP1, AQP3, AQP4, AQP5, AQP6, and AQP8 was improved; calcium, cAMP, MAPK, PPAR, AMPK, and PI3K-Akt signaling pathway may be related to water metabolism. In general, results indicate that RA and its split components could promote water metabolism in rats with the DSSD syndrome via regulating the expression of AQPs, which reflected sweet-warm properties of RA. Effects of the polysaccharides component are better than others. PMID:28607573

  20. Effects of Radix Astragali and Its Split Components on Gene Expression Profiles Related to Water Metabolism in Rats with the Dampness Stagnancy due to Spleen Deficiency Syndrome.

    PubMed

    Zhao, Wen-Xiao; Cui, Ning; Jiang, Hai-Qiang; Ji, Xu-Ming; Han, Xiao-Chun; Han, Bing-Bing; Wang, Tong; Wang, Shi-Jun

    2017-01-01

    Radix Astragali (RA) with slight sweet and warm property is a significant "qi tonifying" herb; it is indicated for the syndrome of dampness stagnancy due to spleen deficiency (DSSD). The purpose of this research was to explore effects of RA and its split components on gene expression profiles related to water metabolism in rats with the DSSD syndrome for identifying components representing property and flavor of RA. The results indicated that RA and its split components, especially polysaccharides component, significantly increased the body weight and the urine volume and decreased the water load index of model rats. Our data also indicated differentially expressed genes (DEGs) related to water metabolism involved secretion, ion transport, water homeostasis, regulation of body fluid levels, and water channel activity; the expression of AQP1, AQP3, AQP4, AQP5, AQP6, and AQP8 was improved; calcium, cAMP, MAPK, PPAR, AMPK, and PI3K-Akt signaling pathway may be related to water metabolism. In general, results indicate that RA and its split components could promote water metabolism in rats with the DSSD syndrome via regulating the expression of AQPs, which reflected sweet-warm properties of RA. Effects of the polysaccharides component are better than others.

  1. Aquaporins as potential drug targets for Meniere's disease and its related diseases.

    PubMed

    Takeda, Taizo; Taguchi, Daizo

    2009-01-01

    The homeostasis of water in the inner ear is essential for maintaining function of hearing and equilibrium. Since the discovery of aquaporin water channels, it has become clear that these channels play a crucial role in inner ear fluid homeostasis. Indeed, proteins or mRNAs of AQP1, AQP2, AQP3, AQP4, AQP5, AQP6, AQP7 and AQP9 are expressed in the inner ear. Many of them are expressed mainly in the stria vascularis and the endolymphatic sac, which are the main sites of secretion and/or absorption of endolymph. Vasopressin type2 receptor is also expressed there. Water homeostasis of the inner ear is regulated in part via the arginine vasopressin-AQP2 system in the same fashion as in the kidney, and endolymphatic hydrops, a morphological characteristic of Meniere's disease, is thought to be caused by mal-regulation of this system. Therefore, aquaporins appear to be important for the development of novel drug therapies for Meniere's disease and related disorders.

  2. Expression of aquaporin water channels in the vagina in premenopausal women.

    PubMed

    Kim, Sun-Ouck; Oh, Kyung Jin; Lee, Hyun Suk; Ahn, Kyuyoun; Kim, Soo Wan; Park, Kwangsung

    2011-07-01

    Aquaporins (AQPs) are membrane proteins that facilitate water movement across biological membranes. This study builds on a previous report on the distinct localization of AQPs in the rat vagina. The purposes of this study were to investigate the localization and expression of the AQPs in the vaginal tissue of premenopausal women. Anterior vaginal tissue was collected during transvaginal uterine myomectomy or hysterectomy from 10 premenopausal women (mean age, 40 years) for Western blot and immunohistochemistry. The expression and cellular localization of AQP1-9 were determined in the human vagina by Western blot and immunohistochemistry. Immunolabeling showed that AQP1 was mainly expressed in the capillaries and venules of the vagina, AQP2 was expressed in the cytoplasm of the epithelium, AQP3 was mainly associated with the plasma membrane of the vaginal epithelium, and both AQP5 and AQP6 were expressed in the cytoplasm throughout all vaginal epithelium. Western blot analysis revealed bands at 28 kDa for AQP1, 2, 3, 5, and 6 proteins. However, AQP4, 7, 8, and 9 were not detected. The distinct localization of AQPs in the human vagina suggests that AQP1, 2, 3, 5, and 6 may play an important role in vaginal lubrication in women. © 2011 International Society for Sexual Medicine.

  3. Cellular localization of aquaporins along the secretory pathway of the lactating bovine mammary gland: an immunohistochemical study.

    PubMed

    Mobasheri, Ali; Kendall, Bryony Heather; Maxwell, Judith Elizabeth Joan; Sawran, Ami Veronica; German, Alexander James; Marples, David; Luck, Martin Richard; Royal, Melissa Dawn

    2011-02-01

    In this study we examined the cellular localization of aquaporins (AQPs) along the secretory pathway of actively lactating bovine mammary glands using immunohistochemistry. Mammary tissues examined included secretory ducts and acini, gland cisterns, teats, stromal and adipose tissues. Aquaporin 1 (AQP1) was localized in capillary endothelia throughout the mammary gland in addition to myoepithelial cells underlying teat duct epithelia. AQP2 and AQP6 were not detected and AQP9 was found only in leukocytes. AQP3 and AQP4 were observed in selected epithelial cells in the teat, cistern and secretory tubuloalveoli. AQP5 immunopositivity was prominent in the cistern. AQP3 and AQP7 were found in smooth muscle bundles in the teat, secretory epithelial cells and duct epithelial cells. These immunohistochemical findings support a functional role for aquaporins in the transport of water and small solutes across endothelial and epithelial barriers in the mammary gland and in the production and secretion of milk. Copyright © 2009 Elsevier GmbH. All rights reserved.

  4. Cell culture models and animal models for studying the patho-physiological role of renal aquaporins.

    PubMed

    Tamma, G; Procino, G; Svelto, M; Valenti, G

    2012-06-01

    Aquaporins (AQPs) are key players regulating urinary-concentrating ability. To date, eight aquaporins have been characterized and localized along the nephron, namely, AQP1 located in the proximal tubule, thin descending limb of Henle, and vasa recta; AQP2, AQP3 and AQP4 in collecting duct principal cells; AQP5 in intercalated cell type B; AQP6 in intercalated cells type A in the papilla; AQP7, AQP8 and AQP11 in the proximal tubule. AQP2, whose expression and cellular distribution is dependent on vasopressin stimulation, is involved in hereditary and acquired diseases affecting urine-concentrating mechanisms. Due to the lack of selective aquaporin inhibitors, the patho-physiological role of renal aquaporins has not yet been completely clarified, and despite extensive studies, several questions remain unanswered. Until the recent and large-scale development of genetic manipulation technology, which has led to the generation of transgenic mice models, our knowledge on renal aquaporin regulation was mainly based on in vitro studies with suitable renal cell models. Transgenic and knockout technology approaches are providing pivotal information on the role of aquaporins in health and disease. The main goal of this review is to update and summarize what we can learn from cell and animal models that will shed more light on our understanding of aquaporin-dependent renal water regulation.

  5. Aquaporins in avian kidneys: function and perspectives.

    PubMed

    Nishimura, Hiroko; Yang, Yimu

    2013-12-01

    For terrestrial vertebrates, water economy is a prerequisite for survival, and the kidney is their major osmoregulatory organ. Birds are the only vertebrates other than mammals that can concentrate urine in adaptation to terrestrial environments. Aquaporin (AQP) and glyceroporin (GLP) are phylogenetically old molecules and have been found in plants, microbial organisms, invertebrates, and vertebrates. Currently, 13 AQPs/aquaGLPs and isoforms are known to be present in mammals. AQPs 1, 2, 3, 4, 6, 7, 8, and 11 are expressed in the kidney; of these, AQPs 1, 2, 3, 4, and 7 are shown to be involved in fluid homeostasis. In avian kidneys, AQPs 1, 2, 3, and 4 have been identified and characterized. Also, gene and/or amino acid sequences of AQP5, AQP7, AQP8, AQP9, AQP11, and AQP12 have been reported in birds. AQPs 2 and 3 are expressed along cortical and medullary collecting ducts (CDs) and are responsible, respectively, for the water inflow and outflow of CD epithelial cells. While AQP4 plays an important role in water exit in the CD of mammalian kidneys, it is unlikely to participate in water outflow in avian CDs. This review summarizes current knowledge on structure and function of avian AQPs and compares them to those in mammalian and nonmammalian vertebrates. Also, we aim to provide input into, and perspectives on, the role of renal AQPs in body water homeostasis during ontogenic and phylogenetic advancement.

  6. Effects of the fusion design and immunization route on the immunogenicity of Ag85A-Mtb32 in adenoviral vectored tuberculosis vaccine

    PubMed Central

    Zhang, Yiling; Feng, Liqiang; Li, Liang; Wang, Dimin; Li, Chufang; Sun, Caijun; Li, Pingchao; Zheng, Xuehua; Liu, Yichu; Yang, Wei; Niu, Xuefeng; Zhong, Nanshan; Chen, Ling

    2015-01-01

    Vaccines containing multiple antigens may induce broader immune responses and provide better protection against Mycobacterium tuberculosis (Mtb) infection as compared to a single antigen. However, strategies for incorporating multiple antigens into a single vector and the immunization routes may affect their immunogenicity. In this study, we utilized recombinant adenovirus type 5 (rAd5) as a model vaccine vector, and Ag85A (Rv3804c) and Mtb32 (Rv0125) as model antigens, to comparatively evaluate the influence of codon usage optimization, signal sequence, fusion linkers, and immunization routes on the immunogenicity of tuberculosis (TB) vaccine containing multiple antigens in C57BL/6 mice. We showed that codon-optimized Ag85A and Mtb32 fused with a GSG linker induced the strongest systemic and pulmonary cell-mediated immune (CMI) responses. Strong CMI responses were characterized by the generation of a robust IFN-γ ELISPOT response as well as antigen-specific CD4+ T and CD8+ T cells, which secreted mono-, dual-, or multiple cytokines. We also found that subcutaneous (SC) and intranasal (IN)/oral immunization with this candidate vaccine exhibited the strongest boosting effects for Mycobacterium bovis bacille Calmette-Guérin (BCG)-primed systemic and pulmonary CMI responses, respectively. Our results supported that codon optimized Ag85A and Mtb32 fused with a proper linker and immunized through SC and IN/oral routes can generate the strongest systemic and pulmonary CMI responses in BCG-primed mice, which may be particularly important for the design of TB vaccines containing multiple antigens. PMID:26076321

  7. Effects of the fusion design and immunization route on the immunogenicity of Ag85A-Mtb32 in adenoviral vectored tuberculosis vaccine.

    PubMed

    Zhang, Yiling; Feng, Liqiang; Li, Liang; Wang, Dimin; Li, Chufang; Sun, Caijun; Li, Pingchao; Zheng, Xuehua; Liu, Yichu; Yang, Wei; Niu, Xuefeng; Zhong, Nanshan; Chen, Ling

    2015-01-01

    Vaccines containing multiple antigens may induce broader immune responses and provide better protection against Mycobacterium tuberculosis (Mtb) infection as compared to a single antigen. However, strategies for incorporating multiple antigens into a single vector and the immunization routes may affect their immunogenicity. In this study, we utilized recombinant adenovirus type 5 (rAd5) as a model vaccine vector, and Ag85A (Rv3804c) and Mtb32 (Rv0125) as model antigens, to comparatively evaluate the influence of codon usage optimization, signal sequence, fusion linkers, and immunization routes on the immunogenicity of tuberculosis (TB) vaccine containing multiple antigens in C57BL/6 mice. We showed that codon-optimized Ag85A and Mtb32 fused with a GSG linker induced the strongest systemic and pulmonary cell-mediated immune (CMI) responses. Strong CMI responses were characterized by the generation of a robust IFN-γ ELISPOT response as well as antigen-specific CD4(+) T and CD8(+) T cells, which secreted mono-, dual-, or multiple cytokines. We also found that subcutaneous (SC) and intranasal (IN)/oral immunization with this candidate vaccine exhibited the strongest boosting effects for Mycobacterium bovis bacille Calmette-Guérin (BCG)-primed systemic and pulmonary CMI responses, respectively. Our results supported that codon optimized Ag85A and Mtb32 fused with a proper linker and immunized through SC and IN/oral routes can generate the strongest systemic and pulmonary CMI responses in BCG-primed mice, which may be particularly important for the design of TB vaccines containing multiple antigens.

  8. A novel human aquaporin-4 splice variant exhibits a dominant-negative activity: a new mechanism to regulate water permeability.

    PubMed

    De Bellis, Manuela; Pisani, Francesco; Mola, Maria Grazia; Basco, Davide; Catalano, Francesco; Nicchia, Grazia Paola; Svelto, Maria; Frigeri, Antonio

    2014-02-01

    Two major isoforms of aquaporin-4 (AQP4) have been described in human tissue. Here we report the identification and functional analysis of an alternatively spliced transcript of human AQP4, AQP4-Δ4, that lacks exon 4. In transfected cells AQP4-Δ4 is mainly retained in the endoplasmic reticulum and shows no water transport properties. When AQP4-Δ4 is transfected into cells stably expressing functional AQP4, the surface expression of the full-length protein is reduced. Furthermore, the water transport activity of the cotransfectants is diminished in comparison to transfectants expressing only AQP4. The observed down-regulation of both the expression and water channel activity of AQP4 is likely to originate from a dominant-negative effect caused by heterodimerization between AQP4 and AQP4-Δ4, which was detected in coimmunoprecipitation studies. In skeletal muscles, AQP4-Δ4 mRNA expression inversely correlates with the level of AQP4 protein and is physiologically associated with different types of skeletal muscles. The expression of AQP4-Δ4 may represent a new regulatory mechanism through which the cell-surface expression and therefore the activity of AQP4 can be physiologically modulated.

  9. A novel human aquaporin-4 splice variant exhibits a dominant-negative activity: a new mechanism to regulate water permeability

    PubMed Central

    De Bellis, Manuela; Pisani, Francesco; Mola, Maria Grazia; Basco, Davide; Catalano, Francesco; Nicchia, Grazia Paola; Svelto, Maria; Frigeri, Antonio

    2014-01-01

    Two major isoforms of aquaporin-4 (AQP4) have been described in human tissue. Here we report the identification and functional analysis of an alternatively spliced transcript of human AQP4, AQP4-Δ4, that lacks exon 4. In transfected cells AQP4-Δ4 is mainly retained in the endoplasmic reticulum and shows no water transport properties. When AQP4-Δ4 is transfected into cells stably expressing functional AQP4, the surface expression of the full-length protein is reduced. Furthermore, the water transport activity of the cotransfectants is diminished in comparison to transfectants expressing only AQP4. The observed down-regulation of both the expression and water channel activity of AQP4 is likely to originate from a dominant-negative effect caused by heterodimerization between AQP4 and AQP4-Δ4, which was detected in coimmunoprecipitation studies. In skeletal muscles, AQP4-Δ4 mRNA expression inversely correlates with the level of AQP4 protein and is physiologically associated with different types of skeletal muscles. The expression of AQP4-Δ4 may represent a new regulatory mechanism through which the cell-surface expression and therefore the activity of AQP4 can be physiologically modulated. PMID:24356448

  10. Superresolution Imaging of Aquaporin-4 Cluster Size in Antibody-Stained Paraffin Brain Sections.

    PubMed

    Smith, Alex J; Verkman, Alan S

    2015-12-15

    The water channel aquaporin-4 (AQP4) forms supramolecular clusters whose size is determined by the ratio of M1- and M23-AQP4 isoforms. In cultured astrocytes, differences in the subcellular localization and macromolecular interactions of small and large AQP4 clusters results in distinct physiological roles for M1- and M23-AQP4. Here, we developed quantitative superresolution optical imaging methodology to measure AQP4 cluster size in antibody-stained paraffin sections of mouse cerebral cortex and spinal cord, human postmortem brain, and glioma biopsy specimens. This methodology was used to demonstrate that large AQP4 clusters are formed in AQP4(-/-) astrocytes transfected with only M23-AQP4, but not in those expressing only M1-AQP4, both in vitro and in vivo. Native AQP4 in mouse cortex, where both isoforms are expressed, was enriched in astrocyte foot-processes adjacent to microcapillaries; clusters in perivascular regions of the cortex were larger than in parenchymal regions, demonstrating size-dependent subcellular segregation of AQP4 clusters. Two-color superresolution imaging demonstrated colocalization of Kir4.1 with AQP4 clusters in perivascular areas but not in parenchyma. Surprisingly, the subcellular distribution of AQP4 clusters was different between gray and white matter astrocytes in spinal cord, demonstrating regional specificity in cluster polarization. Changes in AQP4 subcellular distribution are associated with several neurological diseases and we demonstrate that AQP4 clustering was preserved in a postmortem human cortical brain tissue specimen, but that AQP4 was not substantially clustered in a human glioblastoma specimen despite high-level expression. Our results demonstrate the utility of superresolution optical imaging for measuring the size of AQP4 supramolecular clusters in paraffin sections of brain tissue and support AQP4 cluster size as a primary determinant of its subcellular distribution.

  11. Superresolution Imaging of Aquaporin-4 Cluster Size in Antibody-Stained Paraffin Brain Sections

    PubMed Central

    Smith, Alex J.; Verkman, Alan S.

    2015-01-01

    The water channel aquaporin-4 (AQP4) forms supramolecular clusters whose size is determined by the ratio of M1- and M23-AQP4 isoforms. In cultured astrocytes, differences in the subcellular localization and macromolecular interactions of small and large AQP4 clusters results in distinct physiological roles for M1- and M23-AQP4. Here, we developed quantitative superresolution optical imaging methodology to measure AQP4 cluster size in antibody-stained paraffin sections of mouse cerebral cortex and spinal cord, human postmortem brain, and glioma biopsy specimens. This methodology was used to demonstrate that large AQP4 clusters are formed in AQP4−/− astrocytes transfected with only M23-AQP4, but not in those expressing only M1-AQP4, both in vitro and in vivo. Native AQP4 in mouse cortex, where both isoforms are expressed, was enriched in astrocyte foot-processes adjacent to microcapillaries; clusters in perivascular regions of the cortex were larger than in parenchymal regions, demonstrating size-dependent subcellular segregation of AQP4 clusters. Two-color superresolution imaging demonstrated colocalization of Kir4.1 with AQP4 clusters in perivascular areas but not in parenchyma. Surprisingly, the subcellular distribution of AQP4 clusters was different between gray and white matter astrocytes in spinal cord, demonstrating regional specificity in cluster polarization. Changes in AQP4 subcellular distribution are associated with several neurological diseases and we demonstrate that AQP4 clustering was preserved in a postmortem human cortical brain tissue specimen, but that AQP4 was not substantially clustered in a human glioblastoma specimen despite high-level expression. Our results demonstrate the utility of superresolution optical imaging for measuring the size of AQP4 supramolecular clusters in paraffin sections of brain tissue and support AQP4 cluster size as a primary determinant of its subcellular distribution. PMID:26682810

  12. Role of the H-bond between L53 and T56 for Aquaporin-4 epitope in Neuromyelitis Optica.

    PubMed

    Pisani, Francesco; Simone, Laura; Gargano, Concetta Domenica; De Bellis, Manuela; Cibelli, Antonio; Mola, Maria Grazia; Catacchio, Giacomo; Frigeri, Antonio; Svelto, Maria; Nicchia, Grazia Paola

    2017-03-01

    Aquaporin-4 (AQP4) is the CNS water channel organized into well-ordered protein aggregates called Orthogonal Arrays of Particles (OAPs). Neuromyelitis Optica (NMO) is an autoimmune disease caused by anti-OAP autoantibodies (AQP4-IgG). Molecular Dynamics (MD) simulations have identified an H-bond between L53 and T56 as the key for AQP4 epitope and therefore of potential interest for drug design in NMO field. In the present study, we have experimentally tested this MD-prediction using the classic mutagenesis approach. We substituted T56 with V56 and tested this mutant for AQP4 aggregates and AQP4-IgG binding. gSTED super-resolution microscopy showed that the mutation does not affect AQP4 aggregate dimension; immunofluorescence and cytofluorimetric analysis demonstrated its unaltered AQP4-IgG binding, therefore invalidating the MD-prediction. We later investigated whether AQP4, expressed in Sf9 insect and HEK-293F cells, is able to correctly aggregate before and after the purification steps usually applied to obtain AQP4 crystal. The results demonstrated that AQP4-IgG recognizes AQP4 expressed in Sf9 and HEK-293F cells by immunofluorescence even though BN-PAGE analysis showed that AQP4 forms smaller aggregates when expressed in insect cells compared to mammalian cell lines. Notably, after AQP4 purification, from both insect and HEK-293F cells, no aggregates are detectable by BN-PAGE and AQP4-IgG binding is impaired in sandwich ELISA assays. All together these results indicate that 1) the MD prediction under analysis is not supported by experimental data and 2) the procedure to obtain AQP4 crystals might affect its native architecture and, as a consequence, MD simulations. In conclusion, given the complex nature of the AQP4 epitope, MD might not be the suitable for molecular medicine advances in NMO.

  13. A Comprehensive Analysis of Aquaporin and Secretory Related Gene Expression in Neonate and Adult Cholangiocytes

    PubMed Central

    Poling, Holly M.; Mohanty, Sujit K.; Tiao, Greg M.; Huppert, Stacey S.

    2014-01-01

    Canalicular bile is secreted by hepatocytes and then passes through the intrahepatic bile ducts, comprised of cholangiocytes, to reach the extrahepatic biliary system. In addition to providing a conduit for bile to drain from the liver, cholangiocytes play an active role in modifying bile composition. Bile formation is the result of a series of highly coordinated intricate membrane-transport interactions. Proper systematic regulation of solute and water transport is critical for both digestion and the health of the liver, yet our knowledge of cholangiocyte water and ion transporters and their relative expression patterns remains incomplete. In this report, we provide a comprehensive expression profile of the aquaporin (AQP) family and three receptors/channels known to regulate ion transport in the murine cholangiocyte. In murine intrahepatic cholangiocytes, we found mRNA expression for all twelve of the members of the AQP family of proteins and found temporal changes in the expression profile occurring with age. Using AQP4, an established marker within cholangiocyte physiology, we found that AQP2, AQP5 and AQP6 expression levels to be significantly different between the neonatal and adult time points. Furthermore, there were distinct temporal expression patterns, with that of AQP12 unique in that its expression level decreased with age, whilst the majority of AQPs followed an increasing expression level trend with age. Of the three receptors/channels regulating ion transport in the murine cholangiocyte, only the cystic fibrosis transmembrane conductance regulator was found to follow a consistent trend of decreasing expression coincident with age. We have further validated AQP3 and AQP8 protein localization in both hepatocytes and cholangiocytes. This study emphasizes the need to further appreciate and consider the differences in cholangiocyte biology when treating neonatal and adult hepatobiliary diseases. PMID:24929031

  14. Aquaporin expression and function in human pluripotent stem cell-derived retinal pigmented epithelial cells.

    PubMed

    Juuti-Uusitalo, Kati; Delporte, Christine; Grégoire, Francoise; Perret, Jason; Huhtala, Heini; Savolainen, Virpi; Nymark, Soile; Hyttinen, Jari; Uusitalo, Hannu; Willermain, Francois; Skottman, Heli

    2013-05-01

    Aquaporins (AQPs), a family of transmembrane water channel proteins, are essential for allowing passive water transport through retinal pigmented epithelial (RPE) cells. Even though human native RPE cells and immortalized human RPEs have been shown to express AQPs, the expression of AQPs during the differentiation in stem cell-derived RPE remains to be elucidated. In human embryonic (hESCs) and induced pluripotent stem cells (hiPSCs)-derived RPE cells, the expression of several AQPs was determined by quantitative real-time PCR and the localization of AQP1 was assessed with confocal microscopy. The functionality of AQP water channels was determined by cell volume assay in hESC-derived RPE cells. AQP1, AQP3, AQP4, AQP5, AQP6, AQP7, AQP10, AQP11, and AQP12 were expressed in hESC- and hiPSC-derived RPE cells. Furthermore, the expression of AQP1 and AQP11 genes were significantly upregulated during the maturation of both hESC and iPSC into RPE. Confocal microscopy shows the expression of AQP1 at the apical plasma membrane of polarized cobblestone hESC- and hiPSC-derived RPE cells. Lastly, aquaporin inhibitors significantly reduced AQP functionality in hESC-RPE cells. hESC-RPE and hiPSC-RPE cells express several AQP genes, which are functional in mature hESC-derived RPE cells. The localization of AQP1 on the apical plasma membrane in mature RPE cells derived from both hESC and hiPSC suggests its functionality. These data propose that hESC- and hiPSC-derived RPE cells, grown and differentiated under serum-free conditions, resemble their native counterpart in the human eye.

  15. A comprehensive analysis of aquaporin and secretory related gene expression in neonate and adult cholangiocytes.

    PubMed

    Poling, Holly M; Mohanty, Sujit K; Tiao, Greg M; Huppert, Stacey S

    2014-07-01

    Canalicular bile is secreted by hepatocytes and then passes through the intrahepatic bile ducts, comprised of cholangiocytes, to reach the extrahepatic biliary system. In addition to providing a conduit for bile to drain from the liver, cholangiocytes play an active role in modifying bile composition. Bile formation is the result of a series of highly coordinated intricate membrane-transport interactions. Proper systematic regulation of solute and water transport is critical for both digestion and the health of the liver, yet our knowledge of cholangiocyte water and ion transporters and their relative expression patterns remains incomplete. In this report, we provide a comprehensive expression profile of the aquaporin (AQP) family and three receptors/channels known to regulate ion transport in the murine cholangiocyte. In murine intrahepatic cholangiocytes, we found mRNA expression for all twelve of the members of the AQP family of proteins and found temporal changes in the expression profile occurring with age. Using AQP4, an established marker within cholangiocyte physiology, we found that AQP2, AQP5 and AQP6 expression levels to be significantly different between the neonatal and adult time points. Furthermore, there were distinct temporal expression patterns, with that of AQP12 unique in that its expression level decreased with age, whilst the majority of AQPs followed an increasing expression level trend with age. Of the three receptors/channels regulating ion transport in the murine cholangiocyte, only the cystic fibrosis transmembrane conductance regulator was found to follow a consistent trend of decreasing expression coincident with age. We have further validated AQP3 and AQP8 protein localization in both hepatocytes and cholangiocytes. This study emphasizes the need to further appreciate and consider the differences in cholangiocyte biology when treating neonatal and adult hepatobiliary diseases. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. AMPK/α-Ketoglutarate Axis Regulates Intestinal Water and Ion Homeostasis in Young Pigs.

    PubMed

    He, Liuqin; Huang, Niu; Li, Huan; Tian, Junquan; Zhou, Xihong; Li, Tiejun; Yao, Kang; Wu, Guoyao; Yin, Yulong

    2017-03-22

    Water and ion absorption via sensitive aquaporins (AQPs) and ion channels is of critical importance in intestinal health. However, whether α-ketoglutarate (AKG) could improve intestinal water and ion homeostasis in lipopolysaccharide (LPS)-challenged piglets and whether the AMP-activated protein kinase (AMPK) pathway is involved remains largely unknown. This study was conducted to investigate the effect of dietary AKG supplementation on the small intestinal water and ion homeostasis through modulating the AMPK pathway in a piglet diarrhea model. A total of 32 weaned piglets were used in a 2 × 2 factorial design; the major factors were diet (basal diet or 1% AKG diet) and challenge (Escherichia coli LPS or saline). The results showed that LPS challenge increased the diarrhea index and affected the concentrations of serum Na(+), K(+), Cl(-), glucose, and AKG and its metabolites in piglets fed the basal or AKG diet. However, the addition of AKG attenuated diarrhea incidence and reversed these serum parameter concentrations. Most AQPs (e.g., AQP1, AQP3, AQP4, AQP5, AQP8, AQP10, and AQP11) and ion transporters (NHE3, ENaC, and DRA/PAT1) were widely distributed in the duodenum and jejunum of piglets. We also found that AKG up-regulated the expression of intestinal epithelial AQPs while inhibiting the expression of ion transporters. LPS challenge decreased (P < 0.05) the gene and protein expression of the AMPK pathway (AMPKα1, AMPKα2, SIRT1, PGC-1α, ACC, and TORC2) in the jejunum and ileum. Notably, AKG supplementation enhanced the abundance of these proteins in the LPS-challenged piglets. Collectively, AKG plays an important role in increasing water and ion homeostasis through modulating the AMPK pathway. Our novel finding has important implications for the prevention and treatment of gut dysfunction in neonates.

  17. Cloning and characterization of a zebrafish homologue of human AQP1: a bifunctional water and gas channel

    PubMed Central

    Chen, Li-Ming; Zhao, Jinhua; Musa-Aziz, Raif; Pelletier, Marc F.; Drummond, Iain A.

    2010-01-01

    The mammalian aquaporins AQP1, AQP4, and AQP5 have been shown to function not only as water channels but also as gas channels. Zebrafish have two genes encoding an AQP1 homologue, aqp1a and aqp1b. In the present study, we cloned the cDNA that encodes the zebrafish protein Aqp1a from the 72-h postfertilization (hpf) embryo of Danio rerio, as well as from the swim bladder of the adult. The deduced amino-acid sequence of aqp1a consists of 260 amino acids and is 59% identical to human AQP1. By analyzing the genomic DNA sequence, we identified four exons in the aqp1a gene. By in situ hybridization, aqp1a is expressed transiently in the developing vasculature and in erythrocytes from 16 to 48 h of development. Later, at 72 hpf, aqp1a is expressed in dermal ionocytes and in the swim bladder. Western blot analysis of adult tissues reveals that Aqp1a is most highly expressed in the eye and swim bladder. Xenopus oocytes expressing aqp1a have a channel-dependent (*) osmotic water permeability (Pf*) that is indistinguishable from that of human AQP1. On the basis of the magnitude of the transient change in surface pH (ΔpHS) that were recorded as the oocytes were exposed to either CO2 or NH3, we conclude that zebrafish Aqp1a is permeable to both CO2 and NH3. The ratio (ΔpHS*)CO2/Pf* is about half that of human AQP1, and the ratio (ΔpHS*)NH3/Pf* is about one-quarter that of human AQP1. Thus, compared with human AQP1, zebrafish Aqp1a has about twice the selectivity for CO2 over NH3. PMID:20739606

  18. Expression of the Astrocyte Water Channel Aquaporin-4 in the Mouse Brain.

    PubMed

    Hubbard, Jacqueline A; Hsu, Mike S; Seldin, Marcus M; Binder, Devin K

    2015-01-01

    Aquaporin-4 (AQP4) is a bidirectional water channel that is found on astrocytes throughout the central nervous system. Expression is particularly high around areas in contact with cerebrospinal fluid, suggesting that AQP4 plays a role in fluid exchange between the cerebrospinal fluid compartments and the brain. Despite its significant role in the brain, the overall spatial and region-specific distribution of AQP4 has yet to be fully characterized. In this study, we used Western blotting and immunohistochemical techniques to characterize AQP4 expression and localization throughout the mouse brain. We observed AQP4 expression throughout the forebrain, subcortical areas, and brainstem. AQP4 protein levels were highest in the cerebellum with lower expression in the cortex and hippocampus. We found that AQP4 immunoreactivity was profuse on glial cells bordering ventricles, blood vessels, and subarachnoid space. Throughout the brain, AQP4 was expressed on astrocytic end-feet surrounding blood vessels but was also heterogeneously expressed in brain tissue parenchyma and neuropil, often with striking laminar specificity. In the cerebellum, we showed that AQP4 colocalized with the proteoglycan brevican, which is synthesized by and expressed on cerebellar astrocytes. Despite the high abundance of AQP4 in the cerebellum, its functional significance has yet to be investigated. Given the known role of AQP4 in synaptic plasticity in the hippocampus, the widespread and region-specific expression pattern of AQP4 suggests involvement not only in fluid balance and ion homeostasis but also local synaptic plasticity and function in distinct brain circuits.

  19. Protein kinase A-regulated membrane trafficking of a green fluorescent protein-aquaporin 5 chimera in MDCK cells.

    PubMed

    Kosugi-Tanaka, Chisato; Li, Xuefei; Yao, Chenjuan; Akamatsu, Tetsuya; Kanamori, Norio; Hosoi, Kazuo

    2006-04-01

    The green fluorescent protein (GFP) of the jellyfish, Aeqorea victoria, was used as an autofluorescent tag to track the trafficking of aquaporin 5 (AQP5), an exocrine gland-type water channel. Two groups of chimeric proteins were constructed; one in which GFP was fused to the amino-terminus of AQP5 (GFP-AQP5) and the other, in which it was fused to the carboxyl terminus of it (AQP5-GFP). In each group, 2 chimeras were produced, a wild-type AQP5 with its normal sequence and a mutant AQP5 having a mutated amino acid at 259, i.e., GFP-AQP5-T259A and AQP5-GFP-T259A. They were used to transfect Madin-Darby canine kidney (MDCK) cells. The GFP-AQP5 chimera was localized in the intracellular vesicles, which trafficked to the plasma membrane in response to N(6), 2'-O-dibutyryladenosine 3', 5'-cyclic monophosphate (dbcAMP). Membrane trafficking was inhibited by N-[2-(p-bromocinnamylamino)ethyl]-5-isoquimolinesulfonamide (H-89) but not by palmitoyl-dl-carnitine chloride (PCC). In contrast, the AQP5-GFP chimera expressed in MDCK cells was localized constitutively on the plasma membrane. The cellular localization of the latter chimera was not affected by stimulation with dbcAMP in the presence or absence of H-89 or PCC. Replacement of Thr-259 with Ala-259 did not affect the dbcAMP-induced translocation of the chimeric protein, suggesting that phosphorylation of Thr-259 was not necessary for AQP5 trafficking under the present experimental conditions. Thus, the GFP-AQP5 chimera will be a useful tool to study AQP5 trafficking in vitro, whereas the constitutive membrane localization of the AQP5-GFP chimera suggests the importance of the carboxyl terminus of the AQP5 protein for its sorting, whether it is translocated to intracellular vesicles or to the plasma membrane.

  20. Characterization of Aquaporin 4 Protein Expression and Localization in Tissues of the Dogfish (Squalus acanthias)

    PubMed Central

    Cutler, Christopher P.; Harmon, Sheena; Walsh, Jonathon; Burch, Kia

    2012-01-01

    The role of aquaporin water channels such as aquaporin 4 (Aqp4) in elasmobranchs such as the dogfish Squalus acanthias is completely unknown. This investigation set out to determine the expression and cellular and sub-cellular localization of Aqp4 protein in dogfish tissues. Two polyclonal antibodies were generated (AQP4/1 and AQP4/2) and these showed somewhat different characteristics in Western blotting and immunohistochemistry. Western blots using the AQP4/1 antibody showed two bands (35.5 and 49.5 kDa) in most tissues in a similar fashion to mammals. Liver had an additional band of 57 kDa and rectal gland two further faint bands of 37.5 and 38.5 kDa. However, unlike in mammals, Aqp4 protein was ubiquitously expressed in all tissues including gill and liver. The AQP4/2 antibody appeared much less specific in Western blots. Both antibodies were used in immunohistochemistry and showed similar cellular localizations, although the AQP4/2 antibody had a more restricted sub-cellular distribution compared to AQP4/1 and therefore appeared to be more specific for Aqp4. In kidney a sub-set of tubules were stained which may represent intermediate tubule segments (In-III–In-VI). AQP4/1 and AQP4/2 antibodies localized to the same tubules segments in serial sections although the intensity and sub-cellular distribution were different. AQP4/2 showed a basal or basolateral membrane distribution whereas AQP4/1 was often distributed throughout the whole cell including the nuclear region. In rectal gland and cardiac stomach Aqp4 was localized to secretory tubules but again AQP/1 and AQP/2 exhibited different sub-cellular distributions. In gill, both antibodies stained large cells in the primary filament and secondary lamellae. Again AQP4/1 antibody stained most or all the cell including the nucleus, whereas AQP4/2 had a plasma membrane or plasma membrane and cytoplasmic distribution. Two types of large mitochondrial rich transport cells are known to exist in elasmobranchs

  1. Characterization of Aquaporin 4 Protein Expression and Localization in Tissues of the Dogfish (Squalus acanthias).

    PubMed

    Cutler, Christopher P; Harmon, Sheena; Walsh, Jonathon; Burch, Kia

    2012-01-01

    The role of aquaporin water channels such as aquaporin 4 (Aqp4) in elasmobranchs such as the dogfish Squalus acanthias is completely unknown. This investigation set out to determine the expression and cellular and sub-cellular localization of Aqp4 protein in dogfish tissues. Two polyclonal antibodies were generated (AQP4/1 and AQP4/2) and these showed somewhat different characteristics in Western blotting and immunohistochemistry. Western blots using the AQP4/1 antibody showed two bands (35.5 and 49.5 kDa) in most tissues in a similar fashion to mammals. Liver had an additional band of 57 kDa and rectal gland two further faint bands of 37.5 and 38.5 kDa. However, unlike in mammals, Aqp4 protein was ubiquitously expressed in all tissues including gill and liver. The AQP4/2 antibody appeared much less specific in Western blots. Both antibodies were used in immunohistochemistry and showed similar cellular localizations, although the AQP4/2 antibody had a more restricted sub-cellular distribution compared to AQP4/1 and therefore appeared to be more specific for Aqp4. In kidney a sub-set of tubules were stained which may represent intermediate tubule segments (In-III-In-VI). AQP4/1 and AQP4/2 antibodies localized to the same tubules segments in serial sections although the intensity and sub-cellular distribution were different. AQP4/2 showed a basal or basolateral membrane distribution whereas AQP4/1 was often distributed throughout the whole cell including the nuclear region. In rectal gland and cardiac stomach Aqp4 was localized to secretory tubules but again AQP/1 and AQP/2 exhibited different sub-cellular distributions. In gill, both antibodies stained large cells in the primary filament and secondary lamellae. Again AQP4/1 antibody stained most or all the cell including the nucleus, whereas AQP4/2 had a plasma membrane or plasma membrane and cytoplasmic distribution. Two types of large mitochondrial rich transport cells are known to exist in elasmobranchs

  2. Aquaporin-4 orthogonal arrays of particles are the target for neuromyelitis optica autoantibodies.

    PubMed

    Nicchia, Grazia Paola; Mastrototaro, Mauro; Rossi, Andrea; Pisani, Francesco; Tortorella, Carla; Ruggieri, Maddalena; Lia, Anna; Trojano, Maria; Frigeri, Antonio; Svelto, Maria

    2009-10-01

    Neuromyelitis optica (NMO) is an inflammatory autoimmune demyelinating disease of the central nervous system (CNS) which in autoantibodies produced by patients with NMO (NMO-IgG) recognize a glial water channel protein, Aquaporin-4 (AQP4) expressed as two major isoforms, M1- and M23-AQP4, in which the plasma membrane form orthogonal arrays of particles (OAPs). AQP4-M23 is the OAP-forming isoform, whereas AQP4-M1 alone is unable to form OAPs. The function of AQP4 organization into OAPs in normal physiology is unknown; however, alteration in OAP assemblies is reported for several CNS pathological states. In this study, we demonstrate that in the CNS, NMO-IgG is able to pull down both M1- and M23-AQP4 but experiments performed using cells selectively transfected with M1- or M23-AQP4 and native tissues show NMO-IgG epitope to be intrinsic in AQP4 assemblies into OAPs. Other OAP-forming water-channel proteins, such as the lens Aquaporin-0 and the insect Aquaporin-cic, were not recognized by NMO-IgG, indicating an epitope characteristic of AQP4-OAPs. Finally, water transport measurements show that NMO-IgG treatment does not significantly affect AQP4 function. In conclusion, our results suggest for the first time that OAP assemblies are required for NMO-IgG to recognize AQP4.

  3. Effects of Aquaporin 4 Knockdown on Brain Edema of the Uninjured Side After Traumatic Brain Injury in Rats

    PubMed Central

    Chen, Jian-Qiang; Zhang, Cheng-Cheng; Jiang, Sheng-Nan; Lu, Hong; Wang, Wei

    2016-01-01

    Background Traumatic brain injury (TBI) induces edema on the uninjured side (i.e., contralateral brain tissue; CBT). We evaluated the role of AQP4 in CBT edema formation following TBI. Material/Methods Mild or severe TBI was induced using a controlled cortical impact model in rats, immediately followed by intraventricular siRNA infusions. The effects of AQP4 siRNA on CBT edema were assessed at up to 168 h. Results Mild or severe TBI induced different patterns of CBT edema. Furthermore, following mild TBI, brain water content (BWC) was increased at 72 h thereafter and AQP4 expression was increased after 168 h, relative to non-injured rats (i.e., sham). AQP4 interference reduced AQP4 expression 48 h thereafter and BWC 72 h thereafter, relative to control siRNA. In contrast, following severe TBI, BWC was increased 1 h thereafter and AQP4 expression was transiently enhanced after 1 h, relative to sham. However, AQP4 interference reduced AQP4 expression after 1 h and BWC 24 h thereafter, relative to control siRNA. Finally, apparent diffusion coefficient (ADC) value in CBT was positively correlated with AQP4 expression level following severe, but not mild, TBI. AQP4 interference disrupted this correlation. Conclusions AQP4 interference reduces CBT edema formation, and ADC value may predict TBI severity. PMID:27930615

  4. Aquaporin-4 Regulates the Velocity and Frequency of Cortical Spreading Depression in Mice

    PubMed Central

    Yao, Xiaoming; Smith, Alex J.; Jin, Byung-Ju; Zador, Zsolt; Manley, Geoffrey T.; Verkman, A.S.

    2016-01-01

    The astrocyte water channel aquaporin-4 (AQP4) regulates extracellular space (ECS) K+ concentration ([K+]e) and volume dynamics following neuronal activation. Here, we investigated how AQP4-mediated changes in [K+]e and ECS volume affect the velocity, frequency and amplitude of cortical spreading depression (CSD) depolarizations produced by surface KCl application in wild-type (AQP4+/+) and AQP4-deficient (AQP4−/−) mice. Contrary to initial expectations, both the velocity and frequency of CSD were significantly reduced in AQP4−/− mice when compared to AQP4+/+ mice, by 22% and 32%, respectively. Measurement of [K+]e with K+-selective microelectrodes demonstrated an increase to ~35 mM during spreading depolarizations in both AQP4+/+ and AQP4−/− mice, but the rates of [K+]e increase (3.5 vs. 1.5 mM/s) and reuptake (t1/2 33 vs. 61 s) were significantly reduced in AQP4−/− mice. ECS volume fraction measured by trimethylammonium iontophoresis was greatly reduced during depolarizations from 0.18 to 0.053 in AQP4+/+ mice, and 0.23 to 0.063 in AQP4−/− mice. Analysis of the experimental data using a mathematical model of CSD propagation suggested that the reduced velocity of CSD depolarizations in AQP4−/− mice was primarily a consequence of the slowed increase in [K+]e during neuronal depolarization. These results demonstrate that AQP4 effects on [K+]e and ECS volume dynamics accelerate CSD propagation. PMID:25944186

  5. The Role of Astrocytic Aquaporin-4 in Synaptic Plasticity and Learning and Memory

    PubMed Central

    Szu, Jenny I.; Binder, Devin K.

    2016-01-01

    Aquaporin-4 (AQP4) is the predominant water channel expressed by astrocytes in the central nervous system (CNS). AQP4 is widely expressed throughout the brain, especially at the blood-brain barrier where AQP4 is highly polarized to astrocytic foot processes in contact with blood vessels. The bidirectional water transport function of AQP4 suggests its role in cerebral water balance in the CNS. The regulation of AQP4 has been extensively investigated in various neuropathological conditions such as cerebral edema, epilepsy, and ischemia, however, the functional role of AQP4 in synaptic plasticity, learning, and memory is only beginning to be elucidated. In this review, we explore the current literature on AQP4 and its influence on long term potentiation (LTP) and long term depression (LTD) in the hippocampus as well as the potential relationship between AQP4 and in learning and memory. We begin by discussing recent in vitro and in vivo studies using AQP4-null and wild-type mice, in particular, the impairment of LTP and LTD observed in the hippocampus. Early evidence using AQP4-null mice have suggested that impaired LTP and LTD is brain-derived neurotrophic factor dependent. Others have indicated a possible link between defective LTP and the downregulation of glutamate transporter-1 which is rescued by chronic treatment of β-lactam antibiotic ceftriaxone. Furthermore, behavioral studies may shed some light into the functional role of AQP4 in learning and memory. AQP4-null mice performances utilizing Morris water maze, object placement tests, and contextual fear conditioning proposed a specific role of AQP4 in memory consolidation. All together, these studies highlight the potential influence AQP4 may have on long term synaptic plasticity and memory. PMID:26941623

  6. Aquaporin-4: orthogonal array assembly, CNS functions, and role in neuromyelitis optica.

    PubMed

    Verkman, Alan S; Ratelade, Julien; Rossi, Andrea; Zhang, Hua; Tradtrantip, Lukmanee

    2011-06-01

    Aquaporin-4 (AQP4) is a water-selective transporter expressed in astrocytes throughout the central nervous system, as well as in kidney, lung, stomach and skeletal muscle. The two AQP4 isoforms produced by alternative spicing, M1 and M23 AQP4, form heterotetramers that assemble in cell plasma membranes in supramolecular structures called orthogonal arrays of particles (OAPs). Phenotype analysis of AQP4-null mice indicates the involvement of AQP4 in brain and spinal cord water balance, astrocyte migration, neural signal transduction and neuroinflammation. AQP4-null mice manifest reduced brain swelling in cytotoxic cerebral edema, but increased brain swelling in vasogenic edema and hydrocephalus. AQP4 deficiency also increases seizure duration, impairs glial scarring, and reduces the severity of autoimmune neuroinflammation. Each of these phenotypes is likely explicable on the basis of reduced astrocyte water permeability in AQP4 deficiency. AQP4 is also involved in the neuroinflammatory demyelinating disease neuromyelitis optica (NMO), where autoantibodies (NMO-IgG) targeting AQP4 produce astrocyte damage and inflammation. Mice administered NMO-IgG and human complement by intracerebral injection develop characteristic NMO lesions with neuroinflammation, demyelination, perivascular complement deposition and loss of glial fibrillary acidic protein and AQP4 immunoreactivity. Our findings suggest the potential utility of AQP4-based therapeutics, including small-molecule modulators of AQP4 water transport function for therapy of brain swelling, injury and epilepsy, as well as small-molecule or monoclonal antibody blockers of NMO-IgG binding to AQP4 for therapy of NMO.

  7. Aquaporin-4: orthogonal array assembly, CNS functions, and role in neuromyelitis optica

    PubMed Central

    Verkman, Alan S; Ratelade, Julien; Rossi, Andrea; Zhang, Hua; Tradtrantip, Lukmanee

    2011-01-01

    Aquaporin-4 (AQP4) is a water-selective transporter expressed in astrocytes throughout the central nervous system, as well as in kidney, lung, stomach and skeletal muscle. The two AQP4 isoforms produced by alternative spicing, M1 and M23 AQP4, form heterotetramers that assemble in cell plasma membranes in supramolecular structures called orthogonal arrays of particles (OAPs). Phenotype analysis of AQP4-null mice indicates the involvement of AQP4 in brain and spinal cord water balance, astrocyte migration, neural signal transduction and neuroinflammation. AQP4-null mice manifest reduced brain swelling in cytotoxic cerebral edema, but increased brain swelling in vasogenic edema and hydrocephalus. AQP4 deficiency also increases seizure duration, impairs glial scarring, and reduces the severity of autoimmune neuroinflammation. Each of these phenotypes is likely explicable on the basis of reduced astrocyte water permeability in AQP4 deficiency. AQP4 is also involved in the neuroinflammatory demyelinating disease neuromyelitis optica (NMO), where autoantibodies (NMO-IgG) targeting AQP4 produce astrocyte damage and inflammation. Mice administered NMO-IgG and human complement by intracerebral injection develop characteristic NMO lesions with neuroinflammation, demyelination, perivascular complement deposition and loss of glial fibrillary acidic protein and AQP4 immunoreactivity. Our findings suggest the potential utility of AQP4-based therapeutics, including small-molecule modulators of AQP4 water transport function for therapy of brain swelling, injury and epilepsy, as well as small-molecule or monoclonal antibody blockers of NMO-IgG binding to AQP4 for therapy of NMO. PMID:21552296

  8. Aquaporin-4 expression is severely reduced in human sarcoglycanopathies and dysferlinopathies.

    PubMed

    Assereto, Stefania; Mastrototaro, Mauro; Stringara, Silvia; Gazzerro, Elisabetta; Broda, Paolo; Nicchia, Grazia Paola; Svelto, Maria; Bruno, Claudio; Nigro, Vincenzo; Lisanti, M P; Frigeri, Antonio; Minetti, Carlo

    2008-07-15

    Aquaporin-4 (AQP4) is the major water channel expressed in fast-twitch skeletal muscle fibers. AQP4 is reduced in Duchenne and Becker Muscular Dystrophies, but not in caveolinopathies, thus suggesting an interaction with dystrophin or with members of the dystrophin-glycoprotein complex (DGC) rather than a nonspecific effect due to muscle membrane damage. To establish the role of sarcoglycans in AQP4 decrease occurring in muscular dystrophy, AQP4 expression was analyzed in muscle biopsies from patients affected by Limb Girdle Muscular Dystrophies (LGMDs) 2C-F genetically confirmed. In all the LGMD 2C-F (2alpha-, 1beta-, 2gamma-, 1delta-deficiency), AQP4 was severely decreased. This effect was associated to a marked reduction in alpha1-syntrophin levels. In control muscle AQP4 did not show a direct interaction with any of the four sarcoglycans but, it co-immunoprecipitated with alpha1-syntrophin, indicating that this modular protein may link AQP4 levels with the DGC complex. To determine whether AQP4 expression could be affected in other LGMDs due to the defect of a membrane protein not associated to the dystrophin complex, we examined AQP4 expression in 6 patients affected by dysferlin deficiency genetically confirmed. All the patients displayed a reduction of the water channel, and AQP4 expression appeared to correlate with the severity of the muscle histopathological lesions. However, differently from what observed in the sarcoglycans, alpha1-syntrophin expression was normal or just slightly reduced. These results seem to indicate an additional mechanism of regulation of AQP4 levels in muscle cells. In accordance with a specific effect of membrane muscle disorders, AQP4 protein levels were not changed in 3 mitochondrial and 3 metabolic myopathies. In conclusion, AQP4 expression and membrane localization are markedly reduced in LGMD 2B-2F. The role of AQP4 in the degenerative mechanism occurring in these diseases will be the object of our future research.

