Science.gov

Sample records for aquaculture overcoming biological

  1. Guide to Using Drugs, Biologics, and Other Chemicals in Aquaculture

    USDA-ARS?s Scientific Manuscript database

    The Guide to Using Drugs, Biologics, and Other Chemicals in Aquaculture (Guide) describes regulated products that are approved for use in U.S. aquaculture. The Guide also describes drugs that are not yet approved for use in the U. S. but that can be used under an Investigational New Animal Drug (INA...

  2. Aquaculture and environmental stewardship: Milford shellfish biology seminar—1991

    NASA Astrophysics Data System (ADS)

    Blogoslawski, Walter J.

    1992-07-01

    For the past 11 years the annual Shellfish Biology Seminar at Milford CT has provided a unique forum for aquaculture scientists and industry officials to exchange information about estuaries facing increased pollution problems, especially Long Island Sound and the Great South Bay. Because these two areas are so rich in productivity and diversity, fish and shellfish farmers utilize their waters, shellfish beds, and shore land for hatcheries and grow-out facilities. These individuals seek better management of the coastal estuarine environment and its resources, providing a working example of environmental stewardship. In aquaculture, good science is required to understand the complex variables and interaction of estuarine currents, tides, temperature, and cycles of reproduction. Aquaculturists are beginning to understand the need for specific nutrients and how the wastes of one species can be utilized for enhanced production of another species. Over the years, this meeting has formed an amalgam of both the aquaculture industry and research scientists where both groups foster mutual environmental concern. Science is able to focus on the theoretical aspects of pollutant damage. while the aquaculture industry is able to define the problem and need for assistance to eliminate pollutants from their crops—shellfish and finfish. Overfishing is not an issue at these meetings, as the group accepts the damage already done to wild resources and seeks new technologies to grow food sources under controlled and stable market conditions. Therefore, it could be said that the seminar serves as a meeting ground where the theoretical knowledge of scientific study finds practical application in the industry and is fueled by the needs of that industry. This ideal blend of the two groups produces better management of the resource and a safer environment—the goal of stewardship.

  3. Microbial diversity of biological filters in recirculating aquaculture systems.

    PubMed

    Schreier, Harold J; Mirzoyan, Natella; Saito, Keiko

    2010-06-01

    Development of environmentally sustainable farming of marine and freshwater species using recirculating aquaculture systems (RASs) requires a complete understanding of the biological component involved in wastewater treatment. This component integrates biofilters composed of microbial communities whose structure, dynamics, and activities are responsible for system success. Engineering highly efficient, environmentally sound, disease-free, and economically viable systems necessitates a thorough knowledge of microbial processes involved in all facets of RAS biofilters and has only recently been the focus of comprehensive studies. These studies have included the application of molecular tools to characterize community diversity and have identified key processes useful for improving system performance. In this paper we summarize the current understanding of the microbial diversity and physiology of RAS biofilters and discuss directions for future studies.

  4. Comparing Denitrification Rates and Carbon Sources in Commercial Scale Upflow Denitrification Biological Filters in Aquaculture

    USDA-ARS?s Scientific Manuscript database

    Aerobic biological filtration systems employing nitrifying bacteria to remediate excess ammonia and nitrite concentrations are common components of recirculating aquaculture systems (RAS). However, significant water exchange may still be necessary to reduce nitrate concentrations to acceptable leve...

  5. Probiotic Bacteria as Biological Control Agents in Aquaculture

    PubMed Central

    Verschuere, Laurent; Rombaut, Geert; Sorgeloos, Patrick; Verstraete, Willy

    2000-01-01

    There is an urgent need in aquaculture to develop microbial control strategies, since disease outbreaks are recognized as important constraints to aquaculture production and trade and since the development of antibiotic resistance has become a matter of growing concern. One of the alternatives to antimicrobials in disease control could be the use of probiotic bacteria as microbial control agents. This review describes the state of the art of probiotic research in the culture of fish, crustaceans, mollusks, and live food, with an evaluation of the results obtained so far. A new definition of probiotics, also applicable to aquatic environments, is proposed, and a detailed description is given of their possible modes of action, i.e., production of compounds that are inhibitory toward pathogens, competition with harmful microorganisms for nutrients and energy, competition with deleterious species for adhesion sites, enhancement of the immune response of the animal, improvement of water quality, and interaction with phytoplankton. A rationale is proposed for the multistep and multidisciplinary process required for the development of effective and safe probiotics for commercial application in aquaculture. Finally, directions for further research are discussed. PMID:11104813

  6. Environmental impact of aquaculture and countermeasures to aquaculture pollution in China.

    PubMed

    Cao, Ling; Wang, Weimin; Yang, Yi; Yang, Chengtai; Yuan, Zonghui; Xiong, Shanbo; Diana, James

    2007-11-01

    Aquaculture activities are well known to be the major contributor to the increasing level of organic waste and toxic compound in the aquaculture industry. Along with the development of intensive aquaculture in China, concerns are evoked about the possible effects of ever-increasing aquaculture waste both on productivity inside the aquaculture system and on the ambient aquatic ecosystem. Therefore, it is apparent that appropriate waste treatment processes are needed for sustaining aquaculture development. This review aims at identifying the current status of aquaculture and aquaculture waste production in China. China is the world's largest fishery nation in terms of total seafood production volume, a position it has maintained continuously since 1990. Freshwater aquaculture is a major part of the Chinese fishery industry. Marine aquaculture in China consists of both land-based and offshore aquaculture, with the latter mostly operated in shallow seas, mud flats and protected bays. The environmental impacts of aquaculture are also striking. Case studies on pollution hot spots caused by aquaculture have been introduced. The quality and quantity of waste from aquaculture depends mainly on culture system characteristics and the choice of species, but also on feed quality and management. Wastewater without treatment, if continuously discharged into the aquatic environment, could result in remarkable elevation of the total organic matter contents and cause considerable economy lost. Waste treatments can be mainly classified into three categories: physical, chemical and biological methods. The environmental impacts of different aquaculture species are not the same. New waste treatments are introduced as references for the potential development of the waste treatment system in China. The most appropriate waste treatment system for each site should be selected according to the sites' conditions and financial status as well as by weighing the advantages and disadvantages of

  7. Functionality of a Bacillus cereus biological agent in response to physiological variables encountered in aquaculture.

    PubMed

    Lalloo, Rajesh; Maharajh, Dheepak; Görgens, Johann; Gardiner, Neil

    2008-05-01

    The potential of a Bacillus cereus isolate (NRRL 100132) as a biological agent for aquaculture has been demonstrated in vitro and in vivo. The functionality of this isolate across a range of physiological conditions, including salinity, pH and temperature, based on rearing of high-value ornamental Cyprinus carpio, was investigated. Temperature had a significant influence on germination, specific growth rate and increase in cell number of B. cereus in shake-flask cultures, whilst salinity and pH did not have a measurable effect on growth. Controlled studies in bioreactors and modelling of the data to the Arrhenius function indicated the existence of high and low growth temperature domains. The rates of pathogenic Aeromonas hydrophila suppression and decrease in waste ion concentrations (ammonium, nitrite, nitrate and phosphate) were translated into a linear predictive indicator of efficacy of the B. cereus isolate at different temperatures. The present study confirmed the robustness of the B. cereus isolate (NRRL 100132) as a putative biological agent for aquaculture and further demonstrated a novel method for the assessment of in vitro biological efficacy as a function of temperature.

  8. Jumping Hurdles: Peptides Able To Overcome Biological Barriers.

    PubMed

    Sánchez-Navarro, Macarena; Teixidó, Meritxell; Giralt, Ernest

    2017-08-15

    diketoperazines (DKPs), (N-MePhe)n, or (PhPro)n. On the other hand, we have investigated BBB-shuttles that utilize active transport mechanisms such as SGV, THRre, or MiniAp-4. For the development of both groups, we have explored several approaches, such as the use of peptide libraries, both chemical and phage display, or hit-to-lead optimization processes. In this Account, we describe, in chronologic order, our contribution to the development of peptides able to overcome various biological barriers and our efforts to understand the mechanisms that they display. In addition, the potential use of both CPPs and BBB-shuttles to improve the transport of promising therapeutic compounds is described.

  9. Enrichment and immobilization of sulfide removal microbiota applied for environmental biological remediation of aquaculture area.

    PubMed

    Zhao, Yang-Guo; Zheng, Yu; Tian, Weijun; Bai, Jie; Feng, Gong; Guo, Liang; Gao, Mengchun

    2016-07-01

    To remove sulfide in the deteriorating aquaculture sediment and water, sulfide-oxidizing microbiota was enriched from Jiaozhou Bay, China, by using sulfide-rich medium. Composition and structure of microbial communities in the enrichments were investigated by 16S rDNA molecular biotechniques. Results showed that microbial community structure continuously shifted and the abundance of sulfate reducing bacteria, i.e., Desulfobacterium, Desulfococcus and Desulfobacca apparently declined. Several halophile genera, Vibrio, Marinobacter, Pseudomonas, Prochlorococcus, Pediococcus and Thiobacillus predominated finally in the microbiota. The enriched microbiota was capable of removing a maximum of 1000 mg/L sulfide within 12 h with 10% inoculum at pH 7.0, 20-30 °C. After immobilized, the microbiota presented excellent resistance to impact and could completely remove 600 mg/L sulfide in 12 h. Moreover, the immobilized microbiota recovered well even recycled for five times. In conclusion, the immobilized sulfide-removing microbiota showed a quite promising application for biological restoring of sulfide-rich aquaculture environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Biological treatment of shrimp aquaculture wastewater using a sequencing batch reactor.

    PubMed

    Lyles, C; Boopathy, R; Fontenot, Q; Kilgen, M

    2008-12-01

    To improve the water quality in the shrimp aquaculture, a sequencing batch reactor (SBR) has been tested for the treatment of shrimp wastewater. A SBR is a variation of the activated sludge biological treatment process. This process uses multiple steps in the same tank to take the place of multiple tanks in a conventional treatment system. The SBR accomplishes equalization, aeration, and clarification in a timed sequence in a single reactor basin. This is achieved in a simple tank, through sequencing stages, which include fill, react, settle, decant, and idle. A laboratory scale SBR and a pilot scale SBR was successfully operated using shrimp aquaculture wastewater. The wastewater contained high concentration of carbon and nitrogen. By operating the reactor sequentially, viz, aerobic and anoxic modes, nitrification and denitrification were achieved as well as removal of carbon in a laboratory scale SBR. To be specific, the initial chemical oxygen demand (COD) concentration of 1,593 mg/l was reduced to 44 mg/l within 10 days of reactor operation. Ammonia in the sludge was nitrified within 3 days. The denitrification of nitrate was achieved by the anaerobic process and 99% removal of nitrate was observed. Based on the laboratory study, a pilot scale SBR was designed and operated to remove excess nitrogen in the shrimp wastewater. The results mimicked the laboratory scale SBR.

  11. Handbook for aquaculture water quality

    USDA-ARS?s Scientific Manuscript database

    Efficient aquaculture production depends upon maintaining acceptable water quality conditions in culture units. This handbook discusses background information from chemistry, physics, biology, and engineering necessary for understanding the principles of water quality management in aquaculture. It a...

  12. [Process characteristics of zeolite media biological aerated filter for treating aquaculture wastewater].

    PubMed

    Jiang, Yi-feng; Liu, Da-hua; Sun, Tong-xi; Chen, Jian-meng

    2010-03-01

    In this study, an up-flow zeolite media biological aerated filter (ZBAF) was developed and employed for the treatment of aquaculture wastewater. The results showed that ZBAF could start up quickly after 7 d and 25 d in viewpoint of mineralization and nitrification. 0.25 m/h and 20:1 were found to be the optimal hydraulic loading and gas/water ratio, under which around 85% of COD and 70% of NH4+ -N were removed stably in the ZBAF. Through analysis of water quality and microorganism along the flow direction, the heterotrophic and nitrifying population occupied respectively in the bottom and top of the filter column, and lower DO concentration was regarded as the boundary zone for these two different groups of chemotrophic bacteria. The changing profiles of biomass (phospholipid-P) and activity (oxygen uptake rate) showed the similar mode along the height of ZBAF, and their maximum values of 114.12 nmol/g and 0.67 mg/(g x h) were detected at the bottom of the filter.

  13. A downstream process for production of a viable and stable Bacillus cereus aquaculture biological agent.

    PubMed

    Lalloo, Rajesh; Maharajh, Dheepak; Görgens, Johann; Gardiner, Neil

    2010-03-01

    Biological products offer advantages over chemotherapeutics in aquaculture. Adoption in commercial application is lacking due to limitations in process and product development that address key end user product requirements such as cost, efficacy, shelf life and convenience. In previous studies, we have reported on the efficacy, physiological robustness and low-cost spore production of a Bacillus cereus isolate (NRRL 100132). This study examines the development of suitable spore recovery, drying, formulation and tablet production from the fermentation product. Key criteria used for such downstream process unit evaluation included spore viability, recovery, spore balance, spore re-germination, product intermediate stability, end product stability and efficacy. A process flow sheet comprising vertical tube centrifugation, fluidised bed agglomeration and tablet pressing yielded a suitable product. The formulation included corn steep liquor and glucose to enhance subsequent spore regermination. Viable spore recovery and spore balance closure across each of the process units was high (>70% and >99% respectively), with improvement in recovery possible by adoption of continuous processing at large scale. Spore regermination was 97%, whilst a product half-life in excess of 5 years was estimated based on thermal resistance curves. The process resulted in a commercially attractive product and suitable variable cost of production.

  14. High-density spore production of a B. cereus aquaculture biological agent by nutrient supplementation.

    PubMed

    Lalloo, Rajesh; Maharajh, Dheepak; Görgens, Johann; Gardiner, Neil; Görgens, J F

    2009-05-01

    Previous studies have demonstrated the efficacy of our Bacillus cereus isolate (NRRL 100132) in reducing concentrations of nitrogenous wastes and inhibiting growth of fish pathogens. In vivo efficacy and tolerance to a range of physiological conditions in systems used to rear Cyprinus carpio make this isolate an excellent candidate for aquaculture applications. Production cost is an important consideration in development of commercially relevant biological products, and this study examines the optimization of nutrient supplementation, which has an impact on high-density production of spores by fermentation. Corn steep liquor (CSL) was identified as a lower cost and more effective nutrient source in comparison to conventional nutrient substrates, in particular yeast extract and nutrient broth. The improved sporulation performance of B. cereus could be related to the increased availability of free amino acids, carbohydrates, and minerals in CSL, which had a positive effect on sporulation efficiency. The impact of nutrient concentration on spore yield and productivity was modeled to develop a tool for optimization of nutrient concentration in fermentation. An excellent fit of the model was confirmed in laboratory fermentation studies. A cost comparison revealed that production using liquid phytase and ultrafiltered-treated CSL was less expensive than spray-dried CSL and supported cultivation of B. cereus spores at densities higher than 1 x 10(10) CFU ml(-1).

  15. Proteomics: Challenges, Techniques and Possibilities to Overcome Biological Sample Complexity

    PubMed Central

    Chandramouli, Kondethimmanahalli; Qian, Pei-Yuan

    2009-01-01

    Proteomics is the large-scale study of the structure and function of proteins in complex biological sample. Such an approach has the potential value to understand the complex nature of the organism. Current proteomic tools allow large-scale, high-throughput analyses for the detection, identification, and functional investigation of proteome. Advances in protein fractionation and labeling techniques have improved protein identification to include the least abundant proteins. In addition, proteomics has been complemented by the analysis of posttranslational modifications and techniques for the quantitative comparison of different proteomes. However, the major limitation of proteomic investigations remains the complexity of biological structures and physiological processes, rendering the path of exploration paved with various difficulties and pitfalls. The quantity of data that is acquired with new techniques places new challenges on data processing and analysis. This article provides a brief overview of currently available proteomic techniques and their applications, followed by detailed description of advantages and technical challenges. Some solutions to circumvent technical difficulties are proposed. PMID:20948568

  16. Biologically Induced Deposition of Fine Suspended Particles by Filter-Feeding Bivalves in Land-Based Industrial Marine Aquaculture Wastewater

    PubMed Central

    Zhou, Yi; Zhang, Shaojun; Liu, Ying; Yang, Hongsheng

    2014-01-01

    Industrial aquaculture wastewater contains large quantities of suspended particles that can be easily broken down physically. Introduction of macro-bio-filters, such as bivalve filter feeders, may offer the potential for treatment of fine suspended matter in industrial aquaculture wastewater. In this study, we employed two kinds of bivalve filter feeders, the Pacific oyster Crassostrea gigas and the blue mussel Mytilus galloprovincialis, to deposit suspended solids from marine fish aquaculture wastewater in flow-through systems. Results showed that the biodeposition rate of suspended particles by C. gigas (shell height: 8.67±0.99 cm) and M. galloprovincialis (shell height: 4.43±0.98 cm) was 77.84±7.77 and 6.37±0.67 mg ind−1•d−1, respectively. The total solid suspension (TSS) deposition rates of oyster and mussel treatments were 3.73±0.27 and 2.76±0.20 times higher than that of the control treatment without bivalves, respectively. The TSS deposition rates of bivalve treatments were significantly higher than the natural sedimentation rate of the control treatment (P<0.001). Furthermore, organic matter and C, N in the sediments of bivalve treatments were significantly lower than those in the sediments of the control (P<0.05). It was suggested that the filter feeders C. gigas and M. galloprovincialis had considerable potential to filter and accelerate the deposition of suspended particles from industrial aquaculture wastewater, and simultaneously yield value-added biological products. PMID:25250730

  17. Biologically induced deposition of fine suspended particles by filter-feeding bivalves in land-based industrial marine aquaculture wastewater.

    PubMed

    Zhou, Yi; Zhang, Shaojun; Liu, Ying; Yang, Hongsheng

    2014-01-01

    Industrial aquaculture wastewater contains large quantities of suspended particles that can be easily broken down physically. Introduction of macro-bio-filters, such as bivalve filter feeders, may offer the potential for treatment of fine suspended matter in industrial aquaculture wastewater. In this study, we employed two kinds of bivalve filter feeders, the Pacific oyster Crassostrea gigas and the blue mussel Mytilus galloprovincialis, to deposit suspended solids from marine fish aquaculture wastewater in flow-through systems. Results showed that the biodeposition rate of suspended particles by C. gigas (shell height: 8.67 ± 0.99 cm) and M. galloprovincialis (shell height: 4.43 ± 0.98 cm) was 77.84 ± 7.77 and 6.37 ± 0.67 mg ind(-1) • d(-1), respectively. The total solid suspension (TSS) deposition rates of oyster and mussel treatments were 3.73 ± 0.27 and 2.76 ± 0.20 times higher than that of the control treatment without bivalves, respectively. The TSS deposition rates of bivalve treatments were significantly higher than the natural sedimentation rate of the control treatment (P < 0.001). Furthermore, organic matter and C, N in the sediments of bivalve treatments were significantly lower than those in the sediments of the control (P < 0.05). It was suggested that the filter feeders C. gigas and M. galloprovincialis had considerable potential to filter and accelerate the deposition of suspended particles from industrial aquaculture wastewater, and simultaneously yield value-added biological products.

  18. Animal protein production modules in biological life support systems: Novel combined aquaculture techniques based on the closed equilibrated biological aquatic system (C.E.B.A.S.)

    NASA Astrophysics Data System (ADS)

    Blüm, V.; Andriske, M.; Kreuzberg, K.; Schreibman, M. P.

    Based on the experiences made with the Closed Equilibrated Biological Aquatic System (C.E.B.A.S.) which was primarily deveoloped for long-term and multi-generation experiments with aquatic animals and plants in a space station highly effective fresh water recycling modules were elaborated utilizing a combination of ammonia oxidizing bacteria filters and higher plants. These exhibit a high effectivity to eliminate phosphate and anorganic nitrogen compounds and arc. in addidition. able to contribute to the oxygen supply of the aquatic animals. The C.E.B.A.S. filter system is able to keep a closed artificial aquatic ecosystem containing teleost fishes and water snails biologically stable for several month and to eliminate waste products deriving from degraded dead fishes without a decrease of the oxygen concentration down to less than 3.5 mg/l at 25 °C. More advanced C.E.B.A.S. filter systems, the BIOCURE filters, were also developed for utilization in semiintensive and intensive aquaculture systems for fishes. In fact such combined animal-plant aquaculture systems represent highly effective productions sites for human food if proper plant and fish species are selected The present papers elucidates ways to novel aquaculture systems in which herbivorous fishes are raised by feeding them with plant biomass produced in the BIOCURE filters and presents the scheme of a modification which utilizes a plant species suitable also for human nutrition. Special attention is paid to the benefits of closed aquaculture system modules which may be integrated into bioregenerative life support systems of a higher complexity for, e. g.. lunar or planetary bases including some psychologiccal aspects of the introduction of animal protein production into plant-based life support systems. Moreover, the basic reproductive biological problems of aquatic animal breeding under reduced gravity are explained leading to a disposition of essential research programs in this context.

  19. BIOMIND Portal for Developing 21st Century Skills and Overcoming Students' Misconception in Biology Subject

    ERIC Educational Resources Information Center

    Vebrianto, Rian; Rery, Radjawaly Usman; Osman, Kamisah

    2016-01-01

    This research was conducted to investigate the effectiveness of BIOMIND portal in enhancing students' 21st century skills and overcoming their misconceptions in Biology subject. 118 Indonesian high school students were involved in this quasi-experimental study. The experimental group underwent learning experiences using BIOMIND portal whereas the…

  20. BIOMIND Portal for Developing 21st Century Skills and Overcoming Students' Misconception in Biology Subject

    ERIC Educational Resources Information Center

    Vebrianto, Rian; Rery, Radjawaly Usman; Osman, Kamisah

    2016-01-01

    This research was conducted to investigate the effectiveness of BIOMIND portal in enhancing students' 21st century skills and overcoming their misconceptions in Biology subject. 118 Indonesian high school students were involved in this quasi-experimental study. The experimental group underwent learning experiences using BIOMIND portal whereas the…

  1. Evaluation of a Membrane Biological Reactor for Reclaiming Water, Alkalinity, Salts, Phosphorus, and Protein Contained in a High-Strength Aquacultural Wastewater

    USDA-ARS?s Scientific Manuscript database

    The capacity of a membrane biological reactor to provide nitrification, denitrification, and enhanced biological phosphorus removal of a high-strength aquaculture backwash flow (control condition), or the same flow amended with 100 mg/L of NO3-N and 3 mg/L of dissolved P (test condition), was assess...

  2. Water quality and emergy evaluation of two freshwater aquacultural systems for eutrophic water in the Controlling by Biological Chains

    NASA Astrophysics Data System (ADS)

    Xi, L. M.; Liu, C. Q.; Liu, D. F.; Huang, W. L.; Sun, Y.

    2017-08-01

    According to the ecological restoration theory, this experiment establishes aquaculture systems controlled by biological chains in both Xiaoxidian area and Dujiadian area of Baiyangdian Lake separately in order to improve the environment and bring economic benefits. The appearance of Emergy Theory provides a new method for the quantitative analysis of ecological economic system. Based on the analysis of Emergy Theory, this thesis compares the eco-economic systems under different polyculture models between Xiaoxidian area and Dujiadian area. The result demonstrates that Xiaoxidian ecological system is of high Emergy Transformity with higher emergy output and economic income per unit area compared with Dujiadian area. While Dujiadian area has higher Emergy Yield Rate and lower Environment Load Rate. So Dujiadian area is more sustainable due to the overload non-renewable energy of Xiaoxidian area devoted by human. Therefore, it will be better if we adjust and optimize the management of aquaculture system in Xiaoxidian area in order to find a stable equilibrium point between environmental sustainability and economic benefits.

  3. Some Physical, Chemical, and Biological Parameters of Samples of Scleractinium Coral Aquaculture Skeleton Used for Reconstruction/Engineering of the Bone Tissue.

    PubMed

    Popov, A A; Sergeeva, N S; Britaev, T A; Komlev, V S; Sviridova, I K; Kirsanova, V A; Akhmedova, S A; Dgebuadze, P Yu; Teterina, A Yu; Kuvshinova, E A; Schanskii, Ya D

    2015-08-01

    Physical and chemical (phase and chemical composition, dynamics of resorption, and strength properties), and biological (cytological compatibility and scaffold properties of the surface) properties of samples of scleractinium coral skeletons from aquacultures of three types and corresponding samples of natural coral skeletons (Pocillopora verrucosa, Acropora formosa, and Acropora nobilis) were studied. Samples of scleractinium coral aquaculture skeleton of A. nobilis, A. formosa, and P. verrucosa met the requirements (all study parameters) to materials for osteoplasty and 3D-scaffolds for engineering of bone tissue.

  4. Overview of biology and aquaculture of Amur sturgeon (Acipenser schrenckii) in China

    USGS Publications Warehouse

    Zhuang, P.; Kynard, B.; Zhang, L.; Zhang, T.; Zhang, Z.; Li, D.

    2002-01-01

    Amur sturgeon, Acipenser schrenckii is a large riverine species (max. 3 m length and 190 kg weight) native to the Amur River. In the middle Amur River, males first spawn at 7-8 years of age and females at 9-10 years. Due to overfishing and habitat alteration, the abundance of wild stocks has rapidly declined in recent years. Using wild adults, artificial spawning began in the 1950s in China, and since the early 1990s Amur sturgeon has become the most popular sturgeon for aquaculture. The species is adaptive to many conditions of artificial culture, including traditional Chinese fish culture ponds, lakes, reservoirs, and cages. It will grow well on many types of food, and 1-year-old fish reared on commercial diets weigh 900-1200 g. Based on the examination of females reared for broodstock, first full sexual maturity is expected at 5-6 years of age.

  5. Overcoming Chemical, Biological, and Computational Challenges in the Development of Inhibitors Targeting Protein-Protein Interactions

    PubMed Central

    Laraia, Luca; McKenzie, Grahame; Spring, David R.; Venkitaraman, Ashok R.; Huggins, David J.

    2015-01-01

    Protein-protein interactions (PPIs) underlie the majority of biological processes, signaling, and disease. Approaches to modulate PPIs with small molecules have therefore attracted increasing interest over the past decade. However, there are a number of challenges inherent in developing small-molecule PPI inhibitors that have prevented these approaches from reaching their full potential. From target validation to small-molecule screening and lead optimization, identifying therapeutically relevant PPIs that can be successfully modulated by small molecules is not a simple task. Following the recent review by Arkin et al., which summarized the lessons learnt from prior successes, we focus in this article on the specific challenges of developing PPI inhibitors and detail the recent advances in chemistry, biology, and computation that facilitate overcoming them. We conclude by providing a perspective on the field and outlining four innovations that we see as key enabling steps for successful development of small-molecule inhibitors targeting PPIs. PMID:26091166

  6. Overcoming Chemical, Biological, and Computational Challenges in the Development of Inhibitors Targeting Protein-Protein Interactions.

    PubMed

    Laraia, Luca; McKenzie, Grahame; Spring, David R; Venkitaraman, Ashok R; Huggins, David J

    2015-06-18

    Protein-protein interactions (PPIs) underlie the majority of biological processes, signaling, and disease. Approaches to modulate PPIs with small molecules have therefore attracted increasing interest over the past decade. However, there are a number of challenges inherent in developing small-molecule PPI inhibitors that have prevented these approaches from reaching their full potential. From target validation to small-molecule screening and lead optimization, identifying therapeutically relevant PPIs that can be successfully modulated by small molecules is not a simple task. Following the recent review by Arkin et al., which summarized the lessons learnt from prior successes, we focus in this article on the specific challenges of developing PPI inhibitors and detail the recent advances in chemistry, biology, and computation that facilitate overcoming them. We conclude by providing a perspective on the field and outlining four innovations that we see as key enabling steps for successful development of small-molecule inhibitors targeting PPIs.

  7. The Role of Carrier Geometry in Overcoming Biological Barriers to Drug Delivery.

    PubMed

    Jordan, Carolyn; Shuvaev, Vladimir V; Bailey, Mark; Muzykantov, Vladimir R; Dziubla, Thomas D

    2016-01-01

    For a variety of diseases, effective therapy is severely limited or rendered impossible due to an inability to deliver medications to the intended sites of action. Multiple barriers exist through the body, which have evolved over time to limit the migration of foreign compounds from entering the tissues. Turning toward biology as inspiration, it has been the general goal of drug delivery to create carrier strategies that mimic, in part, features of bacteria/ viruses that allow them overcome these barriers. By packaging drugs into nano and micron scale vehicles, it should be possible to completely change the biodistribution and residence times of pharmaceutically active compounds. Recently, due to advances in formulation technologies, it has become possible to control not just the material selection, surface chemistry, and/or size, but also the overall geometry and plasticity of the drug carriers. These approaches aid in the formulation of nonspherical particles such as, discs, rods, and even unique structures such as cubes and nanodiamonds. The adjustment of size and shape can be used for the aid or prevention in cellular uptake and also to overcome the vascular and mucosal barrier. In this review, we present a summary of some approaches used to control carrier shape and the impact these geometries have upon drug transport across biological barriers.

  8. Aquaculture. Second Edition. Teacher Edition.

    ERIC Educational Resources Information Center

    Walker, Susan S.; Crummett, Dan

    This teacher and student guide for aquaculture contains 15 units of instruction that cover the following topics: (1) introduction to aquaculture; (2) the aquatic environment; (3) fundamental fish biology; (4) marketing; (5) site selection; (6) facility design and layout; (7) water quality management; (8) fish health management; (9) commercial…

  9. Aquaculture. Second Edition. Teacher Edition.

    ERIC Educational Resources Information Center

    Walker, Susan S.; Crummett, Dan

    This teacher and student guide for aquaculture contains 15 units of instruction that cover the following topics: (1) introduction to aquaculture; (2) the aquatic environment; (3) fundamental fish biology; (4) marketing; (5) site selection; (6) facility design and layout; (7) water quality management; (8) fish health management; (9) commercial…

  10. Biomaterial Approaches to Enhancing Neurorestoration after Spinal Cord Injury: Strategies for Overcoming Inherent Biological Obstacles

    PubMed Central

    Siebert, Justin R.; Eade, Amber M.; Osterhout, Donna J.

    2015-01-01

    While advances in technology and medicine have improved both longevity and quality of life in patients living with a spinal cord injury, restoration of full motor function is not often achieved. This is due to the failure of repair and regeneration of neuronal connections in the spinal cord after injury. In this review, the complicated nature of spinal cord injury is described, noting the numerous cellular and molecular events that occur in the central nervous system following a traumatic lesion. In short, postinjury tissue changes create a complex and dynamic environment that is highly inhibitory to the process of neural regeneration. Strategies for repair are outlined with a particular focus on the important role of biomaterials in designing a therapeutic treatment that can overcome this inhibitory environment. The importance of considering the inherent biological response of the central nervous system to both injury and subsequent therapeutic interventions is highlighted as a key consideration for all attempts at improving functional recovery. PMID:26491685

  11. A systems biology approach to overcome TRAIL resistance in cancer treatment.

    PubMed

    Selvarajoo, Kumar

    2017-09-01

    Over the last decade, our research team has investigated the dynamic responses and global properties of living cells using systems biology approaches. More specifically, we have developed computational models and statistical techniques to interpret instructive cell signaling and high-throughput transcriptome-wide behaviors of immune, cancer, and embryonic development cells. Here, I will focus on our recent works in overcoming cancer resistance. TRAIL (tumor necrosis factor related apoptosis-inducing ligand), a proinflammatory cytokine, has shown promising success in controlling cancer threat due to its ability to induce apoptosis in cancers specifically, while having limited effect on normal cells. Nevertheless, several malignant cancer types, such as fibrosarcoma (HT1080) or colorectal adenocarcinoma (HT29), remain non-sensitive to TRAIL. To sensitize HT1080 to TRAIL treatment, we first developed a dynamic computational model based on perturbation-response approach, to predict a crucial co-target to enhance cell death. The model simulations suggested that PKC inhibition together with TRAIL induce 95% cell death. Subsequently, we confirmed this result experimentally utilizing the PKC inhibitor, bisindolylmaleimide (BIM) I, and PKC siRNAs in HT1080. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Determination of biological and physicochemical parameters of Artemia franciscana strains in hypersaline environments for aquaculture in the Colombian Caribbean

    PubMed Central

    Camargo, William N; Durán, Gabriel C; Rada, Orlando C; Hernández, Licet C; Linero, Juan-Carlos G; Muelle, Igor M; Sorgeloos, Patrick

    2005-01-01

    Background Artemia (Crustacea, Anostraca), also known as brine shrimp, are typical inhabitants of extreme environments. These hypersaline environments vary considerably in their physicochemical composition, and even their climatic conditions and elevation. Several thalassohaline (marine) environments along the Colombian Caribbean coast were surveyed in order to contribute to the knowledge of brine shrimp biotopes in South America by determining some vital biological and physicochemical parameters for Artemia survival. Additionally, cyst quality tests, biometrical and essential fatty acids analysis were performed to evaluate the economic viability of some of these strains for the aquaculture industry. Results In addition to the three locations (Galerazamba, Manaure, and Pozos Colorados) reported in the literature three decades ago in the Colombian Caribbean, six new locations were registered (Salina Cero, Kangaru, Tayrona, Bahía Hondita, Warrego and Pusheo). All habitats sampled showed that chloride was the prevailing anion, as expected, because of their thalassohaline origin. There were significant differences in cyst diameter grouping strains in the following manner according to this parameter: 1) San Francisco Bay (SFB-Control, USA), 2) Galerazamba and Tayrona, 3) Kangarú, 4) Manaure, and 5) Salina Cero and Pozos Colorados. Chorion thickness values were smaller in Tayrona, followed by Salina Cero, Galerazamba, Manaure, SFB, Kangarú and Pozos Colorados. There were significant differences in naupliar size, grouping strains as follows (smallest to largest): 1) Galerazamba, 2) Manaure, 3) SFB, Kangarú, and Salina Cero, 4) Pozos Colorados, and 5) Tayrona. Overall, cyst quality analysis conducted on samples from Manaure, Galerazamba, and Salina Cero revealed that all sites exhibited a relatively high number of cysts.g-1. Essential fatty acids (EFA) analysis performed on nauplii from cyst samples from Manaure, Galerazamba, Salina Cero and Tayrona revealed that cysts

  13. Cribrihabitans marinus gen. nov., sp. nov., isolated from a biological filter in a marine recirculating aquaculture system.

    PubMed

    Chen, Zhu; Liu, Ying; Liu, Liang-Zi; Zhong, Zhi-Ping; Liu, Zhi-Pei; Liu, Ying

    2014-04-01

    A Gram-negative bacterium, strain CZ-AM5(T), was isolated from an aerated biological filter in a marine recirculating aquaculture system in Tianjin, China. Its taxonomic position was investigated by using a polyphasic approach. Cells of strain CZ-AM5(T) were non-spore-forming rods, 0.5-0.8 µm wide and 1.2-2.0 µm long, and motile by means of one or two polar or lateral flagella. Strain CZ-AM5(T) was strictly aerobic, heterotrophic, oxidase-negative and catalase-positive. Growth occurred at 15-40 °C (optimum, 30-35 °C), at pH 6.5-10.5 (optimum, pH 7.0-7.5) and in the presence of 0-12.0 % (w/v) NaCl (optimum, 4.0 %). The predominant fatty acid was C18 : 1ω7c (80.3 %). Ubiquinone 10 (Q-10) was the sole respiratory quinone. The polar lipids were phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, an unknown aminolipid, an unknown phospholipid and three unknown lipids. The DNA G+C content was 60.4 mol%. Strain CZ-AM5(T) showed the highest 16S rRNA gene sequence similarity (96.5 %) to Phaeobacter caeruleus LMG 24369(T); it exhibited 16S rRNA gene sequence similarity of 95.0-96.5, 95.2-96.3, 96.2, 94.6-95.7 and 94.8-95.8 % to members of the genera Phaeobacter, Ruegeria, Citreimonas, Leisingera and Donghicola, respectively. However, phylogenetic trees based on 16S rRNA gene sequences showed that strain CZ-AM5(T) did not join any of the above genera, but formed a distinct lineage in the trees. On the basis of phenotypic, chemotaxonomic and phylogenetic analyses, strain CZ-AM5(T) is considered to represent a novel genus and species of the family Rhodobacteraceae, for which the name Cribrihabitans marinus gen. nov., sp. nov. is proposed. The type strain of Cribrihabitans marinus is CZ-AM5(T) ( = CGMCC 1.13219(T) = JCM 19401(T)).

  14. Biological Assessment of Aquaculture Effects on Effluent-Receiving Streams in Ghana Using Structural and Functional Composition of Fish and Macroinvertebrate Assemblages

    NASA Astrophysics Data System (ADS)

    Ansah, Yaw Boamah; Frimpong, Emmanuel A.; Amisah, Stephen

    2012-07-01

    Biological assessment of aquatic ecosystems is widely employed as an alternative or complement to chemical and toxicity testing due to numerous advantages of using biota to determine ecosystem condition. These advantages, especially to developing countries, include the relatively low cost and technical requirements. This study was conducted to determine the biological impacts of aquaculture operations on effluent-receiving streams in the Ashanti Region of Ghana. We collected water, fish and benthic macroinvertebrate samples from 12 aquaculture effluent-receiving streams upstream and downstream of fish farms and 12 reference streams between May and August of 2009, and then calculated structural and functional metrics for biotic assemblages. Fish species with non-guarding mode of reproduction were more abundant in reference streams than downstream ( P = 0.0214) and upstream ( P = 0.0251), and sand-detritus spawning fish were less predominant in reference stream than upstream ( P = 0.0222) and marginally less in downstream locations ( P = 0.0539). A possible subsidy-stress response of macroinvertebrate family richness and abundance was also observed, with nutrient (nitrogen) augmentation from aquaculture and other farming activities likely. Generally, there were no, or only marginal differences among locations downstream and upstream of fish farms and in reference streams in terms of several other biotic metrics considered. Therefore, the scale of impact in the future will depend not only on the management of nutrient augmentation from pond effluents, but also on the consideration of nutrient discharges from other industries like fruit and vegetable farming within the study area.

  15. Biological assessment of aquaculture effects on effluent-receiving streams in Ghana using structural and functional composition of fish and macroinvertebrate assemblages.

    PubMed

    Ansah, Yaw Boamah; Frimpong, Emmanuel A; Amisah, Stephen

    2012-07-01

    Biological assessment of aquatic ecosystems is widely employed as an alternative or complement to chemical and toxicity testing due to numerous advantages of using biota to determine ecosystem condition. These advantages, especially to developing countries, include the relatively low cost and technical requirements. This study was conducted to determine the biological impacts of aquaculture operations on effluent-receiving streams in the Ashanti Region of Ghana. We collected water, fish and benthic macroinvertebrate samples from 12 aquaculture effluent-receiving streams upstream and downstream of fish farms and 12 reference streams between May and August of 2009, and then calculated structural and functional metrics for biotic assemblages. Fish species with non-guarding mode of reproduction were more abundant in reference streams than downstream (P = 0.0214) and upstream (P = 0.0251), and sand-detritus spawning fish were less predominant in reference stream than upstream (P = 0.0222) and marginally less in downstream locations (P = 0.0539). A possible subsidy-stress response of macroinvertebrate family richness and abundance was also observed, with nutrient (nitrogen) augmentation from aquaculture and other farming activities likely. Generally, there were no, or only marginal differences among locations downstream and upstream of fish farms and in reference streams in terms of several other biotic metrics considered. Therefore, the scale of impact in the future will depend not only on the management of nutrient augmentation from pond effluents, but also on the consideration of nutrient discharges from other industries like fruit and vegetable farming within the study area.

  16. Removal of nutrients in denitrification system using coconut coir fibre for the biological treatment of aquaculture wastewater.

    PubMed

    Manoj, Valsa Remony; Vasudevan, Namasivayam

    2012-03-01

    Ideal bacterial support medium for fixed film denitrification processes/bioreactors must be inexpensive, durable and possess large surface area with sufficient porosity. The present study has been focussed on removing nitrate nitrogen at two different nitrate nitrogen loading rates (60 (NLR I) and 120 (NLR II) mg l(-1)) from simulated aquaculture wastewater. Coconut coir fibre and a commercially available synthetic reticulated plastic media (Fujino Spirals) were used as packing medium in two independent upflow anaerobic packed bed column reactors. Removal of nitrate nitrogen was studied in correlation with other nutrients (COD, TKN, dissolved orthophosphate). Maximum removal of 97% at NLR-I and 99% at NLR - II of nitrate nitrogen was observed in with either media. Greater consistency in the case of COD removal of upto 81% was observed at NLR II where coconut coir was used as support medium compared to 72% COD removal by Fujino Spirals. The results observed indicate that the organic support medium is just as efficient in nitrate nitrogen removal as conventionally used synthetic support medium. The study is important as it specifically focuses on denitrification of aquaculture wastewater using cheaper organic support medium in anoxic bioreactors for the removal of nitrate nitrogen; which is seldom addressed as a significant problem.

  17. Optogenetic characterization methods overcome key challenges in synthetic and systems biology.

    PubMed

    Olson, Evan J; Tabor, Jeffrey J

    2014-07-01

    Systems biologists aim to understand how organism-level processes, such as differentiation and multicellular development, are encoded in DNA. Conversely, synthetic biologists aim to program systems-level biological processes, such as engineered tissue growth, by writing artificial DNA sequences. To achieve their goals, these groups have adapted a hierarchical electrical engineering framework that can be applied in the forward direction to design complex biological systems or in the reverse direction to analyze evolved networks. Despite much progress, this framework has been limited by an inability to directly and dynamically characterize biological components in the varied contexts of living cells. Recently, two optogenetic methods for programming custom gene expression and protein localization signals have been developed and used to reveal fundamentally new information about biological components that respond to those signals. This basic dynamic characterization approach will be a major enabling technology in synthetic and systems biology.

  18. Aquaculture information package

    SciTech Connect

    Boyd, T.; Rafferty, K.

    1998-08-01

    This package of information is intended to provide background information to developers of geothermal aquaculture projects. The material is divided into eight sections and includes information on market and price information for typical species, aquaculture water quality issues, typical species culture information, pond heat loss calculations, an aquaculture glossary, regional and university aquaculture offices and state aquaculture permit requirements. A bibliography containing 68 references is also included.

  19. Holographic Aquaculture

    NASA Astrophysics Data System (ADS)

    Ian, Richard; King, Elisabeth

    1988-01-01

    Proposed is an exploratory study to verify the feasibility of an inexpensive micro-climate control system for both marine and freshwater pond and tank aquaculture, offering good control over water temperature, incident light flux, and bandwidth, combined with good energy efficiency. The proposed control system utilizes some familiar components of passive solar design, together with a new holographic glazing system which is currently being developed by, and proprietary to Advanced Environmental Research Group (AERG). The use of solar algae ponds and tanks to warm and purify water for fish and attached macroscopic marine algae culture is an ancient and effective technique, but limited seasonally and geographically by the availability of sunlight. Holographic Diffracting Structures (HDSs) can be made which passively track, accept and/or reject sunlight from a wide range of altitude and azimuth angles, and redirect and distribute light energy as desired (either directly or indirectly over water surface in an enclosed, insulated structure), effectively increasing insolation values by accepting sunlight which would not otherwise enter the structure.

  20. Overcoming the Newtonian paradigm: the unfinished project of theoretical biology from a Schellingian perspective.

    PubMed

    Gare, Arran

    2013-09-01

    Defending Robert Rosen's claim that in every confrontation between physics and biology it is physics that has always had to give ground, it is shown that many of the most important advances in mathematics and physics over the last two centuries have followed from Schelling's demand for a new physics that could make the emergence of life intelligible. Consequently, while reductionism prevails in biology, many biophysicists are resolutely anti-reductionist. This history is used to identify and defend a fragmented but progressive tradition of anti-reductionist biomathematics. It is shown that the mathematico-physico-chemical morphology research program, the biosemiotics movement, and the relational biology of Rosen, although they have developed independently of each other, are built on and advance this anti-reductionist tradition of thought. It is suggested that understanding this history and its relationship to the broader history of post-Newtonian science could provide guidance for and justify both the integration of these strands and radically new work in post-reductionist biomathematics.

  1. Biological denitrification using poly(butylene succinate) as carbon source and biofilm carrier for recirculating aquaculture system effluent treatment.

    PubMed

    Zhu, Song-Ming; Deng, Ya-Le; Ruan, Yun-Jie; Guo, Xi-Shan; Shi, Ming-Ming; Shen, Jia-Zheng

    2015-09-01

    Nitrate removal is essential for the sustainable operation of recirculating aquaculture system (RAS). This study evaluated the heterotrophic denitrification using poly(butylene succinate) as carbon source and biofilm carrier for RAS wastewater treatment. The effect of varied operational conditions (influent type, salinity and nitrate loading) on reactor performance and microbial community was investigated. The high denitrification rates of 0.53 ± 0.19 kg NO3(-)-N m(-3) d(-1) (salinity, 0‰) and 0.66 ± 0.12 kg NO3(-)-Nm(-3) d(-1) (salinity, 25‰) were achieved, and nitrite concentration was maintained below 1mg/L. In addition, the existence of salinity exhibited more stable nitrate removal efficiency, but caused adverse effects such as excessive effluent dissolved organic carbon (DOC) and dissimilation nitrate reduce to ammonia (DNRA) activity. The degradation of PBS was further confirmed by SEM and FTIR analysis. Illumina sequencing revealed the abundance and species changes of functional denitrification and degradation microflora which might be the primary cause of varied reactor performance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Overcoming biological constraints to enable the exploitation of microalgae for biofuels.

    PubMed

    Day, John G; Slocombe, Stephen P; Stanley, Michele S

    2012-04-01

    Microalgae have significant potential to form the basis of the next biofuel revolution. They have high growth and solar energy conversion rates. Furthermore, their osmotolerance, metabolic diversity and capacity to produce large amounts of lipids have attracted considerable interest. Although there are a handful of commercially successful examples of the photoautotrophic mass-culture of algae, these have focused on the production of higher value products (pigments, health-foods etc.). The technical and commercial challenges to develop an economically viable process for biofuels are considerable and it will require much further R&D. In this paper the biological constraints, with a particular focus on strain selection are discussed.

  3. Systems biology of stem cells: three useful perspectives to help overcome the paradigm of linear pathways

    PubMed Central

    Huang, Sui

    2011-01-01

    Stem cell behaviours, such as stabilization of the undecided state of pluripotency or multipotency, the priming towards a prospective fate, binary fate decisions and irreversible commitment, must all somehow emerge from a genome-wide gene-regulatory network. Its unfathomable complexity defies the standard mode of explanation that is deeply rooted in molecular biology thinking: the reduction of observables to linear deterministic molecular pathways that are tacitly taken as chains of causation. Such culture of proximate explanation that uses qualitative arguments, simple arrow–arrow schemes or metaphors persists despite the ceaseless accumulation of ‘omics’ data and the rise of systems biology that now offers precise conceptual tools to explain emergent cell behaviours from gene networks. To facilitate the embrace of the principles of physics and mathematics that underlie such systems and help to bridge the gap between the formal description of theorists and the intuition of experimental biologists, we discuss in qualitative terms three perspectives outside the realm of their familiar linear-deterministic view: (i) state space (ii), high-dimensionality and (iii) heterogeneity. These concepts jointly offer a new vista on stem cell regulation that naturally explains many novel, counterintuitive observations and their inherent inevitability, obviating the need for ad hoc explanations of their existence based on natural selection. Hopefully, this expanded view will stimulate novel experimental designs. PMID:21727130

  4. Evaluation of a membrane biological reactor for reclaiming water, alkalinity, salts, phosphorus, and protein contained in a high-strength aquacultural wastewater.

    PubMed

    Sharrer, Mark J; Rishel, Kata; Summerfelt, Steven T

    2010-06-01

    The capacity of a membrane biological reactor to provide nitrification, denitrification, and enhanced biological phosphorus removal of a high-strength aquaculture backwash flow (control condition), or the same flow amended with 100mg/L of NO(3)-N and 3mg/L of dissolved P (test condition), was assessed using only endogenous carbon. Permeate TSS and cBOD(5) concentrations were <1mg/L under control and test conditions, achieving 99.97-100% removal efficiencies, respectively. Permeate TN concentrations were 1.8+/-0.5mg/L and 2.1+/-1.4 mg/L, while permeate TP concentrations were 0.05+/-0.01 mg/L and 0.10+/-0.03 mg/L, respectively, under control and test conditions. Our findings suggest that permeate flow could be reclaimed to recycle alkalinity, salts, and heat for fish culture and that the waste activated sludge does not produce metals concentrations that would prevent its land application (reclaiming phosphorus) or prevent its use as a protein source in animal feeds.

  5. Using Synthetic Biology to Distinguish and Overcome Regulatory and Functional Barriers Related to Nitrogen Fixation

    PubMed Central

    Wang, Xia; Yang, Jian-Guo; Chen, Li; Wang, Ji-Long; Cheng, Qi; Dixon, Ray; Wang, Yi-Ping

    2013-01-01

    Biological nitrogen fixation is a complex process requiring multiple genes working in concert. To date, the Klebsiella pneumoniae nif gene cluster, divided into seven operons, is one of the most studied systems. Its nitrogen fixation capacity is subject to complex cascade regulation and physiological limitations. In this report, the entire K. pneumoniae nif gene cluster was reassembled as operon-based BioBrick parts in Escherichia coli. It provided ∼100% activity of native K. pneumoniae system. Based on the expression levels of these BioBrick parts, a T7 RNA polymerase–LacI expression system was used to replace the σ54-dependent promoters located upstream of nif operons. Expression patterns of nif operons were critical for the maximum activity of the recombinant system. By mimicking these expression levels with variable-strength T7-dependent promoters, ∼42% of the nitrogenase activity of the σ54-dependent nif system was achieved in E. coli. When the newly constructed T7-dependent nif system was challenged with different genetic and physiological conditions, it bypassed the original complex regulatory circuits, with minor physiological limitations. Therefore, we have successfully replaced the nif regulatory elements with a simple expression system that may provide the first step for further research of introducing nif genes into eukaryotic organelles, which has considerable potentials in agro-biotechnology. PMID:23935879

  6. Biodegradation of persistent organics can overcome adsorption-desorption hysteresis in biological activated carbon systems.

    PubMed

    Abromaitis, V; Racys, V; van der Marel, P; Meulepas, R J W

    2016-04-01

    In Biological Activated Carbon (BAC) systems, persistent organic pollutants can be removed through a combination of adsorption, desorption and biodegradation. These processes might be affected by the presence of other organics, especially by the more abundant easily-biodegradable organics, like acetate. In this research these relations are quantified for the removal of the persistent pharmaceutical metoprolol. Acetate did not affect the adsorption and desorption of metoprolol, but it did greatly enhance the metoprolol biodegradation. At least part of the BAC biomass growing on acetate was also able to metabolise metoprolol, although metoprolol was only converted after the acetate was depleted. The presence of easily-degradable organics like acetate in the feeding water is therefore beneficial for the removal of metoprolol in BAC systems. The isotherms obtained from metoprolol adsorption and desorption experiments showed that BAC systems are subject to hysteresis; for AC bioregeneration to take place the microbial biomass has to reduce the concentration at the AC-biomass interface 2.7 times compared to the concentration at which the carbon was being loaded. However, given the threshold concentration of the MET degrading microorganisms (<0.08 μg/L) versus the average influent concentration (1.3 μg/L), bioregeneration is feasible.

  7. Molecular Research in Aquaculture

    USDA-ARS?s Scientific Manuscript database

    Molecular research and biotechnology have long been fields of study with applications useful to aquaculture and other animal sciences. Molecular Research in Aquaculture looks to provide an understanding of molecular research and its applications to the aquaculture industry in a format that allows in...

  8. All about Aquaculture.

    ERIC Educational Resources Information Center

    Brody, Michael J.; Patterson, B. Patricia

    1992-01-01

    Describes a sequence of activities in which students set up a classroom aquarium to learn about aquaculture. Discusses the aquarium system, filtration and maintenance, adding organisms to the system, technological considerations, aquaculture economics, and political and social aspects of aquaculture. (MDH)

  9. All about Aquaculture.

    ERIC Educational Resources Information Center

    Brody, Michael J.; Patterson, B. Patricia

    1992-01-01

    Describes a sequence of activities in which students set up a classroom aquarium to learn about aquaculture. Discusses the aquarium system, filtration and maintenance, adding organisms to the system, technological considerations, aquaculture economics, and political and social aspects of aquaculture. (MDH)

  10. Disease in marine aquaculture

    NASA Astrophysics Data System (ADS)

    Sindermann, C. J.

    1984-03-01

    populations. Some progress has been made in marine disease control through chemical treatment in intensive culture systems, principally through application and modification of methods developed for freshwater aquaculture. Major constraints to use of chemicals are restrictions due to public health concerns about food contamination, and the negative effects of some chemicals on biological filters and on algal food production. There is a continuing need, however, for development of specific treatments for acute disease episodes — such as the nitrofurans, developed in Japan, which are effective for some bacterial diseases. The history of aquaculture — freshwater as well as marine — has been characterized by transfers and introductions of species to waters beyond their present ranges. The process continues, and carries with it the possibility of transfers of pathogens to native species and to the recipient culture environments. International groups are attempting to define codes of practice to govern such mass movements, but examples of introductions of real or potential pathogens already exist. The most recent and the most dramatic is the world wide transfer of a virus pathogen of penaeid shrimps. Earlier examples include the introduction of a protozoan pathogen of salmonids to the western hemisphere, and the introduction of a parasitic copepod from the Far East to the west coast of North America and to France. The conclusion is inevitable — diseases are substantial deterrents to aquaculture production. Diagnostic and control procedures are and will be important components of emerging aquaculture technology.

  11. Biogeosystem technique as a method to overcome the Biological and Environmental Hazards of modern Agricultural, Irrigational and Technological Activities

    NASA Astrophysics Data System (ADS)

    Kalinitchenko, Valery; Batukaev, Abdulmalik; Zinchenko, Vladimir; Zarmaev, Ali; Magomadov, Ali; Chernenko, Vladimir; Startsev, Viktor; Bakoev, Serojdin; Dikaev, Zaurbek

    2014-05-01

    Modern challenge for humanity is to replace the paradigm of nature use and overcome environmental hazards of agronomy, irrigation, industry, and other human activities in biosphere. It is utterly reasonable to stop dividing biosphere on shares - the human habitat and the environment. In the 21st century it is an outdated anthropocentrism. Contradicting himself to biosphere Humankind has the problems. The new paradigm of biosphere control by methods of Biogeosystem technique is on agenda of Humankind. Key directions of Biogeosystem technique. Tillage. Single rotary milling 20…30-50…60 sm soil layer optimizes the evolution and environment of soil, creates a favorable conditions for the rhizosphere, increases the biological productivity of biosphere by 30-50% compared to the standard agricultural practices for the period up to 40 years. Recycle material. Recycling of mineral and organic substances in soil layer of 20…30-50…60 sm in rotary milling soil processing provides wastes clean return to biosphere. Direct intrasoil substances synthesis. Environmentally friendly robot wasteless nanotechnology provides direct substances synthesis, including fertilizers, inside the soil. It eliminates the prerequisites of the wastes formation under standard industrial technologies. Selective substance's extraction from soil. Electrochemical robotic nanotechnology provides selective substances extraction from soil. The technology provides recovery, collection and subsequent safe industrial use of extracted substances out of landscape. Saving fresh water. An important task is to save fresh water in biosphere. Irrigation spends water 4-5 times more of biological requirements of plants, leads to degradation of soil and landscape. The intrasoil pulse continuous-discrete paradigm of irrigation is proposed. It provides the soil and landscape conservation, increases the biological productivity, save the fresh water up to 10-20 times. The subsurface soil rotary processing and

  12. Geothermal aquaculture in Nevada

    SciTech Connect

    Birk, S.

    1987-06-01

    Work in geothermal aquaculture and vertically integrated agriculture is undertaken by Washoe Aquaculture Limited, Gourmet Prawnz Inc., General Managing Partners. This approach to agriculture is researched at the integrated Prototype Aquaculture Facility (IPAF) at Hobo Hot Springs, Nevada. The principal objective at the IPAF is to use geothermal aquifers to commercially raise food, plants, and ornamental fish. At the IPAF, the feasibility of geothermal aquaculture has been demonstrated. The company has implemented many demonstration projects, including the cultivation of freshwater prawns, native baitfish, exotic tropical species, and commercially important aquatic plants.

  13. Aquaculture: Challenges and promise

    USDA-ARS?s Scientific Manuscript database

    Aquaculture is the culture of aquatic organisms, which includes fish, mollusks, crustaceans, algae and plants. People have been involved in different forms of aquaculture for thousands of years, with early documented evidence dating back as far as 500 BC in China (Ling 1977). Today, the practice of ...

  14. Chemicals for worldwide aquaculture

    USGS Publications Warehouse

    Schnick, R.A.

    1991-01-01

    Regulations and therapeutants or other safe chemicals that are approved or acceptable for use in the aquaculture industry in the US, Canada, Europe and Japan are presented, discussing also compounds that are unacceptable for aquaculture. Chemical use practices that could affect public health are considered and details given regarding efforts to increase the number of registered and acceptable chemicals.

  15. Effects of nanoparticles in species of aquaculture interest.

    PubMed

    Khosravi-Katuli, Kheyrollah; Prato, Ermelinda; Lofrano, Giusy; Guida, Marco; Vale, Gonçalo; Libralato, Giovanni

    2017-07-01

    Recently, it was observed that there is an increasing application of nanoparticles (NPs) in aquaculture. Manufacturers are trying to use nano-based tools to remove the barriers about waterborne food, growth, reproduction, and culturing of species, their health, and water treatment in order to increase aquaculture production rates, being the safe-by-design approach still unapplied. We reviewed the applications of NPs in aquaculture evidencing that the way NPs are applied can be very different: some are direclty added to feed, other to water media or in aquaculture facilities. Traditional toxicity data cannot be easily used to infer on aquaculture mainly considering short-term exposure scenarios, underestimating the potential exposure of aquacultured species. The main outputs are (i) biological models are not recurrent, and in the case, testing protocols are frequently different; (ii) most data derived from toxicity studies are not specifically designed on aquaculture needs, thus contact time, exposure concentrations, and other ancillary conditions do not meet the required standard for aquaculture; (iii) short-term exposure periods are investigated mainly on species of indirect aquaculture interest, while shrimp and fish as final consumers in aquaculture plants are underinvestigated (scarce or unknown data on trophic chain transfer of NPs): little information is available about the amount of NPs accumulated within marketed organisms; (iv) how NPs present in the packaging of aquacultured products can affect their quality remained substantially unexplored. NPs in aquaculture are a challenging topic that must be developed in the near future to assure human health and environmental safety. Graphical abstract ᅟ.

  16. Mucosal Health in Aquaculture

    USDA-ARS?s Scientific Manuscript database

    Abstract The mucosal surfaces (skin, gill, and intestine) constitute the first line of defense against pathogen invasion while simultaneously carrying out a diverse array of other critical physiological processes, including nutrient absorption, osmoregulation, and waste excretion. Aquaculture specie...

  17. Sustainable aquaculture systems

    SciTech Connect

    Brune, D.E.

    1994-08-01

    The goal of this paper is to examine and assess the technical feasibility of the integration of plant and/or animal aquaculture systems into a sustainable agriculture. Although most researchers tend to avoid a precise definition of sustainable aquaculture, the implication that one gets from `reading between the lines` is that a sustainable agro-ecosystem is one which recycles materials at maximum energy efficiency. The `unspoken` standard against which comparisons of sustainability are often made is that of a mature natural ecosystem at a steady state. Cost comparisons of alternative systems will be used whenever possible, however, in many cases, conventional cost/benefit analysis will be of limited value in such an analysis. For aquaculture, such an analysis can best be conducted by analyzing the possibilities of integrating nutrients, water, and energy flow from aquaculture systems both to and from, conventional agricultural systems. The various aquaculture options are then qualitatively compared as their potential, limitations, environmental soundness, productivity, socio-economic viability and the availability of supporting technology. It is important to realize that the usefulness or applicability of any sustainable or integrated aquaculture practice is highly site specific.

  18. Occupational Health and Safety in Aquaculture: Insights on Brazilian Public Policies.

    PubMed

    de Oliveira, Pedro Keller; Cavalli, Richard Souto; Kunert Filho, Hiran Castagnino; Carvalho, Daiane; Benedetti, Nadine; Rotta, Marco Aurélio; Peixoto Ramos, Augusto Sávio; de Brito, Kelly Cristina Tagliari; de Brito, Benito Guimarães; da Rocha, Andréa Ferretto; Stech, Marcia Regina; Cavalli, Lissandra Souto

    2017-01-01

    Aquaculture has many occupational hazards, including those that are physical, chemical, biological, ergonomic, and mechanical. The risks in aquaculture are inherent, as this activity requires particular practices. The objective of the present study was to show the risks associated with the aquaculture sector and present a critical overview on the Brazilian public policies concerning aquaculture occupational health. Methods include online research involved web searches and electronic databases including Pubmed, Google Scholar, Scielo and government databases. We conducted a careful revision of Brazilian labor laws related to occupational health and safety, rural workers, and aquaculture. The results and conclusion support the idea that aquaculture requires specific and well-established industry programs and policies, especially in developing countries. Aquaculture still lacks scientific research, strategies, laws, and public policies to boost the sector with regard to occupational health and safety. The establishment of a safe workplace in aquaculture in developing countries remains a challenge for all involved in employer-employee relationships.

  19. Streptomyces Bacteria as Potential Probiotics in Aquaculture.

    PubMed

    Tan, Loh Teng-Hern; Chan, Kok-Gan; Lee, Learn-Han; Goh, Bey-Hing

    2016-01-01

    In response to the increased seafood demand from the ever-going human population, aquaculture has become the fastest growing animal food-producing sector. However, the indiscriminate use of antibiotics as a biological control agents for fish pathogens has led to the emergence of antibiotic resistance bacteria. Probiotics are defined as living microbial supplement that exert beneficial effects on hosts as well as improvement of environmental parameters. Probiotics have been proven to be effective in improving the growth, survival and health status of the aquatic livestock. This review aims to highlight the genus Streptomyces can be a good candidate for probiotics in aquaculture. Studies showed that the feed supplemented with Streptomyces could protect fish and shrimp from pathogens as well as increase the growth of the aquatic organisms. Furthermore, the limitations of Streptomyces as probiotics in aquaculture is also highlighted and solutions are discussed to these limitations.

  20. Streptomyces Bacteria as Potential Probiotics in Aquaculture

    PubMed Central

    Tan, Loh Teng-Hern; Chan, Kok-Gan; Lee, Learn-Han; Goh, Bey-Hing

    2016-01-01

    In response to the increased seafood demand from the ever-going human population, aquaculture has become the fastest growing animal food-producing sector. However, the indiscriminate use of antibiotics as a biological control agents for fish pathogens has led to the emergence of antibiotic resistance bacteria. Probiotics are defined as living microbial supplement that exert beneficial effects on hosts as well as improvement of environmental parameters. Probiotics have been proven to be effective in improving the growth, survival and health status of the aquatic livestock. This review aims to highlight the genus Streptomyces can be a good candidate for probiotics in aquaculture. Studies showed that the feed supplemented with Streptomyces could protect fish and shrimp from pathogens as well as increase the growth of the aquatic organisms. Furthermore, the limitations of Streptomyces as probiotics in aquaculture is also highlighted and solutions are discussed to these limitations. PMID:26903962

  1. PROTEOMICS in aquaculture: applications and trends.

    PubMed

    Rodrigues, Pedro M; Silva, Tomé S; Dias, Jorge; Jessen, Flemming

    2012-07-19

    Over the last forty years global aquaculture presented a growth rate of 6.9% per annum with an amazing production of 52.5 million tonnes in 2008, and a contribution of 43% of aquatic animal food for human consumption. In order to meet the world's health requirements of fish protein, a continuous growth in production is still expected for decades to come. Aquaculture is, though, a very competitive market, and a global awareness regarding the use of scientific knowledge and emerging technologies to obtain a better farmed organism through a sustainable production has enhanced the importance of proteomics in seafood biology research. Proteomics, as a powerful comparative tool, has therefore been increasingly used over the last decade to address different questions in aquaculture, regarding welfare, nutrition, health, quality, and safety. In this paper we will give an overview of these biological questions and the role of proteomics in their investigation, outlining the advantages, disadvantages and future challenges. A brief description of the proteomics technical approaches will be presented. Special focus will be on the latest trends related to the aquaculture production of fish with defined nutritional, health or quality properties for functional foods and the integration of proteomics techniques in addressing this challenging issue.

  2. Safety in Aquaculture

    ERIC Educational Resources Information Center

    Durborow, Robert M.; Myers, Melvin L.

    2016-01-01

    In this article, occupational safety interventions for agriculture-related jobs, specifically in aquaculture, are reviewed. Maintaining quality of life and avoiding economic loss are two areas in which aquaculturists can benefit by incorporating safety protocols and interventions on their farms. The information in this article is based on farm…

  3. Aquaculture. Teacher Edition.

    ERIC Educational Resources Information Center

    Walker, Susan S.

    This color-coded guide was developed to assist teachers in helping interested students plan, build, stock, and run aquaculture facilities of varied sizes. The guide contains 15 instructional units, each of which includes some or all of the following basic components: objective sheet, suggested activities for the teacher, instructor supplements,…

  4. Confinement Aquaculture. Final Report.

    ERIC Educational Resources Information Center

    Delaplaine School District, AR.

    The Delaplaine Agriculture Department Confinement Project, begun in June 1988, conducted a confinement aquaculture program by comparing the growth of channel catfish raised in cages in a pond to channel catfish raised in cages in the Black River, Arkansas. The study developed technology that would decrease costs in the domestication of fish, using…

  5. Partitioned aquaculture systems

    USDA-ARS?s Scientific Manuscript database

    Conventional aquaculture ponds provide a number of ecological services supporting fish and shellfish production. The pond provides confinement space for the aquatic organisms, while algal growth in the pond serves as the base of an aquatic food chain providing some or all of the feed, depending on p...

  6. Aquacultural Occupational Task Analysis.

    ERIC Educational Resources Information Center

    Dung, Elaine; Wakui, Lawrence S.

    A study was conducted by the Office of the Chancellor for Community Colleges in Hawaii to assess the vocational skills required of workers in the aquaculture industry and to determine if these skills should be reflected in the community college curriculum. In addition to a review of relevant literature, the study involved field observations at 17…

  7. Safety in Aquaculture

    ERIC Educational Resources Information Center

    Durborow, Robert M.; Myers, Melvin L.

    2016-01-01

    In this article, occupational safety interventions for agriculture-related jobs, specifically in aquaculture, are reviewed. Maintaining quality of life and avoiding economic loss are two areas in which aquaculturists can benefit by incorporating safety protocols and interventions on their farms. The information in this article is based on farm…

  8. Partitioned pond aquaculture systems

    USDA-ARS?s Scientific Manuscript database

    World aquaculture is dominated by the use of simple earthen ponds in which suitable water quality is maintained by photosynthetic processes. Relying upon sunlight to maintain water quality offers the lowest cost and most sustainable approach to fish or shellfish production, which explains the popula...

  9. Aquacultural Occupational Task Analysis.

    ERIC Educational Resources Information Center

    Dung, Elaine; Wakui, Lawrence S.

    A study was conducted by the Office of the Chancellor for Community Colleges in Hawaii to assess the vocational skills required of workers in the aquaculture industry and to determine if these skills should be reflected in the community college curriculum. In addition to a review of relevant literature, the study involved field observations at 17…

  10. The future of aquaculture

    USDA-ARS?s Scientific Manuscript database

    Fish is now the largest source of animal protein in the world, with aquaculture contributing more than half the world’s seafood supply. The world needs to produce significantly more fish in the future to meet the demands of a growing and increasingly affluent global population. Capture fisheries ar...

  11. Confinement Aquaculture. Final Report.

    ERIC Educational Resources Information Center

    Delaplaine School District, AR.

    The Delaplaine Agriculture Department Confinement Project, begun in June 1988, conducted a confinement aquaculture program by comparing the growth of channel catfish raised in cages in a pond to channel catfish raised in cages in the Black River, Arkansas. The study developed technology that would decrease costs in the domestication of fish, using…

  12. Understanding the recurrent large-scale green tide in the Yellow Sea: temporal and spatial correlations between multiple geographical, aquacultural and biological factors.

    PubMed

    Liu, Feng; Pang, Shaojun; Chopin, Thierry; Gao, Suqin; Shan, Tifeng; Zhao, Xiaobo; Li, Jing

    2013-02-01

    The coast of Jiangsu Province in China - where Ulva prolifera has always been firstly spotted before developing into green tides - is uniquely characterized by a huge intertidal radial mudflat. Results showed that: (1) propagules of U. prolifera have been consistently present in seawater and sediments of this mudflat and varied with locations and seasons; (2) over 50,000 tons of fermented chicken manure have been applied annually from March to May in coastal animal aquaculture ponds and thereafter the waste water has been discharged into the radial mudflat intensifying eutrophication; and (3) free-floating U. prolifera could be stranded in any floating infrastructures in coastal waters including large scale Porphyra farming rafts. For a truly integrated management of the coastal zone, reduction in nutrient inputs, and control of the effluents of the coastal pond systems, are needed to control eutrophication and prevent green tides in the future. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. The first success of glass eel production in the world: basic biology on fish reproduction advances new applied technology in aquaculture.

    PubMed

    Kagawa, Hirohiko; Tanaka, Hideki; Ohta, Hiromi; Unuma, Tatsuya; Nomura, Kazuharu

    2005-04-01

    The eel has long been esteemed as an important food fish in the world, especially in Japan, and has been used as an experimental fish for many fields of fish physiology. However, the decreases in eel resources have been a serious concern in recent years. The catches of glass eels as seedlings for aquaculture have shown a long-term decrease in both Europe and East Asia. To increase eel resources, the development of techniques for artificial induction of maturation and spawning and rearing their larvae have been eagerly desired. Recent progress of reproductive physiology of fish, especially mechanisms of oocyte maturation and ovulation in female and of spermatozoa maturation in male, facilitate to establish techniques for hormonal induction of maturation and spawning in sexually immature eels. With persistent effort to development of rearing techniques of larvae, we have first succeeded to produce glass eel. These applied techniques are may contribute to understand the basic reproductive physiology of the eel.

  14. A simple method for overcoming some problems when observing thick reflective biological samples with a confocal scanning laser microscope.

    PubMed

    Rumio, C; Morini, M; Miani, A; Barajon, I; Castano, P

    1995-01-01

    A simple device is described, which allows the range of depth of scanning to be reduced when observing thick reflecting biological samples with a confocal scanning laser microscope (CSLM). Thick histological sections of human skin and rat brain stem were mounted between two coverslips ('sandwich' style) and the optical tomography was performed from both sides by turning the 'sandwich' upside-down. The samples were impregnated using standard Golgi-Cox, 'rapid Golgi' or other silver methods. The ability to turn the 'sandwich' upside-down is particularly useful when the reflective structure inspected is deep inside the section, i.e., near the lower surface of the specimen, or when it is opaque to the laser beam or excessively reflective.

  15. Marketing netcoatings for aquaculture.

    PubMed

    Martin, Robert J

    2014-10-17

    Unsustainable harvesting of natural fish stocks is driving an ever growing marine aquaculture industry. Part of the aquaculture support industry is net suppliers who provide producers with nets used in confining fish while they are grown to market size. Biofouling must be addressed in marine environments to ensure maximum product growth by maintaining water flow and waste removal through the nets. Biofouling is managed with copper and organic biocide based net coatings. The aquaculture industry provides a case study for business issues related to entry of improved fouling management technology into the marketplace. Several major hurdles hinder entry of improved novel technologies into the market. The first hurdle is due to the structure of business relationships. Net suppliers can actually cut their business profits dramatically by introducing improved technologies. A second major hurdle is financial costs of registration and demonstration of efficacy and quality product with a new technology. Costs of registration are prohibitive if only the net coatings market is involved. Demonstration of quality product requires collaboration and a team approach between formulators, net suppliers and farmers. An alternative solution is a vertically integrated business model in which the support business and product production business are part of the same company.

  16. Marketing Netcoatings for Aquaculture

    PubMed Central

    Martin, Robert J.

    2014-01-01

    Unsustainable harvesting of natural fish stocks is driving an ever growing marine aquaculture industry. Part of the aquaculture support industry is net suppliers who provide producers with nets used in confining fish while they are grown to market size. Biofouling must be addressed in marine environments to ensure maximum product growth by maintaining water flow and waste removal through the nets. Biofouling is managed with copper and organic biocide based net coatings. The aquaculture industry provides a case study for business issues related to entry of improved fouling management technology into the marketplace. Several major hurdles hinder entry of improved novel technologies into the market. The first hurdle is due to the structure of business relationships. Net suppliers can actually cut their business profits dramatically by introducing improved technologies. A second major hurdle is financial costs of registration and demonstration of efficacy and quality product with a new technology. Costs of registration are prohibitive if only the net coatings market is involved. Demonstration of quality product requires collaboration and a team approach between formulators, net suppliers and farmers. An alternative solution is a vertically integrated business model in which the support business and product production business are part of the same company. PMID:25329615

  17. Time to get a move on: overcoming bradykinetic movement in Parkinson's disease with artificial sensory guidance generated from biological motion.

    PubMed

    Bieńkiewicz, Marta M N; Rodger, Matthew W M; Young, William R; Craig, Cathy M

    2013-09-15

    Paradoxical kinesia describes the motor improvement in Parkinson's disease (PD) triggered by the presence of external sensory information relevant for the movement. This phenomenon has been puzzling scientists for over 60 years, both in neurological and motor control research, with the underpinning mechanism still being the subject of fierce debate. In this paper we present novel evidence supporting the idea that the key to understanding paradoxical kinesia lies in both spatial and temporal information conveyed by the cues and the coupling between perception and action. We tested a group of 7 idiopathic PD patients in an upper limb mediolateral movement task. Movements were performed with and without a visual point light display, travelling at 3 different speeds. The dynamic information presented in the visual point light display depicted three different movement speeds of the same amplitude performed by a healthy adult. The displays were tested and validated on a group of neurologically healthy participants before being tested on the PD group. Our data show that the temporal aspects of the movement (kinematics) in PD can be moderated by the prescribed temporal information presented in a dynamic environmental cue. Patients demonstrated a significant improvement in terms of movement time and peak velocity when executing movement in accordance with the information afforded by the point light display, compared to when the movement of the same amplitude and direction was performed without the display. In all patients we observed the effect of paradoxical kinesia, with a strong relationship between the perceptual information prescribed by the biological motion display and the observed motor performance of the patients.

  18. Contact zoonotic risks for aquaculture professionals in warm water aquaculture

    USDA-ARS?s Scientific Manuscript database

    Aquaculture production and consumption of aquacultural products increases. This growth enhances an increase in zoonotic infection from either handling or ingestion of these products. The principal pathogens acquired topically from fish or shellfish through spine/pincer puncture or open wounds are A...

  19. [Recent progress in treatment of aquaculture wastewater based on microalgae--a review].

    PubMed

    Meng, Fanping; Gong, Yanyan; Ma, Dongdong

    2009-06-01

    Microalgae enables aquaculture wastewater recycling through a biological conversion. Recently, many studies have been reported on microalgae cultivation and wastewater treatment, including developing various wastewater treatment technologies such as algae pond, activated algae, immobilized algae and algae photo-bioreactor. In this review, we address the mechanisms, progress and application in the purification of aquaculture wastewater, as well as some research perspectives.

  20. A new concept for implant-borne dental rehabilitation; how to overcome the biological weak-spot of conventional dental implants?

    PubMed

    Gellrich, Nils-Claudius; Rahlf, Björn; Zimmerer, Rüdiger; Pott, Philipp-Cornelius; Rana, Majeed

    2017-09-29

    Every endosseous dental implant is dependent on an adequate amount and quality of peri-implant hard and soft tissues and their fully functional interaction. The dental implant could fail in cases of insufficient bone and soft tissues or due to a violation of the soft to hard tissues to implant shoulder interface with arising of a secondary bone loss. To overcome this biological weak-spot, we designed a new implant that allows for multi vector endosseous anchorage around the individual underlying bone, which has to be scanned by computed tomography (CT) or Cone beam CT (CBCT) technique to allow for planning the implant. We developed a workflow to digitally engineer this customized implant made up of two planning steps. First, the implant posts are designed by prosthodontic-driven backward planning, and a wireframe-style framework is designed on the individual bony surface of the recipient site. Next, the two pieces are digitally fused and manufactured as a single piece implant using the SLM technique (selective laser melting) and titanium-alloy-powder. Preoperative FEM-stress-test of the individual implant is possible before it is inserted sterile in an out-patient procedure. Unlike any other historical or current dental implant protocol, our newly developed "individual patient solutions dental" follows the principle of a fully functional and rigid osteosynthesis technology and offers a quick solution for an implant-borne dental rehabilitation in difficult conditions of soft and hard tissues.

  1. Biological rational for sequential targeting of Bruton tyrosine kinase and Bcl-2 to overcome CD40-induced ABT-199 resistance in mantle cell lymphoma

    PubMed Central

    Chiron, David; Touzeau, Cyrille; Maïga, Sophie; Moreau, Philippe; Pellat-Deceunynck, Catherine; Le Gouill, Steven; Amiot, Martine

    2015-01-01

    The aggressive biological behavior of mantle cell lymphoma (MCL) and its short response to current treatment highlight a great need for better rational therapy. Herein, we investigate the ability of ABT-199, the Bcl-2-selective BH3 mimetic, to kill MCL cells. Among MCL cell lines tested (n = 8), only three were sensitive (LD50 < 200 nM). In contrast, all primary MCL samples tested (n = 11) were highly sensitive to ABT-199 (LD50 < 10 nM). Mcl-1 and Bcl-xL both confer resistance to ABT-199-specific killing and BCL2/(BCLXL + MCL1) mRNA ratio is a strong predictor of sensitivity. By mimicking the microenvironment through CD40 stimulation, we show that ABT-199 sensitivity is impaired through activation of NF-kB pathway and Bcl-xL up-regulation. We further demonstrate that resistance is rapidly lost when MCL cells detach from CD40L-expressing fibroblasts. It has been reported that ibrutinib induces lymphocytosis in vivo holding off malignant cells from their protective microenvironment. We show here for two patients undergoing ibrutinib therapy that mobilized MCL cells are highly sensitive to ABT-199. These results provide evidence that in situ ABT-199 resistance can be overcome when MCL cells escape from the lymph nodes. Altogether, our data support the clinical application of ABT-199 therapy both as a single agent and in sequential combination with BTK inhibitors. PMID:25797245

  2. Consumer preferences for sustainable aquaculture products: Evidence from in-depth interviews, think aloud protocols and choice experiments.

    PubMed

    Risius, Antje; Janssen, Meike; Hamm, Ulrich

    2017-02-20

    Fish from aquaculture is becoming more important for human consumption. Sustainable aquaculture procedures were developed as an alternative to overcome the negative environmental impacts of conventional aquaculture procedures and wild fisheries. The objective of this contribution is to determine what consumers expect from sustainable aquaculture and whether they prefer sustainable aquaculture products. A combination of qualitative research methods, with think aloud protocols and in-depth interviews, as well as quantitative methods, using choice experiments and face-to-face interviews, was applied. Data was collected in three different cities of Germany. Results revealed that sustainable aquaculture was associated with natural, traditional, local, and small scale production systems with high animal welfare standards. Overall, participants paid a lot of attention to the declaration of origin; in particular fish products from Germany and Denmark were preferred along with local products. Frequently used sustainability claims for aquaculture products were mostly criticized as being imprecise by the participants of the qualitative study; even though two claims tested in the choice experiments had a significant positive impact on the choice of purchase. Similarly, existing aquaculture-specific labels for certified sustainable aquaculture had an impact on the buying decision, but were not well recognized and even less trusted. Overall, consumers had a positive attitude towards sustainable aquaculture. However, communication measures and labelling schemes should be improved to increase consumer acceptance and make a decisive impact on consumers' buying behavior.

  3. Aquaculture: A Component of Low Cost Sanitation Technology

    NASA Technical Reports Server (NTRS)

    Edwards, P.

    1985-01-01

    The paper discusses all phases of aquaculture, including commercial viability, sanitary and biological considerations, public health, financial/economic and sociological aspects. Current studies are detailed and options are discussed for their potential applicability to developing countries, considering requirements for capital and labor skills as well as physical needs such as land.

  4. Aquaculture: A Component of Low Cost Sanitation Technology

    NASA Technical Reports Server (NTRS)

    Edwards, P.

    1985-01-01

    The paper discusses all phases of aquaculture, including commercial viability, sanitary and biological considerations, public health, financial/economic and sociological aspects. Current studies are detailed and options are discussed for their potential applicability to developing countries, considering requirements for capital and labor skills as well as physical needs such as land.

  5. Probabilistic risk assessment of veterinary medicines applied to four major aquaculture species produced in Asia.

    PubMed

    Rico, Andreu; Van den Brink, Paul J

    2014-01-15

    Aquaculture production constitutes one of the main sources of pollution with veterinary medicines into the environment. About 90% of the global aquaculture production is produced in Asia and the potential environmental risks associated with the use of veterinary medicines in Asian aquaculture have not yet been properly evaluated. In this study we performed a probabilistic risk assessment for eight different aquaculture production scenarios in Asia by combining up-to-date information on the use of veterinary medicines and aquaculture production characteristics. The ERA-AQUA model was used to perform mass balances of veterinary medicinal treatments applied to aquaculture ponds and to characterize risks for primary producers, invertebrates, and fish potentially exposed to chemical residues through aquaculture effluents. The mass balance calculations showed that, on average, about 25% of the applied drug mass to aquaculture ponds is released into the environment, although this percentage varies with the chemical's properties, the mode of application, the cultured species density, and the water exchange rates in the aquaculture pond scenario. In general, the highest potential environmental risks were calculated for parasitic treatments, followed by disinfection and antibiotic treatments. Pangasius catfish production in Vietnam, followed by shrimp production in China, constitute possible hot-spots for environmental pollution due to the intensity of the aquaculture production and considerable discharge of toxic chemical residues into surrounding aquatic ecosystems. A risk-based ranking of compounds is provided for each of the evaluated scenarios, which offers crucial information for conducting further chemical and biological field and laboratory monitoring research. In addition, we discuss general knowledge gaps and research priorities for performing refined risk assessments of aquaculture medicines in the near future.

  6. The growth of finfish in global open-ocean aquaculture under climate change.

    PubMed

    Klinger, Dane H; Levin, Simon A; Watson, James R

    2017-10-11

    Aquaculture production is projected to expand from land-based operations to the open ocean as demand for seafood grows and competition increases for inputs to land-based aquaculture, such as freshwater and suitable land. In contrast to land-based production, open-ocean aquaculture is constrained by oceanographic factors, such as current speeds and seawater temperature, which are dynamic in time and space, and cannot easily be controlled. As such, the potential for offshore aquaculture to increase seafood production is tied to the physical state of the oceans. We employ a novel spatial model to estimate the potential of open-ocean finfish aquaculture globally, given physical, biological and technological constraints. Finfish growth potential for three common aquaculture species representing different thermal guilds-Atlantic salmon (Salmo salar), gilthead seabream (Sparus aurata) and cobia (Rachycentron canadum)-is compared across species and regions and with climate change, based on outputs of a high-resolution global climate model. Globally, there are ample areas that are physically suitable for fish growth and potential expansion of the nascent aquaculture industry. The effects of climate change are heterogeneous across species and regions, but areas with existing aquaculture industries are likely to see increases in growth rates. In areas where climate change results in reduced growth rates, adaptation measures, such as selective breeding, can probably offset potential production losses. © 2017 The Author(s).

  7. World aquaculture: environmental impacts and troubleshooting alternatives.

    PubMed

    Martinez-Porchas, Marcel; Martinez-Cordova, Luis R

    2012-01-01

    Aquaculture has been considered as an option to cope with the world food demand. However, criticisms have arisen around aquaculture, most of them related to the destruction of ecosystems such as mangrove forest to construct aquaculture farms, as well as the environmental impacts of the effluents on the receiving ecosystems. The inherent benefits of aquaculture such as massive food production and economical profits have led the scientific community to seek for diverse strategies to minimize the negative impacts, rather than just prohibiting the activity. Aquaculture is a possible panacea, but at present is also responsible for diverse problems related with the environmental health; however the new strategies proposed during the last decade have proven that it is possible to achieve a sustainable aquaculture, but such strategies should be supported and proclaimed by the different federal environmental agencies from all countries. Additionally there is an urgent need to improve legislation and regulation for aquaculture. Only under such scenario, aquaculture will be a sustainable practice.

  8. Public Health Perspectives on Aquaculture.

    PubMed

    Gormaz, Juan G; Fry, Jillian P; Erazo, Marcia; Love, David C

    2014-01-01

    Nearly half of all seafood consumed globally comes from aquaculture, a method of food production that has expanded rapidly in recent years. Increasing seafood consumption has been proposed as part of a strategy to combat the current non-communicable disease (NCD) pandemic, but public health, environmental, social, and production challenges related to certain types of aquaculture production must be addressed. Resolving these complicated human health and ecologic trade-offs requires systems thinking and collaboration across many fields; the One Health concept is an integrative approach that brings veterinary and human health experts together to combat zoonotic disease. We propose applying and expanding the One Health approach to facilitate collaboration among stakeholders focused on increasing consumption of seafood and expanding aquaculture production, using methods that minimize risks to public health, animal health, and ecology. This expanded application of One Health may also have relevance to other complex systems with similar trade-offs.

  9. Managing animal health from an aquaculture perspective

    USDA-ARS?s Scientific Manuscript database

    Aquaculture is the production of aquatic animals for food. The aquaculture industry is a rapidly expanding segment of U. S. agriculture and NOAA estimated the industry was worth $1.2 billion in 2011. Disease related losses in aquaculture either by decreased performance and/or mortality is estimate...

  10. Aquaculture Thesaurus: Descriptors Used in the National Aquaculture Information System.

    ERIC Educational Resources Information Center

    Lanier, James A.; And Others

    This document provides a listing of descriptors used in the National Aquaculture Information System (NAIS), a computer information storage and retrieval system on marine, brackish, and freshwater organisms. Included are an explanation of how to use the document, subject index terms, and a brief bibliography of the literature used in developing the…

  11. Aquaculture Thesaurus: Descriptors Used in the National Aquaculture Information System.

    ERIC Educational Resources Information Center

    Lanier, James A.; And Others

    This document provides a listing of descriptors used in the National Aquaculture Information System (NAIS), a computer information storage and retrieval system on marine, brackish, and freshwater organisms. Included are an explanation of how to use the document, subject index terms, and a brief bibliography of the literature used in developing the…

  12. Advances in genomics for flatfish aquaculture.

    PubMed

    Cerdà, Joan; Manchado, Manuel

    2013-01-01

    Fish aquaculture is considered to be one of the most sustainable sources of protein for humans. Many different species are cultured worldwide, but among them, marine flatfishes comprise a group of teleosts of high commercial interest because of their highly prized white flesh. However, the aquaculture of these fishes is seriously hampered by the scarce knowledge on their biology. In recent years, various experimental 'omics' approaches have been applied to farmed flatfishes to increment the genomic resources available. These tools are beginning to identify genetic markers associated with traits of commercial interest, and to unravel the molecular basis of different physiological processes. This article summarizes recent advances in flatfish genomics research in Europe. We focus on the new generation sequencing technologies, which can produce a massive amount of DNA sequencing data, and discuss their potentials and applications for de novo genome sequencing and transcriptome analysis. The relevance of these methods in nutrigenomics and foodomics approaches for the production of healthy animals, as well as high quality and safety products for the consumer, is also briefly discussed.

  13. Enhancing fish performance in Aquaculture

    USDA-ARS?s Scientific Manuscript database

    Aquaculture currently is the fastest growing agricultural industry and must continue to grow to meet the world’s increasing demand for seafood. Continued growth will depend upon advances in fish genetics and nutrition, and improvements in culture system design and management. The number and complexi...

  14. Aquaculture feed and food safety.

    PubMed

    Tacon, Albert G J; Metian, Marc

    2008-10-01

    The ultimate objective of an aquaculture feed manufacturer and aquaculture food supplier is to ensure that the feed or food produced is both safe and wholesome. Reported food safety risks, which may be associated with the use of commercial animal feeds, including compound aquaculture feeds, usually result from the possible presence of unwanted contaminants, either within the feed ingredients used or from the external contamination of the finished feed on prolonged storage. The major animal feed contaminants that have been reported to date have included Salmonellae, mycotoxins, veterinary drug residues, persistent organic pollutants, agricultural and other chemicals (solvent residues, melamine), heavy metals (mercury, lead, cadmium) and excess mineral salts (hexavalent chromium, arsenic, selenium, flourine), and transmissible spongiform encephalopathies. Apart from the direct negative effect of these possible contaminants on the health of the cultured target species, there is a risk that the feed contaminants may be passed along the food chain, via contaminated aquaculture produce, to consumers. In recent years, public concern regarding food safety has increased as a consequence of the increasing prevalence of antibiotic residues, persistent organic pollutants, and chemicals in farmed seafood. The important role played by the Food and Agriculture Organization of the United Nations (FAO) and the Codex Alimentarius Commission in the development of international standards, guidelines, and recommendations to protect the health of consumers and ensure fair practices in the food trade is discussed.

  15. Recent Major Advances of Biotechnology and Sustainable Aquaculture in China.

    PubMed

    Xiang, Jianhai

    2015-08-01

    Global aquaculture production has increased continuously over the last five decades, and particularly in China. Its aquaculture has become the fastest growing and most efficient agri-sector, with production accounting for more than 70% of the world's aquaculture output. In the new century, with serious challenges regarding population, resources and the environment, China has been working to develop high-quality, effective, healthy, and sustainable blue agriculture through the application of modern biotechnology. Sound knowledge related to the biology and ecology of aquatic organisms has laid a solid foundation and provided the innovation and technology for rapid development of the aquaculture industry. Marine biotechnology, which is enabling solutions for ocean productivity and sustainability, has been promoted since the last decades of the 20th Century in China. In this article, priority areas of research, mainly genetic breeding, omics studies, novel production systems, biosecurity, bioprocesses and biorefinery, as well as the major progress of marine biotechnology R&D in China are reviewed. Current innovative achievements in China are not enough and the level and frequency of academic advancements must be improved. International cooperation and assistance remain crucial for the success of marine biotechnology.

  16. Recent Major Advances of Biotechnology and Sustainable Aquaculture in China

    PubMed Central

    Xiang, Jianhai

    2015-01-01

    Background: Global aquaculture production has increased continuously over the last five decades, and particularly in China. Its aquaculture has become the fastest growing and most efficient agri-sector, with production accounting for more than 70% of the world’s aquaculture output. In the new century, with serious challenges regarding population, resources and the environment, China has been working to develop high-quality, effective, healthy, and sustainable blue agriculture through the application of modern biotechnology. Sound knowledge related to the biology and ecology of aquatic organisms has laid a solid foundation and provided the innovation and technology for rapid development of the aquaculture industry. Marine biotechnology, which is enabling solutions for ocean productivity and sustainability, has been promoted since the last decades of the 20th Century in China. Objective: In this article, priority areas of research, mainly genetic breeding, omics studies, novel production systems, biosecurity, bioprocesses and biorefinery, as well as the major progress of marine biotechnology R&D in China are reviewed. Conclusion: Current innovative achievements in China are not enough and the level and frequency of academic advancements must be improved. International cooperation and assistance remain crucial for the success of marine biotechnology. PMID:28553577

  17. Ecologic simulation of warm water aquaculture ponds

    SciTech Connect

    Piedrahitu, R.H.; Brune, D.E.; Orlob, G.T.; Tchobanoglous, G.

    1983-06-01

    A generalized ecologic model of a fertilized warm-water aquaculture pond is under development. The model is intended to represent the pond ecosystem and its response to external stimuli. The major physical, chemical and biological processes and parameters are included in the model. A total of 19 state variables are included in the model (dissolved oxygen, alkalinity, pH, ammonia, phytoplankton, etc.). The model is formulated as a system of mass balance equations. The equations include stimulatory and inhibitory effects of environmental parameters on processes taking place in the pond. The equations may be solved for the entire growth period and diurnal as well as seasonal fluctuations may be identified. The ultimate objective of the model is to predict the fish biomass that can be produced in a pond under a given set of environmental conditions.

  18. Monitoring bacterial diversity of the marine sponge Ircinia strobilina upon transfer into aquaculture.

    PubMed

    Mohamed, Naglaa M; Rao, Venkateswara; Hamann, Mark T; Kelly, Michelle; Hill, Russell T

    2008-07-01

    Marine sponges in the genus Ircinia are known to be good sources of secondary metabolites with biological activities. A major obstacle in the development of sponge-derived metabolites is the difficulty in ensuring an economic, sustainable supply of the metabolites. A promising strategy is the ex situ culture of sponges in closed or semiclosed aquaculture systems. In this study, the marine sponge Ircinia strobilina (order Dictyoceratida: family Irciniidae) was collected from the wild and maintained for a year in a recirculating aquaculture system. Microbiological and molecular community analyses were performed on freshly collected sponges and sponges maintained in aquaculture for 3 months and 9 months. Chemical analyses were performed on wild collected sponges and individuals maintained in aquaculture for 3 months and 1 year. Denaturing gradient gel electrophoresis was used to assess the complexity of and to monitor changes in the microbial communities associated with I. strobilina. Culture-based and molecular techniques showed an increase in the Bacteroidetes and Alpha- and Gammaproteobacteria components of the bacterial community in aquaculture. Populations affiliated with Beta- and Deltaproteobacteria, Clostridia, and Planctomycetes emerged in sponges maintained in aquaculture. The diversity of bacterial communities increased upon transfer into aquaculture.

  19. Use of probiotics in aquaculture.

    PubMed

    Martínez Cruz, Patricia; Ibáñez, Ana L; Monroy Hermosillo, Oscar A; Ramírez Saad, Hugo C

    2012-01-01

    The growth of aquaculture as an industry has accelerated over the past decades; this has resulted in environmental damages and low productivity of various crops. The need for increased disease resistance, growth of aquatic organisms, and feed efficiency has brought about the use of probiotics in aquaculture practices. The first application of probiotics occurred in 1986, to test their ability to increase growth of hydrobionts (organisms that live in water). Later, probiotics were used to improve water quality and control of bacterial infections. Nowadays, there is documented evidence that probiotics can improve the digestibility of nutrients, increase tolerance to stress, and encourage reproduction. Currently, there are commercial probiotic products prepared from various bacterial species such as Bacillus sp., Lactobacillus sp., Enterococcus sp., Carnobacterium sp., and the yeast Saccharomyces cerevisiae among others, and their use is regulated by careful management recommendations. The present paper shows the current knowledge of the use of probiotics in aquaculture, its antecedents, and safety measures to be carried out and discusses the prospects for study in this field.

  20. Use of Probiotics in Aquaculture

    PubMed Central

    Martínez Cruz, Patricia; Ibáñez, Ana L.; Monroy Hermosillo, Oscar A.; Ramírez Saad, Hugo C.

    2012-01-01

    The growth of aquaculture as an industry has accelerated over the past decades; this has resulted in environmental damages and low productivity of various crops. The need for increased disease resistance, growth of aquatic organisms, and feed efficiency has brought about the use of probiotics in aquaculture practices. The first application of probiotics occurred in 1986, to test their ability to increase growth of hydrobionts (organisms that live in water). Later, probiotics were used to improve water quality and control of bacterial infections. Nowadays, there is documented evidence that probiotics can improve the digestibility of nutrients, increase tolerance to stress, and encourage reproduction. Currently, there are commercial probiotic products prepared from various bacterial species such as Bacillus sp., Lactobacillus sp., Enterococcus sp., Carnobacterium sp., and the yeast Saccharomyces cerevisiae among others, and their use is regulated by careful management recommendations. The present paper shows the current knowledge of the use of probiotics in aquaculture, its antecedents, and safety measures to be carried out and discusses the prospects for study in this field. PMID:23762761

  1. Potential drivers of virulence evolution in aquaculture

    USGS Publications Warehouse

    Kennedy, David A.; Kurath, Gael; Brito, Ilana L.; Purcell, Maureen K.; Read, Andrew F.; Winton, James R.; Wargo, Andrew R.

    2016-01-01

    Infectious diseases are economically detrimental to aquaculture, and with continued expansion and intensification of aquaculture, the importance of managing infectious diseases will likely increase in the future. Here, we use evolution of virulence theory, along with examples, to identify aquaculture practices that might lead to the evolution of increased pathogen virulence. We identify eight practices common in aquaculture that theory predicts may favor evolution toward higher pathogen virulence. Four are related to intensive aquaculture operations, and four others are related specifically to infectious disease control. Our intention is to make aquaculture managers aware of these risks, such that with increased vigilance, they might be able to detect and prevent the emergence and spread of increasingly troublesome pathogen strains in the future.

  2. Investigation of a novel approach for aquaculture site selection.

    PubMed

    Falconer, Lynne; Telfer, Trevor C; Ross, Lindsay G

    2016-10-01

    This study investigated the potential use of two "species distribution models" (SDMs), Mahalanobis Typicality and Maxent, for aquaculture site selection. SDMs are used in ecological studies to predict the spatial distribution of species based on analysis of conditions at locations of known presence or absence. Here the input points are aquaculture sites, rather than species occurrence, thus the models evaluate the parameters at the sites and identify similar areas across the rest of the study area. This is a novel approach that avoids the need for data reclassification and weighting which can be a source of conflict and uncertainty within the commonly used multi-criteria evaluation (MCE) technique. Using pangasius culture in the Mekong Delta, Vietnam, as a case study, Mahalanobis Typicality and Maxent SDMs were evaluated against two models developed using the MCE approach. Mahalanobis Typicality and Maxent assess suitability based on similarity to existing farms, while the MCE approach assesses suitability using optimal values for culture. Mahalanobis Typicality considers the variables to have equal importance whereas Maxent analyses the variables to determine those which influence the distribution of the input data. All of the models indicate there are suitable areas for culture along the two main channels of the Mekong River which are currently used to farm pangasius and also inland in the north and east of the study area. The results show the Mahalanobis Typicality model had more high scoring areas and greater overall similarity than Maxent to the MCE outputs, suggesting, for this case study, it was the most appropriate SDM for aquaculture site selection. With suitable input data, a combined SDM and MCE model would overcome limitations of the individual approaches, allowing more robust planning and management decisions for aquaculture, other stakeholders and the environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Effect of aquaculture on world fish supplies.

    PubMed

    Naylor, R L; Goldburg, R J; Primavera, J H; Kautsky, N; Beveridge, M C; Clay, J; Folke, C; Lubchenco, J; Mooney, H; Troell, M

    2000-06-29

    Global production of farmed fish and shellfish has more than doubled in the past 15 years. Many people believe that such growth relieves pressure on ocean fisheries, but the opposite is true for some types of aquaculture. Farming carnivorous species requires large inputs of wild fish for feed. Some aquaculture systems also reduce wild fish supplies through habitat modification, wild seedstock collection and other ecological impacts. On balance, global aquaculture production still adds to world fish supplies; however, if the growing aquaculture industry is to sustain its contribution to world fish supplies, it must reduce wild fish inputs in feed and adopt more ecologically sound management practices.

  4. Exploring Larval Development and Applications in Marine Fish Aquaculture Using Pink Snapper Embryos

    ERIC Educational Resources Information Center

    Tamaru, Clyde; Haverkort-Yeh, Roxanne D.; Gorospe, Kelvin D.; Rivera, Malia Ana J.

    2014-01-01

    This biology investigation on "Pristipomoides filamentosus" larval development, survival, and aquaculture research was developed with three educational objectives: to provide high school students with (1) a scientific background on the biology and science of fisheries as well as overfishing, its consequences, and possible mitigations;…

  5. Exploring Larval Development and Applications in Marine Fish Aquaculture Using Pink Snapper Embryos

    ERIC Educational Resources Information Center

    Tamaru, Clyde; Haverkort-Yeh, Roxanne D.; Gorospe, Kelvin D.; Rivera, Malia Ana J.

    2014-01-01

    This biology investigation on "Pristipomoides filamentosus" larval development, survival, and aquaculture research was developed with three educational objectives: to provide high school students with (1) a scientific background on the biology and science of fisheries as well as overfishing, its consequences, and possible mitigations;…

  6. Isolation and Characterization of Two Lytic Bacteriophages, φSt2 and φGrn1; Phage Therapy Application for Biological Control of Vibrio alginolyticus in Aquaculture Live Feeds

    PubMed Central

    Kalatzis, Panos G.; Bastías, Roberto; Kokkari, Constantina; Katharios, Pantelis

    2016-01-01

    Bacterial infections are a serious problem in aquaculture since they can result in massive mortalities in farmed fish and invertebrates. Vibriosis is one of the most common diseases in marine aquaculture hatcheries and its causative agents are bacteria of the genus Vibrio mostly entering larval rearing water through live feeds, such as Artemia and rotifers. The pathogenic Vibrio alginolyticus strain V1, isolated during a vibriosis outbreak in cultured seabream, Sparus aurata, was used as host to isolate and characterize the two novel bacteriophages φSt2 and φGrn1 for phage therapy application. In vitro cell lysis experiments were performed against the bacterial host V. alginolyticus strain V1 but also against 12 presumptive Vibrio strains originating from live prey Artemia salina cultures indicating the strong lytic efficacy of the 2 phages. In vivo administration of the phage cocktail, φSt2 and φGrn1, at MOI = 100 directly on live prey A. salina cultures, led to a 93% decrease of presumptive Vibrio population after 4 h of treatment. Current study suggests that administration of φSt2 and φGrn1 to live preys could selectively reduce Vibrio load in fish hatcheries. Innovative and environmental friendly solutions against bacterial diseases are more than necessary and phage therapy is one of them. PMID:26950336

  7. Isolation and Characterization of Two Lytic Bacteriophages, φSt2 and φGrn1; Phage Therapy Application for Biological Control of Vibrio alginolyticus in Aquaculture Live Feeds.

    PubMed

    Kalatzis, Panos G; Bastías, Roberto; Kokkari, Constantina; Katharios, Pantelis

    2016-01-01

    Bacterial infections are a serious problem in aquaculture since they can result in massive mortalities in farmed fish and invertebrates. Vibriosis is one of the most common diseases in marine aquaculture hatcheries and its causative agents are bacteria of the genus Vibrio mostly entering larval rearing water through live feeds, such as Artemia and rotifers. The pathogenic Vibrio alginolyticus strain V1, isolated during a vibriosis outbreak in cultured seabream, Sparus aurata, was used as host to isolate and characterize the two novel bacteriophages φSt2 and φGrn1 for phage therapy application. In vitro cell lysis experiments were performed against the bacterial host V. alginolyticus strain V1 but also against 12 presumptive Vibrio strains originating from live prey Artemia salina cultures indicating the strong lytic efficacy of the 2 phages. In vivo administration of the phage cocktail, φSt2 and φGrn1, at MOI = 100 directly on live prey A. salina cultures, led to a 93% decrease of presumptive Vibrio population after 4 h of treatment. Current study suggests that administration of φSt2 and φGrn1 to live preys could selectively reduce Vibrio load in fish hatcheries. Innovative and environmental friendly solutions against bacterial diseases are more than necessary and phage therapy is one of them.

  8. Biological and sequence analysis of a novel European isolate of Barley mild mosaic virus that overcomes the barley rym5 resistance gene.

    PubMed

    Kanyuka, K; McGrann, G; Alhudaib, K; Hariri, D; Adams, M J

    2004-08-01

    A Barley mild mosaic virus (BaMMV) isolate from France (BaMMV-Sil) capable of overcoming rym5-controlled resistance was inoculated to barley genotypes carrying various genes for resistance to the barley mosaic viruses. BaMMV-Sil was unable to infect genotypes carrying rym1, rym4, rym8, rym9, or rym11 but genotypes carrying rym3, rym5, rym6 or no known bymovirus resistance gene were susceptible. Plants carrying rym7 or rym10 showed partial resistance with delayed virus accumulation. The two genomic RNAs of BaMMV-Sil were sequenced and compared to published sequences and those of a further common strain isolate from the UK. Four amino acid differences were observed between BaMMV-Sil and European common strain isolates in the polypeptide encoded by RNA1, the RNA species which determines pathogenicity on the rym5 genotypes. Only two of these differences are likely to be functionally important (His rather than Gln at position1217 in the VPg cistron; His rather than Asp at position 1776 in the NIb cistron). Comparisons with related viruses in the genera Bymovirus and Potyvirus suggest that the change in the VPg, which occurs within a motif conserved amongst all viruses within the family Potyviridae, is the more likely cause of rym5 resistance-breaking.

  9. Overcoming: A Concept Analysis

    PubMed Central

    Brush, Barbara L.; Kirk, Keri; Gultekin, Laura; Baiardi, Janet M.

    2011-01-01

    This article provides an operational definition of overcoming as a first step in the systematic analysis of the concept. Using the method described by Walker and Avant (2005), the authors identify the attributes and characteristics of overcoming and its theoretical and practical application to nursing. Sample cases from clinical research illustrate the concept further. Further nursing research needs to test the theoretical relationships between overcoming and outcome variables. PMID:21806626

  10. Antimicrobial use and resistance in aquaculture: findings of a globally administered survey of aquaculture-allied professionals.