  9. Acute and Chronic Changes in Aquaporin 4 Expression After Spinal Cord Injury

    PubMed Central

    Nesic, Olivera; Lee, Julieann; Ye, Zaiming; Unabia, Geda C.; Rafati, Danny; Hulsebosch, Claire E.; Perez-Polo, J. Regino

    2007-01-01

    The effect of spinal cord injury (SCI) on the expression levels and distribution of water channel aquaporin 4 (AQP4) has not been studied. We have found AQP4 in gray and white matter astrocytes in both uninjured and injured rat spinal cords. AQP4 was detected in astrocytic processes that were tightly surrounding neurons and blood vessels, but more robustly in glia limitans externa and interna, which were forming an interface between spinal cord parenchyma and cerebrospinal fluid (CSF). Such spatial distribution of AQP4 suggests a critical role that astrocytes expressing AQP4 play in the transport of water from blood/CSF to spinal cord parenchyma and vice versa. SCI induced biphasic changes in astrocytic AQP4 levels, including its early down-regulation and subsequent persistent up-regulation. However, changes in AQP4 expression did not correlate well with the onset and magnitude of astrocytic activation, when measured as changes in GFAP expression levels. It appears that reactive astrocytes began expressing increased levels of AQP4 after migrating to the wound area (thoracic region) two weeks after SCI, and AQP4 remained significantly elevated for months after SCI. We also showed that increased levels of AQP4 spread away from the lesion site to cervical and lumbar segments, but only in chronically injured spinal cords. Although overall AQP4 expression levels increased in chronically-injured spinal cords, AQP4 immunolabeling in astrocytic processes forming glia limitans externa was decreased, which may indicate impaired water transport through glia limitans externa. Finally, we also showed that SCI-induced changes in AQP4 protein levels correlate, both temporally and spatially, with persistent increases in water content in acutely and chronically injured spinal cords. Although correlative, this finding suggests a possible link between AQP4 and impaired water transport/edema/syringomyelia in contused spinal cords. PMID:17074445

  10. Tolerance checkpoint bypass permits emergence of pathogenic T cells to neuromyelitis optica autoantigen aquaporin-4

    PubMed Central

    Sagan, Sharon A.; Winger, Ryan C.; Cruz-Herranz, Andrés; Nelson, Patricia A.; Hagberg, Sarah; Miller, Corey N.; Spencer, Collin M.; Ho, Peggy P.; Bennett, Jeffrey L.; Levy, Michael; Levin, Marc H.; Verkman, Alan S.; Steinman, Lawrence; Green, Ari J.; Anderson, Mark S.; Sobel, Raymond A.; Zamvil, Scott S.

    2016-01-01

    Aquaporin-4 (AQP4)-specific T cells are expanded in neuromyelitis optica (NMO) patients and exhibit Th17 polarization. However, their pathogenic role in CNS autoimmune inflammatory disease is unclear. Although multiple AQP4 T-cell epitopes have been identified in WT C57BL/6 mice, we observed that neither immunization with those determinants nor transfer of donor T cells targeting them caused CNS autoimmune disease in recipient mice. In contrast, robust proliferation was observed following immunization of AQP4-deficient (AQP4−/−) mice with AQP4 peptide (p) 135–153 or p201–220, peptides predicted to contain I-Ab–restricted T-cell epitopes but not identified in WT mice. In comparison with WT mice, AQP4−/− mice used unique T-cell receptor repertoires for recognition of these two AQP4 epitopes. Donor T cells specific for either determinant from AQP4−/−, but not WT, mice induced paralysis in recipient WT and B-cell–deficient mice. AQP4-specific Th17-polarized cells induced more severe disease than Th1-polarized cells. Clinical signs were associated with opticospinal infiltrates of T cells and monocytes. Fluorescent-labeled donor T cells were detected in CNS lesions. Visual system involvement was evident by changes in optical coherence tomography. Fine mapping of AQP4 p201–220 and p135–153 epitopes identified peptides within p201–220 but not p135–153, which induced clinical disease in 40% of WT mice by direct immunization. Our results provide a foundation to evaluate how AQP4-specific T cells contribute to AQP4-targeted CNS autoimmunity (ATCA) and suggest that pathogenic AQP4-specific T-cell responses are normally restrained by central tolerance, which may be relevant to understanding development of AQP4-reactive T cells in NMO. PMID:27940915

  11. Aquaporin 5 Plays a Role in Estrogen-Induced Ectopic Implantation of Endometrial Stromal Cells in Endometriosis.

    PubMed

    Jiang, Xiu Xiu; Fei, Xiang Wei; Zhao, Li; Ye, Xiao Lei; Xin, Liao Bin; Qu, Yang; Xu, Kai Hong; Wu, Rui Jin; Lin, Jun

    2015-01-01

    Aquaporin 5 (AQP5) participates in the migration of endometrial cells. Elucidation of the molecular mechanisms associated with AQP5-mediated, migration of endometrial cells may contribute to a better understanding of endometriosis. Our objectives included identifying the estrogen-response element (ERE) in the promoter region of the AQP5 gene, and, investigating the effects of AQP5 on ectopic implantation of endometrial cells. Luciferase reporter assays and electrophoretic mobility shift assay (EMSA) identified the ERE-like motif in the promoter region of the AQP5 gene. After blocking and up-regulating estradiol (E2) levels, we analysed the expression of AQP5 in endometrial stromal (ES) cells. After blocking E2 /or phosphatidylinositol 3 kinase(PI3K), we analysed the role of AQP5 in signaling pathways. We constructed an AQP5, shRNA, lentiviral vector to knock out the AQP5 gene in ES cells. After knock-out of the AQP5 gene, we studied the role of AQP5 in cell invasion, proliferation, and the formation of ectopic endometrial implants in female mice. We identified an estrogen-response element in the promoter region of the AQP5 gene. Estradiol (E2) increased AQP5 expression in a dose-dependent fashion, that was blocked by ICI182,780(an estrogen receptor inhibitor). E2 activated PI3K /protein kinase B(AKT) pathway (PI3K/AKT), that, in turn, increased AQP5 expression. LY294002(PI3K inhibitor) attenuated estrogen-enhanced, AQP5 expression. Knock-out of the AQP5 gene with AQP5 shRNA lentiviral vector significantly inhibited E2-enhanced invasion, proliferation of ES cells and formation of ectopic implants. Estrogen induces AQP5 expression by activating ERE in the promoter region of the AQP5gene, activates the PI3K/AKT pathway, and, promotes endometrial cell invasion and proliferation. These results provide new insights into some of the mechanisms that may underpin the development of deposits of ectopic endometrium.

  12. Aquaporin 5 Plays a Role in Estrogen-Induced Ectopic Implantation of Endometrial Stromal Cells in Endometriosis

    PubMed Central

    Jiang, Xiu Xiu; Fei, Xiang Wei; Zhao, Li; Ye, Xiao Lei; Xin, Liao Bin; Qu, Yang; Xu, Kai Hong; Wu, Rui Jin; Lin, Jun

    2015-01-01

    Aquaporin 5 (AQP5) participates in the migration of endometrial cells. Elucidation of the molecular mechanisms associated with AQP5-mediated, migration of endometrial cells may contribute to a better understanding of endometriosis. Our objectives included identifying the estrogen-response element (ERE) in the promoter region of the AQP5 gene, and, investigating the effects of AQP5 on ectopic implantation of endometrial cells. Luciferase reporter assays and electrophoretic mobility shift assay (EMSA) identified the ERE-like motif in the promoter region of the AQP5 gene. After blocking and up-regulating estradiol (E2) levels, we analysed the expression of AQP5 in endometrial stromal (ES) cells. After blocking E2 /or phosphatidylinositol 3 kinase(PI3K), we analysed the role of AQP5 in signaling pathways. We constructed an AQP5, shRNA, lentiviral vector to knock out the AQP5 gene in ES cells. After knock-out of the AQP5 gene, we studied the role of AQP5 in cell invasion, proliferation, and the formation of ectopic endometrial implants in female mice. We identified an estrogen-response element in the promoter region of the AQP5 gene. Estradiol (E2) increased AQP5 expression in a dose-dependent fashion, that was blocked by ICI182,780(an estrogen receptor inhibitor). E2 activated PI3K /protein kinase B(AKT) pathway (PI3K/AKT), that, in turn, increased AQP5 expression. LY294002(PI3K inhibitor) attenuated estrogen-enhanced, AQP5 expression. Knock-out of the AQP5 gene with AQP5 shRNA lentiviral vector significantly inhibited E2-enhanced invasion, proliferation of ES cells and formation of ectopic implants. Estrogen induces AQP5 expression by activating ERE in the promoter region of the AQP5gene, activates the PI3K/AKT pathway, and, promotes endometrial cell invasion and proliferation. These results provide new insights into some of the mechanisms that may underpin the development of deposits of ectopic endometrium. PMID:26679484

  13. Improved long-term outcome after transient cerebral ischemia in aquaporin-4 knockout mice.

    PubMed

    Hirt, Lorenz; Fukuda, Andrew M; Ambadipudi, Kamalakar; Rashid, Faisil; Binder, Devin; Verkman, Alan; Ashwal, Stephen; Obenaus, Andre; Badaut, Jerome

    2017-01-01

    A hallmark of stroke is water accumulation (edema) resulting from dysregulation of osmotic homeostasis. Brain edema contributes to tissue demise and may lead to increased intracranial pressure and lethal herniation. Currently, there are only limited treatments to prevent edema formation following stroke. Aquaporin 4 (AQP4), a brain water channel, has become a focus of interest for therapeutic approaches targeting edema. At present, there are no pharmacological tools to block AQP4. The role of AQP4 in edema after brain injury remains unclear with conflicting results from studies using AQP4(-/-) mice and of AQP4 expression following stroke. Here, we studied AQP4 and its role in edema formation by testing AQP4(-/-) mice in a model of middle cerebral artery occlusion using novel quantitative MRI water content measurements, histology and behavioral changes as outcome measures. Absence of AQP4 was associated with decreased mortality and increased motor recovery 3 to 14 days after stroke. Behavioral improvement was associated with decreased lesion volume, neuronal cell death and neuroinflammation in AQP4(-/-) compared to wild type mice. Our data suggest that the lack of AQP4 confers an overall beneficial role at long term with improved neuronal survival and reduced neuroinflammation, but without a direct effect on edema formation. © The Author(s) 2016.

  14. Aquaporin-4 expression contributes to decreases in brain water content during mouse postnatal development.

    PubMed

    Li, Xiumiao; Gao, Junying; Ding, Jiong; Hu, Gang; Xiao, Ming

    2013-05-01

    The water channel protein aquaporin-4 (AQP4) is implicated to facilitate water efflux from the brain parenchyma into the blood and CSF, playing a critical role in maintaining brain water homeostasis. Nevertheless, its contribution to decreases in brain water content during postnatal development remains unknown. A quantitative Western blot analysis was performed to investigate developmental expression of AQP4 in the whole mouse brain and showed that AQP4 expression level in 1 week-old brain was only 21.3% of that in the adult brain, but significantly increased to 67.4% of the adult level by 2 weeks after birth. Statistical analysis demonstrated that increased AQP4 expression partially relates to decreased brain water content in postnatal mice (r(2)=0.92 and P=0.002). Moreover, AQP4 null mice had greater brain water content than littermate controls from 2 weeks up to adult age. Consistently, mature pattern of AQP4 localization at the brain-blood and brain-CSF interfaces were completed at approximately at 2 weeks after birth. In addition, AQP4 expression in the brain stem and hypothalamus was earlier than that in the cerebral cortex and cerebellum, suggesting a brain regional variation in developmental expression of AQP4. These results characterize the developmental feature of AQP4 expression in the postnatal brain and provide direct evidence for a role of AQP4 in postnatal brain water uptake.

  15. Absence of aquaporin-4 water channels from kidneys of the desert rodent Dipodomys merriami merriami.

    PubMed

    Huang, Y; Tracy, R; Walsberg, G E; Makkinje, A; Fang, P; Brown, D; Van Hoek, A N

    2001-05-01

    Recently, we found that aquaporin-4 (AQP4) is expressed in the S3 segment of renal proximal tubules of mice but not in rat proximal tubules. Because mice have relatively larger papillae than rats, it was proposed that the renal distribution of AQP4 in various species could be related to their maximum urinary concentrating ability. Therefore, kidneys and other tissues of Merriam's desert kangaroo rat, Dipodomys merriami merriami, which produce extremely concentrated urine (up to 5,000 mosmol/kgH(2)O), were examined for AQP4 expression and localization. Contrary to our expectation, AQP4 immunostaining was undetectable in any region of the kidney, and the absence of AQP4 protein was confirmed by Western blotting. By freeze fracture electron microscopy, orthogonal arrays of intramembraneous particles (OAPs) were not detectable in plasma membranes of principal cells and proximal tubules. However, AQP4 protein was readily detectable in gastric parietal and brain astroglial cells. Northern blotting failed to detect AQP4 mRNA in kangaroo rat kidneys, whereas both in situ hybridization and RT-PCR experiments did reveal AQP4 mRNA in collecting ducts and proximal tubules of the S3 segment. These results suggest that renal expression of AQP4 in the kangaroo rat kidney is regulated at the transcriptional or translational level, and the absence of AQP4 may be critical for the extreme urinary concentration that occurs in this species.

  16. OPTIC NEURITIS IN NEUROMYELITIS OPTICA

    PubMed Central

    Levin, Marc H.; Bennett, Jeffrey L.; Verkman, A.S.

    2013-01-01

    Neuromyelitis optica (NMO) is an autoimmune demyelinating disease associated with recurrent episodes of optic neuritis and transverse myelitis, often resulting in permanent blindness and/or paralysis. The discovery of autoantibodies (AQP4-IgG) that target aquaporin-4 (AQP4) has accelerated our understanding of the cellular mechanisms driving NMO pathogenesis. AQP4 is a bidirectional water channel expressed on the plasma membranes of astrocytes, retinal Müller cells, skeletal muscle, and some epithelial cells in kidney, lung and the gastrointestinal tract. AQP4 tetramers form regular supramolecular assemblies at the cell plasma membrane called orthogonal arrays of particles. The pathological features of NMO include perivascular deposition of immunoglobulin and activated complement, loss of astrocytic AQP4, inflammatory infiltration with granulocyte and macrophage accumulation, and demyelination with axon loss. Current evidence supports a causative role of AQP4-IgG in NMO, in which binding of AQP4-IgG to AQP4 orthogonal arrays on astrocytes initiates complement-dependent and antibody-dependent cell-mediated cytotoxicity and inflammation. Immunosuppression and plasma exchange are the mainstays of therapy for NMO optic neuritis. Novel therapeutics targeting specific steps in NMO pathogenesis are entering the development pipeline, including blockers of AQP4-IgG binding to AQP4 and inhibitors of granulocyte function. However, much work remains in understanding the unique susceptibility of the optic nerves in NMO, in developing animal models of NMO optic neuritis, and in improving therapies to preserve vision. PMID:23545439

  17. Distribution of aquaporin 4 on sarcolemma of fast-twitch skeletal myofibres.

    PubMed

    Kaakinen, Mika; Salmela, Paula; Zelenin, Sergey; Metsikkö, Kalervo

    2007-09-01

    The aquaporin 4 (AQP4) water channel is present on the sarcolemma of fast-twitch-type skeletal myofibres. We have examined the distribution of AQP4 in relation to sarcolemmal domain structure and found that AQP4 protein is not evenly distributed on the sarcolemma. Immunofluorescence staining of isolated single myofibres indicated a punctate staining pattern overlapping with the dystrophin glycoprotein complex, but with the transverse tubule openings being left clear. Myotendinous and neuromuscular junctions also lacked AQP4, despite their high content of the dystrophin glycoprotein complex. The destruction of caveoli with methyl-beta-cyclodextrin did not change the distribution of AQP4 at the sarcolemma. Moreover, AQP4 did not float with the caveolar marker caveolin-3 in sucrose gradients after Triton X-100 extraction at 4 degrees C. These data indicated that AQP4 was not associated with caveoli. Surprisingly, m. flexor digitorum brevis fibres, although of the fast-twitch type, often lacked AQP4. Furthermore, those fibres harbouring AQP4 at the sarcolemma showed a regionalized distribution, suggesting that large areas were devoid of the protein. Blockage of the synthesized proteins in the endoplasmic reticulum with brefeldin A showed that, in spite of its regionalized sarcolemmal distribution, AQP4 was synthesized along the entire length of the fibres. These results suggest functional differences in the water permeability of the sarcolemma not only between the fast-twitch muscles, but also within single muscle fibres.

  18. Immunohistochemical evalulation of activated Ras and Rac1 as potential downstream effectors of aquaporin-5 in breast cancer in vivo.

    PubMed

    Jensen, Helene H; Login, Frédéric H; Park, Ji-Young; Kwon, Tae-Hwan; Nejsum, Lene N

    2017-09-25

    Aberrant levels of aquaporin-5 (AQP5) expression have been observed in several types of cancer, including breast cancer, where AQP5 overexpression is associated with metastasis and poor prognosis. In cultured cancer cells, AQP5 facilitates cell migration and activates Ras signaling. Both increased cell migration and Ras activation are associated with cancer metastasis, but so far it is unknown if AQP5 also affects these processes in vivo. Therefore, we investigated if high AQP5 expression in breast cancer tissue correlated with increased activation of Ras and of Rac1, which is a GTPase also involved in cell migration. This was accomplished by immunohistochemical analysis of invasive ductal carcinoma of breast tissue sections from human patients, followed by qualitative and quantitative correlation analysis between AQP5 and activated Ras and Rac1. Immunohistochemistry revealed that activation of Ras and Rac1 was positively correlated. There was, however, no correlation between high AQP5 expression and activation of Ras, whereas a nonsignificant, but positive, tendency between the levels of AQP5 and activated Rac1 levels was observed. In summary, this is the first report that correlates AQP5 expression levels to downstream signaling partners in breast cancer tissue sections. The results suggest Rac1 as a potential downstream signaling partner of AQP5 in vivo. Copyright © 2017. Published by Elsevier Inc.

  19. Rat Aquaporin-5 Is pH-Gated Induced by Phosphorylation and Is Implicated in Oxidative Stress

    PubMed Central

    Rodrigues, Claudia; Mósca, Andreia Filipa; Martins, Ana Paula; Nobre, Tatiana; Prista, Catarina; Antunes, Fernando; Cipak Gasparovic, Ana; Soveral, Graça

    2016-01-01

    Aquaporin-5 (AQP5) is a membrane water channel widely distributed in human tissues that was found up-regulated in different tumors and considered implicated in carcinogenesis in different organs and systems. Despite its wide distribution pattern and physiological importance, AQP5 short-term regulation was not reported and mechanisms underlying its involvement in cancer are not well defined. In this work, we expressed rat AQP5 in yeast and investigated mechanisms of gating, as well as AQP5’s ability to facilitate H2O2 plasma membrane diffusion. We found that AQP5 can be gated by extracellular pH in a phosphorylation-dependent manner, with higher activity at physiological pH 7.4. Moreover, similar to other mammalian AQPs, AQP5 is able to increase extracellular H2O2 influx and to affect oxidative cell response with dual effects: whereas in acute oxidative stress conditions AQP5 induces an initial higher sensitivity, in chronic stress AQP5 expressing cells show improved cell survival and resistance. Our findings support the involvement of AQP5 in oxidative stress and suggest AQP5 modulation by phosphorylation as a novel tool for therapeutics. PMID:27983600

  20. Role of aquaporin-5 in gallbladder carcinoma.

    PubMed

    Sekine, S; Shimada, Y; Nagata, T; Sawada, S; Yoshioka, I; Matsui, K; Moriyama, M; Omura, T; Osawa, S; Shibuya, K; Hashimoto, I; Watanabe, T; Hojo, S; Hori, R; Okumura, T; Yoshida, T; Tsukada, K

    2013-01-01

    Aquaporins (AQPs) are important in controlling bile formation. However, the exact role in human gallbladder carcinogenesis has not yet been defined. AQP-5-expressing gallbladder carcinoma (GBC) cell lines (NOZ) were transfected with anti-AQP-5 small interfering RNA (siRNA). Growth, migration, invasion assay, and drug susceptibility tests were performed. Next, microRNA (miRNA) expression was analyzed by miRNA oligo chip (3D-Gene®). AQP-5 and AQP-5-related miRNA target gene expressions were also analyzed using tissue microarray (TMA) in 44 GBC samples. Treatment with AQP-5 siRNA decreased cell proliferation, migration, and invasion. On the other hand, those cells increased IC50 of gemcitabine. By performing miRNA assays, miR-29b, -200a, and -21 were shown to be highly overexpressed in cells treated with AQP-5 siRNA NOZ. When focusing on miR-21, phosphatase and tensin homolog (PTEN) was found to be a target of miR-21. In the TMA, AQP-5/PTEN coexpression was significantly associated with the depth of invasion and MIB-1 index (p = 0.003, 0.010). Survival of patients with a high AQP-5/PTEN coexpression was longer than that of patients with a low coexpression (p = 0.003). Our result suggested that miR-21 and PTEN may contribute to the role of AQP-5 in GBC. AQP-5 and PTEN cascades are favorable biomarkers of GBC.

  1. Verification and spatial localization of aquaporin-5 in the ocular lens.

    PubMed

    Grey, Angus C; Walker, Kerry L; Petrova, Rosica S; Han, Jun; Wilmarth, Phillip A; David, Larry L; Donaldson, Paul J; Schey, Kevin L

    2013-03-01

    Until recently, the lens was thought to express only two aquaporin (AQP) water channels, AQP1 and AQP0. In this study we confirm lenticular AQP5 protein expression by Western blotting and mass spectrometry in lenses from a variety of species. In addition, confocal microscopy was used to map cellular distributions of AQP5 in mouse, rat and human lenses. Tandem mass spectrometry of a human lens membrane preparation revealed extensive sequence coverage (56.2%) of AQP5. Western blotting performed on total fiber cell membranes from mouse, rat, bovine and human lenses confirmed AQP5 protein expression is conserved amongst species. Western blotting of dissected lens fractions suggests that AQP5 is processed in the lens core by C-terminal truncation. Immunohistochemistry showed that AQP5 signal was most abundant in the lens outer cortex and decreased in intensity in the lens core. Furthermore, AQP5 undergoes differentiation-dependent changes in subcellular location from an intracellular localization in differentiating fiber cells to the plasma membrane of mature fiber cells upon the loss of fiber cell nuclei. Our results show that AQP5 is a significant component of lens fiber cell membranes, representing the second most abundant water channel in these cells. Together, the changes to AQP5 distribution and structure are likely to modulate the functional role of AQP5 in different regions of the lens.

  2. Verification and Spatial Localization of Aquaporin-5 in the Ocular Lens

    PubMed Central

    Grey, Angus C.; Walker, Kerry L.; Petrova, Rosica S.; Han, Jun; Wilmarth, Phillip A.; David, Larry L.; Donaldson, Paul J.; Schey, Kevin L.

    2013-01-01

    Until recently, the lens was thought to express only two Aquaporin (AQP) water channels, AQP1 and AQP0. In this study we confirm lenticular AQP5 protein expression by Western blotting and mass spectrometry in lenses from a variety of species. In addition, confocal microscopy was used to map cellular distributions of AQP5 in mouse, rat and human lenses. Tandem mass spectrometry of a human lens membrane preparation revealed extensive sequence coverage (56.2%) of AQP5. Western blotting performed on total fiber cell membranes from mouse, rat, bovine and human lenses confirmed AQP5 protein expression is conserved amongst species. Western blotting of dissected lens fractions suggests that AQP5 is processed in the lens core by C-terminal truncation. Immunohistochemistry showed that AQP5 signal was most abundant in the lens outer cortex and decreased in intensity in the lens core. Furthermore, AQP5 undergoes differentiation-dependent changes in subcellular location from an intracellular localization in differentiating fiber cells to the plasma membrane of mature fiber cells upon the loss of fiber cell nuclei. Our results show that AQP5 is a significant component of lens fiber cell membranes, representing the second most abundant water channel in these cells. Together, the changes to AQP5 distribution and structure are likely to modulate the functional role of AQP5 in different regions of the lens. PMID:23313152

  3. Aquaporin-4 in brain and spinal cord oedema.

    PubMed

    Saadoun, S; Papadopoulos, M C

    2010-07-28

    Brain oedema is a major clinical problem produced by CNS diseases (e.g. stroke, brain tumour, brain abscess) and systemic diseases that secondarily affect the CNS (e.g. hyponatraemia, liver failure). The swollen brain is compressed against the surrounding dura and skull, which causes the intracranial pressure to rise, leading to brain ischaemia, herniation, and ultimately death. A water channel protein, aquaporin-4 (AQP4), is found in astrocyte foot processes (blood-brain border), the glia limitans (subarachnoid cerebrospinal fluid-brain border) and ependyma (ventricular cerebrospinal fluid-brain border). Experiments using mice lacking AQP4 or alpha syntrophin (which secondarily downregulate AQP4) showed that AQP4 facilitates oedema formation in diseases causing cytotoxic (cell swelling) oedema such as cerebral ischaemia, hyponatraemia and meningitis. In contrast, AQP4 facilitates oedema elimination in diseases causing vasogenic (vessel leak) oedema and therefore AQP4 deletion aggravates brain oedema produced by brain tumour and brain abscess. AQP4 is also important in spinal cord oedema. AQP4 deletion was associated with less cord oedema and improved outcome after compression spinal cord injury in mice. Here we consider the possible routes of oedema formation and elimination in the injured cord and speculate about the role of AQP4. Finally we discuss the role of AQP4 in neuromyelitis optica (NMO), an inflammatory demyelinating disease that produces oedema in the spinal cord and optic nerves. NMO patients have circulating AQP4 IgG autoantibody, which is now used for diagnosing NMO. We speculate how NMO-IgG might produce CNS inflammation, demyelination and oedema. Since AQP4 plays a key role in the pathogenesis of CNS oedema, we conclude that AQP4 inhibitors and activators may reduce CNS oedema in many diseases. Copyright (c) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Two distinct aquaporin-4 cDNAs isolated from medullary cone of quail kidney.

    PubMed

    Yang, Yimu; Cui, Yujun; Fan, Zheng; Cook, George A; Nishimura, Hiroko

    2007-05-01

    Water deprivation or arginine vasotocin upregulates aquaporin-2 (AQP2) expression in apical and subapical regions of medullary collecting duct (CD) cells of Coturnix coturnix quail (q) kidneys. We therefore aimed to determine whether the CD has AQPs mediating water exit from the intracellular to the extracellular (interstitial) space. Using a homologue cloning technique, we isolated two distinct qAQP4 cDNAs from quail medullary cones; long (L, open reading frames) and short (S) cDNA encoded 335 (qAQP4-L) and 301 (qAQP4-S) amino acids with, respectively, 80% and 87% identity to human long- and short-form AQP4. qAQP4-S is identical to qAQP4-L from the second initiation site. Both isoforms have two NPA motifs, but lack cysteine at the known mercury-sensitive site. qAQP4-L and qAQP4-S are expressed in membranes of Xenopus laevis oocytes, but both failed to increase the water permeability (P(f)) of oocytes exposed to a hypotonic solution. Glutamate (Q242) replacement with histidine did not increase P(f). With conventional RT-PCR and real-time PCR, qAQP4-L/S mRNA signals were detected in the brain, lung, heart, intestine, adrenal gland, skeletal muscle, liver, and kidney (higher in medulla than in cortical region). qAQP4-L mRNA was detected only in the brain and adrenal gland. Orthogonal arrays of intramembranous particles were not detected in quail CDs. The results suggest that although qAQP4-L and qAQP4-S have high homology to mammalian AQP4, their physiological function may be different.

  5. Isolated new onset 'atypical' optic neuritis in the NMO clinic: serum antibodies, prognoses and diagnoses at follow-up.

    PubMed

    Piccolo, L; Woodhall, M; Tackley, G; Juryńczyk, M; Kong, Y; Domingos, J; Gore, R; Vincent, A; Waters, P; Leite, M I; Palace, J

    2016-02-01

    Severe, recurrent or bilateral optic neuritis (ON) often falls within the neuromyelitis optica spectrum disorders (NMOSD), but the diagnosis can be particularly challenging and has important treatment implications. We report the features, course and outcomes of patients presenting with atypical ON when isolated at onset. We retrospectively analyzed 69 sequential patients referred to a single UK NMO center with isolated ON at onset. Aquaporin-4 antibody (AQP4-Ab) assessment was performed in all patients and IgG1 myelin-oligodenrocyte glycoprotein (MOG-Ab) in AQP4-Ab(neg) patients. 37 AQP4-Ab positive (AQP4-Ab(pos)) and 32 AQP4-Ab negative (AQP4-Ab(neg)) patients (8 with MOG-Ab) were identified. The AQP4-Ab(neg) group included heterogeneous diagnoses: multiple sclerosis (MS), NMO, relapsing isolated ON (RION), monophasic isolated ON and relapsing acute disseminated encephalomyelitis (ADEM)-like syndromes. Compared to AQP4-Ab(neg) patients, AQP4-Ab(pos) patients had a worse residual visual outcome from first attack (median VFSS 4 vs. 0, p = 0.010) and at last assessment (median VFSS 5 versus 2, p = 0.005). However, AQP4-Ab(neg) patients with RION also had poor visual outcome. Up to 35% of AQP4-Ab(neg) patients developed a LETM and two developed low positivity for AQP4-Ab over time. Eight AQP4-Ab(neg) patients (25%) were MOG-Ab positive, covering a range of phenotypes excluding MS; the first ON attack was often bilateral and most had relapsing disease with a poor final visual outcome [VFSS 4, range (0-6)]. In conlcusion, AQP4-Ab positivity is confirmed as a predictor of poor visual outcome but AQP4-Ab(neg) RION also had a poor visual outcome. Of those without AQP4-Ab, 25% had MOG-Ab and another 25% developed MS; thus, MOG-Ab is associated with AQP4-Ab(neg) non-MS ON.

  6. Aquaporin 4 and neuromyelitis optica

    PubMed Central

    Papadopoulos, Marios C; Verkman, A S

    2013-01-01

    Neuromyelitis optica is an inflammatory demyelinating disorder of the CNS. The discovery of circulating IgG1 antibodies against the astrocyte water channel protein aquaporin 4 (AQP4) and the evidence that AQP4-IgG is involved in the development of neuromyelitis optica revolutionised our understanding of the disease. However, important unanswered questions remain—for example, we do not know the cause of AQP4-IgG-negative disease, how astrocyte damage causes demyelination, the role of T cells, why peripheral AQP4-expressing organs are undamaged, and how circulating AQP4-IgG enters neuromyelitis optica lesions. New drug candidates have emerged, such as aquaporumab (non-pathogenic antibody blocker of AQP4-IgG binding), sivelestat (neutrophil elastase inhibitor), and eculizumab (complement inhibitor). Despite rapid progress, randomised clinical trials to test new drugs will be challenging because of the small number of individuals with the disorder. PMID:22608667

  7. Orthogonal array formation by human aquaporin-4: Examination of neuromyelitis optica-associated aquaporin-4 polymorphisms

    PubMed Central

    Crane, Jonathan M.; Rossi, Andrea; Gupta, Tripta; Bennett, Jeffrey L.; Verkman, A.S.

    2013-01-01

    Pathogenic autoantibodies target aquaporin-4 (AQP4) water channels in individuals with neuromyelitis optica (NMO). Recently, allelic mutations were reported at residue 19 of AQP4 in three cases of NMO, and it was suggested that polymorphisms may influence disease by altering AQP4 supramolecular assembly into orthogonal arrays of particles (OAPs). We analyzed the determinants of OAP formation by human AQP4 to investigate the possible role of polymorphisms in NMO pathogenesis. NMO-associated mutations R19I and R19T in AQP4 did not affect OAP assembly, palmitoylation-dependent regulation of assembly, or NMO autoantibody binding. Residue-19 polymorphisms in AQP4 are thus unlikely to be disease relevant. PMID:21621278

  8. Orthogonal array formation by human aquaporin-4: examination of neuromyelitis optica-associated aquaporin-4 polymorphisms.

    PubMed

    Crane, Jonathan M; Rossi, Andrea; Gupta, Tripta; Bennett, Jeffrey L; Verkman, A S

    2011-07-01

    Pathogenic autoantibodies target aquaporin-4 (AQP4) water channels in individuals with neuromyelitis optica (NMO). Recently, allelic mutations were reported at residue 19 of AQP4 in three cases of NMO, and it was suggested that polymorphisms may influence disease by altering AQP4 supramolecular assembly into orthogonal arrays of particles (OAPs). We analyzed the determinants of OAP formation by human AQP4 to investigate the possible role of polymorphisms in NMO pathogenesis. NMO-associated mutations R19I and R19T in AQP4 did not affect OAP assembly, palmitoylation-dependent regulation of assembly, or NMO autoantibody binding. Residue-19 polymorphisms in AQP4 are thus unlikely to be disease relevant. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Reduction in Serum Aquaporin-4 Antibody Titers During Development of a Tumor-Like Brain Lesion in a Patient With Neuromyelitis Optica: A Serum Antibody–Consuming Effect?

    PubMed Central

    Aboulenein-Djamshidian, Fahmy; Höftberger, Romana; Waters, Patrick; Krampla, Wolfgang; Lassmann, Hans; Budka, Herbert; Vincent, Angela; Kristoferitsch, Wolfgang

    2015-01-01

    Abstract Neuromyelitis optica (NMO) is an inflammatory demyelinating disease of the CNS with severe involvement of the optic nerve and spinal cord. Highly specific serum IgG autoantibodies (NMO-IgG) that react with aquaporin-4 (AQP4), the most abundant CNS water channel protein, are found in patients with NMO. However, in vivo evidence combining the results of AQP4 antibody serum levels and brain pathology is lacking. We report a patient with NMO whose AQP4 antibody levels decreased simultaneously with clinical deterioration caused by the development of a tumor-like brain lesion. In the seminecrotic biopsied brain lesion, there was activated complement complex, whereas only very scattered immunoreactivity to AQP4 protein was detectable. The decrease in serum AQP4 antibody levels and the loss of AQP4 in the tumor-like lesion could represent a “serum antibody–consuming effect” during lesion formation. PMID:25668569

  10. Normal immunostaining pattern for aquaporin-5 in the lesions of palmoplantar hyperhidrosis.

    PubMed

    Nakahigashi, Kyoko; Nomura, Takashi; Miyachi, Yoshiki; Kabashima, Kenji

    2013-01-01

    Aquaporin-5 (AQP-5) is a water-transporting protein expressed in mammal sweat glands. It has been reported that the expression of AQP-5 is involved in sweating of mice, rats, and horses. However, the physiological function of human AQP-5 is still uncertain. In this report, we examined the expression pattern of AQP-5 in the skin lesions of palmoplantar hyperhidrosis in patients with Nagashima-type palmoplantar hyperkeratosis (PPK). We found that there was no significant difference in AQP-5 expression in the palmoplantar skin of healthy subjects and patients with palmoplantar hyperhidrosis. Our findings suggest that a mechanism other than AQP-5 may be involved in the pathogenesis of hyperhidrosis in PPK.

  11. The effect of aquaporin 5 overexpression on the Ras signaling pathway

    SciTech Connect

    Woo, Janghee; Lee, Juna; Kim, Myoung Sook; Jang, Se Jin; Sidransky, David; Moon, Chulso

    2008-03-07

    Human aquaporin 5 (AQP5) has been shown to be overexpressed in multiple cancers, such as pancreatic cancer and colon cancer. Furthermore, it has been reported that ectopic expression of AQP5 leads to many phenotypic changes characteristic of transformation. However, the biochemical mechanism leading to transformation in AQP5-overexpressing cells has not been clearly elucidated. In this report, the overexpression of AQP5 in NIH3T3 cells demonstrated a significant effect on Ras activity and, thus, cell proliferation. Furthermore, this influence was shown to be mediated by phosphorylation of the PKA consensus site of AQP5. This is the first evidence demonstrating an association between AQP5 and a signaling pathway, namely the Ras signal transduction pathway, which may be the basis of the oncogenic properties seen in AQP-overexpressing cells.

  12. Aquaporin 4 is a Ubiquitously Expressed Isoform in the Dogfish (Squalus acanthias) Shark.

    PubMed

    Cutler, Christopher P; Maciver, Bryce; Cramb, Gordon; Zeidel, Mark

    2011-01-01

    The dogfish ortholog of aquaporin 4 (AQP4) was amplified from cDNA using degenerate PCR followed by cloning and sequencing. The complete coding region was then obtained using 5' and 3' RACE techniques. Alignment of the sequence with AQP4 amino acid sequences from other species showed that dogfish AQP4 has high levels (up to 65.3%) of homology with higher vertebrate sequences but lower levels of homology to Agnathan (38.2%) or teleost (57.5%) fish sequences. Northern blotting indicated that the dogfish mRNA was approximately 3.2 kb and was highly expressed in the rectal gland (a shark fluid secretory organ). Semi-quantitative PCR further indicates that AQP4 is ubiquitous, being expressed in all tissues measured but at low levels in certain tissues, where the level in liver > gill >  intestine. Manipulation of the external environmental salinity of groups of dogfish showed that when fish were acclimated in stages to 120% seawater (SW) or 75% SW, there was no change in AQP4 mRNA expression in either rectal gland, kidney, or esophagus/cardiac stomach. Whereas quantitative PCR experiments using the RNA samples from the same experiment, showed a significant 63.1% lower abundance of gill AQP4 mRNA expression in 120% SW-acclimated dogfish. The function of dogfish AQP4 was also determined by measuring the effect of the AQP4 expression in Xenopus laevis oocytes. Dogfish AQP4 expressing-oocytes, exhibited significantly increased osmotic water permeability (P(f)) compared to controls, and this was invariant with pH. Permeability was not significantly reduced by treatment of oocytes with mercury chloride, as is also the case with AQP4 in other species. Similarly AQP4 expressing-oocytes did not exhibit enhanced urea or glycerol permeability, which is also consistent with the water-selective property of AQP4 in other species.

  13. Aquaporin 4 is a Ubiquitously Expressed Isoform in the Dogfish (Squalus acanthias) Shark

    PubMed Central

    Cutler, Christopher P; MacIver, Bryce; Cramb, Gordon; Zeidel, Mark

    2012-01-01

    The dogfish ortholog of aquaporin 4 (AQP4) was amplified from cDNA using degenerate PCR followed by cloning and sequencing. The complete coding region was then obtained using 5′ and 3′ RACE techniques. Alignment of the sequence with AQP4 amino acid sequences from other species showed that dogfish AQP4 has high levels (up to 65.3%) of homology with higher vertebrate sequences but lower levels of homology to Agnathan (38.2%) or teleost (57.5%) fish sequences. Northern blotting indicated that the dogfish mRNA was approximately 3.2 kb and was highly expressed in the rectal gland (a shark fluid secretory organ). Semi-quantitative PCR further indicates that AQP4 is ubiquitous, being expressed in all tissues measured but at low levels in certain tissues, where the level in liver > gill >  intestine. Manipulation of the external environmental salinity of groups of dogfish showed that when fish were acclimated in stages to 120% seawater (SW) or 75% SW, there was no change in AQP4 mRNA expression in either rectal gland, kidney, or esophagus/cardiac stomach. Whereas quantitative PCR experiments using the RNA samples from the same experiment, showed a significant 63.1% lower abundance of gill AQP4 mRNA expression in 120% SW-acclimated dogfish. The function of dogfish AQP4 was also determined by measuring the effect of the AQP4 expression in Xenopus laevis oocytes. Dogfish AQP4 expressing-oocytes, exhibited significantly increased osmotic water permeability (Pf) compared to controls, and this was invariant with pH. Permeability was not significantly reduced by treatment of oocytes with mercury chloride, as is also the case with AQP4 in other species. Similarly AQP4 expressing-oocytes did not exhibit enhanced urea or glycerol permeability, which is also consistent with the water-selective property of AQP4 in other species. PMID:22291652

  14. Increased aquaporin-4 immunoreactivity in rat brain in response to systemic hyponatremia.

    PubMed

    Vajda, Z; Promeneur, D; Dóczi, T; Sulyok, E; Frøkiaer, J; Ottersen, O P; Nielsen, S

    2000-04-13

    The present study was undertaken to assess whether the protein and mRNA expression levels of the glial water channel aquaporin-4 (AQP4) undergo downregulation and whether there is a subcellular redistribution of AQP4 protein in rat brain in response to systemic hyponatremia and brain edema. Systemic hyponatremia was induced for 4 or 48 h by combined administration of hypotonic dextrose i.p. and 8-deamino-arginine vasopressin (dDAVP) s.c. Semiquantitative immunoblotting of membrane enriched fractions showed significantly increased immunoreactivity to 164 +/- 12% (n = 6) and 153 +/- 12% (n = 6) of control levels in brain after 4 or 48 h of systemic hyponatremia, respectively. Similarly, immunoblots of cerebellar samples revealed an increase in AQP4 immunoreactivity to 136 +/- 6% (n = 6) and 218 +/- 44% (n = 6) of control levels, after 4 or 48 h of hyponatremia. In contrast, AQP4 mRNA levels were unchanged after 4 h of severe hyponatremia (104 +/- 14% of control levels; n = 17), indicating that there are no changes in AQP4 expression in response to systemic hypoosmolarity. Immunocytochemistry and high-resolution immunogold electron microscopy revealed highly polarized labeling of AQP4 in astrocyte end-feet surrounding capillaries and forming the glia limitans. This pattern of labeling was not changed whereas an increased labeling intensity of AQP4 could be observed in response to hyponatremia. In conclusion, hyponatremia causes a pronounced and rapid increase in AQP4 immunoreactivity that is not accompanied by any increase in AQP4 mRNA expression. The increased AQP4 immunosignal may reflect secondary conformational modifications of AQP4 protein, leading to enhanced antibody binding. This post-translational modification of AQP4 may participate in the adaptation of cerebral tissue to systemic hyponatremia.

  15. Aquaporin-4 antibody titration in NMO patients treated with rituximab: A retrospective study.

    PubMed

    Valentino, Paola; Marnetto, Fabiana; Granieri, Letizia; Capobianco, Marco; Bertolotto, Antonio

    2017-03-01

    We undertook an observational retrospective study to investigate the usefulness of aquaporin-4 (AQP4) antibodies (Ab) titration in the management of patients with neuromyelitis optica (NMO) treated with rituximab (RTX) by studying (1) the correlation between AQP4-Ab titer and disease activity, (2) the influence of RTX on antibody levels, and (3) the association between AQP4-Ab levels and responsiveness to RTX. A cell-based assay was used for AQP4-Ab titration in 322 serum samples from 7 patients with NMO treated with RTX (median follow-up 65 months), according to a treatment-to-target approach. Serum samples were collected every month following standardized procedures. (1) In group analysis, AQP4-Ab titers correlated with the disease activity, showing higher titers during and preceding relapses than during remission. However, in individual analysis, an increase in AQP4-Ab titers and CD19+ B cells did not always precede a relapse. (2) A reduction of AQP4-Ab titers in the short-term and long-term period was observed during RTX treatment. (3) Reduction of AQP4-Ab titers was observed in responder patients both 3 months after RTX infusion and in the long-term follow-up. In one nonresponder patient, AQP4-Ab levels never decreased during the treatment period. Titration of AQP4-Abs could be useful in the clinical management of patients with NMO treated with RTX: titration before each reinfusion and 3 months after each reinfusion may provide information about responsiveness to RTX. Although a relationship among AQP4-Ab levels, disease activity, and response to RTX was observed, the usefulness of AQP4-Ab titration to predict relapses is limited.

  16. Enlarged extracellular space of aquaporin-4-deficient mice does not enhance diffusion of Alexa Fluor 488 or dextran polymers.

    PubMed

    Xiao, F; Hrabetová, S

    2009-06-16

    Aquaporin-4 (AQP4) water channels expressed on glia have been implicated in maintaining the volume of extracellular space (ECS). A previous diffusion study employing small cation tetramethylammonium and a real-time iontophoretic (RTI) method demonstrated an increase of about 25% in the ECS volume fraction (alpha) in the neocortex of AQP4(-/-) mice compared to AQP4(+/+) mice but no change in the hindrance imposed to diffusing molecules (tortuosity lambda). In contrast, other diffusion studies employing large molecules (dextran polymers) and a fluorescence recovery after photobleaching (FRAP) method measured a decrease of about 10%-20% in lambda in the neocortex of AQP4(-/-) mice. These conflicting findings on lambda would imply that large molecules diffuse more readily in the enlarged ECS of AQP4(-/-) mice than in wild type but small molecules do not. To test this hypothesis, we used integrative optical imaging (IOI) to measure tortuosity with a small Alexa Fluor 488 (molecular weight [MW] 547, lambda(AF)) and two large dextran polymers (MW 3000, lambda(dex3) and MW 75,000, lambda(dex75)) in the in vitro neocortex of AQP4(+/+) and AQP4(-/-) mice. We found that lambda(AF)=1.59, lambda(dex3)=1.76 and lambda(dex75)=2.30 obtained in AQP4(-/-) mice were not significantly different from lambda(AF)=1.61, lambda(dex3)=1.76, and lambda(dex75)=2.33 in AQP4(+/+) mice. These IOI results demonstrate that lambda measured with small and large molecules each remain unchanged in the enlarged ECS of AQP4(-/-) mice compared to values in AQP4(+/+) mice. Further analysis suggests that the FRAP method yields diffusion parameters not directly comparable with those obtained by IOI or RTI methods. Our findings have implications for the role of glial AQP4 in maintaining the ECS structure.

  17. Aquaporin-4 antibody titration in NMO patients treated with rituximab

    PubMed Central

    Marnetto, Fabiana; Granieri, Letizia; Capobianco, Marco; Bertolotto, Antonio

    2016-01-01

    Objective: We undertook an observational retrospective study to investigate the usefulness of aquaporin-4 (AQP4) antibodies (Ab) titration in the management of patients with neuromyelitis optica (NMO) treated with rituximab (RTX) by studying (1) the correlation between AQP4-Ab titer and disease activity, (2) the influence of RTX on antibody levels, and (3) the association between AQP4-Ab levels and responsiveness to RTX. Methods: A cell-based assay was used for AQP4-Ab titration in 322 serum samples from 7 patients with NMO treated with RTX (median follow-up 65 months), according to a treatment-to-target approach. Serum samples were collected every month following standardized procedures. Results: (1) In group analysis, AQP4-Ab titers correlated with the disease activity, showing higher titers during and preceding relapses than during remission. However, in individual analysis, an increase in AQP4-Ab titers and CD19+ B cells did not always precede a relapse. (2) A reduction of AQP4-Ab titers in the short-term and long-term period was observed during RTX treatment. (3) Reduction of AQP4-Ab titers was observed in responder patients both 3 months after RTX infusion and in the long-term follow-up. In one nonresponder patient, AQP4-Ab levels never decreased during the treatment period. Conclusions: Titration of AQP4-Abs could be useful in the clinical management of patients with NMO treated with RTX: titration before each reinfusion and 3 months after each reinfusion may provide information about responsiveness to RTX. Although a relationship among AQP4-Ab levels, disease activity, and response to RTX was observed, the usefulness of AQP4-Ab titration to predict relapses is limited. PMID:28054001

  18. Interaction between transcellular and paracellular water transport pathways through Aquaporin 5 and the tight junction complex

    PubMed Central

    Kawedia, Jitesh D.; Nieman, Michelle L.; Boivin, Gregory P.; Melvin, James E.; Kikuchi, Ken-Ichiro; Hand, Arthur R.; Lorenz, John N.; Menon, Anil G.

    2007-01-01

    To investigate potential physiological interactions between the transcellular and paracellular pathways of water transport, we asked whether targeted deletion of Aquaporin 5 (AQP5), the major transcellular water transporter in salivary acinar cells, affected paracellular transport of 4-kDa FITC-labeled dextran (FITC-D), which is transported through the paracellular but not the transcellular route. After i.v. injection of FITC-D into either AQP5 wild-type or AQP5−/− mice and saliva collection for fixed time intervals, we show that the relative amount of FITC-D transported in the saliva of AQP5−/− mice is half that in matched AQP5+/+ mice, indicating a 2-fold decrease in permeability of the paracellular barrier in mice lacking AQP5. We also found a significant difference in the proportion of transcellular vs. paracellular transport between male and female mice. Freeze-fracture electron microscopy revealed an increase in the number of tight junction strands of both AQP5+/+ and AQP5−/− male mice after pilocarpine stimulation but no change in strand number in female mice. Average acinar cell volume was increased by ≈1.4-fold in glands from AQP5−/− mice, suggesting an alteration in the volume-sensing machinery of the cell. Western blots revealed that expression of Claudin-7, Claudin-3, and Occludin, critical proteins that regulate the permeability of the tight junction barrier, were significantly decreased in AQP5−/− compared with AQP5+/+ salivary glands. These findings reveal the existence of a gender-influenced molecular mechanism involving AQP5 that allows transcellular and paracellular routes of water transport to act in conjunction. PMID:17360692

  19. Is Upregulation of Aquaporin 4-M1 Isoform Responsible for the Loss of Typical Orthogonal Arrays of Particles in Astrocytomas?

    PubMed Central

    Fallier-Becker, Petra; Nieser, Maike; Wenzel, Ulrike; Ritz, Rainer; Noell, Susan

    2016-01-01

    The astrocytic endfoot membranes of the healthy blood-brain barrier—contacting the capillary—are covered with a large number of the water channel aquaporin 4 (AQP4). They form orthogonal arrays of particles (OAPs), which consist of AQP4 isoform M1 and M23. Under pathologic conditions, AQP4 is distributed over the whole cell and no or only small OAPs are found. From cell culture experiments, it is known that cells transfected only with AQP4-M1 do not form OAPs or only small ones. We hypothesized that in astrocytomas the situation may be comparable to the in vitro experiments expecting an upregulation of AQP4-M1. Quantitative Real-time PCR (qRT-PCR) of different graded astrocytomas revealed an upregulation of both isoforms AQP4 M1 and M23 in all astrocytomas investigated. In freeze fracture replicas of low-grade malignancy astrocytomas, more OAPs than in high-grade malignancy astrocytomas were found. In vitro, cultured glioma cells did not express AQP4, whereas healthy astrocytes revealed a slight upregulation of both isoforms and only a few OAPs in freeze fracture analysis. Taken together, we found a correlation between the decrease of OAPs and increasing grade of malignancy of astrocytomas but this was not consistent with an upregulation of AQP4-M1 in relation to AQP4 M23. PMID:27483250

  20. Phosphorylation in the C-terminal domain of Aquaporin-4 is required for Golgi transition in primary cultured astrocytes

    SciTech Connect

    Kadohira, Ikuko; Abe, Yoichiro Nuriya, Mutsuo; Sano, Kazumi; Tsuji, Shoji; Arimitsu, Takeshi; Yoshimura, Yasunori; Yasui, Masato

    2008-12-12

    Aquaporin-4 (AQP4) is expressed in the perivascular and subpial astrocytes end-feet in mammalian brain, and plays a critical component of an integrated water and potassium homeostasis. Here we examine whether AQP4 is phosphorylated in primary cultured mouse astrocytes. Astrocytes were metabolically labeled with [{sup 32}P]phosphoric acid, then AQP4 was immunoprecipitated with anti-AQP4 antibody. We observed that AQP4 was constitutively phosphorylated, which is reduced by treatment with protein kinase CK2 inhibitors. To elucidate the phosphorylation of AQP4 by CK2, myc-tagged wild-type or mutant AQP4 was transiently transfected in primary cultured astrocytes. Substitution of Ala residues for four putative CK2 phosphorylation sites in the C terminus abolished the phosphorylation of AQP4. Immunofluorescent microscopy revealed that the quadruple mutant was localized in the Golgi apparatus. These observations indicate that the C-terminal domain of AQP4 is constitutively phosphorylated at least in part by protein kinase CK2 and it is required for Golgi transition.

  1. Protection of Vascular Endothelial Growth Factor to Brain Edema Following Intracerebral Hemorrhage and Its Involved Mechanisms: Effect of Aquaporin-4

    PubMed Central

    Dong, Qiang

    2013-01-01

    Vascular endothelial growth factor (VEGF) has protective effects on many neurological diseases. However, whether VEGF acts on brain edema following intracerebral hemorrhage (ICH) is largely unknown. Our previous study has shown aquaporin-4 (AQP4) plays an important role in brain edema elimination following ICH. Meanwhile, there is close relationship between VEGF and AQP4. In this study, we aimed to test effects of VEGF on brain edema following ICH and examine whether they were AQP4 dependent. Recombinant human VEGF165 (rhVEGF165) was injected intracerebroventricularly 1 d after ICH induced by microinjecting autologous whole blood into striatum. We detected perihemotomal AQP4 protein expression, then examined the effects of rhVEGF165 on perihemotomal brain edema at 1 d, 3 d, and 7 d after injection in wild type (AQP4+/+) and AQP4 knock-out (AQP4−/−) mice. Furthermore, we assessed the possible signal transduction pathways activated by VEGF to regulate AQP4 expression via astrocyte cultures. We found perihemotomal AQP4 protein expression was highly increased by rhVEGF165. RhVEGF165 alleviated perihemotomal brain edema in AQP4+/+ mice at each time point, but had no effect on AQP4−/− mice. Perihemotomal EB extravasation was increased by rhVEGF165 in AQP4−/− mice, but not AQP4+/+ mice. RhVEGF165 reduced neurological deficits and increased Nissl’s staining cells surrounding hemotoma in both types of mice and these effects were related to AQP4. RhVEGF165 up-regulated phospharylation of C-Jun amino-terminal kinase (p-JNK) and extracellular signal-regulated kinase (p-ERK) and AQP4 protein in cultured astrocytes. The latter was inhibited by JNK and ERK inhibitors. In conclusion, VEGF reduces neurological deficits, brain edema, and neuronal death surrounding hemotoma but has no influence on BBB permeability. These effects are closely related to AQP4 up-regulation, possibly through activating JNK and ERK pathways. The current study may present new insights to

  2. Unaltered Glutamate Transporter-1 Protein Levels in Aquaporin-4 Knockout Mice

    PubMed Central

    Hubbard, Jacqueline A.

    2017-01-01

    Maintenance of glutamate and water homeostasis in the brain is crucial to healthy brain activity. Astrocytic glutamate transporter-1 (GLT1) and aquaporin-4 (AQP4) are the main regulators of extracellular glutamate and osmolarity, respectively. Several studies have reported colocalization of GLT1 and AQP4, but the existence of a physical interaction between the two has not been well studied. Therefore, we used coimmunoprecipitation to determine whether a strong interaction exists between these two important molecules in mice on both a CD1 and C57BL/6 background. Furthermore, we used Western blot and immunohistochemistry to examine GLT1 levels in AQP4 knockout (AQP4−/−) mice. An AQP4-GLT1 precipitate was not detected, suggesting the lack of a strong physical interaction between AQP4 and GLT1. In addition, GLT1 protein levels remained unaltered in tissue from CD1 and C57BL/6 AQP4−/− mice. Finally, immunohistochemical analysis revealed that AQP4 and GLT1 do colocalize, but only in a region-specific manner. Taken together, these findings suggest that AQP4 and GLT1 do not have a strong physical interaction between them and are, instead, differentially regulated. PMID:28078912

  3. A phylogenetic framework for the aquaporin family in eukaryotes.

    PubMed

    Zardoya, R; Villalba, S

    2001-05-01

    A comprehensive evolutionary analysis of aquaporins, a family of intrinsic membrane proteins that function as water channels, was conducted to establish groups of homology (i.e., to identify orthologues and paralogues) within the family and to gain insights into the functional constraints acting on the structure of the aquaporin molecule structure. Aquaporins are present in all living organisms, and therefore, they provide an excellent opportunity to further our understanding of the broader biological significance of molecular evolution by gene duplication followed by functional and structural specialization. Based on the resulting phylogeny, the 153 channel proteins analyzed were classified into six major paralogous groups: (1) GLPs, or glycerol-transporting channel proteins, which include mammalian AQP3, AQP7, and AQP9, several nematode paralogues, a yeast paralogue, and Escherichia coli GLP; (2) AQPs, or aquaporins, which include metazoan AQP0, AQP1, AQP2, AQP4, AQP5, and AQP6; (3) PIPs, or plasma membrane intrinsic proteins of plants, which include PIP1 and PIP2; (4) TIPs, or tonoplast intrinsic proteins of plants, which include alphaTIP, gammaTIP, and deltaTIP; (5) NODs, or nodulins of plants; and (6) AQP8s, or metazoan aquaporin 8 proteins. Of these groups, AQPs, PIPs, and TIPs cluster together. According to the results, the capacity to transport glycerol shown by several members of the family was acquired only early in the history of the family. The new phylogeny reveals that several water channel proteins are misclassified and require reassignment, whereas several previously undetermined ones can now be classified with confidence. The deduced phylogenetic framework was used to characterize the molecular features of water channel proteins. Three motifs are common to all family members: AEF (Ala-Glu-Phe), which is located in the N-terminal domain; and two NPA (Asp-Pro-Ala) boxes, which are located in the center and C-terminal domains, respectively. Other

  4. Aquaporin 5 distribution pattern during development of the mouse sublingual salivary gland.

    PubMed

    Aure, Marit H; Larsen, Helga S; Ruus, Ann-Kristin; Galtung, Hilde K

    2011-10-01

    Aquaporin 5 (AQP5) is important in salivary fluid secretion, and has been found in acinar cells of salivary glands in several species. Recently, studies have shown the AQP5 transcript and protein expression patterns as well as the temporal-spatial protein distribution during development of the mouse submandibular salivary gland. The AQP5 distribution pattern of the closely located sublingual gland (SLG) is, however, not well known. Thus, in this study, the Aqp5 RNA expression pattern and the temporal-spatial distribution of AQP5 protein in prenatal development and in adult mouse SLG was investigated. SLGs from embryonic day 14.5 (E14.5) to 18.5 and postnatal days 0 (P0), 25, and 60 were examined using real time PCR and immunohistochemistry. The Aqp5 transcript was detected from E13.5 and was found to increase towards birth and in young adults. The protein was first detected in a scattered pattern in the canalicular stage and became more organized in the luminal membrane of the acinar cells towards birth. During all postnatal developmental stages studied, AQP5 was localized in the luminal and lateral membrane of acinar cells. AQP5 was also detected in the intercalated duct and additional apical membrane staining in the entire intralobular duct was found in the terminal bud stage. These results indicate that AQP5 plays a role during embryonic salivary gland development.

  5. Aquaporin 5 Interacts with Fluoride and Possibly Protects against Caries

    PubMed Central

    Deeley, Kathleen; Poletta, Fernardo A.; Mereb, Juan C.; Leite, Aline L.; Barreta, Priscila A. T. M.; Silva, Thelma L.; Dizak, Piper; Ruff, Timothy; Patir, Asli; Koruyucu, Mine; Abbasoğlu, Zerrin; Casado, Priscila L.; Brown, Andrew; Zaky, Samer H.; Bayram, Merve; Küchler, Erika C.; Cooper, Margaret E.; Liu, Kai; Marazita, Mary L.; Tanboğa, İlknur; Granjeiro, José M.; Seymen, Figen; Castilla, Eduardo E.; Orioli, Iêda M.; Sfeir, Charles; Owyang, Hongjiao; Buzalaf, Marília A. R.; Vieira, Alexandre R.

    2015-01-01

    Aquaporins (AQP) are water channel proteins and the genes coding for AQP2, AQP5, and AQP6 are clustered in 12q13. Since AQP5 is expressed in serous acinar cells of salivary glands, we investigated its involvement in caries. DNA samples from 1,383 individuals from six groups were studied. Genotypes of eight single nucleotide polymorphisms covering the aquaporin locus were tested for association with caries experience. Interaction with genes involved in enamel formation was tested. The association between enamel microhardness at baseline, after creation of artificial caries lesion, and after exposure to fluoride and the genetic markers in AQP5 was tested. Finally, AQP5 expression in human whole saliva, after exposure to fluoride in a mammary gland cell line, which is known to express AQP5, and in Wistar rats was also verified. Nominal associations were found between caries experience and markers in the AQP5 locus. Since these associations suggested that AQP5 may be inhibited by levels of fluoride in the drinking water that cause fluorosis, we showed that fluoride levels above optimal levels change AQP5 expression in humans, cell lines, and rats. We have shown that AQP5 is involved in the pathogenesis of caries and likely interacts with fluoride. PMID:26630491

  6. Aquaporin 5 Interacts with Fluoride and Possibly Protects against Caries.

    PubMed

    Anjomshoaa, Ida; Briseño-Ruiz, Jessica; Deeley, Kathleen; Poletta, Fernardo A; Mereb, Juan C; Leite, Aline L; Barreta, Priscila A T M; Silva, Thelma L; Dizak, Piper; Ruff, Timothy; Patir, Asli; Koruyucu, Mine; Abbasoğlu, Zerrin; Casado, Priscila L; Brown, Andrew; Zaky, Samer H; Bayram, Merve; Küchler, Erika C; Cooper, Margaret E; Liu, Kai; Marazita, Mary L; Tanboğa, İlknur; Granjeiro, José M; Seymen, Figen; Castilla, Eduardo E; Orioli, Iêda M; Sfeir, Charles; Owyang, Hongjiao; Buzalaf, Marília A R; Vieira, Alexandre R

    2015-01-01

    Aquaporins (AQP) are water channel proteins and the genes coding for AQP2, AQP5, and AQP6 are clustered in 12q13. Since AQP5 is expressed in serous acinar cells of salivary glands, we investigated its involvement in caries. DNA samples from 1,383 individuals from six groups were studied. Genotypes of eight single nucleotide polymorphisms covering the aquaporin locus were tested for association with caries experience. Interaction with genes involved in enamel formation was tested. The association between enamel microhardness at baseline, after creation of artificial caries lesion, and after exposure to fluoride and the genetic markers in AQP5 was tested. Finally, AQP5 expression in human whole saliva, after exposure to fluoride in a mammary gland cell line, which is known to express AQP5, and in Wistar rats was also verified. Nominal associations were found between caries experience and markers in the AQP5 locus. Since these associations suggested that AQP5 may be inhibited by levels of fluoride in the drinking water that cause fluorosis, we showed that fluoride levels above optimal levels change AQP5 expression in humans, cell lines, and rats. We have shown that AQP5 is involved in the pathogenesis of caries and likely interacts with fluoride.

  7. Aquaporin-4 water channels and synaptic plasticity in the hippocampus

    PubMed Central

    Scharfman, Helen E.; Binder, Devin K.

    2013-01-01

    Aquaporin-4 (AQP4) is the major water channel expressed in the central nervous system (CNS) and is primarily expressed in glial cells. Many studies have shown that AQP4 regulates the response of the CNS to insults or injury, but far less is known about the potential for AQP4 to influence synaptic plasticity or behavior. Recent studies have examined long-term potentiation (LTP), long-term depression (LTD), and behavior in AQP4 knockout (KO) and wild-type mice to gain more insight into its potential role. The results showed a selective effect of AQP4 deletion on LTP of the Schaffer collateral pathway in hippocampus using an LTP induction protocol that simulates pyramidal cell firing during theta oscillations (theta-burst stimulation; TBS). However, a different LTP induction protocol was unaffected by AQP4 deletion. There was also a defect in LTD after low frequency stimulation (LFS) in AQP4 KO mice. Interestingly, some slices from AQP4 KO mice exhibited LTD after TBS instead of LTP, or LTP following LFS instead of LTD. These data suggest that AQP4 and astrocytes influence the polarity of long-term synaptic plasticity (potentiation or depression). These potentially powerful roles expand the influence of AQP4 and astrocytes beyond the original suggestions related to regulation of extracellular potassium and water balance. Remarkably, AQP4 KO mice did not show deficits in basal transmission, suggesting specificity for long-term synaptic plasticity. The mechanism appears to be related to neurotrophins and specifically brain-derived neurotrophic factor (BDNF) because pharmacological blockade of neurotrophin trk receptors or scavenging ligands such as BDNF restored plasticity. The in vitro studies predicted effects in vivo of AQP4 deletion because AQP4 KO mice performed worse using a task that requires memory for the location of objects (object placement). However, performance on other hippocampal-dependent tasks was spared. The results suggest an unanticipated and

  8. Glio-vascular modifications caused by Aquaporin-4 deletion in the mouse retina.

    PubMed

    Nicchia, Grazia Paola; Pisani, Francesco; Simone, Laura; Cibelli, Antonio; Mola, Maria Grazia; Dal Monte, Massimo; Frigeri, Antonio; Bagnoli, Paola; Svelto, Maria

    2016-05-01

    Aquaporin-4 (AQP4) is the Central Nervous System water channel highly expressed at the perivascular glial domain. In the retina, two types of AQP4 expressing glial cells take part in the blood-retinal barrier (BRB), astrocytes and Müller cells. The aim of the present study is to investigate the effect of AQP4 deletion on the retinal vasculature by looking at typical pathological hallmark such as BRB dysfunction and gliotic condition. AQP4 dependent BRB properties were evaluated by measuring the number of extravasations in WT and AQP4 KO retinas by Evans blue injection assay. AQP4 deletion did not affect the retinal vasculature, as assessed by Isolectin B4 staining, but caused BRB impairment to the deep plexus capillaries while the superficial and intermediate capillaries were not compromised. To investigate for gliotic responses caused by AQP4 deletion, Müller cells and astrocytes were analysed by immunofluorescence and western blot, using the Müller cell marker Glutamine Synthetase (GS) and the astrocyte marker GFAP. While GS expression was not altered in AQP4 KO retinas, a strong GFAP upregulation was found at the level of AQP4 KO astrocytes at the superficial plexus and not at Müller cells at the intermediate and deep plexi. These data, together with the upregulation of inflammatory markers (TNF-α, IL-6, IL-1β and ICAM-1) in AQP4 KO retinas indicated AQP4 deletion as responsible for a gliotic phenotype. Interestingly, no GFAP altered expression was found in AQP4 siRNA treated astrocyte primary cultures. All together these results indicate that AQP4 deletion is directly responsible for BRB dysfunction and gliotic condition in the mouse retina. The selective activation of glial cells at the primary plexus suggests that different regulatory elements control the reaction of astrocytes and Müller cells. Finally, GFAP upregulation is strictly linked to gliovascular crosstalk, as it is absent in astrocytes in culture. This study is useful to understand the role

  9. Evidences for a leaky scanning mechanism for the synthesis of the shorter M23 protein isoform of aquaporin-4: implication in orthogonal array formation and neuromyelitis optica antibody interaction.

    PubMed

    Rossi, Andrea; Pisani, Francesco; Nicchia, Grazia Paola; Svelto, Maria; Frigeri, Antonio

    2010-02-12

    Aquaporin-4 (AQP4) exists as two major isoforms that differ in the length of the N terminus, the shorter AQP4-M23 and the longer AQP4-M1. Both isoforms form tetramers, which can further aggregate in the plasma membrane to form typical orthogonal arrays of particles (OAPs) whose dimension depends on the ratio of the M1 and M23. In this study, we tested the hypothesis that the M23 isoform can be produced directly by the M1 mRNA. In cells transiently transfected with AQP4-M1 coding sequence we observed besides AQP4-M1 the additional presence of the AQP4-M23 isoform associated with the formation of typical OAPs observable by two-dimensional blue native/SDS-PAGE and total internal reflection microscopy. The mutation of the second in-frame methionine M23 in AQP4-M1 (AQP4-M1(M23I)) prevented the expression of the M23 isoform and the formation of OAPs. We propose "leaky scanning" as a translational mechanism for the expression of AQP4-M23 protein isoform and that the formation of OAPs may occur even in the absence of AQP4-M23 mRNA. This mechanism can have important pathophysiological implications for the cell regulation of the M1/M23 ratio and thus OAP size. In this study we also provide evidence that AQP4-M1 is mobile in the plasma membrane, that it is inserted and not excluded into immobile OAPs, and that it is an important determinant of OAP structure and size.

  10. Water permeability through aquaporin-4 is regulated by protein kinase C and becomes rate-limiting for glioma invasion.

    PubMed

    McCoy, E S; Haas, B R; Sontheimer, H

    2010-07-28

    Glial-derived tumors, gliomas, are highly invasive cancers that invade normal brain through the extracellular space. To navigate the tortuous extracellular spaces, cells undergo dynamic changes in cell volume, which entails water flux across the membrane through aquaporins (AQPs). Two members of this family, AQP1 and AQP4 are highly expressed in primary brain tumor biopsies and both have a consensus phosphorylation site for protein kinase C (PKC), which is a known regulator of glioma cell invasion. AQP4 colocalizes with PKC to the leading edge of invading processes and clustered with chloride channel (ClC2) and K(+)-Cl(-) cotransporter 1 (KCC1), believed to provide the pathways for Cl(-) and K(+) secretion to accomplish volume changes. Using D54MG glioma cells stably transfected with either AQP1 or AQP4, we show that PKC activity regulates water permeability through phosphorylation of AQP4. Activation of PKC with either phorbol 12-myristate 13-acetate or thrombin enhanced AQP4 phosphorylation, reduced water permeability and significantly decreased cell invasion. Conversely, inhibition of PKC activity with chelerythrine reduced AQP4 phosphorylation, enhanced water permeability and significantly enhanced tumor invasion. PKC regulation of AQP4 was lost after mutational inactivation of the consensus PKC phosphorylation site S180A. Interestingly, AQP1 expressing glioma cells, by contrast, were completely unaffected by changes in PKC activity. To demonstrate a role for AQPs in glioma invasion in vivo, cells selectively expressing AQP1, AQP4 or the mutated S180A-AQP4 were implanted intracranially into SCID mice. AQP4 expressing glioma cells showed significantly reduced invasion compared to AQP1 and S180 expressing tumors as determined by quantitative stereology, consistent with a differential role for AQP1 and AQP4 in this process. Copyright (c) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Evidences for a Leaky Scanning Mechanism for the Synthesis of the Shorter M23 Protein Isoform of Aquaporin-4

    PubMed Central

    Rossi, Andrea; Pisani, Francesco; Nicchia, Grazia Paola; Svelto, Maria; Frigeri, Antonio

    2010-01-01

    Aquaporin-4 (AQP4) exists as two major isoforms that differ in the length of the N terminus, the shorter AQP4-M23 and the longer AQP4-M1. Both isoforms form tetramers, which can further aggregate in the plasma membrane to form typical orthogonal arrays of particles (OAPs) whose dimension depends on the ratio of the M1 and M23. In this study, we tested the hypothesis that the M23 isoform can be produced directly by the M1 mRNA. In cells transiently transfected with AQP4-M1 coding sequence we observed besides AQP4-M1 the additional presence of the AQP4-M23 isoform associated with the formation of typical OAPs observable by two-dimensional blue native/SDS-PAGE and total internal reflection microscopy. The mutation of the second in-frame methionine M23 in AQP4-M1 (AQP4-M1M23I) prevented the expression of the M23 isoform and the formation of OAPs. We propose “leaky scanning” as a translational mechanism for the expression of AQP4-M23 protein isoform and that the formation of OAPs may occur even in the absence of AQP4-M23 mRNA. This mechanism can have important pathophysiological implications for the cell regulation of the M1/M23 ratio and thus OAP size. In this study we also provide evidence that AQP4-M1 is mobile in the plasma membrane, that it is inserted and not excluded into immobile OAPs, and that it is an important determinant of OAP structure and size. PMID:20007705

  12. Laminar-specific and developmental expression of aquaporin-4 in the mouse hippocampus

    PubMed Central

    Hsu, Mike S.; Seldin, Marcus; Lee, Darrin J.; Seifert, Gerald; Steinhäuser, Christian; Binder, Devin K.

    2011-01-01

    Mice deficient in the water channel AQP4 demonstrate increased seizure duration in response to hippocampal stimulation as well as impaired extracellular K+ clearance. However, the expression of AQP4 in the hippocampus is not well described. In this study, we investigated i) the developmental, laminar and cell-type specificity of AQP4 expression in the hippocampus; ii) the effect of Kir4.1 deletion on AQP4 expression; and iii) performed Western blot and RT-PCR analyses. AQP4 immunohistochemistry on coronal sections from WT or Kir4.1-/- mice revealed a developmentally-regulated and laminar-specific pattern, with highest expression in the CA1 stratum lacunosummoleculare (SLM) and the molecular layer (ML) of the dentate gyrus (DG). AQP4 was colocalized with the glial markers GFAP and S100ß in the hippocampus, and was also ubiquitously expressed on astrocytic endfeet around blood vessels. No difference in AQP4 immunoreactivity was observed in Kir4.1-/- mice. Electrophysiological and postrecording RT-PCR analyses of individual cells revealed that AQP4 and Kir4.1 were co-expressed in nearly all CA1 astrocytes. In NG2 cells, AQP4 was also expressed at the transcript level. This study is the first to examine subregional AQP4 expression during development of the hippocampus. The strikingly high expression of AQP4 in the CA1 SLM and DG ML identifies these regions as potential sites of astrocytic K+ and H2O regulation. These results begin to delineate the functional capabilities of hippocampal subregions and cell types for K+ and H2O homeostasis, which is critical to excitability and serves as a potential target for modulation in diverse diseases. PMID:21256195

  13. Impact of the anti-aquaporin-4 autoantibody on inner retinal structure, function and structure-function associations in Japanese patients with optic neuritis

    PubMed Central

    Matsumoto, Yoshiko; Mori, Sotaro; Ueda, Kaori; Kurimoto, Takuji; Kanamori, Akiyasu; Yamada, Yuko; Nakashima, Ichiro

    2017-01-01

    Purpose An autoantibody against aquaporin-4 (AQP4 Ab) is highly specific for neuromyelitis optica spectrum disorder and plays a pathogenic role in this disease. The purpose of this study was to investigate the impact of AQP4 Ab on inner retinal structure, function, and the structure−function relationships in eyes with optic neuritis. Methods Thirty five eyes from 25 cases who had received visual function tests and RTVue optical coherence tomography (OCT) measurement at least six months after the latest episode of optic neuritis were enrolled. Patients with multiple sclerosis were excluded. AQP4 Ab was measured using a cell-based assay. Visual acuity, mean deviation (MD) of the Humphrey visual field SITA standard 30–2 tests, retinal nerve fiber layer (RNFL), ganglion cell complex (GCC) thicknesses, and other clinical variables were compared between the AQP4 Ab-positive and -negative groups. Parameters associated with visual functions were evaluated by generalized estimating equation (GEE) models. Results The AQP4 Ab-positive group (20 eyes from 12 cases) had a higher proportion of bilateral involvement and longer duration of follow-up than the AQP4 Ab-negative group (15 eyes from 13 cases). Linear mixed effect models revealed worse MD and visual acuity in AQP4 Ab-positive eyes than those in AQP4 Ab-negative eyes after adjusting for within-patient inter-eye dependence, whereas there were no differences in RNFL and GCC thickness between the two groups. In seropositive eyes, GEE regression analyses revealed that depending on age and the number of recurrences of ON episodes, OCT parameters correlated strongly with MD and more weakly with visual acuity. Conclusions Reductions in RNFL and GCC thickness were proportional to the visual field defect in eyes with AQP4 Ab but not in eyes without AQP4 Ab. The presence of AQP4 Ab probably plays a critical role in retinal ganglion cell loss in optic neuritis. PMID:28199381

  14. The Effects of Female Sexual Hormones on the Expression of Aquaporin 5 in the Late-Pregnant Rat Uterus

    PubMed Central

    Csányi, Adrienn; Bóta, Judit; Falkay, George; Gáspár, Robert; Ducza, Eszter

    2016-01-01

    Thirteen mammalian aquaporin (AQP) water channels are known, and few of them play a role in the mammalian reproductive system. In our earlier study, the predominance of AQP5 in the late-pregnant rat uterus was proven. Our current aim was to investigate the effect of estrogen- and gestagen-related compounds on the expression of the AQP5 channel in the late-pregnant rat uterus. Furthermore, we examined the effect of hormonally-induced preterm delivery on the expression of AQP5 in the uterus. We treated pregnant Sprague-Dawley rats subcutaneously with 17β-estradiol, clomiphene citrate, tamoxifen citrate, progesterone, levonorgestrel, and medroxyprogesterone acetate. Preterm delivery was induced by subcutaneous mifepristone and intravaginal prostaglandin E2. Reverse-transcriptase PCR and Western blot techniques were used for the detection of the changes in AQP5 mRNA and protein expressions. The amount of AQP5 significantly increased after progesterone and progesterone analogs treatment on 18 and 22 days of pregnancy. The 17β-estradiol and estrogen receptor agonists did not influence the AQP5 mRNA level; however, estradiol induced a significant increase in the AQP5 protein level on the investigated days of gestation. Tamoxifen increased the AQP5 protein expression on day 18, while clomiphene citrate was ineffective. The hormonally-induced preterm birth significantly decreased the AQP5 level similarly to the day of delivery. We proved that AQP5 expression is influenced by both estrogen and progesterone in the late-pregnant rat uterus. The influence of progesterone on AQP5 expression is more predominant as compared with estrogen. PMID:27556454

  15. The Effects of Female Sexual Hormones on the Expression of Aquaporin 5 in the Late-Pregnant Rat Uterus.

    PubMed

    Csányi, Adrienn; Bóta, Judit; Falkay, George; Gáspár, Robert; Ducza, Eszter

    2016-08-22

    Thirteen mammalian aquaporin (AQP) water channels are known, and few of them play a role in the mammalian reproductive system. In our earlier study, the predominance of AQP5 in the late-pregnant rat uterus was proven. Our current aim was to investigate the effect of estrogen- and gestagen-related compounds on the expression of the AQP5 channel in the late-pregnant rat uterus. Furthermore, we examined the effect of hormonally-induced preterm delivery on the expression of AQP5 in the uterus. We treated pregnant Sprague-Dawley rats subcutaneously with 17β-estradiol, clomiphene citrate, tamoxifen citrate, progesterone, levonorgestrel, and medroxyprogesterone acetate. Preterm delivery was induced by subcutaneous mifepristone and intravaginal prostaglandin E2. Reverse-transcriptase PCR and Western blot techniques were used for the detection of the changes in AQP5 mRNA and protein expressions. The amount of AQP5 significantly increased after progesterone and progesterone analogs treatment on 18 and 22 days of pregnancy. The 17β-estradiol and estrogen receptor agonists did not influence the AQP5 mRNA level; however, estradiol induced a significant increase in the AQP5 protein level on the investigated days of gestation. Tamoxifen increased the AQP5 protein expression on day 18, while clomiphene citrate was ineffective. The hormonally-induced preterm birth significantly decreased the AQP5 level similarly to the day of delivery. We proved that AQP5 expression is influenced by both estrogen and progesterone in the late-pregnant rat uterus. The influence of progesterone on AQP5 expression is more predominant as compared with estrogen.

  16. (Methyl)ammonium Transport in the Nitrogen-Fixing Bacterium Azospirillum brasilense

    PubMed Central

    Van Dommelen, Anne; Keijers, Veerle; Vanderleyden, Jos; de Zamaroczy, Miklos

    1998-01-01

    An ammonium transporter of Azospirillum brasilense was characterized. In contrast to most previously reported putative prokaryotic NH4+ transporter genes, A. brasilense amtB is not part of an operon with glnB or glnZ which, in A. brasilense, encode nitrogen regulatory proteins PII and PZ, respectively. Sequence analysis predicts the presence of 12 transmembrane domains in the deduced AmtB protein and classifies AmtB as an integral membrane protein. Nitrogen regulates the transcription of the amtB gene in A. brasilense by the Ntr system. amtB is the first gene identified in A. brasilense whose expression is regulated by NtrC. The observation that ammonium uptake is still possible in mutants lacking the AmtB protein suggests the presence of a second NH4+ transport mechanism. Growth of amtB mutants at low ammonium concentrations is reduced compared to that of the wild type. This suggests that AmtB has a role in scavenging ammonium at low concentrations. PMID:9573149

  17. Aquaporin-4 deficiency facilitates fear memory extinction in the hippocampus through excessive activation of extrasynaptic GluN2B-containing NMDA receptors.

    PubMed

    Wu, Xin; Zhang, Jie-Ting; Li, Di; Zhou, Jun; Yang, Jun; Zheng, Hui-Ling; Chen, Jian-Guo; Wang, Fang

    2017-01-01

    Aquaporin-4 (AQP-4) is the predominant water channel in the brain and primarily expressed in astrocytes. Astrocytes have been generally believed to play important roles in regulating synaptic plasticity and information processing. A growing number of evidence shows that AQP-4 plays a potential role in the regulation of astrocyte function. However, little is known about the function of AQP-4 for synaptic plasticity in the hippocampus. Therefore, we evaluated long-term depression (LTD) in the hippocampus and the extinction of fear memory of AQP-4 knockout (KO) and wild-type (WT) mice. We found that AQP-4 deficiency facilitated fear memory extinction and NMDA receptors (NMDARs)-dependent LTD in the CA3-CA1 pathway. Furthermore, AQP-4 deficiency selectively increased GluN2B-NMDAR-mediated excitatory postsynaptic currents (EPSCs). The excessive activation of extrasynaptic GluN2B-NMDAR contributed to the facilitation of NMDAR-dependent LTD and enhancement of fear memory extinction in AQP-4 KO mice. Thus, it appears that AQP-4 may be a potential target for intervention in fear memory extinction. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Differential upregulation of aquaporin-4 mRNA expression in reactive astrocytes after brain injury: potential role in brain edema.

    PubMed

    Vizuete, M L; Venero, J L; Vargas, C; Ilundáin, A A; Echevarría, M; Machado, A; Cano, J

    1999-08-01

    Astrocytes and aquaporin-4 (AQP4) play a significant role in brain ion homeostasis. Consequently the regulation of AQP4 mRNA in the CNS after different neurological insults was of interest. A single intrastriatal injection of ringer or quinolinic acid strongly induced AQP4 mRNA in the striatum, specially at the core of the lesion. Colocalization studies demonstrated that AQP4 mRNA induction was restricted to hypertrophic astrocytes. The extent of striatal AQP4 mRNA induction did not correlate with neuronal degeneration, but it did with extravasation of Evans blue dye as a marker of BBB disruption. Distant lesions were additionally induced by either 6-OHDA or a knife cut in the medial forebrain bundle (MFB). The former, but not the latter, induced a high AQP4 mRNA expression in the lesioned substantia nigra. However, axotomy of the MFB induced a high AQP4 mRNA expression at the lesion site. We conclude that the induction of AQP4 mRNA expression is related to disruption of the blood-brain barrier and under brain edema conditions this water channel plays a key role in the reestablishment of the brain osmotic equilibrium. Copyright 1999 Academic Press.

  19. Serum peptide reactivities may distinguish neuromyelitis optica subgroups and multiple sclerosis

    PubMed Central

    Metz, Imke; Beißbarth, Tim; Ellenberger, David; Pache, Florence; Stork, Lidia; Ringelstein, Marius; Aktas, Orhan; Jarius, Sven; Wildemann, Brigitte; Dihazi, Hassan; Friede, Tim; Ruprecht, Klemens; Paul, Friedemann

    2016-01-01

    Objective: To assess in an observational study whether serum peptide antibody reactivities may distinguish aquaporin-4 (AQP4) antibody (Ab)–positive and -negative neuromyelitis optica spectrum disorders (NMOSD) and relapsing-remitting multiple sclerosis (RRMS). Methods: We screened 8,700 peptides that included human and viral antigens of potential relevance for inflammatory demyelinating diseases and random peptides with pooled sera from different patient groups and healthy controls to set up a customized microarray with 700 peptides. With this microarray, we tested sera from 66 patients with AQP4-Ab-positive (n = 16) and AQP4-Ab-negative (n = 19) NMOSD, RRMS (n = 11), and healthy controls (n = 20). Results: Differential peptide reactivities distinguished NMOSD subgroups from RRMS in 80% of patients. However, the 2 NMOSD subgroups were not well-discriminated, although those patients are clearly separated by their antibody reactivities against AQP4 in cell-based assays. Elevated reactivities to myelin and Epstein-Barr virus peptides were present in RRMS and to AQP4 and AQP1 peptides in AQP4-Ab-positive NMOSD. Conclusions: While AQP4-Ab-positive and -negative NMOSD subgroups are not well-discriminated by peptide antibody reactivities, our findings suggest that peptide antibody reactivities may have the potential to distinguish between both NMOSD subgroups and MS. Future studies should thus concentrate on evaluating peptide antibody reactivities for the differentiation of AQP4-Ab-negative NMOSD and MS. PMID:26894206

  20. Aquaporin-4 and Cerebrovascular Diseases

    PubMed Central

    Chu, Heling; Huang, Chuyi; Ding, Hongyan; Dong, Jing; Gao, Zidan; Yang, Xiaobo; Tang, Yuping; Dong, Qiang

    2016-01-01

    Cerebrovascular diseases are conditions caused by problems with brain vasculature, which have a high morbidity and mortality. Aquaporin-4 (AQP4) is the most abundant water channel in the brain and crucial for the formation and resolution of brain edema. Considering brain edema is an important pathophysiological change after stoke, AQP4 is destined to have close relation with cerebrovascular diseases. However, this relation is not limited to brain edema due to other biological effects elicited by AQP4. Till now, multiple studies have investigated roles of AQP4 in cerebrovascular diseases. This review focuses on expression of AQP4 and the effects of AQP4 on brain edema and neural cells injuries in cerebrovascular diseases including cerebral ischemia, intracerebral hemorrhage and subarachnoid hemorrhage. In the current review, we pay more attention to the studies of recent years directly from cerebrovascular diseases animal models or patients, especially those using AQP4 gene knockout mice. This review also elucidates the potential of AQP4as an excellent therapeutic target. PMID:27529222

  1. Posttraumatic reduction of edema with aquaporin-4 RNA interference improves acute and chronic functional recovery

    PubMed Central

    Fukuda, Andrew M; Adami, Arash; Pop, Viorela; Bellone, John A; Coats, Jacqueline S; Hartman, Richard E; Ashwal, Stephen; Obenaus, Andre; Badaut, Jerome

    2013-01-01

    Traumatic brain injury (TBI) is common in young children and adolescents and is associated with long-term disability and mortality. The neuropathologic sequelae that result from juvenile TBI are a complex cascade of events that include edema formation and brain swelling. Brain aquaporin-4 (AQP4) has a key role in edema formation. Thus, development of novel treatments targeting AQP4 to reduce edema could lessen the neuropathologic sequelae. We hypothesized that inhibiting AQP4 expression by injection of small-interfering RNA (siRNA) targeting AQP4 (siAQP4) after juvenile TBI would decrease edema formation, neuroinflammation, neuronal cell death, and improve neurologic outcomes. The siAQP4 or a RNA-induced silencing complex (RISC)-free control siRNA (siGLO) was injected lateral to the trauma site after controlled cortical impact in postnatal day 17 rats. Magnetic resonance imaging, neurologic testing, and immunohistochemistry were performed to assess outcomes. Pups treated with siAQP4 showed acute (3 days after injury) improvements in motor function and in spatial memory at long term (60 days after injury) compared with siGLO-treated animals. These improvements were associated with decreased edema formation, increased microglial activation, decreased blood–brain barrier disruption, reduced astrogliosis and neuronal cell death. The effectiveness of our treatment paradigm was associated with a 30% decrease in AQP4 expression at the injection site. PMID:23899928

  2. Deletion of aquaporin-4 renders retinal glial cells more susceptible to osmotic stress.

    PubMed

    Pannicke, Thomas; Wurm, Antje; Iandiev, Ianors; Hollborn, Margrit; Linnertz, Regina; Binder, Devin K; Kohen, Leon; Wiedemann, Peter; Steinhäuser, Christian; Reichenbach, Andreas; Bringmann, Andreas

    2010-10-01

    The glial water channel aquaporin-4 (AQP4) is implicated in the control of ion and osmohomeostasis in the sensory retina. Using retinal slices from AQP4-deficient and wild-type mice, we investigated whether AQP4 is involved in the regulation of glial cell volume under altered osmotic conditions. Superfusion of retinal slices with a hypoosmolar solution induced a rapid swelling of glial somata in tissues from AQP4 null mice but not from wild-type mice. The swelling was mediated by oxidative stress, inflammatory lipid mediators, and sodium influx into the cells and was prevented by activation of glutamatergic and purinergic receptors. Distinct inflammatory proteins, including interleukin-1 beta, interleukin-6, and inducible nitric oxide synthase, were up-regulated in the retina of AQP4 null mice compared with control, whereas cyclooxygenase-2 was down-regulated. The data suggest that water flux through AQP4 is involved in the rapid volume regulation of retinal glial (Müller) cells in response to osmotic stress and that deletion of AQP4 results in an inflammatory response of the retinal tissue. Possible implications of the data for understanding the pathophysiology of neuromyelitis optica, a human disease that has been suggested to involve serum antibodies to AQP4, are discussed. (c) 2010 Wiley-Liss, Inc.

  3. Reduced brain edema and infarct volume in aquaporin-4 deficient mice after transient focal cerebral ischemia.

    PubMed

    Yao, Xiaoming; Derugin, Nikita; Manley, Geoffrey T; Verkman, A S

    2015-01-01

    Aquaporin-4 (AQP4) is a water channel expressed in astrocyte end-feet lining the blood-brain barrier. AQP4 deletion in mice is associated with improved outcomes in global cerebral ischemia produced by transient carotid artery occlusion, and focal cerebral ischemia produced by permanent middle cerebral artery occlusion (MCAO). Here, we investigated the consequences of 1-h transient MCAO produced by intraluminal suture blockade followed by 23 h of reperfusion. In nine AQP4(+/+) and nine AQP4(-/-) mice, infarct volume was significantly reduced by an average of 39 ± 4% at 24h in AQP4(-/-) mice, cerebral hemispheric edema was reduced by 23 ± 3%, and Evans Blue extravasation was reduced by 31 ± 2% (mean ± SEM). Diffusion-weighted magnetic resonance imaging showed greatest reduction in apparent diffusion coefficient around the occlusion site after reperfusion, with remarkably lesser reduction in AQP4(-/-) mice. The reduced infarct volume in AQP4(-/-) mice following transient MCAO supports the potential utility of therapeutic AQP4 inhibition in stroke.

  4. Actin cytoskeleton remodeling governs aquaporin-4 localization in astrocytes.

    PubMed

    Nicchia, Grazia Paola; Rossi, Andrea; Mola, Maria Grazia; Procino, Giuseppe; Frigeri, Antonio; Svelto, Maria

    2008-12-01

    Aquaporin-4 (AQP4) is constitutively concentrated in the plasma membrane of the perivascular glial processes, and its expression is altered in certain pathological conditions associated with brain edema or altered glial migration. When astrocytes are grown in culture, they lose their characteristic star-like shape and AQP4 continuous plasma membrane localization observed in vivo. In this study, we differentiated primary astrocyte cultures with cAMP and lovastatin, both able to induce glial stellation through a reorganization of F-actin cytoskeleton, and obtained AQP4 selectively localized on the cell plasma membrane associated with an increase in the plasma membrane water transport level, but only cAMP induced an increase in AQP4 total protein expression. Phosphorylation experiments indicated that AQP4 in astrocytes is neither phosphorylated nor a substrate of PKA. Depolymerization of F-actin cytoskeleton performed by cytochalasin-D suggested that F-actin cytoskeleton plays a primary role for AQP4 plasma membrane localization and during cell adhesion. Finally, AQP4 knockdown does not compromise the ability of astrocytes to stellate in the presence of cAMP, indicating that astrocyte stellation is independent of AQP4.

  5. Different pattern of aquaporin-4 expression in extensor digitorum longus and soleus during early development.

    PubMed

    Nicchia, Grazia P; Mola, Maria G; Pisoni, Michela; Frigeri, Antonio; Svelto, Maria

    2007-05-01

    Aquaporin-4 (AQP4) is the neuromuscular water channel expressed at the sarcolemma of mammalian fast-twitch fibers that mediates a high water transport rate, which is important during muscle activity. Clinical interest in the neuromuscular expression of AQP4 has increased as it is associated with the protein complex formed by dystrophin, the product of the gene affected in Duchenne muscular dystrophy. The expression of AQP4 during development has not been characterized. In this study, we analyzed the expression of AQP4 in extensor digitorum longus (EDL) and soleus, a fast- and slow-twitch muscle, respectively, during the first weeks after birth. The results show that AQP4 expression in both types of skeletal muscle occurs postnatally. The time course of expression of AQP4 in the two types of muscles was also different. Whereas the expression of AQP4 protein levels in the EDL showed a progressive increase during the first month after birth, reaching levels found in adults by day 24, the levels of the protein in the soleus showed a transient peak between day 12 and day 24 and declined thereafter, an effect that may be related to the transient high number of fast motor units innervating the soleus muscle during this time. The results suggest that AQP4 expression in skeletal muscle is under neuronal influence and contribute to the understanding of the molecular events of fiber differentiation during development.

  6. Differential diagnosis between freshwater drowning and saltwater drowning based on intrapulmonary aquaporin-5 expression.

    PubMed

    Hayashi, Takahito; Ishida, Yuko; Mizunuma, Shinya; Kimura, Akihiko; Kondo, Toshikazu

    2009-01-01

    The intrapulmonary expression of aquaporin-5 (AQP5) was examined in an experimental drowning model and forensic autopsy cases to discuss the possibility for differentiation between freshwater drowning (FWD) and saltwater drowning (SWD). In animal experiments, mice were classified into four groups: (group I: FWD; group II: SWD; group III: postmortem immersion (PI); and group IV: cervical dislocation as controls. In group I, intrapulmonary AQP5 expression was significantly suppressed at both gene and protein levels, compared with the other three groups, and there was no significant difference in AQP5 expression among groups II to IV. In the next series, we examined AQP5 gene expression in human lung samples obtained from forensic autopsies at less than 48 h postmortem (nine FWD cases, five SWD cases, and 14 other cases). Although AQP5 mRNA could be detected in all lung samples under the employed experimental conditions, the intrapulmonary gene expression of AQP5 in FWD was significantly attenuated compared with the other groups. These observations imply that AQP5 expression in type I alveolar epithelial cells was suppressed by hypotonic water to prevent hemodilution from the physiological aspect. Moreover, the analysis of intrapulmonary AQP5 expression would be forensically useful for differentiation between FWD and SWD, or between FWD and PI.

  7. Immunodetection of aquaporin 5 in sheep salivary glands related to pasture vegetative cycle.

    PubMed

    Scocco, Paola; Aralla, Marina; Catorci, Andrea; Belardinelli, Carlo; Arrighi, Silvana

    2011-01-01

    Mammalian aquaporins (AQPs) are a family of at least 13 integral membrane proteins expressed in various epithelia, where they function as channels to permeate water and small solutes. AQP5 is widely expressed in the exocrine gland where it is likely involved in providing an appropriate amount of fluid to be secreted with granular contents. As regards AQP5 expression in the salivary glands, literature is lacking concerning domestic animal species. This study was chiefly aimed at immunohistochemically investigating the presence and localization of AQP5 in sheep mandibular and parotid glands. In addition, AQP5 immunoreactivity was comparatively evaluated in animals fed with forage containing different amounts of water related to the pasture vegetative cycle, in order to shed light on the possible response of the gland to environmental modifications. Moderate AQP5-immunoreactivity was shown at the level of the lateral surface of mandibular serous demilune cells, not affected by the pasture vegetative cycle or water content. On the contrary, the parotid gland arcinar cells showed AQP5-immunoreactivity at the level of apical and lateral plasma membrane, which was slight to very strong, according to the pasture vegetative development and interannual climatic variations. AQP5 expression is likely due to its involvement in providing appropriate saliva fluidity. Indeed, the lowest AQP5 immunoreactivity was noticed when food water content increased.

  8. Ammonia induces aquaporin-4 rearrangement in the plasma membrane of cultured astrocytes.

    PubMed

    Bodega, Guillermo; Suárez, Isabel; López-Fernández, Luis A; García, María I; Köber, Mariana; Penedo, Marcos; Luna, Mónica; Juárez, Silvia; Ciordia, Sergio; Oria, Marc; Córdoba, Joan; Fernández, Benjamín

    2012-12-01

    Aquaporin-4 (AQP4) is a water channel protein mainly located in the astroglial plasma membrane, the precise function of which in the brain edema that accompanies hepatic encephalopathy (HE) is unclear. Since ammonia is the main pathogenic agent in HE, its effect on AQP4 expression and distribution in confluent primary astroglial cultures was examined via their exposure to ammonium chloride (1, 3 and 5 mM) for 5 and 10 days. Ammonia induced the general inhibition of AQP4 mRNA synthesis except in the 1 mM/5 day treatment. However, the AQP4 protein content measured was dependent on the method of analysis; an apparent increase was recorded in treated cells in in-cell Western assays, while an apparent reduction was seen with the classic Western blot method, perhaps due to differences in AQP4 aggregation. Ammonia might therefore induce the formation of insoluble AQP4 aggregates in the astroglial plasma membrane. The finding of AQP4 in the pellet of classic Western blot samples, plus data obtained via confocal microscopy, atomic force microscopy (using immunolabeled cells with gold nanoparticles) and scanning electron microscopy, all corroborate this hypothesis. The effect of ammonia on AQP4 seems not to be due to any osmotic effect; identical osmotic stress induced by glutamine and salt had no significant effect on the AQP4 content. AQP4 functional analysis (subjecting astrocytes to a hypo-osmotic medium and using flow cytometry to measure cell size) demonstrated a smaller water influx in ammonia-treated astrocytes suggesting that AQP4 aggregates are representative of an inactive status; however, more confirmatory studies are required to fully understand the functional status of AQP4 aggregates. The present results suggest that ammonia affects AQP4 expression and distribution, and that astrocytes change their expression of AQP4 mRNA as well as the aggregation status of the ensuing protein depending on the ammonia concentration and duration of exposure. Copyright © 2012

  9. Aquaporin-4 water channels and synaptic plasticity in the hippocampus.

    PubMed

    Scharfman, Helen E; Binder, Devin K

    2013-12-01

    Aquaporin-4 (AQP4) is the major water channel expressed in the central nervous system (CNS) and is primarily expressed in glial cells. Many studies have shown that AQP4 regulates the response of the CNS to insults or injury, but far less is known about the potential for AQP4 to influence synaptic plasticity or behavior. Recent studies have examined long-term potentiation (LTP), long-term depression (LTD), and behavior in AQP4 knockout (KO) and wild-type mice to gain more insight into its potential role. The results showed a selective effect of AQP4 deletion on LTP of the Schaffer collateral pathway in hippocampus using an LTP induction protocol that simulates pyramidal cell firing during theta oscillations (theta-burst stimulation; TBS). However, LTP produced by a different induction protocol was unaffected. There was also a defect in LTD after low frequency stimulation (LFS) in AQP4 KO mice. Interestingly, some slices from AQP4 KO mice exhibited LTD after TBS instead of LTP, or LTP following LFS instead of LTD. These data suggest that AQP4 and astrocytes influence the polarity of long-term synaptic plasticity (potentiation or depression). These potentially powerful roles expand the influence of AQP4 and astrocytes beyond the original suggestions related to regulation of extracellular potassium and water balance. Remarkably, AQP4 KO mice did not show deficits in basal transmission, suggesting specificity for long-term synaptic plasticity. The mechanism appears to be related to neurotrophins and specifically brain-derived neurotrophic factor (BDNF) because pharmacological blockade of neurotrophin trk receptors or scavenging ligands such as BDNF restored plasticity. The in vitro studies predicted effects in vivo of AQP4 deletion because AQP4 KO mice performed worse using a task that requires memory for the location of objects (object placement). However, performance on other hippocampal-dependent tasks was spared. The results suggest an unanticipated and selective

  10. Neuromyelitis optica pathogenesis and aquaporin 4

    PubMed Central

    Graber, David J; Levy, Michael; Kerr, Douglas; Wade, William F

    2008-01-01

    Neuromyelitis optica (NMO) is a severe, debilitating human disease that predominantly features immunopathology in the optic nerves and the spinal cord. An IgG1 autoantibody (NMO-IgG) that binds aquaporin 4 (AQP4) has been identified in the sera of a significant number of NMO patients, as well as in patients with two related neurologic conditions, bilateral optic neuritis (ON), and longitudinal extensive transverse myelitis (LETM), that are generally considered to lie within the NMO spectrum of diseases. NMO-IgG is not the only autoantibody found in NMO patient sera, but the correlation of pathology in central nervous system (CNS) with tissues that normally express high levels of AQP4 suggests NMO-IgG might be pathogenic. If this is the case, it is important to identify and understand the mechanism(s) whereby an immune response is induced against AQP4. This review focuses on open questions about the "events" that need to be understood to determine if AQP4 and NMO-IgG are involved in the pathogenesis of NMO. These questions include: 1) How might AQP4-specific T and B cells be primed by either CNS AQP4 or peripheral pools of AQP4? 2) Do the different AQP4-expressing tissues and perhaps the membrane structural organization of AQP4 influence NMO-IgG binding efficacy and thus pathogenesis? 3) Does prior infection, genetic predisposition, or underlying immune dysregulation contribute to a confluence of events which lead to NMO in select individuals? A small animal model of NMO is essential to demonstrate whether AQP4 is indeed the incipient autoantigen capable of inducing NMO-IgG formation and NMO. If the NMO model is consistent with the human disease, it can be used to examine how changes in AQP4 expression and blood-brain barrier (BBB) integrity, both of which can be regulated by CNS inflammation, contribute to inductive events for anti-AQP4-specific immune response. In this review, we identify reagents and experimental questions that need to be developed and addressed

  11. Systemic administration of lipopolysaccharide increases the expression of aquaporin-4 in the rat anterior pituitary gland.

    PubMed

    Kuwahara-Otani, Sachi; Maeda, Seishi; Tanaka, Koichi; Hayakawa, Tetsu; Seki, Makoto

    2013-01-01

    We investigated the effects of lipopolysaccharide (LPS)-induced endotoxemia on the expression of aquaporin-4 (AQP4) in the rat anterior pituitary gland, using the real-time polymerase chain reaction and immunohistochemistry. After intraperitoneal injection of LPS, the level of AQP4 mRNA doubled at 2, 4 and 8 hr. Immunohistochemical analysis showed an increase with time in AQP4 immunostaining in folliculo-stellate cells following LPS injection; the intensity of immunoreactivity peaked at 8 hr. At the same time, some cyst-like structures, formed by AQP4-positive cells, were observed. These findings indicate that LPS induces the expression of AQP4 in the anterior pituitary gland. The present results should provide an important key to elucidate the pathogenesis of the anterior pituitary gland during endotoxemia.

  12. Knockdown a water channel protein, aquaporin-4, induced glioblastoma cell apoptosis.

    PubMed

    Ding, Ting; Zhou, Ying; Sun, Kai; Jiang, Weizhong; Li, Wenliang; Liu, Xiaoli; Tian, Chunying; Li, Zhihui; Ying, Guoguang; Fu, Li; Gu, Feng; Li, Weidong; Ma, Yongjie

    2013-01-01

    Glioblastomas are the most aggressive forms of primary brain tumors due to their tendency to invade surrounding healthy brain tissues, rendering them largely incurable. The water channel protein, Aquaporin-4 (AQP4) is a key molecule for maintaining water and ion homeostasis in the central nervous system and has recently been reported with cell survival except for its well-known function in brain edema. An increased AQP4 expression has been demonstrated in glioblastoma multiforme (GBM), suggesting it is also involved in malignant brain tumors. In this study, we show that siRNA-mediated down regulation of AQP4 induced glioblastoma cell apoptosis in vitro and in vivo. We further show that several apoptotic key proteins, Cytochrome C, Bcl-2 and Bad are involved in AQP4 signaling pathways. Our results indicate that AQP4 may serve as an anti-apoptosis target for therapy of glioblastoma.

  13. Aquaporin-4 expression in the cerebrospinal fluid in congenital human hydrocephalus

    PubMed Central

    2013-01-01

    Background Aquaporin-4 (AQP4) is a water channel mainly located in the ventricular ependymal cells (brain-CSF barrier), the sub-ependymal glia, glia limitans and in end-feet of astrocytes in at the blood–brain barrier (BBB). Methods In the present work, the expression of AQP4 in the cerebrospinal fluid (CSF) in control and congenital human hydrocephalus infants (obstructive and communicating), was analysed by Western-blot and enzyme immunoassay (ELISA). Results AQP4 was found to be high compared to the control in the CSF in congenital hydrocephalus patients. Western-blot showed higher values for AQP4 than controls in communicating hydrocephalus (communicating: 38.3%, control: 6.9% p < 0.05) although the increase was not significant in obstructive hydrocephalus (obstructive: 14.7%). The AQP4 quantification by ELISA also showed that, the mean concentration of AQP4 in CSF was significantly higher in communicating hydrocephalus (communicating: 11.32 ± 0.69 ng/ml, control: 8.61 ± 0.31 ng/ml; p < 0.05). However, there was no increase over control in obstructive hydrocephalus (obstructive: 8.65 ± 0.80 ng/ml). Conclusions AQP4 has a modulatory effect on ependyma stability and acts in CSF production and reabsorption. Therefore, the increase of AQP4 in the CSF in congenital hydrocephalus could be due to the fact that AQP4 passes from the parenchyma to the CSF and this AQP4 movement may be a consequence of ependyma denudation. PMID:23659378

  14. Acute vascular disruption and Aquaporin 4 loss after stroke

    PubMed Central

    Friedman, Beth; Schachtrup, Christian; Tsai, Philbert S.; Shih, Andy Y.; Akassoglou, Katerina; Kleinfeld, David; Lyden, Patrick D.