    PubMed

    Tuševljak, N; Dutil, L; Rajić, A; Uhland, F C; McClure, C; St-Hilaire, S; Reid-Smith, R J; McEwen, S A

    2013-09-01

    There is limited published information regarding antimicrobial use (AMU) and antimicrobial resistance (AMR) in aquaculture. Our objective was to determine the opinions of aquaculture-allied professionals around the world on the frequency of AMU and AMR in common aquatic species. The study questionnaire included five sections: respondent demographics, extent of AMU in aquaculture, frequency of observations of AMR in aquaculture, AMR monitoring and surveillance and antimicrobial susceptibility testing in various jurisdictions. It was administered in English and Spanish to 604 professionals in 25 countries and with varying expertise in aquaculture. The response rate was 33% (199/604). Over half of the participants had >10 years of experience in aquaculture: 70% (140/199) were involved in fish health/clinical work and their primary experience was with salmon, tilapia, trout, shrimp (including prawn) and/or catfish. Tetracycline use was reported by 28%, 46%, 18%, 37% and 9% of respondents working with catfish, salmon, tilapia, trout and shrimp, respectively. Resistance to tetracycline in one or more species of bacteria was reported as 'frequent-to-almost always' for the same aquaculture species by 39%, 28%, 17%, 52% and 36% of respondents, respectively. 'Frequent-to-almost always' use of quinolone was reported by 70% (32/46) and 67% (8/12) of respondents from the United States and Canada, respectively, where quinolone products are not approved for aquaculture, and extra-label fluoroquinolone use is either prohibited (United States) or discouraged (Canada). Similar frequencies of quinolone use were also reported by the majority of respondents from Europe [70% (7/10)] and Asia [90% (9/10)] where labelled indications exist. This baseline information can be used to prioritize research or surveillance for AMU and AMR in aquaculture. © 2012 Blackwell Verlag GmbH.

  11. Water use for aquaculture in Minnesota, 1984

    USGS Publications Warehouse

    Trotta, L.C.

    1988-01-01

    Little change in the number of licensees since 1980 -indicates that aquaculture is a viable segment of the Minnesota economy. Trout farming has grown from 10 farms in 1978, to 23 in 1984; most use dug ponds sustained by ground-water inflow. Withdrawals for aquaculture are nonconsumptive and are small compared to other water-use categories in Minnesota.

  12. World Aquaculture: Environmental Impacts and Troubleshooting Alternatives

    PubMed Central

    Martinez-Porchas, Marcel; Martinez-Cordova, Luis R.

    2012-01-01

    Aquaculture has been considered as an option to cope with the world food demand. However, criticisms have arisen around aquaculture, most of them related to the destruction of ecosystems such as mangrove forest to construct aquaculture farms, as well as the environmental impacts of the effluents on the receiving ecosystems. The inherent benefits of aquaculture such as massive food production and economical profits have led the scientific community to seek for diverse strategies to minimize the negative impacts, rather than just prohibiting the activity. Aquaculture is a possible panacea, but at present is also responsible for diverse problems related with the environmental health; however the new strategies proposed during the last decade have proven that it is possible to achieve a sustainable aquaculture, but such strategies should be supported and proclaimed by the different federal environmental agencies from all countries. Additionally there is an urgent need to improve legislation and regulation for aquaculture. Only under such scenario, aquaculture will be a sustainable practice. PMID:22649291

  13. Aquaculture and food crisis: opportunities and constraints.

    PubMed

    Liao, I Chiu; Chao, Nai-Hsien

    2009-01-01

    Fish farming, now well known as aquaculture, has been well recognized since the ancient era. The first written document on fish culture was published in China in 475 BC, and the first koi pond was constructed at the Japanese Imperial Palace grounds during 71-130 AD. In recent years, aquaculture has progressively played an important role in the provision of: animal protein and gourmet cuisines, job opportunities, and foreign currency for developing countries. Asian countries produce around 91 percent of the world's total aquaculture production. Among the top ten aquaculture-producing countries, nine are from Asia. The current global population consist of more than 6.5 billion individuals; over one billion of which face hunger problem. In the highly populated Asia-Pacific region with moderately high-productivity, 642 million people are still facing hunger. Being a proficient and potential source of animal protein, aquaculture will play an increasing and important role in solving the world food problem in the future. This paper discusses both the opportunities and constraints in the aquaculture industry, specifically in the Asia-Pacific region, and its possible role in solving the current global food crisis. Strategies including promotion and adoption of traceability and HACCP systems for food safety, and marketing management for aquaculture products are also suggested. It is hoped that traditional administration of aquaculture management for survival, profit, as well as food safety will successfully match sustainability management to meet the urgent global need for food.

  14. Exploring Aquaculture. Curriculum Guide for Agriscience 282.

    ERIC Educational Resources Information Center

    Texas A and M Univ., College Station. Dept. of Agricultural Education.

    This curriculum guide provides materials for teachers to use in developing a course in "Exploring Aquaculture, Agriscience 282," one of 28 semester courses in agricultural science and technology for Texas high schools. This introductory course is designed to acquaint students with the growing industry of aquaculture; it includes…

  15. Live Attenuated Bacterial Vaccines in Aquaculture

    USDA-ARS?s Scientific Manuscript database

    Aquaculture has emerged as an important economical agribusiness, worldwide. Among the top barrier to growth of aquaculture is infectious disease that is causing severe economic losses. Bacterial species of more than 20 genera have been reported as causes of diseases. The risk of disease is often ...

  16. Aquaculture Farm Facility Loss Management System

    NASA Astrophysics Data System (ADS)

    Choi, Hyung-Rim; Park, Byoung-Kwon; Park, Yong-Sung; Lee, Chang-Sup; Choi, Ki-Nam; Park, Chang-Hyun; Jo, Yong-Hyun; Lee, Byung-Ha

    The loss of aquaculture farm facilities occurring from natural disasters of accidents can cause not only property damage but also marine environmental pollution and vessel safety accidents. When aquaculture farm facilities have been lost to sink down to the bottom of the water, those should be picked up through direct searches but it is difficult to find them because they cannot be visually identified and they are in the sea. In this study, a system that can efficiently manage aquaculture farm facility loss using a new technology IP-RFID will be presented. By attaching IP-Tags to aquaculture farm facilities, this technology enables the transmission of facility information and locations to diverse users in real time through the IPs and through this, the efficiency of aquaculture farm facility management and supervision can be improved and marine environmental pollution can be reduced.

  17. Removal of tricaine methanesulfonate from aquaculture wastewater by adsorption onto pyrolysed paper mill sludge.

    PubMed

    Ferreira, Catarina I A; Calisto, Vânia; Otero, Marta; Nadais, Helena; Esteves, Valdemar I

    2017-02-01

    Tricaine methanesulfonate (MS-222) has been widely used in intensive aquaculture systems to control stress during handling and confinement operations. This compound is dissolved in the water tanks and, once it is present in the Recirculating Aquaculture Systems (RASs), MS-222 can reach the environment by the discharge of contaminated effluents. The present work proposes the implementation of the adsorption process in the RASs, using pyrolysed biological paper mill sludge as adsorbent, to remove MS-222 from aquaculture wastewater. Adsorption experiments were performed under extreme operating conditions, simulating those corresponding to different farmed fish species: temperature (from 8 to 30 °C), salinity (from 0.8 to 35‰) and different contents of organic and inorganic matter in the aquaculture wastewater. Furthermore, the MS-222 adsorption from a real aquaculture effluent was compared with that from ultrapure water. Under the studied conditions, the performance of the produced adsorbent remained mostly the same, removing satisfactorily MS-222 from water. Therefore, it may be concluded that the produced adsorbent can be employed in intensive aquaculture wastewater treatment with the same performance independently of the farmed fish species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Overcoming breastfeeding problems

    MedlinePlus

    Plugged milk ducts; Nipple soreness when breastfeeding; Breastfeeding - overcoming problems; Let-down reflex ... Breastfeeding (nursing) your baby can be a good experience for both the mother and the baby. It ...

  19. Aquaculture: global status and trends.

    PubMed

    Bostock, John; McAndrew, Brendan; Richards, Randolph; Jauncey, Kim; Telfer, Trevor; Lorenzen, Kai; Little, David; Ross, Lindsay; Handisyde, Neil; Gatward, Iain; Corner, Richard

    2010-09-27

    Aquaculture contributed 43 per cent of aquatic animal food for human consumption in 2007 (e.g. fish, crustaceans and molluscs, but excluding mammals, reptiles and aquatic plants) and is expected to grow further to meet the future demand. It is very diverse and, contrary to many perceptions, dominated by shellfish and herbivorous and omnivorous pond fish either entirely or partly utilizing natural productivity. The rapid growth in the production of carnivorous species such as salmon, shrimp and catfish has been driven by globalizing trade and favourable economics of larger scale intensive farming. Most aquaculture systems rely on low/uncosted environmental goods and services, so a critical issue for the future is whether these are brought into company accounts and the consequent effects this would have on production economics. Failing that, increased competition for natural resources will force governments to allocate strategically or leave the market to determine their use depending on activities that can extract the highest value. Further uncertainties include the impact of climate change, future fisheries supplies (for competition and feed supply), practical limits in terms of scale and in the economics of integration and the development and acceptability of new bio-engineering technologies. In the medium term, increased output is likely to require expansion in new environments, further intensification and efficiency gains for more sustainable and cost-effective production. The trend towards enhanced intensive systems with key monocultures remains strong and, at least for the foreseeable future, will be a significant contributor to future supplies. Dependence on external feeds (including fish), water and energy are key issues. Some new species will enter production and policies that support the reduction of resource footprints and improve integration could lead to new developments as well as reversing decline in some more traditional systems.

  20. Aquaculture: global status and trends

    PubMed Central

    Bostock, John; McAndrew, Brendan; Richards, Randolph; Jauncey, Kim; Telfer, Trevor; Lorenzen, Kai; Little, David; Ross, Lindsay; Handisyde, Neil; Gatward, Iain; Corner, Richard

    2010-01-01

    Aquaculture contributed 43 per cent of aquatic animal food for human consumption in 2007 (e.g. fish, crustaceans and molluscs, but excluding mammals, reptiles and aquatic plants) and is expected to grow further to meet the future demand. It is very diverse and, contrary to many perceptions, dominated by shellfish and herbivorous and omnivorous pond fish either entirely or partly utilizing natural productivity. The rapid growth in the production of carnivorous species such as salmon, shrimp and catfish has been driven by globalizing trade and favourable economics of larger scale intensive farming. Most aquaculture systems rely on low/uncosted environmental goods and services, so a critical issue for the future is whether these are brought into company accounts and the consequent effects this would have on production economics. Failing that, increased competition for natural resources will force governments to allocate strategically or leave the market to determine their use depending on activities that can extract the highest value. Further uncertainties include the impact of climate change, future fisheries supplies (for competition and feed supply), practical limits in terms of scale and in the economics of integration and the development and acceptability of new bio-engineering technologies. In the medium term, increased output is likely to require expansion in new environments, further intensification and efficiency gains for more sustainable and cost-effective production. The trend towards enhanced intensive systems with key monocultures remains strong and, at least for the foreseeable future, will be a significant contributor to future supplies. Dependence on external feeds (including fish), water and energy are key issues. Some new species will enter production and policies that support the reduction of resource footprints and improve integration could lead to new developments as well as reversing decline in some more traditional systems. PMID:20713392

  1. Biogeochemical ecology of aquaculture ponds

    SciTech Connect

    Weisburd, R.S.J.

    1988-01-01

    Two methods to determine rates of organic matter production and consumption were applied in shrimp aquaculture ponds. Several questions were posed: can net rates of organic matter production and consumption be determined accurately through application of dissolved inorganic carbon (DIC) mass balance in a pond with high advective through-put Are organically loaded aquaculture ponds autotrophic How do rates of organic production vary temporally Are there diurnal changes in respiration rates Four marine ponds in Hawaii have been evaluated for a 53 day period through the use of geochemical mass balances. All fluxes of DIC into and out of the ponds were considered. DIC was calculated from hourly pH measurements and weekly alkalinity measurements. Average uptake of DIC from the pond water, equivalent to net community production, revealed net autotrophy in all cases. Hourly and longer period variations in organic matter production rates were examined. The daily cycle dominated the variation in rates of net community production. Maximal rates of net community production were maintained for four to six hours starting in mid-morning. Respiration rates decreased rapidly during the night in two of the ponds and remained essentially constant in the others. A similar pattern of decreasing respiration at night was seen in freshwater shrimp ponds which were studied with incubations. A new method involving isotope dilution of {sup 14}C-labeled DIC was used to measure respiration rates in light and dark bottles. This method is an inexpensive and convenient procedure which should also be useful in other environments. The incubations demonstrated that plankton respiration rates peak at or soon after solar noon and vary over the course of the day by about a factor of two.

  2. Defeating diplostomoid dangers in USA catfish aquaculture.

    PubMed

    Overstreet, Robin M; Curran, Stephen S

    2004-06-01

    Diplostomoid digenean metacercariae have caused widescale mortalities of channel catfish, Ictalurus punctatus (Rafinesque), at aquaculture farms in Louisiana, Mississippi and Arkansas, USA. Originally, based on a tentative diagnosis, the industry considered the primary harmful agent to be an introduced species from Europe, Bolbophorus confusus (Krause, 1914), frequently reported from the American white pelican, Pelecanus erythrorhynchos Gmelin. Our group has now shown, using ITS 1-2 plus three more-conservative gene fragments, that two sympatric species of Bolbophorus exist in the American white pelican. One, B. damnificus Overstreet et Curran, 2002, infects the musculature of catfish, and the other, probably not B. confusus, does not infect catfish. However, at least four other pathogenic diplostomoids and a clinostomoid infect the catfish, and they use at least four different snail hosts, including the planorbids Planorbella trivolvis (Say) and Gyraulus parvus (Say), the physid Physella gyrina (Say) and a lymnaeid. Two metacercariae, B. damnificus and Bursacetabulus pelecanus Dronen, Tehrany et Wardle, 1999, infect the catfish and mature in the pelican; two others, Austrodiplostomum compactum (Lutz, 1928) and Hysteromorpha cf. triloba (Rudolphi, 1819), mature in cormorants; one, Diplostomum sp., matures in seagulls and at least one, Clinostomum marginatum (Rudolphi, 1819), matures in herons, egrets and other wading birds. Consequently, management of catfish ponds relative to digenean infections requires considerable biological information on the fish, bird, and snail hosts as well as the parasites.

  3. Beta-glucan: an ideal immunostimulant in aquaculture (a review).

    PubMed

    Meena, D K; Das, Pronob; Kumar, Shailesh; Mandal, S C; Prusty, A K; Singh, S K; Akhtar, M S; Behera, B K; Kumar, Kundan; Pal, A K; Mukherjee, S C

    2013-06-01

    The major hindrance in the development and sustainability of aquaculture industry is the occurrence of various diseases in the farming systems. Today, preventive and management measures are central concern to overcome such outbreak of diseases. Immunostimulants are considered as an effective tool for enhancing immune status of cultured organisms. Among different immunostimulants used in aquaculture practices, β-glucan is one of the promising immunostimulant, which is a homopolysaccharide of glucose molecule linked by the glycoside bond. It forms the major constituents of cell wall of some plants, fungi, bacteria, mushroom, yeast, and seaweeds. Major attention on β-glucan was captivated with the gain in knowledge on its receptors and the mechanism of action. The receptor present inside the animal body recognizes and binds to β-glucan, which in turn renders the animal with high resistance and enhanced immune response. This review highlights β-glucan as an immunostimulant, its effective dosages, and route of administration and furthermore provides an outline on role of β-glucan in enhancing growth, survival, and protection against infectious pathogens pertaining to fishes and shellfishes. Study also summarizes the effect of β-glucan on its receptors, recognition of proteins, immune-related enzymes, immune-related gene expression and their mechanisms of action.

  4. Experimental infections of different carp strains with the carp edema virus (CEV) give insights into the infection biology of the virus and indicate possible solutions to problems caused by koi sleepy disease (KSD) in carp aquaculture.

    PubMed

    Adamek, Mikolaj; Oschilewski, Anna; Wohlsein, Peter; Jung-Schroers, Verena; Teitge, Felix; Dawson, Andy; Gela, David; Piackova, Veronika; Kocour, Martin; Adamek, Jerzy; Bergmann, Sven M; Steinhagen, Dieter

    2017-02-21

    Outbreaks of koi sleepy disease (KSD) caused by carp edema virus (CEV) may seriously affect populations of farmed common carp, one of the most important fish species for global food production. The present study shows further evidence for the involvement of CEV in outbreaks of KSD among carp and koi populations: in a series of infection experiments, CEV from two different genogroups could be transmitted to several strains of naïve common carp via cohabitation with fish infected with CEV. In recipient fish, clinical signs of KSD were induced. The virus load and viral gene expression results confirm gills as the target organ for CEV replication. Gill explants also allowed for a limited virus replication in vitro. The in vivo infection experiments revealed differences in the virulence of the two CEV genogroups which were associated with infections in koi or in common carp, with higher virulence towards the same fish variety as the donor fish. When the susceptibility of different carp strains to a CEV infection and the development of KSD were experimentally investigated, Amur wild carp showed to be relatively more resistant to the infection and did not develop clinical signs for KSD. However, the resistance could not be related to a higher magnitude of type I IFN responses of affected tissues. Despite not having a mechanistic explanation for the resistance of Amur wild carp to KSD, we recommend using this carp strain in breeding programs to limit potential losses caused by CEV in aquaculture.

  5. Aquaculture: Environmental, toxicological, and health issues.

    PubMed

    Cole, David W; Cole, Richard; Gaydos, Steven J; Gray, Jon; Hyland, Greg; Jacques, Mark L; Powell-Dunford, Nicole; Sawhney, Charu; Au, William W

    2009-07-01

    Aquaculture is one of the fastest growing food-producing sectors, supplying approximately 40% of the world's fish food. Besides such benefit to the society, the industry does have its problems. There are occupational hazards and safety concerns in the aquaculture industry. Some practices have caused environmental degradation. Public perception to farmed fish is that they are "cleaner" than comparable wild fish. However, some farmed fish have much higher body burden of natural and man-made toxic substances, e.g. antibiotics, pesticides, and persistent organic pollutants, than wild fish. These contaminants in fish can pose health concerns to unsuspecting consumers, in particular pregnant or nursing women. Regulations and international oversight for the aquaculture industry are extremely complex, with several agencies regulating aquaculture practices, including site selection, pollution control, water quality, feed supply, and food safety. Since the toxicological, environmental, and health concerns of aquaculture have not been adequately reviewed recently, we are providing an updated review of the topic. Specifically, concerns and recommendations for improving the aquaculture industry, and for protection of the environment and the consumers will be concisely presented.

  6. Lessons from two high CO2 worlds - future oceans and intensive aquaculture.

    PubMed

    Ellis, Robert P; Urbina, Mauricio A; Wilson, Rod W

    2017-06-01

    Exponentially rising CO2 (currently ~400 μatm) is driving climate change and causing acidification of both marine and freshwater environments. Physiologists have long known that CO2 directly affects acid-base and ion regulation, respiratory function and aerobic performance in aquatic animals. More recently, many studies have demonstrated that elevated CO2 projected for end of this century (e.g. 800-1000 μatm) can also impact physiology, and have substantial effects on behaviours linked to sensory stimuli (smell, hearing and vision) both having negative implications for fitness and survival. In contrast, the aquaculture industry was farming aquatic animals at CO2 levels that far exceed end-of-century climate change projections (sometimes >10 000 μatm) long before the term 'ocean acidification' was coined, with limited detrimental effects reported. It is therefore vital to understand the reasons behind this apparent discrepancy. Potential explanations include 1) the use of 'control' CO2 levels in aquaculture studies that go beyond 2100 projections in an ocean acidification context; 2) the relatively benign environment in aquaculture (abundant food, disease protection, absence of predators) compared to the wild; 3) aquaculture species having been chosen due to their natural tolerance to the intensive conditions, including CO2 levels; or 4) the breeding of species within intensive aquaculture having further selected traits that confer tolerance to elevated CO2 . We highlight this issue and outline the insights that climate change and aquaculture science can offer for both marine and freshwater settings. Integrating these two fields will stimulate discussion on the direction of future cross-disciplinary research. In doing so, this article aimed to optimize future research efforts and elucidate effective mitigation strategies for managing the negative impacts of elevated CO2 on future aquatic ecosystems and the sustainability of fish and shellfish aquaculture.

  7. Overcoming: a concept analysis.

    PubMed

    Brush, Barbara L; Kirk, Keri; Gultekin, Laura; Baiardi, Janet M

    2011-01-01

    Nurses often work with individuals and populations striving to improve or maintain the quality of their lives. Many, struggling from complex health and social problems, are challenged to surmount barriers to achieve this goal. The growing number of homeless families in the United States represent one such cohort. To develop an operational definition of overcoming and explicate its meaning, attributes, and characteristics as it relates to homeless families. Using the concept analysis method described by Walker and Avant, along with an extensive literature review, and sample cases pertaining to family homelessness, we delineated the defining attributes, antecedents, consequences, and empirical referents of the concept, overcoming. The results of this concept analysis, particularly the relationship of overcoming to family homelessness, provide guidance for further conceptualization and empirical testing, as well as for clinical practice. © 2011 Wiley Periodicals, Inc.

  8. Current status of parasitic ciliates Chilodonella spp. (Phyllopharyngea: Chilodonellidae) in freshwater fish aquaculture.

    PubMed

    Bastos Gomes, G; Jerry, D R; Miller, T L; Hutson, K S

    2016-07-30

    Freshwater fish farming contributes to more than two-thirds of global aquaculture production. Parasitic ciliates are one of the largest causes of production loss in freshwater farmed fishes, with species from the genus Chilodonella being particularly problematic. While Chilodonella spp. include 'free-living' fauna, some species are involved in mortality events of fish, particularly in high-density aquaculture. Indeed, chilodonellosis causes major productivity losses in over 16 species of farmed freshwater fishes in more than 14 countries. Traditionally, Chilodonella species are identified based on morphological features; however, the genus comprises yet uncharacterized cryptic species, which indicates the necessity for molecular diagnostic methods. This review synthesizes current knowledge on the biology, ecology and geographic distribution of harmful Chilodonella spp. and examines pathological signs, diagnostic methods and treatments. Recent advances in molecular diagnostics and the ability to culture Chilodonella spp. in vitro will enable the development of preventative management practices and sustained freshwater fish aquaculture production.

  9. Probiotics as beneficial microbes in aquaculture: an update on their multiple modes of action: a review.

    PubMed

    Zorriehzahra, Mohammad Jalil; Delshad, Somayeh Torabi; Adel, Milad; Tiwari, Ruchi; Karthik, K; Dhama, Kuldeep; Lazado, Carlo C

    2016-12-01

    Wide and discriminate use of antibiotics has resulted in serious biological and ecological concerns, especially the emergence of antibiotic resistance. Probiotics, known as beneficial microbes, are being proposed as an effective and eco-friendly alternative to antibiotics. They were first applied in aquaculture species more than three decades ago, but considerable attention had been given only in the early 2000s. Probiotics are defined as live or dead, or even a component of the microorganisms that act under different modes of action in conferring beneficial effects to the host or to its environment. Several probiotics have been characterized and applied in fish and a number of them are of host origin. Unlike some disease control alternatives being adapted and proposed in aquaculture where actions are unilateral, the immense potential of probiotics lies on their multiple mechanisms in conferring benefits to the host fish and the rearing environment. The staggering number of probiotics papers in aquaculture highlights the multitude of advantages from these microorganisms and conspicuously position them in the dynamic search for health-promoting alternatives for cultured fish. This paper provides an update on the use of probiotics in finfish aquaculture, particularly focusing on their modes of action. It explores the contemporary understanding of their spatial and nutritional competitiveness, inhibitory metabolites, environmental modification capability, immunomodulatory potential and stress-alleviating mechanism. This timely update affirms the importance of probiotics in fostering sustainable approaches in aquaculture and provides avenues in furthering its research and development.

  10. The impact and control of biofouling in marine aquaculture: a review.

    PubMed

    Fitridge, Isla; Dempster, Tim; Guenther, Jana; de Nys, Rocky

    2012-01-01

    Biofouling in marine aquaculture is a specific problem where both the target culture species and/or infrastructure are exposed to a diverse array of fouling organisms, with significant production impacts. In shellfish aquaculture the key impact is the direct fouling of stock causing physical damage, mechanical interference, biological competition and environmental modification, while infrastructure is also impacted. In contrast, the key impact in finfish aquaculture is the fouling of infrastructure which restricts water exchange, increases disease risk and causes deformation of cages and structures. Consequently, the economic costs associated with biofouling control are substantial. Conservative estimates are consistently between 5-10% of production costs (equivalent to US$ 1.5 to 3 billion yr(-1)), illustrating the need for effective mitigation methods and technologies. The control of biofouling in aquaculture is achieved through the avoidance of natural recruitment, physical removal and the use of antifoulants. However, the continued rise and expansion of the aquaculture industry and the increasingly stringent legislation for biocides in food production necessitates the development of innovative antifouling strategies. These must meet environmental, societal, and economic benchmarks while effectively preventing the settlement and growth of resilient multi-species consortia of biofouling organisms.

  11. Overcoming Faculty Resistance.

    ERIC Educational Resources Information Center

    Gaff, Jerry G.

    1978-01-01

    Teaching improvement and institutional renewal efforts often face pessimism about change, if not suspicion and resistance, but faculty teams can overcome these problems through an action-oriented but low-profile "organic" approach. The need for personal invitations by colleagues is shown. (Author/LBH)

  12. Overcoming resistance to change.

    PubMed

    McKay, L

    1993-01-01

    The pace of change in health care organizations challenges nursing administrators at all levels of management to be effective change agents. As resistance is an inevitable element in the process of planned change, inclusion of interventions to overcome resistance is critical to the change agent role. The author presents five theoretically-based strategies for reducing the levels of resistance to planned change.

  13. Overcoming the Polyester Image.

    ERIC Educational Resources Information Center

    Regan, Dorothy

    1988-01-01

    Urges community colleges to overcome their image problem by documenting the colleges' impact on their communities. Suggests ways to determine what data should be collected, how to collect the information, and how it can be used to empower faculty, staff, and alumni to change the institution's image. (DMM)

  14. High Concentration of Red Clay as an Alternative for Antibiotics in Aquaculture.

    PubMed

    Jung, Jaejoon; Jee, Seung Cheol; Sung, Jung-Suk; Park, Woojun

    2016-01-01

    The use of antibiotics in aquaculture raises environmental and food safety concerns because chronic exposure of an aquatic ecosystem to antibiotics can result in the spread of antibiotic resistance, bioaccumulation of antibiotics in the organisms, and transfer of antibiotics to humans. In an attempt to overcome these problems, high-concentration red clay was applied as an alternative antibiotic against the following common fish pathogens: Aeromonas salmonicida, Vibrio alginolyticus, and Streptococcus equinus. The growth of A. salmonicida and V. alginolyticus was retarded by red clay, whereas that of S. equinus was promoted. Phase contrast and scanning electron microscopy analyses confirmed the attachment of red clay on cell surfaces, resulting in rapid gravitational removal and cell surface damage in both A. salmonicida and V. alginolyticus, but not in S. equinus. Different cell wall properties of grampositive species may explain the unharmed cell surface of S. equinus. Significant levels of oxidative stress were generated in only the former two species, whereas significant changes in membrane permeability were found only in S. equinus, probably because of its physiological adaptation. The bacterial communities in water samples from Oncorhynchus mykiss aquacultures supplemented with red clay showed similar structure and diversity as those from oxytetracycline-treated water. Taken together, the antibiotic effects of high concentrations of red clay in aquaculture can be attributed to gravitational removal, cell surface damage, and oxidative stress production, and suggest that red clay may be used as an alternative for antibiotics in aquaculture.

  15. Current status of federal involvement in US aquaculture. Background paper

    SciTech Connect

    1995-09-01

    The United States lacks a strong national aquaculture policy and supporting federal presence. Over the years, levels and focii of agency involvement in aquaculture development have shifted in response to legislation and its differing interpretations. The National Aquaculture Act (NAA), the primary piece of aquaculture-related legislation, is slated for reauthorization of the NAA and related legislation is the federal role in research and regulation of this emerging industry. Congress requested this Background Paper to provide information on technology issues of immediate importance to the U.S. aquaculture industry. This is a companion piece to the Background Paper on Selected Technology Issues in U.S. Aquaculture.

  16. Fluxes of greenhouse gases at two different aquaculture ponds in the coastal zone of southeastern China

    NASA Astrophysics Data System (ADS)

    Yang, Ping; He, Qinghua; Huang, Jiafang; Tong, Chuan

    2015-08-01

    Shallow water ponds are important contributors to greenhouse gas (GHG) fluxes into the atmosphere. Aquaculture ponds cover an extremely large area in China's entire coastal zone. Knowledge of greenhouse gas fluxes from aquaculture ponds is very limited, but measuring GHG fluxes from aquaculture ponds is fundamental for estimating their impact on global warming. This study investigated the magnitude of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) fluxes from two coastal aquaculture ponds during 2011 and 2012 in the Shanyutan wetland of the Min River estuary, southeastern China, and determined the factors that may regulate GHG fluxes from the two ponds. The average fluxes of CO2, CH4 and N2O were 20.78 mgCO2 m-2h-1, 19.95 mgCH4 m-2h-1 and 10.74 μgN2O m-2h-1, respectively, in the shrimp pond. The average fluxes of CO2, CH4 and N2O were -60.46 mgCO2 m-2h-1, 1.65 mgCH4 m-2h-1 and 11.8 μgN2O m-2h-1, respectively, in the mixed shrimp and fish aquaculture pond during the study period. The fluxes of all three gases showed distinct temporal variations. The variations in the GHG fluxes were influenced by interactions with the thermal regime, pH, trophic status and chlorophyll-a content. Significant differences in the CO2 and N2O fluxes between the shrimp pond and the mixed aquaculture pond were observed from September to November, whereas the CH4 fluxes from the two ponds were not significantly different. The difference in the CO2 flux likely was related to the effects of photosynthesis, biological respiration and the mineralization of organic matter, whereas the N2O fluxes were controlled by the interactions between nitrogen substrate availability and pH. Water salinity, trophic status and dissolved oxygen concentration likely affected CH4 emission. Our results suggest that subtropical coastal aquaculture ponds are important contributors to regional CH4 and N2O emissions into the atmosphere, and their contribution to global warming must be considered

  17. DNA vaccines for aquacultured fish.

    PubMed

    Lorenzen, N; LaPatra, S E

    2005-04-01

    Deoxyribonucleic acid (DNA) vaccination is based on the administration of the gene encoding the vaccine antigen, rather than the antigen itself. Subsequent expression of the antigen by cells in the vaccinated hosts triggers the host immune system. Among the many experimental DNA vaccines tested in various animal species as well as in humans, the vaccines against rhabdovirus diseases in fish have given some of the most promising results. A single intramuscular (IM) injection of microgram amounts of DNA induces rapid and long-lasting protection in farmed salmonids against economically important viruses such as infectious haematopoietic necrosis virus (IHNV) and viral haemorrhagic septicaemia virus (VHSV). DNA vaccines against other types of fish pathogens, however, have so far had limited success. The most efficient delivery route at present is IM injection, and suitable delivery strategies for mass vaccination of small fish have yet to be developed. In terms of safety, no adverse effects in the vaccinated fish have been observed to date. As DNA vaccination is a relatively new technology, various theoretical and long-term safety issues related to the environment and the consumer remain to be fully addressed, although inherently the risks should not be any greater than with the commercial fish vaccines that are currently used. Present classification systems lack clarity in distinguishing DNA-vaccinated animals from genetically modified organisms (GMOs), which could raise issues in terms of licensing and public acceptance of the technology. The potential benefits of DNA vaccines for farmed fish include improved animal welfare, reduced environmental impacts of aquaculture activities, increased food quality and quantity, and more sustainable production. Testing under commercial production conditions has recently been initiated in Canada and Denmark.

  18. Sea ducks and aquaculture: the cadmium connection.

    PubMed

    Bendell, L I

    2011-03-01

    Elevated concentrations of cadmium have been reported in the kidneys of sea ducks that forage along the Pacific Northwest, and cadmium has been postulated as a possible cause of population declines. The blue mussel (Mytilus spp.) which occurs in dense numbers on aquaculture structures and are a primary prey item for sea ducks also contain elevated cadmium concentrations. To determine if foraging on mussels associated with aquaculture structures could pose a toxicological risk to sea ducks, amounts of cadmium ingested per body weight per day by a representative sea duck species, the surf scoter (Melanitta perspicillata), were estimated and compared to the reported avian cadmium NOAEL (no observable adverse effect level) and LOAEL (lowest observable adverse effect level). Results indicate that in some locations within the Pacific Northwest, sea ducks could be exposed to toxicologically significant levels of cadmium associated with mussels foraged from aquaculture structures. This raises the possibility that such exposure could be contributing to observed population declines in these species.

  19. Genetically modified organisms (GMOs) and aquaculture.

    PubMed

    Beardmore, J A; Porter, Joanne S

    2003-01-01

    This paper reviews the nature of genetically modified organisms (GMOs), the range of aquatic species in which GMOs have been produced, the methods and target genes employed, the benefits to aquaculture, the problems attached to use of GMOs in aquatic species and the regulatory and other social frameworks surrounding them. A set of recommendations aimed at best practice is appended. This states the potential value of GMOs in aquaculture but also calls for improved knowledge particularly of sites of integration, risk analysis, progress in achieving sterility in fish for production and better dissemination of relevant information.

  20. A Research Update for the Stuttgart National Aquaculture Research Center

    USDA-ARS?s Scientific Manuscript database

    Aquaculture (fish farming) has played an ever-increasing role in providing people with fish, shrimp, and shellfish. Aquaculture is currently the fastest growing sector of global food production and in 2014 totaled 80 million tons valued at $140 billion. The production of food-fish from aquaculture...

  1. Harry K. Dupree Stuttgart National Aquaculture Research Center

    USDA-ARS?s Scientific Manuscript database

    Aquaculture (fish farming) has played an ever-increasing role in providing people with fish, shrimp, and shellfish. Aquaculture is currently the fastest growing sector of global food production and in 2011 totaled 60 million tons valued at $119 billion. The production of food-fish from aquaculture...

  2. Assessing the Aquaculture Curricula in the Northeastern Region.

    ERIC Educational Resources Information Center

    Wingenbach, Gary J.; Gartin, Stacy A.; Lawrence, Layle D.

    2000-01-01

    Survey responses from 70 secondary agriculture teachers who included aquaculture in the curriculum indicated they averaged 4.5 years experience teaching aquaculture. Limited facilities, equipment costs, and low teacher knowledge were barriers. Only eight had used all of the aquaculture curriculum materials from the National Council for…

  3. Assessing the Aquaculture Curricula in the Northeastern Region.

    ERIC Educational Resources Information Center

    Wingenbach, Gary J.; Gartin, Stacy A.; Lawrence, Layle D.

    2000-01-01

    Survey responses from 70 secondary agriculture teachers who included aquaculture in the curriculum indicated they averaged 4.5 years experience teaching aquaculture. Limited facilities, equipment costs, and low teacher knowledge were barriers. Only eight had used all of the aquaculture curriculum materials from the National Council for…

  4. 7 CFR 1437.303 - Aquaculture, including ornamental fish.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Aquaculture, including ornamental fish. 1437.303... ASSISTANCE PROGRAM Determining Coverage Using Value § 1437.303 Aquaculture, including ornamental fish. (a) Aquaculture is a value loss crop and is compensable only in accord with restrictions set in this section...

  5. 7 CFR 1437.303 - Aquaculture, including ornamental fish.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Aquaculture, including ornamental fish. 1437.303... ASSISTANCE PROGRAM Determining Coverage Using Value § 1437.303 Aquaculture, including ornamental fish. (a) Aquaculture is a value loss crop and is compensable only in accord with restrictions set in this section...

  6. 7 CFR 1437.303 - Aquaculture, including ornamental fish.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Aquaculture, including ornamental fish. 1437.303... ASSISTANCE PROGRAM Determining Coverage Using Value § 1437.303 Aquaculture, including ornamental fish. (a) Aquaculture is a value loss crop and is compensable only in accord with restrictions set in this section...

  7. 7 CFR 1437.303 - Aquaculture, including ornamental fish.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Aquaculture, including ornamental fish. 1437.303... ASSISTANCE PROGRAM Determining Coverage Using Value § 1437.303 Aquaculture, including ornamental fish. (a) Aquaculture is a value loss crop and is compensable only in accord with restrictions set in this section...

  8. 76 FR 9210 - Draft DOC National Aquaculture Policy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-16

    ... approach for supporting sustainable aquaculture. The National Oceanic and Atmospheric Administration (NOAA) within the ] Department of Commerce is also seeking public comments on a NOAA draft aquaculture policy... complementary NOAA and DOC draft aquaculture policies. DATES: Public comments must be received by midnight,...

  9. Aquaculture and stress management: a review of probiotic intervention.

    PubMed

    Mohapatra, S; Chakraborty, T; Kumar, V; DeBoeck, G; Mohanta, K N

    2013-06-01

    To meet the ever-increasing demand for animal protein, aquaculture continuously requires new techniques to increase the production yield. However, with every step towards intensification of aquaculture practices, there is an increase in stress level on the animal as well as on the environment. Feeding practices in aqua farming usually plays an important role, and the addition of various additives to a balanced feed formula to achieve better growth is a common practice among the fish and shrimp culturists. Probiotics, also known as 'bio-friendly agents', such as LAB (Lactobacillus), yeasts and Bacillus sp., can be introduced into the culture environment to control and compete with pathogenic bacteria as well as to promote the growth of the cultured organisms. In addition, probiotics are non-pathogenic and non-toxic micro-organisms, having no undesirable side effects when administered to aquatic organisms. Probiotics are also known to play an important role in developing innate immunity among the fishes, and hence help them to fight against any pathogenic bacterias as well as against environmental stressors. The present review is a brief but informative compilation of the different essential and desirable traits of probiotics, their mode of action and their useful effects on fishes. The review also highlights the role of probiotics in helping the fishes to combat against the different physical, chemical and biological stress.

  10. Overcoming drug resistance through in silico prediction.

    PubMed

    Carbonell, Pablo; Trosset, Jean-Yves

    2014-03-01

    Prediction tools are commonly used in pre-clinical research to assist target selection, to optimize drug potency or to predict the pharmacological profile of drug candidates. In silico prediction and overcoming drug resistance is a new opportunity that creates a high interest in pharmaceutical research. This review presents two main in silico strategies to meet this challenge: a structure-based approach to study the influence of mutations on the drug-target interaction and a system-biology approach to identify resistance pathways for a given drug. In silico screening of synergies between therapeutic and resistant pathways through biological network analysis is an example of technique to escape drug resistance. Structure-based drug design and in silico system biology are complementary approaches to reach few objectives at once: increase efficiency, reduce toxicity and overcoming drug resistance.

  11. Aquaculture techniques: a production forecasting model for aquaculture systems. Technical completion report

    SciTech Connect

    Downey, P.C.; Klontz, G.W.

    1983-03-01

    Computer implementation of the mathematical models of quantitative relationships in aquaculture systems is a dynamic process which provides a conceptual framework for understanding systems behavior. These models can provide useful information on variable significance to systems functioning. This computer-implemented mathematical model addresses one of the significant limitations of aquaculture systems management, namely, production forecasting, by providing a method of using current technology to predict Allowable Growth Rate (AGR).

  12. Hybrid governance of aquaculture: Opportunities and challenges.

    PubMed

    Vince, Joanna; Haward, Marcus

    2017-10-01

    The development of third party assessment and certification of fisheries and aquaculture has provided new forms of governance in sectors that were traditionally dominated by state based regulation. Emerging market based approaches are driven by shareholder expectations as well as commitment to corporate social responsibility, whereas community engagement is increasingly centered on the questions of social license to operate. Third party assessment and certification links state, market and community into an interesting and challenging hybrid form of governance. While civil society organizations have long been active in pursuing sustainable and safe seafood production, the development of formal non-state based certification provides both opportunities and challenges, and opens up interesting debates over hybrid forms of governance. This paper explores these developments in coastal marine resources management, focusing on aquaculture and the development and operation of the Aquaculture Stewardship Council. It examines the case of salmonid aquaculture in Tasmania, Australia, now Australia's most valuable seafood industry, which remains the focus of considerable community debate over its siting, operation and environmental impact. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Copper toxicity in aquaculture: A practical approach

    USDA-ARS?s Scientific Manuscript database

    Copper sulfate is used as a therapeutant for various applications in aquaculture. There is a great deal of information on the toxicity of copper, especially in low-alkalinity waters; however, much of this information is fragmented, and a comprehensive guide of copper toxicity and safe concentration...

  14. The use of probiotics in aquaculture.

    PubMed

    Hai, N V

    2015-10-01

    This study aims to present comprehensive notes for the use of probiotics in aquaculture. Probiotics have been proven to be positive promoters of aquatic animal growth, survival and health. In aquaculture, intestines, gills, the skin mucus of aquatic animals, and habitats or even culture collections and commercial products, can be sources for acquiring appropriate probiotics, which have been identified as bacteria (Gram-positive and Gram-negative) and nonbacteria (bacteriophages, microalgae and yeasts). While a bacterium is a pathogen to one aquatic animal, it can bring benefits to another fish species; a screening process plays a significant role in making a probiotic species specific. The administration of probiotics varies from oral/water routine to feed additives, of which the latter is commonly used in aquaculture. Probiotic applications can be either mono or multiple strains, or even in combination with prebiotic, immunostimulants such as synbiotics and synbiotism, and in live or dead forms. Encapsulating probiotics with live feed is a suitable approach to convey probiotics to aquatic animals. Dosage and duration of time are significant factors in providing desired results. Several modes of actions of probiotics are presented, while some others are not fully understood. Suggestions for further studies on the effects of probiotics in aquaculture are proposed. © 2015 The Society for Applied Microbiology.

  15. Copper toxicity in aquaculture: A practical approach

    USDA-ARS?s Scientific Manuscript database

    Copper sulfate has been used in aquaculture for many years to control weeds, algae, snails (which carry catfish trematode), and ecto-parasitic organisms in catfish production. Our research has also shown it to be safe and effective to treat fungus on various fish eggs (catfish, hybrid striped bass,...

  16. Best Management Practices for Responsible Aquaculture

    USDA-ARS?s Scientific Manuscript database

    Aquaculture has become a significant component of global fish production contributing about 380% in 2003 of fish products for human consumption. The proportion is likely to increase further due to increased demand of fish for food and stagnated capture fishery. Paralleling to the growth of aquacultu...

  17. Government Seeking Ways to Encourage Aquaculture

    ERIC Educational Resources Information Center

    Holden, Constance

    1978-01-01

    The U.S. imports more than half its fish foods per year. As a result, the federal government is now showing an interest in aquaculture and has designated the Department of Agriculture as the lead agency for research, extension, and education. Catfish, salmon, and oyster farming are given as examples. (MA)

  18. Inverness College: Innovations in Aquaculture Training.

    ERIC Educational Resources Information Center

    Regional Technology Strategies, Inc., Carrboro, NC.

    This paper describes the aquaculture program developed at Inverness College in Scotland. Inverness is located in the Scottish Highlands and serves an area roughly the size of Belgium, but with a population of only 300,000. The regional infrastructure and human capital resources in the Highlands are relatively weak due to inadequate transportation,…

  19. Government Seeking Ways to Encourage Aquaculture

    ERIC Educational Resources Information Center

    Holden, Constance

    1978-01-01

    The U.S. imports more than half its fish foods per year. As a result, the federal government is now showing an interest in aquaculture and has designated the Department of Agriculture as the lead agency for research, extension, and education. Catfish, salmon, and oyster farming are given as examples. (MA)

  20. Production of cobia in recirculating aquaculture systems

    USDA-ARS?s Scientific Manuscript database

    Interest in cobia Rachycentron canadum aquaculture in the US has increased greatly in the last decade due to their excellent consumer appeal, extremely rapid growth rates, and the observed success of rearing this species in Taiwan and other southeastern Asian countries. Because most cobia are grown...

  1. Recirculation technology – The future of aquaculture

    USDA-ARS?s Scientific Manuscript database

    The production of farmed fish is eclipsing that of wild caught fish and will be supplying half of the total fish and shellfish for human consumption. With limited resources to increase the wild harvest fishing industry, the U. S. and foreign countries are expanding their aquaculture production. Betw...

  2. Can greening of aquaculture sequester blue carbon?

    PubMed

    Ahmed, Nesar; Bunting, Stuart W; Glaser, Marion; Flaherty, Mark S; Diana, James S

    2016-11-15

    Globally, blue carbon (i.e., carbon in coastal and marine ecosystems) emissions have been seriously augmented due to the devastating effects of anthropogenic pressures on coastal ecosystems including mangrove swamps, salt marshes, and seagrass meadows. The greening of aquaculture, however, including an ecosystem approach to Integrated Aquaculture-Agriculture (IAA) and Integrated Multi-Trophic Aquaculture (IMTA) could play a significant role in reversing this trend, enhancing coastal ecosystems, and sequestering blue carbon. Ponds within IAA farming systems sequester more carbon per unit area than conventional fish ponds, natural lakes, and inland seas. The translocation of shrimp culture from mangrove swamps to offshore IMTA could reduce mangrove loss, reverse blue carbon emissions, and in turn increase storage of blue carbon through restoration of mangroves. Moreover, offshore IMTA may create a barrier to trawl fishing which in turn could help restore seagrasses and further enhance blue carbon sequestration. Seaweed and shellfish culture within IMTA could also help to sequester more blue carbon. The greening of aquaculture could face several challenges that need to be addressed in order to realize substantial benefits from enhanced blue carbon sequestration and eventually contribute to global climate change mitigation.

  3. Prevention of infectious diseases in aquaculture

    USGS Publications Warehouse

    Ahne, W.; Winton, J.R.; Kimura, T.

    1989-01-01

    Infectious diseases remain one of the most important limitations to the successful propagation of aquatic animals. Most of the losses caused by pathogens in aquaculture could be prevented by health inspection, adequate environment and sound management practices. Effective control measures, mainly based upon 1) avoidance of pathogens 2) modification of the environment 3) improvement of host resistance 4) vaccination and 5) chemoprophylaxis are described.

  4. Disease and health management in Asian aquaculture.

    PubMed

    Bondad-Reantaso, Melba G; Subasinghe, Rohana P; Arthur, J Richard; Ogawa, Kazuo; Chinabut, Supranee; Adlard, Robert; Tan, Zilong; Shariff, Mohamed

    2005-09-30

    Asia contributes more than 90% to the world's aquaculture production. Like other farming systems, aquaculture is plagued with disease problems resulting from its intensification and commercialization. This paper describes the various factors, providing specific examples, which have contributed to the current disease problems faced by what is now the fastest growing food-producing sector globally. These include increased globalization of trade and markets; the intensification of fish-farming practices through the movement of broodstock, postlarvae, fry and fingerlings; the introduction of new species for aquaculture development; the expansion of the ornamental fish trade; the enhancement of marine and coastal areas through the stocking of aquatic animals raised in hatcheries; the unanticipated interactions between cultured and wild populations of aquatic animals; poor or lack of effective biosecurity measures; slow awareness on emerging diseases; the misunderstanding and misuse of specific pathogen free (SPF) stocks; climate change; other human-mediated movements of aquaculture commodities. Data on the socio-economic impacts of aquatic animal diseases are also presented, including estimates of losses in production, direct and indirect income and employment, market access or share of investment, and consumer confidence; food availability; industry failures. Examples of costs of investment in aquatic animal health-related activities, including national strategies, research, surveillance, control and other health management programmes are also provided. Finally, the strategies currently being implemented in the Asian region to deal with transboundary diseases affecting the aquaculture sector are highlighted. These include compliance with international codes, and development and implementation of regional guidelines and national aquatic animal health strategies; new diagnostic and therapeutic techniques and new information technology; new biosecurity measures including

  5. Impacts of aquaculture wastewater irrigation on soil microbial functional diversity and community structure in arid regions.

    PubMed

    Chen, Lijuan; Feng, Qi; Li, Changsheng; Wei, Yongping; Zhao, Yan; Feng, Yongjiu; Zheng, Hang; Li, Fengrui; Li, Huiya

    2017-09-11

    Aquaculture wastewater is one of the most important alternative water resources in arid regions where scarcity of fresh water is common. Irrigation with this kind of water may affect soil microbial functional diversity and community structure as changes of soil environment would be significant. Here, we conducted a field sampling to investigate these effects using Biolog and metagenomic methods. The results demonstrated that irrigation with aquaculture wastewater could dramatically reduce soil microbial functional diversity. The values of diversity indices and sole carbon source utilization were all significantly decreased. Increased soil salinity, especially Cl concentration, appeared primarily associated with the decreases. Differently, higher bacterial community diversity was obtained in aquaculture wastewater irrigated soils. More abundant phyla Actinobacteria, Chloroflexi, Acidobacteria, Gemmatimonadetes and fewer members of Proteobacteria, Bacteroidetes and Planctomycetes were found in this kind of soils. Changes in the concentration of soil Cl mainly accounted for the shifts of bacterial community composition. This research can improve our understanding of how aquaculture wastewater irrigation changes soil microbial process and as a result, be useful to manage soil and wastewater resources in arid regions.

  6. Nanostructured fusiform hydroxyapatite particles precipitated from aquaculture wastewater.

    PubMed

    Correas, Covadonga; Gerardo, Michael L; Lord, Alexander M; Ward, Michael B; Andreoli, Enrico; Barron, Andrew R

    2017-02-01

    The present work represents a new approach for the isolation of uniform nano particulate hydroxyapatite (HAp). The chemical characterization of a calcium phosphate product obtained from industrial trout farm aquaculture wastewater by two different routes, washing either with a basic aqueous medium (washNaOH) or followed by a further washing with ethanol (washEtOH), is explored. Characterization of the isolated materials includes morphology studies (SEM and TEM), structural (XRD, electron diffraction), compositional (EDX) and thermogravimetric analysis (TGA). The obtained products are a mixture of different compounds, with hydroxyapatite the predominant phase. The morphology is unusually nanometric size with fusiform shaped particles, such characteristics are ordinarily only obtained by synthetic routes. This process of phosphate precipitation represents a unique self-sufficient process to be compared to conventional chemical or biological practices for precipitating phosphate.

  7. Vaccines for fish in aquaculture.

    PubMed

    Sommerset, Ingunn; Krossøy, Bjørn; Biering, Eirik; Frost, Petter

    2005-02-01

    Vaccination plays an important role in large-scale commercial fish farming and has been a key reason for the success of salmon cultivation. In addition to salmon and trout, commercial vaccines are available for channel catfish, European seabass and seabream, Japanese amberjack and yellowtail, tilapia and Atlantic cod. In general, empirically developed vaccines based on inactivated bacterial pathogens have proven to be very efficacious in fish. Fewer commercially available viral vaccines and no parasite vaccines exist. Substantial efficacy data are available for new fish vaccines and advanced technology has been implemented. However, before such vaccines can be successfully commercialized, several hurdles have to be overcome regarding the production of cheap but effective antigens and adjuvants, while bearing in mind environmental and associated regulatory concerns (e.g., those that limit the use of live vaccines). Pharmaceutical companies have performed a considerable amount of research on fish vaccines, however, limited information is available in scientific publications. In addition, salmonids dominate both the literature and commercial focus, despite their relatively small contribution to the total volume of farmed fish in the world. This review provides an overview of the fish vaccines that are currently commercially available and some viewpoints on how the field is likely to evolve in the near future.

  8. Monitoring and modeling of microbial and biological water quality

    USDA-ARS?s Scientific Manuscript database

    Microbial and biological water quality informs on the health of water systems and their suitability for uses in irrigation, recreation, aquaculture, and other activities. Indicators of microbial and biological water quality demonstrate high spatial and temporal variability. Therefore, monitoring str...

  9. Is Our Food Future in the Sea? A Marine Education Infusion Unit on Aquaculture and Sea Farming. Revised Edition.

    ERIC Educational Resources Information Center

    Butzow, John W.; And Others

    Designed to introduce middle and junior high school teachers and students to aquaculture and sea farming, the information and lessons in this unit focus on the biology, economics, and gastronomics of these fresh and salt water activities. An extensive section containing teacher background information describes how to farm shellfish and finfish,…

  10. Coral aquaculture to support drug discovery.

    PubMed

    Leal, Miguel C; Calado, Ricardo; Sheridan, Christopher; Alimonti, Andrea; Osinga, Ronald

    2013-10-01

    Marine natural products (NP) are unanimously acknowledged as the 'blue gold' in the urgent quest for new pharmaceuticals. Although corals are among the marine organisms with the greatest diversity of secondary metabolites, growing evidence suggest that their symbiotic bacteria produce most of these bioactive metabolites. The ex hospite culture of coral symbiotic microbiota is extremely challenging and only limited examples of successful culture exist today. By contrast, in toto aquaculture of corals is a commonly applied technology to produce corals for aquaria. Here, we suggest that coral aquaculture could as well be a viable and economically feasible option to produce the biomass required to execute the first steps of the NP-based drug discovery pipeline.