    2009-01-01

    Background and Purpose Ischemic protection has been demonstrated by a decrease in stroke-infarct size in transgenic mice with deficient Aquaporin 4 (AQP4) expression. However, it is not known if AQP4 is rapidly reduced during acute stroke in animals with normal AQP4 phenotype, which may provide a potential self-protective mechanism. Methods Adult male rats underwent transient occlusion of the middle cerebral artery (tMCAo) for 1 to 8 hours and reperfusion for 30 minutes. Protein and mRNA expression of AQP4 and glial fibrillary acidic protein (GFAP) were determined by Western blot and rtPCR. Fluorescence quantitation was obtained with laser scanning cytometery (LSC) for Cy5-tagged immunoreactivity along with fluorescein signals from pathological uptake of plasma-borne high molecular weight fluorescein-dextran. Cell death was assessed with in vivo Propidium Iodide (PI) nucleus labeling. Results In the ischemic hemisphere in tissue sections, patches of fluorescein-dextran uptake were overlapped with sites of focal loss of AQP4 immunoreactivity after tMCAo of 1 to 8 hours duration. However, the average levels of AQP4 protein and mRNA, in striatal homogenates, were not significantly reduced after 8 hours of tMCAo. Tissue section cytometry (LSC) of immunoreactivity in scan areas with high densities of fluorescein-dextran uptake, demonstrated reductions in AQP4, but not in IgG or GFAP, after tMCAo of 2 hours or longer. Scan areas with low densities of fluorescein-dextran did not lose AQP4. There was sparse astrocyte cell death as only 1.7 +/− 0.85 % (mean, sd) of DAPI labeled cells were PI and GFAP labeled after 8 hours of tMCAo. Conclusions During acute tMCAo, a rapid loss of AQP4 immunoreactivity from viable astrocytes can occur. However, AQP4 loss is spatially selective and occurs primarily in regions of vascular damage. PMID:19372455

  15. Optic neuritis in neuromyelitis optica.

    PubMed

    Levin, Marc H; Bennett, Jeffrey L; Verkman, A S

    2013-09-01

    Neuromyelitis optica (NMO) is an autoimmune demyelinating disease associated with recurrent episodes of optic neuritis and transverse myelitis, often resulting in permanent blindness and/or paralysis. The discovery of autoantibodies (AQP4-IgG) that target aquaporin-4 (AQP4) has accelerated our understanding of the cellular mechanisms driving NMO pathogenesis. AQP4 is a bidirectional water channel expressed on the plasma membranes of astrocytes, retinal Müller cells, skeletal muscle, and some epithelial cells in kidney, lung and the gastrointestinal tract. AQP4 tetramers form regular supramolecular assemblies at the cell plasma membrane called orthogonal arrays of particles. The pathological features of NMO include perivascular deposition of immunoglobulin and activated complement, loss of astrocytic AQP4, inflammatory infiltration with granulocyte and macrophage accumulation, and demyelination with axon loss. Current evidence supports a causative role of AQP4-IgG in NMO, in which binding of AQP4-IgG to AQP4 orthogonal arrays on astrocytes initiates complement-dependent and antibody-dependent cell-mediated cytotoxicity and inflammation. Immunosuppression and plasma exchange are the mainstays of therapy for NMO optic neuritis. Novel therapeutics targeting specific steps in NMO pathogenesis are entering the development pipeline, including blockers of AQP4-IgG binding to AQP4 and inhibitors of granulocyte function. However, much work remains in understanding the unique susceptibility of the optic nerves in NMO, in developing animal models of NMO optic neuritis, and in improving therapies to preserve vision. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Decreased expression of the glial water channel aquaporin-4 in the intrahippocampal kainic acid model of epileptogenesis

    PubMed Central

    Lee, Darrin J.; Hsu, Mike S.; Seldin, Marcus M.; Arellano, Janetta L.; Binder, Devin K.

    2012-01-01

    Recent evidence suggests that astrocytes may be a potential new target for the treatment of epilepsy. The glial water channel aquaporin-4 (AQP4) is expressed in astrocytes, and along with the inwardly-rectifying K+ channel Kir4.1 is thought to underlie the reuptake of H2O and K+ into glial cells during neural activity. Previous studies have demonstrated increased seizure duration and slowed potassium kinetics in AQP4−/− mice, and redistribution of AQP4 in hippocampal specimens from patients with chronic epilepsy. However, the regulation and role of AQP4 during epileptogenesis remain to be defined. In this study, we examined the expression of AQP4 and other glial molecules (GFAP, Kir4.1, glutamine synthetase) in the intrahippocampal kainic acid (KA) model of epilepsy and compared behavioral and histologic outcomes in wild-type mice vs. AQP4−/− mice. Marked and prolonged reduction in AQP4 immunoreactivity on both astrocytic fine processes and endfeet was observed following KA status epilepticus in multiple hippocampal layers. In addition, AQP4−/− mice had more spontaneous recurrent seizures than wild-type mice during the first week after KA SE as assessed by chronic video-EEG monitoring and blinded EEG analysis. While both genotypes exhibited similar reactive astrocytic changes, granule cell dispersion and CA1 pyramidal neuron loss, there were an increased number of fluorojade-positive cells early after KA SE in AQP4−/− mice. These results indicate a marked reduction of AQP4 following KA SE and suggest that dysregulation of water and potassium homeostasis occurs during early epileptogenesis. Restoration of astrocytic water and ion homeostasis may represent a novel therapeutic strategy. PMID:22361023

  17. Altered aquaporin-4 expression in human muscular dystrophies: a common feature?

    PubMed

    Frigeri, Antonio; Nicchia, Grazia Paola; Repetto, Silvia; Bado, Massimo; Minetti, Carlo; Svelto, Maria

    2002-07-01

    Duchenne Muscular Dystrophy (DMD) is a progressive lethal muscle disease that affects young boys. Dystrophin, absent in DMD and reduced in the milder form Becker Muscular Dystrophy (BMD), binds to several membrane-associated proteins known as dystrophin-associated proteins (DAPs). Once this critical structural link is disrupted, muscle fibers become more vulnerable to mechanical and osmotic stress. Recently, we have reported that the expression of aquaporin-4 (AQP4), a water-selective channel expressed in the sarcolemma of fast-twitch fibers and astrocyte end-feet, is drastically reduced in the muscle and brain of the mdx mouse, the animal model of DMD. In the present study, we analyzed the expression of AQP4 in several DMD/BMD patients of different ages with different mutations in the dystrophin gene. Immunofluorescence results indicate that, compared with healthy control children, AQP4 is reduced severely in all the DMD muscular biopsies analyzed and in 50% of the analyzed BMD. Western blot analysis revealed that the deficiency in sarcolemma AQP4 staining is due to a reduction in total AQP4 muscle protein content rather than to changes in immunoreactivity. Double-immunostaining experiments indicate that AQP4 reduction is independent of changes in the fiber myosin heavy chain composition. AQP4 and a-syntrophin analysis of BMD muscular biopsies revealed that the expression and stability of AQP4 in the sarcolemma does not always decrease when a-syntrophin is strongly reduced. Finally, limb-girdle muscular dystrophy biopsies and facioscapulohumeral muscular dystrophy revealed that AQP4 expression was not altered in these forms of muscular dystrophy. These experiments provide the first evidence of AQP4 reduction in a human pathology and show that this deficiency is an important feature of DMD/BMD.

  18. Aquaporins in skeletal muscle: reassessment of the functional role of aquaporin-4.

    PubMed

    Frigeri, Antonio; Nicchia, Grazia Paola; Balena, Rosalba; Nico, Beatrice; Svelto, Maria

    2004-05-01

    Aquaporin-4 (AQP4) is the major water channel of the neuromuscular system, but its physiological function in both perivascular astrocytes and skeletal muscle sarcolemma is unclear. The purpose of this study was to assess the following in skeletal muscle: a) the expression of all cloned water cannels; b) the functional role of AQP4 using sarcolemma vesicles purified by means of several fractionation methods, and c) the functional effect of AQP4 reduction in mdx mice, the animal model of Duchenne muscular dystrophy (DMD). Immunofluorescence and immunoblot experiments performed with affinity purified antibodies revealed that only AQP1 and AQP4 are expressed in mouse skeletal muscle: AQP1 in endothelial cells of continuous capillaries and AQP4 on the plasma membrane of muscle fiber. Plasma membrane vesicle purification was performed with a procedure extensively used to purify and characterize dystrophin-associated proteins (DAPs) from rabbit skeletal muscle. Western blot analysis showed strong co-enrichment of the analyzed DAPs and AQP4, indicating that the membrane vesicle preparation was highly enriched in sarcolemma. Stopped-flow light-scattering measurements showed high osmotic water permeability of sarcolemma vesicles (approximately 150 microm/s) compatible with the AQP-mediated pathway for water movement. Sarcolemma vesicles prepared from mdx mice revealed, in parallel with AQP4 disappearance from the plasma membrane, a strong reduction in water permeability compared with wild-type mice. Altogether, these results demonstrate high AQP4-mediated water permeability of the skeletal muscle sarcolemma. Expression of sarcolemmal AQP4 together with that of vascular AQP1 may be responsible for the fast water transfer from the blood into the muscle during intense activity. These data imply an important role for aquaporins in skeletal muscle physiology as well as an involvement of AQP4 in the molecular alterations that occur in the muscle of DMD patients.

  19. Aquaporin-4 Cell-Surface Expression and Turnover Are Regulated by Dystroglycan, Dynamin, and the Extracellular Matrix in Astrocytes

    PubMed Central

    Tham, Daniel Kai Long; Joshi, Bharat; Moukhles, Hakima

    2016-01-01

    The water-permeable channel aquaporin-4 (AQP4) is highly expressed in perivascular astrocytes of the mammalian brain and represents the major conduit for water across the blood-brain barrier. Within these cells, AQP4 is found in great quantities at perivascular endfoot sites but is detected in lesser amounts at the membrane domains within the brain parenchyma. We had previously established that this polarization was regulated by the interaction between dystroglycan (DG), an extracellular matrix receptor that is co-expressed with AQP4, and the laminin that is contained within the perivascular basal lamina. In the present study, we have attempted to describe the mechanisms that underlie this regulation, using primary astrocyte cultures. Via biotinylation, we found that the cell-surface expression of AQP4 is DG-dependent and is potentiated by laminin. We also determined that this laminin-dependent increase occurs not through an upregulation of total AQP4 levels, but rather from a redirection of AQP4 from an intracellular, EEA-1-associated pool to the cell surface. We then demonstrated an association between DG and dynamin and showed that dynamin functioned in conjunction with clathrin to regulate surface AQP4 amounts. Furthermore, we observed that DG preferentially binds to the inactive forms of dynamin, suggesting that this interaction was inhibitory for AQP4 endocytosis. Finally, we showed that laminin selectively upregulates the cell-surface expression of the M23 isoform of AQP4. Our data therefore indicate that the dual interation of DG with laminin and dynamin is involved in the regulation of AQP4 internalization, leading to its asymmetric enrichment at perivascular astrocyte endfeet. PMID:27788222

  20. Autoantibodies against muscarinic type 3 receptor in Sjögren's syndrome inhibit aquaporin 5 trafficking.

    PubMed

    Lee, Byung Ha; Gauna, Adrienne E; Perez, Geidys; Park, Yun-jong; Pauley, Kaleb M; Kawai, Toshihisa; Cha, Seunghee

    2013-01-01

    Sjögren's syndrome (SjS) is a chronic autoimmune disease that mainly targets the salivary and lacrimal glands. It has been controversial whether anti-muscarinic type 3 receptor (α-M3R) autoantibodies in patients with SjS inhibit intracellular trafficking of aquaporin-5 (AQP5), water transport protein, leading to secretory dysfunction. To address this issue, GFP-tagged human AQP5 was overexpressed in human salivary gland cells (HSG-hAQP5) and monitored AQP5 trafficking to the plasma membrane following carbachol (CCh, M3R agonist) stimulation. AQP5 trafficking was indeed mediated by M3R stimulation, shown in partial blockage of trafficking by M3R-antagonist 4-DAMP. HSG-hAQP5 pre-incubated with SjS plasma for 24 hours significantly reduced AQP5 trafficking with CCh, compared with HSG-hAQP5 pre-incubated with healthy control (HC) plasma. This inhibition was confirmed by monoclonal α-M3R antibody and pre-absorbed plasma. Interestingly, HSG-hAQP5 pre-incubated with SjS plasma showed no change in cell volume, compared to the cells incubated with HC plasma showing shrinkage by twenty percent after CCh-stimulation. Our findings clearly indicate that binding of anti-M3R autoantibodies to the receptor, which was verified by immunoprecipitation, suppresses AQP5 trafficking to the membrane and contribute to impaired fluid secretion in SjS. Our current study urges further investigations of clinical associations between SjS symptoms, such as degree of secretory dysfunction, cognitive impairment, and/or bladder irritation, and different profiles (titers, isotypes, and/or specificity) of anti-M3R autoantibodies in individuals with SjS.

  1. Patient vs provider reports of aberrant medication-taking behavior among opioid-treated patients with chronic pain who report misusing opioid medication.

    PubMed

    Nikulina, Valentina; Guarino, Honoria; Acosta, Michelle C; Marsch, Lisa A; Syckes, Cassandra; Moore, Sarah K; Portenoy, Russell K; Cruciani, Ricardo A; Turk, Dennis C; Rosenblum, Andrew

    2016-08-01

    During long-term opioid therapy for chronic noncancer pain, monitoring medication adherence of patients with a history of aberrant opioid medication-taking behaviors (AMTB) is an essential practice. There is limited research, however, into the concordance among existing monitoring tools of self-report, physician report, and biofluid screening. This study examined associations among patient and provider assessments of AMTB and urine drug screening using data from a randomized trial of a cognitive-behavioral intervention designed to improve medication adherence and pain-related outcomes among 110 opioid-treated patients with chronic pain who screened positive for AMTB and were enrolled in a pain program. Providers completed the Aberrant Behavior Checklist (ABC) and patients completed the Current Opioid Misuse Measure (COMM) and the Chemical Coping Inventory (CCI). In multivariate analyses, ABC scores were compared with COMM and CCI scores, while controlling for demographics and established risk factors for AMTB, such as pain severity. Based on clinical cutoffs, 84% of patients reported clinically significant levels of AMTB and providers rated 36% of patients at elevated levels. Provider reports of AMTB were not correlated with COMM or CCI scores. However, the ABC ratings of experienced providers (nurse practitioners/attending physicians) were higher than those of less experienced providers (fellows) and were correlated with CCI scores and risk factors for AMTB. Associations between patient- and provider-reported AMTB and urine drug screening results were low and largely nonsignificant. In conclusion, concordance between patient and provider reports of AMTB among patients with chronic pain prescribed opioid medication varied by provider level of training.

  2. Effects of Different Doses of Levetiracetam on Aquaporin 4 Expression in Rats with Brain Edema Following Fluid Percussion Injury

    PubMed Central

    Jin, Hongbo; Li, Wenling; Dong, Changzheng; Ma, Li; Wu, Jiang; Zhao, Wenqing

    2016-01-01

    Background This study was designed to investigate the effects of different doses of levetiracetam on aquaporin 4 (AQP4) expression in rats after fluid percussion injury. Material/Methods Sprague-Dawley rats were randomly divided into 4 groups: sham operation group, traumatic brain injury group, low-dose levetiracetam group, and high-dose levetiracetam group. Brain edema models were established by fluid percussion injury, and intervened by the administration of levetiracetam. Samples from the 4 groups were collected at 2, 6, 12, and 24 h, and at 3 and 7 days after injury. Histological observation was performed using hematoxylin-eosin staining and immunohistochemical staining. AQP4 and AQP4 mRNA expression was detected using Western blot assay and RT-PCR. Brain water content was measured by the dry-wet method. Results Compared with the traumatic brain injury group, brain water content, AQP4 expression, and AQP4 mRNA expression were lower in the levetiracetam groups at each time point and the differences were statistically significant (P<0.05). The intervention effects of high-dose levetiracetam were more apparent. Conclusions Levetiracetam can lessen brain edema from fluid percussion injury by down-regulating AQP4 and AQP4 mRNA expression. There is a dose-effect relationship in the preventive effect of levetiracetam within a certain extent. PMID:26927633

  3. Aquaporin-4 Deficiency Impairs Synaptic Plasticity and Associative Fear Memory in the Lateral Amygdala: Involvement of Downregulation of Glutamate Transporter-1 Expression

    PubMed Central

    Li, Yan-Kun; Wang, Fang; Wang, Wei; Luo, Yi; Wu, Peng-Fei; Xiao, Jun-Li; Hu, Zhuang-Li; Jin, You; Hu, Gang; Chen, Jian-Guo

    2012-01-01

    Astrocytes are implicated in information processing, signal transmission, and regulation of synaptic plasticity. Aquaporin-4 (AQP4) is the major water channel in adult brain and is primarily expressed in astrocytes. A growing body of evidence indicates that AQP4 is a potential molecular target for the regulation of astrocytic function. However, little is known about the role of AQP4 in synaptic plasticity in the amygdala. Therefore, we evaluated long-term potentiation (LTP) in the lateral amygdala (LA) and associative fear memory of AQP4 knockout (KO) and wild-type mice. We found that AQP4 deficiency impaired LTP in the thalamo-LA pathway and associative fear memory. Furthermore, AQP4 deficiency significantly downregulated glutamate transporter-1 (GLT-1) expression and selectively increased NMDA receptor (NMDAR)-mediated EPSCs in the LA. However, low concentration of NMDAR antagonist reversed the impairment of LTP in KO mice. Upregulating GLT-1 expression by chronic treatment with ceftriaxone also reversed the impairment of LTP and fear memory in KO mice. These findings imply a role for AQP4 in synaptic plasticity and associative fear memory in the amygdala by regulating GLT-1 expression. PMID:22473056

  4. Serological markers associated with neuromyelitis optica spectrum disorders in South India

    PubMed Central

    Pandit, Lekha; Sato, Douglas Kazutoshi; Mustafa, Sharik; Takahashi, Toshiyuki; D’Cunha, Anitha; Malli, Chaithra; Sudhir, Akshatha; Fujihara, Kazuo

    2016-01-01

    Background: Neuromyelitis optica spectrum disorders (NMOSDs) represent 20% of all demyelinating disorders in South India. No studies have determined the seroprevalence to both antibodies against aquaporin-4* and antimyelin oligodendrocyte glycoprotein antibody (anti-MOG+) in this population. Objective: To identify and characterize seropositive patients for anti-aquaporin-4 antibody (anti-AQP4+) and anti-MOG+ in South India. Materials and Methods: We included 125 consecutive patients (15 children) who were serologically characterized using live transfected cells to human M23-AQP4 or full-length MOG. Results: Among a total of 125 patients, 30.4% of patients were anti-AQP4+, 20% were anti-MOG+, and 49.6% were seronegative. No patient was positive for both. Anti-MOG+ patients represented 28.7% (25/87) of seronegative NMOSD. In comparison to anti-AQP4+ patients, anti-MOG+ patients were commonly male, had less frequent attacks and milder disability on expanded disability status score scale. Seronegative patients were also predominantly male, 36% (9/25) had monophasic longitudinally extensive transverse myelitis and disability was comparable with anti-AQP4+ patients. Lumbar cord involvement was common in anti-MOG+ and seronegatives, whereas anti-AQP4+ patients had more cervical lesions. Conclusion: Anti-AQP4+/anti-MOG + patients accounted for nearly half of the patients suspected of having NMOSD in South India, indicating that antibody testing may be useful on the management of subgroups with different prognosis. PMID:27994362

  5. Treatment of neuromyelitis optica: state-of-the-art and emerging therapies

    PubMed Central

    Papadopoulos, Marios C.; Bennett, Jeffrey L.; Verkman, Alan S.

    2014-01-01

    Neuromyelitis optica (NMO) is an autoimmune disease of the CNS that is characterized by inflammatory demyelinating lesions in the spinal cord and optic nerve, potentially leading to paralysis and blindness. NMO can usually be distinguished from multiple sclerosis (MS) on the basis of seropositivity for IgG antibodies against the astrocytic water channel aquaporin-4 (AQP4). Differentiation from MS is crucial, because some MS treatments can exacerbate NMO. NMO pathogenesis involves AQP4-IgG antibody binding to astrocytic AQP4, which causes complement-dependent cytotoxicity and secondary inflammation with granulocyte and macrophage infiltration, blood–brain barrier disruption and oligodendrocyte injury. Current NMO treatments include general immunosuppressive agents, B-cell depletion, and plasma exchange. Therapeutic strategies targeting complement proteins, the IL-6 receptor, neutrophils, eosinophils and CD19—all initially developed for other indications—are under clinical evaluation for repurposing for NMO. Therapies in the preclinical phase include AQP4-blocking antibodies and AQP4-IgG enzymatic inactivation. Additional, albeit currently theoretical, treatment options include reduction of AQP4 expression, disruption of AQP4 orthogonal arrays, enhancement of complement inhibitor expression, restoration of the blood–brain barrier, and induction of immune tolerance. Despite the many therapeutic options in NMO, no controlled clinical trials in patients with this condition have been conducted to date. PMID:25112508

  6. Comparative molecular dynamics study of neuromyelitis optica-immunoglobulin G binding to aquaporin-4 extracellular domains.

    PubMed

    Alberga, Domenico; Trisciuzzi, Daniela; Lattanzi, Gianluca; Bennett, Jeffrey L; Verkman, Alan S; Mangiatordi, Giuseppe Felice; Nicolotti, Orazio

    2017-08-01

    Neuromyelitis optica (NMO) is an inflammatory demyelinating disease of the central nervous system in which most patients have serum autoantibodies (called NMO-IgG) that bind to astrocyte water channel aquaporin-4 (AQP4). A potential therapeutic strategy in NMO is to block the interaction of NMO-IgG with AQP4. Building on recent observation that some single-point and compound mutations of the AQP4 extracellular loop C prevent NMO-IgG binding, we carried out comparative Molecular Dynamics (MD) investigations on three AQP4 mutants, TP(137-138)AA, N(153)Q and V(150)G, whose 295-ns long trajectories were compared to that of wild type human AQP4. A robust conclusion of our modeling is that loop C mutations affect the conformation of neighboring extracellular loop A, thereby interfering with NMO-IgG binding. Analysis of individual mutations suggested specific hydrogen bonding and other molecular interactions involved in AQP4-IgG binding to AQP4. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Expression of aquaporin-4 and pathological characteristics of brain injury in a rat model of traumatic brain injury

    PubMed Central

    ZHANG, CHENGCHENG; CHEN, JIANQIANG; LU, HONG

    2015-01-01

    Aquaporin 4 (AQP4) is a widely distributed membrane protein, which is found in glial cells, ependymocytes and capillary endothelial cells in the brain, and particularly in the choroid plexus. AQP4 is a key regulator of water metabolism, and changes in its expression following brain injury are associated with pathological changes in the damaged side of the brain; however, the effects of brain injury on AQP4 and injury-induced pathological changes in the contralateral non-damaged side of the brain remain to be fully elucidated. In the present study, male Sprague-Dawley rats were subjected to traumatic brain injury (TBI) and changes in brain water content, the expression of AQP4 expression and pathological characteristics in the damaged and contralateral non-damaged sides of the brain were examined. In the damaged side of the brain, vasogenic edema appeared first, followed by cellular edema. The aggravated cellular edema in the damaged side of the brain resulted in two periods of peak edema severity. Pathological changes in the contralateral non-damaged side of the brain occurred later than those in the damaged side; cellular edema appeared first, followed by vasogenic edema, which was alleviated earlier than the cellular edema. AQP4 was downregulated during vasogenic edema, and upregulated during cellular edema. Taken together, these results suggested that the downregulation of AQP4 was a result of vasogenic edema and that the upregulation of AQP4 may have induced cellular edema. PMID:26459070

  8. Lack of sex-linked differences in cerebral edema and aquaporin-4 expression after experimental stroke

    PubMed Central

    Liu, Xiaoqin; Zhang, Wenri; Alkayed, Nabil J; Froehner, Stanley C; Adams, Marvin E; Amiry-Moghaddam, Mahmood; Ottersen, Ole Petter; Hurn, Patricia D; Bhardwaj, Anish

    2009-01-01

    Aquaporin-4 (AQP4) has been shown to be important in the evolution of stroke-associated cerebral edema. However, the role of AQP4 in stroke-associated cerebral edema as it pertains to sex has not been previously studied. The perivascular pool of AQP4 is important in the influx and efflux of water during focal cerebral ischemia. We used mice with targeted disruption of the gene encoding α-syntrophin (α-Syn−/−) that lack the perivascular AQP4 pool but retain the endothelial pool of this protein. Infarct volume at 72h after transient focal ischemia (90 mins) in isoflurane-anesthetized mice was attenuated in both sexes with α-Syn deletion as compared with their wild-type (WT) counterparts. There were no sex differences in hemispheric water content in WT and α-Syn−/− mice or regional AQP4 expression in WT mice. In neither sex did α-Syn deletion lead to alterations in end-ischemic regional cerebral blood flow (rCBF). These data suggest that after experimental stroke: (1) there is no difference in stroke-associated cerebral edema based on sex, (2) AQP4 does not involve in sex-based differences in stroke volume, and (3) perivascular pool of AQP4 has no significant role in end-ischemic rCBF. PMID:18648381

  9. Effects of Different Doses of Levetiracetam on Aquaporin 4 Expression in Rats with Brain Edema Following Fluid Percussion Injury.

    PubMed

    Jin, Hongbo; Li, Wenling; Dong, Changzheng; Ma, Li; Wu, Jiang; Zhao, Wenqing

    2016-02-29

    BACKGROUND This study was designed to investigate the effects of different doses of levetiracetam on aquaporin 4 (AQP4) expression in rats after fluid percussion injury. MATERIAL AND METHODS Sprague-Dawley rats were randomly divided into 4 groups: sham operation group, traumatic brain injury group, low-dose levetiracetam group, and high-dose levetiracetam group. Brain edema models were established by fluid percussion injury, and intervened by the administration of levetiracetam. Samples from the 4 groups were collected at 2, 6, 12, and 24 h, and at 3 and 7 days after injury. Histological observation was performed using hematoxylin-eosin staining and immunohistochemical staining. AQP4 and AQP4 mRNA expression was detected using Western blot assay and RT-PCR. Brain water content was measured by the dry-wet method. RESULTS Compared with the traumatic brain injury group, brain water content, AQP4 expression, and AQP4 mRNA expression were lower in the levetiracetam groups at each time point and the differences were statistically significant (P<0.05). The intervention effects of high-dose levetiracetam were more apparent. CONCLUSIONS Levetiracetam can lessen brain edema from fluid percussion injury by down-regulating AQP4 and AQP4 mRNA expression. There is a dose-effect relationship in the preventive effect of levetiracetam within a certain extent.

  10. Atomic force microscopy on plasma membranes from Xenopus laevis oocytes containing human aquaporin 4.

    PubMed

    Orsini, Francesco; Santacroce, Massimo; Cremona, Andrea; Gosvami, Nitya N; Lascialfari, Alessandro; Hoogenboom, Bart W

    2014-11-01

    Atomic force microscopy (AFM) is a unique tool for imaging membrane proteins in near-native environment (embedded in a membrane and in buffer solution) at ~1 nm spatial resolution. It has been most successful on membrane proteins reconstituted in 2D crystals and on some specialized and densely packed native membranes. Here, we report on AFM imaging of purified plasma membranes from Xenopus laevis oocytes, a commonly used system for the heterologous expression of membrane proteins. Isoform M23 of human aquaporin 4 (AQP4-M23) was expressed in the X. laevis oocytes following their injection with AQP4-M23 cRNA. AQP4-M23 expression and incorporation in the plasma membrane were confirmed by the changes in oocyte volume in response to applied osmotic gradients. Oocyte plasma membranes were then purified by ultracentrifugation on a discontinuous sucrose gradient, and the presence of AQP4-M23 proteins in the purified membranes was established by Western blotting analysis. Compared with membranes without over-expressed AQP4-M23, the membranes from AQP4-M23 cRNA injected oocytes showed clusters of structures with lateral size of about 10 nm in the AFM topography images, with a tendency to a fourfold symmetry as may be expected for higher-order arrays of AQP4-M23. In addition, but only infrequently, AQP4-M23 tetramers could be resolved in 2D arrays on top of the plasma membrane, in good quantitative agreement with transmission electron microscopy analysis and the current model of AQP4. Our results show the potential and the difficulties of AFM studies on cloned membrane proteins in native eukaryotic membranes.

  11. Super-resolution imaging of aquaporin-4 orthogonal arrays of particles in cell membranes.

    PubMed

    Rossi, Andrea; Moritz, Tobias J; Ratelade, Julien; Verkman, A S

    2012-09-15

    Aquaporin-4 (AQP4) is a water channel expressed in astrocytes, skeletal muscle and epithelial cells that forms supramolecular aggregates in plasma membranes called orthogonal arrays of particles (OAPs). AQP4 is expressed as a short isoform (M23) that forms large OAPs, and a long isoform (M1) that does not form OAPs by itself but can mingle with M23 to form relatively small OAPs. AQP4 OAPs were imaged with ~20 nm spatial precision by photoactivation localization microscopy (PALM) in cells expressing chimeras of M1- or M23-AQP4 with photoactivatable fluorescent proteins. Native AQP4 was imaged by direct stochastic optical reconstruction microscopy (dSTORM) using a primary anti-AQP4 antibody and fluorescent secondary antibodies. We found that OAP area increased from 1878±747 to 3647±958 nm(2) with decreasing M1:M23 ratio from 1:1 to 1:3, and became elongated. Two-color dSTORM indicated that M1 and M23 co-assemble in OAPs with a M1-enriched periphery surrounding a M23-enriched core. Native AQP4 in astrocytes formed OAPs with an area of 2142±829 nm(2), which increased to 5137±1119 nm(2) with 2-bromopalmitate. PALM of AQP4 OAPs in live cells showed slow diffusion (average ~10(-12) cm(2)/s) and reorganization. OAP area was not altered by anti-AQP4 IgG autoantibodies (NMO-IgG) that cause the neurological disease neuromyelitis optica. Super-resolution imaging allowed elucidation of novel nanoscale structural and dynamic features of OAPs.

  12. Super-resolution imaging of aquaporin-4 orthogonal arrays of particles in cell membranes

    PubMed Central

    Rossi, Andrea; Moritz, Tobias J.; Ratelade, Julien; Verkman, A. S.

    2012-01-01

    Summary Aquaporin-4 (AQP4) is a water channel expressed in astrocytes, skeletal muscle and epithelial cells that forms supramolecular aggregates in plasma membranes called orthogonal arrays of particles (OAPs). AQP4 is expressed as a short isoform (M23) that forms large OAPs, and a long isoform (M1) that does not form OAPs by itself but can mingle with M23 to form relatively small OAPs. AQP4 OAPs were imaged with ∼20 nm spatial precision by photoactivation localization microscopy (PALM) in cells expressing chimeras of M1- or M23-AQP4 with photoactivatable fluorescent proteins. Native AQP4 was imaged by direct stochastic optical reconstruction microscopy (dSTORM) using a primary anti-AQP4 antibody and fluorescent secondary antibodies. We found that OAP area increased from 1878±747 to 3647±958 nm2 with decreasing M1:M23 ratio from 1:1 to 1:3, and became elongated. Two-color dSTORM indicated that M1 and M23 co-assemble in OAPs with a M1-enriched periphery surrounding a M23-enriched core. Native AQP4 in astrocytes formed OAPs with an area of 2142±829 nm2, which increased to 5137±1119 nm2 with 2-bromopalmitate. PALM of AQP4 OAPs in live cells showed slow diffusion (average ∼10−12 cm2/s) and reorganization. OAP area was not altered by anti-AQP4 IgG autoantibodies (NMO-IgG) that cause the neurological disease neuromyelitis optica. Super-resolution imaging allowed elucidation of novel nanoscale structural and dynamic features of OAPs. PMID:22718347

  13. Live cell analysis of aquaporin-4 m1/m23 interactions and regulated orthogonal array assembly in glial cells.

    PubMed

    Crane, Jonathan M; Bennett, Jeffrey L; Verkman, A S

    2009-12-18

    Aquaporin-4 (AQP4) can assemble into supramolecular aggregates called orthogonal arrays of particles (OAPs). In cells expressing single AQP4 isoforms, we found previously that OAP formation by AQP4-M23 requires N terminus interactions just downstream of Met-23 and that the inability of AQP4-M1 to form OAPs involves blocking by residues upstream of Met-23. Here, we studied M1/M23 interactions and regulated OAP assembly by nanometer-resolution tracking of quantum dot-labeled AQP4 in live cells expressing differentially tagged AQP4 isoforms and in primary glial cell cultures in which native AQP4 was labeled with a monoclonal recombinant neuromyelitis optica autoantibody. OAP assembly was assessed independently by Blue Native gel electrophoresis. We found that OAPs in native glial cells could be reproduced in transfected cells expressing equal amounts of AQP4-M1 and -M23. Mutants of M23 that do not themselves form OAPs, including M23-F26Q and M23-G28P, were able to fully co-associate with native M23 to form large immobile OAPs. Analysis of a palmitoylation-null M1 mutant (C13A/C17A) indicated palmitoylation-dependent OAP assembly only in the presence of M23, with increased M1 palmitoylation causing progressive OAP disruption. Differential regulation of OAP assembly by palmitoylation, calcium elevation, and protein kinase C activation was found in primary glial cell cultures. We conclude that M1 and M23 co-assemble in AQP4 OAPs and that specific signaling events can regulate OAP assembly in glial cells.

  14. Identification of Two Major Conformational Aquaporin-4 Epitopes for Neuromyelitis Optica Autoantibody Binding*

    PubMed Central

    Pisani, Francesco; Mastrototaro, Mauro; Rossi, Andrea; Nicchia, Grazia Paola; Tortorella, Carla; Ruggieri, Maddalena; Trojano, Maria; Frigeri, Antonio; Svelto, Maria

    2011-01-01

    Neuromyelitis optica (NMO) is an autoimmune demyelinating disease characterized by the presence of anti-aquaporin-4 (AQP4) antibodies in the patient sera. We recently reported that these autoantibodies are able to bind AQP4 when organized in the supramolecular structure called the orthogonal array of particles (OAP). To map the antigenic determinants, we produced a series of AQP4 mutants based on multiple alignment sequence analysis between AQP4 and other OAP-forming AQPs. Mutations were introduced in the three extracellular loops (A, C, and E), and the binding capacity of NMO sera was tested on AQP4 mutants. Results indicate that one group of sera was able to recognize a limited portion of loop C containing the amino acid sequence 146GVT(T/M)V150. A second group of sera was characterized by a predominant role of loop A. Deletion of four AQP4-specific amino acids (61G(S/T)E(N/K)64) in loop A substantially affected the binding of this group of sera. However, the binding capacity was further reduced when amino acids in loop A were mutated together with those in loop E or when those in loop C were mutated in combination with loop E. Finally, a series of AQP0 mutants were produced in which the extracellular loops were progressively changed to make them identical to AQP4. Results showed that none of the mutants was able to reproduce in AQP0 the NMO-IgG epitopes, indicating that the extracellular loop sequence by itself was not sufficient to determine the rearrangement required to create the epitopes. Although our data highlight the complexity of the disease, this study identifies key immunodominant epitopes and provides direct evidence that the transition from AQP4 tetramers to AQP4-OAPs involves conformational changes of the extracellular loops. PMID:21212277

  15. The central role of aquaporins in the pathophysiology of ischemic stroke

    PubMed Central

    Vella, Jasmine; Zammit, Christian; Di Giovanni, Giuseppe; Muscat, Richard; Valentino, Mario

    2015-01-01

    Stroke is a complex and devastating neurological condition with limited treatment options. Brain edema is a serious complication of stroke. Early edema formation can significantly contribute to infarct formation and thus represents a promising target. Aquaporin (AQP) water channels contribute to water homeostasis by regulating water transport and are implicated in several disease pathways. At least 7 AQP subtypes have been identified in the rodent brain and the use of transgenic mice has greatly aided our understanding of their functions. AQP4, the most abundant channel in the brain, is up-regulated around the peri-infarct border in transient cerebral ischemia and AQP4 knockout mice demonstrate significantly reduced cerebral edema and improved neurological outcome. In models of vasogenic edema, brain swelling is more pronounced in AQP4-null mice than wild-type providing strong evidence of the dual role of AQP4 in the formation and resolution of both vasogenic and cytotoxic edema. AQP4 is co-localized with inwardly rectifying K+-channels (Kir4.1) and glial K+ uptake is attenuated in AQP4 knockout mice compared to wild-type, indicating some form of functional interaction. AQP4-null mice also exhibit a reduction in calcium signaling, suggesting that this channel may also be involved in triggering pathological downstream signaling events. Associations with the gap junction protein Cx43 possibly recapitulate its role in edema dissipation within the astroglial syncytium. Other roles ascribed to AQP4 include facilitation of astrocyte migration, glial scar formation, modulation of inflammation and signaling functions. Treatment of ischemic cerebral edema is based on the various mechanisms in which fluid content in different brain compartments can be modified. The identification of modulators and inhibitors of AQP4 offer new therapeutic avenues in the hope of reducing the extent of morbidity and mortality in stroke. PMID:25904843

  16. Identification of two major conformational aquaporin-4 epitopes for neuromyelitis optica autoantibody binding.

    PubMed

    Pisani, Francesco; Mastrototaro, Mauro; Rossi, Andrea; Nicchia, Grazia Paola; Tortorella, Carla; Ruggieri, Maddalena; Trojano, Maria; Frigeri, Antonio; Svelto, Maria

    2011-03-18

    Neuromyelitis optica (NMO) is an autoimmune demyelinating disease characterized by the presence of anti-aquaporin-4 (AQP4) antibodies in the patient sera. We recently reported that these autoantibodies are able to bind AQP4 when organized in the supramolecular structure called the orthogonal array of particles (OAP). To map the antigenic determinants, we produced a series of AQP4 mutants based on multiple alignment sequence analysis between AQP4 and other OAP-forming AQPs. Mutations were introduced in the three extracellular loops (A, C, and E), and the binding capacity of NMO sera was tested on AQP4 mutants. Results indicate that one group of sera was able to recognize a limited portion of loop C containing the amino acid sequence (146)GVT(T/M)V(150). A second group of sera was characterized by a predominant role of loop A. Deletion of four AQP4-specific amino acids ((61)G(S/T)E(N/K)(64)) in loop A substantially affected the binding of this group of sera. However, the binding capacity was further reduced when amino acids in loop A were mutated together with those in loop E or when those in loop C were mutated in combination with loop E. Finally, a series of AQP0 mutants were produced in which the extracellular loops were progressively changed to make them identical to AQP4. Results showed that none of the mutants was able to reproduce in AQP0 the NMO-IgG epitopes, indicating that the extracellular loop sequence by itself was not sufficient to determine the rearrangement required to create the epitopes. Although our data highlight the complexity of the disease, this study identifies key immunodominant epitopes and provides direct evidence that the transition from AQP4 tetramers to AQP4-OAPs involves conformational changes of the extracellular loops.

  17. Aquaporin-4 Dynamics in Orthogonal Arrays in Live Cells Visualized by Quantum Dot Single Particle Tracking

    PubMed Central

    Crane, Jonathan M.; Van Hoek, Alfred N.; Skach, William R.

    2008-01-01

    Freeze-fracture electron microscopy (FFEM) indicates that aquaporin-4 (AQP4) water channels can assemble in cell plasma membranes in orthogonal arrays of particles (OAPs). We investigated the determinants and dynamics of AQP4 assembly in OAPs by tracking single AQP4 molecules labeled with quantum dots at an engineered external epitope. In several transfected cell types, including primary astrocyte cultures, the long N-terminal “M1” form of AQP4 diffused freely, with diffusion coefficient ∼5 × 10−10 cm2/s, covering ∼5 μm in 5 min. The short N-terminal “M23” form of AQP4, which by FFEM was found to form OAPs, was relatively immobile, moving only ∼0.4 μm in 5 min. Actin modulation by latrunculin or jasplakinolide did not affect AQP4-M23 diffusion, but deletion of its C-terminal postsynaptic density 95/disc-large/zona occludens (PDZ) binding domain increased its range by approximately twofold over minutes. Biophysical analysis of short-range AQP4-M23 diffusion within OAPs indicated a spring-like potential, with a restoring force of ∼6.5 pN/μm. These and additional experiments indicated that 1) AQP4-M1 and AQP4-M23 isoforms do not coassociate in OAPs; 2) OAPs can be imaged directly by total internal reflection fluorescence microscopy; and 3) OAPs are relatively fixed, noninterconvertible assemblies that do not require cytoskeletal or PDZ-mediated interactions for formation. Our measurements are the first to visualize OAPs in live cells. PMID:18495865

  18. Aquaporin-4 in Astroglial Cells in the CNS and Supporting Cells of Sensory Organs—A Comparative Perspective

    PubMed Central

    Gleiser, Corinna; Wagner, Andreas; Fallier-Becker, Petra; Wolburg, Hartwig; Hirt, Bernhard; Mack, Andreas F.

    2016-01-01

    The main water channel of the brain, aquaporin-4 (AQP4), is one of the classical water-specific aquaporins. It is expressed in many epithelial tissues in the basolateral membrane domain. It is present in the membranes of supporting cells in most sensory organs in a specifically adapted pattern: in the supporting cells of the olfactory mucosa, AQP4 occurs along the basolateral aspects, in mammalian retinal Müller cells it is highly polarized. In the cochlear epithelium of the inner ear, it is expressed basolaterally in some cells but strictly basally in others. Within the central nervous system, aquaporin-4 (AQP4) is expressed by cells of the astroglial family, more specifically, by astrocytes and ependymal cells. In the mammalian brain, AQP4 is located in high density in the membranes of astrocytic endfeet facing the pial surface and surrounding blood vessels. At these locations, AQP4 plays a role in the maintenance of ionic homeostasis and volume regulation. This highly polarized expression has not been observed in the brain of fish where astroglial cells have long processes and occur mostly as radial glial cells. In the brain of the zebrafish, AQP4 immunoreactivity is found along the radial extent of astroglial cells. This suggests that the polarized expression of AQP4 was not present at all stages of evolution. Thus, a polarized expression of AQP4 as part of a control mechanism for a stable ionic environment and water balanced occurred at several locations in supporting and glial cells during evolution. This initially basolateral membrane localization of AQP4 is shifted to highly polarized expression in astrocytic endfeet in the mammalian brain and serves as a part of the neurovascular unit to efficiently maintain homeostasis. PMID:27571065

  19. Sera from patients with seropositive neuromyelitis optica spectral disorders caused the degeneration of rodent optic nerve.

    PubMed

    Matsumoto, Yoshiko; Kanamori, Akiyasu; Nakamura, Makoto; Takahashi, Toshiyuki; Nakashima, Ichiro; Negi, Akira

    2014-02-01

    Neuromyelitis optica (NMO) is an autoimmune inflammatory, neurodestructive disease primarily targeting the optic nerve and spinal cord. An autoantibody against water channel protein aquaporin-4 (AQP4), which is expressed at endofeet of astrocytes has been implicated in the pathogenesis of NMO. We evaluated the impact of sera of seropositive patients with NMO spectrum disorders (NMOSDs) on the rodent optic nerve and retina. Serum was obtained either from patients with seropositive NMOSD (AQP4+), seronegative patient with idiopathic optic neuritis (AQP4-), and healthy volunteers (control). Anti-AQP4 antibody in a serum was measured by a previously established cell-based assay. The patients' sera were applied on the optic nerve after de-sheathed. Immunohistochemistry showed that at 7 days after the treatment, the area of the optic nerve exposed to the AQP4+ sera lost expression of both AQP4 and glial fibrillary acidic protein. Also, Human-IgG immunoreactivity and marked invasion of inflammation cells were observed in the optic nerve treated with AQP4+ serum. Immnoreactivity of neurofilament was reduced at 14 days after the treatment, not 7 days. Real-time polymerase chain reaction revealed the reduced gene expression of neurofilament in retina from the eye that was exposed to the AQP4+ sera at 14 days. Retrograde fluorogold-labeling on the retinal flatmount disclosed the significantly reduced number of retinal ganglion cells when the AQP4+ sera were applied. The present model has demonstrated that the sera from patients with seropositive NMOSDs led to the regional astrocytic degeneration and inflammatory cell invasion in the optic nerve, resulting in the ultimate loss of RGCs and their axons at areas beyond the injury site.

  20. Generation and phenotype of a transgenic knockout mouse lacking the mercurial-insensitive water channel aquaporin-4.

    PubMed Central

    Ma, T; Yang, B; Gillespie, A; Carlson, E J; Epstein, C J; Verkman, A S

    1997-01-01

    Aquaporin-4 (AQP4) is a mercurial-insensitive, water-selective channel that is expressed in astroglia and basolateral plasma membranes of epithelia in the kidney collecting duct, airways, stomach, and colon. A targeting vector for homologous recombination was constructed using a 7-kb SacI AQP4 genomic fragment in which part of the exon 1 coding sequence was deleted. Analysis of 164 live births from AQP4[+/-] matings showed 41 [+/+], 83 [+/-], and 40 [-/-] genotypes. The [-/-] mice expressed small amounts of a truncated AQP4 transcript and lacked detectable AQP4 protein by immunoblot analysis and immunocytochemistry. Water permeability in an AQP4-enriched brain vesicle fraction in [+/+] mice was high and mercurial insensitive, and was decreased by 14-fold in [-/-] mice. AQP4 deletion did not affect growth or tissue morphology at the light microscopic level. Northern blot analysis showed that tissue-specific expression of AQPs 1, 2, 3, and 5 was not affected by AQP4 deletion. Maximum urine osmolality after a 36-h water deprivation was (in mosM, n = 15) [+/+] 3,342+/-209, [+/-] 3, 225+/-167, and [-/-] 2,616+/-229 (P < 0.025), whereas urine osmolalities before water deprivation did not differ among the genotypes. Rotorod analysis of 35- 38-d-old mice revealed no differences in neuromuscular function (performance time in s, n = 8): [+/+] 297+/-25, [+/-] 322+/-28, [-/-] 288+/-37. These results indicate that AQP4 deletion in CD1 mice has little or no effect on development, survival, growth, and neuromuscular function, but produces a small defect in urinary concentrating ability consistent with its expression in the medullary collecting duct. PMID:9276712

  1. Adaptive Transition of Aquaporin 5 Expression and Localization during Preimplantation Embryo Development by In Vitro Culture.

    PubMed

    Park, Jae-Won; Shin, Yun Kyung; Choen, Yong-Pil

    2014-09-01

    Adaptive development of early stage embryo is well established and recently it is explored that the mammalian embryos also have adaptive ability to the stressful environment. However, the mechanisms are largely unknown. In this study, to evaluate the possible role of aquaporin in early embryo developmental adaptation, the expression of aquaporin (AQP) 5 gene which is detected during early development were examined by the environmental condition. To compare expression patterns between in vivo and in vitro, we conducted quantitative RT-PCR and analyzed localization of the AQP5 by whole mount immunofluorescence. At in vivo condition, Aqp5 expressed in oocyte and in all the stages of preimplantation embryo. It showed peak at 2-cell stage and decreased continuously until morula stage. At in vitro condition, Aqp5 expression pattern was similar with in vivo embryos. It expressed both at embryonic genome activation phase and second midpreimplantation gene activation phase, but the fold changes were modified between in vivo embryos and in vitro embryos. During in vivo development, AQP5 was mainly localized in apical membrane of blastomeres of 4-cell and 8-cell stage embryos, and then it was localized in cytoplasm. However, the main localization area of AQP5 was dramatically shifted after 8-cell stage from cytoplasm to nucleus by in vitro development. Those results explore the modification of Aqp5 expression levels and location of its final products by in vitro culture. It suggests that expression of Aqp5 and the roles of AQP5 in homeostasis can be modulated by in vitro culture, and that early stage embryos can develop successfully by themselves adapting to their condition through modulation of the specific gene expression and localization.

  2. Adaptive Transition of Aquaporin 5 Expression and Localization during Preimplantation Embryo Development by In Vitro Culture

    PubMed Central

    Park, Jae-Won; Shin, Yun Kyung; Choen, Yong-Pil

    2014-01-01

    Adaptive development of early stage embryo is well established and recently it is explored that the mammalian embryos also have adaptive ability to the stressful environment. However, the mechanisms are largely unknown. In this study, to evaluate the possible role of aquaporin in early embryo developmental adaptation, the expression of aquaporin (AQP) 5 gene which is detected during early development were examined by the environmental condition. To compare expression patterns between in vivo and in vitro, we conducted quantitative RT-PCR and analyzed localization of the AQP5 by whole mount immunofluorescence. At in vivo condition, Aqp5 expressed in oocyte and in all the stages of preimplantation embryo. It showed peak at 2-cell stage and decreased continuously until morula stage. At in vitro condition, Aqp5 expression pattern was similar with in vivo embryos. It expressed both at embryonic genome activation phase and second midpreimplantation gene activation phase, but the fold changes were modified between in vivo embryos and in vitro embryos. During in vivo development, AQP5 was mainly localized in apical membrane of blastomeres of 4-cell and 8-cell stage embryos, and then it was localized in cytoplasm. However, the main localization area of AQP5 was dramatically shifted after 8-cell stage from cytoplasm to nucleus by in vitro development. Those results explore the modification of Aqp5 expression levels and location of its final products by in vitro culture. It suggests that expression of Aqp5 and the roles of AQP5 in homeostasis can be modulated by in vitro culture, and that early stage embryos can develop successfully by themselves adapting to their condition through modulation of the specific gene expression and localization. PMID:25949184

  3. Aquaporin 5 Polymorphisms and Rate of Lung Function Decline in Chronic Obstructive Pulmonary Disease

    PubMed Central

    Hansel, Nadia N.; Sidhaye, Venkataramana; Rafaels, Nicholas M.; Gao, Li; Gao, Peisong; Williams, Renaldo; Connett, John E.; Beaty, Terri H.; Mathias, Rasika A.; Wise, Robert A.; King, Landon S.; Barnes, Kathleen C.

    2010-01-01

    Rationale Aquaporin-5 (AQP5) can cause mucus overproduction and lower lung function. Genetic variants in the AQP5 gene might be associated with rate of lung function decline in chronic obstructive pulmonary disease (COPD). Methods Five single nucleotide polymorphisms (SNPs) in AQP5 were genotyped in 429 European American individuals with COPD randomly selected from the NHLBI Lung Health Study. Mean annual decline in FEV1 % predicted, assessed over five years, was calculated as a linear regression slope, adjusting for potential covariates and stratified by smoking status. Constructs containing the wildtype allele and risk allele of the coding SNP N228K were generated using site-directed mutagenesis, and transfected into HBE-16 (human bronchial epithelial cell line). AQP5 abundance and localization were assessed by immunoblots and confocal immunofluoresence under control, shear stress and cigarette smoke extract (CSE 10%) exposed conditions to test for differential expression or localization. Results Among continuous smokers, three of the five SNPs tested showed significant associations (0.02>P>0.004) with rate of lung function decline; no associations were observed among the group of intermittent or former smokers. Haplotype tests revealed multiple association signals (0.012>P>0.0008) consistent with the single-SNP results. In HBE16 cells, shear stress and CSE led to a decrease in AQP5 abundance in the wild-type, but not in the N228K AQP5 plasmid. Conclusions Polymorphisms in AQP5 were associated with rate of lung function decline in continuous smokers with COPD. A missense mutation modulates AQP-5 expression in response to cigarette smoke extract and shear stress. These results suggest that AQP5 may be an important candidate gene for COPD. PMID:21151978

  4. Apelin-13 Protects against Ischemic Blood-Brain Barrier Damage through the Effects of Aquaporin-4.

    PubMed

    Chu, Heling; Yang, Xiaobo; Huang, Chuyi; Gao, Zidan; Tang, Yuping; Dong, Qiang

    2017-01-01

    Apelin-13 has been found to have protective effects on many neurological diseases, including cerebral ischemia. However, whether Apelin-13 acts on blood-brain barrier (BBB) disruption following cerebral ischemia is largely unknown. Aquaporin-4 (AQP4) has a close link with BBB due to the high concentration in astrocyte foot processes and regulation of astrocytes function. Here, we aimed to test Apelin-13's effects on ischemic BBB injury and examine whether the effects were dependent on AQP4. We detected the expression of AQP4 induced by Apelin-13 injection at 1, 3, and 7 days after middle cerebral artery occlusion. Meanwhile, we examined the effects of Apelin-13 on neurological function, infarct volume, and BBB disruption owing to cerebral ischemia in wild type mice, and tested whether such effects were AQP4 dependent by using AQP4 knock-out mice. Furthermore, we assessed the possible signal transduction pathways activated by Apelin-13 to regulate AQP4 expression via astrocyte cultures. It was found that Apelin-13 highly increased AQP4 expression as well as reduced neurological scores and infarct volume. Importantly, Apelin-13 played a role of BBB protection in both types of mice by reducing BBB permeability, increased vascular endothelial growth factor, upregulated endothelial nitric oxide synthase, and downregulated inducible NOS. In morphology, we demonstrated Apelin-13 suppressed tight junction opening and endothelial cell swelling via electron microscopy detection. Meanwhile, Apelin-13 also alleviated apoptosis of astrocytes and promoted angiogenesis. Interestingly, effects of AQP4 on neurological function and infarct volume varied with time course, while AQP4 elicited protective effects on BBB at all time points. Statistical analysis of 2-way analysis of variance with replication indicated that AQP4 was required for these effects. In addition, Apelin-13 upregulated phosphorylation of extracellular signal-regulated kinase (ERK) and Akt as well as AQP4 protein

  5. Prevention of orthogonal array of particles formation as a treatment approach for neuromyelitis optica.

    PubMed

    Warth, Arne

    2009-09-01

    Neuromyelitis optica (NMO) is an uncommon, life-threatening demyelinating disease that produces transverse myelitis and optic neuritis. An important pathogenetic mechanism belongs to NMO-IgG autoantibodies directed against the ultrastructure of the water channel aquaporin-4 (AQP4), the so-called orthogonal arrays of particles (OAPs). With respect to the yet known data about OAP formation it is suggested to modulate the AQP4-M23 isoform to prevent the aggregation of AQP4 tetramers into higher organized structures. Without specific target for the NMO-IgGs the inflammation and thus the resulting demyelination may be stopped without the need for immunosuppressive agents with severe side-effects.

  6. Enlarged extracellular space of aquaporin-4-deficient mice does not enhance diffusion of Alexa Fluor 488 or dextran polymers

    PubMed Central

    Xiao, Fanrong; Hrabětová, Sabina

    2010-01-01

    Aquaporin-4 (AQP4) water channels expressed on glia have been implicated in maintaining the volume of extracellular space (ECS). A previous diffusion study employing small cation tetramethylammonium and real-time iontophoretic (RTI) method demonstrated an increase of about 25% in the ECS volume fraction (α) in the neocortex of AQP4−/− mice compared to AQP4+/+ mice but no change in the hindrance imposed to diffusing molecules (tortuosity λ). In contrast, other diffusion studies employing large molecules (dextran polymers) and fluorescence recovery after photobleaching (FRAP) method measured a decrease of about 10–20% in λ in the neocortex of AQP4−/− mice. These conflicting findings on λ would imply that large molecules diffuse more readily in the enlarged ECS of AQP4−/− mice than in wild type but small molecules do not. To test this hypothesis, we used integrative optical imaging (IOI) to measure tortuosity with a small Alexa Fluor 488 (MW 547, λAF) and two large dextran polymers (MW 3,000, λdex3 and MW 75,000, λdex75) in the in vitro neocortex of AQP4+/+ and AQP4−/− mice. We found that λAF = 1.59, λdex3 = 1.76 and λdex75 = 2.30 obtained in AQP4−/− mice were not significantly different from λAF = 1.61, λdex3 = 1.76, and λdex75 = 2.33 in AQP4+/+ mice. These IOI results demonstrate that λ measured with small and large molecules each remain unchanged in the enlarged ECS of AQP4−/− mice compared to values in AQP4+/+ mice. Further analysis suggests that the FRAP method yields diffusion parameters not directly comparable with those obtained by IOI or RTI methods. Our findings have implications for the role of glial AQP4 in maintaining the ECS structure. PMID:19303428

  7. Identification of peptide targets in neuromyelitis optica

    PubMed Central

    Yu, Xiaoli; Green, Miyoko; Gilden, Don; Lam, Chiwah; Bautista, Katherine; Bennett, Jeffrey L

    2011-01-01

    Neuromyelitis optica (NMO) is an inflammatory demyelinating disease that predominantly affects the optic nerves and spinal cord. Recombinant antibodies (rAbs) generated from clonally expanded plasma cells in an NMO patient are specific to AQP4 and pathogenic. We screened phage-displayed peptide libraries with these rAbs, and identified 14 high affinity linear and conformational peptides. The linear peptides shared sequence homologies with NMO autoantigen AQP4 on the extracellular surface. Competitive inhibition ELISA and immunocytochemistry demonstrated that these peptides represent epitopes of NMO autoantigen AQP4. Peptide epitopes/mimotopes may have potential uses for disease prognosis, monitoring, and therapy. PMID:21621279

  8. Structural Alterations of Segmented Macular Inner Layers in Aquaporin4-Antibody-Positive Optic Neuritis Patients in a Chinese Population

    PubMed Central

    Peng, Chunxia; Wang, Wei; Xu, Quangang; Zhao, Shuo; Li, Hongyang; Yang, Mo; Cao, Shanshan; Zhou, Huanfen; Wei, Shihui

    2016-01-01

    Objectives This study aimed to analyse the structural injury of the peripapillary retinal nerve fibre layer (pRNFL) and segmented macular layers in optic neuritis (ON) in aquaporin4-antibody (AQP4-Ab) seropositivity(AQP4-Ab-positiveON) patients and in AQP4-Ab seronegativity (AQP4-Ab-negative ON) patients in order to evaluate their correlations with the best-corrected visual acuity (BCVA) and the value of the early diagnosis of neuromyelitis optica (NMO). Design This is a retrospective, cross-sectional and control observational study. Methods In total, 213 ON patients (291 eyes) and 50 healthy controls (HC) (100 eyes) were recruited in this study. According to a serum AQP4-Ab assay, 98 ON patients (132 eyes) were grouped as AQP4-Ab-positive ON and 115 ON patients (159 eyes) were grouped as AQP4-Ab-negative ON cohorts. All subjects underwent scanning with spectralis optical coherence tomography (OCT) and BCVA tests. pRNFL and segmented macular layer measurements were analysed. Results The pRNFL thickness in AQP4-Ab-positive ON eyes showed a more serious loss during 0–2 months (-27.61μm versus -14.47 μm) and ≥6 months (-57.91μm versus -47.19μm) when compared with AQP4-Ab-negative ON eyes. AQP4-Ab-positive ON preferentially damaged the nasal lateral pRNFL. The alterations in the macular ganglion cell layer plus the inner plexiform layer (GCIP) in AQP4-Ab-positive ON eyes were similar to those in AQP4-Ab-negative ON eyes. AQP4-Ab-positive ON eyes had entirely different injury patterns in the inner nuclear layer (INL) compared with AQP4-Ab-negative ON eyes during the first 6 months after the initial ON attack. These differences were as follows: the INL volume of AQP4-Ab-positive ON eyes had a gradual growing trend compared with AQP4-Ab-negative ON eyes, and it increased rapidly during 0–2 months, reached its peak during 2–4 months, and then decreased gradually. The pRNFL and GCIP in AQP4-Ab-positive ON eyes had positive correlations with BCVA. When the p

  9. Structural Determinants of Oligomerization of the Aquaporin-4 Channel.

    PubMed

    Kitchen, Philip; Conner, Matthew T; Bill, Roslyn M; Conner, Alex C

    2016-03-25

    The aquaporin (AQP) family of integral membrane protein channels mediate cellular water and solute flow. Although qualitative and quantitative differences in channel permeability, selectivity, subcellular localization, and trafficking responses have been observed for different members of the AQP family, the signature homotetrameric quaternary structure is conserved. Using a variety of biophysical techniques, we show that mutations to an intracellular loop (loop D) of human AQP4 reduce oligomerization. Non-tetrameric AQP4 mutants are unable to relocalize to the plasma membrane in response to changes in extracellular tonicity, despite equivalent constitutive surface expression levels and water permeability to wild-type AQP4. A network of AQP4 loop D hydrogen bonding interactions, identified using molecular dynamics simulations and based on a comparative mutagenic analysis of AQPs 1, 3, and 4, suggest that loop D interactions may provide a general structural framework for tetrameric assembly within the AQP family.

  10. Structural Determinants of Oligomerization of the Aquaporin-4 Channel*

    PubMed Central

    Kitchen, Philip; Conner, Matthew T.; Bill, Roslyn M.; Conner, Alex C.

    2016-01-01

    The aquaporin (AQP) family of integral membrane protein channels mediate cellular water and solute flow. Although qualitative and quantitative differences in channel permeability, selectivity, subcellular localization, and trafficking responses have been observed for different members of the AQP family, the signature homotetrameric quaternary structure is conserved. Using a variety of biophysical techniques, we show that mutations to an intracellular loop (loop D) of human AQP4 reduce oligomerization. Non-tetrameric AQP4 mutants are unable to relocalize to the plasma membrane in response to changes in extracellular tonicity, despite equivalent constitutive surface expression levels and water permeability to wild-type AQP4. A network of AQP4 loop D hydrogen bonding interactions, identified using molecular dynamics simulations and based on a comparative mutagenic analysis of AQPs 1, 3, and 4, suggest that loop D interactions may provide a general structural framework for tetrameric assembly within the AQP family. PMID:26786101

  11. Enhanced expression levels of aquaporin-1 and aquaporin-4 in A549 cells exposed to silicon dioxide.

    PubMed

    Hao, Xiaohui; Wang, Hongli; Liu, Wei; Liu, Shupeng; Peng, Zihe; Sun, Yue; Zhao, Jinyuan; Jiang, Qiujie; Liu, Heliang

    2016-09-01

    Aquaporins (AQPs), water channel proteins in the cell membranes of mammals, have been reported to be important in maintaining the water balance of the respiratory system. However, little is known regarding the role of AQP in occupational pulmonary diseases such as silicosis. The present study investigated the expression of AQP1 and AQP4 in the human A549 alveolar epithelial cell line stimulated by silica (SiO2). A549 cells were cultured and divided into four groups: Control, SiO2‑stimulated, AQP1 inhibitor and AQP4 inhibitor. The cells of the SiO2‑stimulated group were stimulated with SiO2 dispersed suspension (50 mg/ml). The cells of the inhibitor group were pretreated with mercury (II) chloride (HgCl2; a specific channel inhibitor of AQP1) and 2‑(nicotinamide)‑1,3,4‑thiadiazole (TGN‑020; a specific channel inhibitor of AQP4) and stimulated with SiO2. The mRNA expression levels of AQP1 and AQP4 were detected by reverse transcription‑quantitative polymerase chain reaction, and the protein expression levels of AQP1 and AQP4 were detected by western blotting and immunocytochemistry. Compared with the control group, the expression levels of AQP1 and AQP4 mRNA and protein in SiO2‑stimulated groups increased and subsequently decreased (AQP1 peaked at 2 h and AQP4 at 1h; both P<0.001 compared with control group). In the inhibitor group, expression levels were increased compared with controls; however, they were significantly decreased compared with the SiO2‑stimulated group at 2 h (AQP1; P<0.001) and 1 h (AQP4; P<0.001). The expression of AQP1 and AQP4 increased when exposed to SiO2, and this was inhibited by HgCl2 and TGN‑020, suggesting that AQP1 and AQP4 may contribute to A549 cell damage induced by SiO2. AQP1 and AQP4 may thus be involved in the initiation and development of silicosis.

  12. Complement activating antibodies to myelin oligodendrocyte glycoprotein in neuromyelitis optica and related disorders

    PubMed Central

    2011-01-01

    Background Serum autoantibodies against the water channel aquaporin-4 (AQP4) are important diagnostic biomarkers and pathogenic factors for neuromyelitis optica (NMO). However, AQP4-IgG are absent in 5-40% of all NMO patients and the target of the autoimmune response in these patients is unknown. Since recent studies indicate that autoimmune responses to myelin oligodendrocyte glycoprotein (MOG) can induce an NMO-like disease in experimental animal models, we speculate that MOG might be an autoantigen in AQP4-IgG seronegative NMO. Although high-titer autoantibodies to human native MOG were mainly detected in a subgroup of pediatric acute disseminated encephalomyelitis (ADEM) and multiple sclerosis (MS) patients, their role in NMO and High-risk NMO (HR-NMO; recurrent optic neuritis-rON or longitudinally extensive transverse myelitis-LETM) remains unresolved. Results We analyzed patients with definite NMO (n = 45), HR-NMO (n = 53), ADEM (n = 33), clinically isolated syndromes presenting with myelitis or optic neuritis (CIS, n = 32), MS (n = 71) and controls (n = 101; 24 other neurological diseases-OND, 27 systemic lupus erythematosus-SLE and 50 healthy subjects) for serum IgG to MOG and AQP4. Furthermore, we investigated whether these antibodies can mediate complement dependent cytotoxicity (CDC). AQP4-IgG was found in patients with NMO (n = 43, 96%), HR-NMO (n = 32, 60%) and in one CIS patient (3%), but was absent in ADEM, MS and controls. High-titer MOG-IgG was found in patients with ADEM (n = 14, 42%), NMO (n = 3, 7%), HR-NMO (n = 7, 13%, 5 rON and 2 LETM), CIS (n = 2, 6%), MS (n = 2, 3%) and controls (n = 3, 3%, two SLE and one OND). Two of the three MOG-IgG positive NMO patients and all seven MOG-IgG positive HR-NMO patients were negative for AQP4-IgG. Thus, MOG-IgG were found in both AQP4-IgG seronegative NMO patients and seven of 21 (33%) AQP4-IgG negative HR-NMO patients. Antibodies to MOG and AQP4 were predominantly of the IgG1 subtype, and were able to

  13. Patterns of Antibody Binding to Aquaporin-4 Isoforms in Neuromyelitis Optica

    PubMed Central

    Mader, Simone; Lutterotti, Andreas; Di Pauli, Franziska; Kuenz, Bettina; Schanda, Kathrin; Aboul-Enein, Fahmy; Khalil, Michael; Storch, Maria K.; Jarius, Sven; Kristoferitsch, Wolfgang; Berger, Thomas; Reindl, Markus

    2010-01-01

    Background Neuromyelitis optica (NMO), a severe demyelinating disease, represents itself with optic neuritis and longitudinally extensive transverse myelitis. Serum NMO-IgG autoantibodies (Abs), a specific finding in NMO patients, target the water channel protein aquaporin-4 (AQP4), which is expressed as a long (M-1) or a short (M-23) isoform. Methodology/Principal Findings The aim of this study was to analyze serum samples from patients with NMO and controls for the presence and epitope specificity of IgG and IgM anti-AQP4 Abs using an immunofluorescence assay with HEK293 cells expressing M-1 or M-23 human AQP4. We included 56 patients with definite NMO (n = 30) and high risk NMO (n = 26), 101 patients with multiple sclerosis, 27 patients with clinically isolated syndromes (CIS), 30 patients with systemic lupus erythematosus (SLE) or Sjögren's syndrome, 29 patients with other neurological diseases and 47 healthy controls. Serum anti-AQP4 M-23 IgG Abs were specifically detected in 29 NMO patients, 17 patients with high risk NMO and two patients with myelitis due to demyelination (CIS) and SLE. In contrast, IgM anti-AQP4 Abs were not only found in some NMO and high risk patients, but also in controls. The sensitivity of the M-23 AQP4 IgG assay was 97% for NMO and 65% for high risk NMO, with a specificity of 100% compared to the controls. Sensitivity with M-1 AQP4 transfected cells was lower for NMO (70%) and high risk NMO (39%). The conformational epitopes of M-23 AQP4 are the primary targets of NMO-IgG Abs, whereas M-1 AQP4 Abs are developed with increasing disease duration and number of relapses. Conclusions Our results confirm M-23 AQP4-IgG Abs as reliable biomarkers in patients with NMO and high risk syndromes. M-1 and M-23 AQP4-IgG Abs are significantly associated with a higher number of relapses and longer disease duration. PMID:20463974

  14. Aquaporin 5 expression is frequent in prostate cancer and shows a dichotomous correlation with tumor phenotype and PSA recurrence.

    PubMed

    Pust, Alexandra; Kylies, Dominik; Hube-Magg, Claudia; Kluth, Martina; Minner, Sarah; Koop, Christina; Grob, Tobias; Graefen, Markus; Salomon, Georg; Tsourlakis, Maria Christina; Izbicki, Jakob; Wittmer, Corinna; Huland, Hartwig; Simon, Ronald; Wilczak, Waldemar; Sauter, Guido; Steurer, Stefan; Krech, Till; Schlomm, Thorsten; Melling, Nathaniel

    2016-02-01

    Aquaporin 5 (AQP5) is an androgen-regulated member of a family of small hydrophobic integral transmembrane water channel proteins regulating cellular water homeostasis and growth signaling. To evaluate its clinical impact and relationship with key genomic alterations in prostate cancer, AQP5 expression was analyzed by immunohistochemistry on a tissue microarray containing 12427 prostate cancers. The analysis revealed weak to moderate immunostaining in normal prostate epithelium. In prostate cancers AQP5 staining levels were more variable and also included completely negative and highly overexpressing cases. Negative, weak, moderate, and strong AQP5 staining was found in 25.0%, 32.5%, 32.5%, and 10.0% of 10239 interpretable tumors. Comparison of AQP5 expression levels with tumor characteristics showed a dichotomous pattern with both high and low staining levels being linked to unfavorable tumor phenotype. AQP5 was negative in 28%, 23%, 24%, and 35% of tumors with Gleason score ≤3 + 3, 3 + 4, 4 + 3 and ≥4 + 4, while the rate of strongly positive cases continuously increased from 7.0% over 10.0% and 12.0% to 13.0% in cancers with Gleason score ≤3 + 3, 3 + 4, 4 + 3 and ≥4 + 4. AQP5 expression was also related to ERG positivity and phosphatase and tensin homolog (PTEN) deletion (P < .0001 each). Strong AQP5 positivity was seen in 15.5% of ERG-positive and 5.8% of ERG-negative cancers (P < .0001) as well as in 14.7% of cancers with PTEN deletion and 9.4% of cancers without PTEN deletion. Remarkably, both negativity and strong positivity of AQP5 were linked to unfavorable disease outcome. This was however only seen in subgroups defined by TMPRSS2-ERG fusion and/or PTEN deletion. In summary, AQP5 can be both overexpressed and lost in subgroups of prostate cancers. Both alterations are linked to unfavorable outcome in molecularly defined cancer subgroups. It is hypothesized that this dichotomous role of AQP5 is due to two highly different mechanisms as to how the

  15. Decrease of aquaporin-4 and excitatory amino acid transporter-2 indicate astrocyte dysfunction for pathogenesis of cortical degeneration in HIV-associated neurocognitive disorders.

    PubMed

    Xing, Hui Qin; Zhang, Yu; Izumo, Kimiko; Arishima, Shiho; Kubota, Ryuji; Ye, Xiang; Xu, Qiping; Mori, Kazuyasu; Izumo, Shuji

    2017-02-01

    Human immunodeficiency virus (HIV) encephalitis and degeneration of cerebral cortex are established histopathologies of HIV-associated neurocognitive disorders (HAND). We previously reported decreased excitatory amino acid transporter-2 (EAAT-2) and astrocytic apoptosis in cortical degeneration using SIVmac239 and simian-human immunodeficiency virus (SHIV)-infected macaques and human AIDS autopsy cases. In the present study, we added highly pathogenic SIVsm543-3-infected macaques. These animals showed similar degenerative changes in the frontal cortex. Using 11 SIV-infected macaques, three SIVsm543-3, five SIVmac239 and three SHIV, we compared brain pathology caused by three different viruses and further analyzed the pathogenic process of HAND. We noticed vacuolar changes in perivascular processes of astrocytes by electron microscopy, and examined expression of astrocyte-specific protein aquaporin-4 (AQP4) by immunohistochemistry. APQ4 was diffusely positive in the neuropil and perivascular area in control brains. There was patchy or diffuse decrease of AQP4 staining in the neuropil of SIV-infected macaques, which was associated with EAAT-2 staining by double immunostaining. A quantitative analysis demonstrated significant positive correlation between areas of AQP4 and EAAT-2. Some astrocytes express EAAT-2 but not AQP4, and decrease of EAAT-2 expression tended to be less than the decrease of AQP4. Active-caspase-3 immunostaining demonstrated apoptosis of neurons and astrocytes in the area of AQP4/EAAT-2 reduction. These results suggest that AQP4 is damaged first and decrease of EAAT-2 may follow in pathogenesis of cortical degeneration. This is the first demonstration of decrease of AQP4 and its association with EAAT-2 decrease in AIDS brain, suggesting a role in the pathogenesis of HAND. © 2016 Japanese Society of Neuropathology.

  16. Hypertonic saline reduces lipopolysaccharide-induced mouse brain edema through inhibiting aquaporin 4 expression

    PubMed Central

    2012-01-01

    Introduction Three percent sodium chloride (NaCl) treatment has been shown to reduce brain edema and inhibited brain aquaporin 4 (AQP4) expression in bacterial meningitis induced by Escherichia coli. Lipopolysaccharide (LPS) is the main pathogenic component of E. coli. We aimed to explore the effect of 3% NaCl in mouse brain edema induced by LPS, as well as to elucidate the potential mechanisms of action. Methods Three percent NaCl was used to treat cerebral edema induced by LPS in mice in vivo. Brain water content, IL-1β, TNFα, immunoglobulin G (IgG), AQP4 mRNA and protein were measured in brain tissues. IL-1β, 3% NaCl and calphostin C (a specific inhibitor of protein kinase C) were used to treat the primary astrocytes in vitro. AQP4 mRNA and protein were measured in astrocytes. Differences in various groups were determined by one-way analysis of variance. Results Three percent NaCl attenuated the increase of brain water content, IL-1β, TNFα, IgG, AQP4 mRNA and protein in brain tissues induced by LPS. Three percent NaCl inhibited the increase of AQP4 mRNA and protein in astrocytes induced by IL-1β in vitro. Calphostin C blocked the decrease of AQP4 mRNA and protein in astrocytes induced by 3% NaCl in vitro. Conclusions Osmotherapy with 3% NaCl ameliorated LPS-induced cerebral edema in vivo. In addition to its osmotic force, 3% NaCl exerted anti-edema effects possibly through down-regulating the expression of proinflammatory cytokines (IL-1β and TNFα) and inhibiting the expression of AQP4 induced by proinflammatory cytokines. Three percent NaCl attenuated the expression of AQP4 through activation of protein kinase C in astrocytes. PMID:23036239

  17. [Evolution of Devic's neuromyelitis optica spectrum disorders].

    PubMed

    Bernard-Valnet, Raphaël; Marignier, Romain

    2015-04-01

    Neuromyelitis optica (NMO) is a rare inflammatory disorder of the central nervous system affecting mostly the optic nerve and the spinal cord. These last few years have been characterized by a dramatic improvement of NMO knowledge and care. A unique feature of NMO is the presence of autoantibodies directed against aquaporin-4 (AQP4-Ab). Identification of this biomarker has enlarged the clinical spectrum of the disease to a broad variety of symptoms and syndromes including brain, brainstem and hypothalamus involvement. This modifies the acknowledged definition of NMO, switching from a clinical phenotype to a biological one and introducing the concept of "aquaporinopathy" or "autoimmune AQP4 channelopathy". AQP4-Ab plays an important role in NMO pathophysiology. In vitro and ex vivo experiments showed that AQP4-Ab can induce either direct astrocyte loss through complement activation (neuroinflammation) or astrocyte changes via internalization of AQP4 (neuromodulation). Recently, T cell involvement in NMO has been suggested. Based on relatively small retrospective and prospective case series, several treatments appear to be likely effective in preventing attacks and stabilizing disability in NMO patients. Relapse prevention in NMO is based on early and maintenance immunosuppressive treatments. Considering the antibody-driven hypothesis, treatment should target B-cells. MS-approved therapies are not currently recommended for NMO patients, several series suggesting poor efficacy or harmful effects. Despite recent improvement of the detection method, some patients remain seronegative for AQP4-Ab. This group expresses specific demographic and disease-related features different for AQP4-Ab positive ones. This raises the question of the place of seronegative AQP4-Ab NMO patients in the spectrum, of their intimate physiopathology and finally of the therapeutic strategy to adopt in such patients. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  18. Müller cells and retinal axons can be primary targets in experimental neuromyelitis optica spectrum disorder.

    PubMed

    Zeka, Bleranda; Lassmann, Hans; Bradl, Monika

    2017-01-01

    Recent work from our laboratory, using different models of experimental neuromyelitis optica spectrum disorder (NMOSD), has led to a number of observations that might be highly relevant for NMOSD patients. For example: (i) in the presence of neuromyelitis optica immunoglobulin G, astrocyte-destructive lesions can be initiated by CD4+ T cells when these cells recognize aquaporin 4 (AQP4), but also when they recognize other antigens of the central nervous system. The only important prerequisite is that the T cells have to be activated within the central nervous system by "their" specific antigen. Recently activated CD4+ T cells with yet unknown antigen specificity are also found in human NMOSD lesions. (ii) The normal immune repertoire might contain AQP4-specific T cells, which are highly encephalitogenic on activation. (iii) The retina might be a primary target of AQP4-specific T cells and neuromyelitis optica immunoglobulin G: AQP4-specific T cells alone are sufficient to cause retinitis with low-grade axonal pathology in the retinal nerve fiber/ganglionic cell layer. A thinning of these layers is also observed in NMOSD patients, where it is thought to be a consequence of optic neuritis. Neuromyelitis optica immunoglobulin G might target cellular processes of Müller cells and cause their loss of AQP4 reactivity, when AQP4-specific T cells open the blood-retina barrier in the outer plexiform layer. Patchy loss of AQP4 reactivity on Müller cells of NMOSD patients has been recently described. Cumulatively, our findings in experimental NMOSD suggest that both CD4+ T cell and antibody responses directed against AQP4 might play an important role in the pathogenesis of tissue destruction seen in NMOSD.

  19. Water Permeability of Aquaporin-4 Channel Depends on Bilayer Composition, Thickness, and Elasticity

    PubMed Central

    Tong, Jihong; Briggs, Margaret M.; McIntosh, Thomas J.

    2012-01-01

    Aquaporin-4 (AQP4) is the primary water channel in the mammalian brain, particularly abundant in astrocytes, whose plasma membranes normally contain high concentrations of cholesterol. Here we test the hypothesis that the water permeabilities of two naturally occurring isoforms (AQP4-M1 and AQP4-M23) depend on bilayer mechanical/structural properties modulated by cholesterol and phospholipid composition. Osmotic stress measurements were performed with proteoliposomes containing AQP4 and three different lipid mixtures: 1), phosphatidylcholine (PC) and phosphatidylglycerol (PG); 2), PC, PG, with 40 mol % cholesterol; and 3), sphingomyelin (SM), PG, with 40 mol % cholesterol. The unit permeabilities of AQP4-M1 were 3.3 ± 0.4 × 10−13 cm3/s (mean ± SE), 1.2 ± 0.1 × 10−13 cm3/s, and 0.4 ± 0.1 × 10−13 cm3/s in PC:PG, PC:PG:cholesterol, and SM:PG:cholesterol, respectively. The unit permeabilities of AQP4-M23 were 2.1 ± 0.2 × 10−13 cm3/s, 0.8 ± 0.1 × 10−13 cm3/s, and 0.3 ± 0.1 × 10−13 cm3/s in PC:PG, PC:PG:cholesterol, and SM:PG:cholesterol, respectively. Thus, for each isoform the unit permeabilities strongly depended on bilayer composition and systematically decreased with increasing bilayer compressibility modulus and bilayer thickness. These observations suggest that altering lipid environment provides a means of regulating water channel permeability. Such permeability changes could have physiological consequences, because AQP4 water permeability would be reduced by its sequestration into SM:cholesterol-enriched raft microdomains. Conversely, under ischemic conditions astrocyte membrane cholesterol content decreases, which could increase AQP4 permeability. PMID:23199918

  20. Myasthenia gravis and neuromyelitis optica spectrum disorder

    PubMed Central

    Leite, M.I.; Coutinho, E.; Lana-Peixoto, M.; Apostolos, S.; Waters, P.; Sato, D.; Melamud, L.; Marta, M.; Graham, A.; Spillane, J.; Villa, A.M.; Callegaro, D.; Santos, E.; da Silva, A. Martins; Jarius, S.; Howard, R.; Nakashima, I.; Giovannoni, G.; Buckley, C.; Hilton-Jones, D.; Vincent, A.

    2012-01-01

    Objective: To describe 16 patients with a coincidence of 2 rare diseases: aquaporin-4 antibody (AQP4-Ab)–mediated neuromyelitis optica spectrum disorder (AQP4-NMOSD) and acetylcholine receptor antibody (AChR-Ab)–mediated myasthenia gravis (AChR-MG). Methods: The clinical details and antibody results of 16 patients with AChR-MG and AQP4-NMOSD were analyzed retrospectively. Results: All had early-onset AChR-MG, the majority with mild generalized disease, and a high proportion achieved remission. Fifteen were female; 11 were Caucasian. In 14/16, the MG preceded NMOSD (median interval: 16 years) and 11 of these had had a thymectomy although 1 only after NMOSD onset. In 4/5 patients tested, AQP4-Abs were detectable between 4 and 16 years prior to disease onset, including 2 patients with detectable AQP4-Abs prior to thymectomy. AChR-Abs decreased and the AQP4-Ab levels increased over time in concordance with the relevant disease. AChR-Abs were detectable at NMOSD onset in the one sample available from 1 of the 2 patients with NMOSD before MG. Conclusions: Although both conditions are rare, the association of MG and NMOSD occurs much more frequently than by chance and the MG appears to follow a benign course. AChR-Abs or AQP4-Abs may be present years before onset of the relevant disease and the antibody titers against AQP4 and AChR tend to change in opposite directions. Although most cases had MG prior to NMOSD onset, and had undergone thymectomy, NMOSD can occur first and in patients who have not had their thymus removed. PMID:22551731

  1. Effects of Age and Sex on Aquaporin-4 Autoimmunity

    PubMed Central

    Quek, Amy M. L.; McKeon, Andrew; Lennon, Vanda A.; Mandrekar, Jayawant N.; Iorio, Raffaele; Jiao, Yujuan; Costanzi, Chiara; Weinshenker, Brian G.; Wingerchuk, Dean M.; Lucchinetti, Claudia F.; Shuster, Elizabeth A.; Pittock, Sean J.

    2013-01-01

    Objective To determine the sex and age distribution of aquaporin-4 (AQP4) autoimmunity using data derived from clinical service laboratory testing of 56 464 patient samples. Design Observational analysis. Setting Mayo Clinic Neuroimmunology Laboratory. Patients Between October 1, 2005, and January 4, 2011, 56 464 patients were tested for AQP4-IgG; 2960 (5.2%) patients were seropositive. Main Outcome Measure Seropositivity for AQP4-IgG. Results Patients seropositive for AQP4-IgG were older than seronegative patients (mean [SD] age, 46 [16] vs 42 [15] years, respectively; P<.001). More females than males were tested (37 662 vs 16 810, respectively; P<.001). Among 2743 seropositive patients, 146 (5.3%) were pediatric (aged ≤18 years) and 333 (12.1%) were elderly (aged ≥65 years). The sex distribution of seropositive patients was 2465 females and 306 males (absolute female:male ratio, 8.1:1; P<.001). After adjusting for the number of females tested, an excess of females persisted (adjusted female:male ratio, 3.6:1). Female predominance for AQP4-IgG was more striking in adults (absolute female:male ratio, 8.4:1; adjusted female:male ratio, 3.5:1) than in pediatric patients (absolute female: male ratio, 4.3:1; adjusted female:male ratio, 2.9:1) (P<.001). Elderly women were more likely to be seropositive than individuals in other age categories (13.1% vs 6.0%, respectively; P<.001). The proportion of AQP4-IgG–seropositive individuals (detection rate), defined by decade of age, increased exponentially in women after age 50 years. Conclusions Seropositivity for AQP4-IgG occurs predominantly in females, particularly in individuals older than 18 years. Among seropositive patients, 1 in 6 is in the extremes of age. The detection rate of AQP4-IgG increased in women after age 50 years. PMID:22507888

  2. Fourfold reduction of water permeability in inner medullary collecting duct of aquaporin-4 knockout mice.

    PubMed

    Chou, C L; Ma, T; Yang, B; Knepper, M A; Verkman, A S

    1998-02-01

    Aquaporin (AQP)-3 and AQP4 water channels are expressed at the basolateral membrane of mammalian collecting duct epithelium. To determine the contribution of AQP4 to water permeability in the initial inner medullary collecting duct (IMCD), osmotic water permeability (Pf) was compared in isolated perfused IMCD segments from wild-type and AQP4 knockout mice. The AQP4 knockout mice were previously found to have normal gross appearance, survival, growth, and kidney morphology and a mild urinary concentrating defect (T. Ma, B. Yang, A. Gillespie, E. J. Carlson, C. J. Epstein, and A. S. Verkman, J. Clin. Invest. 100: 957-962, 1997). Transepithelial Pf was measured in microdissected IMCDs after 18-48 h of water deprivation and in the presence of 0.1 nM arginine vasopressin (to make basolateral Pf rate limiting). Pf values (37 degrees C; means +/- SE in cm/s x 10(-3)) were 56.0 +/- 8.5 for wild-type mice (n = 5) and 13.1 +/- 3.7 for knockout mice (n = 6) (P < 0.001). Northern blot analysis of kidney showed that transcript expression of AQP1, AQP2, AQP3, and AQP6 were not affected by AQP4 deletion. Immunoblot analysis indicated no differences in protein expression of AQP1, AQP2, or AQP3, and immunoperoxidase showed no differences in staining patterns. Coexpression of AQP3 and AQP4 in Xenopus laevis oocytes showed additive water permeabilities, suggesting that AQP4 deletion does not affect AQP3 function. These results indicate that AQP4 is responsible for the majority of basolateral membrane water movement in IMCD but that its deletion is associated with a very mild defect in urinary concentrating ability.

  3. Neuromyelitis Optica Immunoglobulin G present in sera from neuromyelitis optica patients affects aquaporin-4 expression and water permeability of the astrocyte plasma membrane.

    PubMed

    Melamud, Luciana; Fernández, Juan M; Rivarola, Valeria; Di Giusto, Gisela; Ford, Paula; Villa, Andrés; Capurro, Claudia

    2012-06-01

    NMO-IgG autoantibody selectively binds to aquaporin-4 (AQP4), the most abundant water channel in the central nervous system and is now considered a useful serum biomarker of neuromyelitis optica (NMO). A series of clinical and pathological observations suggests that NMO-IgG may play a central role in NMO physiopathology. The current study evaluated, in well-differentiated astrocytes cultures, the consequences of NMO-IgG binding on the expression pattern of AQP4 and on plasma membrane water permeability. To avoid or to facilitate AQP4 down-regulation, cells were exposed to inactivated sera in two different situations (1 hr at 4°C or 12 hr at 37°C). AQP4 expression was detected by immunofluorescence studies using a polyclonal anti-AQP4 or a human anti-IgG antibody, and the water permeability coefficient was evaluated by a videomicroscopy technique. Our results showed that, at low temperatures, cell exposure to either control or NMO-IgG sera does not affect either AQP4 expression or plasma membrane water permeability, indicating that the simple binding of NMO-IgG does not affect the water channel's activity. However, at 37°C, long-term exposure to NMO-IgG induced a loss of human IgG signal from the plasma membrane along with M1-AQP4 isoform removal and a significant reduction of water permeability. These results suggest that binding of NMO-IgG to cell membranes expressing AQP4 is a specific mechanism that may account for at least part of the pathogenic process. Copyright © 2012 Wiley Periodicals, Inc.

  4. Absence of Aquaporin-4 in Skeletal Muscle Alters Proteins Involved in Bioenergetic Pathways and Calcium Handling

    PubMed Central

    Basco, Davide; Nicchia, Grazia Paola; D'Alessandro, Angelo; Zolla, Lello; Svelto, Maria; Frigeri, Antonio

    2011-01-01

    Aquaporin-4 (AQP4) is a water channel expressed at the sarcolemma of fast-twitch skeletal muscle fibers, whose expression is altered in several forms of muscular dystrophies. However, little is known concerning the physiological role of AQP4 in skeletal muscle and its functional and structural interaction with skeletal muscle proteome. Using AQP4-null mice, we analyzed the effect of the absence of AQP4 on the morphology and protein composition of sarcolemma as well as on the whole skeletal muscle proteome. Immunofluorescence analysis showed that the absence of AQP4 did not perturb the expression and cellular localization of the dystrophin-glycoprotein complex proteins, aside from those belonging to the extracellular matrix, and no alteration was found in sarcolemma integrity by dye extravasation assay. With the use of a 2DE-approach (BN/SDS-PAGE), protein maps revealed that in quadriceps, out of 300 Coomassie-blue detected and matched spots, 19 proteins exhibited changed expression in AQP4−/− compared to WT mice. In particular, comparison of the protein profiles revealed 12 up- and 7 down-regulated protein spots in AQP4−/− muscle. Protein identification by MS revealed that the perturbed expression pattern belongs to proteins involved in energy metabolism (i.e. GAPDH, creatine kinase), as well as in Ca2+ handling (i.e. parvalbumin, SERCA1). Western blot analysis, performed on some significantly changed proteins, validated the 2D results. Together these findings suggest AQP4 as a novel determinant in the regulation of skeletal muscle metabolism and better define the role of this water channel in skeletal muscle physiology. PMID:21552523

  5. Water permeability of aquaporin-4 channel depends on bilayer composition, thickness, and elasticity.

    PubMed

    Tong, Jihong; Briggs, Margaret M; McIntosh, Thomas J

    2012-11-07

    Aquaporin-4 (AQP4) is the primary water channel in the mammalian brain, particularly abundant in astrocytes, whose plasma membranes normally contain high concentrations of cholesterol. Here we test the hypothesis that the water permeabilities of two naturally occurring isoforms (AQP4-M1 and AQP4-M23) depend on bilayer mechanical/structural properties modulated by cholesterol and phospholipid composition. Osmotic stress measurements were performed with proteoliposomes containing AQP4 and three different lipid mixtures: 1), phosphatidylcholine (PC) and phosphatidylglycerol (PG); 2), PC, PG, with 40 mol % cholesterol; and 3), sphingomyelin (SM), PG, with 40 mol % cholesterol. The unit permeabilities of AQP4-M1 were 3.3 ± 0.4 × 10(-13) cm(3)/s (mean ± SE), 1.2 ± 0.1 × 10(-13) cm(3)/s, and 0.4 ± 0.1 × 10(-13) cm(3)/s in PC:PG, PC:PG:cholesterol, and SM:PG:cholesterol, respectively. The unit permeabilities of AQP4-M23 were 2.1 ± 0.2 × 10(-13) cm(3)/s, 0.8 ± 0.1 × 10(-13) cm(3)/s, and 0.3 ± 0.1 × 10(-13) cm(3)/s in PC:PG, PC:PG:cholesterol, and SM:PG:cholesterol, respectively. Thus, for each isoform the unit permeabilities strongly depended on bilayer composition and systematically decreased with increasing bilayer compressibility modulus and bilayer thickness. These observations suggest that altering lipid environment provides a means of regulating water channel permeability. Such permeability changes could have physiological consequences, because AQP4 water permeability would be reduced by its sequestration into SM:cholesterol-enriched raft microdomains. Conversely, under ischemic conditions astrocyte membrane cholesterol content decreases, which could increase AQP4 permeability.

  6. Role of autoantibodies in acquired inflammatory demyelinating diseases of the central nervous system in children.

    PubMed

    Rostasy, Kevin; Reindl, Markus

    2013-12-01

    The recent detection of aquaporin-4 (AQP4) and myelin oligodendrocyte glycoprotein (MOG) autoantibodies in acquired inflammatory demyelinating diseases, such as neuromyelitis optica, or acute disseminated encephalomyelitis, and multiple sclerosis, in children strongly indicates that B-cell-dependent mechanisms contribute to the pathogenesis. This review aims to give an overview of the role of autoantibodies in inflammatory demyelinating pediatric diseases, with a focus on antibodies to AQP4 and MOG.

  7. Absence of aquaporin-4 in skeletal muscle alters proteins involved in bioenergetic pathways and calcium handling.

    PubMed

    Basco, Davide; Nicchia, Grazia Paola; D'Alessandro, Angelo; Zolla, Lello; Svelto, Maria; Frigeri, Antonio

    2011-04-28

    Aquaporin-4 (AQP4) is a water channel expressed at the sarcolemma of fast-twitch skeletal muscle fibers, whose expression is altered in several forms of muscular dystrophies. However, little is known concerning the physiological role of AQP4 in skeletal muscle and its functional and structural interaction with skeletal muscle proteome. Using AQP4-null mice, we analyzed the effect of the absence of AQP4 on the morphology and protein composition of sarcolemma as well as on the whole skeletal muscle proteome. Immunofluorescence analysis showed that the absence of AQP4 did not perturb the expression and cellular localization of the dystrophin-glycoprotein complex proteins, aside from those belonging to the extracellular matrix, and no alteration was found in sarcolemma integrity by dye extravasation assay. With the use of a 2DE-approach (BN/SDS-PAGE), protein maps revealed that in quadriceps, out of 300 Coomassie-blue detected and matched spots, 19 proteins exhibited changed expression in AQP4(-/-) compared to WT mice. In particular, comparison of the protein profiles revealed 12 up- and 7 down-regulated protein spots in AQP4-/- muscle. Protein identification by MS revealed that the perturbed expression pattern belongs to proteins involved in energy metabolism (i.e. GAPDH, creatine kinase), as well as in Ca(2+) handling (i.e. parvalbumin, SERCA1). Western blot analysis, performed on some significantly changed proteins, validated the 2D results. Together these findings suggest AQP4 as a novel determinant in the regulation of skeletal muscle metabolism and better define the role of this water channel in skeletal muscle physiology.

  8. Aquaporin-4 inhibition mediates piroxicam-induced neuroprotection against focal cerebral ischemia/reperfusion injury in rodents.

    PubMed

    Bhattacharya, Pallab; Pandey, Anand Kumar; Paul, Sudip; Patnaik, Ranjana; Yavagal, Dileep R

    2013-01-01

    Aquaporin-4(AQP4) is an abundant water channel protein in brain that regulates water transport to maintain homeostasis. Cerebral edema resulting from AQP4 over expression is considered to be one of the major determinants for progressive neuronal insult during cerebral ischemia. Although, both upregulation and downregulation of AQP4 expression is associated with brain pathology, over expression of AQP4 is one of the chief contributors of water imbalance in brain during ischemic pathology. We have found that Piroxicam binds to AQP4 with optimal binding energy value. Thus, we hypothesized that Piroxicam is neuroprotective in the rodent cerebral ischemic model by mitigating cerebral edema via AQP4 regulation. Rats were treated with Piroxicam OR placebo at 30 min prior, 2 h post and 4 h post 60 minutes of MCAO followed by 24 hour reperfusion. Rats were evaluated for neurological deficits and motor function just before sacrifice. Brains were harvested for infarct size estimation, water content measurement, biochemical analysis, RT-PCR and western blot experiments. Piroxicam pretreatment thirty minutes prior to ischemia and four hour post reperfusion afforded neuroprotection as evident through significant reduction in cerebral infarct volume, improvement in motor behavior, neurological deficit and reduction in brain edema. Furthermore, ischemia induced surge in levels of nitrite and malondialdehyde were also found to be significantly reduced in ischemic brain regions in treated animals. This neuroprotection was found to be associated with inhibition of acid mediated rise in intracellular calcium levels and also downregulated AQP4 expression. Findings of the present study provide significant evidence that Piroxicam acts as a potent AQP4 regulator and renders neuroprotection in focal cerebral ischemia. Piroxicam could be clinically exploited for the treatment of brain stroke along with other anti-stroke therapeutics in future.

  9. Aquaporin-4-dependent K(+) and water transport modeled in brain extracellular space following neuroexcitation.

    PubMed

    Jin, Byung-Ju; Zhang, Hua; Binder, Devin K; Verkman, A S

    2013-01-01

    Potassium (K(+)) ions released into brain extracellular space (ECS) during neuroexcitation are efficiently taken up by astrocytes. Deletion of astrocyte water channel aquaporin-4 (AQP4) in mice alters neuroexcitation by reducing ECS [K(+)] accumulation and slowing K(+) reuptake. These effects could involve AQP4-dependent: (a) K(+) permeability, (b) resting ECS volume, (c) ECS contraction during K(+) reuptake, and (d) diffusion-limited water/K(+) transport coupling. To investigate the role of these mechanisms, we compared experimental data to predictions of a model of K(+) and water uptake into astrocytes after neuronal release of K(+) into the ECS. The model computed the kinetics of ECS [K(+)] and volume, with input parameters including initial ECS volume, astrocyte K(+) conductance and water permeability, and diffusion in astrocyte cytoplasm. Numerical methods were developed to compute transport and diffusion for a nonstationary astrocyte-ECS interface. The modeling showed that mechanisms b-d, together, can predict experimentally observed impairment in K(+) reuptake from the ECS in AQP4 deficiency, as well as altered K(+) accumulation in the ECS after neuroexcitation, provided that astrocyte water permeability is sufficiently reduced in AQP4 deficiency and that solute diffusion in astrocyte cytoplasm is sufficiently low. The modeling thus provides a potential explanation for AQP4-dependent K(+)/water coupling in the ECS without requiring AQP4-dependent astrocyte K(+) permeability. Our model links the physical and ion/water transport properties of brain cells with the dynamics of neuroexcitation, and supports the conclusion that reduced AQP4-dependent water transport is responsible for defective neuroexcitation in AQP4 deficiency.

  10. Localization of aquaporin-5 in sweat glands and functional analysis using knockout mice

    PubMed Central

    Song, Yuanlin; Sonawane, Nitin; Verkman, A S

    2002-01-01

    Sweat secretion involves the transport of salt and water into the lumen of the secretory coil of the sweat gland. By analogy to salivary and submucosal glands, where fluid secretion is aquaporin-5 (AQP5) dependent, we postulated that aquaporin water channels might facilitate sweat secretion. Immunolocalization with specific antibodies revealed strong expression of AQP5 at the luminal membrane of secretory epithelial cells in sweat glands in mouse paw skin. Novel quantitative methods were developed to compare sweat secretion in wild-type mice and mice lacking AQP5. Total hindpaw sweat secretion was measured by proton nuclear magnetic resonance of sweat-derived 1H2O in 2H2O solvent, and sweat secretion from individual glands was measured by real-time video imaging of sweat droplet formation under oil. Sweat secretion rates after pilocarpine stimulation did not differ in wild-type mice (0.21 ± 0.03 nl min−1 gland−1) vs. mice lacking AQP5 (0.19 ± 0.04 nl min−1 gland−1). The lack of effect of AQP5 on sweat secretion rate was confirmed by microcapillary collections of sweat from defined regions of mouse paws. Also, as by direct counting of droplets, the number of functional sweat glands was not affected by AQP5 deletion. Sweat gland morphology was similar in wild-type and AQP5 null mice. From sweat coil geometry and gland secretion rate, the rate of fluid secretion was estimated to be 130 nl min−1 cm−2 of secretory epithelium, substantially lower than that of > 500 nl min−1 cm−2 in kidney proximal tubules and salivary glands, where active fluid absorption or secretion is aquaporin dependent. These results indicate the expression of AQP5 in sweat gland secretory epithelium, but provide direct evidence against its physiological involvement in sweat fluid secretion in mice. PMID:12042359

  11. TNF-α inhibits aquaporin 5 expression in human salivary gland acinar cells via suppression of histone H4 acetylation.

    PubMed

    Yamamura, Yoshiko; Motegi, Katsumi; Kani, Kouichi; Takano, Hideyuki; Momota, Yukihiro; Aota, Keiko; Yamanoi, Tomoko; Azuma, Masayuki

    2012-08-01

    Sjögren's syndrome is a systemic autoimmune disease characterized by reductions in salivary and lacrimal secretions. The mechanisms underlying these reductions remain unclear. We have previously shown that TNF-α plays an important role in the destruction of acinar structures. Here we examined TNF-α's function in the expression of aquaporin (AQP) 5 in human salivary gland acinar cells. Immortalized human salivary gland acinar (NS-SV-AC) cells were treated with TNF-α, and then the expression levels of AQP5 mRNA and protein were analysed. In addition, the mechanisms underlying the reduction of AQP5 expression by TNF-α treatment were investigated. TNF-α-treatment of NS-SV-AC cells significantly suppressed the expression levels of AQP5 mRNA and protein, and reduced the net fluid secretion rate. We examined the expression and activation levels of DNA methyltransferases (Dnmts) in NS-SV-AC cells treated with TNF-α. However, no significant changes were observed in the expression or activation levels of Dnmt1, Dnmt3a or Dnmt3b. Although we also investigated the role of NF-κB activity in the TNF-α-induced suppression of AQP5 expression in NS-SV-AC cells, we detected similar TNF-α suppression of AQP5 expression in non-transfected cells and in a super-repressor form of IκBα cDNA-transfected cell clones. However, interestingly, chromatin immunoprecipitation analysis demonstrated a remarkable decrease in levels of acetylated histone H4 associated with the AQP5 gene promoter after treatment with TNF-α in NS-SV-AC cells. Therefore, our results may indicate that TNF-α inhibition of AQP5 expression in human salivary gland acinar cells is due to the epigenetic mechanism by suppression of acetylation of histone H4.

  12. Quantitation of brain edema and localisation of aquaporin 4 expression in relation to susceptibility to experimental cerebral malaria.

    PubMed

    Ampawong, Sumate; Combes, Valéry; Hunt, Nicholas H; Radford, Jane; Chan-Ling, Tailoi; Pongponratn, Emsri; Grau, Georges E R

    2011-08-15

    The pathogenic mechanisms underlying the occurrence of cerebral malaria (CM) are still incompletely understood but, clearly, cerebral complications may result from concomitant microvessel obstruction and inflammation. The extent to which brain edema contributes to pathology has not been investigated. Using the model of P. berghei ANKA infection, we compared brain microvessel morphology of CM-susceptible and CM-resistant mice. By quantitative planimetry, we provide evidence that CM is characterized by enlarged perivascular spaces (PVS). We show a dramatic aquaporin 4 (AQP4) upregulation, selectively at the level of astrocytic foot processes, in both CM and non-CM disease, but significantly more pronounced in mice with malarial-induced neurological syndrome. This suggests that a threshold of AQP4 expression is needed to lead to neurovascular pathology, a view that is supported by significantly higher levels in mice with clinically overt CM. Numbers of intravascular leukocytes significantly correlated with both PVS enlargement and AQP4 overexpression. Thus, brain edema could be a contributing factor in CM pathogenesis and AQP4, specifically in its astrocytic location, a key molecule in this mechanism. Since experimental CM is associated with substantial brain edema, it models paediatric CM better than the adult syndrome and it is tempting to evaluate AQP4 in the former context. If AQP4 changes are confirmed in human CM, it may represent a novel target for therapeutic intervention.