  11. The use of probiotics in shrimp aquaculture.

    PubMed

    Farzanfar, Ali

    2006-11-01

    Shrimp aquaculture, as well as other industries, constantly requires new techniques in order to increase production yield. Modern technologies and other sciences such as biotechnology and microbiology are important tools that could lead to a higher quality and greater quantity of products. Feeding and new practices in farming usually play an important role in aquaculture, and the addition of various additives to a balanced feed formula to achieve better growth is a common practice of many fish and shrimp feed manufacturers and farmers. Probiotics, as 'bio-friendly agents' such as lactic acid bacteria and Bacillus spp., can be introduced into the culture environment to control and compete with pathogenic bacteria as well as to promote the growth of the cultured organisms. In addition, probiotics are nonpathogenic and nontoxic microorganisms without undesirable side-effects when administered to aquatic organisms. These strains of bacteria have many other positive effects, which are described in this article.

  12. Food safety issues associated with products from aquaculture. Report of a Joint FAO/NACA/WHO Study Group.

    PubMed

    1999-01-01

    The past decade has seen rapid expansion in aquaculture production. In the fisheries sector, as in animal production, farming is replacing hunting as the primary food production strategy. In future, farmed fish will be an even more important source of protein foods than they are today, and the safety for human consumption of products from aquaculture is of public health significance. This is the report of a Study Group that considered food safety issues associated with farmed finfish and crustaceans. The principal conclusion was that an integrated approach--involving close collaboration between the aquaculture, agriculture, food safety, health and education sectors--is needed to identify and control hazards associated with products from aquaculture. Food safety assurance should be included in fish farm management and form an integral part of the farm-to-table food safety continuum. Where appropriate, measures should be based on Hazard Analysis and Critical Control Point (HACCP) methods; however, difficulties in applying HACCP principles to small-scale farming systems were recognized. Food safety hazards associated with products from aquaculture differ according to region, habitat and environmental conditions, as well as methods of production and management. Lack of awareness of hazards can hinder risk assessment and the application of risk management strategies to aquaculture production, and education is therefore needed. Chemical and biological hazards that should to be taken into account in public health policies concerning products from aquaculture are discussed in this report, which should be of use to policy-makers and public health officials. The report will also assist fish farmers to identify hazards and develop appropriate hazard-control strategies.

  13. New aquaculture drugs under FDA review

    USGS Publications Warehouse

    Bowker, James D.; Gaikowski, Mark P.

    2012-01-01

    Only eight active pharmaceutical ingredients available in 18 drug products have been approved by the U.S. Food and Drug Administration for use in aquaculture. The approval process can be lengthy and expensive, but several new drugs and label claims are under review. Progress has been made on approvals for Halamid (chloramine-T), Aquaflor (florfenicol) and 35% PeroxAid (hydrogen peroxide) as therapeutic drugs. Data are also being generated for AQUI-S 20E, a fish sedative.

  14. Probiotics as control agents in aquaculture

    NASA Astrophysics Data System (ADS)

    Geovanny D, Gómez R.; Balcázar, José Luis; Ma, Shen

    2007-01-01

    Infectious diseases constitute a limiting factor in the development of the aquaculture production, and control has solely concentrated on the use of antibiotics. However, the massive use of antibiotics for the control of diseases has been questioned by acquisition of antibiotic resistance and the need of alternative is of prime importance. Probiotics, live microorganisms administered in adequate amounts that confer a healthy effect on the host, are emerging as significant microbial food supplements in the field of prophylaxis.

  15. Carotenoids in Aquaculture: Fish and Crustaceans

    NASA Astrophysics Data System (ADS)

    Bjerkeng, Bjorn

    This Chapter deals with selected topics on the use of carotenoids for colouration in aquaculture and incudes examples from ecological studies which support our understanding of functions and actions of carotenoids and colouration in fishes and crustaceans. Animal colours may be physical or structural in origin [1], e.g. Tyndall blues and iridescent diffraction colours, or they may be due to pigments, including carotenoids (Chapter 10).

  16. Risks of using antifouling biocides in aquaculture.

    PubMed

    Guardiola, Francisco Antonio; Cuesta, Alberto; Meseguer, José; Esteban, Maria Angeles

    2012-01-01

    Biocides are chemical substances that can deter or kill the microorganisms responsible for biofouling. The rapid expansion of the aquaculture industry is having a significant impact on the marine ecosystems. As the industry expands, it requires the use of more drugs, disinfectants and antifoulant compounds (biocides) to eliminate the microorganisms in the aquaculture facilities. The use of biocides in the aquatic environment, however, has proved to be harmful as it has toxic effects on the marine environment. Organic booster biocides were recently introduced as alternatives to the organotin compounds found in antifouling products after restrictions were imposed on the use of tributyltin (TBT). The replacement products are generally based on copper metal oxides and organic biocides. The biocides that are most commonly used in antifouling paints include chlorothalonil, dichlofluanid, DCOIT (4,5-dichloro-2-n-octyl-4-isothiazolin-3-one, Sea-nine 211(®)), Diuron, Irgarol 1051, TCMS pyridine (2,3,3,6-tetrachloro-4-methylsulfonyl pyridine), zinc pyrithione and Zineb. There are two types of risks associated with the use of biocides in aquaculture: (i) predators and humans may ingest the fish and shellfish that have accumulated in these contaminants and (ii) the development of antibiotic resistance in bacteria. This paper provides an overview of the effects of antifouling (AF) biocides on aquatic organisms. It also provides some insights into the effects and risks of these compounds on non-target organisms.

  17. Probiotics as Antiviral Agents in Shrimp Aquaculture

    PubMed Central

    Lakshmi, Bestha; Sai Gopal, D. V. R.

    2013-01-01

    Shrimp farming is an aquaculture business for the cultivation of marine shrimps or prawns for human consumption and is now considered as a major economic and food production sector as it is an increasingly important source of protein available for human consumption. Intensification of shrimp farming had led to the development of a number of diseases, which resulted in the excessive use of antimicrobial agents, which is finally responsible for many adverse effects. Currently, probiotics are chosen as the best alternatives to these antimicrobial agents and they act as natural immune enhancers, which provoke the disease resistance in shrimp farm. Viral diseases stand as the major constraint causing an enormous loss in the production in shrimp farms. Probiotics besides being beneficial bacteria also possess antiviral activity. Exploitation of these probiotics in treatment and prevention of viral diseases in shrimp aquaculture is a novel and efficient method. This review discusses the benefits of probiotics and their criteria for selection in shrimp aquaculture and their role in immune power enhancement towards viral diseases. PMID:23738078

  18. Probiotics in shrimp aquaculture: avenues and challenges.

    PubMed

    Ninawe, A S; Selvin, Joseph

    2009-01-01

    As an alternative strategy to antibiotic use in aquatic disease management, probiotics have recently attracted extensive attention in aquaculture. However, the use of terrestrial bacterial species as probiotics for aquaculture has had limited success, as bacterial strain characteristics are dependent upon the environment in which they thrive. Therefore, isolating potential probiotic bacteria from the marine environment in which they grow optimally is a better approach. Bacteria that have been used successfully as probiotics belong to the genus Vibrio and Bacillus, and the species Thalassobacter utilis. Most researchers have isolated these probiotic strains from shrimp culture water, or from the intestine of different penaeid species. The use of probiotic bacteria, based on the principle of competitive exclusion, and the use of immunostimulants are two of the most promising preventive methods developed in the fight against diseases during the last few years. It also noticed that probiotic bacteria could produce some digestive enzymes, which might improve the digestion of shrimp, thus enhancing the ability of stress resistance and health of the shrimp. However, the probiotics in aquatic environment remain to be a controversial concept, as there was no authentic evidence / real environment demonstrations on the successful use of probiotics and their mechanisms of action in vivo. The present review highlights the potential sources of probiotics, mechanism of action, diversity of probiotic microbes and challenges of probiotic usage in shrimp aquaculture.

  19. Risks of Using Antifouling Biocides in Aquaculture

    PubMed Central

    Guardiola, Francisco Antonio; Cuesta, Alberto; Meseguer, José; Esteban, Maria Angeles

    2012-01-01

    Biocides are chemical substances that can deter or kill the microorganisms responsible for biofouling. The rapid expansion of the aquaculture industry is having a significant impact on the marine ecosystems. As the industry expands, it requires the use of more drugs, disinfectants and antifoulant compounds (biocides) to eliminate the microorganisms in the aquaculture facilities. The use of biocides in the aquatic environment, however, has proved to be harmful as it has toxic effects on the marine environment. Organic booster biocides were recently introduced as alternatives to the organotin compounds found in antifouling products after restrictions were imposed on the use of tributyltin (TBT). The replacement products are generally based on copper metal oxides and organic biocides. The biocides that are most commonly used in antifouling paints include chlorothalonil, dichlofluanid, DCOIT (4,5-dichloro-2-n-octyl-4-isothiazolin-3-one, Sea-nine 211®), Diuron, Irgarol 1051, TCMS pyridine (2,3,3,6-tetrachloro-4-methylsulfonyl pyridine), zinc pyrithione and Zineb. There are two types of risks associated with the use of biocides in aquaculture: (i) predators and humans may ingest the fish and shellfish that have accumulated in these contaminants and (ii) the development of antibiotic resistance in bacteria. This paper provides an overview of the effects of antifouling (AF) biocides on aquatic organisms. It also provides some insights into the effects and risks of these compounds on non-target organisms. PMID:22408407

  20. Probiotics as antiviral agents in shrimp aquaculture.

    PubMed

    Lakshmi, Bestha; Viswanath, Buddolla; Sai Gopal, D V R

    2013-01-01

    Shrimp farming is an aquaculture business for the cultivation of marine shrimps or prawns for human consumption and is now considered as a major economic and food production sector as it is an increasingly important source of protein available for human consumption. Intensification of shrimp farming had led to the development of a number of diseases, which resulted in the excessive use of antimicrobial agents, which is finally responsible for many adverse effects. Currently, probiotics are chosen as the best alternatives to these antimicrobial agents and they act as natural immune enhancers, which provoke the disease resistance in shrimp farm. Viral diseases stand as the major constraint causing an enormous loss in the production in shrimp farms. Probiotics besides being beneficial bacteria also possess antiviral activity. Exploitation of these probiotics in treatment and prevention of viral diseases in shrimp aquaculture is a novel and efficient method. This review discusses the benefits of probiotics and their criteria for selection in shrimp aquaculture and their role in immune power enhancement towards viral diseases.

  1. Meeting the Needs for More Fish Through Aquaculture

    NASA Astrophysics Data System (ADS)

    Giap, D. H.; Lam, T. J.

    2015-10-01

    Fish is one of the major sources of animal protein. Due to rising world populations, increasing income and urbanization, demand for fish has been increasing. In order to meet the need for more fish, aquaculture has become increasingly important as wild populations and production from capture fisheries have declined due to overfishing and poor management. In recent years, production from aquaculture has increased rapidly to address the shortfalls in capture fisheries, especially in Asia where aquaculture production accounts for about 90% of world aquaculture production by volume. This paper reviews the status of the world’s fish production, provides an update on Asian aquaculture, and highlights developments that are contributing to sustainable fish production, particularly integrated multi-trophic aquaculture and aquaponics.

  2. Fisheries And Aquaculture Resources And Their Interactions With Environment in Turkey

    NASA Astrophysics Data System (ADS)

    Deniz, H.

    2003-04-01

    Turkey, with 8333 km of coast line, 151 080 sq. km economic sea area, many rivers with 177 714 total length, nearly, 1 million ha of natural lakes, 500 000 ha of dam reservoirs has rich marine and inland aquatic resource potential. Despite of these large resources, Turkish fisheries has the characteristics of small-scale fisheries and in general it can be considered as coastal fisheries. There is also great potential for inland fisheries and aquaculture. Being in half closed position, these seas have different characteristics in respect of biological, physical, chemical and ecological points. In addition; Turkey has favourable geographic position between the Black Sea and Mediterranean Sea. Nevertheless, this potential seems not to be fully utilised and therefore fisheries is not a major sector in the economy. According to the statistics of the fisheries for 2000 published by the Turkish government, Turkey's total fisheries production was 582.376 tons. Total catch consists sea fish (441 690 tons, crustaceans and molluscs (18 831 tons), freshwater fish (42.824 tons) and aquaculture (79. 031 tons). The Ministry of Agriculture and Rural Affairs (MARA) is the Ministry responsible for the overall fisheries and aquaculture development, administration, regulation, promotion and technical assistance. In the past two decades, marine fish farming using net cages has developed in the coastal waters throughout Turkey. Such fish farming has allowed the production of large amounts of valuable fish and their supply to the internal and external markets on a regular basis. However, fish farming is sometimes fallowed by organic pollution of the water and bottom sediment in the vicinity of the cages. A comprehensive land and coastal planning survey of almost the whole coast of Turkey is currently being conducted. This master plan designates areas to be developed for forestry, agriculture, industry, urbanisation, environmentally protected areas, etc. The plan was undertaken before the

  3. Biotechnology and aquaculture: the role of cell cultures.

    PubMed

    Bols, N C

    1991-01-01

    Cell culturing complements recombinant DNA technology in the application of biotechnology to aquaculture. Cell cultures can be prepared from the three main groups of multicellular organisms in aquaculture: fish, shellfish, and seaweeds. These cultures can contribute indirectly to the successful farming of these organisms by providing basic insights into how their growth, reproduction, and health can be understood and manipulated. Finally, they can be a direct source of diverse biochemical products for use in aquaculture, medicine and the food industry.

  4. How Artists Overcome Creative Blocks.

    ERIC Educational Resources Information Center

    Hirst, Barbara

    1992-01-01

    Six practicing artists were interviewed about how they overcome creative blocks. Their responses indicated that feelings of self-doubt, fear, and depression accompany blocks but that relaxing and working on new directions and playing ideas off a supportive person helped to overcome such blocks. (DB)

  5. Proteomics and its applications to aquaculture in China: infection, immunity, and interaction of aquaculture hosts with pathogens.

    PubMed

    Peng, Xuan-Xian

    2013-01-01

    China is the largest fishery producer worldwide in term of its aquaculture output, and plays leading and decisive roles in international aquaculture development. To improve aquaculture output further and promote aquaculture business development, infectious diseases and immunity of fishes and other aquaculture species must be studied. In this regard, aquaculture proteomics has been widely carried out in China to get a better understanding of aquaculture host immunity and microbial pathogenesis as well as host-pathogen interactions, and to identify novel disease targets and vaccine candidates for therapeutic interventions. These proteomics studies include development of novel methods, assays, and advanced concepts in order to characterize proteomics mechanisms of host innate immune defense and microbial pathogenesis. This review article summarizes some recently published technical approaches and their applications to aquaculture proteomics with an emphasis on the responses of aquaculture animals to bacteria, viruses, and other aqua-environmental stresses, and development of broadly cross-protective vaccine candidates. The reviewed articles are those that have been published in international peer reviewed journals. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Recirculation-aeration: Bibliography for aquaculture. Bibliographies and literature of agriculture (Final)

    SciTech Connect

    Perschbacher, P.W.; Powell, R.V.; Freeman, D.W.; Lorio, W.J.; Hanfman, D.T.

    1993-08-01

    The bibliography includes literature citations through 1992 related to water recirculation and aeration in aquaculture. The focus is on filtration, aeration, and circulation techniques in various aquaculture situations.

  7. Perception of Aquaculture Education to Support Further Growth of Aquaculture Industry in Victoria, Australia

    ERIC Educational Resources Information Center

    Awal, Sadiqul; Christie, Andrew; Watson, Matthew; Hannadige, Asanka G. T.

    2012-01-01

    Purpose: The central aim of this study was to determine the perception of aquaculture educational provisions in the state of Victoria, and whether they are sufficient to ultimately support further growth of the industry. Design/methodology/approach: Questionnaires were formulated and distributed to participants in a variety of ways, including via…

  8. Perception of Aquaculture Education to Support Further Growth of Aquaculture Industry in Victoria, Australia

    ERIC Educational Resources Information Center

    Awal, Sadiqul; Christie, Andrew; Watson, Matthew; Hannadige, Asanka G. T.

    2012-01-01

    Purpose: The central aim of this study was to determine the perception of aquaculture educational provisions in the state of Victoria, and whether they are sufficient to ultimately support further growth of the industry. Design/methodology/approach: Questionnaires were formulated and distributed to participants in a variety of ways, including via…

  9. Productivity, Fisheries and Aquaculture in Temperate Estuaries

    NASA Astrophysics Data System (ADS)

    Wilson, J. G.

    2002-12-01

    The past 30 years have seen many advances in our understanding of estuarine productivity. Data are available for a variety of primary, secondary and tertiary producers, and empirical productivity models covering the gamut from bacteria to fisheries yield have been constructed. However, there is still a shortage of understanding as to the structuring and control of the systems. Evidence to date suggests that estuarine fisheries are being over-exploited with several species highly endangered. While aquaculture does offer the prospect of continuing growth, concerns are starting to be expressed over its immediate and long-term environmental impacts.

  10. Raft River aquaculture project. Final report

    SciTech Connect

    Beleau, M.H.; Woiwode, J.G.

    1980-07-01

    The commercial potential for geothermal aquaculture was evaluated for 2 years at the Department of Energy's Raft River geothermal site in southcentral Idaho. Common carp '(Cyprinus carpio) and channel catfish (Ictalurus punctatus) were selected as culture species. Objectives of the study included investigation of: (1) growth rates; (2) nutrition trials; (3) histological and physiological parameters; (4) bioaccumulation of heavy metals; and (5) reproductive capacity. The second year project efforts were primarily studying the effects of geothermal water on the reproductive capacity of common carp by: (1) determining the effects of geothermal water on gonadal development of common carp; and (2) determining the effects of geothermal water on common carp embryogenesis.

  11. Use of technologies to control reproduction in finfish aquaculture

    USDA-ARS?s Scientific Manuscript database

    The proportion of food fish derived from aquaculture has increased dramatically over the past several decades and currently accounts for nearly 50% of the world's consumption. Since production from capture fisheries has stagnated, increased supplies of food fish will need to come from aquaculture. ...

  12. Treatment of Aquaculture Wastewater Using Floating Vegetated Mats

    USDA-ARS?s Scientific Manuscript database

    Methods are needed for treating aquaculture wastewater. The goal is to improve wastewater quality sufficiently for it to be recycled to production ponds. One potential method for improving aquaculture wastewater is to use floating vegetation in treatment tanks. Alternatively, potential exists for ...

  13. The Harry K. Dupree Stuttgart National Aquaculture Research Center

    USDA-ARS?s Scientific Manuscript database

    Aquaculture is currently the fastest growing sector of global food production. Global aquaculture production in 2011 totaled 60 million tonnes (excluding aquatic plants) valued at US$119 billion, while global capture fishery production has remained static at approximately 90 million tonnes annually...

  14. Students' Perceptions of Aquaculture Education in the Northeast Region.

    ERIC Educational Resources Information Center

    Wingenbach, Gary J.; Gartin, Stacy A.; Lawrence, Layle D.

    1999-01-01

    A survey of 60 secondary agriculture students showed they appreciated the hands-on learning environment of aquaculture, found science and math concepts easier to understand, and gained practical skills. Although they rated aquaculture among their best high school experiences, few planned careers in it. (SK)

  15. Students' Perceptions of Aquaculture Education in the Northeast Region.

    ERIC Educational Resources Information Center

    Wingenbach, Gary J.; Gartin, Stacy A.; Lawrence, Layle D.

    1999-01-01

    A survey of 60 secondary agriculture students showed they appreciated the hands-on learning environment of aquaculture, found science and math concepts easier to understand, and gained practical skills. Although they rated aquaculture among their best high school experiences, few planned careers in it. (SK)

  16. Aqua-Topics. Aquaculture for Youth and Youth Educators.

    ERIC Educational Resources Information Center

    McVey, Eileen

    This booklet contains information on aquaculture and ideas for aquaculture projects. The information provided is for students at upper elementary through high school learning levels. Recommended activities at the end of the text are organized by level of difficulty. The activities can be modified depending on area and availability of resources. A…

  17. Major bacterial diseases in aquaculture and their vaccine development

    USDA-ARS?s Scientific Manuscript database

    Aquaculture is emerging as the fastest growing food-producing industry in the world due to the increasing demand for food fish consumption. However, the intensive culture of food fish has led to outbreaks of various bacterial diseases, resulting in annual economic losses to the aquaculture industry ...

  18. Contact zoonosis related to aquaculture: a growing concern

    USDA-ARS?s Scientific Manuscript database

    Aquaculture develops fast worldwide, with new cultured species and increased global transport of live aquaculture products. There is a growing recognition of zoonotic disease agents causing epidemics and carrier states in cultured fish and shellfish, especially from warm water systems, transmitted t...

  19. Offshore aquaculture: Spatial planning principles for sustainable development.

    PubMed

    Gentry, Rebecca R; Lester, Sarah E; Kappel, Carrie V; White, Crow; Bell, Tom W; Stevens, Joel; Gaines, Steven D

    2017-01-01

    Marine aquaculture is expanding into deeper offshore environments in response to growing consumer demand for seafood, improved technology, and limited potential to increase wild fisheries catches. Sustainable development of aquaculture will require quantification and minimization of its impacts on other ocean-based activities and the environment through scientifically informed spatial planning. However, the scientific literature currently provides limited direct guidance for such planning. Here, we employ an ecological lens and synthesize a broad multidisciplinary literature to provide insight into the interactions between offshore aquaculture and the surrounding environment across a spectrum of spatial scales. While important information gaps remain, we find that there is sufficient research for informed decisions about the effects of aquaculture siting to achieve a sustainable offshore aquaculture industry that complements other uses of the marine environment.

  20. Mechanisms of antimicrobial resistance in finfish aquaculture environments.

    PubMed

    Miranda, Claudio D; Tello, Alfredo; Keen, Patricia L

    2013-01-01

    Consumer demand for affordable fish drives the ever-growing global aquaculture industry. The intensification and expansion of culture conditions in the production of several finfish species has been coupled with an increase in bacterial fish disease and the need for treatment with antimicrobials. Understanding the molecular mechanisms of antimicrobial resistance prevalent in aquaculture environments is important to design effective disease treatment strategies, to prioritize the use and registration of antimicrobials for aquaculture use, and to assess and minimize potential risks to public health. In this brief article we provide an overview of the molecular mechanisms of antimicrobial resistance in genes found in finfish aquaculture environments and highlight specific research that should provide the basis of sound, science-based policies for the use of antimicrobials in aquaculture.

  1. In Brief: Environmental standards needed for offshore marine aquaculture

    NASA Astrophysics Data System (ADS)

    Zielinski, Sarah

    2007-01-01

    The U.S. Congress should enact legislation that sets strong environmental standards for offshore marine aquaculture, the Marine Aquaculture Task Force recommended in a recent report. Aquaculture now accounts for about half of all seafood consumed in the world, and the industry is rapidly growing and expanding into regions offshore (more than 3 nautical miles from the coast) that are controlled by the federal government. The task force, which was organized by researchers from the Woods Hole Oceanographic Institution, examined the risks and benefits of marine aquaculture. They proposed that the U.S. National Oceanic and Atmospheric Administration be appointed the lead agency responsible for regulation of offshore marine aquaculture and for providing incentives for research and development. The main environmental standard proposed by the task force was to limit farming only to native species with local genetics unless the potential harm of escaped fish to local populations would be negligible.

  2. Mechanisms of antimicrobial resistance in finfish aquaculture environments

    PubMed Central

    Miranda, Claudio D.; Tello, Alfredo; Keen, Patricia L.

    2013-01-01

    Consumer demand for affordable fish drives the ever-growing global aquaculture industry. The intensification and expansion of culture conditions in the production of several finfish species has been coupled with an increase in bacterial fish disease and the need for treatment with antimicrobials. Understanding the molecular mechanisms of antimicrobial resistance prevalent in aquaculture environments is important to design effective disease treatment strategies, to prioritize the use and registration of antimicrobials for aquaculture use, and to assess and minimize potential risks to public health. In this brief article we provide an overview of the molecular mechanisms of antimicrobial resistance in genes found in finfish aquaculture environments and highlight specific research that should provide the basis of sound, science-based policies for the use of antimicrobials in aquaculture. PMID:23986749

  3. Genomic approaches in marine biodiversity and aquaculture.

    PubMed

    Huete-Pérez, Jorge A; Quezada, Fernando

    2013-01-01

    Recent advances in genomic and post-genomic technologies have now established the new standard in medical and biotechnological research. The introduction of next-generation sequencing, NGS,has resulted in the generation of thousands of genomes from all domains of life, including the genomes of complex uncultured microbial communities revealed through metagenomics. Although the application of genomics to marine biodiversity remains poorly developed overall, some noteworthy progress has been made in recent years. The genomes of various model marine organisms have been published and a few more are underway. In addition, the recent large-scale analysis of marine microbes, along with transcriptomic and proteomic approaches to the study of teleost fishes, mollusks and crustaceans, to mention a few, has provided a better understanding of phenotypic variability and functional genomics. The past few years have also seen advances in applications relevant to marine aquaculture and fisheries. In this review we introduce several examples of recent discoveries and progress made towards engendering genomic resources aimed at enhancing our understanding of marine biodiversity and promoting the development of aquaculture. Finally, we discuss the need for auspicious science policies to address challenges confronting smaller nations in the appropriate oversight of this growing domain as they strive to guarantee food security and conservation of their natural resources.

  4. Antimicrobial resistance and antimicrobial resistance genes in marine bacteria from salmon aquaculture and non-aquaculture sites.

    PubMed

    Shah, Syed Q A; Cabello, Felipe C; L'abée-Lund, Trine M; Tomova, Alexandra; Godfrey, Henry P; Buschmann, Alejandro H; Sørum, Henning

    2014-05-01

    Antimicrobial resistance (AR) detected by disc diffusion and antimicrobial resistance genes detected by DNA hybridization and polymerase chain reaction with amplicon sequencing were studied in 124 marine bacterial isolates from a Chilean salmon aquaculture site and 76 from a site without aquaculture 8 km distant. Resistance to one or more antimicrobials was present in 81% of the isolates regardless of site. Resistance to tetracycline was most commonly encoded by tetA and tetG; to trimethoprim, by dfrA1, dfrA5 and dfrA12; to sulfamethizole, by sul1 and sul2; to amoxicillin, by blaTEM ; and to streptomycin, by strA-strB. Integron integrase intl1 was detected in 14 sul1-positive isolates, associated with aad9 gene cassettes in two from the aquaculture site. intl2 Integrase was only detected in three dfrA1-positive isolates from the aquaculture site and was not associated with gene cassettes in any. Of nine isolates tested for conjugation, two from the aquaculture site transferred AR determinants to Escherichia coli. High levels of AR in marine sediments from aquaculture and non-aquaculture sites suggest that dispersion of the large amounts of antimicrobials used in Chilean salmon aquaculture has created selective pressure in areas of the marine environment far removed from the initial site of use of these agents. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Hydroecological condition and potential for aquaculture in lakes of the arid region of Khorezm, Uzbekistan

    USGS Publications Warehouse

    Crootof, Africa; Mullabaev, Nodirbek; Saito, Laurel; Atwell, Lisa; Rosen, Michael R.; Bekchonova, Marhabo; Ginatullina, Elena; Scott, Julian; Chandra, Sudeep; Nishonov, Bakhriddin; Lamers, John P.A.; Fayzieva, Dilorom

    2015-01-01

    With >400 small (<1 ha) lakes, the arid Khorezm Province in Uzbekistan may be well-suited for aquaculture production. Developing water resources to provide a local food supply could increase fish consumption while improving the rural economy. Hydroecological (biological and physical) and chemical characteristics (including legacy pesticides ΣDDT and ΣHCH) of four representative drainage lakes in Khorezm from 2006 to 2008 were analyzed for the lakes’ capability to support healthy fish populations. Lake characteristics were categorized as “optimal” (having little or no effect on growth and development), “tolerable” (corresponding to chronic or sub-lethal toxicity) and “lethal” (corresponding to acute toxicity). Results indicate that three lakes are likely well-suited for raising fish species, with water quality meeting World Bank aquaculture guidelines. However, the fourth lake often had salinity concentrations > optimal levels for local fish species. Pesticide concentrations in water of all four lakes were within tolerable aquaculture ranges. Although water ΣDDT concentrations were >optimal limits, results from chemical analysis of fish tissues and semi-permeable membrane devices indicated that study lake ΣDDT concentrations were not accumulating in fish or posing a human health threat. Land and water management to maintain adequate lake water quality are imperative for sustaining fish populations for human consumption.

  6. Aquaculture genomics, genetics and breeding in the United States: current status, challenges, and priorities for future research.

    PubMed

    Abdelrahman, Hisham; ElHady, Mohamed; Alcivar-Warren, Acacia; Allen, Standish; Al-Tobasei, Rafet; Bao, Lisui; Beck, Ben; Blackburn, Harvey; Bosworth, Brian; Buchanan, John; Chappell, Jesse; Daniels, William; Dong, Sheng; Dunham, Rex; Durland, Evan; Elaswad, Ahmed; Gomez-Chiarri, Marta; Gosh, Kamal; Guo, Ximing; Hackett, Perry; Hanson, Terry; Hedgecock, Dennis; Howard, Tiffany; Holland, Leigh; Jackson, Molly; Jin, Yulin; Kahlil, Karim; Kocher, Thomas; Leeds, Tim; Li, Ning; Lindsey, Lauren; Liu, Shikai; Liu, Zhanjiang; Martin, Kyle; Novriadi, Romi; Odin, Ramjie; Palti, Yniv; Peatman, Eric; Proestou, Dina; Qin, Guyu; Reading, Benjamin; Rexroad, Caird; Roberts, Steven; Salem, Mohamed; Severin, Andrew; Shi, Huitong; Shoemaker, Craig; Stiles, Sheila; Tan, Suxu; Tang, Kathy F J; Thongda, Wilawan; Tiersch, Terrence; Tomasso, Joseph; Prabowo, Wendy Tri; Vallejo, Roger; van der Steen, Hein; Vo, Khoi; Waldbieser, Geoff; Wang, Hanping; Wang, Xiaozhu; Xiang, Jianhai; Yang, Yujia; Yant, Roger; Yuan, Zihao; Zeng, Qifan; Zhou, Tao

    2017-02-20

    Advancing the production efficiency and profitability of aquaculture is dependent upon the ability to utilize a diverse array of genetic resources. The ultimate goals of aquaculture genomics, genetics and breeding research are to enhance aquaculture production efficiency, sustainability, product quality, and profitability in support of the commercial sector and for the benefit of consumers. In order to achieve these goals, it is important to understand the genomic structure and organization of aquaculture species, and their genomic and phenomic variations, as well as the genetic basis of traits and their interrelationships. In addition, it is also important to understand the mechanisms of regulation and evolutionary conservation at the levels of genome, transcriptome, proteome, epigenome, and systems biology. With genomic information and information between the genomes and phenomes, technologies for marker/causal mutation-assisted selection, genome selection, and genome editing can be developed for applications in aquaculture. A set of genomic tools and resources must be made available including reference genome sequences and their annotations (including coding and non-coding regulatory elements), genome-wide polymorphic markers, efficient genotyping platforms, high-density and high-resolution linkage maps, and transcriptome resources including non-coding transcripts. Genomic and genetic control of important performance and production traits, such as disease resistance, feed conversion efficiency, growth rate, processing yield, behaviour, reproductive characteristics, and tolerance to environmental stressors like low dissolved oxygen, high or low water temperature and salinity, must be understood. QTL need to be identified, validated across strains, lines and populations, and their mechanisms of control understood. Causal gene(s) need to be identified. Genetic and epigenetic regulation of important aquaculture traits need to be determined, and technologies for

  7. Genetic evidence for the uncoupling of local aquaculture activities and a population of an invasive species--a case study of Pacific oysters (Crassostrea gigas).

    PubMed

    Kochmann, Judith; Carlsson, Jens; Crowe, Tasman P; Mariani, Stefano

    2012-01-01

    Human-mediated introduction of nonnative species into coastal areas via aquaculture is one of the main pathways that can lead to biological invasions. To develop strategies to counteract invasions, it is critical to determine whether populations establishing in the wild are self-sustaining or based on repeated introductions. Invasions by the Pacific oyster (Crassostrea gigas) have been associated with the growing oyster aquaculture industry worldwide. In this study, temporal genetic variability of farmed and wild oysters from the largest enclosed bay in Ireland was assessed to reconstruct the recent biological history of the feral populations using 7 anonymous microsatellites and 7 microsatellites linked to expressed sequence tags (ESTs). There was no evidence of EST-linked markers showing footprints of selection. Allelic richness was higher in feral than in aquaculture samples (P = 0.003, paired t-test). Significant deviations from Hardy-Weinberg equilibrium due to heterozygote deficiencies were detected for almost all loci and samples, most likely explained by the presence of null alleles. Relatively high genetic differentiation was found between aquaculture and feral oysters (largest pairwise multilocus F(ST) 0.074, P < 0.01) and between year classes of oysters from aquaculture (largest pairwise multilocus F(ST) 0.073, P < 0.01), which was also confirmed by the strong separation of aquaculture and wild samples using Bayesian clustering approaches. A 10-fold higher effective population size (N(e)) and a high number of private alleles in wild oysters suggest an established self-sustaining feral population. The wild oyster population studied appears demographically independent from the current aquaculture activities in the estuary and alternative scenarios of introduction pathways are discussed.

  8. Does aquaculture add resilience to the global food system?

    PubMed

    Troell, Max; Naylor, Rosamond L; Metian, Marc; Beveridge, Malcolm; Tyedmers, Peter H; Folke, Carl; Arrow, Kenneth J; Barrett, Scott; Crépin, Anne-Sophie; Ehrlich, Paul R; Gren, Asa; Kautsky, Nils; Levin, Simon A; Nyborg, Karine; Österblom, Henrik; Polasky, Stephen; Scheffer, Marten; Walker, Brian H; Xepapadeas, Tasos; de Zeeuw, Aart

    2014-09-16

    Aquaculture is the fastest growing food sector and continues to expand alongside terrestrial crop and livestock production. Using portfolio theory as a conceptual framework, we explore how current interconnections between the aquaculture, crop, livestock, and fisheries sectors act as an impediment to, or an opportunity for, enhanced resilience in the global food system given increased resource scarcity and climate change. Aquaculture can potentially enhance resilience through improved resource use efficiencies and increased diversification of farmed species, locales of production, and feeding strategies. However, aquaculture's reliance on terrestrial crops and wild fish for feeds, its dependence on freshwater and land for culture sites, and its broad array of environmental impacts diminishes its ability to add resilience. Feeds for livestock and farmed fish that are fed rely largely on the same crops, although the fraction destined for aquaculture is presently small (∼4%). As demand for high-value fed aquaculture products grows, competition for these crops will also rise, as will the demand for wild fish as feed inputs. Many of these crops and forage fish are also consumed directly by humans and provide essential nutrition for low-income households. Their rising use in aquafeeds has the potential to increase price levels and volatility, worsening food insecurity among the most vulnerable populations. Although the diversification of global food production systems that includes aquaculture offers promise for enhanced resilience, such promise will not be realized if government policies fail to provide adequate incentives for resource efficiency, equity, and environmental protection.

  9. Salmon Aquaculture and Antimicrobial Resistance in the Marine Environment

    PubMed Central

    Buschmann, Alejandro H.; Tomova, Alexandra; López, Alejandra; Maldonado, Miguel A.; Henríquez, Luis A.; Ivanova, Larisa; Moy, Fred; Godfrey, Henry P.; Cabello, Felipe C.

    2012-01-01

    Antimicrobials used in salmon aquaculture pass into the marine environment. This could have negative impacts on marine environmental biodiversity, and on terrestrial animal and human health as a result of selection for bacteria containing antimicrobial resistance genes. We therefore measured the numbers of culturable bacteria and antimicrobial-resistant bacteria in marine sediments in the Calbuco Archipelago, Chile, over 12-month period at a salmon aquaculture site approximately 20 m from a salmon farm and at a control site 8 km distant without observable aquaculture activities. Three antimicrobials extensively used in Chilean salmon aquaculture (oxytetracycline, oxolinic acid, and florfenicol) were studied. Although none of these antimicrobials was detected in sediments from either site, traces of flumequine, a fluoroquinolone antimicrobial also widely used in Chile, were present in sediments from both sites during this period. There were significant increases in bacterial numbers and antimicrobial-resistant fractions to oxytetracycline, oxolinic acid, and florfenicol in sediments from the aquaculture site compared to those from the control site. Interestingly, there were similar numbers of presumably plasmid-mediated resistance genes for oxytetracycline, oxolinic acid and florfenicol in unselected marine bacteria isolated from both aquaculture and control sites. These preliminary findings in one location may suggest that the current use of large amounts of antimicrobials in Chilean aquaculture has the potential to select for antimicrobial-resistant bacteria in marine sediments. PMID:22905164

  10. Antibiotic Resistance of Diverse Bacteria from Aquaculture in Borneo

    PubMed Central

    Kathleen, M. M.; Felecia, C.; Reagan, E. L.; Kasing, A.; Lesley, M.; Toh, S. C.

    2016-01-01

    The administration of antimicrobials in aquaculture provides a selective pressure creating a reservoir of multiple resistant bacteria in the cultured fish and shrimps as well as the aquaculture environment. The objective of this study was to determine the extent of antibiotic resistance in aquaculture products and aquaculture's surrounding environment in Sarawak, Malaysian Borneo. Ninety-four identified bacterial isolates constituted of 17 genera were isolated from sediment, water, and cultured organisms (fish and shrimp) in selected aquaculture farms. These isolates were tested for their antibiotic resistance against 22 antibiotics from several groups using the disk diffusion method. The results show that the highest resistance was observed towards streptomycin (85%, n = 20), while the lowest resistance was towards gentamicin (1.1%, n = 90). The multiple antibiotic resistant (MAR) index of the isolates tested ranged between 0 and 0.63. It was suggested that isolates with MAR index > 0.2 were recovered from sources with high risk of antibiotic resistant contamination. This study revealed low level of antibiotic resistance in the aquaculture bacterial isolates except for streptomycin and ampicillin (>50% resistance, n = 94) which have been used in the aquaculture industry for several decades. Antibiotic resistant patterns should be continuously monitored to predict the emergence and widespread of MAR. Effective action is needed to keep the new resistance from further developing and spreading. PMID:27746817

  11. Nitrous oxide (N2O) emission from aquaculture: a review.

    PubMed

    Hu, Zhen; Lee, Jae Woo; Chandran, Kartik; Kim, Sungpyo; Khanal, Samir Kumar

    2012-06-19

    Nitrous oxide (N(2)O) is an important greenhouse gas (GHG) which has a global warming potential 310 times that of carbon dioxide (CO(2)) over a hundred year lifespan. N(2)O is generated during microbial nitrification and denitrification, which are common in aquaculture systems. To date, few studies have been conducted to quantify N(2)O emission from aquaculture. Additionally, very little is known with respect to the microbial pathways through which N(2)O is formed in aquaculture systems. This review suggests that aquaculture can be an important anthropogenic source of N(2)O emission. The global N(2)O-N emission from aquaculture in 2009 is estimated to be 9.30 × 10(10) g, and will increase to 3.83 × 10(11)g which could account for 5.72% of anthropogenic N(2)O-N emission by 2030 if the aquaculture industry continues to increase at the present annual growth rate (about 7.10%). The possible mechanisms and various factors affecting N(2)O production are summarized, and two possible methods to minimize N(2)O emission, namely aquaponic and biofloc technology aquaculture, are also discussed. The paper concludes with future research directions.

  12. Application of DNA vaccine technology to aquaculture.

    PubMed

    Heppell, J; Davis, H L

    2000-09-15

    The aquaculture industry needs to augment its global production and efficiency to meet the increasing consumer needs for fish and shellfish products. Unfortunately, infectious diseases have been a major impediment to the development and profitability of fish farms. While vaccines offer the most efficient way to control infectious pathogens, current products have only been successful against some diseases. These are mostly bacterial, and there are still several important diseases, mainly of viral and parasitic origin, for which no prophylactic treatment exists. DNA vaccines, compared to traditional antigen vaccines, have several practical and immunological advantages that make them very attractive for the aquaculture industry. The early success of DNA vaccines in animal models was very encouraging, but fish are unique in many aspects, and findings with other classes of vertebrate, namely mammals and birds, do not necessarily apply to aquatic animals. However, more recent studies with reporter genes showed that fish cells efficiently express foreign proteins encoded by eukaryotic expression vectors. A piscine-specific backbone vector might eventually improve immune responses to DNA vaccines, but there is already strong direct evidence for the induction of protective immunity with currently available plasmids. Immune responses to plasmid DNA injected intramuscularly (IM) into fish are characterized by the production of antibodies, which have been shown to be neutralizing in two different viral disease models. There is also indirect evidence suggesting the induction of cell-mediated immunity. Despite this evidence, immune responses to DNA vaccines have only been poorly characterized in fish because of the limited knowledge of the piscine immune system, and the small number of studies on the subject. Apart from optimizing the efficiency of DNA vaccines, other important issues, such as safety and production cost will be determinants for the potential application of this

  13. Overcoming Exclusion through Adult Learning.

    ERIC Educational Resources Information Center

    Nash, Ian; Walshe, John

    Strategies for overcoming exclusion through adult learning were identified through case studies of 19 initiatives in the following countries: Belgium; Mexico; the Netherlands; Norway; Portugal; and the United Kingdom. The study programs involved a diverse array of formal, nonformal, and informal public sector, community, and enterprise-based…

  14. Ecological theory as a foundation to control pathogenic invasion in aquaculture

    PubMed Central

    De Schryver, Peter; Vadstein, Olav

    2014-01-01

    Detrimental host–pathogen interactions are a normal phenomenon in aquaculture animal production, and have been counteracted by prophylactic use of antibiotics. Especially, the youngest life stages of cultivated aquatic animals are susceptible to pathogen invasion, resulting in disease and mortality. To establish a more sustainable aquatic food production, there is a need for new microbial management strategies that focus on ‘join them' and not the traditional ‘beat them' approaches. We argue that ecological theory could serve as a foundation for developing sustainable microbial management methods that prevent pathogenic disease in larviculture. Management of the water microbiota in aquaculture systems according to ecological selection principles has been shown to decrease opportunistic pathogen pressure and to result in an improved performance of the cultured animals. We hypothesize that manipulation of the biodiversity of the gut microbiota can increase the host's resistance against pathogenic invasion and infection. However, substantial barriers need to be overcome before active management of the intestinal microbiota can effectively be applied in larviculture. PMID:24892581

  15. Ecological theory as a foundation to control pathogenic invasion in aquaculture.

    PubMed

    De Schryver, Peter; Vadstein, Olav

    2014-12-01

    Detrimental host-pathogen interactions are a normal phenomenon in aquaculture animal production, and have been counteracted by prophylactic use of antibiotics. Especially, the youngest life stages of cultivated aquatic animals are susceptible to pathogen invasion, resulting in disease and mortality. To establish a more sustainable aquatic food production, there is a need for new microbial management strategies that focus on 'join them' and not the traditional 'beat them' approaches. We argue that ecological theory could serve as a foundation for developing sustainable microbial management methods that prevent pathogenic disease in larviculture. Management of the water microbiota in aquaculture systems according to ecological selection principles has been shown to decrease opportunistic pathogen pressure and to result in an improved performance of the cultured animals. We hypothesize that manipulation of the biodiversity of the gut microbiota can increase the host's resistance against pathogenic invasion and infection. However, substantial barriers need to be overcome before active management of the intestinal microbiota can effectively be applied in larviculture.

  16. 7 CFR 1437.303 - Aquaculture, including ornamental fish.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... feeding, irrigation and water quality, predator control, and disease control; and (2) Have control of the.... Eligible aquacultural species shall only include: (1) Any species of aquatic organisms grown as food for...

  17. Heterotrophic denitrification of aquaculture effluent using fluidized sand biofilters

    USDA-ARS?s Scientific Manuscript database

    The ability to consistently and cost-effectively reduce nitrate-nitrogen loads in effluent from recirculating aquaculture systems would enhance the industry's environmental stewardship and allow improved facility proximity to large markets in sensitive watersheds. Heterotrophic denitrification techn...

  18. Feasibility study for aquaculture and space heating, Ft. Bidwell, California

    SciTech Connect

    Culver, G.

    1985-10-01

    Expansion of the aquaculture facilities and geothermal space heating at Ft. Bidwell, California were investigated. The lack of cold water is the limiting factor for aquaculture expansion and is also a problem for the town domestic water supply. A new cold water well approximately 1200 feet deep would provide for the aquaculture expansion and additional domestic water. A 2900 foot test well can be completed to provide additional hot water at approximately 200/sup 0/F and an estimated artesian flow of 500 gpm. If these wells are completed, the aquaculture facility could be expanded to produce 6000 two pound catfish per month on a continuous basis and provide space heating of at least 20 homes. The design provided allows for heating 11 homes initially with possible future expansion. 9 figs.

  19. Feeding aquaculture in an era of finite resources

    PubMed Central

    Naylor, Rosamond L.; Hardy, Ronald W.; Bureau, Dominique P.; Chiu, Alice; Elliott, Matthew; Farrell, Anthony P.; Forster, Ian; Gatlin, Delbert M.; Goldburg, Rebecca J.; Hua, Katheline; Nichols, Peter D.

    2009-01-01

    Aquaculture's pressure on forage fisheries remains hotly contested. This article reviews trends in fishmeal and fish oil use in industrial aquafeeds, showing reduced inclusion rates but greater total use associated with increased aquaculture production and demand for fish high in long-chain omega-3 oils. The ratio of wild fisheries inputs to farmed fish output has fallen to 0.63 for the aquaculture sector as a whole but remains as high as 5.0 for Atlantic salmon. Various plant- and animal-based alternatives are now used or available for industrial aquafeeds, depending on relative prices and consumer acceptance, and the outlook for single-cell organisms to replace fish oil is promising. With appropriate economic and regulatory incentives, the transition toward alternative feedstuffs could accelerate, paving the way for a consensus that aquaculture is aiding the ocean, not depleting it. PMID:19805247

  20. Mytilus hybridisation and impact on aquaculture: A minireview.

    PubMed

    Michalek, K; Ventura, A; Sanders, T

    2016-06-01

    The three species in the blue mussel complex (Mytilus edulis, Mytilus galloprovincialis and Mytilus trossulus) show varying levels of hybridisation wherever they occur sympatrically. The spatial variation in hybridisation patterns is potentially governed by environmental conditions, larval dispersal and aquaculture practices. Commercial mussel cultivation has been shown to increase hybridisation through introduction of non-native species or spat transfer. There is evidence that mussel cultivation may promote commercially less desirable phenotypes (e.g. fragile shells), however, to what extent hybridisation impacts aquaculture is currently not clear. The aim of this review is to summarize the available information on Mytilus hybridisation patterns in Europe and their promotion through aquaculture practices in order to shed light on the overall implications for the aquaculture industry. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. 76 FR 9209 - Draft NOAA National Aquaculture Policy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-16

    ... February 16, 2011 Part IV Department of Commerce National Oceanic and Atmospheric Administration Draft NOAA... and Atmospheric Administration RIN 0648-XA214 Draft NOAA National Aquaculture Policy AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce....

  2. The perception of aquaculture on the Swedish West Coast.

    PubMed

    Thomas, Jean-Baptiste E; Nordström, Jonas; Risén, Emma; Malmström, Maria E; Gröndahl, Fredrik

    2017-09-22

    Efforts are on the way on the Swedish West Coast to develop the capacity for cultivation of marine resources, notably of kelps. Given that this is a region of great natural and national heritage, public opposition to marine developments has been identified as a possible risk factor. This survey thus sought to shed light on awareness levels, perceptions of different types of aquaculture and on reactions to a scenario depicting future aquaculture developments on the West Coast. When asked about their general opinions of aquaculture, respondents tended to be favourable though a majority chose neutral responses. On the whole, respondents were favourable to the depicted scenario. Finally, it was found that the high-awareness group tended to be more supportive than the low or medium-awareness groups, hinting at the benefits of increasing awareness to reduce public aversion and to support a sustainable development of aquaculture on the Swedish West Coast.

  3. Issues, Impacts, and Implications of Shrimp Aquaculture in Thailand

    PubMed

    Dierberg; Kiattisimkul

    1996-09-01

    Water quality impacts to and from intensive shrimp aquaculture in Thailand are substantial. Besides the surface and subsurface salinization of freshwaters, loadings of solids, oxygen-consuming organic matter, and nutrients to receiving waters are considerable when the cumulative impacts from water exchange during the growout cycle, pond drainage during harvesting, and illegal pond sediment disposal are taken into account. Although just beginning to be considered in Thailand, partial recirculating and integrated intensive farming systems are producing promising, if somewhat limited, results. By providing on-site treatment of the effluent from the shrimp growout ponds, there is less reliance on using outside water supplies, believed to be the source of the contamination.The explosion in the number of intensively operated shrimp farms has not only impacted the coastal zone of Thailand, but has also resulted in an unsustainable aquaculture industry. Abandonment of shrimp ponds due to either drastic, disease-caused collapses or more grandual, year-to-year reductions in the productivity of the pond is common. To move Thailand towards a more sustainable aquaculture industry and coastal zone environment, integrated aquaculture management is needed. Components of integrated aquaculture management are technical and institutional. The technical components involve deployment of wastewater treatment and minimal water-use systems aimed at making aquaculture operations more hydraulically closed. Before this is possible, technical and economic feasibility studies on enhanced nitrification systems and organic solids removal by oxidation between production cycles and/or the utilization of plastic pond liners need to be conducted. The integration of semi-intensive aquaculture within mangrove areas also should be investigated since mangrove losses attributable to shrimp aquaculture are estimated to be between 16 and 32 % of the total mangrove area destroyed betweeen 1979 and 1993

  4. Evaluation of Pacific White Shrimp (Litopenaeus vannamei) Health during a Superintensive Aquaculture Growout Using NMR-Based Metabolomics

    PubMed Central

    Schock, Tracey B.; Duke, Jessica; Goodson, Abby; Weldon, Daryl; Brunson, Jeff; Leffler, John W.; Bearden, Daniel W.

    2013-01-01

    Success of the shrimp aquaculture industry requires technological advances that increase production and environmental sustainability. Indoor, superintensive, aquaculture systems are being developed that permit year-round production of farmed shrimp at high densities. These systems are intended to overcome problems of disease susceptibility and of water quality issues from waste products, by operating as essentially closed systems that promote beneficial microbial communities (biofloc). The resulting biofloc can assimilate and detoxify wastes, may provide nutrition for the farmed organisms resulting in improved growth, and may aid in reducing disease initiated from external sources. Nuclear magnetic resonance (NMR)-based metabolomic techniques were used to assess shrimp health during a full growout cycle from the nursery phase through harvest in a minimal-exchange, superintensive, biofloc system. Aberrant shrimp metabolomes were detected from a spike in total ammonia nitrogen in the nursery, from a reduced feeding period that was a consequence of surface scum build-up in the raceway, and from the stocking transition from the nursery to the growout raceway. The biochemical changes in the shrimp that were induced by the stressors were essential for survival and included nitrogen detoxification and energy conservation mechanisms. Inosine and trehalose may be general biomarkers of stress in Litopenaeus vannamei. This study demonstrates one aspect of the practicality of using NMR-based metabolomics to enhance the aquaculture industry by providing physiological insight into common environmental stresses that may limit growth or better explain reduced survival and production. PMID:23555690

  5. Evaluation of Pacific white shrimp (Litopenaeus vannamei) health during a superintensive aquaculture growout using NMR-based metabolomics.

    PubMed

    Schock, Tracey B; Duke, Jessica; Goodson, Abby; Weldon, Daryl; Brunson, Jeff; Leffler, John W; Bearden, Daniel W

    2013-01-01

    Success of the shrimp aquaculture industry requires technological advances that increase production and environmental sustainability. Indoor, superintensive, aquaculture systems are being developed that permit year-round production of farmed shrimp at high densities. These systems are intended to overcome problems of disease susceptibility and of water quality issues from waste products, by operating as essentially closed systems that promote beneficial microbial communities (biofloc). The resulting biofloc can assimilate and detoxify wastes, may provide nutrition for the farmed organisms resulting in improved growth, and may aid in reducing disease initiated from external sources. Nuclear magnetic resonance (NMR)-based metabolomic techniques were used to assess shrimp health during a full growout cycle from the nursery phase through harvest in a minimal-exchange, superintensive, biofloc system. Aberrant shrimp metabolomes were detected from a spike in total ammonia nitrogen in the nursery, from a reduced feeding period that was a consequence of surface scum build-up in the raceway, and from the stocking transition from the nursery to the growout raceway. The biochemical changes in the shrimp that were induced by the stressors were essential for survival and included nitrogen detoxification and energy conservation mechanisms. Inosine and trehalose may be general biomarkers of stress in Litopenaeus vannamei. This study demonstrates one aspect of the practicality of using NMR-based metabolomics to enhance the aquaculture industry by providing physiological insight into common environmental stresses that may limit growth or better explain reduced survival and production.

  6. Does aquaculture add resilience to the global food system?

    PubMed Central

    Troell, Max; Naylor, Rosamond L.; Metian, Marc; Beveridge, Malcolm; Tyedmers, Peter H.; Folke, Carl; Arrow, Kenneth J.; Barrett, Scott; Crépin, Anne-Sophie; Ehrlich, Paul R.; Gren, Åsa; Kautsky, Nils; Levin, Simon A.; Nyborg, Karine; Österblom, Henrik; Polasky, Stephen; Scheffer, Marten; Walker, Brian H.; Xepapadeas, Tasos; de Zeeuw, Aart

    2014-01-01

    Aquaculture is the fastest growing food sector and continues to expand alongside terrestrial crop and livestock production. Using portfolio theory as a conceptual framework, we explore how current interconnections between the aquaculture, crop, livestock, and fisheries sectors act as an impediment to, or an opportunity for, enhanced resilience in the global food system given increased resource scarcity and climate change. Aquaculture can potentially enhance resilience through improved resource use efficiencies and increased diversification of farmed species, locales of production, and feeding strategies. However, aquaculture’s reliance on terrestrial crops and wild fish for feeds, its dependence on freshwater and land for culture sites, and its broad array of environmental impacts diminishes its ability to add resilience. Feeds for livestock and farmed fish that are fed rely largely on the same crops, although the fraction destined for aquaculture is presently small (∼4%). As demand for high-value fed aquaculture products grows, competition for these crops will also rise, as will the demand for wild fish as feed inputs. Many of these crops and forage fish are also consumed directly by humans and provide essential nutrition for low-income households. Their rising use in aquafeeds has the potential to increase price levels and volatility, worsening food insecurity among the most vulnerable populations. Although the diversification of global food production systems that includes aquaculture offers promise for enhanced resilience, such promise will not be realized if government policies fail to provide adequate incentives for resource efficiency, equity, and environmental protection. PMID:25136111

  7. Monitoring and managing microbes in aquaculture - Towards a sustainable industry.

    PubMed

    Bentzon-Tilia, Mikkel; Sonnenschein, Eva C; Gram, Lone

    2016-09-01

    Microorganisms are of great importance to aquaculture where they occur naturally, and can be added artificially, fulfilling different roles. They recycle nutrients, degrade organic matter and, occasionally, they infect and kill the fish, their larvae or the live feed. Also, some microorganisms may protect fish and larvae against disease. Hence, monitoring and manipulating the microbial communities in aquaculture environments hold great potential; both in terms of assessing and improving water quality, but also in terms of controlling the development of microbial infections. Using microbial communities to monitor water quality and to efficiently carry out ecosystem services within the aquaculture systems may only be a few years away. Initially, however, we need to thoroughly understand the microbiomes of both healthy and diseased aquaculture systems, and we need to determine how to successfully manipulate and engineer these microbiomes. Similarly, we can reduce the need to apply antibiotics in aquaculture through manipulation of the microbiome, i.e. by the use of probiotic bacteria. Recent studies have demonstrated that fish pathogenic bacteria in live feed can be controlled by probiotics and that mortality of infected fish larvae can be reduced significantly by probiotic bacteria. However, the successful management of the aquaculture microbiota is currently hampered by our lack of knowledge of relevant microbial interactions and the overall ecology of these systems.

  8. Interactions of aquaculture and waste disposal in the coastal zone

    NASA Astrophysics Data System (ADS)

    Xuemei, Zhai; Hawkins, S. J.

    2002-04-01

    Throughout the world, the coastal zones of many countries are used increasingly for aquaculture in addition to other activities such as waste disposal. These activities can cause environmental problems and health problems where they overlap. The interaction between aquaculture and waste disposal, and their relationship with eutrophication are the subjects of this paper. Sewage discharge without adequate dispersion can lead to nutrient elevation and hence eutrophication which has clearly negative effects on aquaculture with the potential for toxic blooms. Blooms may be either toxic or anoxia-causing through the decay process or simply clog the gills of filter-feeding animals in some cases. With the development of aquaculture, especially intensive aquaculture, many environmental problems appeared, and have resulted in eutrophication in some areas. Eutrophication may destroy the health of whole ecosystem which is important for sustainable aquaculture. Sewage discharge may also cause serious public health problems. Filter-feeding shellfish growing in sewage-polluted waters accumulate micro-organims, including human pathogenic bacteria and viruses, and heavy metal ion, presenting a significant health risk. Some farmed animals may also accumulate heavy metals from sewage. Bivalves growing in areas affected by toxic algae blooms may accumulate toxins (such as PSP, DSP) which can be harmful to human beings.

  9. Use of sunlight to degrade oxytetracycline in marine aquaculture's waters.

    PubMed

    Leal, J F; Esteves, V I; Santos, E B H

    2016-06-01

    Oxytracycline (OTC) is a broad spectrum antibiotic authorized for use in European aquaculture. Its photo-degradation has been widely studied in synthetic aqueous solutions, sometimes resorting to expensive methods and without proven effectiveness in natural waters. Thus, this work studied the possibility to apply the solar photo-degradation for removal of OTC from marine aquaculture's waters. For that, water samples were collected at different locals of the water treatment circuit, from two different aquaculture companies. Water samples were firstly characterized regarding to pH, salinity, total suspended solids (TSS), organic carbon and UV-Vis spectroscopic characteristics. Then, the samples were spiked with OTC and irradiated using simulated sunlight in order to evaluate the matrix effects on OTC photo-degradation. From kinetic results, the apparent quantum yields and the outdoor half-life times, at 40°N for midsummer and midwinter days were estimated by the first time for these conditions. For a midsummer day, at sea level, the outdoor half-life time predicted for OTC in these aquaculture's waters ranged between 21 and 25 min. Additionally, the pH and salinity effects on the OTC photo-degradation were evaluated and it has been shown that high pH values and the presence of sea salt increase the OTC photo-degradation rate in aquaculture's waters, compared to results in deionised water. The results are very promising to apply this low-cost methodology using the natural sunlight in aquaculture's waters to remove OTC.

  10. Assessing benthic ecological impacts of bottom aquaculture using macrofaunal assemblages.

    PubMed

    Wang, Lu; Fan, Ying; Yan, Cunjun; Gao, Chunzi; Xu, Zhaodong; Liu, Xiaoshou

    2017-01-15

    Bottom aquaculture of bivalves is a high-yield culture method, which is increasingly adopted by shellfish farmers worldwide. However, the effects of bottom aquaculture on benthic ecosystems are not well-known. Manila clam (Ruditapes philippinarum), is a widely distributed bottom aquaculture mollusk species. To assess the ecological impacts of Manila clam bottom aquaculture, clams and other macrofaunal assemblages were investigated during four cruises (July and November 2011, February and May 2012) at six sampling sites in Jiaozhou Bay, China. Correlation analysis showed that macrofaunal assemblages had significant negative correlations with the abundance of Manila clams. However, according to the results of several biotic indices, a low disturbance was detected by Manila clam bottom aquaculture. In conclusion, AMBI (AZTI'S Marine Biotic Index) and M-AMBI (Multivariate AZTI Marine Biotic Index) indices are more suitable for assessing ecological quality than polychaete/amphipod ratios when the disturbance is slight, such as at a bivalve bottom aquaculture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Tocopherols in Seafood and Aquaculture Products.

    PubMed

    Afonso, Cláudia; Bandarra, Narcisa M; Nunes, Leonor; Cardoso, Carlos

    2016-01-01

    Fish products contain various nutritionally beneficial components, namely, ω3-polyunsaturated fatty acids (ω3-PUFA), minerals, and vitamins. Particularly, tocopherols (α-, β-, γ-, and δ-tocopherol) can be provided by seafood and aquaculture products. Hence, this review shows the various aspects of tocopherols in seafood and aquaculture products. For tocopherol determination in these products, HPLC methods coupled with diode array detection in the UV area of the spectrum or fluorescence detection have been shown as sensitive and accurate. These newest methods have helped in understanding tocopherols fate upon ingestion by seafood organisms. Tocopherols pass through the intestinal mucosa mainly by the same passive diffusion mechanism as fats. After absorption, the transport mechanism is thought to consist of two loops. The first loop is dietary, including chylomicrons and fatty acids bound to carrier protein, transporting lipids mainly to the liver. The other is the transport from the liver to tissues and storage sites. Moreover, tocopherol levels in fish organisms correlate with diet levels, being adjusted in fish body depending on diet concentration. For farmed fish species, insufficient levels of tocopherols in the diet can lead to poor growth performance or to nutritional disease. The tocopherol quantity needed as a feed supplement depends on various factors, such as the vitamer mixture, the lipid level and source, the method of diet preparation, and the feed storage conditions. Other ingredients in diet may be of great importance, it has been proposed that α-tocopherol may behave as a prooxidant synergist at higher concentrations when prooxidants such as transition metals are present. However, the antioxidant action of tocopherols outweighs this prooxidant effect, provided that adequate conditions are used. In fact, muscle-based foods containing higher levels of tocopherol show, for instance, higher lipid stability. Besides, tocopherols are important not

  12. The contribution of molecular epidemiology to the understanding and control of viral diseases of salmonid aquaculture.

    PubMed

    Snow, Michael

    2011-04-05

    Molecular epidemiology is a science which utilizes molecular biology to define the distribution of disease in a population (descriptive epidemiology) and relies heavily on integration of traditional (or analytical) epidemiological approaches to identify the etiological determinants of this distribution. The study of viral pathogens of aquaculture has provided many exciting opportunities to apply such tools. This review considers the extent to which molecular epidemiological studies have contributed to better understanding and control of disease in aquaculture, drawing on examples of viral diseases of salmonid fish of commercial significance including viral haemorrhagic septicaemia virus (VHSV), salmonid alphavirus (SAV) and infectious salmon anaemia virus (ISAV). Significant outcomes of molecular epidemiological studies include:Improved taxonomic classification of viruses. A better understanding of the natural distribution of viruses. An improved understanding of the origins of viral pathogens in aquaculture. An improved understanding of the risks of translocation of pathogens outwith their natural host range. An increased ability to trace the source of new disease outbreaks. Development of a basis for ensuring development of appropriate diagnostic tools. An ability to classify isolates and thus target future research aimed at better understanding biological function. While molecular epidemiological studies have no doubt already made a significant contribution in these areas, the advent of new technologies such as pyrosequencing heralds a quantum leap in the ability to generate descriptive molecular sequence data. The ability of molecular epidemiology to fulfil its potential to translate complex disease pathways into relevant fish health policy is thus unlikely to be limited by the generation of descriptive molecular markers. More likely, full realisation of the potential to better explain viral transmission pathways will be dependent on the ability to assimilate

  13. Isolation, Identification, and Optimization of Culture Conditions of a Bioflocculant-Producing Bacterium Bacillus megaterium SP1 and Its Application in Aquaculture Wastewater Treatment.

    PubMed

    Luo, Liang; Zhao, Zhigang; Huang, Xiaoli; Du, Xue; Wang, Chang'an; Li, Jinnan; Wang, Liansheng; Xu, Qiyou

    2016-01-01

    A bioflocculant-producing bacterium, Bacillus megaterium SP1, was isolated from biofloc in pond water and identified by using both 16S rDNA sequencing analysis and a Biolog GEN III MicroStation System. The optimal carbon and nitrogen sources for Bacillus megaterium SP1 were 20 g L(-1) of glucose and 0.5 g L(-1) of beef extract at 30°C and pH 7. The bioflocculant produced by strain SP1 under optimal culture conditions was applied into aquaculture wastewater treatment. The removal rates of chemical oxygen demand (COD), total ammonia nitrogen (TAN), and suspended solids (SS) in aquaculture wastewater reached 64, 63.61, and 83.8%, respectively. The volume of biofloc (FV) increased from 4.93 to 25.97 mL L(-1). The addition of Bacillus megaterium SP1 in aquaculture wastewater could effectively improve aquaculture water quality, promote the formation of biofloc, and then form an efficient and healthy aquaculture model based on biofloc technology.

  14. Isolation, Identification, and Optimization of Culture Conditions of a Bioflocculant-Producing Bacterium Bacillus megaterium SP1 and Its Application in Aquaculture Wastewater Treatment

    PubMed Central

    Luo, Liang; Huang, Xiaoli; Du, Xue; Wang, Chang'an; Li, Jinnan; Wang, Liansheng

    2016-01-01

    A bioflocculant-producing bacterium, Bacillus megaterium SP1, was isolated from biofloc in pond water and identified by using both 16S rDNA sequencing analysis and a Biolog GEN III MicroStation System. The optimal carbon and nitrogen sources for Bacillus megaterium SP1 were 20 g L−1 of glucose and 0.5 g L−1 of beef extract at 30°C and pH 7. The bioflocculant produced by strain SP1 under optimal culture conditions was applied into aquaculture wastewater treatment. The removal rates of chemical oxygen demand (COD), total ammonia nitrogen (TAN), and suspended solids (SS) in aquaculture wastewater reached 64, 63.61, and 83.8%, respectively. The volume of biofloc (FV) increased from 4.93 to 25.97 mL L−1. The addition of Bacillus megaterium SP1 in aquaculture wastewater could effectively improve aquaculture water quality, promote the formation of biofloc, and then form an efficient and healthy aquaculture model based on biofloc technology. PMID:27840823

  15. Furthering knowledge of seaweed growth and development to facilitate sustainable aquaculture.

    PubMed

    Charrier, Bénédicte; Abreu, Maria Helena; Araujo, Rita; Bruhn, Annette; Coates, Juliet C; De Clerck, Olivier; Katsaros, Christos; Robaina, Rafael R; Wichard, Thomas

    2017-08-11

    Macroalgae (seaweeds) are the subject of increasing interest for their potential as a source of valuable, sustainable biomass in the food, feed, chemical and pharmaceutical industries. Compared with microalgae, the pace of knowledge acquisition in seaweeds is slower despite the availability of whole-genome sequences and model organisms for the major seaweed groups. This is partly a consequence of specific hurdles related to the large size of these organisms and their slow growth. As a result, this basic scientific field is falling behind, despite the societal and economic importance of these organisms. Here, we argue that sustainable management of seaweed aquaculture requires fundamental understanding of the underlying biological mechanisms controlling macroalgal life cycles - from the production of germ cells to the growth and fertility of the adult organisms - using diverse approaches requiring a broad range of technological tools. This Viewpoint highlights several examples of basic research on macroalgal developmental biology that could enable the step-changes which are required to adequately meet the demands of the aquaculture sector. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  16. Aquaculture genomics, genetics and breeding in the United States: Current status, challenges, and priorities for future research

    USDA-ARS?s Scientific Manuscript database

    Advancing the production efficiency and profitability of aquaculture is dependent upon the ability to utilize a diverse array of genetic resources. The ultimate goals of aquaculture genomics, genetics and breeding research are to enhance aquaculture production efficiency, sustainability, product qua...

  17. Strategies to overcome statin intolerance.

    PubMed

    Agouridis, Aris P; Nair, Devaki R; Mikhailidis, Dimitri P

    2015-06-01

    This editorial discusses several options to overcome statin intolerance in clinical practice. For example, switching to a different statin, changing statin dosing, using lipid-lowering drugs other than statins (e.g., ezetimibe, bile acid sequestrants and fibrates, alone or in combination), or combining statins with other lipid-lowering drugs. The authors focus on the potential mechanisms involved in statin-related myopathy. New lipid-lowering drugs currently in development (e.g., cholesterol ester transfer protein inhibitors [anacetrapib] and proprotein convertase subtilisin/kexin 9 inhibitors) inhibitors may help in the management of statin intolerance while achieving low-density lipoprotein cholesterol targets as set out by the guidelines.

  18. Denitrification and anammox in tropical aquaculture settlement ponds: an isotope tracer approach for evaluating N2 production.

    PubMed

    Castine, Sarah A; Erler, Dirk V; Trott, Lindsay A; Paul, Nicholas A; de Nys, Rocky; Eyre, Bradley D

    2012-01-01

    Settlement ponds are used to treat aquaculture discharge water by removing nutrients through physical (settling) and biological (microbial transformation) processes. Nutrient removal through settling has been quantified, however, the occurrence of, and potential for microbial nitrogen (N) removal is largely unknown in these systems. Therefore, isotope tracer techniques were used to measure potential rates of denitrification and anaerobic ammonium oxidation (anammox) in the sediment of settlement ponds in tropical aquaculture systems. Dinitrogen gas (N(2)) was produced in all ponds, although potential rates were low (0-7.07 nmol N cm(-3) h(-1)) relative to other aquatic systems. Denitrification was the main driver of N(2) production, with anammox only detected in two of the four ponds. No correlations were detected between the measured sediment variables (total organic carbon, total nitrogen, iron, manganese, sulphur and phosphorous) and denitrification or anammox. Furthermore, denitrification was not carbon limited as the addition of particulate organic matter (paired t-Test; P = 0.350, n = 3) or methanol (paired t-Test; P = 0.744, n = 3) did not stimulate production of N(2). A simple mass balance model showed that only 2.5% of added fixed N was removed in the studied settlement ponds through the denitrification and anammox processes. It is recommended that settlement ponds be used in conjunction with additional technologies (i.e. constructed wetlands or biological reactors) to enhance N(2) production and N removal from aquaculture wastewater.

  19. Denitrification and Anammox in Tropical Aquaculture Settlement Ponds: An Isotope Tracer Approach for Evaluating N2 Production

    PubMed Central

    Castine, Sarah A.; Erler, Dirk V.; Trott, Lindsay A.; Paul, Nicholas A.; de Nys, Rocky; Eyre, Bradley D.

    2012-01-01

    Settlement ponds are used to treat aquaculture discharge water by removing nutrients through physical (settling) and biological (microbial transformation) processes. Nutrient removal through settling has been quantified, however, the occurrence of, and potential for microbial nitrogen (N) removal is largely unknown in these systems. Therefore, isotope tracer techniques were used to measure potential rates of denitrification and anaerobic ammonium oxidation (anammox) in the sediment of settlement ponds in tropical aquaculture systems. Dinitrogen gas (N2) was produced in all ponds, although potential rates were low (0–7.07 nmol N cm−3 h−1) relative to other aquatic systems. Denitrification was the main driver of N2 production, with anammox only detected in two of the four ponds. No correlations were detected between the measured sediment variables (total organic carbon, total nitrogen, iron, manganese, sulphur and phosphorous) and denitrification or anammox. Furthermore, denitrification was not carbon limited as the addition of particulate organic matter (paired t-Test; P = 0.350, n = 3) or methanol (paired t-Test; P = 0.744, n = 3) did not stimulate production of N2. A simple mass balance model showed that only 2.5% of added fixed N was removed in the studied settlement ponds through the denitrification and anammox processes. It is recommended that settlement ponds be used in conjunction with additional technologies (i.e. constructed wetlands or biological reactors) to enhance N2 production and N removal from aquaculture wastewater. PMID:22962581

  20. Optimizing Ocean Space: Co-siting Open Ocean Aquaculture

    NASA Astrophysics Data System (ADS)

    Cobb, B. L.; Wickliffe, L. C.; Morris, J. A., Jr.

    2016-12-01

    In January of 2016, NOAA's National Marine Fisheries Service released the Gulf Aquaculture Plan (GAP) to manage the development of environmentally sound and economically sustainable open ocean finfish aquaculture in the Gulf of Mexico (inside the U.S. Exclusive Economic Zone [EEZ]). The GAP provides the first regulatory framework for aquaculture in federal waters with estimated production of 64 million pounds of finfish, and an estimated economic impact of $264 million annually. The Gulf of Mexico is one of the most industrialized ocean basins in the world, with many existing ocean uses including oil and natural gas production, shipping and commerce, commercial fishing operations, and many protected areas to ensure conservation of valuable ecosystem resources and services. NOAA utilized spatial planning procedures and tools identifying suitable sites for establishing aquaculture through exclusion analyses using authoritative federal and state data housed in a centralized geodatabase. Through a highly collaborative, multi-agency effort a mock permitting exercise was conducted to illustrate the regulatory decision-making process for the Gulf. Further decision-making occurred through exploring co-siting opportunities with oil and natural gas platforms. Logistical co-siting was conducted to reduce overall operational costs by looking at distance to major port and commodity tonnage at each port. Importantly, the process of co-siting allows aquaculture to be coupled with other benefits, including the availability of previously established infrastructure and the reduction of environmental impacts.

  1. Helminth parasites of finfish commercial aquaculture in Latin America.

    PubMed

    Soler-Jiménez, L C; Paredes-Trujillo, A I; Vidal-Martínez, V M

    2017-03-01

    Latin America has tripled production by aquaculture up to 78 million tonnes in the past 20 years. However, one of the problems that aquaculture is facing is the presence of helminth parasites and the diseases caused by them in the region. In this review we have collected all the available information on helminths affecting commercial aquaculture in Latin America and the Caribbean (LAC), emphasizing those causing serious economic losses. Monogeneans are by far the most common and aggressive parasites affecting farmed fish in LAC. They have been recognized as serious pathogens in intensive fish culture because they reach high levels of infection rapidly, and can infect other phylogenetically related fish species. The next most important group comprises the larval stages of digeneans (metacercariae) such as Diplostomum sp. and Centrocestus formosanus, which cause serious damage to farmed fish. Since LAC aquaculture has been based mainly on exotic species (tilapia, salmon, trout and carp), most of their parasites have been brought into the region together with the fish for aquaculture. Recently, one of us (A.I.P.-T.) has suggested that monogeneans, which have generally been considered to be harmless, can produce serious effects on the growth of cultured Nile tilapia. Therefore, the introduction of fish together with their 'harmless' parasites into new sites, regions or countries in LAC should be considered a breakdown of biosecurity in those countries involved. Therefore, the application of quarantine procedures and preventive therapeutic treatments should be considered before allowing these introductions into a country.

  2. In-tank aeration, a necessary compliment of loaded systems in an airlift recirculating aquaculture system

    USDA-ARS?s Scientific Manuscript database

    Water treatment components in recirculating aquaculture systems in generally address solids removal, nitrification, circulation, aeration, and degasification. Airlift pumps in a recirculating aquaculture system can address water circulation, aeration, and degasification. Recent data indicates oxygen...

  3. Mechanisms of quorum sensing and strategies for quorum sensing disruption in aquaculture pathogens.

    PubMed

    Zhao, J; Chen, M; Quan, C S; Fan, S D

    2015-09-01

    In many countries, infectious diseases are a considerable threat to aquaculture. The pathogenicity of micro-organisms that infect aquaculture systems is closely related to the release of virulence factors and the formation of biofilms, both of which are regulated by quorum sensing (QS). Thus, QS disruption is a potential strategy for preventing disease in aquaculture systems. QS inhibitors (QSIs) not only inhibit the expression of virulence-associated genes but also attenuate the virulence of aquaculture pathogens. In this review, we discuss QS systems in important aquaculture pathogens and focus on the relationship between QS mechanisms and bacterial virulence in aquaculture. We further elucidate QS disruption strategies for targeting aquaculture pathogens. Four main types of QSIs that target aquaculture pathogens are discussed based on their mechanisms of action. © 2014 John Wiley & Sons Ltd.

  4. Does pond water reflectance influence double-crested cormorant selection of aquaculture pond?

    USDA-ARS?s Scientific Manuscript database

    Double-crested cormorants (Phalacrocorax auritus) are a frequent and major avian predator on channel catfish (Ictalurus punctatus) and other aquaculture species throughout the southeastern USA. Although cormorant movements and occurrence within the aquaculture production region are understood, no s...

  5. NANOPREPARATIONS TO OVERCOME MULTIDRUG RESISTANCE IN CANCER

    PubMed Central

    Patel, Niravkumar R.; Pattni, Bhushan S.; Abouzeid, Abraham H.; Torchilin, Vladimir P.

    2013-01-01

    Multidrug resistance is the most widely exploited phenomenon by which cancer eludes chemotherapy. Broad variety of factors, ranging from the cellular ones, such as over-expression of efflux transporters, defective apoptotic machineries, and altered molecular targets, to the physiological factors such as higher interstitial fluid pressure, low extracellular pH, and formation of irregular tumor vasculature are responsible for multidrug resistance. A combination of various undesirable factors associated with biological surroundings together with poor solubility and instability of many potential therapeutic small & large molecules within the biological systems and systemic toxicity of chemotherapeutic agents has necessitated the need for nano-preparations to optimize drug delivery. The physiology of solid tumors presents numerous challenges for successful therapy. However, it also offers unique opportunities for the use of nanotechnology. Nanoparticles, up to 400 nm in size, have shown great promise for carrying, protecting and delivering potential therapeutic molecules with diverse physiological properties. In this review, various factors responsible for the MDR and the use of nanotechnology to overcome the MDR, the use of spheroid culture as well as the current technique of producing micro tumor tissues in vitro are discussed in detail. PMID:23973912

  6. An overview: biomolecules from microalgae for animal feed and aquaculture.

    PubMed

    Yaakob, Zahira; Ali, Ehsan; Zainal, Afifi; Mohamad, Masita; Takriff, Mohd Sobri

    2014-12-01

    Despite being more popular for biofuel, microalgae have gained a lot of attention as a source of biomolecules and biomass for feed purposes. Algae farming can be established using land as well as sea and strategies can be designed in order to gain the products of specific interest in the optimal way. A general overview of the contributions of Algae to meet the requirements of nutrients in animal/aquaculture feed is presented in this study. In addition to its applications in animal/aquaculture feed, algae can produce a number of biomolecules including astaxanthin, lutein, beta-carotene, chlorophyll, phycobiliprotein, Polyunsaturated Fatty Acids (PUFAs), beta-1,3-glucan, and pharmaceutical and nutraceutical compounds which have been reviewed with respect to their commercial importance and current status. The review is further extended to highlight the adequate utilization of value added products in the feeds for livestock, poultry and aquaculture (with emphasis in shrimp farming).

  7. Using Bacillus amyloliquefaciens for remediation of aquaculture water.

    PubMed

    Xie, Fengxing; Zhu, Taicheng; Zhang, Fengfeng; Zhou, Ke; Zhao, Yujie; Li, Zhenghua

    2013-12-01

    Remediation of aquaculture water using microorganisms like Bacillus species is a burgeoning trend for the sustainable development of aquaculture industries. In this work, a Bacillus amyloliquefaciens strain (namely B. amyloliquefaciens HN), isolated from activated sludge of a polluted river, was evaluated for its potential in water remediation using simulated aquaculture water. B. amyloliquefaciens HN exhibited high tolerance towards 80 mg l(-1) of nitrite-N and ammonia-N. It could effectively remove 20 mg l(-1) of nitrite-N, but was inefficient in eliminating ammonia-N when the ammonia-N concentration was below 20 mg l(-1). Further studies showed that the ammonia-N removal by B. amyloliquefaciens HN was more efficient at 30°C and 35°C than 25°C, and that maximum nitrite-N removal rate was achieved at pH 8.

  8. Taking account of fish welfare: lessons from aquaculture.

    PubMed

    Huntingford, F A; Kadri, S

    2009-12-01

    This paper explores the possibility that lessons learned from aquaculture might contribute to current debate on welfare and fisheries. After looking briefly at the history of research interest in the welfare of farmed fishes, some implications of using different definitions of and approaches to the concept of welfare are discussed. Consideration is given to the way in which the aquaculture industry has responded to public concern about fish welfare and, for cases where these responses have been effective, why this might be the case. Finally, possible cross-over points between aquaculture and fisheries in the context of fish welfare, as well as experience and expertise that might be shared between these two areas, are identified.

  9. Assessment of a closed greenhouse aquaculture and hydroponic system

    SciTech Connect

    Head, W.D.

    1984-01-01

    Research was conducted to address three objectives: 1) to determine the nitrogen cycling of a closed greenhouse aquaculture and hydroponic system; 2) to determine the energy budget of a closed greenhouse aquaculture and hydroponic system; and 3) to determine which low cost fish diets could be used as a replacement or supplement to commercial diets for Tilapia mossambica. A 6435 liter recirculating aquaculture system was enclosed in a 32.6 m/sup 2/ greenhouse. Water was recirculated through two 416 liter trickling filter towers and three 5.5 m long hydroponic troughs. The aquaculture tank was stocked with a polyculture of channel catfish (Ictalurus punctatus) and tilapia (Tilapia mossambica) and the hydroponic troughs were planted with tomatoes (Lycopersicon esculentum). The fishes were fed a commercial fish diet and the tomatoes were irrigated with the aquaculture water using a modified Nutrient Film Technique. The fish yield was 42.2 kg and the average tomato yield from 24 plants was 4.1 kg/plant. The combined fish and tomato production accounted for 65% of the total nitrogen input. Leaf analyses and visual inspection showed that the tomato plants from the hydroponic troughs were deficient in potassium and magnesium. An energy analysis of the greenhouse and aquaculture-hydroponic system showed that when combining the energy outputs of heat, fish, and tomatoes the energy ratio (energy output/energy input) was similar to literature values for milkfish pond culture. When only the fish production was considered the energy ratio was similar to literature values reported for intensive water recirculating systems.

  10. Overcoming immunosuppression in bone metastases.

    PubMed

    Reinstein, Zachary Z; Pamarthy, Sahithi; Sagar, Vinay; Costa, Ricardo; Abdulkadir, Sarki A; Giles, Francis J; Carneiro, Benedito A

    2017-09-01

    Bone metastases are present in up to 70% of advanced prostate and breast cancers and occur at significant rates in a variety of other cancers. Bone metastases can be associated with significant morbidity. The establishment of bone metastasis activates several immunosuppressive mechanisms. Hence, understanding the tumor-bone microenvironment is crucial to inform the development of novel therapies. This review describes the current standard of care for patients with bone metastatic disease and novel treatment options targeting the microenvironment. Treatments reviewed include immunotherapies, cryoablation, and targeted therapies. Combinatorial treatment strategies including targeted therapies and immunotherapies show promise in pre-clinical and clinical studies to overcome the suppressive environment and improve treatment of bone metastases. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Overcoming "the Valley of Death".

    PubMed

    McIntyre, Robin A

    2014-01-01

    On a global level there are major challenges arising from climate change, resource use and changing age demographics. These issues have created a global marketplace for novel innovative products and solutions which can help to combat and overcome these challenges which have created significant commercial opportunities for companies, particularly for small and medium size enterprises or SMEs. Companies most likely to take advantage of these opportunities will be those which can innovate in a timely manner. Innovation significantly contributes to higher productivity and economic growth, and is core to a company's competitiveness within often challenging marketplaces. However, many factors can stifle innovation. Companies can struggle to identify finance for early-stage development, the returns can be difficult to predict, and the innovation 'landscape' is often complex and unclear. This brief review describes some of the main issues with commercialising innovative ideas and provides guidance with respect to the often complicated funding landscape both on a National and European level.

  12. Overcoming obstacles: collaboration for change.

    PubMed

    Funnell, M M

    2004-10-01

    Effective diabetes care requires a partnership between prepared, proactive practice teams and informed, activated patients. Diabetes education helps to overcome many of the barriers to effective self-management by enabling people with diabetes to make informed decisions about their day-to-day self-care. Both psychosocial and health outcomes have been improved through a variety of training programmes; however, education must be coupled with ongoing self-management support if these benefits are to be sustained. The principal goal of diabetes education has undergone a major shift over the past few years--evolving from primarily didactic interventions, focused on encouraging patients to adhere to the prescribed therapy, towards more interactive learning that supports people in making informed, self-directed decisions.

  13. Overcoming challenges in improvement work.

    PubMed

    Crisp, Helen

    2013-09-01

    The Health Foundation is an independent charity working to improve healthcare in the UK, so that we have a system of the highest possible quality-safe, effective, person-centred, timely, efficient and equitable. We believe that in order to achieve this, health services need to continually improve the way they work. The Foundation conducts research and evaluation, puts ideas into practice through improvement programmes, develops leaders and shares evidence to drive wider change. The work is a focused around two priority areas: patient safety and person-centred care. The Foundation has supported work to improve services for patients with kidney disease and, in common with other quality improvement projects, there have been challenges to overcome. Awareness of these common challenges can help others to be more prepared when planning service improvements. © 2013 European Dialysis and Transplant Nurses Association/European Renal Care Association.

  14. Atlantic salmon and eastern oyster breeding programs at the National Cold Water Marine Aquaculture Center

    USDA-ARS?s Scientific Manuscript database

    The USDA-ARS National Cold Water Marine Aquaculture Center (NCWMAC) focuses on the coldwater marine aquaculture industry’s highest priority research needs including development of improved genetic stocks. Coldwater aquaculture production has potential for expansion, and both Atlantic salmon and Eas...

  15. Revising and Updating the Natural Resources and Aquaculture Components of the Connecticut Vocational Agriculture Curriculum.

    ERIC Educational Resources Information Center

    Berggren, Frederick W.

    Materials, including curriculum units, are provided for the natural resources and aquaculture components of the vocational agriculture curriculum. Aquaculture is a new component, added because of increased recognition of the opportunities offered by Connecticut's rich shoreline resources. A brochure and flyer on the aquaculture program follow a…

  16. Research update for the Harry K. Dupree Stuttgart National Aquaculture Research Center

    USDA-ARS?s Scientific Manuscript database

    Aquaculture (fish farming) has played an ever-increasing role in providing people with fish, shrimp, and shellfish. Aquaculture is currently the fastest growing sector of global food production and in 2014 totaled 80 million tons valued at $140 billion. The production of food-fish from aquaculture h...

  17. Atlantic salmon and eastern oyster breeding programs at the National Cold Water Marine Aquaculture Center

    USDA-ARS?s Scientific Manuscript database

    The USDA-ARS National Cold Water Marine Aquaculture Center (NCWMAC) focuses on the coldwater marine aquaculture industry's highest priority research needs including development of improved genetic stocks. Coldwater aquaculture production has potential for expansion, and both Atlantic salmon and East...

  18. Meeting the food and nutrition needs of the poor: the role of fish and the opportunities and challenges emerging from the rise of aquaculture.

    PubMed

    Beveridge, M C M; Thilsted, S H; Phillips, M J; Metian, M; Troell, M; Hall, S J

    2013-10-01

    People who are food and nutrition insecure largely reside in Asia and Sub-Saharan Africa and for many, fish represents a rich source of protein, micronutrients and essential fatty acids. The contribution of fish to household food and nutrition security depends upon availability, access and cultural and personal preferences. Access is largely determined by location, seasonality and price but at the individual level it also depends upon a person's physiological and health status and how fish is prepared, cooked and shared among household members. The sustained and rapid expansion of aquaculture over the past 30 years has resulted in >40% of all fish now consumed being derived from farming. While aquaculture produce increasingly features in the diets of many Asians, it is much less apparent among those living in Sub-Saharan Africa. Here, per capita fish consumption has grown little and despite the apparently strong markets and adequate biophysical conditions, aquaculture has yet to develop. The contribution of aquaculture to food and nutrition security is not only just an issue of where aquaculture occurs but also of what is being produced and how and whether the produce is as accessible as that from capture fisheries. The range of fish species produced by an increasingly globalized aquaculture industry differs from that derived from capture fisheries. Farmed fishes are also different in terms of their nutrient content, a result of the species being grown and of rearing methods. Farmed fish price affects access by poor consumers while the size at which fish is harvested influences both access and use. This paper explores these issues with particular reference to Asia and Africa and the technical and policy innovations needed to ensure that fish farming is able to fulfil its potential to meet the global population's food and nutrition needs. © 2013 World Fish. Journal of Fish Biology published by John Wiley & Sons Ltd on behalf of The Fisheries Society of the

  19. Feet, heat and scallops: what is the cost of anthropogenic disturbance in bivalve aquaculture?

    PubMed Central

    Halsey, Lewis G.; Chauvaud, Laurent

    2016-01-01

    The effects of unnatural disturbances on the behaviour and energetics of animals are an important issue for conservation and commercial animal production. Biologging enables estimation of the energy costs of these disturbances, but not specifically the effect these costs have on growth; a key outcome measure for animal farming enterprises. We looked at how natural and anthropogenically induced activity and energy expenditure of king scallops Pecten maximus varies with temperature. These data were then used to model growth time of king scallops reared in an aquaculture facility under different temperatures and anthropogenic disturbance levels. The scallops exhibited a typical total metabolic rate (MR)–temperature curve, with a peak reached at a middling temperature. The percentage of their total MR associated with spinning and swimming, behavioural responses to disturbance, was considerable. Interestingly, as temperature increased, the activity MR associated with a given level of activity decreased; a hitherto unreported relationship in any species. The model results suggest there is a trade-off in the ambient temperature that should be set by hatcheries between the optimal for scallop growth if completely undisturbed versus mitigating against the energy costs elicited by anthropogenic disturbance. Furthermore, the model indicates that this trade-off is affected by scallop size. Aquaculture facilities typically have controls to limit the impact of human activities, yet the present data indicate that hatcheries may be advised to consider whether more controls could further decrease extraneous scallop behaviours, resulting in enhanced scallop yields and improved financial margins. PMID:27069659

  20. [Application of deactivating properties of some sorbents in aquaculture feed production].

    PubMed

    Vasukevich, T A; Nitievskaya, L S

    2014-01-01

    The possibility and effectiveness of application of selective sorbents for fish feed production in aquaculture in the area exposed to the radioactive pollution were studied. The investigations of the fish feed deactivating properties with additives of ferrocyn and potassium alginate, and magnesium on whitefish fry-fingerlings and yearlings were carried out. The study has shown that the ferrocyn performance is greater than 99% regardless of the fish age. 1% ferrocyn addition to feed allows increasing the acceptable concentration of feed compo- nents polluted by the above norm cesium radionuclide up to 20 times. The alginate additives in feed provide almost double decrease in the activity of fish tissues. The optimally effective alginate dose should exceed the calcium concentration in feed up to 4 times. It was found that utilization of the feedstock (fish meal, crops and legumes, oil meal and oil cake) polluted by radionuclides is possible in combined aquaculture feed pro- duction. The application of sorbents in feed will allow increasing the amount permissible for use of the feed components polluted above the norm; ensure the radiation safety of feed and, finally, the protection of aquatic biological resources from radioactive contamination. It is shown that the sorbent additive in feed is also jus- tified in case of fish farming in closed waters affected by radioactive pollution. Feeding by mixed fodder with the sorbent additives prevents fish from radionuclide intake from natural food sources.

  1. Chlamydial infections of fish: diverse pathogens and emerging causes of disease in aquaculture species.

    PubMed

    Stride, M C; Polkinghorne, A; Nowak, B F

    2014-05-14

    Chlamydial infections of fish are emerging as an important cause of disease in new and established aquaculture industries. To date, epitheliocystis, a skin and gill disease associated with infection by these obligate intracellular pathogens, has been described in over 90 fish species, including hosts from marine and fresh water environments. Aided by advances in molecular detection and typing, recent years have seen an explosion in the description of these epitheliocystis-related chlamydial pathogens of fish, significantly broadening our knowledge of the genetic diversity of the order Chlamydiales. Remarkably, in most cases, it seems that each new piscine host studied has revealed the presence of a phylogenetically unique and novel chlamydial pathogen, providing researchers with a fascinating opportunity to understand the origin, evolution and adaptation of their traditional terrestrial chlamydial relatives. Despite the advances in this area, much still needs to be learnt about the epidemiology of chlamydial infections in fish if these pathogens are to be controlled in farmed environments. The lack of in vitro methods for culturing of chlamydial pathogens of fish is a major hindrance to this field. This review provides an update on our current knowledge of the taxonomy and diversity of chlamydial pathogens of fish, discusses the impact of these infections on the health, and highlights further areas of research required to understand the biology and epidemiology of this important emerging group of fish pathogens of aquaculture species.

  2. Chlamydial infections of fish: diverse pathogens and emerging causes of disease in aquaculture species.

    PubMed

    Stride, M C; Polkinghome, A; Nowak, B F

    2014-06-25

    Chlamydial infections of fish are emerging as an important cause of disease in new and established aquaculture industries. To date, epitheliocystis, a skin and gill disease associated with infection by these obligate intracellular pathogens, has been described in over 90 fish species, including hosts from marine and fresh water environments. Aided by advances in molecular detection and typing, recent years have seen an explosion in the description of these epitheliocystis-related chlamydial pathogens of fish, significantly broadening our knowledge of the genetic diversity of the order Chlamydiales. Remarkably, in most cases, it seems that each new piscine host studied has revealed the presence of a phylogenetically unique and novel chlamydial pathogen, providing researchers with a fascinating opportunity to understand the origin, evolution and adaptation of their traditional terrestrial chlamydial relatives. Despite the advances in this area, much still needs to be learnt about the epidemiology of chlamydial infections in fish if these pathogens are to be controlled in farmed environments. The lack of in vitro methods for culturing of chlamydial pathogens of fish is a major hindrance to this field. This review provides an update on our current knowledge of the taxonomy and diversity of chlamydial pathogens of fish, discusses the impact of these infections on the health, and highlights further areas of research required to understand the biology and epidemiology of this important emerging group of fish pathogens of aquaculture species.

  3. Dissolved oxygen and aeration in ictalurid catfish aquaculture

    USDA-ARS?s Scientific Manuscript database

    Feed-based production of ictalurid catfish in ponds is the largest aquaculture sector in the United States. The feed biochemical oxygen demand (FBOD) typically is 1.1-1.2 kg O2/kg feed. Feed also results in a substantial increase of carbon dioxide, ammonia nitrogen, and phosphate to ponds, and this ...

  4. Low head oxygenator performance characterization for marine recirculating aquaculture systems

    USDA-ARS?s Scientific Manuscript database

    This study evaluated the effect of temperature (20 and 25 ºC), salinity (10, 15, and 20 ppt), and dissolved oxygen levels within low head oxygenator (LHO) outlet water on oxygen transfer efficiency (OTE) of LHOs for a planned marine recirculating aquaculture system (RAS). Test results indicated tha...

  5. Effect of starch sources on extruded aquaculture feed containing DDGS

    USDA-ARS?s Scientific Manuscript database

    Aquaculture is one of the most rapidly growing sectors of agriculture, and is a reliable growth market for the prepared feeds. A Brabender laboratory-scale single screw extruder was used to study the effect of various starch sources (cassava, corn, and potato), DDGS levels (20, 30, and 40% (wb)), an...

  6. An Inexpensive Recirculating Aquaculture System with Multiple Use Capabilities.

    ERIC Educational Resources Information Center

    Scurlock, Gerald Don, Jr.; Cook, S. Bradford; Scurlock, Carrie Ann

    1999-01-01

    Describes the construction of an inexpensive recirculating aquaculture system that can hold up to 46 pounds of fish, invertebrates, and mussels for classroom use. The system is versatile, requires little maintenance, and can be used for both teaching and research purposes. (WRM)

  7. Ocean modelling for aquaculture and fisheries in Irish waters

    NASA Astrophysics Data System (ADS)

    Dabrowski, T.; Lyons, K.; Cusack, C.; Casal, G.; Berry, A.; Nolan, G. D.

    2015-06-01

    The Marine Institute, Ireland, runs a suite of operational regional and coastal ocean models. Recent developments include several tailored products that focus on the key needs of the Irish aquaculture sector. In this article, an overview of the products and services derived from the models are presented. A shellfish model that includes growth and physiological interactions of mussels with the ecosystem and is fully embedded in the 3-D numerical modelling framework has been developed at the Marine Institute. This shellfish model has a microbial module designed to predict levels of coliform contamination in mussels. This model can also be used to estimate the carrying capacity of embayments, assess impacts of pollution on aquaculture grounds and help to classify shellfish waters. The physical coastal model of southwest Ireland provides a three day forecast of shelf water movement in the region. This is assimilated into a new harmful algal bloom alert system used to inform end-users of potential toxic shellfish events and high biomass blooms that include fish killing species. Further services include the use of models to identify potential sites for offshore aquaculture, to inform studies of potential cross-contamination in farms from the dispersal of planktonic sea lice larvae and other pathogens that can infect finfish and to provide modelled products that underpin the assessment and advisory services on the sustainable exploitation of the marine fisheries resources. This paper demonstrates that ocean models can provide an invaluable contribution to the sustainable blue growth of aquaculture and fisheries.

  8. International cooperation on the use of peracetic acid in aquaculture

    USDA-ARS?s Scientific Manuscript database

    This presentation will discuss collaborative efforts on research to evaluate the usefulness of peracetic acid (PAA) as a therapeutant in aquaculture. Research has been underway since 2009 with a scientist from the Leibniz-Institute of Freshwater Ecology and Inland Fisheries (Berlin, Germany). Ther...

  9. Ocean modelling for aquaculture and fisheries in Irish waters

    NASA Astrophysics Data System (ADS)

    Dabrowski, T.; Lyons, K.; Cusack, C.; Casal, G.; Berry, A.; Nolan, G. D.

    2016-01-01

    The Marine Institute, Ireland, runs a suite of operational regional and coastal ocean models. Recent developments include several tailored products that focus on the key needs of the Irish aquaculture sector. In this article, an overview of the products and services derived from the models are presented. The authors give an overview of a shellfish model developed in-house and that was designed to predict the growth, the physiological interactions with the ecosystem, and the level of coliform contamination of the blue mussel. As such, this model is applicable in studies on the carrying capacity of embayments, assessment of the impacts of pollution on aquaculture grounds, and the determination of shellfish water classes. Further services include the assimilation of the model-predicted shelf water movement into a new harmful algal bloom alert system used to inform end users of potential toxic shellfish events and high biomass blooms that include fish-killing species. Models are also used to identify potential sites for offshore aquaculture, to inform studies of potential cross-contamination in farms from the dispersal of planktonic sea lice larvae and other pathogens that can infect finfish, and to provide modelled products that underpin the assessment and advisory services on the sustainable exploitation of the resources of marine fisheries. This paper demonstrates that ocean models can provide an invaluable contribution to the sustainable blue growth of aquaculture and fisheries.

  10. Off-flavors in salmonids raised in recirculating aquaculture systems

    USDA-ARS?s Scientific Manuscript database

    Producers of aquaculture products will typically verify the flavor quality of their product by sensory evaluation (flavor testing) before harvesting the crop for market. “Off-flavors” detected in the product may require holding the fish in a purging system containing fresh, clean water to depurate ...

  11. Developing low cost feed grade soybean protein concentrates for aquaculture

    USDA-ARS?s Scientific Manuscript database

    One emerging area in the global soy industry, particularly the U.S. soybean industry, has been developing soy-based feeds as an alternative protein source to meet the growing needs of aquaculture in China and elsewhere. Traditionally, fishmeal is a key protein ingredient in fish diets, but its sup...

  12. Aquaculture research at the Conservation Fund Freshwater Institute

    USDA-ARS?s Scientific Manuscript database

    The Conservation Fund Freshwater Institute (TCFFI), working through cooperative agreements with the USDA Agriculture Research Service, has become a global leader in research and development of land-based closed containment water recirculation aquaculture systems (RAS) following three decades of appl...

  13. Aquaculture: A Course of Study for Sand Point Secondary School.

    ERIC Educational Resources Information Center

    Alaska State Dept. of Education, Juneau. Office of Public Information and Publications.

    This program is designed to involve students in the economy of their community. It combines an interdisciplinary educational program with practical field and laboratory experience. This program provides opportunities in the area of aquaculture, controlled cultivation of marketable species and the total ecological corrections necessary to maintain…

  14. In Situ Measurements of Nitrogen Cycling Across an Aquaculture Chronosequence

    NASA Astrophysics Data System (ADS)

    Ray, N.; Al-Haj, A.; Fulweiler, R. W.

    2016-02-01

    Aquaculture is increasing globally, yet its long-term environmental impact is not yet known. Using a novel, in situ approach we measured rates of N cycling across a chronosequence (or space for time substitution) in an oyster aquaculture farm in a temperate, coastal lagoon (Ninigret Pond, RI, USA). We hypothesized that rates of denitrification would increase as a function of age until a certain age when the sediments would no longer support this important ecosystem service. Water samples were collected and analyzed for fluxes of N2 and N2O using membrane inlet mass spectrometry and gas chromatography methods, respectively. There were significantly higher fluxes of N2 at sites below oyster culture (475.4-736.9 μmol N2-N m-2 hr-1) compared to the control site (75.7 μmol N2-N m-2 hr-1). Contrary to our hypothesis, there did not appear to be any pattern between age of culture and rate of denitrification. Alongside denitrification, we observed N2O uptake for all ages of culture, with the greatest magnitude at the middle-aged site (3-4 years; -828.5 μmol N2O m-2 hr-1), suggesting oyster aquaculture may stimulate sediment to become a sink for N2O. We will discuss our results in terms of site environmental characteristics as well as the potential for oyster aquaculture to remove reactive nitrogen in coastal lagoons.

  15. An Inexpensive Recirculating Aquaculture System with Multiple Use Capabilities.

    ERIC Educational Resources Information Center

    Scurlock, Gerald Don, Jr.; Cook, S. Bradford; Scurlock, Carrie Ann

    1999-01-01

    Describes the construction of an inexpensive recirculating aquaculture system that can hold up to 46 pounds of fish, invertebrates, and mussels for classroom use. The system is versatile, requires little maintenance, and can be used for both teaching and research purposes. (WRM)

  16. Final NPDES Permit Issued to Acadia Aquaculture | NPDES ...

    EPA Pesticide Factsheets

    2017-04-10

    EPA NE issued a final permit to Acadia Aquaculture Inc. on February 21, 2002 for the regulation of discharges from a proposed Atlantic salmon growing net pen facility in Blue Hill Bay, Maine. Links to the Final Permit and the Response to Comments are provided on this page.

  17. Peace Corps Aquaculture Training Manual. Training Manual T0057.

    ERIC Educational Resources Information Center

    Peace Corps, Washington, DC. Information Collection and Exchange Div.

    This Peace Corps training manual was developed from two existing manuals to provide a comprehensive training program in fish production for Peace Corps volunteers. The manual encompasses the essential elements of the University of Oklahoma program that has been training volunteers in aquaculture for 25 years. The 22 chapters of the manual are…

  18. Zebrafish as animal model for aquaculture nutrition research

    PubMed Central

    Ulloa, Pilar E.; Medrano, Juan F.; Feijoo, Carmen G.

    2014-01-01

    The aquaculture industry continues to promote the diversification of ingredients used in aquafeed in order to achieve a more sustainable aquaculture production system. The evaluation of large numbers of diets in aquaculture species is costly and requires time-consuming trials in some species. In contrast, zebrafish (Danio rerio) can solve these drawbacks as an experimental model, and represents an ideal organism to carry out preliminary evaluation of diets. In addition, zebrafish has a sequenced genome allowing the efficient utilization of new technologies, such as RNA-sequencing and genotyping platforms to study the molecular mechanisms that underlie the organism’s response to nutrients. Also, biotechnological tools like transgenic lines with fluorescently labeled neutrophils that allow the evaluation of the immune response in vivo, are readily available in this species. Thus, zebrafish provides an attractive platform for testing many ingredients to select those with the highest potential of success in aquaculture. In this perspective article aspects related to diet evaluation in which zebrafish can make important contributions to nutritional genomics and nutritional immunity are discussed. PMID:25309575

  19. Counter-insurgents of the blue revolution? Parasites and diseases affecting aquaculture and science.

    PubMed

    Blaylock, Reginald B; Bullard, Stephen A

    2014-12-01

    Aquaculture is the fastest-growing segment of food production and is expected to supply a growing portion of animal protein for consumption by humans. Because industrial aquaculture developed only recently compared to industrial agriculture, its development occurred within the context of a growing environmental awareness and acknowledgment of environmental issues associated with industrial farming. As such, parasites and diseases have become central criticisms of commercial aquaculture. This focus on parasites and diseases, however, has created a nexus of opportunities for research that has facilitated considerable scientific advances in the fields of parasitology and aquaculture. This paper reviews Myxobolus cerebralis , Lepeophtheirus salmonis , white spot syndrome virus, and assorted flatworms as select marquee aquaculture pathogens, summarizes the status of the diseases caused by each and their impacts on aquaculture, and highlights some of the significant contributions these pathogens have made to the science of parasitology and aquaculture.