  13. Cellular and subcellular aquaporin-4 distribution in the mouse neurohypophysis and the effects of osmotic stimulation.

    PubMed

    Mesbah-Benmessaoud, Ouahiba; Benabdesselam, Roza; Hardin-Pouzet, Hélène; Dorbani-Mamine, Latifa; Grange-Messent, Valérie

    2011-01-01

    Water channel aquaporin-4 (AQP4) is the most abundant water channel in the rodent brain and is mainly expressed in cerebral areas involved in central osmoreception and osmoregulation. The neurohypophysis is the release site of hypothalamic neurohormones vasopressin and oxytocin, which are involved in the regulation of the water balance. The authors investigated the cellular and subcellular distribution of AQP4 in the mouse neurohypophysis before and after chronic osmotic stimulation, using immunofluorescence microscopy and immunoperoxidase electron microscopy. They showed that AQP4 was abundant in the mouse hypophysis, mainly in the neural lobe. AQP4 was discontinuously distributed along pituicytes plasma membranes, in the dense neurosecretory granules and microvesicles of nerve endings and fibers, and along the luminal and abluminal membranes of fenestrated capillary endothelial cells. After chronic osmotic stimulation, AQP4 immunolabeling was enhanced. Taken together, these results suggest that AQP4 could be involved in the pituicyte sensor effect during osmoregulation, the modification and/or maturation mechanism of neurosecretory granules during neurohormone release, and the blood perfusion of the hypophysis.

  14. Deletion of aquaporin-4 increases extracellular K(+) concentration during synaptic stimulation in mouse hippocampus.

    PubMed

    Haj-Yasein, Nadia Nabil; Bugge, Cecilie Elisabeth; Jensen, Vidar; Østby, Ivar; Ottersen, Ole Petter; Hvalby, Øivind; Nagelhus, Erlend Arnulf

    2015-07-01

    The coupling between the water channel aquaporin-4 (AQP4) and K(+) transport has attracted much interest. In this study, we assessed the effect of Aqp4 deletion on activity-induced [K(+)]o changes in acute slices from hippocampus and corpus callosum of adult mice. We show that Aqp4 deletion has a layer-specific effect on [K(+)]o that precisely mirrors the known effect on extracellular volume dynamics. In CA1, the peak [K(+)]o in stratum radiatum during 20 Hz stimulation of Schaffer collateral/commissural fibers was significantly higher in Aqp4 (-/-) mice than in wild types, whereas no differences were observed throughout the [K(+)]o recovery phase. In stratum pyramidale and corpus callosum, neither peak [K(+)]o nor post-stimulus [K(+)]o recovery was affected by Aqp4 deletion. Our data suggest that AQP4 modulates [K(+)]o during synaptic stimulation through its effect on extracellular space volume.

  15. Mechanisms of Astrocyte-Mediated Cerebral Edema

    PubMed Central

    Stokum, Jesse A.; Kurland, David B.; Gerzanich, Volodymyr; Simard, J. Marc

    2014-01-01

    Cerebral edema formation stems from disruption of blood brain barrier (BBB) integrity and occurs after injury to the CNS. Due to the restrictive skull, relatively small increases in brain volume can translate into impaired tissue perfusion and brain herniation. In excess, cerebral edema can be gravely harmful. Astrocytes are key participants in cerebral edema by virtue of their relationship with the cerebral vasculature, their unique compliment of solute and water transport proteins, and their general role in brain volume homeostasis. Following the discovery of aquaporins, passive conduits of water flow, aquaporin 4 (AQP4) was identified as the predominant astrocyte water channel. Normally, AQP4 is highly enriched at perivascular endfeet, the outermost layer of the BBB, whereas after injury, AQP4 expression disseminates to the entire astrocytic plasmalemma, a phenomenon termed dysregulation. Arguably, the most important role of AQP4 is to rapidly neutralize osmotic gradients generated by ionic transporters. In pathological conditions, AQP4 is believed to be intimately involved in the formation and clearance of cerebral edema. In this review, we discuss aquaporin function and localization in the BBB during health and injury, and we examine post-injury ionic events that modulate AQP4- dependent edema formation. PMID:24996934

  16. Overactivation of corticotropin-releasing factor receptor type 1 and aquaporin-4 by hypoxia induces cerebral edema

    PubMed Central

    Chen, Shao-Jun; Yang, Jia-Fang; Kong, Fan-Ping; Ren, Ji-Long; Hao, Ke; Li, Min; Yuan, Yuan; Chen, Xin-Can; Yu, Ri-Sheng; Li, Jun-Fa; Leng, Gareth; Chen, Xue-Qun; Du, Ji-Zeng

    2014-01-01

    Cerebral edema is a potentially life-threatening illness, but knowledge of its underlying mechanisms is limited. Here we report that hypobaric hypoxia induces rat cerebral edema and neuronal apoptosis and increases the expression of corticotrophin releasing factor (CRF), CRF receptor type 1 (CRFR1), aquaporin-4 (AQP4), and endothelin-1 (ET-1) in the cortex. These effects, except for the increased expression of CRF itself, could all be blocked by pretreatment with an antagonist of the CRF receptor CRFR1. We also show that, in cultured primary astrocytes: (i) both CRFR1 and AQP4 are expressed; (ii) exogenous CRF, acting through CRFR1, triggers signaling of cAMP/PKA, intracellular Ca2+, and PKCε; and (iii) the up-regulated cAMP/PKA signaling contributes to the phosphorylation and expression of AQP4 to enhance water influx into astrocytes and produces an up-regulation of ET-1 expression. Finally, using CHO cells transfected with CRFR1+ and AQP4+, we show that transfected CRFR1+ contributes to edema via transfected AQP4+. In conclusion, hypoxia triggers cortical release of CRF, which acts on CRFR1 to trigger signaling of cAMP/PKA in cortical astrocytes, leading to activation of AQP4 and cerebral edema. PMID:25146699

  17. An immunoassay that distinguishes real neuromyelitis optica signals from a labeling detected in patients receiving natalizumab

    PubMed Central

    2014-01-01

    Background Cell-based assays for neuromyelitis optica (NMO) diagnosis are the most sensitive and specific methods to detect anti-aquaporin 4 (AQP4) antibodies in serum, but some improvements in their quantitative and specificity capacities would be desirable. Thus the aim of the present work was to develop a sensitive quantitative method for detection of anti-AQP4 antibodies that allows clear diagnosis of NMO and distinction of false labeling produced by natalizumab treatment. Methods Sera from 167 individuals, patients diagnosed with NMO (16), multiple sclerosis (85), optic neuritis (24), idiopathic myelitis (21), or other neurological disorders (13) and healthy controls (8), were used as the primary antibody in an immunofluorescence assay on HEK cells transfected with the M23 isoform of human AQP4 fused with enhanced green fluorescent protein. Cells used were freshly transfected or stored frozen and then thawed just before adding the serum. Results Microscopic observation and fluorescence quantification produced similar results in fresh and frozen samples. Serum samples from patients diagnosed with NMO were 100% positive for anti-AQP4 antibodies, while all the other sera were negative. Using serum from patients treated with natalizumab, a small and unspecific fluorescent signal was produced from all HEK cells, regardless of AQP4 expression. Conclusions Our cell-based double-label fluorescence immunoassay protocol significantly increases the signal specificity and reduces false diagnosis of NMO patients, especially in those receiving natalizumab treatment. Frozen pretreated cells allow faster detection of anti-AQP4 antibodies. PMID:24980919

  18. Immunohistochemical examination of intracerebral aquaporin-4 expression and its application for differential diagnosis between freshwater and saltwater drowning.

    PubMed

    An, Jun-Ling; Ishida, Yuko; Kimura, Akihiko; Kondo, Toshikazu

    2011-01-01

    Human brain samples were collected from 70 autopsy cases including 22 freshwater drowning (FWD), 26 saltwater drowning (SWD), and 22 non-drowning cases as controls. Then, immunohistochemical study combined with morphometry was carried out in order to examine the differential expression of AQP1 and AQP4 in the brain samples. Immunohistochemically, star-shaped cells bearing highly branched processes, often surrounding blood vessels, showed positive reactions for AQP1 and AQP4 in FWD, SWD, as well as control groups. Additionally, with double-color immunofluorescence analysis, AQP1- or AQP4-positive cells could be identified as GFAP-positive astrocytes. Moreover, AQP1-positive reaction was also observed in blood vessels. Morphometrically, there were no significant differences in AQP1 expression in astrocytes or in blood vessels among the three groups. In contrast, the average value of AQP4-positive astrocytes was significantly higher in FWD cases than in SWD and control groups. Moreover, AQP4 expression was significantly lower in SWD than in the control group (p < 0.05). Moreover, there was no significant correlation between post-submerged interval and AQP expression in drowning cases. Therefore, immunohistochemical analysis of intracerebral AQP4 expression would be forensically useful for differentiation between FWD and SWD.

  19. Structure and functions of aquaporin-4-based orthogonal arrays of particles.

    PubMed

    Wolburg, Hartwig; Wolburg-Buchholz, Karen; Fallier-Becker, Petra; Noell, Susan; Mack, Andreas F

    2011-01-01

    Orthogonal arrays or assemblies of intramembranous particles (OAPs) are structures in the membrane of diverse cells which were initially discovered by means of the freeze-fracturing technique. This technique, developed in the 1960s, was important for the acceptance of the fluid mosaic model of the biological membrane. OAPs were first described in liver cells, and then in parietal cells of the stomach, and most importantly, in the astrocytes of the brain. Since the discovery of the structure of OAPs and the identification of OAPs as the morphological equivalent of the water channel protein aquaporin-4 (AQP4) in the 1990s, a plethora of morphological work on OAPs in different cells was published. Now, we feel a need to balance new and old data on OAPs and AQP4 to elucidate the interrelationship of both structures and molecules. In this review, the identity of OAPs as AQP4-based structures in a diversity of cells will be described. At the same time, arguments are offered that under pathological or experimental circumstances, AQP4 can also be expressed in a non-OAP form. Thus, we attempt to project classical work on OAPs onto the molecular biology of AQP4. In particular, astrocytes and glioma cells will play the major part in this review, not only due to our own work but also due to the fact that most studies on structure and function of AQP4 were done in the nervous system.

  20. Translational regulation mechanisms of aquaporin-4 supramolecular organization in astrocytes.

    PubMed

    Pisani, Francesco; Rossi, Andrea; Nicchia, Grazia Paola; Svelto, Maria; Frigeri, Antonio

    2011-12-01

    The two predominant isoforms of Aquaporin-4 (AQP4), AQP4-M23 and AQP4-M1, assemble in the plasma membrane to form supramolecular structures called Orthogonal Array of Particles (OAPs) whose dimension is tightly associated to the M1/M23 ratio. Here, we explore translational regulation contribution to M1/M23 expression in primary cultures of rat astrocytes, and analyze the role of M1 mRNA 5'untranslated region (5'UTR) in this mechanism. Using isoform-specific RNAi we found that in rat astrocytes primary cultures a large proportion of M23 protein derives from M1 mRNA translation. Furthermore, site-specific mutagenesis of the 5'UTR sequence of AQP4-M1 mRNA indicates that a multiple-site leaky scanning mechanism, an out-of-frame upstream ORF (uORF), and a reinitiation mechanism are able to modulate the M1/M23 ratio and consequently, OAPs formation. These mechanisms are likely to be shared by different species, including human, and they can also be assumed to play a role in those pathophysiological situations where the organization of AQP4 in supramolecular structures (OAPs) is involved. Finally, we report that, when transfected in Hela cells, the longer rat AQP4 isoform, called Mz, which is not present in human impairs OAPs formation.

  1. Evaluation of Clinical Interest of Anti-Aquaporin-4 Autoantibody Followup in Neuromyelitis Optica

    PubMed Central

    Chanson, Jean-Baptiste; Alame, Melissa; Collongues, Nicolas; Blanc, Frédéric; Fleury, Marie; Rudolf, Gabrielle; de Seze, Jérôme; Vincent, Thierry

    2013-01-01

    Neuromyelitis optica (NMO) is an autoimmune disease in which a specific biomarker named NMO-IgG and directed against aquaporin-4 (AQP4) has been found. A correlation between disease activity and anti-AQP4 antibody (Ab) serum concentration or complement-mediated cytotoxicity has been reported, but the usefulness of longitudinal evaluation of these parameters remains to be evaluated in actual clinical practice. Thirty serum samples from 10 NMO patients positive for NMO-IgG were collected from 2006 to 2011. Anti-AQP4 Ab serum concentration and complement-mediated cytotoxicity were measured by flow cytometry using two quantitative cell-based assays (CBA) and compared with clinical parameters. We found a strong correlation between serum anti-AQP4 Ab concentration and complement-mediated cytotoxicity (P < 0.0001). Nevertheless, neither relapse nor worsening of impairment level was closely associated with a significant increase in serum Ab concentration or cytotoxicity. These results suggest that complement-mediated serum cytotoxicity assessment does not provide extra insight compared to anti-AQP4 Ab serum concentration. Furthermore, none of these parameters appears closely related to disease activity and/or severity. Therefore, in clinical practice, serum anti-AQP4 reactivity seems not helpful as a predictive biomarker in the followup of NMO patients as a means of predicting the onset of a relapse and adapting the treatment accordingly. PMID:23710199

  2. Aquaporin 5 regulates cigarette smoke induced emphysema by modulating barrier and immune properties of the epithelium.

    PubMed

    Aggarwal, Neil R; Chau, Eric; Garibaldi, Brian T; Mock, Jason R; Sussan, Thomas; Rao, Keshav; Rao, Kaavya; Menon, Anil G; D'Alessio, Franco R; Damarla, Mahendra; Biswal, Shyam; King, Landon S; Sidhaye, Venkataramana K

    2013-10-01

    Chronic obstructive pulmonary disease (COPD) causes significant morbidity and mortality. Cigarette smoke, the most common risk factor for COPD, induces airway and alveolar epithelial barrier permeability and initiates an innate immune response. Changes in abundance of aquaporin 5 (AQP5), a water channel, can affect epithelial permeability and immune response after cigarette smoke exposure. To determine how AQP5-derived epithelial barrier modulation affects epithelial immune response to cigarette smoke and development of emphysema, WT and AQP5(-/-) mice were exposed to cigarette smoke (CS). We measured alveolar cell counts and differentials, and assessed histology, mean-linear intercept (MLI), and surface-to-volume ratio (S/V) to determine severity of emphysema. We quantified epithelial-derived signaling proteins for neutrophil trafficking, and manipulated AQP5 levels in an alveolar epithelial cell line to determine specific effects on neutrophil transmigration after CS exposure. We assessed paracellular permeability and epithelial turnover in response to CS. In contrast to WT mice, AQP5(-/-) mice exposed to 6 months of CS did not demonstrate a significant increase in MLI or a significant decrease in S/V compared with air-exposed mice, conferring protection against emphysema. After sub-acute (4 weeks) and chronic (6 mo) CS exposure, AQP5(-/-) mice had fewer alveolar neutrophil but similar lung neutrophil numbers as WT mice. The presence of AQP5 in A549 cells, an alveolar epithelial cell line, was associated with increase neutrophil migration after CS exposure. Compared with CS-exposed WT mice, neutrophil ligand (CD11b) and epithelial receptor (ICAM-1) expression were reduced in CS-exposed AQP5(-/-) mice, as was secreted LPS-induced chemokine (LIX), an epithelial-derived neutrophil chemoattractant. CS-exposed AQP5(-/-) mice demonstrated decreased type I pneumocytes and increased type II pneumocytes compared with CS-exposed WT mice suggestive of enhanced epithelial

  3. Diagnostic Utility of Systematic Aquaporin-4 Antibodies Determination in the First Event of Immune-Mediated Optic Neuritis.

    PubMed

    Carnero Contentti, Edgar; De Virgiliis, Mariana; Hryb, Javier Pablo; Leguizamon, Felisa; Celso, Julia; Di Pace, José Luis; Perassolo, Mónica

    2016-01-01

    Antibodies against aquaporin-4 (AQP4-ab) have diagnostic and prognostic value. However, little is known to date about their utility in the first event of optic neuritis (ON). To evaluate the utility of systematic AQP4-ab determination in a retrospective cohort of patients with a first onset of ON. All patients (n = 42) were tested for AQP4-ab in the following context: typical ON (TON) and atypical ON (AON). Clinical, radiological and biochemical data were collected; patients with TON vs. AON and AQP4-ab positive vs. negative were compared. The proportion of AQP4-ab seropositive patients was 40% in the TON group vs. 40.9% in the AON group. Visual acuity (VA) at baseline was poor in AON patients (p = 0.02) and these patients were associated with worse VA outcome (p < 0.001) at 6 months compared with TON patients, with a median follow-up of 3.27 ± 1.79 years. Brain MRI with dissemination in space criteria (p < 0.001), spinal cord partial lesions (p < 0.001) and oligoclonal bands (p = 0.02) were associated with the initial stages of TON. VA severity, number of myelitis attacks and ON relapses did not differ significantly between seropositive and seronegative patients. AQP4-ab were detected only in neuromyelitis optica spectrum disorders patients. This study showed a high seropositivity for AQP4-ab in TON patients, suggesting that it could diagnostic utility at the onset of ON. © 2016 S. Karger AG, Basel.

  4. Inhibitor(s) of the classical complement pathway in mouse serum limit the utility of mice as experimental models of neuromyelitis optica.

    PubMed

    Ratelade, Julien; Verkman, A S

    2014-11-01

    Neuromyelitis optica (NMO) is an inflammatory demyelinating disease of the central nervous system in which anti-aquaporin-4 (AQP4) autoantibodies (AQP4-IgG) cause damage to astrocytes by complement-dependent cytotoxicity (CDC). Various approaches have been attempted to produce NMO lesions in rodents, some involving genetically modified mice with altered immune cell function. Here, we found that mouse serum strongly inhibits complement from multiple species, preventing AQP4-IgG-dependent CDC. Effects of mouse serum on complement activation were tested in CDC assays in which AQP4-expressing cells were incubated with AQP4-IgG and complement from different species. Biochemical assays and mass spectrometry were used to characterize complement inhibitor(s) in mouse serum. Sera from different strains of mice produced almost no AQP4-IgG-dependent CDC compared with human, rat and guinea pig sera. Remarkably, addition of mouse serum prevented AQP4-IgG-dependent CDC caused by human, rat or guinea pig serum, with 50% inhibition at <5% mouse serum. Hemolysis assays indicated that the inhibitor(s) in mouse serum target the classical and not the alternative complement pathway. We found that the complement inhibitor(s) in mouse serum were contained in a serum fraction purified with protein-A resin; however, the inhibitor was not IgG as determined using serum from IgG-deficient mice. Mass spectrometry on the protein A-purified fraction produced several inhibitor candidates. The low intrinsic complement activity of mouse serum and the presence of complement inhibitor(s) limit the utility of mouse models to study disorders, such as NMO, involving the classical complement pathway.

  5. Effects of propofol and sevoflurane on aquaporin-4 and aquaporin-9 expression in patients performed gliomas resection.

    PubMed

    Yang, Wan-Chao; Zhou, Li-Jie; Zhang, Rui; Yue, Zi-Yong; Dong, Hong; Song, Chun-Yu; Qian, Hua; Lu, Shu-Jun; Chang, Fei-Fei

    2015-10-05

    Post-operative cerebral edema is a threat for patients performed gliomas resection. Some studies have shown that general anesthesia drugs, such as, propofol had neuroprotective effect. Aquaporin-4 (AQP4) and Aquaporin-9 (AQP9) play an important role in maintaining brain water homeostasis under various conditions. The aim of this study was to compare the effect of propofol or sevoflurane on expression of AQP4 and AQP9 in patients performed gliomas resection. 30 patients performed gliomas resection were included in this study. The patients were randomly divided into two groups: propofol group and sevoflurane group. Fresh human gliomas specimens were obtained and hematoxylin eosin (HE) staining, immunohistochemical staining and Western blot analysis were used for observation of the expression of AQP4 and AQP9. The immunohistochemical staining of the sections showed that the percentage of AQP4 positive cells in the propofol group (14.3±4.61%) was significantly lower than that in sevoflurane group (37.3±10.01%) (n=15, P<0.05). There was no significant difference in the percentage of AQP9 positive cells in propofol group and sevoflurane group (25.8±2.67 versus 28.1±7.81%, n=15, P>0.05). Western blot analysis confirmed the immunohistochemistry results. AQP4 protein level in propofol group was significantly lower than that in sevoflurane group (1.4±0.13 versus 1.7±0.12, P<0.05). Western blot analysis did not show any difference of expression of AQP9 protein between the propofol group and sevoflurane group (2.0±0.13 versus 2.1±0.13, P>0.05, n=6). AQP4 expression was lower in patients of propofol group than that in sevoflurane group. Our results suggested that propofol could inhibit the expression of AQP4.

  6. Reversible, Temperature-Dependent Supramolecular Assembly of Aquaporin-4 Orthogonal Arrays in Live Cell Membranes

    PubMed Central

    Crane, Jonathan M.; Verkman, A.S.

    2009-01-01

    Abstract The shorter “M23” isoform of the glial cell water channel aquaporin-4 (AQP4) assembles into orthogonal arrays of particles (OAPs) in cell plasma membranes, whereas the full-length “M1” isoform does not. N-terminal residues are responsible for OAP formation by AQP4-M23 and for blocking of OAP formation in AQP4-M1. In investigating differences in OAP formation by certain N-terminus mutants of AQP4, as measured by freeze-fracture electron microscopy versus live-cell imaging, we discovered reversible, temperature-dependent OAP assembly of certain weakly associating AQP4 mutants. Single-particle tracking of quantum-dot-labeled AQP4 in live cells and total internal reflection fluorescence microscopy showed >80% of M23 in OAPs at 10–50°C compared to <10% of M1. However, OAP formation by N-terminus cysteine-substitution mutants of M1, which probe palmitoylation-regulated OAP assembly, was strongly temperature-dependent, increasing from <10% at 37°C to >70% at 10°C for the double mutant M1-C13A/C17A. OAP assembly by this mutant, but not by native M23, could also be modulated by reducing its membrane density. Exposure of native M1 and single cysteine mutants to 2-bromopalmitate confirmed the presence of regulated OAP assembly by S-palmitoylation. Kinetic studies showed rapid and reversible OAP formation during cooling and OAP disassembly during heating. Our results provide what to our knowledge is the first information on the energetics of AQP4 OAP assembly in plasma membranes. PMID:19948131

  7. Aquaporin-4 Deletion in Mice Reduces Encephalopathy and Brain Edema in Experimental Acute Liver Failure

    PubMed Central

    Rama Rao, Kakulavarapu V.; Verkman, A. S.; Curtis, Kevin M.; Norenberg, Michael D.

    2014-01-01

    Brain edema and associated astrocyte swelling leading to increased intracranial pressure are hallmarks of acute liver failure (ALF). Elevated blood and brain levels of ammonia have been implicated in the development of brain edema in ALF. Cultured astrocytes treated with ammonia have been shown to undergo cell swelling and such swelling was associated with an increase in the plasma membrane expression of aquaporin-4 (AQP4) protein. Further, silencing the AQP4 gene in cultured astrocytes was shown to prevent the ammonia-induced cell swelling. Here, we examined the evolution of brain edema in AQP4-null mice and their wild type counterparts (WT-mice) in different models of ALF induced by thioacetamide (TAA) or acetaminophen (APAP). Induction of ALF with TAA or APAP significantly increased brain water content in WT mice (by 1.6 ± 0.3 and 2.3 ± 0.4 %, respectively). AQP4 protein was significantly increased in brain plasma membranes of WT mice with ALF induced by either TAA or APAP. In contrast to WT-mice, brain water content did not increase in AQP4-null mice. Additionally, AQP4-null mice treated with either TAA or APAP showed a remarkably lesser degree of neurological deficits as compared to WT mice; the latter displayed an inability to maintain proper gait, and demonstrated a markedly reduced exploratory behavior, with the mice remaining in one corner of the cage with its head tilted downwards. These results support a central role of AQP4 in the brain edema associated with ALF. PMID:24321433

  8. Aquaporin-4 Deficient Mice have Increased Extracellular Space Without Tortuosity Change

    PubMed Central

    Yao, Xiaoming; Hrabětová, Sabina; Nicholson, Charles; Manley, Geoffrey T.

    2008-01-01

    Aquaporin-4 (AQP4) is the major water channel expressed at fluid-tissue barriers throughout the brain and plays a crucial role in cerebral water balance. To assess whether these channels influence brain extracellular space (ECS) under resting physiological conditions, we used the established real-time iontophoresis method with tetramethylammonium (TMA+) to measure three diffusion parameters: ECS volume fraction (α), tortuosity (λ), and TMA+ loss (k’). In vivo measurements were performed in the somatosensory cortex of AQP4 deficient (AQP4-/-) mice and wild-type controls with matched age. Mice lacking AQP4 showed a 28% increase in α (0.23 ± 0.007 vs. 0.18 ± 0.003) with no differences in λ (1.62 ± 0.04 vs. 1.61 ± 0.02) and k’ (0.0045 ± 0.0001 1/sec vs. 0.0031 ± 0.0009 1/sec). Additional recordings in brain slices showed similarly elevated α in AQP4-/- mice, and no differences in λ and k’ between the two genotypes. This is the first direct comparison of ECS properties in adult mice lacking AQP4 water channels with wild-type animals and demonstrates a significant enlargement of the volume fraction but no difference in hindrance to TMA+ diffusion, expressed as tortuosity. These findings provide direct evidence for involvement of AQP4 in modulation of the ECS volume fraction and provide a basis for future modeling of water and ion transport in the central nervous system. PMID:18495879

  9. Current concept of neuromyelitis optica (NMO) and NMO spectrum disorders.

    PubMed

    Jacob, Anu; McKeon, Andrew; Nakashima, Ichiro; Sato, Douglas Kazutoshi; Elsone, Liene; Fujihara, Kazuo; de Seze, Jerome

    2013-08-01

    Neuromyelitis optica (NMO) has been described as a disease clinically characterised by severe optic neuritis (ON) and transverse myelitis (TM). Other features of NMO include female preponderance, longitudinally extensive spinal cord lesions (>3 vertebral segments), and absence of oligoclonal IgG bands . In spite of these differences from multiple sclerosis (MS), the relationship between NMO and MS has long been controversial. However, since the discovery of NMO-IgG or aquaporin-4 (AQP4) antibody (AQP4-antibody), an NMO-specific autoantibody to AQP4, the dominant water channel in the central nervous system densely expressed on end-feet of astrocytes, unique clinical features, MRI and other laboratory findings in NMO have been clarified further. AQP4-antibody is now the most important laboratory finding for the diagnosis of NMO. Apart from NMO, some patients with recurrent ON or recurrent longitudinally extensive myelitis alone are also often positive for AQP4-antibody. Moreover, studies of AQP4-antibody-positive patients have revealed that brain lesions are not uncommon in NMO, and some patterns appear to be unique to NMO. Thus, the spectrum of NMO is wider than mere ON and TM. Pathological analyses of autopsied cases strongly suggest that unlike MS, astrocytic damage is the primary pathology in NMO, and experimental studies confirm the pathogenicity of AQP4-antibody. Importantly, therapeutic outcomes of some immunological treatments are different between NMO and MS, making early differential diagnosis of these two disorders crucial. We provide an overview of the epidemiology, clinical and neuroimaging features, immunopathology and therapy of NMO and NMO spectrum disorders.

  10. Aquaporin-4 antibody isoform binding specificities do not explain clinical variations in NMO

    PubMed Central

    Kitley, Joanna; Woodhall, Mark; Leite, M. Isabel; Palace, Jackie; Waters, Patrick

    2015-01-01

    Objective: To assess the clinical relevance of the differential binding of antibodies against the 2 main aquaporin-4 (AQP4) isoforms in neuromyelitis optica (NMO) patient sera using stably transfected human embryonic kidney cells. Methods: Flow cytometry of human embryonic kidney cells stably transfected with either M23 or M1 AQP4 was used to measure antibody endpoint titers in 52 remission samples and 26 relapse samples from 34 patients with clinically well-characterized AQP4 antibody–positive NMO/NMO spectrum disorder. Results: The AQP4 M23 (40–61,440) and AQP4 M1 (<20–20,480) titers varied widely between patients, as did the M23:M1 antibody ratio (1–192). In 76 of 78 samples, binding to M23 was higher than binding to M1, including during relapses and remissions (p < 0.0001), and the M23:M1 ratio was relatively constant within an individual patient. Titers usually fell after immunosuppression, but the titers at which relapses occurred varied markedly; no threshold level for relapses could be identified, and relapses could occur without a rise in titers. Relapse severity did not correlate with M23 or M1 antibody titers, although there was a correlation between the earliest M23 titers and annualized relapse rates. The M23:M1 ratio and absolute M23 and M1 titers did not relate to age at disease onset, ethnicity, disease severity, phenotype, or relapses at different anatomical sites. Conclusion: Relative AQP4 antibody binding to M23 and M1 isoforms differs between patients but there is no consistent association between these differences and clinical characteristics of disease. Nevertheless, the M23 isoform provided a slightly more sensitive substrate for AQP4-antibody assays, particularly for follow-up studies. PMID:26140280

  11. Hypoxia-inducible factor-1α contributes to brain edema after stroke by regulating aquaporins and glycerol distribution in brain.

    PubMed

    Higashida, Tetsuhiro; Peng, Changya; Li, Jie; Dornbos, David; Teng, Kailing; Li, Xiaohua; Kinni, Harish; Guthikonda, Murali; Ding, Yuchuan

    2011-02-01

    Brain edema following stroke is a critical clinical problem due to its association with increased morbidity and mortality. Despite its significance, present treatment for brain edema simply provides symptomatic relief due to the fact that molecular mechanisms underlying brain edema remain poorly understood. The present study investigated the role of hypoxia-inducible factor-1α (HIF-1α) and aquaporins (AQP-4 and -9) in regulating cerebral glycerol accumulation and inducing brain edema in a rodent model of stroke. Two-hours of middle cerebral artery occlusion (MCAO) followed by reperfusion was performed in male Sprague-Dawley rats (250-280 g). Anti-AQP-4 antibody, anti-AQP-9 antibody, or 2-Methoxyestradiol (2ME2, an inhibitor of HIF-1α) was given at the time of MCAO. The rats were sacrificed at 1 and 24 hours after reperfusion and their brains were examined. Extracellular and intracellular glycerol concentration of brain tissue was calculated with an enzymatic glycerol assay. The protein expressions of HIF-1α, AQP-4 and AQP-9 were determined by Western blotting. Brain edema was measured by brain water content. Compared to control, edema (p < 0.01), increased glycerol (p < 0.05), and enhanced expressions of HIF-1α, AQP-4, and AQP-9 (p < 0.05) were observed after stroke. With inhibition of AQP-4, AQP-9 or HIF-1α, edema and extracellular glycerol were significantly (p < 0.01) decreased while intracellular glycerol was increased (p < 0.01) 1 hour after stroke. Inhibition of HIF-1α with 2ME2 suppressed (p < 0.01) the expression of AQP-4 and AQP-9. These findings suggest that HIF-1α serves as an upstream regulator of cerebral glycerol concentrations and brain edema via a molecular pathway involving AQP-4 and AQP-9. Pharmacological blockade of this pathway in stroke patients may provide novel therapeutic strategies.

  12. Mutation of a single amino acid converts the human water channel aquaporin 5 into an anion channel.

    PubMed

    Qin, Xue; Boron, Walter F

    2013-09-15

    Aquaporin 6 (AQP6) is unique among mammalian AQPs in being an anion channel with negligible water permeability. However, the point mutation Asn60Gly converts AQP6 from an anion channel into a water channel. In the present study of human AQP5, we mutated Leu51 (corresponding to residue 61 in AQP6), the side chain of which faces the central pore. We evaluated function in Xenopus oocytes by two-electrode voltage clamp, video measurements of osmotic H2O permeability (Pf), microelectrode measurements of surface pH (pHS) to assess CO2 permeability, and surface biotinylation. We found that AQP5-L51R does not exhibit the H2O or CO2 permeability of the wild-type protein but instead has a novel p-chloromercuribenzene sulfonate (pCMBS)-sensitive current. The double mutant AQP5-L51R/C182S renders the conductance insensitive to pCMBS, demonstrating that the current is intrinsic to AQP5. AQP5-L51R has the anion permeability sequence I(-) > NO3(-) ≅ NO2(-) > Br(-) > Cl(-) > HCO3(-) > gluconate. Of the other L51 mutants, L51T (polar uncharged) and L51V (nonpolar) retain H2O and CO2 permeability and do not exhibit anion conductance. L51D and L51E (negatively charged) have no H2O or CO2 permeability. L51K (positively charged) has an intermediate H2O and CO2 permeability and anion conductance. L51H is unusual in having a relatively low CO2 permeability and anion conductance, but a moderate Pf. Thus, positively charged mutations of L51 can convert AQP5 from a H2O/CO2 channel into an anion channel. However, the paradoxical effect of L51H is consistent with the hypothesis that CO2, in part, takes a pathway different from H2O through AQP5.

  13. Design and optimization of an active magnetic thrust bearing for flyhweel energy storage systems

    NASA Astrophysics Data System (ADS)

    Lam, Siu Kiong

    2011-12-01

    This thesis is motivated in part by the lack of published research pertaining to active magnetic thrust bearings (AMTB), as compared to active magnetic radial bearings (AMRB). This thesis presents one method in implementing AMTBs to provide a near frictionless support to a rotor contained in a vacuum environment, mitigating the concerns of viscous drag and chemical reaction as a result of the exposure to lubricants. An analytical model was first developed to linearize the AMTB against a predefined operating point. A finite element simulation was subsequently conducted to verify the analytical model. The analytical and finite element methods both indicated that the steady state power consumption of the AMTB was approximately 12 W, and there was no occurrence of magnetic saturation within the material. The stress analysis showed that the stresses experienced by the rotor part of the AMTB as it rotated at the maximum rotation speed were well below the yield stress of the material. Lastly, a closed loop feedback network with proportional-integral-derivative (PID) controllers was designed and implemented as the control scheme for keeping the flywheel rotor at a predefined axial position, while the rotor underwent axial position variations due to the external disturbance, thermal expansion, or Poisson contraction effects. The resulting simulations showed that the PID controller was able to stabilize the flywheel rotor 0.3 s after it was disturbed by an external force equaling 10% of its weight.

  14. Hyperosmotic stress induces cisplatin sensitivity in ovarian cancer cells by stimulating aquaporin-5 expression

    PubMed Central

    CHEN, XUEJUN; ZHOU, CHUNXIA; YAN, CHUNXIAO; MA, JIONG; ZHENG, WEI

    2015-01-01

    Aquaporins (AQPs) are important mediators of water permeability and are closely associated with tumor cell proliferation, migration, angiogenesis and chemoresistance. Moreover, the chemosensitivity of tumor cells to cisplatin (CDDP) is potentially affected by osmotic pressure. The present study was undertaken to determine whether hyperosmosis regulates ovarian cancer cell sensitivity to CDDP in vitro and to explore whether this is associated with AQP expression. The hyperosmotic stress was induced by D-sorbitol. 3AO ovarian cancer cells were treated with different concentrations of hypertonic medium and/or CDDP for various times, followed by measuring the inhibition rate of cell proliferation using an MTT assay. In addition, AQP expression in response to osmotic pressure and/or CDDP was measured by reverse transcription-quantitative polymerase chain reaction and western blotting. Cell proliferation in response to hypertonic stress was also measured when AQP5 was knocked down by small interfering (si)RNA. 3AO cell proliferation was inhibited by hyperosmotic stress, while the expression of AQP5, but not that of AQP1, AQP3 or AQP9, was increased in a dose- and time-dependent manner in hypertonic sorbitol-containing medium. When AQP5 was silenced by siRNA, cells were susceptible to hypertonic stress. MTT analyses showed that the inhibition of cell proliferation by a low dose of CDDP increased significantly with exposure to a hyperosmotic stimulus, and this effect was reduced when a high dose of CDDP was used. AQP5 expression was induced by a low dose of CDDP, but was reduced by a high dose of CDDP. However, hyperosmosis enhanced AQP5 mRNA expression at every dose of CDDP tested, compared with isotonic medium. With prolonged treatment time, AQP5 expression was reduced by CDDP in hypertonic and isotonic culture medium. Thus, the effects of hyperosmosis on cell sensitivity to CDDP were associated with AQP5 expression. These results suggest that AQP5 expression in ovarian

  15. Effects of dexamethasone on aquaporin-4 expression in brain tissue of rat with bacterial meningitis

    PubMed Central

    Du, Kai-Xian; Dong, Yan; Zhang, Yan; Hou, Li-Wei; Fan, Dong-Xia; Luo, Yu; Zhang, Xiao-Li; Jia, Tian-Ming; Lou, Ji-Yu

    2015-01-01

    Aquaporin-4 (AQP4) is the most popular water channel protein expressed in brain tissue and plays a very important role in regulating the water balance in and outside of brain parenchyma. To investigate the expression of aquaporin-4 in the rat brain tissue after dexamethasone therapy of meningitis induced by Streptococcus pneumonia, total 40 of 3-week old Sprague-Dawley rats were divided into infection group (n=30) and normal control group (n=10). The meningitis groups were infected with 1×107 cfu/ml of Streptococcus pneumoniae and then randomized into no treatment (untreated group, n=10), treatment with ceftriaxone (CTRX group, n=10) and treatment with dexamethasone combined ceftriaxone (CTRX + DEXA group, n=10). The normal control group was established by using saline. The rats were euthanized when they reached terminal illness or five days after infection, followed by detection of AQP4 through using immunohistochemistry and Western blot methods. Data has showed that expression of AQP4 in model group remained higher than the control and treatment group (P<0.05). AQP4 expression in CTRX + DEXA group was lower than that in CTRX group (P<0.05). There was no statistical difference between CTRX + DEXA group and the control group (P>0.05). These data suggested that Dexamethasone could down-regulate the expression of AQP4 in the brain tissue of rats with meningitis and provides evidence for the mechanism of protective effect of Dexamethasone on central neurosystem. PMID:26045822

  16. Effects of neuromyelitis optica–IgG at the blood–brain barrier in vitro

    PubMed Central

    Takeshita, Yukio; Obermeier, Birgit; Cotleur, Anne C.; Spampinato, Simona F.; Shimizu, Fumitaka; Yamamoto, Erin; Sano, Yasuteru; Kryzer, Thomas J.; Lennon, Vanda A.; Kanda, Takashi

    2016-01-01

    Objective: To address the hypothesis that physiologic interactions between astrocytes and endothelial cells (EC) at the blood–brain barrier (BBB) are afflicted by pathogenic inflammatory signaling when astrocytes are exposed to aquaporin-4 (AQP4) antibodies present in the immunoglobulin G (IgG) fraction of serum from patients with neuromyelitis optica (NMO), referred to as NMO-IgG. Methods: We established static and flow-based in vitro BBB models incorporating co-cultures of conditionally immortalized human brain microvascular endothelial cells and human astrocyte cell lines with or without AQP4 expression. Results: In astrocyte–EC co-cultures, exposure of astrocytes to NMO-IgG decreased barrier function, induced CCL2 and CXCL8 expression by EC, and promoted leukocyte migration under flow, contingent on astrocyte expression of AQP4. NMO-IgG selectively induced interleukin (IL)-6 production by AQP4-positive astrocytes. When EC were exposed to IL-6, we observed decreased barrier function, increased CCL2 and CXCL8 expression, and enhanced leukocyte transmigration under flow. These effects were reversed after application of IL–6 neutralizing antibody. Conclusions: Our results indicate that NMO-IgG induces IL-6 production by AQP4-positive astrocytes and that IL-6 signaling to EC decreases barrier function, increases chemokine production, and enhances leukocyte transmigration under flow. PMID:28018943

  17. Aquaporin-4 regulates extracellular space volume dynamics during high-frequency synaptic stimulation: a gene deletion study in mouse hippocampus.

    PubMed

    Haj-Yasein, Nadia Nabil; Jensen, Vidar; Østby, Ivar; Omholt, Stig W; Voipio, Juha; Kaila, Kai; Ottersen, Ole P; Hvalby, Øivind; Nagelhus, Erlend A

    2012-05-01

    Little is known about the physiological roles of aquaporin-4 (AQP4) in the central nervous system. AQP4 water channels are concentrated in endfeet membranes of astrocytes but also localize to the fine astrocytic processes that abut central synapses. Based on its pattern of expression, we predicted that AQP4 could be involved in controlling water fluxes and changes in extracellular space (ECS) volume that are associated with activation of excitatory pathways. Here, we show that deletion of Aqp4 accentuated the shrinkage of the ECS that occurred in the mouse hippocampal CA1 region during activation of Schaffer collateral/commissural fibers. This effect was found in the stratum radiatum (where perisynaptic astrocytic processes abound) but not in the pyramidal cell layer (where astrocytic processes constitute but a minor volume fraction). For both genotypes the ECS shrinkage was most pronounced in the pyramidal cell layer. Our data attribute a physiological role to AQP4 and indicate that this water channel regulates extracellular volume dynamics in the mammalian brain.

  18. Hydrocephalus: the role of cerebral aquaporin-4 channels and computational modeling considerations of cerebrospinal fluid.

    PubMed

    Desai, Bhargav; Hsu, Ying; Schneller, Benjamin; Hobbs, Jonathan G; Mehta, Ankit I; Linninger, Andreas

    2016-09-01

    Aquaporin-4 (AQP4) channels play an important role in brain water homeostasis. Water transport across plasma membranes has a critical role in brain water exchange of the normal and the diseased brain. AQP4 channels are implicated in the pathophysiology of hydrocephalus, a disease of water imbalance that leads to CSF accumulation in the ventricular system. Many molecular aspects of fluid exchange during hydrocephalus have yet to be firmly elucidated, but review of the literature suggests that modulation of AQP4 channel activity is a potentially attractive future pharmaceutical therapy. Drug therapy targeting AQP channels may enable control over water exchange to remove excess CSF through a molecular intervention instead of by mechanical shunting. This article is a review of a vast body of literature on the current understanding of AQP4 channels in relation to hydrocephalus, details regarding molecular aspects of AQP4 channels, possible drug development strategies, and limitations. Advances in medical imaging and computational modeling of CSF dynamics in the setting of hydrocephalus are summarized. Algorithmic developments in computational modeling continue to deepen the understanding of the hydrocephalus disease process and display promising potential benefit as a tool for physicians to evaluate patients with hydrocephalus.

  19. Unprecedented Cell-Selection Using Ultra-Quick Freezing Combined with Aquaporin Expression

    PubMed Central

    Kato, Yasuhiro; Miyauchi, Takayuki; Abe, Youichiro; Kojić, Dušan; Tanaka, Manami; Chikazawa, Nana; Nakatake, Yuhki; Ko, Shigeru B. H.; Kobayashi, Daisuke; Hazama, Akihiro; Fujiwara, Shoko; Uchida, Tatsuya; Yasui, Masato

    2014-01-01

    Freezing is usually used for preservation and storage of biological samples; however, this process may have some adverse effects such as cell membrane damage. Aquaporin (AQP), a water channel protein, has been suggested to play some roles for cryopreservation although its molecular mechanism remains unclear. Here we show that membrane damage caused by ultra-quick freezing is rescued by the expression of AQP4. We next examine if the expression of AQP combined with ultra-quick freezing can be used to select cells efficiently under freezing conditions where most cells are died. CHO cells stably expressing AQP4 were exclusively selected from mixed cell cultures. Having identified the increased expression of AQP4 during ES cell differentiation into neuro-ectoderm using bioinformatics, we confirmed the improved survival of differentiated ES cells with AQP4 expression. Finally we show that CHO cells transiently transfected with Endothelin receptor A and Aqp4 were also selected and concentrated by multiple cycles of freezing/thawing, which was confirmed with calcium imaging in response to endothelin. Furthermore, we found that the expression of AQP enables a reduction in the amount of cryoprotectants for freezing, thereby decreasing osmotic stress and cellular toxicity. Taken together, we propose that this simple but efficient and safe method may be applicable to the selection of mammalian cells for applications in regenerative medicine as well as cell-based functional assays or drug screening protocols. PMID:24558371

  20. Expression of Aquaporin 1 and Aquaporin 4 in the Temporal Neocortex of Patients with Parkinson's Disease.

    PubMed

    Hoshi, Akihiko; Tsunoda, Ayako; Tada, Mari; Nishizawa, Masatoyo; Ugawa, Yoshikazu; Kakita, Akiyoshi

    2017-03-01

    The astrocytic water channel proteins aquaporin 1 (AQP1) and aquaporin 4 (AQP4) are known to be altered in brains affected by several neurodegenerative disorders, including Alzheimer's disease. However, AQP expression in brains affected by Parkinson's disease (PD) has not been described in detail. Recently, it has been reported that α-synuclein (α-syn)-immunolabeled astrocytes show preferential distribution in several cerebral regions, including the neocortex, in patients with PD. Here, we investigated whether AQP expression is associated with α-syn deposition in the temporal neocortex of PD patients. In accordance with the consensus criteria for dementia with Lewy bodies, the patients were classified into neocortical (PDneo), limbic (PDlim), and brain stem (PDbs) groups. Expressions of α-syn, AQP1, and AQP4 in the temporal lobes of the individual PD patients were examined immunohistochemically. Immunohistochemical analysis demonstrated more numerous AQP4-positive and AQP1-positive astrocytes in the PDneo group than in the PDbs, PDlim, and control groups. However, in the PDneo cases, these astrocytes were not often observed in α-syn-rich areas, and semiquantitative analysis revealed that there was a significant negative correlation between the levels of AQP4 and α-syn in layers V-VI, and between those of AQP1 and α-syn in layers II-III. These findings suggest that a defined population of AQP4- and AQP1-expressing reactive astrocytes may modify α-syn deposition in the neocortex of patients with PD.

  1. Neuromyelitis optica and the evolving spectrum of autoimmune aquaporin-4 channelopathies: a decade later.

    PubMed

    Pittock, Sean J; Lucchinetti, Claudia F

    2016-02-01

    The discovery of AQP4-IgG (a pathogenic antibody that targets the astrocytic water channel aquaporin-4), as the first sensitive and specific biomarker for any inflammatory central nervous system demyelinating disease (IDD), has shifted emphasis from the oligodendrocyte and myelin to the astrocyte as a central immunopathogenic player. Neuromyelitis optica (NMO) spectrum disorders (SDs) represent an evolving spectrum of IDDs extending beyond the optic nerves and spinal cord to include the brain (especially in children) and, rarely, muscle. NMOSD typical brain lesions are located in areas that highly express the target antigen, AQP4, including the circumventricular organs (accounting for intractable nausea and vomiting) and the diencephalon (accounting for sleep disorders, endocrinopathies, and syndrome of inappropriate antidiuresis). Magnetic resonance imaging brain abnormalities fulfill Barkoff criteria for multiple sclerosis in up to 10% of patients. As the spectrum broadens, the importance of highly specific assays that detect pathogenic AQP4-IgG targeting extracellular epitopes of AQP4 cannot be overemphasized. The rapid evolution of our understanding of the immunobiology of AQP4 autoimmunity necessitates continuing revision of NMOSD diagnostic criteria. Here, we describe scientific advances that have occurred since the discovery of NMO-IgG in 2004 and review novel targeted immunotherapies. We also suggest that NMOSDs should now be considered under the umbrella term autoimmune aquaporin-4 channelopathy. © 2015 New York Academy of Sciences.

  2. Differential diagnosis of neuromyelitis optica spectrum disorders

    PubMed Central

    Kim, Sung-Min; Kim, Seong-Joon; Lee, Haeng Jin; Kuroda, Hiroshi; Palace, Jacqueline; Fujihara, Kazuo

    2017-01-01

    Neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory disorder of the central nervous system (CNS) mostly manifesting as optic neuritis and/or myelitis, which are frequently recurrent/bilateral or longitudinally extensive, respectively. As the autoantibody to aquaporin-4 (AQP4-Ab) can mediate the pathogenesis of NMOSD, testing for the AQP4-Ab in serum of patients can play a crucial role in diagnosing NMOSD. Nevertheless, the differential diagnosis of NMOSD in clinical practice is often challenging despite the phenotypical and serological characteristics of the disease because: (1) diverse diseases with autoimmune, vascular, infectious, or neoplastic etiologies can mimic these phenotypes of NMOSD; (2) patients with NMOSD may only have limited clinical manifestations, especially in their early disease stages; (3) test results for AQP4-Ab can be affected by several factors such as assay methods, serologic status, disease stages, or types of treatment; (4) some patients with NMOSD do not have AQP4-Ab; and (5) test results for the AQP4-Ab may not be readily available for the acute management of patients. Despite some similarity in their phenotypes, these NMOSD and NMOSD-mimics are distinct from each other in their pathogenesis, prognosis, and most importantly treatment. Understanding the detailed clinical, serological, radiological, and prognostic differences of these diseases will improve the proper management as well as diagnosis of patients. PMID:28670343

  3. Neuromyelitis optica and the evolving spectrum of autoimmune aquaporin-4 channelopathies: a decade later

    PubMed Central

    Pittock, Sean J.; Lucchinetti, Claudia F.

    2015-01-01

    The discovery of AQP4-IgG (a pathogenic antibody that targets the astrocytic water channel aquaporin-4) as the first sensitive and specific biomarker for any inflammatory central nervous system demyelinating disease, has shifted emphasis from the oligodendrocyte and myelin to the astrocyte as a central immunopathogenic player. Neuromyelitis optica (NMO) spectrum disorders (SD) represent an evolving spectrum of IDDs extending beyond the optic nerves and spinal cord to include the brain (especially in children) and, rarely, muscle. NMOSD typical brain lesions are located in areas that highly express the target antigen, AQP4, including the circumventricular organs (accounting for intractable nausea and vomiting) and the diencephalon (accounting for sleep disorders, endocrinopathies, and syndrome of inappropriate antidiuresis). Magnetic resonance imaging (MRI) brain abnormalities fulfill Barkoff criteria for multiple sclerosis in up to 10% of patients. As the spectrum broadens, the importance of highly specific assays that detect pathogenic AQP4-IgG targeting extracellular epitopes of AQP4 cannot be overemphasized. The rapid evolution of our understanding of the immunobiology of AQP4 autoimmunity necessitates continuing revision of NMOSD diagnostic criteria. Here, we describe scientific advances that have occurred since the discovery of NMO-IgG in 2004 and review novel targeted immunotherapies. We also suggest that NMOSDs should now be considered under the umbrella term autoimmune aquaporin-4 channelopathy. PMID:26096370

  4. Efficacy of Polyvalent Human Immunoglobulins in an Animal Model of Neuromyelitis Optica Evoked by Intrathecal Anti-Aquaporin 4 Antibodies

    PubMed Central

    Grünewald, Benedikt; Bennett, Jeffrey L.; Toyka, Klaus V.; Sommer, Claudia; Geis, Christian

    2016-01-01

    Neuromyelitis Optica Spectrum Disorders (NMOSD) are associated with autoantibodies (ABs) targeting the astrocytic aquaporin-4 water channels (AQP4-ABs). These ABs have a direct pathogenic role by initiating a variety of immunological and inflammatory processes in the course of disease. In a recently-established animal model, chronic intrathecal passive-transfer of immunoglobulin G from NMOSD patients (NMO-IgG), or of recombinant human AQP4-ABs (rAB-AQP4), provided evidence for complementary and immune-cell independent effects of AQP4-ABs. Utilizing this animal model, we here tested the effects of systemically and intrathecally applied pooled human immunoglobulins (IVIg) using a preventive and a therapeutic paradigm. In NMO-IgG animals, prophylactic application of systemic IVIg led to a reduced median disease score of 2.4 on a 0–10 scale, in comparison to 4.1 with sham treatment. Therapeutic IVIg, applied systemically after the 10th intrathecal NMO-IgG injection, significantly reduced the disease score by 0.8. Intrathecal IVIg application induced a beneficial effect in animals with NMO-IgG (median score IVIg 1.6 vs. sham 3.7) or with rAB-AQP4 (median score IVIg 2.0 vs. sham 3.7). We here provide evidence that treatment with IVIg ameliorates disease symptoms in this passive-transfer model, in analogy to former studies investigating passive-transfer animal models of other antibody-mediated disorders. PMID:27571069

  5. Ischemic Postconditioning Alleviates Brain Edema After Focal Cerebral Ischemia Reperfusion in Rats Through Down-Regulation of Aquaporin-4.