  20. Effects of seawater ozonation on biofilm development in aquaculture tanks.

    PubMed

    Wietz, Matthias; Hall, Michael R; Høj, Lone

    2009-07-01

    Microbial biofilms developing in aquaculture tanks represent a reservoir for opportunistic bacterial pathogens, and procedures to control formation and bacterial composition of biofilms are important for the development of commercially viable aquaculture industries. This study investigated the effects of seawater ozonation on biofilm development on microscope glass slides placed in small-scale aquaculture tanks containing the live feed organism Artemia. Fluorescence in situ hybridization (FISH) demonstrated that ozonation accelerated the biofilm formation cycle, while it delayed the establishment of filamentous bacteria. Gammaproteobacteria and Alphaproteobacteria were the most abundant bacterial groups in the biofilm for both water types, but ozonation influenced their dynamics. With ozonation, the bacterial community structure was relatively stable and dominated by Gammaproteobacteria throughout the experiment (21-66% of total bacteria). Without ozonation, the community showed larger fluctuations, and Alphaproteobacteria emerged as dominant after 18 days (up to 54% of total bacteria). Ozonation of seawater also affected the dynamics of less abundant populations in the biofilm such as Betaproteobacteria, Planctomycetales and the Cytophaga/Flavobacterium branch of phylum Bacteroidetes. The abundance of Thiothrix, a bacterial genus capable of filamentous growth and fouling of larvae, increased with time for both water types, while no temporal trend could be detected for the genus Vibrio. Denaturing gradient gel electrophoresis (DGGE) demonstrated temporal changes in the dominant bacterial populations for both water types. Sequencing of DGGE bands confirmed the FISH data, and sequences were related to bacterial groups commonly found in biofilms of aquaculture systems. Several populations were closely related to organisms involved in sulfur cycling. Improved Artemia survival rates in tanks receiving ozonated water suggested a positive effect of ozonation on animal

  1. Marine Polysaccharides in Microencapsulation and Application to Aquaculture: “From Sea to Sea”

    PubMed Central

    Borgogna, Massimiliano; Bellich, Barbara; Cesàro, Attilio

    2011-01-01

    This review’s main objective is to discuss some physico-chemical features of polysaccharides as intrinsic determinants for the supramolecular structures that can efficiently provide encapsulation of drugs and other biological entities. Thus, the general characteristics of some basic polysaccharides are outlined in terms of their conformational, dynamic and thermodynamic properties. The analysis of some polysaccharide gelling properties is also provided, including the peculiarity of the charged polysaccharides. Then, the way the basic physical chemistry of polymer self-assembly is made in practice through the laboratory methods is highlighted. A description of the several literature procedures used to influence molecular interactions into the macroscopic goal of the encapsulation is given with an attempt at classification. Finally, a practical case study of specific interest, the use of marine polysaccharide matrices for encapsulation of vaccines in aquaculture, is reported. PMID:22363241

  2. Marine polysaccharides in microencapsulation and application to aquaculture: "from sea to sea".

    PubMed

    Borgogna, Massimiliano; Bellich, Barbara; Cesàro, Attilio

    2011-12-01

    This review's main objective is to discuss some physico-chemical features of polysaccharides as intrinsic determinants for the supramolecular structures that can efficiently provide encapsulation of drugs and other biological entities. Thus, the general characteristics of some basic polysaccharides are outlined in terms of their conformational, dynamic and thermodynamic properties. The analysis of some polysaccharide gelling properties is also provided, including the peculiarity of the charged polysaccharides. Then, the way the basic physical chemistry of polymer self-assembly is made in practice through the laboratory methods is highlighted. A description of the several literature procedures used to influence molecular interactions into the macroscopic goal of the encapsulation is given with an attempt at classification. Finally, a practical case study of specific interest, the use of marine polysaccharide matrices for encapsulation of vaccines in aquaculture, is reported.

  3. Supercritical fluid extraction of polyhalogenated pollutants from aquaculture and marine environmental samples: a review.

    PubMed

    García-Rodríguez, Diego; Carro-Díaz, Antonia María; Lorenzo-Ferreira, Rosa Antonia

    2008-05-01

    This article focuses on the state-of-the-art in sample preparation using supercritical fluid extraction (SFE), to monitor the content of polyhalogenated pollutants in aquaculture and marine environmental samples. Marine sediments and biological applications, including several types of samples matrices (fish, shellfish, seaweed and fish feed) and analyte groups (polychlorinated biphenyls (PCBs), polybrominated biphenyls (PBBs), polybrominated diphenylethers (PBDEs), polychlorinated dibenzo-p-dioxin (PCDD)/Fs and organochlorinated pesticide (OCPs)) are discussed with respect to SFE use and optimisation of conditions. We also discuss the great analytical potential of SFE, the integration of the extraction and clean-up steps for rapid sample processing justifying its use for routine work. The most recent SFE applications to the determination of these pollutants in marine environmental (biota and sediment) samples, published in the last 15 years, are reviewed.

  4. [Aquaculture in the Netherlands: problems and perspectives].

    PubMed

    Hogendoorn, H

    1986-11-15

    New interest is being focussed on the more than 100-year-old field of fish culture in the Netherlands. The systems of production available show varying degrees of control of the fish and their environment, and they have a corresponding yield: 0.01-250 kg/m3/year. The recently developed recirculation systems (40-80 kg/m3) make possible the commercial production of luxury species of fish, independently of climatological conditions and having minimum effects on the environment. Some technical aspects of reproduction, housing, nutrition, growth, health control and marketing of the fish require further attention. But the absence of a solid tradition of fish culture is the main problem in the development of fish culture in the Netherlands today. Good fish stockmanship is required at farmers' level. And the organisation and governmental support, that turned agriculture into a highly successful industry, are also essential. For the moment, the most promising commercial prospects are provided by a number of luxury fish species: trout, salmon, eel, sole, turbot, tilapia, catfish, seabass and seabream. A joint effort may help to overcome the remaining technical and logistical uncertainties.

  5. Design of high efficiency and energy saving aeration device for aquaculture

    NASA Astrophysics Data System (ADS)

    Liu, Sibo

    2017-03-01

    Energy efficient aeration device for aquaculture, in line with "by more than a generation, dynamic aeration" train of thought for technical design and improvement. Removable aeration terminal as the core, multi-level water to improve the method, the mobile fading pore aeration, intelligent mobile and open and close as the main function, aimed at solving the existing pond aeration efficiency, low energy consumption is high, the function of a single problem. From energy saving, efficiency, biological bacteria on the three directions, the aquaculture industry of energy conservation and emissions reduction. Device of the main advantages are: 1, original mobile fading aerator on the one hand, to expand the scope of work, playing a micro porous aeration of dissolved oxygen with high efficiency and to achieve "by more than a generation", on the other hand, through the sports equipment, stir the mixture of water, the water surface of photosynthesis of plants rich in dissolved oxygen input parts of the tank, compared to the stillness of the aerator can be more fully dissolved oxygen.2, through the opening of the pressure sensor indirect control device, can make the equipment timely and stop operation, convenient in use at the same time avoid the waste of energy.3, the biofilm suspension in aeration terminal, can be accomplished by nitration of microbial multi-level water improvement, still can make biofilm increase rate of netting in the movement process, the biological and mechanical aerobic promote each other, improve the efficiency of both. In addition, the device has small power consumption, low cost of characteristics. And have a certain degree of technical barriers, have their own intellectual property rights, and high degree of product market demand, easily accepted by customers, has a very high popularization value.

  6. Meeting the quest for spatial efficiency: progress and prospects of extensive aquaculture within offshore wind farms

    NASA Astrophysics Data System (ADS)

    Buck, B. H.; Krause, G.; Michler-Cieluch, T.; Brenner, M.; Buchholz, C. M.; Busch, J. A.; Fisch, R.; Geisen, M.; Zielinski, O.

    2008-09-01

    Along the German North Sea coast, the observed high spatial competition of stakeholders has encouraged the idea of integrating open ocean aquaculture in conjunction with offshore wind farms beyond the 12 miles zone. The article provides an overview on the current state of transdisciplinary research on a potential implementation of such a multifunctional use concept on a showcase basis, covering biological, technical, economic and social/policy aspects as well as private-public partnerships and the relevant institutional bodies. We show that the cultivation of seaweeds and blue mussels is biologically and technically feasible in a high-energy environment using modified cultivation strategies. The point of departure of our multi-use concept was that the solid groundings of wind turbines could serve as attachment points for the aquaculture installations and become the key to the successful commercial cultivation of any offshore aquatic organism. However, spaces in between the turbines are also attractive for farming projects, since public access is restricted and thus the cultivation site protected from outside influences. An economic analysis of different operation scenarios indicates that the market price and the annual settlement success of juvenile mussels are the main factors that determine the breakeven point. Social and policy science research reveals that the integration of relevant actors into the development of a multi-use concept for a wind farm-mariculture interaction is a complex and controversial issue. Combining knowledge and experience of wind farm planners as well as mussel fishermen and mariculturists within the framework of national and EU policies is probably the most important component for designing and developing an effective offshore co-management regime to limit the consumption of ocean space.

  7. A Study of the Aquaculture Industry in Texas to Assist in Establishing Aquaculture as a Course Offering in Agricultural Science and Technology. Final Report.

    ERIC Educational Resources Information Center

    Dillingham, John; And Others

    A 1989-90 project determined the knowledge and skills necessary for employment in the aquaculture industry. The study identified technical materials and other resources available in private industry and higher education institutions. Two surveys determined the status of aquaculture in Texas school districts and identified tasks performed by…

  8. Virus genomes and virus-host interactions in aquaculture animals.

    PubMed

    Zhang, QiYa; Gui, Jian-Fang

    2015-02-01

    Over the last 30 years, aquaculture has become the fastest growing form of agriculture production in the world, but its development has been hampered by a diverse range of pathogenic viruses. During the last decade, a large number of viruses from aquatic animals have been identified, and more than 100 viral genomes have been sequenced and genetically characterized. These advances are leading to better understanding about antiviral mechanisms and the types of interaction occurring between aquatic viruses and their hosts. Here, based on our research experience of more than 20 years, we review the wealth of genetic and genomic information from studies on a diverse range of aquatic viruses, including iridoviruses, herpesviruses, reoviruses, and rhabdoviruses, and outline some major advances in our understanding of virus-host interactions in animals used in aquaculture.

  9. Carbon dioxide stripping in aquaculture. part 1: terminology and reporting

    USGS Publications Warehouse

    Colt, John; Watten, Barnaby; Pfeiffer, Tim

    2012-01-01

    The removal of carbon dioxide gas in aquacultural systems is much more complex than for oxygen or nitrogen gas because of liquid reactions of carbon dioxide and their kinetics. Almost all published carbon dioxide removal information for aquaculture is based on the apparent removal value after the CO2(aq) + HOH ⇔ H2CO3 reaction has reached equilibrium. The true carbon dioxide removal is larger than the apparent value, especially for high alkalinities and seawater. For low alkalinity freshwaters (<2000 μeq/kg), the difference between the true and apparent removal is small and can be ignored for many applications. Analytical and reporting standards are recommended to improve our understanding of carbon dioxide removal.

  10. Major viral diseases affecting fish aquaculture in Spain.

    PubMed

    Pérez, S I; Rodríguez, S

    1997-06-01

    The number of viruses isolated from fish has grown in the last few years as a reflection of the increasing interest in fish diseases, particularly those occurring in aquaculture facilities. Of all the described viruses, only a few are considered to be of serious concern and economic importance; they are described in this review, drawing special attention to the four families of viruses (Birnaviridae, Rhabdoviridae, Iridoviridae and Reoviridae) that have been reported in Spanish aquaculture. Infectious pancreatic necrosis virus, a member of the first family, is the most spread virus with a prevalence of 39%. Viral diseases are untreatable and because effective and safe vaccines for fish are not yet commercially available, a great care needs to be exercised when moving fish or eggs from one site or country to another. Some fish health control regulations have been legislated in Europe and USA.

  11. Medium recycling for Nannochloropsis gaditana cultures for aquaculture.

    PubMed

    González-López, C V; Cerón-García, M C; Fernández-Sevilla, J M; González-Céspedes, A M; Camacho-Rodríguez, J; Molina-Grima, E

    2013-02-01

    Nannochloropsis gaditana is a good producer of proteins and valuable fatty acids for aquaculture. Recycling of culture medium is interesting for microalgae commercial production as it cuts costs and prevents environmental contamination. The recycled medium must be sterilized to prevent the buildup of unwanted metabolites and microorganisms. We tested several sterilization methods: filtration, ozonation, chlorination, addition of hydrogen peroxide and heating. Results showed that the most successful method is ozonation lowering the bacterial load to 1.910(3)CFUs/mL, which is 1000-fold and 10-fold lower than the supernatant obtained after harvesting and the initial filtered medium, respectively. Continuous cultures of N. gaditana were grown using this recirculated supernatant. A maximum biomass productivity of 0.8 g/L/d composed of ∼50% proteins and 40% lipids with more than 3%d.w. EPA was obtained making this biomass very interesting for aquaculture.

  12. Liposarcoma in clownfish, Amphiprion ocellaris Cuvier, produced in indoor aquaculture.

    PubMed

    Sharon, G; Benharroch, D; Kachko, L; Reis-Hevlin, N; Zilberg, D

    2015-06-01

    Clownfish, Amphiprion ocellaris Cuvier, produced and grown in an experimental indoor aquaculture facility, presented with lipomatous tumours. A total of 14 affected fish were examined. Based on the total number of fish at the aquaculture facility at the time of outbreak of this pathology, the scope of the incident is estimated to be 1 of 300 fish. The tumours were characterized by the presence of mature adipocytes of variable sizes, lipoblasts and by an invasive behaviour, which affected internal organs, muscle, central nervous system and, in one case, an eye. Detailed macroscopic and histopathological features are presented. The suggested diagnosis is that of a well-differentiated liposarcoma, a diagnosis so far never applied to fish. The limited outbreak of the neoplasm lasted a few months in 2011 and did not recur. Possible factors leading to this phenomenon, notably the metastasis, are discussed.

  13. An overview of health control in Croatian aquaculture.

    PubMed

    Oraić, D; Zrncić, S

    2005-08-01

    Aquaculture is an important segment of Croatian fishing industry with long tradition of carp and rainbow trout farming as well as marine aquaculture represented by shellfish (flat oyster and mussels), sea bass and sea bream cultivation and Atlantic bluefin tuna fattening. The fish and shellfish diseases survey is regulated by "Decree on the measures of animal health protection against infectious and parasite diseases" issued yearly by Ministry of Agriculture. This report derives from systematic clinical, parasitological, pathoanatomical, histopathological, bacteriological and virological monitoring of cultivated fish and shellfish on larger part of production during last several years. Among pathological conditions recognised on our farms, some specific viruses, bacteria and parasites represent frequently established causative nosologic agents. The overview of the main diseases with economic impact to the cultivation will be discussed in this paper.

  14. Technology assessment of aquaculture systems for municipal waste water treatment

    SciTech Connect

    Hyde, H.C.; Ross, R.S.; Sturmer, L.

    1984-08-01

    The innovative and alternative technology provisions of the Clean Water Act of 1977 (PL 95-217) provide financial incentives to communities that use wastewater treatment alternatives to reduce costs or energy consumption over conventional systems. Some of these technologies have been only recently developed and are not in widespread use in the United States. This document discusses the applicability and technical and economic feasibility of using aquaculture systems for municipal wastewater treatment facilities.

  15. Prospects of using marine actinobacteria as probiotics in aquaculture.

    PubMed

    Das, Surajit; Ward, Louise R; Burke, Chris

    2008-12-01

    Chemotherapeutic agents have been banned for disease management in aquaculture systems due to the emergence of antibiotic resistance gene and enduring residual effects in the environments. Instead, microbial interventions in sustainable aquaculture have been proposed, and among them, the most popular and practical approach is the use of probiotics. A range of microorganisms have been used so far as probiotics, which include Gram-negative and Gram-positive bacteria, yeast, bacteriophages, and unicellular algae. The results are satisfactory and promising; however, to combat the latest infectious diseases, the search for a new strain for probiotics is essential. Marine actinobacteria were designated as the chemical factory a long time ago, and quite a large number of chemical substances have been isolated to date. The potent actinobacterial genera are Streptomyces; Micromonospora; and a novel, recently described genus, Salinispora. Despite the existence of all the significant features of a good probiont, actinobacteria have been hardly used as probiotics in aquaculture. However, this group of bacteria promises to supply the most potential probiotic strains in the future.

  16. Current status of viral diseases in Indian shrimp aquaculture.

    PubMed

    Tandel, G M; John, K Riji; Rosalind George, M; Prince Jeyaseelan, M J

    The intensification of aquaculture has been unique in showing the overwhelming changes in global food production in the last 100 years. Presently, it is playing a vital role in the economies of several countries. Conversely, it is also to be noted that the progression of aquaculture has been the foundation of anthropogenic alteration of a gigantic hierarchy and hence not astonishingly, it resulted in spread and emergence of an increasing group of new unknown diseases. In India, Penaeus monodon, black tiger shrimp was previously the foremost-cultivated shrimp species. Subsequently in 2008, the American white leg shrimp Litopenaeus vannamei has effectively replaced it. The change in dominant species has affected disease concerns in India as well as in world shrimp aquaculture. White spot syndrome virus (WSSV) is the most deleterious for both species. Hepatopancreatic parvovirus (HPV), Monodon baculovirus (MBV) and Infectious hypodermal and hematopoietic necrosis virus (IHHNV) are the other significant infectious agents of P. monodon and L. vannamei. An emerging disease of loose shell syndrome (LSS) was already reported from India during late 1998. A more recent disease of L. vannamei in India is monodon slow growth syndrome (MSGS), a component of which seems to be Laem-Singh virus (LSNV). Thus, most of the information in this review relates to new emerging pathogens that threaten the cultivation shrimp industry in India.

  17. Taurine and fish development: insights for the aquaculture industry.

    PubMed

    Pinto, Wilson; Rønnestad, Ivar; Dinis, Maria Teresa; Aragão, Cláudia

    2013-01-01

    Expansion of the aquaculture industry is limited by incomplete knowledge on fish larval nutritional requirements. Nevertheless, it is believed that dietary taurine deficiencies may be particularly critical for fish larvae. The reasons include the high taurine levels found during egg and yolk-sac stages of fish, suggesting that taurine may be of pivotal importance for larval development. Moreover, unlike aquaculture feeds, natural preys of fish larvae contain high taurine levels, and dietary taurine supplementation has been shown to increase larval growth in several fish species. This study aimed to further explore the physiological role of taurine during fish development. Firstly, the effect of dietary taurine supplementation was assessed on growth of gilthead sea bream (Sparus aurata) larvae and growth, metamorphosis success and amino acid metabolism of Senegalese sole (Solea senegalensis) larvae. Secondly, the expression of taurine transporter (TauT) was characterised by qPCR in sole larvae and juveniles. Results showed that dietary taurine supplementation did not increase sea bream growth. However, dietary taurine supplementation significantly increased sole larval growth, metamorphosis success and amino acid retention. Metamorphosis was also shown to be an important developmental trigger to promote taurine transport in sole tissues, while evidence for an enterohepatic recycling pathway for taurine was found in sole at least from juvenile stage. Taken together, our studies showed that the dependence of dietary taurine supplementation differs among fish species and that taurine has a vital role during the ontogenetic development of flatfish, an extremely valuable group targeted for aquaculture production.

  18. Sustainable aquaculture of Asian arowana--a review.

    PubMed

    Medipally, S R; Yusoff, F M; Sharifhuddin, N; Shariff, M

    2016-07-01

    Asian arowana, Scleropages formosus is a highly valued aquarium fish in the world, particularly in Asian countries, and has been listed as one of the most highly endangered species. This is a freshwater, carnivorous, fairly large mouth breeding fish belonging to the family Osteoglossidae. Arowana can be found in different colour varieties such as green, red, silver and golden. Among these varieties, Malaysian golden is the most valuable fish and is endemic to the Krian riverine system, Malaysia. However, overexploitation, habitat change and pollution have caused a serious decline of this arowana variety. Recently, arowana aquaculture industry is expanding rapidly in Southeast Asian countries. However, difficulties in an accurate differentiation of sex and strains, causing imbalanced stocking ratios for optimum spawning, remain major obstacles in maximizing arowana production. In addition, problems in sustainable water sources of suitable quality and prevention of diseases need to be addressed. Recirculating aquaculture system (RAS) and bioremediation are two possible technologies that could be used to minimize pollution and ensure adequate high-quality water for arowana culture. In addition, the application of appropriate molecular markers for sex and strain identification is also an important strategy required for the improvement of captive breeding. This review discusses several issues such as the importance of arowana as an aquarium fish, its market demand, current problems in the arowana aquaculture industry and the possible technologies to enhance reproductive capacity and increase culture production. ?

  19. Ammonia removal from prawn aquaculture water using immobilized nitrifying bacteria.

    PubMed

    Shan, H; Obbard, J P

    2001-12-01

    Intensive prawn aquaculture in tropical regions is associated with high concentrations of total ammoniacal nitrogen (TAN) as a result of high rates of prawn excretion and feed loading. Excessive TAN can adversely effect productivity and result in adverse impacts on coastal waters. Cultures of indigenous nitrifying bacteria were enriched from intensive prawn aquaculture pond water using continuous and batch enrichment techniques. Cultures were capable of TAN removal over a wide range of initial TAN concentrations - up to 200 mg/l. Cultures were immobilized onto porous clay pellets to enhance cell density and applied to culture medium and TAN-augmented pond water under aerobic conditions to determine TAN removal proficiency. Immobilized cultures were able to achieve a high TAN removal proficiency in pond water--even at a low density of 0.1 pellet per liter. A concentration of less than 0.5 mg TAN/l could be maintained under a fed-batch condition of 3.2 mg TAN/l per day, after an initial 2-day lag phase. A simplified and effective culture enrichment process was developed for culture immobilization onto pellets using TAN-augmented pond water. Overall, pellet immobilization of indigenous nitrifying bacteria represents a potentially effective TAN control system for prawn aquaculture in low-cost, but intensive tropical prawn farms.

  20. Research on China's aquaculture efficiency evaluation and influencing factors with undesirable outputs

    NASA Astrophysics Data System (ADS)

    Ji, Jianyue; Wang, Pingping

    2015-06-01

    Taking the aquaculture area, the number of farming boats and that of aquaculturist as input variables, the aquaculture production as desirable output variable and polluted economic loss as undesirable output variable, this paper conducts SBM model to evaluate the aquaculture efficiency based on the data of 16 aquaculture-developed provinces in China from 2004 to 2011. The results show the efficiency in China has not changed much in recent years with the efficiency values mainly between 0.39 and 0.53, and the efficiency of marine-aquaculture-dominated provinces is generally higher than that of freshwater-aquaculture-dominated ones. To analyze the difference under the efficiency, the panel Tobit model is used with education level factor, training factor, technology extension factor, technical level factor, scale factor and species factor as the efficiency influencing factors. The results show that technology extension factor and technical level factor have significant positive influence.

  1. Aquaculture: International examples of success and failure and their lessons for the United States

    SciTech Connect

    Katz, A.

    1994-06-01

    To help assess ways to strengthen U.S. aquaculture, the Office of Technology Assessment (OTA) has sponsored a five-part study of aquaculture to: (1) review data and literature on the current state scientific understanding and technological development in aquacultural production in the United States; (2) identify promising new and emerging technologies with potential to influence U.S. aquacultural development; (3) identify new approaches from case studies of aquacultural production systems and policy structures in select foreign countries; (4) assess current and potential roles of federal, state, and private organizations in the development and implementation of technologies; and (5) develop policy options for Congress. This paper represents part 3 of the above outline of the study, identification of new approaches from case studies of aquacultural production systems and policy structures in select foreign countries and their relevance to the United States.

  2. Contaminant Area Aquaculture Program. Determination of the chemical suitability of a dredged material containment area for aquaculture. Final technical report

    SciTech Connect

    Tatem, H.E.

    1990-12-01

    This concerns use of dredged material containment areas (DMCA) for aquaculture, specifically for production of a crop intended for human consumption. New DMCA's used only periodically for dredged material disposal could be managed to produce valuable crops. Previous studies conducted by the Corps of Engineers, including one where shrimp was raised at a DMCA, and others relating to the effects of sediment contaminants on aquatic organisms, are reviewed. The literature indicated that most dredged material is uncontaminated and that many sediment constituents such as metal are relatively unavailable to aquatic animals; DMCAs containing parts-per-million levels of organic contaminants such as pesticides, polychlorinated biphenyls, or petroleum hydrocarbons should not be used for aquaculture without extensive testing.

  3. Targeted cancer therapy; nanotechnology approaches for overcoming drug resistance.

    PubMed

    Gao, Yan; Shen, Jacson K; Milane, Lara; Hornicek, Francis J; Amiji, Mansoor M; Duan, Zhenfeng

    2015-01-01

    Recent advances in cancer molecular biology have resulted in parallel and unprecedented progress in the development of targeted cancer therapy. Targeted therapy can provide higher efficacy and lower toxicity than conventional chemotherapy for cancer. However, like traditional chemotherapy, molecularly targeted cancer therapy also faces the challenge of drug resistance. Multiple mechanisms are responsible for chemotherapy resistance in tumors, including over-expression of efflux transporters, somatic alterations of drug targets, deregulation of apoptosis, and numerous pharmacokinetic issues. Nanotechnology based approaches are proving to be efficacious in overcoming drug resistance in cancer. Combination of targeted therapies with nanotechnology approaches is a promising strategy to overcome targeted therapy drug resistance in cancer treatment. This review discusses the mechanisms of targeted drug resistance in cancer and discusses nanotechnology approaches to circumvent this resistance.

  4. Tracing dissolved organic matter (DOM) from land-based aquaculture systems in North Patagonian streams.

    PubMed

    Nimptsch, Jorge; Woelfl, Stefan; Osorio, Sebastian; Valenzuela, Jose; Ebersbach, Paul; von Tuempling, Wolf; Palma, Rodrigo; Encina, Francisco; Figueroa, David; Kamjunke, Norbert; Graeber, Daniel

    2015-12-15

    Chile is the second largest producer of salmonids worldwide. The first step in the production of salmonids takes place in land-based aquacultures. However, the effects of the discharge from these aquacultures on stream dissolved organic matter (DOM) content, molecular composition and degradability are unknown. The aim of this study was thus to investigate the inputs of anthropogenic DOM from land-based aquaculture to the predominantly pristine river systems of North Patagonia. We hypothesized, that i) DOM exported from land-based aquaculture mainly consists of protein-like fluorescence (tyrosine and tryptophan) released from fish feces and food remains, and that ii) this DOM is highly degradable and therefore rapidly turned-over within the receiving streams. In the North Patagonian region we conducted a screening of ten land-based aquacultures and an intensive sampling campaign for one aquaculture. This was combined with longitudinal transects and a degradation experiment in order to couple the composition of DOM exported from land-based aquacultures to its degradability in streams. We measured dissolved organic carbon (DOC) concentration by high-temperature catalytic oxidation and DOM composition by fluorescence spectroscopy and parallel factor analysis. In the effluent of the ten screened aquacultures and in the repeated sampling of one aquaculture, we consistently found an increase of DOC concentrations and a dominance of protein-like fluorescence. The protein-like fluorescence rapidly disappeared downstream of the aquacultures, and in the degradation experiment. 21% of the DOC export from the repeatedly sampled aquaculture resulted from food addition and 76% from fish production. We conclude that large amounts of degradable DOM are exported from land-based aquacultures. This probably has strong effects on the ecological structure and function of North Patagonian streams, and similarly affected streams worldwide. Copyright © 2015 Elsevier B.V. All rights

  5. Land-based salmon aquacultures change the quality and bacterial degradation of riverine dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Kamjunke, Norbert; Nimptsch, Jorge; Harir, Mourad; Herzsprung, Peter; Schmitt-Kopplin, Philippe; Neu, Thomas R.; Graeber, Daniel; Osorio, Sebastian; Valenzuela, Jose; Carlos Reyes, Juan; Woelfl, Stefan; Hertkorn, Norbert

    2017-03-01

    Aquacultures are of great economic importance worldwide but pollute pristine headwater streams, lakes, and estuaries. However, there are no in-depth studies of the consequences of aquacultures on dissolved organic matter (DOM) composition and structure. We performed a detailed molecular level characterization of aquaculture DOM quality and its bacterial degradation using four salmon aquacultures in Chile. Fluorescence measurements, ultrahigh-resolution mass spectrometry, and nuclear magnetic resonance spectroscopy of the DOM revealed specific and extensive molecular alterations caused by aquacultures. Aquacultures released large quantities of readily bioavailable metabolites (primarily carbohydrates and peptides/proteins, and lipids), causing the organic matter downstream of all the investigated aquacultures to deviate strongly from the highly processed, polydisperse and molecularly heterogeneous DOM found in pristine rivers. However, the upstream individual catchment DOM signatures remained distinguishable at the downstream sites. The benthic algal biovolume decreased and the bacterial biovolume and production increased downstream of the aquacultures, shifting stream ecosystems to a more heterotrophic state and thus impairing the ecosystem health. The bacterial DOM degradation rates explain the attenuation of aquaculture DOM within the subsequent stream reaches. This knowledge may aid the development of improved waste processing facilities and may help to define emission thresholds to protect sensitive stream ecosystems.

  6. Land-based salmon aquacultures change the quality and bacterial degradation of riverine dissolved organic matter

    PubMed Central

    Kamjunke, Norbert; Nimptsch, Jorge; Harir, Mourad; Herzsprung, Peter; Schmitt-Kopplin, Philippe; Neu, Thomas R.; Graeber, Daniel; Osorio, Sebastian; Valenzuela, Jose; Carlos Reyes, Juan; Woelfl, Stefan; Hertkorn, Norbert

    2017-01-01

    Aquacultures are of great economic importance worldwide but pollute pristine headwater streams, lakes, and estuaries. However, there are no in-depth studies of the consequences of aquacultures on dissolved organic matter (DOM) composition and structure. We performed a detailed molecular level characterization of aquaculture DOM quality and its bacterial degradation using four salmon aquacultures in Chile. Fluorescence measurements, ultrahigh-resolution mass spectrometry, and nuclear magnetic resonance spectroscopy of the DOM revealed specific and extensive molecular alterations caused by aquacultures. Aquacultures released large quantities of readily bioavailable metabolites (primarily carbohydrates and peptides/proteins, and lipids), causing the organic matter downstream of all the investigated aquacultures to deviate strongly from the highly processed, polydisperse and molecularly heterogeneous DOM found in pristine rivers. However, the upstream individual catchment DOM signatures remained distinguishable at the downstream sites. The benthic algal biovolume decreased and the bacterial biovolume and production increased downstream of the aquacultures, shifting stream ecosystems to a more heterotrophic state and thus impairing the ecosystem health. The bacterial DOM degradation rates explain the attenuation of aquaculture DOM within the subsequent stream reaches. This knowledge may aid the development of improved waste processing facilities and may help to define emission thresholds to protect sensitive stream ecosystems. PMID:28256613

  7. Study on treatment of aquaculture wastewater using a hybrid constructed wetland

    NASA Astrophysics Data System (ADS)

    Hu, Jinzhao; Hu, Rui; Qi, Dan; Lu, Xujie

    2017-04-01

    This paper reported the pollutant removal performances of a hybrid wetland system for the treatment of aquaculture wastewater. The system consisted of two treatment stages: a subsurface vertical flow (VF) wetland, followed by a horizontal flow (HF). The aquaculture wastewater with the different concentrations such as eutrophy and mesotrophy was treated using hybrid constructed wetland. The experimental results showed that the removal efficiencies of eutrophy aquaculture wastewater achieved 56%, 71%, 73% for nitrite, phosphate and nitrate, respectively. At the same conditions, it can be found that the removal efficiencies of mesotrophy aquaculture wastewater achieved 39%, 74%, 73% for nitrite, phosphate and nitrate, respectively.

  8. Design and Application of a Solar Mobile Pond Aquaculture Water Quality-Regulation Machine Based in Bream Pond Aquaculture.

    PubMed

    Liu, Xingguo; Xu, Hao; Ma, Zhuojun; Zhang, Yongjun; Tian, Changfeng; Cheng, Guofeng; Zou, Haisheng; Lu, Shimin; Liu, Shijing; Tang, Rong

    2016-01-01

    Bream pond aquaculture plays a very important role in China's aquaculture industry and is the main source of aquatic products. To regulate and control pond water quality and sediment, a movable solar pond aquaculture water quality regulation machine (SMWM) was designed and used. This machine is solar-powered and moves on water, and its primary components are a solar power supply device, a sediment lifting device, a mechanism for walking on the water's surface and a control system. The solar power supply device provides power for the machine, and the water walking mechanism drives the machine's motion on the water. The sediment lifting device orbits the main section of the machine and affects a large area of the pond. Tests of the machine's mechanical properties revealed that the minimum illumination necessary for the SMWM to function is 13,000 Lx and that its stable speed on the water is 0.02-0.03 m/s. For an illumination of 13,000-52,500 Lx, the sediment lifting device runs at 0.13-0.35 m/s, and its water delivery capacity is 110-208 m(3)/h. The sediment lifting device is able to fold away, and the angle of the suction chamber can be adjusted, making the machine work well in ponds at different water depths from 0.5 m to 2 m. The optimal distance from the sediment lifting device to the bottom of the pond is 10-15 cm. In addition, adjusting the length of the connecting rod and the direction of the traction rope allows the SMWM to work in a pond water area greater than 80%. The analysis of water quality in Wuchang bream (Parabramis pekinensis) and silver carp (Hypophthalmichthys molitrix) culture ponds using the SMWM resulted in decreased NH3(+)-N and available phosphorus concentrations and increased TP concentrations. The TN content and the amount of available phosphorus in the sediment were reduced. In addition, the fish production showed that the SMWM enhanced the yields of Wuchang bream and silver carp by more than 30% and 24%, respectively. These results

  9. Design and Application of a Solar Mobile Pond Aquaculture Water Quality-Regulation Machine Based in Bream Pond Aquaculture

    PubMed Central

    Liu, Xingguo; Xu, Hao; Ma, Zhuojun; Zhang, Yongjun; Tian, Changfeng; Cheng, Guofeng; Zou, Haisheng; Lu, Shimin; Liu, Shijing; Tang, Rong

    2016-01-01

    Bream pond aquaculture plays a very important role in China’s aquaculture industry and is the main source of aquatic products. To regulate and control pond water quality and sediment, a movable solar pond aquaculture water quality regulation machine (SMWM) was designed and used. This machine is solar-powered and moves on water, and its primary components are a solar power supply device, a sediment lifting device, a mechanism for walking on the water’s surface and a control system. The solar power supply device provides power for the machine, and the water walking mechanism drives the machine’s motion on the water. The sediment lifting device orbits the main section of the machine and affects a large area of the pond. Tests of the machine’s mechanical properties revealed that the minimum illumination necessary for the SMWM to function is 13,000 Lx and that its stable speed on the water is 0.02–0.03 m/s. For an illumination of 13,000–52,500 Lx, the sediment lifting device runs at 0.13–0.35 m/s, and its water delivery capacity is 110–208 m3/h. The sediment lifting device is able to fold away, and the angle of the suction chamber can be adjusted, making the machine work well in ponds at different water depths from 0.5 m to 2 m. The optimal distance from the sediment lifting device to the bottom of the pond is 10–15 cm. In addition, adjusting the length of the connecting rod and the direction of the traction rope allows the SMWM to work in a pond water area greater than 80%. The analysis of water quality in Wuchang bream (Parabramis pekinensis) and silver carp (Hypophthalmichthys molitrix) culture ponds using the SMWM resulted in decreased NH3+–N and available phosphorus concentrations and increased TP concentrations. The TN content and the amount of available phosphorus in the sediment were reduced. In addition, the fish production showed that the SMWM enhanced the yields of Wuchang bream and silver carp by more than 30% and 24%, respectively. These

  10. Overcoming Resistance to Training: A Nonconfrontive Approach.

    ERIC Educational Resources Information Center

    Lipshitz, Raanan; And Others

    1989-01-01

    Three groups of strategies for overcoming trainee resistance are (1) preventing (distracting, assuming a "one-down" position, baiting, preempting, linking); (2) circumventing (refraining, disengaging); and (3) using resistance (treating it as substantive agreement). (SK)

  11. The Role of Peroxisome Proliferator-Activated Receptor Gamma (PPARG) in Adipogenesis: Applying Knowledge from the Fish Aquaculture Industry to Biomedical Research

    PubMed Central

    Wafer, Rebecca; Tandon, Panna; Minchin, James E. N.

    2017-01-01

    The tropical freshwater zebrafish has recently emerged as a valuable model organism for the study of adipose tissue biology and obesity-related disease. The strengths of the zebrafish model system are its wealth of genetic mutants, transgenic tools, and amenability to high-resolution imaging of cell dynamics within live animals. However, zebrafish adipose research is at a nascent stage and many gaps exist in our understanding of zebrafish adipose physiology and metabolism. By contrast, adipose research within other, closely related, teleost species has a rich and extensive history, owing to the economic importance of these fish as a food source. Here, we compare and contrast knowledge on peroxisome proliferator-activated receptor gamma (PPARG)-mediated adipogenesis derived from both biomedical and aquaculture literatures. We first concentrate on the biomedical literature to (i) briefly review PPARG-mediated adipogenesis in mammals, before (ii) reviewing Pparg-mediated adipogenesis in zebrafish. Finally, we (iii) mine the aquaculture literature to compare and contrast Pparg-mediated adipogenesis in aquaculturally relevant teleosts. Our goal is to highlight evolutionary similarities and differences in adipose biology that will inform our understanding of the role of adipose tissue in obesity and related disease. PMID:28588550

  12. Aquaculture in the Imperial Valley -- A geothermal success story

    SciTech Connect

    Rafferty, K.

    1999-03-01

    The Salton Sea and Imperial Valley area of southern California has long been recognized as a hot spot of geothermal development. In the geothermal industry, this area has for some time been synonymous with electric power generation projects. Starting with the first plant in East Mesa in 1979, geothermal power has increased over the years to the present 400+ MW of installed capacity in the three primary areas of Salton Sea, Heber and East Mesa. Although most in the industry are aware of the millions of kilowatt-hours annually produced in this desert oasis of development, they remain surprisingly uninformed about the Valley`s other geothermal industry -- aquaculture. At present, there are approximately 15 fish farming (or aquaculture) operations clustered, for the most part, around the Salton Sea. All of these farms use geothermal fluids to control the temperature of the fish culture facilities so as to produce larger fish in a shorter period of time and to permit winter production which would otherwise not be possible. In aggregate, these farms produce on the order of 10,000,000 lbs of fish per year most of which is sold into the California market. Principle species are catfish, striped bass and tilapia. For the past several years, tilapia has been the fastest growing part of the aquaculture industry. In 1996, the total US consumption of tilapia was 62,000 lbs. Of this, only 16,000,000 lbs (26%) was domestically produced and the balance imported. The primary market for the fish on the West Coast is among the Asian-American populations in the major cities. Fish are shipped and sold liver at the retail level.

  13. IOOS: Aiding Aquaculture Industries and Their Harvest with Near Real-Time Data

    NASA Astrophysics Data System (ADS)

    Kerkering, H.; Shandy Buckley; Jan Newton; Julie Thomas

    2011-12-01

    networks are being designed to address scientific understanding and uncertainty as well as the management needs of various stakeholder groups. Better communication and delivery of near real time data will assist aquaculture growers to predict when larvae will recruit in the natural system, when and if to relocate crops, and when to pump water in a tanks system. Though an integrated west coast observational network satellite sea surface temperature, HAB tracking systems, ocean acidification buoys, and biological monitoring programs can be pulled together into a cohesive program. A network of scientists and industry stakeholders providing and utilizing a near real time data network saves money and increases efficiency. It is not possible to prevent variability in temperature, nutrients, pH and algal blooms, but increasing understanding will lead to more accurate predictions, and ultimately, better human adaptation to the harmful economic impacts of HABs and ocean acidification.

  14. The effects of aquaculture production noise on the growth, condition factor, feed conversion, and survival of rainbow trout, Oncorhynchus mykiss

    USDA-ARS?s Scientific Manuscript database

    Intensive aquaculture systems, particularly recirculating systems, utilize equipment such as aerators, air and water pumps, blowers, and filtration systems that inadvertently increase noise levels in fish culture tanks. Sound levels and frequencies measured within intensive aquaculture systems are w...

  15. Power plant waste heat utilization in aquaculture. Volume I. Final report, 1 November 1976-1 November 1979

    SciTech Connect

    Guerra, C.R.; Godfriaux, B.L.; Eble, A.F.; Farmanfarmaian, A.; Pitman, R.

    1980-03-01

    A three-year research study on the constructive use of electric generating station waste heat in cooling water effluents for fish production is summarized. Results of the project indicate not only that it is biologically feasible to rear fresh water shrimp and rainbow trout alternately during warmer and cooler months directly in these effluents, but that it appears to be economically and technically feasible. A prototype commercial waste heat aquaculture facility for the high density culture of both finfish and shellfish is described in a subsequent proof-of-concept study. This volume presents the research objectives, approach, and product use and a technical section outlining the engineering, biological, and economic feasibility as well as product quality.

  16. Measuring System for Growth Control of the Spirulina Aquaculture

    NASA Astrophysics Data System (ADS)

    Ponce S., Claudio; Ponce L., Ernesto; Bernardo S., Barraza

    2008-11-01

    It describes the workings of a data-logging instrument that measures growth levels of the Spirulina aquaculture. The Spirulina is a very delicate algae and its culture may be suddenly lost due to overgrowth. This kind of instrument is not at present available in the market. The transduction is a submergible laser device whose measuring margin of error is near to 0.28%. The advantage of this new instrument is the improvement in the measurement and the low cost. The future application of this work is related to the industrial production of food and fuel from micro algae culture, for the growing world population.

  17. Sexual development in fish, practical applications for aquaculture.

    PubMed

    Cnaani, A; Levavi-Sivan, B

    2009-01-01

    Aquaculture is one of the fastest rising sectors of world food production. Hundreds of fish species are cultured, providing an affordable, high quality food source. Two aspects of sexual development are critically important for the continued improvement of cultured fish stocks: sexual dimorphism and control of reproduction. In this paper, we review the main methods used to control sex determination in fish and their application in some of the most widely cultured species. Specifically, we review the techniques available for the production of all-male, all-female, and sterile populations. Techniques for endocrinological control of reproduction are also discussed.

  18. Role of production intensification on water use efficiency in catfish pond aquaculture

    USDA-ARS?s Scientific Manuscript database

    Availability of fresh water is sometimes considered to be a limiting factor for future aquaculture development. This is certainly true at specific local levels where aquaculture may conflict with other water uses. A good example is the Yazoo-Mississippi River floodplain in northwest Mississippi, whe...

  19. Integrated approaches for improving efficiency and sustainability of low-salinity marine aquaculture production

    USDA-ARS?s Scientific Manuscript database

    Aquaculture in the U.S. must expand to meet the needs of a growing demand for seafood when productivity of capture fisheries is declining. In the U.S., production of marine finfish is underrepresented in the overall aquaculture industry output. Several factors challenge the large-scale adoption of...

  20. Inland marine fish culture in low-salinity recirculating aquaculture systems

    USDA-ARS?s Scientific Manuscript database

    A growing and increasingly health-conscious population, coupled with declining capture fisheries is driving an increased global demand for farm-raised seafood that can only be met through expansion of aquaculture. In 2007, aquaculture represented 33% of total global seafood production and is projec...

  1. Peracetic acid is an optimal disinfectant for fish-microalgae integrated multi-trophic aquaculture systems

    USDA-ARS?s Scientific Manuscript database

    Integrated multi-trophic aquaculture is a promising direction for the sustainable development of aquaculture. Instead of releasing nutrition-rich waste to the environment or decomposition of nutrients via the biofilter, the ‘waste’ from fish can be recycled to produce byproducts (e.g., algae, plants...

  2. Changes in bacterial communities of the marine sponge Mycale laxissima on transfer into aquaculture.

    PubMed

    Mohamed, Naglaa M; Enticknap, Julie J; Lohr, Jayme E; McIntosh, Scott M; Hill, Russell T

    2008-02-01

    The changes in bacterial communities associated with the marine sponge Mycale laxissima on transfer to aquaculture were studied using culture-based and molecular techniques. M. laxissima was maintained alive in flowthrough and closed recirculating aquaculture systems for 2 years and 1 year, respectively. The bacterial communities associated with wild and aquacultured sponges, as well as the surrounding water, were assessed using 16S rRNA gene clone library analysis and denaturing gradient gel electrophoresis (DGGE). Bacterial richness and diversity were measured using DOTUR computer software, and clone libraries were compared using S-LIBSHUFF. DGGE analysis revealed that the diversity of the bacterial community of M. laxissima increased when sponges were maintained in aquaculture and that bacterial communities associated with wild and aquacultured M. laxissima were markedly different than those of the corresponding surrounding water. Clone libraries of bacterial 16S rRNA from sponges confirmed that the bacterial communities changed during aquaculture. These communities were significantly different than those of seawater and aquarium water. The diversity of bacterial communities associated with M. laxissima increased significantly in aquaculture. Our work shows that it is important to monitor changes in bacterial communities when examining the feasibility of growing sponges in aquaculture systems because these communities may change. This could have implications for the health of sponges or for the production of bioactive compounds by sponges in cases where these compounds are produced by symbiotic bacteria rather than by the sponges themselves.

  3. Genetic characterization of Vibrio vulnificus strains from tilapia aquaculture in Bangladesh.

    PubMed

    Mahmud, Zahid H; Wright, Anita C; Mandal, Shankar C; Dai, Jianli; Jones, Melissa K; Hasan, Mahmud; Rashid, Mohammad H; Islam, Mohammad S; Johnson, Judith A; Gulig, Paul A; Morris, J Glenn; Ali, Afsar

    2010-07-01

    Outbreaks of Vibrio vulnificus wound infections in Israel were previously attributed to tilapia aquaculture. In this study, V. vulnificus was frequently isolated from coastal but not freshwater aquaculture in Bangladesh. Phylogenetic analyses showed that strains from Bangladesh differed remarkably from isolates commonly recovered elsewhere from fish or oysters and were more closely related to strains of clinical origin.

  4. Update on the USDA-ARS and HBOI Sustainable Marine Aquaculture Research Program

    USDA-ARS?s Scientific Manuscript database

    In 2001 the US Department of Agriculture’s Agricultural Research Service (UDSA-ARS) and Harbor Branch Oceanographic Institution (HBOI) began a joint program to develop sustainable marine aquaculture technologies in closed recirculating aquaculture systems (RAS) at the HBOI facility in Fort Pierce, F...

  5. Getting proficient in RAS fundamentals - TCFFI trains aquaculture facility owners, operators and designers

    USDA-ARS?s Scientific Manuscript database

    Many federal, state, and tribal aquaculture programs are adopting water recirculation technologies as a means to maintaining and/or expanding their level of fish production, while reducing the environmental impact of waste dissemination. Similarly, the North American commercial aquaculture industry ...

  6. Draft genome sequences of four virulent aeromonas hydrophila strains from catfish aquaculture

    USDA-ARS?s Scientific Manuscript database

    Since 2009, a clonal group of virulent Aeromonas hydrophila (VAh) strains has been causing severe disease in the catfish aquaculture industry in the Southeastern United States. Here, we report draft genomes of four A. hydrophila isolates from catfish aquaculture that represent this clonal group....

  7. An Examination of Integration of Academic and Vocational Subject Matter in the Aquaculture Classroom.

    ERIC Educational Resources Information Center

    Conroy, Carol A.; Walker, Nancy J.

    2000-01-01

    A study included interviews with 161 secondary agriculture teachers and 100 students, a survey (n=406), and focus groups. One-quarter of the teachers incorporated aquaculture; most who integrated curricula worked with science teachers. Students believed aquaculture enhanced their math and science performance and increased relevance. (SK)

  8. Why are prices in wild catch and aquaculture industries so different?

    PubMed

    Villasante, Sebastián; Rodríguez-González, David; Antelo, Manel; Rivero-Rodríguez, Susana; Lebrancón-Nieto, Joseba

    2013-12-01

    Through a comparative analysis of prices in capture fisheries and aquaculture sectors, the objectives of this paper are a) to investigate three the trends in prices of forage catches to feed the aquaculture species, b) to analyze the amount of fish species need to feed aquaculture species in order to assess the level of efficiency in resource use, and c) to examine the degree of economic concentration either in wild-catch industry and aquaculture sectors. The results show that prices of cultivated species are higher than prices of the same species when harvested from the sea. We explain this fact by the interplay of three forces. First, the amount of wild fish to feed aquaculture species continues to improve over time. Second, the pressure of fishing activities has not been reduced since catches of most forage fishes are declining, which induce higher prices of capture species that feed aquaculture production. Third, the level of seafood market concentration is significantly higher in aquaculture than in wild catches, which generates higher prices in aquaculture.

  9. An Examination of Integration of Academic and Vocational Subject Matter in the Aquaculture Classroom.

    ERIC Educational Resources Information Center

    Conroy, Carol A.; Walker, Nancy J.

    2000-01-01

    A study included interviews with 161 secondary agriculture teachers and 100 students, a survey (n=406), and focus groups. One-quarter of the teachers incorporated aquaculture; most who integrated curricula worked with science teachers. Students believed aquaculture enhanced their math and science performance and increased relevance. (SK)

  10. Epidemiological aspects of aquaculture in relation to fish borne trematodiasis in Malaysia.

    PubMed

    Shekhar, K C

    1997-01-01

    Epidemiological studies have been conducted to determine the association between fish and disease. The fish were obtained from rivers, streams, ponds and lakes but few from aquaculture farms. While no defined studies have been carried out in Malaysia, baseline data show that fish obtained from aquaculture farms (mixed farming) contributed to cases of opisthorchiasis and clonorchiasis.

  11. Draft Genome Sequences of Four Virulent Aeromonas hydrophila Strains from Catfish Aquaculture

    PubMed Central

    Tekedar, Hasan C.; Kumru, Salih; Karsi, Attila; Waldbieser, Geoffrey C.; Sonstegard, Tad; Schroeder, Steven G.; Liles, Mark R.; Griffin, Matt J.

    2016-01-01

    Since 2009, a clonal group of virulent Aeromonas hydrophila strains has been causing severe disease in the catfish aquaculture industry in the southeastern United States. Here, we report draft genomes of four A. hydrophila isolates from catfish aquaculture that represent this clonal group. PMID:27540076

  12. Adoption of Aquaculture Technology by Fish Farmers in Imo State of Nigeria

    ERIC Educational Resources Information Center

    Ike, Nwachukwu; Roseline, Onuegbu

    2007-01-01

    This paper evaluated the level of adoption of aquaculture technology extended to farmers in Imo State, Nigeria. To improve aquaculture practice in Nigeria, a technology package was developed and disseminated to farmers in the state. This package included ten practices that the farmers were supposed to adopt. Eighty-two respondents were randomly…

  13. Low-head recirculating aquaculture system for juvenile red drum production

    USDA-ARS?s Scientific Manuscript database

    The USDA Agricultural Research Service and the Center for Aquaculture and Stock Enhancement at Harbor Branch Oceanographic Institute-FAU (HBOI-FAU) are collaborating to evaluate low-head recirculating aquaculture system designs to intensively produce red drum juveniles as part of the Florida Fish an...

  14. Interactions of aquaculture, marine coastal ecosystems, and near-shore waters: A bibliography. Bibliographies and literature of agriculture (Final)

    SciTech Connect

    Hanfman, D.T.; Coleman, D.E.; Tibbitt, S.J.

    1991-01-01

    The bibliography contains selected literature citations on the interactions of aquaculture and marine coastal ecosystems. The focus is on aquaculture effluents and their impact on marine coastal ecosystems and waterways as well as the impact of pollutants on aquaculture development. Factors affecting these issues include domestic and industrial wastes, thermal discharges, acid rain, heavy metals, oil spills, and microbial contamination of marine waters and aquatic species. Coastal zone management, environmenal impact of aquaculture, and water quality issues are also included in the bibliography.

  15. Mixed responses of tropical Pacific fisheries and aquaculture to climate change

    NASA Astrophysics Data System (ADS)

    Bell, Johann D.; Ganachaud, Alexandre; Gehrke, Peter C.; Griffiths, Shane P.; Hobday, Alistair J.; Hoegh-Guldberg, Ove; Johnson, Johanna E.; Le Borgne, Robert; Lehodey, Patrick; Lough, Janice M.; Matear, Richard J.; Pickering, Timothy D.; Pratchett, Morgan S.; Gupta, Alex Sen; Senina, Inna; Waycott, Michelle

    2013-06-01

    Pacific Island countries have an extraordinary dependence on fisheries and aquaculture. Maintaining the benefits from the sector is a difficult task, now made more complex by climate change. Here we report how changes to the atmosphere-ocean are likely to affect the food webs, habitats and stocks underpinning fisheries and aquaculture across the region. We found winners and losers--tuna are expected to be more abundant in the east and freshwater aquaculture and fisheries are likely to be more productive. Conversely, coral reef fisheries could decrease by 20% by 2050 and coastal aquaculture may be less efficient. We demonstrate how the economic and social implications can be addressed within the sector--tuna and freshwater aquaculture can help support growing populations as coral reefs, coastal fisheries and mariculture decline.

  16. 40 CFR 122.25 - Aquaculture projects (applicable to State NPDES programs, see § 123.25).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 22 2011-07-01 2011-07-01 false Aquaculture projects (applicable to... DISCHARGE ELIMINATION SYSTEM Permit Application and Special NPDES Program Requirements § 122.25 Aquaculture... aquaculture projects, as defined in this section, are subject to the NPDES permit program through section 318...

  17. 40 CFR 122.25 - Aquaculture projects (applicable to State NPDES programs, see § 123.25).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Aquaculture projects (applicable to... DISCHARGE ELIMINATION SYSTEM Permit Application and Special NPDES Program Requirements § 122.25 Aquaculture... aquaculture projects, as defined in this section, are subject to the NPDES permit program through section 318...

  18. 40 CFR 122.25 - Aquaculture projects (applicable to State NPDES programs, see § 123.25).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 22 2014-07-01 2013-07-01 true Aquaculture projects (applicable to... DISCHARGE ELIMINATION SYSTEM Permit Application and Special NPDES Program Requirements § 122.25 Aquaculture... aquaculture projects, as defined in this section, are subject to the NPDES permit program through section 318...

  19. 40 CFR 122.25 - Aquaculture projects (applicable to State NPDES programs, see § 123.25).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 23 2012-07-01 2012-07-01 false Aquaculture projects (applicable to... DISCHARGE ELIMINATION SYSTEM Permit Application and Special NPDES Program Requirements § 122.25 Aquaculture... aquaculture projects, as defined in this section, are subject to the NPDES permit program through section 318...

  20. Marine Spatial Planning Makes Room for Offshore Aquaculture in a Crowded Coastal Zone

    NASA Astrophysics Data System (ADS)

    Stevens, J.

    2016-12-01

    Offshore aquaculture is an emerging industry predicted to contribute significantly to global seafood production and food security. However, aquaculture farms can generate conflicts by displacing existing ocean user groups and impacting ecosystems. Further, there are multiple farm types with different seafood species, productivity levels and impacts. Thus, it is important to strategically and simultaneously plan farm type and location in relation to the seascape in order to most effectively maximize aquaculture value while also minimizing conflicts and environmental impacts. We address this problem and demonstrate the value of multi-objective planning with a case study that integrates bioeconomic modeling with ecosystem service tradeoff analysis to inform the marine spatial planning (MSP) of mussel, finfish and kelp aquaculture farms in the already-crowded Southern California Bight (SCB) ecosystem. We considered four user groups predicted to conflict with or be impacted by the three types of aquaculture: wild-capture fisheries, ocean viewshed from coastal properties, marine benthic habitat protection, and risk of disease outbreak between farms. Results indicate that significant conflicts and impacts, expected under conventional planning, can be reduced by strategic planning. For example, 28% of potential mussel farm sites overlap with wild-capture halibut fishery grounds, yet MSP can enable mussel aquaculture to generate up to a third of its total potential industry value without impacting halibut fishery yield. Results also highlight hotspot areas in the SCB most appropriate for each type of aquaculture under MSP, as well as particular mussel, finfish and kelp aquaculture spatial plans that align with legislative regulations on allowable impacts from future aquaculture farms in California. This study comprehensively informs aquaculture farm design in the SCB, and demonstrates the value of multi-objective simultaneous planning as a key component in MSP.

  1. Marine Spatial Planning Makes Room for Offshore Aquaculture in a Crowded Coastal Zone

    NASA Astrophysics Data System (ADS)

    Stevens, J.

    2016-02-01

    Offshore aquaculture is an emerging industry predicted to contribute significantly to global seafood production and food security. However, aquaculture farms can generate conflicts by displacing existing ocean user groups and impacting ecosystems. Further, there are multiple farm types with different seafood species, productivity levels and impacts. Thus, it is important to strategically and simultaneously plan farm type and location in relation to the seascape in order to most effectively maximize aquaculture value while also minimizing conflicts and environmental impacts. We address this problem and demonstrate the value of multi-objective planning with a case study that integrates bioeconomic modeling with ecosystem service tradeoff analysis to inform the marine spatial planning (MSP) of mussel, finfish and kelp aquaculture farms in the already-crowded Southern California Bight (SCB) ecosystem. We considered four user groups predicted to conflict with or be impacted by the three types of aquaculture: wild-capture fisheries, ocean viewshed from coastal properties, marine benthic habitat protection, and risk of disease outbreak between farms. Results indicate that significant conflicts and impacts, expected under conventional planning, can be reduced by strategic planning. For example, 28% of potential mussel farm sites overlap with wild-capture halibut fishery grounds, yet MSP can enable mussel aquaculture to generate up to a third of its total potential industry value without impacting halibut fishery yield. Results also highlight hotspot areas in the SCB most appropriate for each type of aquaculture under MSP, as well as particular mussel, finfish and kelp aquaculture spatial plans that align with legislative regulations on allowable impacts from future aquaculture farms in California. This study comprehensively informs aquaculture farm design in the SCB, and demonstrates the value of multi-objective simultaneous planning as a key component in MSP.

  2. [Isolation, screening and identification of yeast for aquaculture water purification].

    PubMed

    Xie, Fengxing; Zhang, Fengfeng; Zhou, Ke; Zhao, Yujie; Sun, Haibo; Wang, Yun

    2015-05-04

    In order to get excellent yeast strains for aquiculture water purification, we isolated, screened and identified yeasts from the aquacultural environment and intestinal tract of shrimp. The potential water purification ability of yeasts, isolated from the activated sludge of aquacultural environment and intestinal tract of white shrimp and mantis shrimp under normal and low temperature, was evaluated in the simulated wastewater. Morphological physio-biochemical characteristics, 5.8S rDNA ITS gene sequence analysis were used to identify the strains. Thirty-seven yeast strains were isolated from 3 samples, among them 16 strains were isolated under normal temperature (25 °C) while 21 strains were isolated under low temperature (15° C). Water purification test suggested 5 strains isolated under 25 °C and 6 strains isolated under 15 °C had higher removal ability of nitrite and ammonia from water. After 48 hours treatment with DN9 and CN6, 10.64 mg/L nitrite in the water was completely removed. After 96 hours treatment, CODcr degradation rates of the 2 strains were 52% and 67%, respectively. According to morphological, physio-biochemical characteristics and 5.8S rDNA ITS gene sequence analysis, the strain DN9 was identified as Rhodotorula mucilaginosa and CN6 as Rhodosporidium paludigenum. Strains DN9 and CN6 would be promising for water purification in aquiculture.

  3. Application of Aquaculture Monitoring System Based on CC2530

    NASA Astrophysics Data System (ADS)

    Chen, H. L.; Liu, X. Q.

    In order to improve the intelligent level of aquaculture technology, this paper puts forward a remote wireless monitoring system based on ZigBee technology, GPRS technology and Android mobile phone platform. The system is composed of wireless sensor network (WSN), GPRS module, PC server, and Android client. The WSN was set up by CC2530 chips based on ZigBee protocol, to realize the collection of water quality parameters such as the water level, temperature, PH and dissolved oxygen. The GPRS module realizes remote communication between WSN and PC server. Android client communicates with server to monitor the level of water quality. The PID (proportion, integration, differentiation) control is adopted in the control part, the control commands from the android mobile phone is sent to the server, the server again send it to the lower machine to control the water level regulating valve and increasing oxygen pump. After practical testing to the system in Liyang, Jiangsu province, China, temperature measurement accuracy reaches 0.5°C, PH measurement accuracy reaches 0.3, water level control precision can be controlled within ± 3cm, dissolved oxygen control precision can be controlled within ±0.3 mg/L, all the indexes can meet the requirements, this system is very suitable for aquaculture.

  4. Feeding preferences of mesograzers on aquacultured Gracilaria and sympatric algae

    PubMed Central

    Cruz-Rivera, Edwin; Friedlander, Michael

    2011-01-01

    While large grazers can often be excluded effectively from algal aquaculture operations, smaller herbivores such as small crustaceans and gastropods may be more difficult to control. The susceptibility of three Gracilaria species to herbivores was evaluated in multiple-choice experiments with the amphipod Ampithoe ramondi and the crab Acanthonyx lunulatus. Both mesograzers are common along the Mediterranean coast of Israel. When given a choice, the amphipod preferred to consume Gracilaria lemaneiformis significantly more than either G. conferta or G. cornea. The crab, however, consumed equivalent amounts of G. lemaneiformis and G. conferta, but did not consume G. cornea. Organic content of these algae, an important feeding cue for some mesograzers, could not account for these differences. We further assessed the susceptibility of a candidate species for aquaculture, G. lemaneiformis, against local algae, including common epiphytes. When given a choice of four algae, amphipods preferred the green alga Ulva lactuca over Jania rubens. However, consumption of U. lactuca was equivalent to those of G. lemaneiformis and Padina pavonica. In contrast, the crab showed a marked and significant preference for G. lemaneiformis above any of the other three algae offered. Our results suggest that G. cornea is more resistant to herbivory from common mesograzers and that, contrary to expectations, mixed cultures or epiphyte growth on G. lemaneiformis cannot reduce damage to this commercially appealing alga if small herbivores are capable of recruiting into culture ponds. Mixed cultures may be beneficial when culturing other Gracilaria species. PMID:22711945

  5. The potential of producing heterotrophic bacteria biomass on aquaculture waste.

    PubMed

    Schneider, Oliver; Sereti, Vasiliki; Machiels, Marcel A M; Eding, Ep H; Verreth, Johan A J

    2006-08-01

    The effluent from the drumfilter of a recirculation aquaculture system was used as substrate to produce heterotrophic bacteria in suspended growth reactors. The effects of organic carbon supplementation (0, 3, 6, 8 g/l sodium acetate) and of hydraulic retention times (11-1h) on bacteria biomass production and nutrient conversion were investigated. Bacteria production, expressed as volatile suspended solids (VSS), was enhanced by organic carbon supplementation, resulting in a production of 55-125 g VSS/kg fish feed (0.2-0.5 g VSS/g carbon). Maximum observed crude protein production was approximately 100 g protein/kg fish feed. The metabolic maintenance costs were 0.08 Cmol/Cmol h, and the maximum growth rate was 0.25-0.5 h(-1). Ninety percent of the inorganic nitrogenous and 80% of ortho-phosphate were converted. Producing bacteria on the drumfilter effluent results in additional protein retention and lowers overall nutrient discharge from recirculation aquaculture systems.

  6. From eco-sustainability to risk assessment of aquaculture products.

    PubMed

    Gandini, G; Ababouch, L; Anichini, L

    2009-09-01

    The increasing demand for fishery products and the technical and commercial opportunities now available make the development of aquaculture an important subject for the policy of the fishery sector, in particular concerning aspects of its environmental and ecological sustainability. The latest studies show that it is possible to apply an ecological approach to the aquaculture sector and hence increase the interactions between fisheries and other activities such as fish/molluscs, fish/seaweed, rice-growing/fish. In this way we take part in the improvement of the environment thanks to the recycling of organic food, the reduction of pesticide use and the control of environmental euthrophication. In order to support and facilitate trade, but at the same time ensure the safety and quality of products, a harmonization of the policies for food safety protecting the products throughout the whole food chain is required (from the sea to the table). The above mentioned policy, based on scientific knowledge, relies on the analysis of risks from the competent Authorities and on the proper application of HACCP from the industries of the sector.

  7. Potential of palm oil utilisation in aquaculture feeds.

    PubMed

    Ng, Wing-Keong

    2002-01-01

    One key ingredient used in the formulation of aquafeed is fish oil, which is produced from small marine pelagic fish and represents a finite fishery resource. At the present time, global fish oil production has reached a plateau and is not expected to increase beyond current levels. Recent estimates suggest that fish oils may be unable to meet demands from the rapidly growing aquaculture industry by as early as 2005. Therefore, there is currently great interest within the aquafeed industry in evaluating alternatives to fish oils. The ever-expanding oil palm cultivation in Malaysia and other tropical countries offers the possibility of an increased and constant availability of palm oil products for aquafeed formulation. Research into the use of palm oil in aquafeed begun around the mid-1990s and this review examines some of the findings from these studies. The use of palm oil in fish diets has generally shown encouraging results. Improved growth, feed efficiency, protein utilisation, reproductive performance and higher concentrations of alpha-tocopherol in fish fillets have been reported. Recent evidence for the ability of palm oil to substitute for fish oil in catfish diets is reviewed. The potential of palm oil use in aquafeed and future experimental directions are suggested. The aquaculture feed industry offers a great avenue to increase and diversify the use of palm oil-based products.

  8. Anaerobic Ammonium-Oxidizing (Anammox) Bacteria and Associated Activity in Fixed-Film Biofilters of a Marine Recirculating Aquaculture System†

    PubMed Central

    Tal, Yossi; Watts, Joy E. M.; Schreier, Harold J.

    2006-01-01

    Microbial communities in the biological filter and waste sludge compartments of a marine recirculating aquaculture system were examined to determine the presence and activity of anaerobic ammonium-oxidizing (anammox) bacteria. Community DNA was extracted from aerobic and anaerobic fixed-film biofilters and the anaerobic sludge waste collection tank and was analyzed by amplifying 16S rRNA genes by PCR using anammox-selective and universal GC-clamped primers. Separation of amplified PCR products by denaturing gradient gel electrophoresis and sequencing of the different phylotypes revealed a diverse biofilter microbial community. While Planctomycetales were found in all three communities, the anaerobic denitrifying biofilters contained one clone that exhibited high levels of sequence similarity to known anammox bacteria. Fluorescence in situ hybridization studies using an anammox-specific probe confirmed the presence of anammox Planctomycetales in the microbial biofilm from the denitrifying biofilters, and anammox activity was observed in these biofilters, as detected by the ability to simultaneously consume ammonia and nitrite. To our knowledge, this is the first identification of anammox-related sequences in a marine recirculating aquaculture filtration system, and our findings provide a foundation for incorporating this important pathway for complete nitrogen removal in such systems. PMID:16597996

  9. Toxicity induced by three antibiotics commonly used in aquaculture on the marine microalga Tetraselmis suecica (Kylin) Butch.

    PubMed

    Seoane, Marta; Rioboo, Carmen; Herrero, Concepción; Cid, Ángeles

    2014-10-01

    Aquaculture facilities are a potential source of antibiotics to the aquatic ecosystems. The presence of these compounds in the environment may have deleterious effects on non-target aquatic organisms such as microalgae, which are often used as biological indicators of pollution. Therefore, the toxicity induced by chloramphenicol (CHL), florphenicol (FLO) and oxytetracycline (OTC), three antibiotics widely used in aquaculture, on the marine microalga Tetraselmis suecica was evaluated. Growth inhibition and physiological and biochemical parameters were analysed. All three antibiotics inhibited growth of T. suecica with 96 h IC50 values of 11.16, 9.03 and 17.25 mg L(-1) for CHL, FLO and OTC, respectively. After 24 h of exposure no effects on growth were observed and cell viability was also unaffected, whereas a decrease in esterase activity, related with cell vitality, was observed at the higher concentrations assayed. Photosynthesis related parameters such as chlorophyll a cellular content and autofluorescence were also altered after 24 h of antibiotics addition. It can be concluded that T. suecica was sensitive to the three antibiotics tested. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Anaerobic ammonium-oxidizing (anammox) bacteria and associated activity in fixed-film biofilters of a marine recirculating aquaculture system.

    PubMed

    Tal, Yossi; Watts, Joy E M; Schreier, Harold J

    2006-04-01

    Microbial communities in the biological filter and waste sludge compartments of a marine recirculating aquaculture system were examined to determine the presence and activity of anaerobic ammonium-oxidizing (anammox) bacteria. Community DNA was extracted from aerobic and anaerobic fixed-film biofilters and the anaerobic sludge waste collection tank and was analyzed by amplifying 16S rRNA genes by PCR using anammox-selective and universal GC-clamped primers. Separation of amplified PCR products by denaturing gradient gel electrophoresis and sequencing of the different phylotypes revealed a diverse biofilter microbial community. While Planctomycetales were found in all three communities, the anaerobic denitrifying biofilters contained one clone that exhibited high levels of sequence similarity to known anammox bacteria. Fluorescence in situ hybridization studies using an anammox-specific probe confirmed the presence of anammox Planctomycetales in the microbial biofilm from the denitrifying biofilters, and anammox activity was observed in these biofilters, as detected by the ability to simultaneously consume ammonia and nitrite. To our knowledge, this is the first identification of anammox-related sequences in a marine recirculating aquaculture filtration system, and our findings provide a foundation for incorporating this important pathway for complete nitrogen removal in such systems.

  11. Remediation of aquaculture water in the estuarine wetlands using coal cinder-zeolite balls/reed wetland combination strategy.

    PubMed

    Tian, Weijun; Qiao, Kaili; Yu, Huibo; Bai, Jie; Jin, Xin; Liu, Qing; Zhao, Jing

    2016-10-01

    In this paper, the modified coal cinders and zeolite powders in proportion of 2:1 were mixed with modified polyvinyl alcohol (PVA) with a ratio of 20:1 (w/v) to make a new sorbent and biological carrier-the coal cinder-zeolite balls (CCZBs). The maximum absorption capacities of ammonia nitrogen and Chemical Oxygen Demand (CODCr) on CCZBs, adsorption process were evaluated in batch experiments. And then they were combined with reed wetland for bioremediation of micro-polluted aquaculture water in estuarine wetlands. The results showed that the removal efficiencies of ammonia nitrogen and CODCr improved with the decrease in water inflow and increase in inflow concentrations. Efficiencies of 67.3% and 71.3% for ammonia nitrogen and CODCr under water flow of 10 L/h were obtained when their inflow concentrations were 1.77 and 56.0 mg/L respectively. This strategy can be served as a model system for bioremediation in situ of aquaculture water and other organic polluted or eutrophic water. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Helping Developmental Students Overcome Communication Apprehension.

    ERIC Educational Resources Information Center

    Watson, Arden K.

    Since 20% of all college students experience communication apprehension (CA), the developmental student, distinguished by lower than average academic scores, may also experience this inhibiting fear of communication. Characteristics of the developmental communication apprehensive student indicate that a program for overcoming communication…

  13. Overcoming the Mechanism of Radioresistance in Neuroblastoma

    DTIC Science & Technology

    2014-06-01

    of Radioresistance in Neuroblastoma PRINCIPAL INVESTIGATOR: Brian Marples PhD CONTRACTING ORGANIZATION: William Beaumont Hospital Inc...COVERED 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Overcoming the Mechanism of Radioresistance in Neuroblastoma 5b. GRANT NUMBER 5c. PROGRAM...for highly aggressive advanced-stage neuroblastoma remains poor despite a multidisciplinary approach involving aggressive surgery, chemotherapy and

  14. First Davis Strait discovery overcomes offshore hazards

    SciTech Connect

    Munro, R.G.

    1982-04-01

    In spite of icebergs umpredictable currents and brief drilling seasons, the first discovery well was completed recently in the Davis Strait. The success of this well, known as Hekja 0-71, has opened the waters off the northeastern coast of Canada to more exploration. A discussion is presented of how the well was drilled, the problems encountered and how they were overcome.

  15. Learn to Avoid or Overcome Leadership Obstacles

    ERIC Educational Resources Information Center

    D'Auria, John

    2015-01-01

    Leadership is increasingly recognized as an important factor in moving schools forward, yet we have been relatively random in how we prepare and support them. Four obstacles often block or diminish their effectiveness. Avoiding or overcoming each of these requires an underlying set of skills and knowledge that we believe can be learned and…

  16. Overcoming Xenophobia: Learning to Accept Differences.

    ERIC Educational Resources Information Center

    Baker, Judith A.

    1990-01-01

    Quality health education requires that health educators engage in the professional and personal development necessary to overcome xenophobia when working with special populations (obese, elderly, indigent, minorities, etc.). This article describes strategies employed in a university community health education class to help students overcome…

  17. Learn to Avoid or Overcome Leadership Obstacles

    ERIC Educational Resources Information Center

    D'Auria, John

    2015-01-01

    Leadership is increasingly recognized as an important factor in moving schools forward, yet we have been relatively random in how we prepare and support them. Four obstacles often block or diminish their effectiveness. Avoiding or overcoming each of these requires an underlying set of skills and knowledge that we believe can be learned and…

  18. Ideas for Creating and Overcoming Student Silences

    ERIC Educational Resources Information Center

    Woods, Donald R.; Sheardown, Heather

    2009-01-01

    The key idea is that 50 minutes of teacher talk with passive student listening is relatively ineffective in developing student learning. Teachers can create silences for productive active student learning. Students can also change from passive listeners to active talker-discussers of their learning. Ideas are given about how to overcome silences…

  19. Overcoming Blocks and Barriers to Creativity.

    ERIC Educational Resources Information Center

    Raudsepp, Eugene

    1982-01-01

    The most serious blocks to creative thinking are viewed as psychological in nature. These obstacles are the hardest to recognize and overcoming them requires changing basic personality traits that have been years in the making. Tips on how individuals can gather self-knowledge and express individuality and creativity are given. (MP)

  20. Successful Writing: Five Roadblocks to Overcome

    ERIC Educational Resources Information Center

    King, Kathleen P.

    2013-01-01

    This article provides essential strategies to be more successful in one of the major roles in academia: writing. Most academics struggle with roadblocks in their writing process. We are forever battling to complete research articles, manuscripts, grant proposals or other documents. The strategies and perspective shared here help overcome several…

  1. Overcoming Barriers in the Media Center

    ERIC Educational Resources Information Center

    Winter, Clint

    2011-01-01

    Web 2.0 has revolutionized one's ability to teach students in new and exciting ways. Students with disabilities can now overcome many barriers that once kept them from being successful in the regular education classroom. Media specialists can effectively advocate for students with disabilities. School library media specialists have the ability to…

  2. In My View. Overcoming Math Anxiety.

    ERIC Educational Resources Information Center

    Fotoples, Robert M.

    2000-01-01

    Describes math anxiety, explaining roadblocks to mathematics success; discussing strategies for overcoming anxiety (e.g., parent involvement, teacher sensitivity, and peer tutoring); and examining the influence of learning styles on mathematics achievement and attitudes. Mathematics teachers must identify students' problems in mathematics, work…

  3. Overcoming Barriers to Engaging in College Academics

    ERIC Educational Resources Information Center

    Hensley, Lauren; Shaulskiy, Stephanie; Zircher, Andrew; Sanders, Megan

    2015-01-01

    Underprepared college students face transition issues that prevent full academic engagement. The written responses of 176 students in a learning-strategies course were used to develop a grounded model of overcoming barriers to academic engagement. Findings revealed contexts in which academic engagement involved high costs (i.e., effort, trade-off,…

  4. Ideas for Creating and Overcoming Student Silences

    ERIC Educational Resources Information Center

    Woods, Donald R.; Sheardown, Heather

    2009-01-01

    The key idea is that 50 minutes of teacher talk with passive student listening is relatively ineffective in developing student learning. Teachers can create silences for productive active student learning. Students can also change from passive listeners to active talker-discussers of their learning. Ideas are given about how to overcome silences…

  5. Overcoming Barriers to Engaging in College Academics

    ERIC Educational Resources Information Center

    Hensley, Lauren; Shaulskiy, Stephanie; Zircher, Andrew; Sanders, Megan

    2015-01-01

    Underprepared college students face transition issues that prevent full academic engagement. The written responses of 176 students in a learning-strategies course were used to develop a grounded model of overcoming barriers to academic engagement. Findings revealed contexts in which academic engagement involved high costs (i.e., effort, trade-off,…

  6. Derivation of economic values for production traits in aquaculture species.

    PubMed

    Janssen, Kasper; Berentsen, Paul; Besson, Mathieu; Komen, Hans

    2017-01-05

    In breeding programs for aquaculture species, breeding goal traits are often weighted based on the desired gains but economic gain would be higher if economic values were used instead. The objectives of this study were: (1) to develop a bio-economic model to derive economic values for aquaculture species, (2) to apply the model to determine the economic importance and economic values of traits in a case-study on gilthead seabream, and (3) to validate the model by comparison with a profit equation for a simplified production system. A bio-economic model was developed to simulate a grow-out farm for gilthead seabream, and then used to simulate gross margin at the current levels of the traits and after one genetic standard deviation change in each trait with the other traits remaining unchanged. Economic values were derived for the traits included in the breeding goal: thermal growth coefficient (TGC), thermal feed intake coefficient (TFC), mortality rate (M), and standard deviation of harvest weight ([Formula: see text]). For a simplified production system, improvement in TGC was assumed to affect harvest weight instead of growing period. Using the bio-economic model and a profit equation, economic values were derived for harvest weight, cumulative feed intake at harvest, and overall survival. Changes in gross margin showed that the order of economic importance of the traits was: TGC, TFC, M, and [Formula: see text]. Economic values in € (kg production)(-1) (trait unit)(-1) were: 0.40 for TGC, -0.45 for TFC, -7.7 for M, and -0.0011 to -0.0010 for [Formula: see text]. For the simplified production system, similar economic values were obtained with the bio-economic model and the profit equation. The advantage of the profit equation is its simplicity, while that of the bio-economic model is that it can be applied to any aquaculture species, because it can include any limiting factor and/or environmental condition that affects production. We confirmed the validity of

  7. Application of veterinary antibiotics in China's aquaculture industry and their potential human health risks.

    PubMed

    Mo, Wing Yin; Chen, Zhanting; Leung, Ho Man; Leung, Anna Oi Wah

    2017-04-01

    China contributes to more than 60 % of the global aquaculture production, and its aquaculture industry has become one of the main players in food security. A large amount of antibiotics is believed to be used in fish cultivation for ensuring adequate production. The use of antibiotics as disease control agents and growth promoter in aquaculture in China has raised significant concerns recently because of the potential threats to human health. The extensive use of antibiotics in aquaculture may result in water and sediment contamination and the development of antibiotic resistance genes. In this review, the role of aquaculture in antibiotic contamination of the environment as well as the emerging concern of antibiotic resistance genes in China is discussed. Based on this review, it has been concluded that more information regarding the types and quantities of antibiotics used by Chinese fish farmers is required. Studies about the contribution of antibiotic usage in aquaculture to environmental levels in surface water, their potential risks on environment and human health, and the existence and spread of antibiotic resistance genes in aquaculture are needed.

  8. Nutrient removal from Chinese coastal waters by large-scale seaweed aquaculture

    NASA Astrophysics Data System (ADS)

    Xiao, Xi; Agusti, Susana; Lin, Fang; Li, Ke; Pan, Yaoru; Yu, Yan; Zheng, Yuhan; Wu, Jiaping; Duarte, Carlos M.

    2017-04-01

    China is facing intense coastal eutrophication. Large-scale seaweed aquaculture in China is popular, now accounting for over 2/3’s of global production. Here, we estimate the nutrient removal capability of large-scale Chinese seaweed farms to determine its significance in mitigating eutrophication. We combined estimates of yield and nutrient concentration of Chinese seaweed aquaculture to quantify that one hectare of seaweed aquaculture removes the equivalent nutrient inputs entering 17.8 ha for nitrogen and 126.7 ha for phosphorus of Chinese coastal waters, respectively. Chinese seaweed aquaculture annually removes approximately 75,000 t nitrogen and 9,500 t phosphorus. Whereas removal of the total N inputs to Chinese coastal waters requires a seaweed farming area 17 times larger than the extant area, one and a half times more of the seaweed area would be able to remove close to 100% of the P inputs. With the current growth rate of seaweed aquaculture, we project this industry will remove 100% of the current phosphorus inputs to Chinese coastal waters by 2026. Hence, seaweed aquaculture already plays a hitherto unrealized role in mitigating coastal eutrophication, a role that may be greatly expanded with future growth of seaweed aquaculture.

  9. Nutrient removal from Chinese coastal waters by large-scale seaweed aquaculture

    PubMed Central

    Xiao, Xi; Agusti, Susana; Lin, Fang; Li, Ke; Pan, Yaoru; Yu, Yan; Zheng, Yuhan; Wu, Jiaping; Duarte, Carlos M.

    2017-01-01

    China is facing intense coastal eutrophication. Large-scale seaweed aquaculture in China is popular, now accounting for over 2/3’s of global production. Here, we estimate the nutrient removal capability of large-scale Chinese seaweed farms to determine its significance in mitigating eutrophication. We combined estimates of yield and nutrient concentration of Chinese seaweed aquaculture to quantify that one hectare of seaweed aquaculture removes the equivalent nutrient inputs entering 17.8 ha for nitrogen and 126.7 ha for phosphorus of Chinese coastal waters, respectively. Chinese seaweed aquaculture annually removes approximately 75,000 t nitrogen and 9,500 t phosphorus. Whereas removal of the total N inputs to Chinese coastal waters requires a seaweed farming area 17 times larger than the extant area, one and a half times more of the seaweed area would be able to remove close to 100% of the P inputs. With the current growth rate of seaweed aquaculture, we project this industry will remove 100% of the current phosphorus inputs to Chinese coastal waters by 2026. Hence, seaweed aquaculture already plays a hitherto unrealized role in mitigating coastal eutrophication, a role that may be greatly expanded with future growth of seaweed aquaculture. PMID:28429792

  10. A Review of the Biocompatibility of Implantable Devices: Current Challenges to Overcome Foreign Body Response

    PubMed Central

    Onuki, Yoshinori; Bhardwaj, Upkar; Papadimitrakopoulos, Fotios; Burgess, Diane J.

    2008-01-01

    In recent years, a variety of devices (drug-eluting stents, artificial organs, biosensors, catheters, scaffolds for tissue engineering, heart valves, etc.) have been developed for implantation into patients. However, when such devices are implanted into the body, the body can react to these in a number of different ways. These reactions can result in an unexpected risk for patients. Therefore, it is important to assess and optimize the biocompatibility of implantable devices. To date, numerous strategies have been investigated to overcome body reactions induced by the implantation of devices. This review focuses on the foreign body response and the approaches that have been taken to overcome this. The biological response following device implantation and the methods for biocompatibility evaluation are summarized. Then the risks of implantable devices and the challenges to overcome these problems are introduced. Specifically, the challenges used to overcome the functional loss of glucose sensors, restenosis after stent implantation, and calcification induced by implantable devices are discussed. PMID:19885290

  11. Biology, genome organization and evolution of parvoviruses in marine shrimp

    USDA-ARS?s Scientific Manuscript database

    A number of parvoviruses are now know to infect marine shrimp, and these viruses alone or in combination with other viruses have the potential to cause major losses in shrimp aquaculture globally. This review provides a comprehensive overview of the biology, genome organization, gene expression, and...

  12. Genetic considerations for mollusk production in aquaculture: current state of knowledge

    PubMed Central

    Astorga, Marcela P.

    2014-01-01

    In 2012, world mollusk production in aquaculture reached a volume of 15,171,000 tons, representing 23% of total aquaculture production and positioning mollusks as the second most important category of aquaculture products (fishes are the first). Clams and oysters are the mollusk species with the highest production levels, followed in descending order by mussels, scallops, and abalones. In view of the increasing importance attached to genetic information on aquaculture, which can help with good maintenance and thus the sustainability of production, the present work offers a review of the state of knowledge on genetic and genomic information about mollusks produced in aquaculture. The analysis was applied to mollusks which are of importance for aquaculture, with emphasis on the 5 species with the highest production levels. According to FAO, these are: Japanese clam Ruditapes philippinarum; Pacific oyster Crassostrea gigas; Chilean mussel Mytilus chilensis; Blood clam Anadara granosa and Chinese clam Sinonovacula constricta. To date, the genomes of 5 species of mollusks have been sequenced, only one of which, Crassostrea gigas, coincides with the species with the greatest production in aquaculture. Another important species whose genome has been sequenced is Mytilus galloprovincialis, which is the second most important mussel in aquaculture production, after M. chilensis. Few genetic improvement programs have been reported in comparison with the number reported in fish species. The most commonly investigated species are oysters, with at least 5 genetic improvement programs reported, followed by abalones with 2 programs and mussels with one. The results of this work will establish the current situation with respect to the genetics of mollusks which are of importance for aquaculture production, in order to assist future decisions to ensure the sustainability of these resources. PMID:25540651

  13. Nutrient discharge from China’s aquaculture industry and associated environmental impacts

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Bleeker, Albert; Liu, Junguo

    2015-04-01

    China’s aquaculture industry accounts for the largest share of the world’s fishery production, and provides a principal source of protein for the nation’s booming population. However, the environmental effects of the nutrient loadings produced by this industry have not been systematically studied or reviewed. Few quantitative estimates exist for nutrient discharge from aquaculture and the resultant nutrient enrichment in waters and sediments. In this paper, we evaluate nutrient discharge from aquacultural systems into aquatic ecosystems and the resulting nutrient enrichment of water and sediments, based on data from 330 cases in 51 peer-reviewed publications. Nitrogen use efficiency ranged from 11.7% to 27.7%, whereas phosphorus use efficiency ranged from 8.7% to 21.2%. In 2010, aquacultural nutrient discharges into Chinese aquatic ecosystems included 1044 Gg total nitrogen (184 Gg N from mariculture; 860 Gg N freshwater culture) and 173 Gg total phosphorus (22 Gg P from mariculture; 151 Gg P from freshwater culture). Water bodies and sediments showed high levels of nutrient enrichment, especially in closed pond systems. However, this does not mean that open aquacultural systems have smaller nutrient losses. Improvement of feed efficiency in cage systems and retention of nutrients in closed systems will therefore be necessary. Strategies to increase nutrient recycling, such as integrated multi-trophic aquaculture, and social measures, such as subsidies, should be increased in the future. We recommend the recycling of nutrients in water and sediments by hybrid agricultural-aquacultural systems and the adoption of nutrient use efficiency as an indicator at farm or regional level for the sustainable development of aquaculture; such indicators; together with water quality indicators, can be used to guide evaluations of technological, policy, and economic approaches to improve the sustainability of Chinese aquaculture.

  14. An adaptive image enhancement method for a recirculating aquaculture system.

    PubMed

    Zhou, Chao; Yang, Xinting; Zhang, Baihai; Lin, Kai; Xu, Daming; Guo, Qiang; Sun, Chuanheng

    2017-07-24

    Due to the low and uneven illumination that is typical of a recirculating aquaculture system (RAS), visible and near infrared (NIR) images collected from RASs always have low brightness and contrast. To resolve this issue, this paper proposes an image enhancement method based on the Multi-Scale Retinex (MSR) algorithm and a greyscale nonlinear transformation. First, the images are processed using the MSR algorithm to eliminate the influence of low and uneven illumination. Then, the normalized incomplete Beta function is used to perform a greyscale nonlinear transformation. The function's optimal parameters (α and β) are automatically selected by the particle swarm optimization (PSO) algorithm based on an image contrast measurement function. This adaptive image enhancement method is compared with other classic enhancement methods. The results show that the proposed method greatly improves the image contrast and highlights dark areas, which is helpful during further analysis of these images.

  15. Infectious diseases in oyster aquaculture require a new integrated approach.

    PubMed

    Pernet, Fabrice; Lupo, Coralie; Bacher, Cédric; Whittington, Richard J

    2016-03-05

    Emerging diseases pose a recurrent threat to bivalve aquaculture. Recently, massive mortality events in the Pacific oyster Crassostrea gigas associated with the detection of a microvariant of the ostreid herpesvirus 1 (OsHV-1µVar) have been reported in Europe, Australia and New Zealand. Although the spread of disease is often viewed as a governance failure, we suggest that the development of protective measures for bivalve farming is presently held back by the lack of key scientific knowledge. In this paper, we explore the case for an integrated approach to study the management of bivalve disease, using OsHV-1 as a case study. Reconsidering the key issues by incorporating multidisciplinary science could provide a holistic understanding of OsHV-1 and increase the benefit of research to policymakers.

  16. Chemical-nutritional characteristics of diets in aquaculture.

    PubMed

    Nizza, A; Piccolo, G

    2009-09-01

    After a brief discussion on the chemical-nutritional characteristics of the diets currently used in aquaculture, the authors focus attention on the problems associated with the replacement of fish meals with vegetable protein sources. The chemical composition of vegetable sources has a high variability and it is necessary to know the exact energy content and digestibility of amino-acids for each source. Another question is the occurrence of anti-nutritional factors in vegetable protein sources and their effect on diet palatability. The authors also underline that the use of high levels of vegetable sources increases the risk of contamination by mycotoxins of which the effects on the health of fish are not yet completely clear. Finally, brief considerations are reported on the relationship between the chemical-nutritional characteristics of diets and that of the resulting fish fillets.

  17. Heterotrophic bacterial flora in aquaculture area around Xuejiadao

    NASA Astrophysics Data System (ADS)

    Zongjun, Du; Yun, Li; Dehua, Yu; Xianghong, Wang; Jixiang, Chen; Robertson, P. A. W.; Austin, B.; Huaishu, Xu

    2002-10-01

    From Oct., 1999 to Oct., 2000, the heterotrophic bacterial flora in the aquaculture area around Xuejiadao was investigated. The result shows that the populations of the heterotrophic bacteria are heavier in summer and autumn than those in winter and spring. The average populations in seawater, sediment, the surface of seaweed and the surface of fish are 1.4×104cfu mL-1, 5.4×106cfu g-1, 1.5×106cfu g-1 and 1.8×103cfu cm-2, respectively. A total of 301 strains were isolated, among them 259 were Gram-negative. All the Gram-negative bacteria belong to 13 genera and some genera of Enterobacteriaceae. The communities of bacteria are slightly different among the samples. In the body surface of fish, Genus vibrio is dominant. In the remaining samples, dominant genus is Aeromonas.

  18. Future of recirculating systems in the US aquaculture industry

    SciTech Connect

    Malone, R.F.

    1994-08-01

    Recirculating systems consist of a culture unit, a recirculating pump, and a treatment block which facilitate extended re-use of water in the rearing of aquatic animals. As water re-use is extended from a few hours to months or even years, the complexity of the treatment block increases. Classified as either `open` with greater than 10 percent water replacement per day or `closed` with less than 10 percent daily replacement, most recirculating systems include aerators, clarifiers, and biofilters as key core elements. The aquaculture industry is increasingly facing a variety of socio-economic issues which will dramatically influence its future development. These problems range from increased competition for water rights through price depression and foreign imports to predation by protected migratory birds. As water-use, environmental, and conservation conflicts grow, the cost differences between the flow-through and closed production technologies will narrow, increasing the industry`s use of recirculating systems.

  19. Solar aquaculture: A wintering technique for parent prawns

    SciTech Connect

    Cao Jin Long

    1994-09-01

    A new method of providing the warm water needed for parent prawn wintering using solar energy is described. Using solar energy for prawn wintering involves heat collection, heat storage and temperature maintenance. The system designed provides sufficient energy for the safe wintering of prawns with suitable water temperatures. The temperature control facilities consist of three parts: a salt gradient solar pond, a shallow solar pond and a plastic house. The technique involves use of a shallow solar pond for collection and storage of heat. The average temperature in the wintering pond plastic house was 11 degrees C and the minimum temperature in January was 5.4 degrees C. This system allowed the wintering process to be conducted using solar energy alone and may extend aquaculture to higher latitudes. The ratio of net profit with the solar energy system over investment is 1.5 which makes it economically viable.

  20. Infectious diseases in oyster aquaculture require a new integrated approach

    PubMed Central

    Lupo, Coralie; Whittington, Richard J.

    2016-01-01

    Emerging diseases pose a recurrent threat to bivalve aquaculture. Recently, massive mortality events in the Pacific oyster Crassostrea gigas associated with the detection of a microvariant of the ostreid herpesvirus 1 (OsHV-1µVar) have been reported in Europe, Australia and New Zealand. Although the spread of disease is often viewed as a governance failure, we suggest that the development of protective measures for bivalve farming is presently held back by the lack of key scientific knowledge. In this paper, we explore the case for an integrated approach to study the management of bivalve disease, using OsHV-1 as a case study. Reconsidering the key issues by incorporating multidisciplinary science could provide a holistic understanding of OsHV-1 and increase the benefit of research to policymakers. PMID:26880845

  1. Fish transposons and their potential use in aquaculture.

    PubMed

    Tafalla, C; Estepa, A; Coll, J M

    2006-06-10

    A large part of repetitive DNA of vertebrate genomes have been identified as transposon elements (TEs) or mobile sequences. Although TEs detected to date in most vertebrates are inactivated, active TEs have been found in fish and a salmonid TE has been successfully reactivated by molecular genetic manipulation from inactive genomic copies (Sleeping Beauty, SB). Progress in the understanding of the dynamics, control and evolution of fish TEs will allow the insertion of selected sequences into the fish genomes of germ cells to obtain transgenics or to identify genes important for growth and/or of somatic cells to improve DNA vaccination. Expectations are high for new possible applications to fish of this well developed technology for mammals. Here, we review the present state of knowledge of inactive and active fish TEs and briefly discuss how their possible future applications might be used to improve fish production in aquaculture.

  2. Role and functions of beneficial microorganisms in sustainable aquaculture.

    PubMed

    Zhou, Qunlan; Li, Kangmin; Jun, Xie; Bo, Liu

    2009-08-01

    This paper aims to review the development of scientific concepts of microecology and ecology of microbes and the role and functions of beneficial microorganisms in aquaculture and mariculture. Beneficial microorganisms play a great role in natural and man-made aquatic ecosystems based on the co-evolution theory in living biosphere on earth. Their functions are to adjust algal population in water bodies so as to avoid unwanted algal bloom; to speed up decomposition of organic matter and to reduce CODmn, NH3-N and NO2-N in water and sediments so as to improve water quality; to suppress fish/shrimp diseases and water-borne pathogens; to enhance immune system of cultured aquatic animals and to produce bioactive compounds such as vitamins, hormones and enzymes that stimulate growth, thus to decrease the FCR of feed.

  3. Methods for Estimating Water Withdrawals for Aquaculture in the United States, 2005

    USGS Publications Warehouse

    Lovelace, John K.

    2009-01-01

    Aquaculture water use is associated with raising organisms that live in water - such as finfish and shellfish - for food, restoration, conservation, or sport. Aquaculture production occurs under controlled feeding, sanitation, and harvesting procedures primarily in ponds, flow-through raceways, and, to a lesser extent, cages, net pens, and tanks. Aquaculture ponds, raceways, and tanks usually require the withdrawal or diversion of water from a ground or surface source. Most water withdrawn or diverted for aquaculture production is used to maintain pond levels and/or water quality. Water typically is added for maintenance of levels, oxygenation, temperature control, and flushing of wastes. This report documents methods used to estimate withdrawals of fresh ground water and surface water for aqua-culture in 2005 for each county and county-equivalent in the United States, Puerto Rico, and the U.S. Virgin Islands by using aquaculture statistics and estimated water-use coefficients and water-replacement rates. County-level data for commercial and noncommercial operations compiled for the 2005 Census of Aquaculture were obtained from the National Agricultural Statistics Service. Withdrawals of water used at commercial and noncommercial operations for aquaculture ponds, raceways, tanks, egg incubators, and pens and cages for alligators were estimated and totaled by ground-water or surface-water source for each county and county equivalent. Use of the methods described in this report, when measured or reported data are unavailable, could result in more consistent water-withdrawal estimates for aquaculture that can be used by water managers and planners to determine water needs and trends across the United States. The results of this study were distributed to U.S. Geological Survey water-use personnel in each State during 2007. Water-use personnel are required to submit estimated withdrawals for all categories of use in their State to the U.S. Geological Survey National

  4. Feasibility of direct utilization of selected geothermal water for aquaculture of macrobrachium rosenbergii. Technical report

    SciTech Connect

    Spinosa, C.

    1984-05-01

    The feasibility was tested of direct utilization of geothermal water for the aquaculture of Malaysian freshwater prawns (Macrobrachium rosenbergii). A problem with using geothermal water for aquaculture is the chemical composition of the water with high flouride levels being a particular problem. Results show that (1) some geothermal water in Idaho can be used directly for the aquaculture of Macrobrachium rosenbergii, (2) high flouride levels cannot be directly correlated with high mortality rates and (3) low flouride levels do not correlate with high growth rates.

  5. A prototype closed aquaculture system for controlled ecological life support applications

    NASA Technical Reports Server (NTRS)

    Dreschel, T. W.; Bauer, C. F.; Koller, M. S.; Sager, J. C.

    1991-01-01

    Aquaculture has been proposed as a possible component of a life support system for extended duration space exploration. Atmospheric and hydrologic closure of an aquaculture system are necessary for this application and information on mass flows through such a system is important to integrating it as part of life support. A closed aquaculture system has been constructed and an extensive computer monitoring and control system and sampling protocol developed to provide this information. Preliminary tests indicate that the system has a negligible leak rate and can provide oxygen and carbon dioxide mass flow information.

  6. Fayette Power Project-Waste Heat Aquaculture Feasibility Study. Final report

    SciTech Connect

    Johnson, M.C.; Ekstrom, J.

    1988-06-30

    The aquaculture industry in Texas is growing steadily and has potential for future development. The Waste Heat Aquaculture Feasibility Study for the Lower Colorado River Authority Fayette Power Plant is the culmination of a two year effort that includes detailed discussion and analysis on the viability of a commercial aquaculture operation at the Fayette Power Plant, with special consideration of impacts on plant operation and security, legal and permitting constraints, water rights and other pertinent issues. The study discusses opportunities for private investment, includes site development recommendations and provides preliminary development designs.

  7. A prototype closed aquaculture system for controlled ecological life support applications

    NASA Technical Reports Server (NTRS)

    Dreschel, T. W.; Bauer, C. F.; Koller, M. S.; Sager, J. C.

    1991-01-01

    Aquaculture has been proposed as a possible component of a life support system for extended duration space exploration. Atmospheric and hydrologic closure of an aquaculture system are necessary for this application and information on mass flows through such a system is important to integrating it as part of life support. A closed aquaculture system has been constructed and an extensive computer monitoring and control system and sampling protocol developed to provide this information. Preliminary tests indicate that the system has a negligible leak rate and can provide oxygen and carbon dioxide mass flow information.

  8. Gender training in aquaculture in northern Vietnam. A report.

    PubMed

    Voeten, J; Ottens, B J

    1997-01-01

    Described is a pilot project that integrated gender and technology in training and analysis in Vietnam. Many farmers in Vietnam use the VAC system of fishing, farming, and animal husbandry, which makes efficient use of resources and requires low inputs. Excess products are sold locally. Plants are used for food, fiber, and fuel. Waste products are recycled. Small ponds (under 0.5 ha) are created using rainwater. 2-8 tons/ha/year of fish are produced. The dug-out soil is used to build up gardens and house foundations as protection against flooding. Fresh water for the household comes from wells. Garden plots contain various intercropped species. Fruit trees and tuber crops are cultivated in shady areas. Timber trees and rattan are planted to form tree fences. Taro is planted around the ponds, and marsh lentils are planted on pond surfaces. Various fish feed in the top, middle, and bottom portions of ponds. Gourd is grown on trellises above the ponds. Pig manure is used for plant and fish food. Pond water, which is rich in nutrients and sludge, is used to fertilize gardens. During 1995-96, a pilot program provided training in aquaculture for poor rural women in the villages of My Xa and My Tan in Nam Ha province and Tuan Chinh and Yen Dong in Vihn Phu province in the north. The analysis identified gender relations in management, control of aquaculture, decision-making, and use of benefits. The concept of gender was explained to women in the training program. Women were more concerned with the technical training. The position of women improved in participation, decision-making, and control over benefits. The technical transfer of knowledge was viewed as less important than gender awareness. The aim to improve women's position should be clearly identified. Community participation in the training of trainers was beneficial. Follow-up activities continued during 1997-99.

  9. Prevention of zebra mussel infestation and dispersal during aquaculture operations

    USGS Publications Warehouse

    Waller, D.L.; Fisher, S.W.; Dabrowska, H.

    1996-01-01

    The zebra mussel Dreissena polymorpha, an exotic invasive species, poses a major threat to North American fish management programs and the aquaculture industry. Fish hatcheries may become infected with zebra mussels from a variety of sources, including the water supply, fish shipments, boats, and equipment. The hatcheries could then serve as agents for the overland dispersal of zebra mussels into stocked waters and to other fish hatcheries. We evaluated the effectiveness and safety of aquaculture chemicals for use in controlling zebra mussels in fish hatcheries and preventing dispersal of veligers during fish transport. Chemicals were evaluated for use in fish transport and as disinfectants for ponds and equipment. Standardized static toxicity tests were conducted with representative species of warmwater, coolwater, and coldwater fishes and with larval (3-d-old veligers), early juvenile (settling larvae), and adult zebra mussels. Chemical concentrations and exposure durations were based on recommended treatment levels for fish, eggs, and ponds. Recommended treatment levels were also exceeded, if necessary, to establish lethal levels for zebra mussels of different developmental stages. Our results indicate that some chemicals currently in use in hatcheries may be effective for controlling zebra mussels in various operations. Chloride salts were the safest and most effective therapeutants tested for use in fish transport. The toxicity of chloride salts to fish varied among species and with temperature; only one treatment regime (sodium chloride at 10,000 mg/L) was safe to all fish species that we tested, but it was only effective on veliger and settler stages of the zebra mussel. Effective disinfectants were benzalkonium chloride for use on equipment and rotenone for use in ponds after fish are harvested. The regulatory status of the identified chemicals is discussed as well as several nonchemical control alternatives.

  10. Water Diagnosis in Shrimp Aquaculture based on Neural Network

    NASA Astrophysics Data System (ADS)

    Carbajal Hernández, J. J.; Sánchez Fernández, L. P.

    2007-05-01

    In many countries, the shrimp aquaculture has not advanced computational systems to supervise the artificial habitat of the farms and laboratories. A computational system of this type helps significantly to improve the environmental conditions and to elevate the production and its quality. The main idea of this study is the creation of a system using an artificial neural network (ANN), which can help to recognize patterns of problems and their evolution in shrimp aquaculture, and thus to respond with greater rapidity against the negative effects. Bad control on the shrimp artificial habitat produces organisms with high stress and as consequence losses in their defenses. It generate low nutrition, low reproduction or worse still, they prearrange to acquire lethal diseases. The proposed system helps to control this problem. Environmental variables as pH, temperature, salinity, dissolved oxygen and turbidity have an important effect in the suitable growth of the shrimps and influence in their health. However, the exact mathematical model of this relationship is unspecified; an ANN is useful for establishing a relationship between these variables and to classify a status that describes a problem into the farm. The data classification is made to recognize and to quantify two states within the pool: a) Normal: Everything is well. b) Risk: One, some or all environmental variables are outside of the allowed interval, which generates problems. The neural network will have to recognize the state and to quantify it, in others words, how normal or risky it is, which allows finding trend of the water quality. A study was developed for designing a software tool that allows recognizing the status of the water quality and control problems for the environment into the pond.

  11. Halophyte filter beds for treatment of saline wastewater from aquaculture.

    PubMed

    Webb, J M; Quintã, R; Papadimitriou, S; Norman, L; Rigby, M; Thomas, D N; Le Vay, L

    2012-10-15

    The expansion of aquaculture and the recent development of more intensive land-based marine farms require efficient and cost-effective systems for treatment of highly nutrient-rich saline wastewater. Constructed wetlands with halophytic plants offer the potential for waste-stream treatment combined with production of valuable secondary plant crops. Pilot wetland filter beds, constructed in triplicate and planted with the saltmarsh plant Salicornia europaea, were evaluated over 88 days under commercial operating conditions on a marine fish and shrimp farm. Nitrogen waste was primarily in the form of dissolved inorganic nitrogen (TDIN) and was removed by 98.2 ± 2.2% under ambient loadings of 109-383 μmol l(-1). There was a linear relationship between TDIN uptake and loading over the range of inputs tested. At peak loadings of up to 8185 ± 590 μmol l(-1) (equivalent to 600 mmol N m(-2) d(-1)), the filter beds removed between 30 and 58% (250 mmol N m(-2) d(-1)) of influent TDIN. Influent dissolved inorganic phosphorus levels ranged from 34 to 90 μmol l(-1), with 36-89% reduction under routine operations. Dissolved organic nitrogen (DON) loadings were lower (11-144 μmol l(-1)), and between 23 and 69% of influent DON was removed during routine operation, with no significant removal of DON under high TDIN loading. Over the 88-day study, cumulative nitrogen removal was 1.28 mol m(-2), of which 1.09 mol m(-2) was retained in plant tissue, with plant uptake ranging from 2.4 to 27.0 mmol N g(-1) dry weight d(-1). The results demonstrate the effectiveness of N and P removal from wastewater from land-based intensive marine aquaculture farms by constructed wetlands planted with S. europaea.