    PubMed

    Han, Dong; Sun, Miao; He, Ping-Ping; Wen, Lu-Lu; Zhang, Hong; Feng, Juan

    2015-07-01

    Cerebral edema is a serious complication associated with cerebral ischemia/reperfusion (I/R). Aquaporin-4 (AQP4) plays a role in generating postischemic edema after reperfusion. Recently, ischemic postconditioning (Postcond) has been shown to produce neuroprotective effects and reduce brain edema in rats after cerebral I/R. It is unclear if ischemic Postcond alleviates brain edema injury through regulation of AQP4. In this study, middle cerebral artery occlusion (MCAO) was induced in rats by filament insertion for 2 h following 24-h reperfusion: ischemic Postcond treatment was performed before reperfusion in the experimental group. We used the wet-dry weight ratio and transmission electron microscopy to evaluate brain edema after 24 h of reperfusion. We used immunohistochemistry and Western blot analyses to evaluate the distribution and expression of AQP4. Ischemic Postcond significantly reduced the water content of the brain tissue and swelling of the astrocytic foot processes. AQP4 expression increased in the I/R and Postcond groups compared to the sham group, but it decreased in the Postcond group compared to the I/R group. The results of our study suggest that ischemic Postcond effectively reduces brain edema after reperfusion by inhibiting AQP4 expression. The data in this study support the use of ischemic Postcond for alleviating brain edema after cerebral I/R.

  6. The role of aquaporin 4 in the brain.

    PubMed

    Iacovetta, Christine; Rudloff, Elke; Kirby, Rebecca

    2012-03-01

    Emerging evidence suggests that aquaporin (AQP) 4 water channels play an important role in water homeostasis in the brain. These water channels are most abundant in the cell membrane of astrocytes, but are also present within ependymal cell membranes and in osmosensory areas of the hypothalamus. Water transport through AQP4 depends on concentration gradients across the membrane, but the rate of transport is determined by the capacity of astrocytes to up- and down-regulate AQP4 numbers, their location within the membrane, and the overall permeability of the channel. Other functions of brain AQP4 involve potassium uptake and release by astrocytes, migration of glial cells, glial scarring, and astrocyte-to-astrocyte cell communication. AQP water channels are involved in formation and control of edema in the brain and in multiple disease processes in the brain, such as seizures and tumors. There is abundant scientific literature on AQP4 describing its structure, function, location, and role in water homeostasis and edema in the brain. Investigation of AQP expression in the canine and feline brain should be pursued so that clinically relevant comparisons between findings in mice, rats, and people and animal patients can be made. © 2012 American Society for Veterinary Clinical Pathology.

  7. Increased CSF aquaporin-4, and interleukin-6 levels in dogs with idiopathic communicating internal hydrocephalus and a decrease after ventriculo-peritoneal shunting.

    PubMed

    Schmidt, Martin J; Rummel, Christoph; Hauer, Jessica; Kolecka, Malgorzata; Ondreka, Nele; McClure, Vanessa; Roth, Joachim

    2016-06-29

    Studies in animal models, in which internal hydrocephalus has been induced by obstructing the cerebrospinal fluid pathways, have documented an up-regulation of the concentrations of aquaporin-4 (AQP4) in the brain. In this study, the concentrations of aquaporin-1 (AQP1), AQP1, AQP4 and interleukin-6 (IL-6) were determined in the CSF of dogs with idiopathic communicating hydrocephalus before and after the reduction of intraventricular volume following ventriculo-peritoneal shunt (VP-shunt) treatment. The concentrations of AQP4 and IL-6 were increased in the cerebrospinal fluid of dogs with hydrocephalus compared to controls. Both parameters significantly decreased after surgical treatment, accompanied by decrease of ventricular size and the clinical recovery of the dogs. AQP1 was not detectable in CSF. Brain AQP4 up-regulation might be a compensatory response in dogs with hydrocephalus. Future determination of AQP4 at the mRNA and protein level in brain tissue is warranted to substantiate this hypothesis.

  8. Higher order structure of aquaporin-4.

    PubMed

    Nicchia, G P; Rossi, A; Mola, M G; Pisani, F; Stigliano, C; Basco, D; Mastrototaro, M; Svelto, M; Frigeri, A

    2010-07-28

    Unlike other mammalian AQPs, multiple tetramers of AQP4 associate in the plasma membrane to form peculiar structures called Orthogonal Arrays of Particles (OAPs), that are observable by freeze-fracture electron microscopy (FFEM). However, FFEM cannot give information about the composition of OAPs of different sizes, and due to its technical complexity is not easily applicable as a routine technique. Recently, we employed the 2D gel electrophoresis BN-SDS/PAGE that for the first time enabled the biochemical isolation of AQP4-OAPs from several tissues. We found that AQP4 protein is present in several higher-order complexes (membrane pools of supra-structures) which contain different ratios of M1/M23 isoforms corresponding to AQP4-OAPs of different size. In this paper, we illustrate in detail the potentiality of 2D BN/SDS-PAGE for analyzing AQP4 supra-structures, their relationship with the dystrophin glycoprotein complex and other membrane proteins, and their role as a specific target of Neuromyelitis Optica autoantibodies.

  9. Clinical features and sera anti-aquaporin 4 antibody positivity in patients with demyelinating disorders of the central nervous system from Tianjin, China.

    PubMed

    Yang, Chun-Sheng; Zhang, Da-Qi; Wang, Jing-Hua; Jin, Wei-Na; Li, Min-Shu; Liu, Jie; Zhang, Cun-Jin; Li, Ting; Shi, Fu-Dong; Yang, Li

    2014-01-01

    To investigate the clinical characteristics and sera anti-aquaporin 4 (AQP4) antibody positivity in patients with inflammatory demyelinating disorders (IDDs) of the central nervous system (CNS) in Tianjin, China. We retrospectively evaluated 234 patients with IDDs including neuromyelitis optica (NMO), recurrent optic neuritis (rON), longitudinally extensive transverse myelitis (LETM), clinically isolated syndrome (CIS), and multiple sclerosis (MS) groups. Sera from 217 patients were determined for AQP4-Ab. The clinical characteristics and sera anti-AQP4 positivity were compared. The IDDS comprised 63 MS, 51 NMO, 56 LETM, 10 rON, and 54 CIS. Compared with MS, NMO had a higher frequency of occurrence in women, intractable hiccup and nausea (IHN), medullospinal lesion, longitudinally extensive spinal cord lesions (LESCL) and bilateral ON, disease onset at a later age, and worsening residual disability. AQP4-Ab-positive rates were 84.1% and 69% in NMO and NMO spectrum disorders (NMOSD), respectively, whereas it was undetectable in all of the MS sera samples. We comprehensively contrast the distinct clinical features of MS, NMO, and NMOSD in our center. A sensitive AQP4-Ab assay is necessary for the early diagnosis of NMOSD in our patients. Neither medullospinal lesion nor IHN is unique in NMO. © 2013 John Wiley & Sons Ltd.

  10. Aquaporin 5 expression inhibited by LPS via p38/JNK signaling pathways in SPC-A1 cells.

    PubMed

    Shen, Yao; Chen, Zhihong; Wang, Yuehong; Song, Zhenju; Zhang, Ziqiang; Jin, Meiling; Wang, Xiangdong; Bai, Chunxue

    2010-05-31

    Proper H(2)O to mucin ratio of airway mucus is important for mucociliary clearance. Recent studies suggest that decreased aquaporin 5 (AQP5) is correlated with increased staining of MUC5AC in submucosal glands of COPD patients. Lipopolysaccharide (LPS) is one of the major insults in airway mucin secretion in COPD. In this study, changes in both AQP5 and MUC5AC expression levels in SPC-A1, a human airway submucosal gland cell line, were quantified after exposure of the cells to LPS. AQP5 transcription and protein expression were decreased while MUC5AC expression was increased by LPS exposure in SPC-A1 cells. Further studies revealed that AQP5 expression was down-regulated via the p38/JNK signaling pathway, while MUC5AC was up-regulated through the EGFR-p38/JNK pathway. Therefore, p38 and JNK may become promising targets to preserve AQP5 expression and prevent MUC5AC over-expression to restore proper H(2)O to mucin ratio of the airway mucus, which may be beneficial to the clinical management of COPD patients. Copyright 2010 Elsevier B.V. All rights reserved.

  11. Impaired migration and cell volume regulation in aquaporin 5-deficient SPC-A1 cells.

    PubMed

    Chen, Zhihong; Zhang, Ziqiang; Gu, Yutong; Bai, Chunxue

    2011-05-31

    Aquaporin 5 (AQP5) is widely expressed in various organ and tissues. In light of the novel oncogenic properties of aquaporins (AQPs), here we investigated the effect of AQP5 knockdown by RNAi on transmembrane osmotic water permeability, cell migration potential and cell volume regulation ability. AQP5 expression was inhibited by short hairpin RNA in SPC-A1 cells, a lung adenocarcinoma cell line. Cells loaded with a fluoroprobe (calcein-AM) were immersed in either isosmotic, hyperosmotic or hyposmotic solutions, and fluorescence intensity was recorded using confocal microscopy. These measurements were used to calculate osmotic water permeability coefficients (Pf) and to monitor regulated volume decrease (RVD). Tumor cell migration and invasion assays were performed in a modified Boyden chamber. Wound healing and colony forming ability were also tested. Although self-quenching was not found in SPC-A1 cells, we observed a linear relationship between fluorescence intensity and cell water volume, suggesting that this method is a sensitive and reproducible way to measure single-cell transmembrane water permeability. Cells in which the AQP5 gene was silenced showed a 49.4% decrease in osmotic water permeability, a 55.3% decrease in migration and a 28.4% decrease in invasion potential. In addition, RVD decreased remarkably with reduced osmotic water permeability. Our results suggest that AQP5, which mediates water permeability and thus regulates cell shape and volume, is a potentially important determinant in cell migration. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Urinary Excretion of Kidney Aquaporins as Possible Diagnostic Biomarker of Diabetic Nephropathy

    PubMed Central

    Rossi, Luigi; Nicoletti, Maria Celeste; Mastrofrancesco, Lisa; Di Franco, Antonella; Indrio, Francesca; Lella, Rossella; Laviola, Luigi; Giorgino, Francesco; Svelto, Maria; Gesualdo, Loreto

    2017-01-01

    Diabetic nephropathy (DN) is a microangiopathic complication of diabetes mellitus (DM) affecting one-third of diabetic patients. The large variability in the clinical presentation of renal involvement in patients with DM makes kidney biopsy a prerequisite for a correct diagnosis. However, renal biopsy is an invasive procedure associated with risk of major complications. Numerous studies aimed to identify a noninvasive biomarker of DN but, so far, none of these is considered to be sufficiently specific and sensitive. Water channel aquaporins (AQPs), expressed at the plasma membrane of epithelial tubular cells, are often dysregulated during DN. In this work, we analyzed the urine excretion of AQP5 and AQP2 (uAQP5 and uAQP2), via exosomes, in 35 diabetic patients: 12 normoalbuminuric with normal renal function (DM), 11 with proteinuric nondiabetic nephropathy (NDN), and 12 with histological diagnosis and classification of DN. ELISA and WB analysis independently showed that uAQP5 was significantly increased in DN patients. Interestingly, linear regression analysis showed a positive correlation between uAQP5 and the histological class of DN. The same analysis, focusing on uAQP2, showed comparable results. Taken together, these data suggest a possible use of AQP5 and AQP2 as novel noninvasive biomarkers to help in classifying the clinical stage of DN. PMID:28246612

  13. Deletion of ATG5 Shows a Role of Autophagy in Salivary Homeostatic Control

    PubMed Central

    Morgan-Bathke, M.; Lin, H.H.; Chibly, A.M.; Zhang, W.; Sun, X.; Chen, C.-H.; Flodby, P.; Borok, Z.; Wu, R.; Arnett, D.; Klein, R.R.; Ann, D.K.; Limesand, K.H.

    2013-01-01

    Autophagy is a catabolic pathway utilized to maintain a balance among the synthesis, degradation, and recycling of cellular components, thereby playing a role in cell growth, development, and homeostasis. Previous studies revealed that a conditional knockout of essential member(s) of autophagy in a variety of tissues causes changes in structure and function of these tissues. Acinar cell-specific expression of knocked-in Cre recombinase through control of aquaporin 5 (Aqp5) promoter/enhancer (Aqp5-Cre) allows us to specifically inactivate Atg5, a protein necessary for autophagy, in salivary acinar cells of Atg5f/f;Aqp5-Cre mice. There was no difference in apoptotic or proliferation levels in salivary glands of Atg5/Cre mice from each genotype. However, H&E staining and electron microscopy studies revealed modestly enlarged acinar cells and accumulated secretory granules in salivary glands of Atg5f/f;Aqp5-Cre mice. Salivary flow rates and amylase contents of Atg5/Cre mice indicated that acinar-specific inactivation of ATG5 did not alter carbachol-evoked saliva and amylase secretion. Conversely, autophagy intersected with salivary morphological and secretory manifestations induced by isoproterenol administration. These results identified a role for autophagy as a homeostasis control in salivary glands. Collectively, Atg5f/f;Aqp5-Cre mice would be a useful tool to enhance our understanding of autophagy in adaptive responses following targeted head and neck radiation or Sjögren syndrome. PMID:23884556

  14. Differential expression of aquaporin 5 and aquaporin 3 in squamous cell carcinoma and adenoid cystic carcinoma.

    PubMed

    Ishimoto, Shunsuke; Wada, Koichiro; Usami, Yu; Tanaka, Noriaki; Aikawa, Tomonao; Okura, Masaya; Nakajima, Atsushi; Kogo, Mikihiko; Kamisaki, Yoshinori

    2012-07-01

    Aquaporins (AQPs) are a membrane protein family involved in the selective transport of water across cell membranes. Recent studies have reported the expression of AQP5 in several tumor types such as gastric, pulmonary, ovarian, pancreatic and colorectal cancer. We have previously reported the expression on tumor cells and the important role of AQP3 on cell growth in tongue cancer. However, little is known about the expression and precise role of AQP5 on squamous cell carcinoma (SCC) of the tongue. We investigated the expression of AQP5 and AQP3 in human oral SCC and adenoid cystic carcinoma (ACC). Overexpression of both AQP5 and AQP3 were immunohistochemically observed on tumor cells in SCC, whereas ACC cells were faintly stained with those antibodies against AQPs. Treatment with pan-AQP inhibitor or specific AQP5-siRNA showed inhibition of cell growth in SCC cell lines via the inhibition of integrins and the mitogen-activated protein kinase pathway. AQPs play important roles in cell growth in SCC rather than ACC.

  15. Involvement of water channel Aquaporin 5 in H2S-induced pulmonary edema.

    PubMed

    Xu, Chunyang; Jiang, Lei; Zou, Yuxia; Xing, Jingjing; Sun, Hao; Zhu, Baoli; Zhang, Hengdong; Wang, Jun; Zhang, Jinsong

    2017-01-01

    Acute exposure to hydrogen sulfide (H2S) poses a significant threat to life, and the lung is one of the primary target organs of H2S. However, the mechanisms involved in H2S-induced acute pulmonary edema are poorly understood. This study aims to investigate the effects of H2S on the expression of water channel aquaporin 5 (AQP5) and to elucidate the signaling pathways involved in AQP5 regulation. In an in vivo study, C57BL6 mice were exposed to sub-lethal concentrations of inhaled H2S, and histological injury of the lungs and ultrastructure injury of the epithelial cells were evaluated. With real-time PCR and western blot assays, we found that H2S exposure contributed to a significant decrease in AQP5 expression both in murine lung tissue and the A549 cell line, and the ERK1/2 and p38 MAPK signaling pathways were demonstrated to be implicated in AQP5 regulation. Therefore, adjusting AQP5 protein levels could be considered a therapeutic strategy for the treatment of APE induced by H2S and other hazardous gases.

  16. Investigation of age-related changes in the expression of aquaporin-1 and aquaporin-5 in the salivary glands of mice.

    PubMed

    Sapmaz, Emrah; Uysal, Murat; Tumer, Mehmet Kemal; Sapmaz, Hilal Irmak; Somuk, Battal Tahsin; Arici, Akgul; Tas, Ufuk

    2016-09-01

    The increased AQP5 expression associated with ageing in glands, which mainly secreted a serous solution, suggests a compensation for the decreased amount of saliva secretion associated with age progression. To investigate the change in aquaporin-1 (AQP1) and aquaporin-5 (AQP5) expression in the salivary glands in young and elder mice. Twelve female mice from the Balb/C genus (30-50 g) were used. The mice were separated into two groups: Group I had 2-month-old mice and Group II had 18-month-old mice. Salivary glands (glandula parotidea, glandula sublungualis, glandula submaxillaris) were excised and examined immunohistochemically and histopathologically. AQP1 and AQP5 expression of young and elder mice was evaluated using the H-score. A p-value less than 0.05 was considered statistically significant. Upon histopathological examination, the acini of glands were found to be atrophic in elder mice. The number and diameter of intercalated ducts were increased. Indeed, the amount of adipose tissue in the gland was increased. Upon immunohistochemical examination, both AQP1 and AQP5 levels in sublingual glands of elder mice were increased (p < 0.01 and p < 0.001, respectively). However, only AQP5 levels were increased in the parotid gland of elder mice (p < 0.01).

  17. An unusual twin-his arrangement in the pore of ammonia channels is essential for substrate conductance.

    PubMed

    Javelle, Arnaud; Lupo, Domenico; Zheng, Lei; Li, Xiao-Dan; Winkler, Fritz K; Merrick, Mike

    2006-12-22

    Amt proteins constitute a class of ubiquitous integral membrane proteins that mediate movement of ammonium across cell membranes. They are homotrimers, in which each subunit contains a narrow pore through which substrate transport occurs. Two conserved histidine residues in the pore have been proposed to be necessary for ammonia conductance. By analyzing 14 engineered polar and non-polar variants of these histidines, in Escherichia coli AmtB, we show that both histidines are absolutely required for optimum substrate conductance. Crystal structures of variants confirm that substitution of the histidine residues does not affect AmtB structure. In a subgroup of Amt proteins, found only in fungi, one of the histidines is replaced by glutamate. The equivalent substitution in E. coli AmtB is partially active, and the structure of this variant suggests that the glutamate side chain can make similar interactions to those made by histidine.

  18. Steady state growth of E. Coli in low ammonium environment

    NASA Astrophysics Data System (ADS)

    Kim, Minsu; Deris, Barret; Zhang, Zhongge; Hwa, Terry

    2011-03-01

    Ammonium is the preferred nitrogen source for many microorganisms. In medium with low ammonium concentrations, enteric bacteria turn on the nitrogen responsive (ntr) genes to assimilate ammonium. Two proteins in E. coli, Glutamine synthetase (GS) and the Ammonium/methylammonium transporter AmtB play crucial roles in this regard. GS is the major ammonium assimilation enzyme below 1mM of NH4 + . AmtB is an inner membrane protein that transports NH4 + across the cell membrane against a concentration gradient. In order to study ammonium uptake at low NH4 + concentration at neutral pH, we developed a microfluidic flow chamber that maintains a homogenous nutrient environment during the course of exponential cell growth, even at very low concentration of nutrients. Cell growth can be accurately monitored using time-lapse microscopy. We followed steady state growth down to micro-molar range of NH4 + for the wild type and Δ amtB strains. The wild type strain is able to maintain the growth rate from 10mM down to a few uM of NH4 + , while the mutant exhibited reduced growth below ~ 20 ~uM of NH4 + . Simultaneous characterization of the expression levels of GS and AmtB using fluorescence reporters reveals that AmtB is turned on already at 1mM, but contributes to function only below ~ 30 ~uM in the wild-type. Down to ~ 20 ~uM of NH4 + , E.~coli can compensate the loss of AmtB by GS alone.

  19. Elderly-onset neuromyelitis optica which developed after the diagnosis of prostate adenocarcinoma and relapsed after a 23-valent pneumococcal polysaccharide vaccination.

    PubMed

    Kitazawa, Yu; Warabi, Yoko; Bandoh, Mitsuaki; Takahashi, Toshiyuki; Matsubara, Shiro

    2012-01-01

    We report a case of elderly-onset neuromyelitis optica (NMO) positive for the anti-aquaporin-4 (AQP-4) antibody; symptoms developed after the diagnosis of prostate adenocarcinoma and relapsed after a 23-valent pneumococcal polysaccharide vaccination. We suggest that activation of CD4-positive T cells and secretion of interferon-gamma induced by adenocarcinoma and complement activation induced by vaccination are responsible for the onset and relapse of NMO, even if a patient is positive for the anti-AQP-4 antibody. This case supports the previous experimental finding that the anti-AQP-4 antibody does not cause NMO-like lesions when injected alone, but does so after the induction of T cell-mediated experimental autoimmune encephalomyelitis or when co-injected with human complement.

  20. Update on biomarkers in neuromyelitis optica

    PubMed Central

    Melamed, Esther; Levy, Michael; Waters, Patrick J.; Sato, Douglas Kazutoshi; Bennett, Jeffrey L.; John, Gareth R.; Hooper, Douglas C.; Saiz, Albert; Bar-Or, Amit; Kim, Ho Jin; Pandit, Lakha; Leite, Maria Isabel; Asgari, Nasrin; Kissani, Najib; Hintzen, Rogier; Marignier, Romain; Jarius, Sven; Marcelletti, John; Smith, Terry J.; Yeaman, Michael R.

    2015-01-01

    Neuromyelitis optica (NMO) (and NMO spectrum disorder) is an autoimmune inflammatory disease of the CNS primarily affecting spinal cord and optic nerves. Reliable and sensitive biomarkers for onset, relapse, and progression in NMO are urgently needed because of the heterogeneous clinical presentation, severity of neurologic disability following relapses, and variability of therapeutic response. Detecting aquaporin-4 (AQP4) antibodies (AQP4-IgG or NMO-IgG) in serum supports the diagnosis of seropositive NMO. However, whether AQP4-IgG levels correlate with disease activity, severity, response to therapy, or long-term outcomes is unclear. Moreover, biomarkers for patients with seronegative NMO have yet to be defined and validated. Collaborative international studies hold great promise for establishing and validating biomarkers that are useful in therapeutic trials and clinical management. In this review, we discuss known and potential biomarkers for NMO. PMID:26236760

  1. Update on biomarkers in neuromyelitis optica.

    PubMed

    Melamed, Esther; Levy, Michael; Waters, Patrick J; Sato, Douglas Kazutoshi; Bennett, Jeffrey L; John, Gareth R; Hooper, Douglas C; Saiz, Albert; Bar-Or, Amit; Kim, Ho Jin; Pandit, Lakha; Leite, Maria Isabel; Asgari, Nasrin; Kissani, Najib; Hintzen, Rogier; Marignier, Romain; Jarius, Sven; Marcelletti, John; Smith, Terry J; Yeaman, Michael R; Han, May H; Aktas, Orhan; Apiwattanakul, Metha; Banwell, Brenda; Bichuetti, Denis; Broadley, Simon; Cabre, Philippe; Chitnis, Tanuja; De Seze, Jerome; Fujihara, Kazuo; Greenberg, Benjamin; Hellwig, Kerstin; Iorio, Raffaele; Jarius, Sven; Klawiter, Eric; Kleiter, Ingo; Lana-Peixoto, Marco; Nakashima; O'Connor, Kevin; Palace, Jacqueline; Paul, Friedman; Prayoonwiwat, Naraporn; Ruprecht, Klemens; Stuve, Olaf; Tedder, Thomas; Tenembaum, Silvia; Garrahan, Juan P; Aires, Buenos; van Herle, Katja; van Pelt, Danielle; Villoslada, Pablo; Waubant, Emmanuelle; Weinshenker, Brian; Wingerchuk, Dean; Würfel, Jens; Zamvil, Scott

    2015-08-01

    Neuromyelitis optica (NMO) (and NMO spectrum disorder) is an autoimmune inflammatory disease of the CNS primarily affecting spinal cord and optic nerves. Reliable and sensitive biomarkers for onset, relapse, and progression in NMO are urgently needed because of the heterogeneous clinical presentation, severity of neurologic disability following relapses, and variability of therapeutic response. Detecting aquaporin-4 (AQP4) antibodies (AQP4-IgG or NMO-IgG) in serum supports the diagnosis of seropositive NMO. However, whether AQP4-IgG levels correlate with disease activity, severity, response to therapy, or long-term outcomes is unclear. Moreover, biomarkers for patients with seronegative NMO have yet to be defined and validated. Collaborative international studies hold great promise for establishing and validating biomarkers that are useful in therapeutic trials and clinical management. In this review, we discuss known and potential biomarkers for NMO.

  2. Antibodies to neural and non-neural autoantigens in Japanese patients with CNS demyelinating disorders.

    PubMed

    Watanabe, Mitsuru; Kondo, Takayuki; Murakata, Kenji; Kageyama, Takashi; Shibata, Yoko; Takahashi, Toshiyuki; Nomura, Kyoichi; Matsumoto, Sadayuki

    2014-09-15

    Anti-aquaporin 4 (AQP4) antibodies (Abs) are essential in neuromyelitis optica spectrum disorders (NMOSD), but the relationship between CNS demyelinating disorders (CNSDD) and other neural Abs remains unclear. Here we screened anti-neural Abs in the sera of 70 Japanese CNSDD patients. While two had only demyelinating events among three anti-N-methyl-d-aspartate receptor (NMDAR) Ab-positive subjects, the other subject who also had anti-AQP4 Abs experienced episodes of anti-NMDAR encephalitis and of NMOSD. Major lesions in the three anti-contactin-associated protein 2 Ab-positive subjects were infratentorial, including one co-carrying anti-AQP4 Abs. Thus, autoantibodies can be clinically silent, but multiple autoantibodies may participate in the pathogenesis. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Loss or Mislocalization of Aquaporin-4 Affects Diffusion Properties and Intermediary Metabolism in Gray Matter of Mice.

    PubMed

    Pavlin, T; Nagelhus, E A; Brekken, C; Eyjolfsson, E M; Thoren, A; Haraldseth, O; Sonnewald, U; Ottersen, O P; Håberg, A K

    2017-01-01

    The first aim of this study was to determine how complete or perivascular loss of aquaporin-4 (AQP4) water channels affects membrane permeability for water in the mouse brain grey matter in the steady state. Time-dependent diffusion magnetic resonance imaging was performed on global Aqp4 knock out (KO) and α-syntrophin (α-syn) KO mice, in the latter perivascular AQP4 are mislocalized, but still functioning. Control animals were corresponding wild type (WT) mice. By combining in vivo diffusion measurements with the effective medium theory and previously measured extra-cellular volume fractions, the effects of membrane permeability and extracellular volume fraction were uncoupled for Aqp4 and α-syn KO. The second aim was to assess the effect of α-syn KO on cortical intermediary metabolism combining in vivo [1-(13)C]glucose and [1,2-(13)C]acetate injection with ex vivo (13)C MR spectroscopy. Aqp4 KO increased the effective diffusion coefficient at long diffusion times by 5%, and a 14% decrease in membrane water permeability was estimated for Aqp4 KO compared with WT mice. α-syn KO did not affect the measured diffusion parameters. In the metabolic analyses, significantly lower amounts of [4-(13)C]glutamate and [4-(13)C]glutamine, and percent enrichment in [4-(13)C]glutamate were detected in the α-syn KO mice. [1,2-(13)C]acetate metabolism was unaffected in α-syn KO, but the contribution of astrocyte derived metabolites to GABA synthesis was significantly increased. Taken together, α-syn KO mice appeared to have decreased neuronal glucose metabolism, partly compensated for by utilization of astrocyte derived metabolites.

  4. Secondary Data Analytics of Aquaporin Expression Levels in Glioblastoma Stem-Like Cells.

    PubMed

    Isokpehi, Raphael D; Wollenberg Valero, Katharina C; Graham, Barbara E; Pacurari, Maricica; Sims, Jennifer N; Udensi, Udensi K; Ndebele, Kenneth

    2015-01-01

    Glioblastoma is the most common brain tumor in adults in which recurrence has been attributed to the presence of cancer stem cells in a hypoxic microenvironment. On the basis of tumor formation in vivo and growth type in vitro, two published microarray gene expression profiling studies grouped nine glioblastoma stem-like (GS) cell lines into one of two groups: full (GSf) or restricted (GSr) stem-like phenotypes. Aquaporin-1 (AQP1) and aquaporin-4 (AQP4) are water transport proteins that are highly expressed in primary glial-derived tumors. However, the expression levels of AQP1 and AQP4 have not been previously described in a panel of 92 glioma samples. Therefore, we designed secondary data analytics methods to determine the expression levels of AQP1 and AQP4 in GS cell lines and glioblastoma neurospheres. Our investigation also included a total of 2,566 expression levels from 28 Affymetrix microarray probe sets encoding 13 human aquaporins (AQP0-AQP12); CXCR4 (the receptor for stromal cell derived factor-1 [SDF-1], a potential glioma stem cell therapeutic target]); and PROM1 (gene encoding CD133, the widely used glioma stem cell marker). Interactive visual representation designs for integrating phenotypic features and expression levels revealed that inverse expression levels of AQP1 and AQP4 correlate with distinct phenotypes in a set of cell lines grouped into full and restricted stem-like phenotypes. Discriminant function analysis further revealed that AQP1 and AQP4 expression are better predictors for tumor formation and growth types in glioblastoma stem-like cells than are CXCR4 and PROM1. Future investigations are needed to characterize the molecular mechanisms for inverse expression levels of AQP1 and AQP4 in the glioblastoma stem-like neurospheres.

  5. Light inactivation of water transport and protein–protein interactions of aquaporin–Killer Red chimeras

    PubMed Central

    Baumgart, Florian; Rossi, Andrea

    2012-01-01

    Aquaporins (AQPs) have a broad range of cellular and organ functions; however, nontoxic inhibitors of AQP water transport are not available. Here, we applied chromophore-assisted light inactivation (CALI) to inhibit the water permeability of AQP1, and of two AQP4 isoforms (M1 and M23), one of which (M23) forms aggregates at the cell plasma membrane. Chimeras containing Killer Red (KR) and AQPs were generated with linkers of different lengths. Osmotic water permeability of cells expressing KR/AQP chimeras was measured from osmotic swelling–induced dilution of cytoplasmic chloride, which was detected using a genetically encoded chloride-sensing fluorescent protein. KR-AQP1 red fluorescence was bleached rapidly (∼10% per second) by wide-field epifluorescence microscopy. After KR bleaching, KR-AQP1 water permeability was reduced by up to 80% for the chimera with the shortest linker. Remarkably, CALI-induced reduction in AQP4-KR water permeability was approximately twice as efficient for the aggregate-forming M23 isoform; this suggests intermolecular CALI, which was confirmed by native gel electrophoresis on cells coexpressing M23-AQP4-KR and myc-tagged M23-AQP4. CALI also disrupted the interaction of AQP4 with a neuromyelitis optica autoantibody directed against an extracellular epitope on AQP4. CALI thus permits rapid, spatially targeted and irreversible reduction in AQP water permeability and interactions in live cells. Our data also support the utility of CALI to study protein–protein interactions as well as other membrane transporters and receptors. PMID:22200949

  6. Effect of estrogen and/or progesterone administration on traumatic brain injury-caused brain edema: the changes of aquaporin-4 and interleukin-6.

    PubMed

    Soltani, Zahra; Khaksari, Mohammad; Shahrokhi, Nader; Mohammadi, Gholamabbas; Mofid, Behshad; Vaziri, Ali; Amiresmaili, Sedigheh

    2016-03-01

    The role of aquaporin-4 (AQP4) and interleukin-6 (IL-6) in the development of brain edema post-traumatic brain injury (TBI) has been indicated. The present study was designed to investigate the effect(s) of administration of progesterone (P) and/or estrogen (E) on brain water content, AQP4 expression, and IL-6 levels post-TBI. The ovariectomized rats were divided into 11 groups: sham, one vehicle, two vehicles, E1, E2, P1, P2, E1 + P1, E1 + P2, E2 + P1, and E2 + P2. The brain AQP4 expression, IL-6 levels, and water content were evaluated 24 h after TBI induced by Marmarou's method. The low (E1 and P1) and high (E2 and P2) doses of estrogen and progesterone were administered 30 min post-TBI. The results showed that brain water content and AQP4 expression decreased in the E1, E2, P1, and P2-treated groups. The administration of E1 decreased IL-6 levels. Addition of progesterone decreased the inhibitory effect of E1 and E2 on the accumulation of water in the brain. Administration of E1 + P1 and E1 + P2 decreased the inhibitory effect of E1 on the IL-6 levels and AQP4 protein expression. Our findings suggest that estrogen or progesterone by itself has more effective roles in decrease of brain edema than combination of both. Possible mechanism may be mediated by the alteration of AQP4 and IL-6 expression. However, further studies are required to verify the exact mechanism.

  7. Features of anti-aquaporin 4 antibody-seropositive Chinese patients with neuromyelitis optica spectrum optic neuritis.

    PubMed

    Li, Hongyang; Wang, Yanling; Xu, Quangang; Zhang, Aidi; Zhou, Huanfen; Zhao, Shuo; Kang, Hao; Peng, Chunxia; Cao, Shanshan; Wei, Shihui

    2015-10-01

    The detection of anti-aquaporin-4 autoantibody (AQP-4 Ab) is crucial to detect patients who will develop neuromyelitis optica (NMO); however, there are few studies on the AQP-4 Ab serostatus of patients with neuromyelitis optica spectrum ON. We analyzed the clinical and paraclinical features of neuromyelitis optica spectrum ON patients in China according to the patients' AQP4-Ab serostatus. 125 patients with recurrent and bilateral ON with simultaneous attacks were divided into AQP-4 Ab-seropositive and -seronegative groups. Demographic, clinical, serum autoantibody data, connective tissue disorders (CTDs), visual performance were compared. A Visual Acuity (VA) of less than 0.1 during acute ON attacks occurred more frequently in the seropositive group (p = 0.023); however, there was not a significant difference between groups on VA recovery after the first attack. The seropositive group experienced the worst outcome during the last attack (p = 0.017). Other co-existing autoimmunity antibodies (p < 0.001) and CTDs (p < 0.001) were more prevalent in seropositive patients. There were no significant differences on VA recovery and RNFLT combined with other autoantibodies or CTDs. The two groups did not differ significantly with regard to time to relapse, annualized relapse rates, time of diagnosis NMO, or RNFL. There were no significant differences on VA recovery and RNFLT combined with other autoantibodies or CTDs. RNFLT was thinner in NMO seropositive patients. Although AQP-4 Ab expression predicted poor visual outcome, positive patients were usually associated with mild symptoms at first onset. Anti-SSA/SSB antibody or Sjögren syndrome may be associated with AQP-4 Ab in neuromyelitis optica spectrum ON.

  8. AQUAPORIN-4 Mz ISOFORM: BRAIN EXPRESSION, SUPRAMOLECULAR ASSEMBLY AND NEUROMYELITIS OPTICA ANTIBODY BINDING

    PubMed Central

    Rossi, Andrea; Crane, Jonathan M.; Verkman, A. S.

    2012-01-01

    Water channel aquaporin-4 (AQP4) is expressed in astrocytes throughout brain and spinal cord. Two major AQP4 isoforms are expressed, M1 and M23, having different translation initiation sites. A longer isoform (Mz) has been reported in rat with translation initiation 126-bp upstream from that of M1. By immunoblot analysis of SDS and native gels probed with a C-terminus anti-AQP4 antibody, Mz was detected in rat brain as a distinct band of size ~39 kDa. Mz was absent in human and mouse brain because of in-frame stop codons. The ability of rat Mz to form orthogonal arrays of particles (OAPs) was investigated by single particle tracking and native gel electrophoresis. We found that Mz, like M1, diffused rapidly in the cell plasma membrane and did not form OAPs. However, when coexpressed with M23, Mz associated in OAPs by forming heterotetramers with M23. Unexpectedly, Mz-expressing cells bound neuromyelitis optica autoantibodies (NMO-IgG) poorly, <5-fold compared to M1-expressing cells. Truncation analysis suggested that the poor NMO-IgG binding to Mz involves residues 31–41 upstream of Met-1. We conclude that Mz AQP4 is: (a) present at low level in rat but not human or mouse brain; (b) unable to form OAPs on its own but able to associate with M23 AQP4 in heterotetramers; and (c) largely unable to bind NMO-IgG because of N-terminus effects on the structure of the AQP4 / NMO-IgG binding site. PMID:21491501

  9. Is the brain water channel aquaporin-4 a pathogenetic factor in idiopathic intracranial hypertension? Results from a combined clinical and genetic study in a Norwegian cohort.

    PubMed

    Kerty, Emilia; Heuser, Kjell; Indahl, Ulf G; Berg, Paul R; Nakken, Sigve; Lien, Sigbjørn; Omholt, Stig W; Ottersen, Ole P; Nagelhus, Erlend A

    2013-02-01

    Idiopathic intracranial hypertension (IIH) is a condition of increased intracranial pressure of unknown aetiology. Patients with IIH usually suffer from headache and visual disturbances. High intracranial pressure despite normal ventricle size and negative MRI indicate perturbed water flux across cellular membranes, which is provided by the brain water channel aquaporin-4 (AQP4). IIH could be associated with malfunctioning intracerebral water homeostasis and cerebrospinal fluid (CSF) reabsorption based on functional or regulatory alterations of AQP4. Clinical data, blood and CSF samples were collected from 28 patients with IIH. Clinical characteristics were assessed, and a genetic association study was performed by sequencing the AQP4 gene on chromosome 18. Genetic data were compared with 52 healthy controls and matched by age, sex and ethnicity. Chi-square test and linear discriminant analysis (LDA) were used in the search of a genotype-phenotype association. While the majority of patients responded to medical treatment, four required shunt application. All, except one, had a good visual outcome. The 24 AQP4 gene SNPs showed no association with IIH. Full cross-validation of the LDA modelling resulted in only 55.1% correct classification of the cases and controls, with a corresponding estimated p-value 0.37. Our genetic case-control study did not indicate an association between AQP4 gene variants and IIH. However, the theory of an etiopathogenic link between IIH and AQP4 is tempting, and discussed in this article. Association studies with large sample size are difficult to perform owing is the rarity of the condition. © 2011 The Authors. Acta Ophthalmologica © 2011 Acta Ophthalmologica Scandinavica Foundation.

  10. Development of an Aquaporin-4 Orthogonal Array of Particle-Based ELISA for Neuromyelitis Optica Autoantibodies Detection

    PubMed Central

    Pisani, Francesco; Settanni, Paolo; Rosito, Stefania; Mola, Maria Grazia; Iorio, Raffaele; Tortorella, Carla; Ruggieri, Maddalena; Trojano, Maria; Svelto, Maria; Frigeri, Antonio; Nicchia, Grazia Paola

    2015-01-01

    Serological markers of Nuromyelitis Optica (NMO), an autoimmune disorder of the central nervous system, are autoantibodies targeting the astrocytic water channel aquaporin-4 (AQP4). We have previously demonstrated that the main epitopes for these autoantibodies (AQP4-IgG) are generated by the supramolecular arrangement of AQP4 tetramers into an Orthogonal Array of Particles (OAPs). Many tests have been developed to detect AQP4-IgG in patient sera but several procedural issues affect OAP assembly and consequently test sensitivity. To date, the protein based ELISA test shows the lowest sensitivity while representing a valid alternative to the more sensitive cell based assay (CBA), which, however, shows economic, technical and interpretation problems. Here we have developed a high perfomance ELISA in which native OAPs are used as the molecular target. To this aim a native size exclusion chromatography method has been developed to isolate integral, highly pure and AQP4-IgG-recognized OAPs from rat brain. These OAPs were immobilized and oriented on a plastic plate by a sandwich approach and 139 human sera were tested, including 67 sera from NMO patients. The OAP-ELISA showed a 99% specificity and a higher sensitivity (91%) compared to the CBA test. A comparative analysis revealed an end-point titer three orders of magnitude higher than the commercial ELISA and six times higher than our in-house CBA test. We show that CNS-extracted OAPs are crucial elements in order to perform an efficient AQP4-IgG test and the OAP-ELISA developed represents a valid alternative to the CBA currently used. PMID:26599905

  11. Development of an Aquaporin-4 Orthogonal Array of Particle-Based ELISA for Neuromyelitis Optica Autoantibodies Detection.

    PubMed

    Pisani, Francesco; Settanni, Paolo; Rosito, Stefania; Mola, Maria Grazia; Iorio, Raffaele; Tortorella, Carla; Ruggieri, Maddalena; Trojano, Maria; Svelto, Maria; Frigeri, Antonio; Nicchia, Grazia Paola

    2015-01-01

    Serological markers of Nuromyelitis Optica (NMO), an autoimmune disorder of the central nervous system, are autoantibodies targeting the astrocytic water channel aquaporin-4 (AQP4). We have previously demonstrated that the main epitopes for these autoantibodies (AQP4-IgG) are generated by the supramolecular arrangement of AQP4 tetramers into an Orthogonal Array of Particles (OAPs). Many tests have been developed to detect AQP4-IgG in patient sera but several procedural issues affect OAP assembly and consequently test sensitivity. To date, the protein based ELISA test shows the lowest sensitivity while representing a valid alternative to the more sensitive cell based assay (CBA), which, however, shows economic, technical and interpretation problems. Here we have developed a high perfomance ELISA in which native OAPs are used as the molecular target. To this aim a native size exclusion chromatography method has been developed to isolate integral, highly pure and AQP4-IgG-recognized OAPs from rat brain. These OAPs were immobilized and oriented on a plastic plate by a sandwich approach and 139 human sera were tested, including 67 sera from NMO patients. The OAP-ELISA showed a 99% specificity and a higher sensitivity (91%) compared to the CBA test. A comparative analysis revealed an end-point titer three orders of magnitude higher than the commercial ELISA and six times higher than our in-house CBA test. We show that CNS-extracted OAPs are crucial elements in order to perform an efficient AQP4-IgG test and the OAP-ELISA developed represents a valid alternative to the CBA currently used.

  12. Diagnostic algorithm for relapsing acquired demyelinating syndromes in children.

    PubMed

    Hacohen, Yael; Mankad, Kshitij; Chong, W K; Barkhof, Frederik; Vincent, Angela; Lim, Ming; Wassmer, Evangeline; Ciccarelli, Olga; Hemingway, Cheryl

    2017-07-18

    To establish whether children with relapsing acquired demyelinating syndromes (RDS) and myelin oligodendrocyte glycoprotein antibodies (MOG-Ab) show distinctive clinical and radiologic features and to generate a diagnostic algorithm for the main RDS for clinical use. A panel reviewed the clinical characteristics, MOG-Ab and aquaporin-4 (AQP4) Ab, intrathecal oligoclonal bands, and Epstein-Barr virus serology results of 110 children with RDS. A neuroradiologist blinded to the diagnosis scored the MRI scans. Clinical, radiologic, and serologic tests results were compared. The findings showed that 56.4% of children were diagnosed with multiple sclerosis (MS), 25.4% with neuromyelitis optica spectrum disorder (NMOSD), 12.7% with multiphasic disseminated encephalomyelitis (MDEM), and 5.5% with relapsing optic neuritis (RON). Blinded analysis defined baseline MRI as typical of MS in 93.5% of children with MS. Acute disseminated encephalomyelitis presentation was seen only in the non-MS group. Of NMOSD cases, 30.7% were AQP4-Ab positive. MOG-Ab were found in 83.3% of AQP4-Ab-negative NMOSD, 100% of MDEM, and 33.3% of RON. Children with MOG-Ab were younger, were less likely to present with area postrema syndrome, and had lower disability, longer time to relapse, and more cerebellar peduncle lesions than children with AQP4-Ab NMOSD. A diagnostic algorithm applicable to any episode of CNS demyelination leads to 4 main phenotypes: MS, AQP4-Ab NMOSD, MOG-Ab-associated disease, and antibody-negative RDS. Children with MS and AQP4-Ab NMOSD showed features typical of adult cases. Because MOG-Ab-positive children showed notable and distinctive clinical and MRI features, they were grouped into a unified phenotype (MOG-Ab-associated disease), included in a new diagnostic algorithm. © 2017 American Academy of Neurology.

  13. Secondary Data Analytics of Aquaporin Expression Levels in Glioblastoma Stem-Like Cells

    PubMed Central

    Isokpehi, Raphael D; Wollenberg Valero, Katharina C; Graham, Barbara E; Pacurari, Maricica; Sims, Jennifer N; Udensi, Udensi K; Ndebele, Kenneth

    2015-01-01

    Glioblastoma is the most common brain tumor in adults in which recurrence has been attributed to the presence of cancer stem cells in a hypoxic microenvironment. On the basis of tumor formation in vivo and growth type in vitro, two published microarray gene expression profiling studies grouped nine glioblastoma stem-like (GS) cell lines into one of two groups: full (GSf) or restricted (GSr) stem-like phenotypes. Aquaporin-1 (AQP1) and aquaporin-4 (AQP4) are water transport proteins that are highly expressed in primary glial-derived tumors. However, the expression levels of AQP1 and AQP4 have not been previously described in a panel of 92 glioma samples. Therefore, we designed secondary data analytics methods to determine the expression levels of AQP1 and AQP4 in GS cell lines and glioblastoma neurospheres. Our investigation also included a total of 2,566 expression levels from 28 Affymetrix microarray probe sets encoding 13 human aquaporins (AQP0–AQP12); CXCR4 (the receptor for stromal cell derived factor-1 [SDF-1], a potential glioma stem cell therapeutic target]); and PROM1 (gene encoding CD133, the widely used glioma stem cell marker). Interactive visual representation designs for integrating phenotypic features and expression levels revealed that inverse expression levels of AQP1 and AQP4 correlate with distinct phenotypes in a set of cell lines grouped into full and restricted stem-like phenotypes. Discriminant function analysis further revealed that AQP1 and AQP4 expression are better predictors for tumor formation and growth types in glioblastoma stem-like cells than are CXCR4 and PROM1. Future investigations are needed to characterize the molecular mechanisms for inverse expression levels of AQP1 and AQP4 in the glioblastoma stem-like neurospheres. PMID:26279619

  14. Molecular machinery for vasotocin-dependent transepithelial water movement in amphibians: aquaporins and evolution.

    PubMed

    Suzuki, Masakazu; Shibata, Yuki; Ogushi, Yuji; Okada, Reiko

    2015-08-01

    Amphibians represent the first vertebrates to adapt to terrestrial environments, and are successfully distributed around the world. The ventral skin, kidney, and urinary bladder are important osmoregulatory organs for adult anuran amphibians. Water channel proteins, called aquaporins (AQPs), play key roles in transepithelial water absorption/reabsorption in these organs. At least 43 types of AQPs were identified in anurans; a recent phylogenetic analysis categorized anuran AQPs among 16 classes (AQP0-14, 16). Anuran-specific AQPa2 was assigned to AQP6, then was further subdivided into the ventral skin-type (AQP6vs; AQPa2S), whose expression is confined to the ventral skin, and the urinary bladder-type (AQP6ub; AQPa2U), which is basically expressed in the urinary bladder. For the osmoregulatory organs, AQP3 is constitutively located in the basolateral plasma membrane of tight-junctioned epithelial cells. AQP6vs, AQP2 and/or AQP6ub are also expressed in these epithelial cells and are translocated to the apical membrane in response to arginine vasotocin, thereby regulating water absorption/reabsorption. It was suggested recently that two subtypes of AQP6vs contribute to cutaneous water absorption in Ranid species. In addition, AQP5 (AQP5a) and AQP5L (AQP5b) were identified from Xenopus tropicalis Gray, 1864, and AQP5 was localized to the apical membrane of luminal epithelial cells of the urinary bladder in dehydrated Xenopus. This finding suggested that AQP5 may be involved in water reabsorption from this organ under dehydration. Based on the hitherto reported information, we propose models for the evolution of water-absorbing/reabsorbing mechanisms in anuran osmoregulatory organs in association with AQPs. © 2015 Marine Biological Laboratory.

  15. [Diagnostic criteria for neuromyelitisoptica spectrum disorders].

    PubMed

    Belova, A N; Boiko, A N; Belova, E M

    2016-01-01

    The review is devoted to revised international diagnostic criteria for neuromyelitisoptica spectrum disorders (NMOSD).Current diagnostic criteria allow NMOSD diagnosis not only for serum aquaporin-4 immunoglobulin G antibodies (AQP4-IgG)-seropositive patients but for AQP4-IgG-seronegative patients as well. New criteria are expected to make NMOSD diagnosis earlier and more accurate as well as to facilitate the differentiation with multiple sclerosis. Furthermore, unify international criteria should help to perform comparable epidemiologic studies and clinical trials of new drugs for NMOSD.

  16. Early and extensive spinal white matter involvement in neuromyelitis optica.

    PubMed

    Hayashida, Shotaro; Masaki, Katsuhisa; Yonekawa, Tomomi; Suzuki, Satoshi O; Hiwatashi, Akio; Matsushita, Takuya; Watanabe, Mitsuru; Yamasaki, Ryo; Suenaga, Toshihiko; Iwaki, Toru; Murai, Hiroyuki; Kira, Jun-Ichi

    2017-05-01

    Studies of longitudinally extensive spinal cord lesions (LESCLs) in neuromyelitis optica (NMO) have focused on gray matter, where the relevant antigen, aquaporin-4 (AQP4), is abundant. Because spinal white matter pathology in NMO is not well characterized, we aimed to clarify spinal white matter pathology of LESCLs in NMO. We analyzed 50 spinal cord lesions from eleven autopsied NMO/NMO spectrum disorder (NMOSD) cases. We also evaluated LESCLs with three or fewer spinal cord attacks by 3-tesla MRI in 15 AQP4 antibody-positive NMO/NMOSD patients and in 15 AQP4 antibody-negative multiple sclerosis (MS) patients. Pathological analysis revealed seven cases of AQP4 loss and four predominantly demyelinating cases. Forty-four lesions from AQP4 loss cases involved significantly more frequently posterior columns (PC) and lateral columns (LC) than anterior columns (AC) (59.1%, 63.6%, and 34.1%, respectively). The posterior horn (PH), central portion (CP), and anterior horn (AH) were similarly affected (38.6%, 36.4% and 31.8%, respectively). Isolated perivascular inflammatory lesions with selective loss of astrocyte endfoot proteins, AQP4 and connexin 43, were present only in white matter and were more frequent in PC and LC than in AC (22.7%, 29.5% and 2.3%, P(corr)  = 0.020, and P(corr)  = 0.004, respectively). MRI indicated LESCLs more frequently affected PC and LC than AC in anti-AQP4 antibody-seropositive NMO/NMOSD (86.7%, 60.0% and 20.0%, P(corr)  = 0.005, and P(corr)  = 0.043, respectively) and AQP4 antibody-seronegative MS patients (86.7%, 73.3% and 33.3%, P(corr)  = 0.063, and P(corr)  = 0.043, respectively). PH, CP and AH were involved in 93.3%, 86.7% and 73.3% of seropositive patients, respectively, and in 53.3%, 60.0% and 40.0% of seronegative patients, respectively. NMO frequently and extensively affects spinal white matter in addition to central gray matter, especially in PC and LC, where isolated perivascular lesions with astrocyte

  17. Differential aquaporin 4 expression during edema build-up and resolution phases of brain inflammation

    PubMed Central

    2011-01-01

    Background Vasogenic edema dynamically accumulates in many brain disorders associated with brain inflammation, with the critical step of edema exacerbation feared in patient care. Water entrance through blood-brain barrier (BBB) opening is thought to have a role in edema formation. Nevertheless, the mechanisms of edema resolution remain poorly understood. Because the water channel aquaporin 4 (AQP4) provides an important route for vasogenic edema resolution, we studied the time course of AQP4 expression to better understand its potential effect in countering the exacerbation of vasogenic edema. Methods Focal inflammation was induced in the rat brain by a lysolecithin injection and was evaluated at 1, 3, 7, 14 and 20 days using a combination of in vivo MRI with apparent diffusion coefficient (ADC) measurements used as a marker of water content, and molecular and histological approaches for the quantification of AQP4 expression. Markers of active inflammation (macrophages, BBB permeability, and interleukin-1β) and markers of scarring (gliosis) were also quantified. Results This animal model of brain inflammation demonstrated two phases of edema development: an initial edema build-up phase during active inflammation that peaked after 3 days (ADC increase) was followed by an edema resolution phase that lasted from 7 to 20 days post injection (ADC decrease) and was accompanied by glial scar formation. A moderate upregulation in AQP4 was observed during the build-up phase, but a much stronger transcriptional and translational level of AQP4 expression was observed during the secondary edema resolution phase. Conclusions We conclude that a time lag in AQP4 expression occurs such that the more significant upregulation was achieved only after a delay period. This change in AQP4 expression appears to act as an important determinant in the exacerbation of edema, considering that AQP4 expression is insufficient to counter the water influx during the build-up phase, while the

  18. Antibodies to Aquaporin 4, Myelin-Oligodendrocyte Glycoprotein, and the Glycine Receptor α1 Subunit in Patients With Isolated Optic Neuritis

    PubMed Central

    Martinez-Hernandez, Eugenia; Sepulveda, Maria; Rostásy, Kevin; Höftberger, Romana; Graus, Francesc; Harvey, Robert J.; Saiz, Albert; Dalmau, Josep

    2016-01-01

    IMPORTANCE In patients with isolated optic neuritis (ON), the presence of antibodies to aquaporin 4 (AQP4) has diagnostic and prognostic value. In the same clinical setting, the significance of antibodies to myelin-oligodendrocyte glycoprotein (MOG) or the glycine receptor α1 subunit (GlyR) is unclear. OBJECTIVES To investigate the frequency of antibodies to AQP4, MOG, and GlyR in patients with unilateral or bilateral, severe, or recurrent isolated ON and to determine their clinical and prognostic correlates. DESIGN, SETTING, AND PARTICIPANTS Retrospective case-control study from November 1, 2005, through May 30, 2014 with the detection of autoantibodies in a neuroimmunology referral center. We included 51 patients with ON but without clinical and magnetic resonance imaging findings outside the optic nerves and 142 controls (30 healthy individuals, 48 patients with neuromyelitis optica, and 64 patients with multiple sclerosis). MAIN OUTCOMES AND MEASURES Clinicoimmunologic analysis. We determined the presence of antibodies to AQP4, MOG, and GlyR using cell-based assays. RESULTS The median age of the patients at the onset of ON symptoms was 28 (range, 5–65) years; 36 patients (71%) were female. Antibodies were identified in 23 patients (45%), including MOG in 10 patients, AQP4 in 6 patients, and GlyR in 7 patients (concurrent with MOG in 3 and concurrent with AQP4 in 1). Patients with AQP4 antibodies (median visual score, 3.5 [range, 1–9]) had a worse visual outcome than patients with MOG antibodies alone (median visual score, 0 [range, 0–5]; P = .007), patients with seronegative findings (n = 28) (median visual score, 1.0 [range, 0–14]; P = .08), and patients with GlyR antibodies alone (n = 3) (median visual score, 0 [range, 0–2]; P = .10). The median age of the 7 patients with GlyR antibodies was 27 (range, 11–38) years; 5 (71%) of these were female. Among the 3 patients with GlyR antibodies alone, 1 patient had monophasic ON, 1 had recurrent isolated

  19. Molecular Dynamic Study to Determine the Ammonia Conduction Mechanisms in Human RhCG and Bacterial Homoloques

    NASA Astrophysics Data System (ADS)

    Akgun, Ugur

    2014-03-01

    The transport of Ammonia is provided by Amt/MEP/Rh protein superfamily. The x-ray structures of AmtB from Escherichia coli, Rh50 from Nitrosomonas europaea, and human RhCG show only few differences on periplasmic vestibules. After more than microsecond simulation on three models, we determined the striking difference on conduction mechanism between bacterial AmtB and Human RhCG proteins. In AmtB the backbone carbonyl groups at the periplasmic vestibule direct charged ammonia to the conserved aromatic cage at the bottom of the vestibule. Furthermore, two partially stacked phenyl rings of F107 and F215, separating the periplasmic vestibule from the hydrophobic lumen, flip open and closed simultaneouslywith a frequency of approximately 108 flipping events per second. During the passage from the phenyl gates charged ammonia releases its proton and becomes gas. However, the absence of an aromatic cage on Rh proteins and a strongly conserved E166 residue in the vicinity hints different conduction mechanism. Our studies confirm the conserved E166 emerges as a strong charged ammonia recruitment site for Human RhCG. The conserved phenyl gate behaves different for Rh proteins and the synchronized motion is not observed. These findings suggest a different deprotonation mechanism than bacterial AmtB.

  20. Molecular determinants for binding of ammonium ion in the ammonia transporter AmtB-A quantum chemical analysis.

    PubMed

    Liu, Yuemin; Hu, Xiche

    2006-02-02

    The transport of ammonium across the cell membrane represents an important biological process in all living organisms. The mechanisms for ammonium translocation were analyzed by computer simulations based on first principles. Intermolecular interaction energies between the differentially methylated ammonium and the ammonium channel protein AmtB were calculated by means of the supermolecular approach at the MP2/6-311+G* level based on the high-resolution crystal structures of ligand-bound protein complexes. Our analysis attributes the molecular determinants for protein-ligand recognition in ammonium transporter AmtB to the aromatic cage formed by three aromatic residues Phe103, Phe107, and Trp148, as well as Ser219. The former residues are involved in cation-pi interactions with the positively charged methylated ammoniums. The latter residue acts as a hydrogen bond acceptor to ammonium. Thus, this work provides directly the missing evidence for the hypothesized role played by the wider vestibule site of AmtB at the periplasmic side of the membrane in "recruiting" NH(4)(+) or methylammonium ions as proposed by Khademi et al. (Science 2004, 305, 1587). In addition, a hybrid quantum mechanics/molecular mechanics scheme was applied to optimize the structures of differentially methylated ammoniums in the AmtB protein, which generated structural and energetic data that provide a satisfactory explanation to the experimental observation that tetramethylammonium is not inhibitory to conducting ammonium and methylammonium in the ammonium transport channel.

  1. "Why Are College Foreign Language Students' Self-Efficacy, Attitude, and Motivation so Different?"

    ERIC Educational Resources Information Center

    Hsieh, Pei-Hsuan

    2008-01-01

    Simply taking foreign language courses and being exposed to the language does not guarantee successful and positive learning experiences. When examining factors that influence foreign language learning, motivation should be considered. To extend current foreign language literature, this study integrated self-efficacy and Gardners' AMTB variables…

  2. Balancing Trained Immunity with Persistent Immune Activation and the Risk of Simian Immunodeficiency Virus Infection in Infant Macaques Vaccinated with Attenuated Mycobacterium tuberculosis or Mycobacterium bovis BCG Vaccine

    PubMed Central

    Jensen, Kara; dela Pena-Ponce, Myra Grace; Piatak, Michael; Shoemaker, Rebecca; Oswald, Kelli; Jacobs, William R.; Fennelly, Glenn; Lucero, Carissa; Mollan, Katie R.; Hudgens, Michael G.; Amedee, Angela; Kozlowski, Pamela A.; Estes, Jacob D.; Lifson, Jeffrey D.; Van Rompay, Koen K. A.; Larsen, Michelle

    2016-01-01

    ABSTRACT Our goal is to develop a pediatric combination vaccine to protect the vulnerable infant population against human immunodeficiency virus type 1 (HIV-1) and tuberculosis (TB) infections. The vaccine consists of an auxotroph Mycobacterium tuberculosis strain that coexpresses HIV antigens. Utilizing an infant rhesus macaque model, we have previously shown that this attenuated M. tuberculosis (AMtb)-simian immunodeficiency virus (SIV) vaccine is immunogenic, and although the vaccine did not prevent oral SIV infection, a subset of vaccinated animals was able to partially control virus replication. However, unexpectedly, vaccinated infants required fewer SIV exposures to become infected compared to naive controls. Considering that the current TB vaccine, Mycobacterium bovis bacillus Calmette-Guérin (BCG), can induce potent innate immune responses and confer pathogen-unspecific trained immunity, we hypothesized that an imbalance between enhanced myeloid cell function and immune activation might have influenced the outcome of oral SIV challenge in AMtb-SIV-vaccinated infants. To address this question, we used archived samples from unchallenged animals from our previous AMtb-SIV vaccine studies and vaccinated additional infant macaques with BCG or AMtb only. Our results show that vaccinated infants, regardless of vaccine strain or regimen, had enhanced myeloid cell responses. However, CD4+ T cells were concurrently activated, and the persistence of these activated target cells in oral and/or gastrointestinal tissues may have facilitated oral SIV infection. Immune activation was more pronounced in BCG-vaccinated infant macaques than in AMtb-vaccinated infant macaques, indicating a role for vaccine attenuation. These findings underline the importance of understanding the interplay of vaccine-induced immunity and immune activation and its effect on HIV acquisition risk and outcome in infants. PMID:27655885

  3. The Cancer Drug Tamoxifen: A Potential Therapeutic Treatment for Spinal Cord Injury

    PubMed Central

    Guptarak, Jutatip; Wiktorowicz, John E.; Sadygov, Rovshan G.; Zivadinovic, Dragoslava; Paulucci-Holthauzen, Adriana A.; Vergara, Leoncio

    2014-01-01

    Abstract Tamoxifen (TMX) is a selective estrogen receptor modulator that can mimic the neuroprotective effects of estrogen but lacks its systemic adverse effects. We found that TMX (1 mg/day) significantly improved the motor recovery of partially paralyzed hind limbs of male adult rats with thoracic spinal cord injury (SCI), thus indicating a translational potential for this cancer medication given its clinical safety and applicability and the lack of currently available treatments for SCI. To shed light on the mechanisms underlying the beneficial effects of TMX for SCI, we used proteomic analyses, Western blots and histological assays, which showed that TMX treatment spared mature oligodendrocytes/increased myelin levels and altered reactive astrocytes, including the upregulation of the water channels aquaporin 4 (AQP4), a novel finding. AQP4 increases in TMX-treated SCI rats were associated with smaller fluid-filled cavities with borders consisting of densely packed AQP4-expressing astrocytes that closely resemble the organization of normal glia limitans externa (in contrast to large cavities in control SCI rats that lacked glia limitans-like borders and contained reactive glial cells). Based on our findings, we propose that TMX is a promising candidate for the therapeutic treatment of SCI and a possible intervention for other neuropathological conditions associated with demyelination and AQP4 dysfunction. PMID:24004276

  4. Aquaporin and brain diseases.

    PubMed

    Badaut, Jérôme; Fukuda, Andrew M; Jullienne, Amandine; Petry, Klaus G

    2014-05-01

    The presence of water channel proteins, aquaporins (AQPs), in the brain led to intense research in understanding the underlying roles of each of them under normal conditions and pathological conditions. In this review, we summarize some of the recent knowledge on the 3 main AQPs (AQP1, AQP4 and AQP9), with a special focus on AQP4, the most abundant AQP in the central nervous system. AQP4 was most studied in several brain pathological conditions ranging from acute brain injuries (stroke, traumatic brain injury) to the chronic brain disease with autoimmune neurodegenerative diseases. To date, no specific therapeutic agents have been developed to either inhibit or enhance water flux through these channels. However, experimental results strongly underline the importance of this topic for future investigation. Early inhibition of water channels may have positive effects in prevention of edema formation in brain injuries but at later time points during the course of a disease, AQP is critical for clearance of water from the brain into blood vessels. Thus, AQPs, and in particular AQP4, have important roles both in the formation and resolution of edema after brain injury. The dual, complex function of these water channel proteins makes them an excellent therapeutic target. This article is part of a Special Issue entitled Aquaporins. © 2013.

  5. Methylprednisolone Administration Following Spinal Cord Injury Reduces Aquaporin 4 Expression and Exacerbates Edema

    PubMed Central

    Martínez-Cruz, Angelina; Reyes-Sánchez, Alejandro; Guizar-Sahagún, Gabriel

    2017-01-01

    Spinal cord injury (SCI) is an incapacitating condition that affects motor, sensory, and autonomic functions. Since 1990, the only treatment administered in the acute phase of SCI has been methylprednisolone (MP), a synthetic corticosteroid that has anti-inflammatory effects; however, its efficacy remains controversial. Although MP has been thought to help in the resolution of edema, there are no scientific grounds to support this assertion. Aquaporin 4 (AQP4), the most abundant component of water channels in the CNS, participates in the formation and elimination of edema, but it is not clear whether the modulation of AQP4 expression by MP plays any role in the physiopathology of SCI. We studied the functional expression of AQP4 modulated by MP following SCI in an experimental model in rats along with the associated changes in the permeability of the blood-spinal cord barrier. We analyzed these effects in male and female rats and found that SCI increased AQP4 expression in the spinal cord white matter and that MP diminished such increase to baseline levels. Moreover, MP increased the extravasation of plasma components after SCI and enhanced tissue swelling and edema. Our results lend scientific support to the increasing motion to avoid MP treatment after SCI. PMID:28572712

  6. Aquaporins in Brain Edema and Neuropathological Conditions

    PubMed Central

    Filippidis, Aristotelis S.; Carozza, Richard B.; Rekate, Harold L.

    2016-01-01

    The aquaporin (AQP) family of water channels are a group of small, membrane-spanning proteins that are vital for the rapid transport of water across the plasma membrane. These proteins are widely expressed, from tissues such as the renal epithelium and erythrocytes to the various cells of the central nervous system. This review will elucidate the basic structure and distribution of aquaporins and discuss the role of aquaporins in various neuropathologies. AQP1 and AQP4, the two primary aquaporin molecules of the central nervous system, regulate brain water and CSF movement and contribute to cytotoxic and vasogenic edema, where they control the size of the intracellular and extracellular fluid volumes, respectively. AQP4 expression is vital to the cellular migration and angiogenesis at the heart of tumor growth; AQP4 is central to dysfunctions in glutamate metabolism, synaptogenesis, and memory consolidation; and AQP1 and AQP4 adaptations have been seen in obstructive and non-obstructive hydrocephalus and may be therapeutic targets. PMID:28036023

  7. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders.

    PubMed

    Wingerchuk, Dean M; Banwell, Brenda; Bennett, Jeffrey L; Cabre, Philippe; Carroll, William; Chitnis, Tanuja; de Seze, Jérôme; Fujihara, Kazuo; Greenberg, Benjamin; Jacob, Anu; Jarius, Sven; Lana-Peixoto, Marco; Levy, Michael; Simon, Jack H; Tenembaum, Silvia; Traboulsee, Anthony L; Waters, Patrick; Wellik, Kay E; Weinshenker, Brian G

    2015-07-14

    Neuromyelitis optica (NMO) is an inflammatory CNS syndrome distinct from multiple sclerosis (MS) that is associated with serum aquaporin-4 immunoglobulin G antibodies (AQP4-IgG). Prior NMO diagnostic criteria required optic nerve and spinal cord involvement but more restricted or more extensive CNS involvement may occur. The International Panel for NMO Diagnosis (IPND) was convened to develop revised diagnostic criteria using systematic literature reviews and electronic surveys to facilitate consensus. The new nomenclature defines the unifying term NMO spectrum disorders (NMOSD), which is stratified further by serologic testing (NMOSD with or without AQP4-IgG). The core clinical characteristics required for patients with NMOSD with AQP4-IgG include clinical syndromes or MRI findings related to optic nerve, spinal cord, area postrema, other brainstem, diencephalic, or cerebral presentations. More stringent clinical criteria, with additional neuroimaging findings, are required for diagnosis of NMOSD without AQP4-IgG or when serologic testing is unavailable. The IPND also proposed validation strategies and achieved consensus on pediatric NMOSD diagnosis and the concepts of monophasic NMOSD and opticospinal MS. © 2015 American Academy of Neurology.

  8. Aquaporin-4 polymorphisms and brain/body weight ratio in sudden infant death syndrome (SIDS).

    PubMed

    Studer, Jacqueline; Bartsch, Christine; Haas, Cordula

    2014-07-01

    Failure in the regulation of homeostatic water balance in the brain is associated with severe cerebral edema and increased brain weights and may also play an important role in the pathogenesis of sudden infant death syndrome (SIDS). We genotyped three single-nucleotide polymorphisms in the aquaporin-4 water channel-encoding gene (AQP4), which were previously shown to be associated with (i) SIDS in Norwegian infants (rs2075575), (ii) severe brain edema (rs9951307), and (iii) increased brain water permeability (rs3906956). We also determined whether the brain/body weight ratio is increased in SIDS infants compared with sex- and age-matched controls. Genotyping of the three AQP4 single-nucleotide polymorphisms was performed in 160 Caucasian SIDS infants and 181 healthy Swiss adults using a single-base extension method. Brain and body weights were measured during autopsy in 157 SIDS and 59 non-SIDS infants. No differences were detected in the allelic frequencies of the three AQP4 single-nucleotide polymorphisms between SIDS and adult controls. The brain/body weight ratio was similarly distributed in SIDS and non-SIDS infants. Variations in the AQP4 gene seem of limited significance as predisposing factors in Caucasian SIDS infants. Increased brain weights may only become evident in conjunction with environmental or other genetic risk factors.

  9. Influence of female sex and fertile age on neuromyelitis optica spectrum disorders.

    PubMed

    Borisow, Nadja; Kleiter, Ingo; Gahlen, Anna; Fischer, Katrin; Wernecke, Klaus-Dieter; Pache, Florence; Ruprecht, Klemens; Havla, Joachim; Krumbholz, Markus; Kümpfel, Tania; Aktas, Orhan; Ringelstein, Marius; Geis, Christian; Kleinschnitz, Christoph; Berthele, Achim; Hemmer, Bernhard; Angstwurm, Klemens; Weissert, Robert; Stellmann, Jan-Patrick; Schuster, Simon; Stangel, Martin; Lauda, Florian; Tumani, Hayrettin; Mayer, Christoph; Zeltner, Lena; Ziemann, Ulf; Linker, Ralf A; Schwab, Matthias; Marziniak, Martin; Then Bergh, Florian; Hofstadt-van Oy, Ulrich; Neuhaus, Oliver; Winkelmann, Alexander; Marouf, Wael; Rückriem, Lioba; Faiss, Jürgen; Wildemann, Brigitte; Paul, Friedemann; Jarius, Sven; Trebst, Corinna; Hellwig, Kerstin

    2017-07-01

    Gender and age at onset are important epidemiological factors influencing prevalence, clinical presentation, and treatment response in autoimmune diseases. To evaluate the impact of female sex and fertile age on aquaporin-4-antibody (AQP4-ab) status, attack localization, and response to attack treatment in patients with neuromyelitis optica (NMO) and its spectrum disorders (neuromyelitis optica spectrum disorder (NMOSD)). Female-to-male ratios, diagnosis at last visit (NMO vs NMOSD), attack localization, attack treatment, and outcome were compared according to sex and age at disease or attack onset. A total of 186 NMO/SD patients (82% female) were included. In AQP4-ab-positive patients, female predominance was most pronounced during fertile age (female-to-male ratio 23:1). Female patients were more likely to be positive for AQP4-abs (92% vs 55%; p < 0.001). Interval between onset and diagnosis of NMO/SD was longer in women than in men (mean 54 vs 27 months; p = 0.023). In women, attacks occurring ⩽40 years of age were more likely to show complete remission ( p = 0.003) and better response to high-dose intravenous steroids ( p = 0.005) compared to woman at >40 years. Our data suggest an influence of sex and age on susceptibility to AQP4-ab-positive NMO/SD. Genetic and hormonal factors might contribute to pathophysiology of NMO/SD.

  10. Molecular Pathogenesis of Neuromyelitis Optica

    PubMed Central

    Bukhari, Wajih; Barnett, Michael H; Prain, Kerri; Broadley, Simon A

    2012-01-01

    Neuromyelitis optica (NMO) is a rare autoimmune disorder, distinct from multiple sclerosis, causing inflammatory lesions in the optic nerves and spinal cord. An autoantibody (NMO IgG) against aquaporin-4 (AQP4), a water channel expressed on astrocytes is thought to be causative. Peripheral production of the antibody is triggered by an unknown process in genetically susceptible individuals. Anti-AQP4 antibody enters the central nervous system (CNS) when the blood brain barrier is made permeable and has high affinity for orthogonal array particles of AQP4. Like other autoimmune diseases, Th17 cells and their effector cytokines (such as interleukin 6) have been implicated in pathogenesis. AQP4 expressing peripheral organs are not affected by NMO IgG, but the antibody causes extensive astrocytic loss in specific regions of the CNS through complement mediated cytotoxicity. Demyelination occurs during the inflammatory process and is probably secondary to oligodendrocyte apoptosis subsequent to loss of trophic support from astrocytes. Ultimately, extensive axonal injury leads to severe disability. Despite rapid advances in the understanding of NMO pathogenesis, unanswered questions remain, particularly with regards to disease mechanisms in NMO IgG seronegative cases. Increasing knowledge of the molecular pathology is leading to improved treatment strategies. PMID:23202933

  11. Paucity of natural killer and cytotoxic T cells in human neuromyelitis optica lesions

    PubMed Central

    Saadoun, Samira; Bridges, Leslie R.; Verkman, A. S.; Papadopoulos, Marios C.

    2013-01-01

    Neuromyelitis optica is a severe inflammatory demyelinating disease of the central nervous system. Most patients with neuromyelitis optica have circulating immunoglobulin G (IgG) antibodies against the astrocytic water channel protein aquaporin-4 (AQP4), which are pathogenic. Anti-AQP4 IgG-mediated complement-dependent astrocyte toxicity is a key mechanism of central nervous system damage in neuromyelitis optica, but the role of natural killer and cytotoxic T cells is unknown. Our objective was to determine whether natural killer and cytotoxic T cells play a role in human neuromyelitis optica lesions. We immunostained four actively demyelinating lesions, obtained from patients with anti-AQP4 IgG positive neuromyelitis optica, for Granzyme B and Perforin. The inflammatory cells were perivascular neutrophils, eosinophils and macrophages, with only occasional Granzyme B+ or Perforin + cells. Greater than 95% of inflamed vessels in each lesion had no surrounding Granzyme B+ or Perforin + cells. Granzyme B+ or Perforin+ cells were abundant in human spleen (positive control). Although natural killer cells produce central nervous system damage in mice injected with anti-AQP4 IgG, our findings here indicate that natural killer-mediated and T cell-mediated cytotoxicity are probably not involved in central nervous system damage in human neuromyelitis optica. PMID:23108041

  12. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders

    PubMed Central

    Banwell, Brenda; Bennett, Jeffrey L.; Cabre, Philippe; Carroll, William; Chitnis, Tanuja; de Seze, Jérôme; Fujihara, Kazuo; Greenberg, Benjamin; Jacob, Anu; Jarius, Sven; Lana-Peixoto, Marco; Levy, Michael; Simon, Jack H.; Tenembaum, Silvia; Traboulsee, Anthony L.; Waters, Patrick; Wellik, Kay E.

    2015-01-01

    Neuromyelitis optica (NMO) is an inflammatory CNS syndrome distinct from multiple sclerosis (MS) that is associated with serum aquaporin-4 immunoglobulin G antibodies (AQP4-IgG). Prior NMO diagnostic criteria required optic nerve and spinal cord involvement but more restricted or more extensive CNS involvement may occur. The International Panel for NMO Diagnosis (IPND) was convened to develop revised diagnostic criteria using systematic literature reviews and electronic surveys to facilitate consensus. The new nomenclature defines the unifying term NMO spectrum disorders (NMOSD), which is stratified further by serologic testing (NMOSD with or without AQP4-IgG). The core clinical characteristics required for patients with NMOSD with AQP4-IgG include clinical syndromes or MRI findings related to optic nerve, spinal cord, area postrema, other brainstem, diencephalic, or cerebral presentations. More stringent clinical criteria, with additional neuroimaging findings, are required for diagnosis of NMOSD without AQP4-IgG or when serologic testing is unavailable. The IPND also proposed validation strategies and achieved consensus on pediatric NMOSD diagnosis and the concepts of monophasic NMOSD and opticospinal MS. PMID:26092914

  13. Anti-aquaporin-4 antibodies in Devic’s neuromyelitis optica: therapeutic implications

    PubMed Central

    Marignier, Romain; Giraudon, Pascale; Vukusic, Sandra; Confavreux, Christian; Honnorat, Jérôme

    2010-01-01

    Devic’s neuromyelitis optica (DNMO) is a demyelinating and inflammatory disease of the central nervous system (CNS) essentially restricted to the spinal cord and the optic nerves. It is a rare disorder with a prevalence estimated at less than 1/100,000 in Western countries. Since the first description by Eugène Devic in 1894, the relationship between DNMO and multiple sclerosis (MS) has been controversial. Recent clinical, epidemiological, pathological and immunological data demonstrate that MS and DNMO are distinct entities. This distinction between DNMO and MS is crucial, as prognosis and treatment are indeed different. DNMO is now considered to be an autoimmune, antibody-mediated disease especially since the identification of a specific serum autoantibody, named NMO-IgG and directed against the main water channel of the CNS, aquaporin-4 (AQP4). The assessment of AQP4 antibodies (Abs) has initially been proposed to differentiate DNMO and MS. It has also enlarged the clinical spectrum of DNMO and proved to be helpful in predicting relapses and conversion to DNMO after a first episode of longitudinally extensive transverse myelitis or isolated optic neuritis. Lastly, the discovery of the pathogenic role of AQP4 Abs in DNMO leads to a better understanding of detailed DNMO immunopathology and the elaboration of relevant novel treatment strategies specific to DNMO. In this review, we summarize the present and future therapeutic implications generated by the discovery of the various pathogenic mechanisms of AQP4 Abs in DNMO pathophysiology. PMID:21179621

  14. Paucity of natural killer and cytotoxic T cells in human neuromyelitis optica lesions.

    PubMed

    Saadoun, Samira; Bridges, Leslie R; Verkman, A S; Papadopoulos, Marios C

    2012-12-19

    Neuromyelitis optica is a severe inflammatory demyelinating disease of the central nervous system. Most patients with neuromyelitis optica have circulating immunoglobulin G (IgG) antibodies against the astrocytic water channel protein aquaporin-4 (AQP4), which are pathogenic. Anti-AQP4 IgG-mediated complement-dependent astrocyte toxicity is a key mechanism of central nervous system damage in neuromyelitis optica, but the role of natural killer and cytotoxic T cells is unknown. Our objective was to determine whether natural killer and cytotoxic T cells play a role in human neuromyelitis optica lesions. We immunostained four actively demyelinating lesions, obtained from patients with anti-AQP4 IgG positive neuromyelitis optica, for Granzyme B and Perforin. The inflammatory cells were perivascular neutrophils, eosinophils and macrophages, with only occasional Granzyme B+ or Perforin+ cells. Greater than 95% of inflamed vessels in each lesion had no surrounding Granzyme B+ or Perforin+ cells. Granzyme B+ or Perforin+ cells were abundant in human spleen (positive control). Although natural killer cells produce central nervous system damage in mice injected with anti-AQP4 IgG, our findings here indicate that natural killer-mediated and T cell-mediated cytotoxicity are probably not involved in central nervous system damage in human neuromyelitis optica.

  15. Expression of Renal Aquaporins in Aristolochic Acid I and Aristolactam I-Induced Nephrotoxicity.

    PubMed

    Li, Ji; Zhang, Liang; Jiang, ZhenZhou; He, XiuQin; Zhang, LuYong; Xu, Ming

    2016-01-01

    Exposure to aristolochic acid (AA) can cause AA nephropathy, which is characterized by extensive proximal tubular damage and polyuria. To test the hypothesis that polyuria might be induced by altered regulation of aquaporins (AQPs) in the kidney, different doses of AA-I or aristolactam I (AL-I) were administered intraperitoneally to Sprague-Dawley rats, and urine, blood, and kidney samples were analyzed. In addition, AQP1, AQP2, AQP4 and AQP6 expression in the kidney were determined. The results showed dose-dependent proximal tubular damage and polyuria in the AA-I- and AL-I-treated groups, and the nephrotoxicity of AL-I was higher than that of AA-I. The expression of renal AQP1, AQP2 and AQP4, but not AQP6 were significantly inhibited by AA-I and AL-I. Comparison of the inhibition potencies of AA-I and AL-I showed that AL-I was a stronger inhibitor of AQP1 expression than AA-I, while there was no difference in their effects on AQP2 and AQP4. These results suggested that AA induced renal damage and polyuria were associated with a specific decrease in the expression of renal AQP1 AQP2 and AQP4, and AL-I showed higher nephrotoxicity than AA-I, which might be attributable to the differences in their inhibition of AQP1. © 2016 S. Karger AG, Basel.

  16. Modification of aquaporin expression in response to fenretinide-induced transdifferentiation of ARPE-19 cells into neuronal-like cells.

    PubMed

    Salik, Dany; Motulsky, Elie; Gregoire, Françoise; Delforge, Valérie; Bolaky, Nargis; Caspers, Laure; Perret, Jason; Willermain, François; Delporte, Christine

    2016-02-01

    The goal of this study was to investigate the modifications of aquaporin (AQP) expression in ARPE-19 cells in response to fenretinide-induced transdifferentiation into neuronal-like cells ARPE-19 cells were treated daily for 7 days with 3 μm fenretinide or dimethyl sulphoxide as control. mRNA and protein expression were evaluated by real-time quantitative PCR, Western blot analysis and immunofluorescence. Control ARPE-19 cells expressed AQP1, AQP4, AQP6 and AQP11 at the mRNA level, but only AQP4, AQP6 and AQP11 at the protein level. Fenretinide induced the transdifferentiation of ARPE-19 cells into neuronal-like cells. Indeed, fenretinide induced morphological changes similar to neurons characterized by elongated cell body and the formation of neurite branching. Moreover, ARPE-19 cells transdifferentiated to neuron-like cells were characterized by significant decrease in retinal pigmented epithelium markers, for example cytokeratin 8 and cellular retinaldehyde-binding protein, as well as an increase in neuronal markers such as synaptophysin and calretinin. AQP4 expression, at both mRNA and protein levels, and AQP6 expression, only at protein level, were significantly decreased in ARPE-19 cells transdifferentiated into neuronal-like cells. The expression of AQP4 and AQP6 is downregulated during fenretinide-induced transdifferentiation. © 2015 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  17. Syndrome of inappropriate antidiuretic hormone secretion in patients with aquaporin-4 antibody.

    PubMed

    Pu, Shuxiang; Long, Youming; Yang, Ning; He, Yihua; Shan, Fulan; Fan, Yongxiang; Yin, Jianrui; Gao, Qingchun; Cong, Gao

    2015-01-01

    The objective of this study was to analyze the frequency of syndrome of inappropriate antidiuretic hormone secretion (SIADH) in patients with positive aquaporin-4 (AQP4) antibodies and evaluate the relationship between SIADH and hypothalamic lesions in patients with NMO and NMO spectrum disorder (NMOSD). AQP4 antibodies were tested by an indirect immunofluorescence assay employing HEK-293 cells transfected with recombinant human AQP4. Clinical data of patients were analyzed retrospectively. In total, 192 patients with AQP4 antibodies were certified, of which 41 patients (21.4 %) were included in the present study. Six patients (14.6 %, 6/41) met the criteria of SIADH, of which hyponatremia was mild in one patient, and severe in five. Five patients experienced confusion or decreased consciousness. Four patients were diagnosed with NMO and two were diagnosed with recurrent optic neuritis. Magnetic resonance imaging showed 11 of 41 patients (26.8 %) had hypothalamic lesions. All patients with SIADH had hypothalamic abnormalities. Hyponatremia resolved in all patients after intravenous methylprednisolone and intravenous immunoglobulin therapy. SIADH is not rare in patients with NMO/NMOSD, especially in patients with lesions close to the hypothalamus.

  18. Comparative Analysis for the Presence of IgG Anti-Aquaporin-1 in Patients with NMO-Spectrum Disorders

    PubMed Central

    Sánchez Gomar, Ismael; Díaz Sánchez, María; Uclés Sánchez, Antonio José; Casado Chocán, José Luis; Suárez-Luna, Nela; Ramírez-Lorca, Reposo; Villadiego, Javier; Toledo-Aral, Juan José; Echevarría, Miriam

    2016-01-01

    Detection of IgG anti-Aquaporin-4 (AQP4) in serum of patients with Neuromyelitis optica syndrome disorders (NMOSD) has improved diagnosis of these processes and differentiation from Multiple sclerosis (MS). Recent findings also claim that a subgroup of patients with NMOSD, serum negative for IgG-anti-AQP4, present antibodies anti-AQP1 instead. Explore the presence of IgG-anti-AQP1 using a previously developed cell-based assay (CBA) highly sensitive to IgG-anti-AQP4. Serum of 205 patients diagnosed as NMOSD (8), multiple sclerosis (94), optic neuritis (39), idiopathic myelitis (29), other idiopathic demyelinating disorders of the central nervous system (9), other neurological diseases (18) and healthy controls (8), were used in a CBA over fixed HEK cells transfected with hAQP1-EGFP or hM23-AQP4-EGFP, treated with Triton X-100 and untreated. ELISA was also performed. Analysis of serum with our CBA indicated absence of anti-AQP1 antibodies, whereas in cells pretreated with detergent, noisy signal made reliable detection impossible. ELISA showed positive results in few serums. The low number of NMOSD serums included in our study reduces its power to conclude the specificity of AQP1 antibodies as new biomarkers of NMOSD. Our study does not sustain detection of anti-AQP1 in serum of NMOSD patients but further experiments are expected. PMID:27455255

  19. Aquaporin 1 and aquaporin 4 overexpression in bovine spongiform encephalopathy in a transgenic murine model and in cattle field cases.

    PubMed

    Costa, Carme; Tortosa, Raül; Rodríguez, Agustín; Ferrer, Isidre; Torres, Juan Maria; Bassols, Anna; Pumarola, Martí

    2007-10-17

    Aquaporins (AQP) are a family of transmembrane proteins that act as water selective channels. AQP1 and AQP4 are widely expressed in the central nervous system where they play several roles. Overexpression of AQP has been reported in some human and animal transmissible spongiform encephalopathies, but information is scanty about their distribution in the central nervous system in bovine spongiform encephalopathy (BSE). Double immunohistochemistry for AQP1, AQP4 and GFAP was developed in a transgenic mouse line overexpressing the bovine cellular prion protein (BoTg110), intracerebrally infected with cattle BSE. Western blot for AQP1 and AQP4, and immunohistochemistry for both AQP and GFAP were carried out in cases of BSE-diagnosed cattle as part of surveillance plan in Catalonia (Spain). A marked increase in AQP1 and AQP4 was observed in mice at the terminal stage of the disease, when they had a wide range of clinical signs, whereas no increase could be observed in the early stage before the onset of the clinical signs. In cattle which did not show evidence of clinical signs, both AQP already showed a great increase. The AQP overexpression correlated with GFAP-immunoreactive astrocytes and PrPres deposition in both cases. The results of this study suggest that AQP overexpression in glial cells could lead to an imbalance in water and ion homeostasis which could contribute to triggering the typical histopathological changes of BSE.

  20. Longstanding spastic paraparesis in a patient infected with hepatitis C virus and seropositive for aquaporin-4 antibody - Case report and review of the literature.

    PubMed

    Ferreira, João Dias; Caldas, Ana Castro; de Sá, João Correia; Geraldes, Ruth

    2016-07-01

    Nervous system involvement in Hepatitis C virus infection (HCV) has been associated to neuro-immunological deregulation, particularly in interferon-alpha treated patients. We present a case of optic and brainstem demyelinating disorder associated with aquaporin-4 (AQP4) antibodies. A 48 year-old woman, with previous diagnosis of non-treated hepatitis C, presented with a 10-year history of long-standing gait disturbance. Neurological examination disclosed a grade 4 spastic paraparesis, lower limb hyperreflexia, right positive Hoffmann sign, bilateral Babinski sign and spastic gait only possible with bilateral support. Spinal cord magnetic resonance imaging (MRI) was normal. Brain MRI showed an asymmetric, bilateral pontine and left mesencephalic hypersignal in T2 and FLAIR, with no gadolinium enhancement. Visual evoked potential revealed bilateral pre-chiasmatic conduction delay. Blood tests showed a positive anti-HCV antibody and a positive AQP4 antibody. Cerebrospinal fluid (CSF) analysis was normal, with no oligoclonal bands. The patient started intravenous (IV) methylprednisolone followed by oral prednisolone; simultaneously, interferon-alpha and ribavirin. There was a slight clinical improvement within the first weeks. There are 7 cases describing association between HCV infection and central nervous system (CNS) demyelination with positive AQP4 antibody, 4 patients under interferon-α. AQP4 antibodies should be tested in patients infected with HCV and CNS demyelination. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Workshop on Gas Channels

    DTIC Science & Technology

    2013-02-07

    Pore Urea Transporter Crystal Structure The bacterial homolog Urea Transporter (UT-B) was crystallized as a homotrimer. Urea transport can be...Endothelial cells in capillaries, etc:  BBB, BRetinaB ( Pigment epithelial)  Blood-testis barrier, blood-ovary barrier  Lungs: AQP5 (no alveolar Rh

  2. In Vitro Acid-Mediated Initial Dental Enamel Loss Is Associated with Genetic Variants Previously Linked to Caries Experience.

    PubMed

    Vieira, Alexandre R; Bayram, Merve; Seymen, Figen; Sencak, Regina C; Lippert, Frank; Modesto, Adriana

    2017-01-01

    We have previously shown that AQP5 and BTF3 genetic variation and expression in whole saliva are associated with caries experience suggesting that these genes may have a functional role in protecting against caries. To further explore these results, we tested ex vivo if variants in these genes are associated with subclinical dental enamel mineral loss. DNA and enamel samples were obtained from 53 individuals. Enamel samples were analyzed for Knoop hardness of sound enamel, integrated mineral loss after subclinical carious lesion creation, and change in integrated mineral loss after remineralization. DNA samples were genotyped for single nucleotide polymorphisms using TaqMan chemistry. Chi-square and Fisher's exact tests were used to compare individuals above and below the mean sound enamel microhardness of the cohort with alpha of 0.05. The A allele of BTF3 rs6862039 appears to be associated with harder enamel at baseline (p = 0.09), enamel more resistant to demineralization (p = 0.01), and enamel that more efficiently regain mineral and remineralize (p = 0.04). Similarly, the G allele of AQP5 marker rs3759129 and A allele of AQP5 marker rs296763 are associated with enamel more resistant to demineralization (p = 0.03 and 0.05, respectively). AQP5 and BTF3 genetic variations influence the initial subclinical stages of caries lesion formation in the subsurface of enamel.

  3. Botulinum toxin A inhibits salivary secretion of rabbit submandibular gland

    PubMed Central

    Shan, Xiao-Feng; Xu, Hui; Cai, Zhi-Gang; Wu, Li-Ling; Yu, Guang-Yan

    2013-01-01

    Botulinum toxin A (BTXA) has been used in several clinical trials to treat excessive glandular secretion; however, the precise mechanism of its action on the secretory function of salivary gland has not been fully elucidated. In this study, we aimed to investigate the effect of BTXA on secretion of submandibular gland in rabbits and to identify its mechanism of action on the secretory function of salivary gland. At 12 weeks after injection with 5 units of BTXA, we found a significant decrease in the saliva flow from submandibular glands, while the salivary amylase concentration increased. Morphological analysis revealed reduction in the size of acinar cells with intracellular accumulation of secretory granules that coalesced to form a large ovoid structure. Expression of M3-muscarinic acetylcholine receptor (M3 receptor) and aquaporin-5 (AQP5) mRNA decreased after BTXA treatment, and distribution of AQP5 in the apical membrane was reduced at 1, 2 and 4 weeks after BTXA injection. Furthermore, BTXA injection was found to induce apoptosis of acini. These results indicate that BTXA decreases the fluid secretion of submandibular glands and increases the concentration of amylase in saliva. Decreased expression of M3 receptor and AQP5, inhibition of AQP5 translocation, and cell apoptosis might involve in BTXA-reduced fluid secretion of submandibular glands. PMID:24158141

  4. Indoxyl Sulfate as a Mediator Involved in Dysregulation of Pulmonary Aquaporin-5 in Acute Lung Injury Caused by Acute Kidney Injury

    PubMed Central

    Yabuuchi, Nozomi; Sagata, Masataka; Saigo, Chika; Yoneda, Go; Yamamoto, Yuko; Nomura, Yui; Nishi, Kazuhiko; Fujino, Rika; Jono, Hirofumi; Saito, Hideyuki

    2016-01-01

    High mortality of acute kidney injury (AKI) is associated with acute lung injury (ALI), which is a typical complication of AKI. Although it is suggested that dysregulation of lung salt and water channels following AKI plays a pivotal role in ALI, the mechanism of its dysregulation has not been elucidated. Here, we examined the involvement of a typical oxidative stress-inducing uremic toxin, indoxyl sulfate (IS), in the dysregulation of the pulmonary predominant water channel, aquaporin 5 (AQP-5), in bilateral nephrectomy (BNx)-induced AKI model rats. BNx evoked AKI with the increases in serum creatinine (SCr), blood urea nitrogen (BUN) and serum IS levels and exhibited thickening of interstitial tissue in the lung. Administration of AST-120, clinically-used oral spherical adsorptive carbon beads, resulted in a significant decrease in serum IS level and thickening of interstitial tissue, which was accompanied with the decreases in IS accumulation in various tissues, especially lung. Interestingly, a significant decrease in AQP-5 expression of lung was observed in BNx rats. Moreover, the BNx-induced decrease in pulmonary AQP-5 protein expression was markedly restored by oral administration of AST-120. These results suggest that BNx-induced AKI causes dysregulation of pulmonary AQP-5 expression, in which IS could play a toxico-physiological role as a mediator involved in renopulmonary crosstalk. PMID:28025487

  5. Indoxyl Sulfate as a Mediator Involved in Dysregulation of Pulmonary Aquaporin-5 in Acute Lung Injury Caused by Acute Kidney Injury.

    PubMed

    Yabuuchi, Nozomi; Sagata, Masataka; Saigo, Chika; Yoneda, Go; Yamamoto, Yuko; Nomura, Yui; Nishi, Kazuhiko; Fujino, Rika; Jono, Hirofumi; Saito, Hideyuki

    2016-12-23

    High mortality of acute kidney injury (AKI) is associated with acute lung injury (ALI), which is a typical complication of AKI. Although it is suggested that dysregulation of lung salt and water channels following AKI plays a pivotal role in ALI, the mechanism of its dysregulation has not been elucidated. Here, we examined the involvement of a typical oxidative stress-inducing uremic toxin, indoxyl sulfate (IS), in the dysregulation of the pulmonary predominant water channel, aquaporin 5 (AQP-5), in bilateral nephrectomy (BNx)-induced AKI model rats. BNx evoked AKI with the increases in serum creatinine (SCr), blood urea nitrogen (BUN) and serum IS levels and exhibited thickening of interstitial tissue in the lung. Administration of AST-120, clinically-used oral spherical adsorptive carbon beads, resulted in a significant decrease in serum IS level and thickening of interstitial tissue, which was accompanied with the decreases in IS accumulation in various tissues, especially lung. Interestingly, a significant decrease in AQP-5 expression of lung was observed in BNx rats. Moreover, the BNx-induced decrease in pulmonary AQP-5 protein expression was markedly restored by oral administration of AST-120. These results suggest that BNx-induced AKI causes dysregulation of pulmonary AQP-5 expression, in which IS could play a toxico-physiological role as a mediator involved in renopulmonary crosstalk.

  6. In Vitro Acid-Mediated Initial Dental Enamel Loss Is Associated with Genetic Variants Previously Linked to Caries Experience

    PubMed Central

    Vieira, Alexandre R.; Bayram, Merve; Seymen, Figen; Sencak, Regina C.; Lippert, Frank; Modesto, Adriana

    2017-01-01

    We have previously shown that AQP5 and BTF3 genetic variation and expression in whole saliva are associated with caries experience suggesting that these genes may have a functional role in protecting against caries. To further explore these results, we tested ex vivo if variants in these genes are associated with subclinical dental enamel mineral loss. DNA and enamel samples were obtained from 53 individuals. Enamel samples were analyzed for Knoop hardness of sound enamel, integrated mineral loss after subclinical carious lesion creation, and change in integrated mineral loss after remineralization. DNA samples were genotyped for single nucleotide polymorphisms using TaqMan chemistry. Chi-square and Fisher's exact tests were used to compare individuals above and below the mean sound enamel microhardness of the cohort with alpha of 0.05. The A allele of BTF3 rs6862039 appears to be associated with harder enamel at baseline (p = 0.09), enamel more resistant to demineralization (p = 0.01), and enamel that more efficiently regain mineral and remineralize (p = 0.04). Similarly, the G allele of AQP5 marker rs3759129 and A allele of AQP5 marker rs296763 are associated with enamel more resistant to demineralization (p = 0.03 and 0.05, respectively). AQP5 and BTF3 genetic variations influence the initial subclinical stages of caries lesion formation in the subsurface of enamel. PMID:28275354

  7. Lactuside B decreases aquaporin-4 and caspase-3 mRNA expression in the hippocampus and striatum following cerebral ischaemia-reperfusion injury in rats

    PubMed Central

    LI, PING-FA; ZHAN, HE-QIN; LI, SHENG-YING; LIU, RUI-LI; YAN, FU-LIN; CUI, TAI-ZHEN; YANG, YU-PING; LI, PENG; WANG, XIN-YAO

    2014-01-01

    This study aimed to investigate the effects of lactuside B (LB) on aquaporin-4 (AQP4) and caspase-3 mRNA expression in the hippocampus and the striatum following cerebral ischaemia-reperfusion (I/R) injury in rats. Cerebral I/R injury was established in Sprague-Dawley rats by occluding the middle cerebral artery for 2 h and then inducing reperfusion. Rats in the I/R + LB groups were treated with various doses of LB following reperfusion. Neurological deficit scores and brain water content were obtained to determine the pharmacodynamics of LB. Reverse transcription polymerase chain reaction was performed to determine the expression levels of AQP4 and caspase-3 mRNA in the hippocampus and the striatum. The results of the present study indicate that LB decreased the neurological deficit scores and the brain water content. In the hippocampus, AQP4 and caspase-3 mRNA expression levels were significantly downregulated in the I/R + LB groups at 24 and 72 h following drug administration, compared with those in the I/R group (P<0.05). In the striatum, LB was also shown to significantly reduce AQP4 and caspase-3 mRNA expression levels at 24 and 72 h following drug administration, compared with those in the I/R group (P<0.05). The effects became stronger as the LB dose was increased. The most significant reductions in AQP4 and caspase-3 mRNA expression were noted in the I/R + LB 25 mg/kg and I/R + LB 50 mg/kg groups at 72 h following drug administration. The results of the present study show that LB is capable of significantly downregulating AQP4 and caspase-3 mRNA expression in the hippocampus and striatum following cerebral I/R injury in rats. The mechanism by which LB improved ischaemic brain injury may be associated with changes in AQP4 and caspase-3 mRNA expression in the hippocampus and the striatum. PMID:24520266

  8. Neuromyelitis optica spectrum disorders

    PubMed Central

    Sepúlveda, Maria; Armangué, Thaís; Sola-Valls, Nuria; Arrambide, Georgina; Meca-Lallana, José E.; Oreja-Guevara, Celia; Mendibe, Mar; Alvarez de Arcaya, Amaya; Aladro, Yolanda; Casanova, Bonaventura; Olascoaga, Javier; Jiménez-Huete, Adolfo; Fernández-Fournier, Mireya; Ramió-Torrentà, Lluis; Cobo-Calvo, Alvaro; Viñals, Montserrat; de Andrés, Clara; Meca-Lallana, Virginia; Cervelló, Angeles; Calles, Carmen; Rubio, Manuel Barón; Ramo-Tello, Cristina; Caminero, Ana; Munteis, Elvira; Antigüedad, Alfredo R.; Blanco, Yolanda; Villoslada, Pablo; Montalban, Xavier; Graus, Francesc

    2016-01-01

    Objective: To (1) determine the value of the recently proposed criteria of neuromyelitis optica (NMO) spectrum disorder (NMOSD) that unify patients with NMO and those with limited forms (NMO/LF) with aquaporin-4 immunoglobulin G (AQP4-IgG) antibodies; and (2) investigate the clinical significance of the serologic status in patients with NMO. Methods: This was a retrospective, multicenter study of 181 patients fulfilling the 2006 NMO criteria (n = 127) or NMO/LF criteria with AQP4-IgG (n = 54). AQP4-IgG and myelin oligodendrocyte glycoprotein immunoglobulin G (MOG-IgG) antibodies were tested using cell-based assays. Results: Patients were mainly white (86%) and female (ratio 6.5:1) with median age at onset 39 years (range 10–77). Compared to patients with NMO and AQP4-IgG (n = 94), those with NMO/LF presented more often with longitudinally extensive transverse myelitis (LETM) (p < 0.001), and had lower relapse rates (p = 0.015), but similar disability outcomes. Nonwhite ethnicity and optic neuritis presentation doubled the risk for developing NMO compared with white race (p = 0.008) or LETM presentation (p = 0.008). Nonwhite race (hazard ratio [HR] 4.3, 95% confidence interval [CI] 1.4–13.6) and older age at onset were associated with worse outcome (for every 10-year increase, HR 1.7, 95% CI 1.3–2.2). Patients with NMO and MOG-IgG (n = 9) had lower female:male ratio (0.8:1) and better disability outcome than AQP4-IgG-seropositive or double-seronegative patients (p < 0.001). Conclusions: In patients with AQP4-IgG, the similar outcomes regardless of the clinical phenotype support the unified term NMOSD; nonwhite ethnicity and older age at onset are associated with worse outcome. Double-seronegative and AQP4-IgG-seropositive NMO have a similar clinical outcome. The better prognosis of patients with MOG-IgG and NMO suggests that phenotypic and serologic classification is useful. PMID:27144216

  9. Aquaporin deletion in mice reduces corneal water permeability and delays restoration of transparency after swelling.

    PubMed

    Thiagarajah, Jay R; Verkman, A S

    2002-05-24

    Two aquaporin (AQP)-type water channels are expressed in mammalian cornea, AQP1 in endothelial cells and AQP5 in epithelial cells. To test whether these aquaporins are involved in corneal fluid transport and transparency, we compared corneal thickness, water permeability, and response to experimental swelling in wild type mice and transgenic null mice lacking AQP1 and AQP5. Corneal thickness in fixed sections was remarkably reduced in AQP1 null mice and increased in AQP5 null mice. By z-scanning confocal microscopy, corneal thickness in vivo was (in microm, mean +/- S.E., n = 5 mice) 123 +/- 1 (wild type), 101 +/- 2 (AQP1 null), and 144 +/- 2 (AQP5 null). After exposure of the external corneal surface to hypotonic saline (100 mosm), the rate of corneal swelling (5.0 +/- 0.3 microm/min, wild type) was reduced by AQP5 deletion (2.7 +/- 0.1 microm/min). After exposure of the e