  12. Persistent halogenated compounds in two typical marine aquaculture zones of South China.

    PubMed

    Yu, Huan-Yun; Guo, Ying; Bao, Lian-Jun; Qiu, Yao-Wen; Zeng, Eddy Y

    2011-01-01

    Samples of two seawater farmed fish (crimson snapper (Lutjanus erythopterus) and snubnose pompano (Trachinotus blochii)), water, air, sediment, fish feed, macroalgae and phytoplankton were collected from two estuarine bays (Daya Bay and Hailing Bay) in South China. The concentrations of persistent halogenated compounds (PHCs) including polybrominated diphenyl ethers (PBDEs), organochlorine pesticides and polychlorinated biphenyls (PCBs) varied widely with the different sample matrices under investigation. The compositional patterns in fish, fish feed, macroalgae and phytoplankton, as well as the good correlations between the abundances of p,p'-DDT and BDE-209 and their metabolites (i.e., p,p'-DDD and p,p'-DDE for p,p'-DDT and BDE-47 for BDE-209) in fish indicated the occurrence of DDT and PBDE biotransformation in fish body. Finally, the marine aquaculture environment in South China is somewhat biologically impaired by DDT-contaminated water, sediment and fish feed, and there may be some cancer risk associated with fish consumption for humans, especially for urban residents.

  13. Towards the development of a sustainable soya bean-based feedstock for aquaculture.

    PubMed

    Park, Hyunwoo; Weier, Steven; Razvi, Fareha; Peña, Pamela A; Sims, Neil A; Lowell, Jennica; Hungate, Cory; Kissinger, Karma; Key, Gavin; Fraser, Paul; Napier, Johnathan A; Cahoon, Edgar B; Clemente, Tom E

    2017-02-01

    Soya bean (Glycine max (L.) Merr.) is sought after for both its oil and protein components. Genetic approaches to add value to either component are ongoing efforts in soya bean breeding and molecular biology programmes. The former is the primary vegetable oil consumed in the world. Hence, its primary usage is in direct human consumption. As a means to increase its utility in feed applications, thereby expanding the market of soya bean coproducts, we investigated the simultaneous displacement of marine ingredients in aquafeeds with soya bean-based protein and a high Omega-3 fatty acid soya bean oil, enriched with alpha-linolenic and stearidonic acids, in both steelhead trout (Oncorhynchus mykiss) and Kampachi (Seriola rivoliana). Communicated herein are aquafeed formulations with major reduction in marine ingredients that translates to more total Omega-3 fatty acids in harvested flesh. Building off of these findings, subsequent efforts were directed towards a genetic strategy that would translate to a prototype design of an optimal identity-preserved soya bean-based feedstock for aquaculture, whereby a multigene stack approach for the targeted synthesis of two value-added output traits, eicosapentaenoic acid and the ketocarotenoid, astaxanthin, were introduced into the crop. To this end, the systematic introduction of seven transgenic cassettes into soya bean, and the molecular and phenotypic evaluation of the derived novel events are described.

  14. Effects of temperature, salinity, and carbon: nitrogen ratio on sequencing batch reactor treating shrimp aquaculture wastewater.

    PubMed

    Fontenot, Q; Bonvillain, C; Kilgen, M; Boopathy, R

    2007-07-01

    In order to improve the water quality in the shrimp aquaculture, we tested a sequencing batch reactor (SBR) for the treatment of shrimp wastewater. A SBR is a variation of the activated sludge biological treatment process. This process uses multiple steps in the same tank to take the place of multiple tanks in a conventional treatment system. The SBR accomplishes pH correction, aeration, and clarification in a timed sequence, in a single reactor basin. This is achieved in a simple tank, through sequencing stages, which includes fill, react, settle, decant, and idle. The wastewater from the Waddell Mariculture Center, South Carolina was successfully treated using a SBR. The wastewater contained high concentration of carbon and nitrogen. By operating the reactor sequentially, viz, aerobic, anaerobic, and aerobic modes, nitrification and denitrification were achieved as well as removal of carbon. We optimized various environmental parameters such as temperature, salinity, and carbon and nitrogen ratio (C:N ratio) for the best performance of SBR. The results indicated that the salinity of 28-40 parts per thousand (ppt), temperature range of 22-37 degrees C, and a C:N ratio of 10:1 produced best results in terms of maximum nitrogen and carbon removal from the wastewater. The SBR system showed promising results and could be used as a viable treatment alternative in the shrimp industry.

  15. A study on physicochemical parameters of an aquaculture body in Mysore city, Karnataka, India.

    PubMed

    Sachidanandamurthy, K L; Yajurvedi, H N

    2006-10-01

    Monthly changes in water quality parameters (physicochemical) of a rain fed lake (Bilikere) in Mysore city, were investigated for two calendar years (2002 and 2003) to assess the suitability of this lake for pisciculture. Although there were monthly fluctuations in water temperature, total suspended solids (TSS), dissolved oxygen (DO), nitrite and ammonia, they were within the desirable limits. On the other hand, total alkalinity and hydrogen sulphide throughout the study period and pH for a major part, were higher than the desirable limits. Other parameters viz; turbidity, biological oxygen demand (BOD), phosphate, and nitrate in a few months were higher than the desirable limits for waters used for fish culture. The high levels of these factors are due to the entry of agricultural run off and occasional flow of sewage into the lake. In addition dense algal growth was noticed at times of the year which is caused by surge in nutrients level whenever there was a rainfall. Since, the lake has a great aquacultural potential, it is suggested that control of nutrient load that enters the lake occasionally, might help the lake to continue its mesotrophic status.

  16. [Overcoming mandatory vaccination policy: first steps].

    PubMed

    Ferro, A; Cinquetti, S; Menegon, T; Napoletano, G; Bertoncello, L; Valsecchi, M

    2008-01-01

    Steps toward overcoming mandatory vaccination policy follow two main tracks: scientific and administrative. Scientific course checks starting conditions of the project in Veneto Region and monitors the effects of policy. Thanks to sensibilization regional programs and partecipation to national campaigns of vaccination, Veneto Region has achieved high coverage for all actively promoted vaccinations. Specific projects has been implemented in order to improve vaccination system quality, particularly with regard to infectious diseases and vaccine adverse events surveillance, training workers and informatization. On 23rd March 2007 Veneto Region passed the regional law number 7 called "Sospensione dell'obbligo vaccinale per l'età evolutiva" becoming in force for children born since January 1st 2008. The law provides for the institution of a scientific committee having the task of monitoring both vaccination coverage and preventable infectious diseases incidence after overcoming mandatory vaccination policy.

  17. Overcoming cellular barriers for RNA therapeutics.

    PubMed

    Dowdy, Steven F

    2017-03-01

    RNA-based therapeutics, such as small-interfering (siRNAs), microRNAs (miRNAs), antisense oligonucleotides (ASOs), aptamers, synthetic mRNAs and CRISPR-Cas9, have great potential to target a large part of the currently undruggable genes and gene products and to generate entirely new therapeutic paradigms in disease, ranging from cancer to pandemic influenza to Alzheimer's disease. However, for these RNA modalities to reach their full potential, they first need to overcome a billion years of evolutionary defenses that have kept RNAs on the outside of cells from invading the inside of cells. Overcoming the lipid bilayer to deliver RNA into cells has remained the major problem to solve for widespread development of RNA therapeutics, but recent chemistry advances have begun to penetrate this evolutionary armor.

  18. [Cancer immunotherapy. Importance of overcoming immune suppression].

    PubMed

    Malvicini, Mariana; Puchulo, Guillermo; Matar, Pablo; Mazzolini, Guillermo

    2010-01-01

    Increasing evidence indicates that the immune system is involved in the control of tumor progression. Effective antitumor immune response depends on the interaction between several components of the immune system, including antigen-presenting cells and different T cell subsets. However, tumor cells develop a number of mechanisms to escape recognition and elimination by the immune system. In this review we discuss these mechanisms and address possible therapeutic approaches to overcome the immune suppression generated by tumors.

  19. The role of oyster restoration and aquaculture in nitrogen removal within a Rhode Island estuary

    EPA Science Inventory

    Coastal systems are increasingly impacted by over-enrichment of nutrients, which has cascading effects for ecosystem functioning. Oyster aquaculture and restoration are hypothesized to mitigate excessive nitrogen (N) loads via assimilation, burial, or benthic denitrification. Stu...

  20. Veterinary medical education and veterinary involvement in aquatic-animal health and aquaculture in Mexico.

    PubMed

    Ortega S, César

    2012-01-01

    This article analyzes curriculum offerings related to aquaculture and/or aquatic-animal health taught in veterinary medical schools or colleges in Mexico. The information database of the Mexican Association of Schools and Colleges of Veterinary Medicine and the Web sites of veterinary institutions indicate that 60% of veterinary colleges include courses related to aquaculture in their curriculum, but most of these are optional courses. There are few specialized continuing education programs or graduate level courses. There is also a lack of veterinary participation, in both public and private sectors, in aquatic-animal health. It is evident that there should be a greater involvement by the veterinary profession in Mexico's aquaculture to ensure food production in a safe and sustainable manner; to achieve this, veterinary medical institutions must include more aquaculture and aquatic-animal health courses in their curricula.

  1. Evaluation of geotextile filtration applying coagulant and flocculant amendments for aquaculture biosolids dewatering and phosphorus removal

    USDA-ARS?s Scientific Manuscript database

    Wastes contained in the microscreen backwash discharged from intensive recirculating aquaculture systems were removed and dewatered in simple geotextile bag filters. Three chemical coagulation aids, (aluminum sulfate (alum), ferric chloride, and calcium hydroxide (hydrated lime)), were tested in com...

  2. A Review of Cyanobacterial Odorous and Bioactive Metabolites: Impacts and Management Alternatives in Aquaculture

    USDA-ARS?s Scientific Manuscript database

    An increased demand has pushed extensive aquaculture towards intensively operated production systems, commonly resulting in eutrophic conditions and cyanobacterial blooms. This review summarizes cyanobacterial secondary metabolites that can cause undesirable tastes and odors (odorous metabolites) o...

  3. Directly measured denitrification reveals oyster aquaculture and restored oyster reefs remove nitrogen at comparable high rates

    EPA Science Inventory

    Coastal systems are increasingly impacted by over-enrichment of nutrients, which has cascading effects for ecosystem functioning. Oyster restoration and aquaculture are both hypothesized to mitigate excessive nitrogen (N) loads via benthic denitrification (DNF). However, this has...

  4. The evaluation of oxygen and carbon dioxide transfer associated with airlifts in recirculating aquaculture systems

    USDA-ARS?s Scientific Manuscript database

    Airlifts in recirculating aquaculture systems (RAS) provide aeration, degasification, and water circulation. They allow the simplification of systems, and if designed properly, can reduce the capital costs and minimize operation and maintenance associated with alternative pumping systems. In order t...

  5. The role of oyster restoration and aquaculture in nutrient cycling within a Rhode Island estuary

    EPA Science Inventory

    Coastal ecosystems are increasingly impacted by over-enrichment of nutrients, which has cascading effects for other organisms. Oyster aquaculture and restoration are hypothesized to mitigate excessive nitrogen (N) loads via benthic denitrification. However, this has not been exam...

  6. Directly measured denitrification reveals oyster aquaculture and restored oyster reefs remove nitrogen at comparable high rates

    EPA Science Inventory

    Coastal systems are increasingly impacted by over-enrichment of nutrients, which has cascading effects for ecosystem functioning. Oyster restoration and aquaculture are both hypothesized to mitigate excessive nitrogen (N) loads via benthic denitrification (DNF). However, this has...

  7. The role of oyster restoration and aquaculture in nutrient cycling within a Rhode Island estuary

    EPA Science Inventory

    Coastal ecosystems are increasingly impacted by over-enrichment of nutrients, which has cascading effects for other organisms. Oyster aquaculture and restoration are hypothesized to mitigate excessive nitrogen (N) loads via benthic denitrification. However, this has not been exam...

  8. The role of oyster restoration and aquaculture in nitrogen removal within a Rhode Island estuary

    EPA Science Inventory

    Coastal systems are increasingly impacted by over-enrichment of nutrients, which has cascading effects for ecosystem functioning. Oyster aquaculture and restoration are hypothesized to mitigate excessive nitrogen (N) loads via assimilation, burial, or benthic denitrification. Stu...

  9. Monitoring Antibiotic Use and Residue in Freshwater Aquaculture for Domestic Use in Vietnam.

    PubMed

    Pham, Dang Kim; Chu, Jacqueline; Do, Nga Thuy; Brose, François; Degand, Guy; Delahaut, Philippe; De Pauw, Edwin; Douny, Caroline; Nguyen, Kinh Van; Vu, Ton Dinh; Scippo, Marie-Louise; Wertheim, Heiman F L

    2015-09-01

    Vietnam is an important producer of aquaculture products, and aquatic products are essential to the Vietnamese diet. However, Vietnam also has very little enforced regulation pertaining to antibiotic usage in domestic aquaculture, which raises concerns for antibiotic resistance in pathogenic bacteria. In this study, analysis was conducted on the presence of antibiotic residues in domestically sold fish and shrimp raised in freshwater farms in Vietnam, and an assessment of farmers' knowledge of proper antibiotics usage was performed. The results indicated that a quarter of tested aquaculture products were antibiotic screening test positive, and there is a general lack of knowledge about the purpose and proper usage of antibiotics by aquaculture producers. Farmers' decision-making processes about antimicrobial use are influenced by biased sources of information, such as drug manufacturers and sellers, and by financial incentives.

  10. Antimicrobials in shrimp aquaculture in the United States: regulatory status and safety concerns.

    PubMed

    Park, E D; Lightner, D V; Park, D L

    1994-01-01

    The consumption of seafood, especially shrimp, increases yearly in the U.S. The U.S. is the second largest importer of shrimp in the world, consuming more than 11% of the total world production. Aquaculture is becoming an increasingly important source of the world's shrimp, currently accounting for approximately 30% of the world's supply. Unfortunately, in this era of international trade deficits, U.S. production of aquacultured shrimp is insignificant (< 0.1%) compared with world production. As shrimp aquaculture expands in the U.S., so does the use of intensive farming techniques. Shrimp aquaculture is like any other animal husbandry industry in that shrimp are subject to disease, especially under intensive farming methods. In penaeid shrimp, the primary diseases associated with mortalities are usually viral or bacterial. The majority of bacterial infections in penaeid shrimp are attributable to Vibrio species, with mortalities ranging from insignificant to 100%. However, the rapid growth of this industry has outpaced efforts by researchers, pharmaceutical companies, and federal regulatory agencies to provide approved therapeutants for shrimp disease management. Approval of drugs and their surveillance for compliance with regulations applicable to seafoods, including aquacultured goods, is the responsibility of the FDA. There are three general areas of concern regarding human health when chemotherapeutants are used in aquaculture: (1) residues of drugs in fish destined for human consumption; (2) development of drug resistance in human pathogenic bacteria; and (3) direct toxic effects to humans from handling of drugs. Currently, there are no antibacterials approved for shrimp aquaculture in the U.S. One of the major obstacles in the development and approval of new drugs for aquaculture is the cost of conducting the required studies. The high cost to pharmaceutical companies discourages investment in shrimp chemotherapeutant research, since the current U.S. market

  11. Public Perceptions of Aquaculture: Evaluating Spatiotemporal Patterns of Sentiment around the World.

    PubMed

    Froehlich, Halley E; Gentry, Rebecca R; Rust, Michael B; Grimm, Dietmar; Halpern, Benjamin S

    2017-01-01

    Aquaculture is developing rapidly at a global scale and sustainable practices are an essential part of meeting the protein requirements of the ballooning human population. Locating aquaculture offshore is one strategy that may help address some issues related to nearshore development. However, offshore production is nascent and distinctions between the types of aquatic farming may not be fully understood by the public-important for collaboration, research, and development. Here we evaluate and report, to our knowledge, the first multinational quantification of the relative sentiments and opinions of the public around distinct forms of aquaculture. Using thousands of newspaper headlines (Ntotal = 1,596) from developed (no. countries = 26) and developing (42) nations, ranging over periods of 1984 to 2015, we found an expanding positive trend of general 'aquaculture' coverage, while 'marine' and 'offshore' appeared more negative. Overall, developing regions published proportionally more positive than negative headlines than developed countries. As case studies, government collected public comments (Ntotal = 1,585) from the United States of America (USA) and New Zealand mirrored the media sentiments; offshore perception being particularly negative in the USA. We also found public sentiment may be influenced by local environmental disasters not directly related to aquaculture (e.g., oil spills). Both countries voiced concern over environmental impacts, but the concerns tended to be more generalized, rather than targeted issues. Two factors that could be inhibiting informed discussion and decisions about offshore aquaculture are lack of applicable knowledge and actual local development issues. Better communication and investigation of the real versus perceived impacts of aquaculture could aid in clarifying the debate about aquaculture, and help support future sustainable growth.

  12. [Morphological and quality difference of adult Anguilla japonica under three aquaculture models].

    PubMed

    Wang, Zhi-Zheng; Yang, Lei; Zhu, Wei-Dong

    2012-05-01

    Anguilla japonica adults with a snout-vent length of (25.91 +/- 3.26) cm were randomly sampled from the ponds of monoculture A. japonica (M1) and polyculture A. japonica and Macrobrachium nipponense (M2) and the proliferation site in reservoir (M3) to compare the morphological and quality indices of the adults under the three aquaculture models. Discriminant analysis, cluster analysis, and factor analysis were applied to reveal the differences among the individuals of these three cultured populations. Among the test 21 biological traits and 23 morphological and quality indices, there were significant differences in 15 biological traits and 14 morphological and quality indices between M1 and M2, 19 and 18 between M1 and M3, and 11 and 8 between M2 and M3, respectively. The Euclidean distance between M1 and M2, M1 and M3, and M2 and M3 was 1.433, 3. 516, and 2. 167, respectively, and the differences were significant. The accumulative variance percentage of the first five principal components was 82.1%, and the eigenvalues of these components were all larger than 1. The principal components 1 and 2 could be regarded as fatness factor and movement factor, the other three principal components could be regarded as well-being factor, and the three populations could be clearly separated each other by principal component 1. In discriminant analysis, the five principal components, i. e., body width / anal length, body length / anal length, net volume coefficient, swim bladder coefficient, and liver coefficient, were served as independent variables to establish discriminant functions of the populations, which could clearly distinguish the populations, with the discriminant accuracy and synthetic discriminant accuracy being 100%.

  13. Experiences of countries with new aquatic industries: the development of aquaculture in Iran.

    PubMed

    Rajaby, M

    2008-04-01

    Although caviar is the most significant and famous fishery product of Iran, in recent years the country has gained a lot of experience and had some significant success with other fishery and aquaculture products. Iranian fisheries and aquaculture production reached 522,000 metric tons in 2005, of which 75% originated from capture fishery and 25% from aquaculture activities. Various fishery and aquaculture activities take place in Iran to help meet domestic demand for aquaculture products and to maintain the existing level of natural resources in seas and rivers (restocking natural sources). The ways in which Iran has been able to make progress in developing aquaculture--which could serve as a model for other countries in the region and for developing countries--are as follows: a) optimising the use of climatic diversity in raising various aquatic species; b) establishing the required governmental and nongovernmental organisations for raising aquatic animals, and planning and creating appropriate relationships between those organisations and entities; c) training skilful manpower and educating specialists in the field of aquatic animal health and diseases; d) increasing per capita consumption of fishery products through sensitising public opinion; and e) meeting the requirements for raising the rate of aquatic animal culture and developing the export of fishery products, i.e. by supplying eyed eggs, feed, broodstock, etc.

  14. Benefits, environmental risks, social concerns, and policy implications of biotechnology in aquaculture

    SciTech Connect

    Kapuscinski, A.R.; Hallerman, E.M.

    1994-10-01

    Among the many methodologies encompassing biotechnology in aquaculture, this report addresses: the production of genetically modified aquatic organisms (aquatic GMOs) by gene transfer, chromosome set manipulation, or hybridization or protoplast fusion between species; new health management tools, including DNA-Based diagnostics and recombinant DNA vaccines; Marker-assisted selection; cryopreservation; and stock marking. These methodologies pose a wide range of potential economic benefits for aquaculture by providing improved or new means to affect the mix of necessary material inputs, enhance production efficiency, or improve product quality. Advances in aquaculture through biotechnology could simulate growth of the aquaculture industry to provide a larger proportion of consummer demand, and thereby reduce pressure and natural stocks from over-harvest. Judicious application of gamete cryopreservation and chromosome set manipulations to achieve sterilization could reduce environmental risks of some aquaculture operations. Given the significant losses to disease in many aquaculture enterprises, potential benefits of DNA-based health management tools are very high and appear to pose no major environmental risks or social concerns.

  15. Prevalence of ROPS-equipped tractors in U.S. aquaculture.

    PubMed

    Myers, M L; Westneat, S C; Myers, J R; Cole, H P

    2009-04-01

    Aquaculture involves the production of plant and animal products that are cultured in water. The principal freshwater fishes raised in the U.S. are catfish (raised mainly in ponds) and trout (raised mostly in concrete raceways), and the principal crustaceans grown are shrimp, crayfish, oysters, and clams. Tractors are used on aquaculture farms mostly in pond culture. Ponds present overturn hazards because of the slopes of levees, slippery conditions, and nighttime driving. Protection is afforded to the tractor operator when a rollover protective structure (ROPS) is attached to the tractor. The purpose of this study was to analyze and describe the prevalence of ROPS-equipped tractors on farms engaged in aquaculture in the U.S. The analysis concluded that 78% of tractors used in aquaculture were equipped with a ROPS, in contrast with the prevalence of ROPS at 49% for all of agriculture. Moreover, 91% of the tractors in the South used for aquaculture were equipped with a ROPS. The national sample for aquaculture included 75 farms and 137 tractors, which is small, but nonetheless, several hypotheses can be generated as a result of this descriptive study.

  16. Influence of carbohydrate addition on nitrogen transformations and greenhouse gas emissions of intensive aquaculture system.

    PubMed

    Hu, Zhen; Lee, Jae Woo; Chandran, Kartik; Kim, Sungpyo; Sharma, Keshab; Khanal, Samir Kumar

    2014-02-01

    Aquaculture is one of the fastest-growing segments of the food economy in modern times. It is also being considered as an important source of greenhouse gas (GHG) emissions. To date, limited studies have been conducted on GHG emissions from aquaculture system. In this study, daily addition of fish feed and soluble starch at a carbon-to-nitrogen (C/N) ratio of 16:1 (w/w) was used to examine the effects of carbohydrate addition on nitrogen transformations and GHG emissions in a zero-water exchange intensive aquaculture system. The addition of soluble starch stimulated heterotrophic bacterial growth and denitrification, which led to lower total ammonia nitrogen, nitrite and nitrate concentrations in aqueous phase. About 76.2% of the nitrogen output was emitted in the form of gaseous nitrogen (i.e., N2 and N2O) in the treatment tank (i.e., aquaculture tank with soluble starch addition), while gaseous nitrogen accounted for 33.3% of the nitrogen output in the control tank (i.e., aquaculture tank without soluble starch addition). Although soluble starch addition reduced daily N2O emissions by 83.4%, it resulted in an increase of daily carbon dioxide (CO2) emissions by 91.1%. Overall, starch addition did not contribute to controlling the GHG emissions from the aquaculture system. © 2013.

  17. Characterization and significance of indicator bacteria in commercial aquaculture production facilities

    SciTech Connect

    Fiederlein, R.J.; Davis, E.M.; Mathewson, J.J.

    1996-11-01

    Catfish production is the single largest segment of the domestic aquaculture industry. Waste discharges from aquaculture operations are regulated at both the federal and state level. The federal government regulates surface water discharges from aquaculture facilities using regulations promulgated under the Clean Water Act. These regulations designate concentrated aquatic animal production facilities as point sources of pollution, thus subjecting them to National Pollution Discharge Elimination Systems (NPDES) permit requirements. Previous studies of aquaculture effluents have primarily characterized the organic, chemical, and physical components of discharged wastewater and have only characterized to a limited extent the microbial component of discharged wastewater. This study was initiated to examine the levels of four wastewater indicator bacteria groups and to examine to the genus level the members of one of these groups in wastewater, or potential wastewater, from aquaculture facilities over the course of the growout season of several different species of fish. This study also examined the relationships between these bacterial levels and other water quality parameters and operational variables and enumerated and characterized Aeromonas hydrophila complex bacteria, members of which are potential water-borne pathogens. The effectiveness of waste stabilization ponds in the treatment of aquaculture wastewaters was also evaluated.

  18. Fortification: overcoming technical and practical barriers.

    PubMed

    Hurrell, Richard F

    2002-04-01

    The main barriers to successful iron fortification are the following: 1) finding an iron compound that is adequately absorbed but causes no sensory changes to the food vehicle; and 2) overcoming the inhibitory effect on iron absorption of dietary components such as phytic acid, phenolic compounds and calcium. These barriers have been successfully overcome with some food vehicles but not with others. Iron-fortified fish sauce, soy sauce, curry powder, sugar, dried milk, infant formula and cereal based complementary foods have been demonstrated to improve iron status in targeted populations. The reasons for this success include the use of soluble iron such as ferrous sulfate, the addition of ascorbic acid as an absorption enhancer or the use of NaFeEDTA to overcome the negative effect of phytic acid. In contrast, at the present time, it is not possible to guarantee a similar successful fortification of cereal flours or salt. There is considerable doubt that the elemental iron powders currently used to fortify cereal flours are adequately absorbed, and there is an urgent need to investigate their potential for improving iron status. Better absorbed alternative compounds for cereal fortification include encapsulated ferrous sulfate and NaFeEDTA, which, unlike ferrous sulfate, do not provoke fat oxidation of cereals during storage. Encapsulated compounds also offer a possibility to fortify low grade salt without causing off-colors or iodine loss. Finally, a new and useful additional approach to ensuring adequate iron absorption from cereal based complementary foods is the complete degradation of phytic acid with added phytases or by activating native cereal phytases.

  19. Overcoming Scalability Challenges for Tool Daemon Launching

    SciTech Connect

    Ahn, D H; Arnold, D C; de Supinski, B R; Lee, G L; Miller, B P; Schulz, M

    2008-02-15

    Many tools that target parallel and distributed environments must co-locate a set of daemons with the distributed processes of the target application. However, efficient and portable deployment of these daemons on large scale systems is an unsolved problem. We overcome this gap with LaunchMON, a scalable, robust, portable, secure, and general purpose infrastructure for launching tool daemons. Its API allows tool builders to identify all processes of a target job, launch daemons on the relevant nodes and control daemon interaction. Our results show that Launch-MON scales to very large daemon counts and substantially enhances performance over existing ad hoc mechanisms.

  20. Overcoming Challenges in Engineering the Genetic Code.

    PubMed

    Lajoie, M J; Söll, D; Church, G M

    2016-02-27

    Withstanding 3.5 billion years of genetic drift, the canonical genetic code remains such a fundamental foundation for the complexity of life that it is highly conserved across all three phylogenetic domains. Genome engineering technologies are now making it possible to rationally change the genetic code, offering resistance to viruses, genetic isolation from horizontal gene transfer, and prevention of environmental escape by genetically modified organisms. We discuss the biochemical, genetic, and technological challenges that must be overcome in order to engineer the genetic code. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Strategies to Overcome Heparins’ Low Oral Bioavailability

    PubMed Central

    Neves, Ana Rita; Correia-da-Silva, Marta; Sousa, Emília; Pinto, Madalena

    2016-01-01

    Even after a century, heparin is still the most effective anticoagulant available with few side effects. The poor oral absorption of heparins triggered the search for strategies to achieve oral bioavailability since this route has evident advantages over parenteral administration. Several approaches emerged, such as conjugation of heparins with bile acids and lipids, formulation with penetration enhancers, and encapsulation of heparins in micro and nanoparticles. Some of these strategies appear to have potential as good delivery systems to overcome heparin’s low oral bioavailability. Nevertheless, none have reached the market yet. Overall, this review aims to provide insights regarding the oral bioavailability of heparin. PMID:27367704

  2. Overcoming Barriers to Palliative Care Consultation.

    PubMed

    Perrin, Kathleen Ouimet; Kazanowski, Mary

    2015-10-01

    Palliative care consultations for patients with life-threatening illnesses provide benefits for the patients and their families as well as for the health care team. Patients have better quality of life and live longer but cost the health care system less. Still, many patients are not offered the opportunity to receive a palliative care consultation. Barriers to palliative care consultation for patients in critical care units include misunderstandings about palliative care and not having agreed upon criteria for referral. Critical care nurses can assist in overcoming these barriers.

  3. Overcoming semantic heterogeneity in spatial data infrastructures

    NASA Astrophysics Data System (ADS)

    Lutz, M.; Sprado, J.; Klien, E.; Schubert, C.; Christ, I.

    2009-04-01

    In current spatial data infrastructures (SDIs), it is still often difficult to effectively exchange or re-use geographic data sets. A main reason for this is semantic heterogeneity, which occurs at different levels: at the metadata, the schema and the data content level. It is the goal of the work presented in this paper to overcome the problems caused by semantic heterogeneity on all three levels. We present a method based on ontologies and logical reasoning, which enhances the discovery, retrieval, interpretation and integration of geographic data in SDIs. Its benefits and practical use are illustrated with examples from the domains of geology and hydrology.

  4. An aquaculture-based method for calibrated bivalve isotope paleothermometry

    NASA Astrophysics Data System (ADS)

    Wanamaker, Alan D.; Kreutz, Karl J.; Borns, Harold W.; Introne, Douglas S.; Feindel, Scott; Barber, Bruce J.

    2006-09-01

    To quantify species-specific relationships between bivalve carbonate isotope geochemistry (δ18Oc) and water conditions (temperature and salinity, related to water isotopic composition [δ18Ow]), an aquaculture-based methodology was developed and applied to Mytilus edulis (blue mussel). The four-by-three factorial design consisted of four circulating temperature baths (7, 11, 15, and 19°C) and three salinity ranges (23, 28, and 32 parts per thousand (ppt); monitored for δ18Ow weekly). In mid-July of 2003, 4800 juvenile mussels were collected in Salt Bay, Damariscotta, Maine, and were placed in each configuration. The size distribution of harvested mussels, based on 105 specimens, ranged from 10.9 mm to 29.5 mm with a mean size of 19.8 mm. The mussels were grown in controlled conditions for up to 8.5 months, and a paleotemperature relationship based on juvenile M. edulis from Maine was developed from animals harvested at months 4, 5, and 8.5. This relationship [T°C = 16.19 (±0.14) - 4.69 (±0.21) {δ18Oc VPBD - δ18Ow VSMOW} + 0.17 (±0.13) {δ18Oc VPBD - δ18Ow VSMOW}2; r2 = 0.99; N = 105; P < 0.0001] is nearly identical to the Kim and O'Neil (1997) abiogenic calcite equation over the entire temperature range (7-19°C), and it closely resembles the commonly used paleotemperature equations of Epstein et al. (1953) and Horibe and Oba (1972). Further, the comparison of the M. edulis paleotemperature equation with the Kim and O'Neil (1997) equilibrium-based equation indicates that M. edulis specimens used in this study precipitated their shell in isotopic equilibrium with ambient water within the experimental uncertainties of both studies. The aquaculture-based methodology described here allows similar species-specific isotope paleothermometer calibrations to be performed with other bivalve species and thus provides improved quantitative paleoenvironmental reconstructions.

  5. Overcoming pain as a barrier to work.

    PubMed

    Wynne-Jones, Gwenllian; Main, Chris J

    2011-06-01

    To consider whether pain is a barrier to work and if so how this can be overcome. Recent findings demonstrate that in addition to absence, pain can lead to a significant loss of productivity. The reasons why employees take absence or attend work while ill are complex and include personal, social and moral pressures around absence, and personally and institutionally mediated presenteeism. Interventions have moved on from a purely biomedical or psychosocial focus towards integrated programmes supporting individuals in managing their pain in the workplace. Pain is one of the leading causes of absenteeism and presenteeism with related costs for both employees and employers. Ongoing pain presents a number of physical, psychological and social obstacles to work, which may or may not be modifiable. A range of interventions has been tested in randomized trials with a recent move towards identifying and tackling musculoskeletal pain in the wider context as conceptualized by the flags framework. However, in order for any intervention to be successful in ensuring employees overcome pain as a barrier to work, there needs to be widespread change in behaviour with regard to occupational health in general and effective interventions need to be implemented in both workplace and healthcare settings.

  6. Clarifying Chemical Bonding. Overcoming Our Misconceptions.

    ERIC Educational Resources Information Center

    Hapkiewicz, Annis

    1991-01-01

    Demonstrations to help students change their misconceptions about chemical bond breaking are presented. Students' misconceptions about chemical bonds in both biological and chemical systems are discussed. A calculation for the release of energy from respiration is presented. (KR)

  7. Clarifying Chemical Bonding. Overcoming Our Misconceptions.

    ERIC Educational Resources Information Center

    Hapkiewicz, Annis

    1991-01-01

    Demonstrations to help students change their misconceptions about chemical bond breaking are presented. Students' misconceptions about chemical bonds in both biological and chemical systems are discussed. A calculation for the release of energy from respiration is presented. (KR)

  8. BREEDING AND GENETICS SYMPOSIUM: Climate change and selective breeding in aquaculture.

    PubMed

    Sae-Lim, P; Kause, A; Mulder, H A; Olesen, I

    2017-04-01

    Aquaculture is the fastest growing food production sector and it contributes significantly to global food security. Based on Food and Agriculture Organization (FAO) of the United Nations, aquaculture production must increase significantly to meet the future global demand for aquatic foods in 2050. According to Intergovernmental Panel on Climate Change (IPCC) and FAO, climate change may result in global warming, sea level rise, changes of ocean productivity, freshwater shortage, and more frequent extreme climate events. Consequently, climate change may affect aquaculture to various extents depending on climatic zones, geographical areas, rearing systems, and species farmed. There are 2 major challenges for aquaculture caused by climate change. First, the current fish, adapted to the prevailing environmental conditions, may be suboptimal under future conditions. Fish species are often poikilothermic and, therefore, may be particularly vulnerable to temperature changes. This will make low sensitivity to temperature more important for fish than for livestock and other terrestrial species. Second, climate change may facilitate outbreaks of existing and new pathogens or parasites. To cope with the challenges above, 3 major adaptive strategies are identified. First, general 'robustness' will become a key trait in aquaculture, whereby fish will be less vulnerable to current and new diseases while at the same time thriving in a wider range of temperatures. Second, aquaculture activities, such as input power, transport, and feed production contribute to greenhouse gas emissions. Selection for feed efficiency as well as defining a breeding goal that minimizes greenhouse gas emissions will reduce impacts of aquaculture on climate change. Finally, the limited adoption of breeding programs in aquaculture is a major concern. This implies inefficient use of resources for feed, water, and land. Consequently, the carbon footprint per kg fish produced is greater than when fish from

  9. Use of Aquaculture Ponds and Other Habitats by Autumn Migrating Shorebirds Along the Lower Mississippi River

    NASA Astrophysics Data System (ADS)

    Lehnen, Sarah E.; Krementz, David G.

    2013-08-01

    Populations of many shorebird species are declining; habitat loss and degradation are among the leading causes for these declines. Shorebirds use a variety of habitats along interior migratory routes including managed moist soil units, natural wetlands, sandbars, and agricultural lands such as harvested rice fields. Less well known is shorebird use of freshwater aquaculture facilities, such as commercial cat- and crayfish ponds. We compared shorebird habitat use at drained aquaculture ponds, moist soil units, agricultural areas, sandbars and other natural habitat, and a sewage treatment facility in the in the lower Mississippi River Alluvial Valley (LMAV) during autumn 2009. Six species: Least Sandpiper ( Calidris minutilla), Killdeer ( Charadrius vociferous), Semipalmated Sandpiper ( Calidris pusilla), Pectoral Sandpiper ( C. melanotos), Black-necked Stilt ( Himantopus himantopus), and Lesser Yellowlegs ( Tringa flavipes), accounted for 92 % of the 31,165 individuals observed. Sewage settling lagoons (83.4, 95 % confidence interval [CI] 25.3-141.5 birds/ha), drained aquaculture ponds (33.5, 95 % CI 22.4-44.6 birds/ha), and managed moist soil units on public lands (15.7, CI 11.2-20.3 birds/ha) had the highest estimated densities of shorebirds. The estimated 1,100 ha of drained aquaculture ponds available during autumn 2009 provided over half of the estimated requirement of 2,000 ha by the LMAV Joint Venture working group. However, because of the decline in the aquaculture industry, autumn shorebird habitats in the LMAV may be limited in the near future. Recognition of the current aquaculture habitat trends will be important to the future management activities of federal and state agencies. Should these aquaculture habitat trends continue, there may be a need for wildlife biologists to investigate other habitats that can be managed to offset the current and expected loss of aquaculture acreages. This study illustrates the potential for freshwater aquaculture to

  10. Use of aquaculture ponds and other habitats by autumn migrating shorebirds along the lower Mississippi river.

    PubMed

    Lehnen, Sarah E; Krementz, David G

    2013-08-01

    Populations of many shorebird species are declining; habitat loss and degradation are among the leading causes for these declines. Shorebirds use a variety of habitats along interior migratory routes including managed moist soil units, natural wetlands, sandbars, and agricultural lands such as harvested rice fields. Less well known is shorebird use of freshwater aquaculture facilities, such as commercial cat- and crayfish ponds. We compared shorebird habitat use at drained aquaculture ponds, moist soil units, agricultural areas, sandbars and other natural habitat, and a sewage treatment facility in the in the lower Mississippi River Alluvial Valley (LMAV) during autumn 2009. Six species: Least Sandpiper (Calidris minutilla), Killdeer (Charadrius vociferous), Semipalmated Sandpiper (Calidris pusilla), Pectoral Sandpiper (C. melanotos), Black-necked Stilt (Himantopus himantopus), and Lesser Yellowlegs (Tringa flavipes), accounted for 92 % of the 31,165 individuals observed. Sewage settling lagoons (83.4, 95 % confidence interval [CI] 25.3-141.5 birds/ha), drained aquaculture ponds (33.5, 95 % CI 22.4-44.6 birds/ha), and managed moist soil units on public lands (15.7, CI 11.2-20.3 birds/ha) had the highest estimated densities of shorebirds. The estimated 1,100 ha of drained aquaculture ponds available during autumn 2009 provided over half of the estimated requirement of 2,000 ha by the LMAV Joint Venture working group. However, because of the decline in the aquaculture industry, autumn shorebird habitats in the LMAV may be limited in the near future. Recognition of the current aquaculture habitat trends will be important to the future management activities of federal and state agencies. Should these aquaculture habitat trends continue, there may be a need for wildlife biologists to investigate other habitats that can be managed to offset the current and expected loss of aquaculture acreages. This study illustrates the potential for freshwater aquaculture to

  11. Managing to harvest? Perspectives on the potential of aquaculture

    PubMed Central

    Muir, James

    2005-01-01

    Aquaculture has been one of the most rapid and technically innovative of food production sectors globally, with significant investment, scientific and technical development and production growth in many parts of the world over the past two decades. While this has had a significant effect on the global supply of aquatic food products and had an important impact in rural and urban food supply and employment in many developing economies, growth and increasing internationalization has not been without concern for natural resource use, environmental impact and social disruption. The expectations for production and diversification are now significant and while the scientific and technical means are already available to meet much of the intended targets, practical constraints of investment, profitability, resource access and system efficiency are likely to become far more important constraints for the future. This review offers a contemporary perspective on the ways in which the sector might develop, its interactions with constraints and the strategies that may be required to ensure that future development is both positive and sustainable. PMID:15713597

  12. Infectious diseases affect marine fisheries and aquaculture economics

    USGS Publications Warehouse

    Lafferty, Kevin D.; Harvell, C. Drew; Conrad, Jon M.; Friedman, Carolyn S.; Kent, Michael L.; Kuris, Armand M.; Powell, Eric N.; Rondeau, Daniel; Saksida, Sonja M.

    2015-01-01

    Seafood is a growing part of the economy, but its economic value is diminished by marine diseases. Infectious diseases are common in the ocean, and here we tabulate 67 examples that can reduce commercial species' growth and survivorship or decrease seafood quality. These impacts seem most problematic in the stressful and crowded conditions of aquaculture, which increasingly dominates seafood production as wild fishery production plateaus. For instance, marine diseases of farmed oysters, shrimp, abalone, and various fishes, particularly Atlantic salmon, cost billions of dollars each year. In comparison, it is often difficult to accurately estimate disease impacts on wild populations, especially those of pelagic and subtidal species. Farmed species often receive infectious diseases from wild species and can, in turn, export infectious agents to wild species. However, the impact of disease export on wild fisheries is controversial because there are few quantitative data demonstrating that wild species near farms suffer more from infectious diseases than those in other areas. The movement of exotic infectious agents to new areas continues to be the greatest concern.

  13. Infectious diseases affect marine fisheries and aquaculture economics.

    PubMed

    Lafferty, Kevin D; Harvell, C Drew; Conrad, Jon M; Friedman, Carolyn S; Kent, Michael L; Kuris, Armand M; Powell, Eric N; Rondeau, Daniel; Saksida, Sonja M

    2015-01-01

    Seafood is a growing part of the economy, but its economic value is diminished by marine diseases. Infectious diseases are common in the ocean, and here we tabulate 67 examples that can reduce commercial species' growth and survivorship or decrease seafood quality. These impacts seem most problematic in the stressful and crowded conditions of aquaculture, which increasingly dominates seafood production as wild fishery production plateaus. For instance, marine diseases of farmed oysters, shrimp, abalone, and various fishes, particularly Atlantic salmon, cost billions of dollars each year. In comparison, it is often difficult to accurately estimate disease impacts on wild populations, especially those of pelagic and subtidal species. Farmed species often receive infectious diseases from wild species and can, in turn, export infectious agents to wild species. However, the impact of disease export on wild fisheries is controversial because there are few quantitative data demonstrating that wild species near farms suffer more from infectious diseases than those in other areas. The movement of exotic infectious agents to new areas continues to be the greatest concern.

  14. Salmon lice--impact on wild salmonids and salmon aquaculture.

    PubMed

    Torrissen, O; Jones, S; Asche, F; Guttormsen, A; Skilbrei, O T; Nilsen, F; Horsberg, T E; Jackson, D

    2013-03-01

    Salmon lice, Lepeophtheirus salmonis, are naturally occurring parasites of salmon in sea water. Intensive salmon farming provides better conditions for parasite growth and transmission compared with natural conditions, creating problems for both the salmon farming industry and, under certain conditions, wild salmonids. Salmon lice originating from farms negatively impact wild stocks of salmonids, although the extent of the impact is a matter of debate. Estimates from Ireland and Norway indicate an odds ratio of 1.1:1-1.2:1 for sea lice treated Atlantic salmon smolt to survive sea migration compared to untreated smolts. This is considered to have a moderate population regulatory effect. The development of resistance against drugs most commonly used to treat salmon lice is a serious concern for both wild and farmed fish. Several large initiatives have been taken to encourage the development of new strategies, such as vaccines and novel drugs, for the treatment or removal of salmon lice from farmed fish. The newly sequenced salmon louse genome will be an important tool in this work. The use of cleaner fish has emerged as a robust method for controlling salmon lice, and aquaculture production of wrasse is important towards this aim. Salmon lice have large economic consequences for the salmon industry, both as direct costs for the prevention and treatment, but also indirectly through negative public opinion. © 2013 Blackwell Publishing Ltd.

  15. Structural analysis of aquaculture net cages in current

    NASA Astrophysics Data System (ADS)

    Moe, H.; Fredheim, A.; Hopperstad, O. S.

    2010-04-01

    A method for structural analysis of aquaculture net cages has been developed and verified for a netting solidity of 0.23, water current velocities from 0.1 to 0.5 m/s and relatively large deformations (volume reduction up to 70%) by comparing the numerical results to tests in a flume tank. Strength analysis was performed using commercial explicit finite element software to calculate distribution of loads in the net cage due to current, weights and gravity. The net cage was modelled using truss elements that represented several parallel twines. Sub-elements allowed the trusses to buckle in compression, and only negligible compressive forces were seen in the numerical results. Resulting drag loads and cage volume were shown to be dependent on the net cage size and weight system. Drag loads increased almost proportional to the current velocity for velocities in the range of 0.2-0.5 m/s, while the cage volume was reduced proportional to the current velocity. The calculated forces in ropes and netting of full-size net cages were well below the design capacity for current velocities up to 0.5 m/s. However, netting seams in the bottom panel of the net cage were identified as a potential problem area as the forces could reach the design capacity.

  16. Integrating genomic resources of flatfish (Pleuronectiformes) to boost aquaculture production.

    PubMed

    Robledo, Diego; Hermida, Miguel; Rubiolo, Juan A; Fernández, Carlos; Blanco, Andrés; Bouza, Carmen; Martínez, Paulino

    2017-03-01

    Flatfish have a high market acceptance thus representing a profitable aquaculture production. The main farmed species is the turbot (Scophthalmus maximus) followed by Japanese flounder (Paralichthys olivaceous) and tongue sole (Cynoglossus semilaevis), but other species like Atlantic halibut (Hippoglossus hippoglossus), Senegalese sole (Solea senegalensis) and common sole (Solea solea) also register an important production and are very promising for farming. Important genomic resources are available for most of these species including whole genome sequencing projects, genetic maps and transcriptomes. In this work, we integrate all available genomic information of these species within a common framework, taking as reference the whole assembled genomes of turbot and tongue sole (>210× coverage). New insights related to the genetic basis of productive traits and new data useful to understand the evolutionary origin and diversification of this group were obtained. Despite a general 1:1 chromosome syntenic relationship between species, the comparison of turbot and tongue sole genomes showed huge intrachromosomic reorganizations. The integration of available mapping information supported specific chromosome fusions along flatfish evolution and facilitated the comparison between species of previously reported genetic associations for productive traits. When comparing transcriptomic resources of the six species, a common set of ~2500 othologues and ~150 common miRNAs were identified, and specific sets of putative missing genes were detected in flatfish transcriptomes, likely reflecting their evolutionary diversification. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Use of vital wheat gluten in aquaculture feeds

    PubMed Central

    2013-01-01

    Summary In aquaculture, when alternative protein sources of Fish Meal (FM) in diets are investigated, Plant Proteins (PP) can be used. Among them, Vital Wheat Gluten (VWG) is a proteinaceous material obtained from wheat after starch extraction. “It is mainly composed of two types of proteins, gliadins and glutenins, which confer specific visco-elasticity that’s to say ability to form a network providing suitable binding. This will lead to specific technological properties that are notably relevant to extruded feeds”. Besides these properties, VWG is a high-protein ingredient with an interesting amino-acid profile. Whereas it is rather low in lysine, it contains more sulfur amino acids than other PP sources and it is high in glutamine, which is known to improve gut health and modulate immunity. VWG is a protein source with one of the highest nitrogen digestibility due to a lack of protease inhibitor activity and to the lenient process used to make the product. By this way, addition of VWG in diet does not adversely affect growth performance in many fish species, even at a high level, and may secure high PP level diets that can induce health damages. PMID:24237766

  18. Impact of net pen aquaculture on lake water quality.

    PubMed

    Veenstra, J; Nolen, S; Carroll, J; Ruiz, C

    2003-01-01

    A 3-year study was conducted by the U.S. Army Corps of Engineers assessing water quality related impacts of aquaculture of 250,000 channel catfish (Ictalurus punctatus) in floating net pens in the Rock Creek Arm of Lake Texoma, Oklahoma/Texas. Five large nylon nets suspended from a floating framework of galvanized metal anchored in open water 100 m offshore made up the net pens with fish stocking densities varying from 88 to 219 fish/m3. Water quality sampling was conducted biweekly from April to September and monthly from October to March at three locations. On all sampling dates field measurements of water temperature, pH, dissolved oxygen, and conductivity were recorded at 1 m depth intervals and water samples were collected at a depth of 0.6 m and near the bottom of the water column at each site. Sample analyses included: total alkalinity, total hardness, turbidity, chloride, sulfate, orthophosphate, total phosphorus, nitrate-N, nitrite-N, total Kjeldahl nitrogen, total organic carbon, dissolved organic carbon, biochemical oxygen demand, and chlorophyll a. The results showed statistically significant decreases in water temperature and dissolved oxygen and significant increases in field conductivity in surface waters near the net pens relative to other sampling sites. The most dramatic water quality effect observed during the study was decrease in dissolved oxygen levels near the net pens following lake turnover in the second year.

  19. Managing to harvest? Perspectives on the potential of aquaculture.

    PubMed

    Muir, James

    2005-01-29

    Aquaculture has been one of the most rapid and technically innovative of food production sectors globally, with significant investment, scientific and technical development and production growth in many parts of the world over the past two decades. While this has had a significant effect on the global supply of aquatic food products and had an important impact in rural and urban food supply and employment in many developing economies, growth and increasing internationalization has not been without concern for natural resource use, environmental impact and social disruption. The expectations for production and diversification are now significant and while the scientific and technical means are already available to meet much of the intended targets, practical constraints of investment, profitability, resource access and system efficiency are likely to become far more important constraints for the future. This review offers a contemporary perspective on the ways in which the sector might develop, its interactions with constraints and the strategies that may be required to ensure that future development is both positive and sustainable.

  20. Infectious Diseases Affect Marine Fisheries and Aquaculture Economics

    NASA Astrophysics Data System (ADS)

    Lafferty, Kevin D.; Harvell, C. Drew; Conrad, Jon M.; Friedman, Carolyn S.; Kent, Michael L.; Kuris, Armand M.; Powell, Eric N.; Rondeau, Daniel; Saksida, Sonja M.

    2015-01-01

    Seafood is a growing part of the economy, but its economic value is diminished by marine diseases. Infectious diseases are common in the ocean, and here we tabulate 67 examples that can reduce commercial species' growth and survivorship or decrease seafood quality. These impacts seem most problematic in the stressful and crowded conditions of aquaculture, which increasingly dominates seafood production as wild fishery production plateaus. For instance, marine diseases of farmed oysters, shrimp, abalone, and various fishes, particularly Atlantic salmon, cost billions of dollars each year. In comparison, it is often difficult to accurately estimate disease impacts on wild populations, especially those of pelagic and subtidal species. Farmed species often receive infectious diseases from wild species and can, in turn, export infectious agents to wild species. However, the impact of disease export on wild fisheries is controversial because there are few quantitative data demonstrating that wild species near farms suffer more from infectious diseases than those in other areas. The movement of exotic infectious agents to new areas continues to be the greatest concern.

  1. Salmon lice – impact on wild salmonids and salmon aquaculture

    PubMed Central

    Torrissen, O; Jones, S; Asche, F; Guttormsen, A; Skilbrei, O T; Nilsen, F; Horsberg, T E; Jackson, D

    2013-01-01

    Salmon lice, Lepeophtheirus salmonis, are naturally occurring parasites of salmon in sea water. Intensive salmon farming provides better conditions for parasite growth and transmission compared with natural conditions, creating problems for both the salmon farming industry and, under certain conditions, wild salmonids. Salmon lice originating from farms negatively impact wild stocks of salmonids, although the extent of the impact is a matter of debate. Estimates from Ireland and Norway indicate an odds ratio of 1.1:1-1.2:1 for sea lice treated Atlantic salmon smolt to survive sea migration compared to untreated smolts. This is considered to have a moderate population regulatory effect. The development of resistance against drugs most commonly used to treat salmon lice is a serious concern for both wild and farmed fish. Several large initiatives have been taken to encourage the development of new strategies, such as vaccines and novel drugs, for the treatment or removal of salmon lice from farmed fish. The newly sequenced salmon louse genome will be an important tool in this work. The use of cleaner fish has emerged as a robust method for controlling salmon lice, and aquaculture production of wrasse is important towards this aim. Salmon lice have large economic consequences for the salmon industry, both as direct costs for the prevention and treatment, but also indirectly through negative public opinion. PMID:23311858

  2. Within-family marker-assisted selection for aquaculture species

    PubMed Central

    Sonesson, Anna K

    2007-01-01

    A within-family marker-assisted selection scheme was designed for typical aquaculture breeding schemes, where most traits are recorded on sibs of the candidates. Here, sibs of candidates were tested for the trait and genotyped to establish genetic marker effects on the trait. BLUP breeding values were calculated, including information of the markers (MAS) or not (NONMAS). These breeding values were identical for all family members in the NONMAS schemes, but differed between family members in the MAS schemes, making within-family selection possible. MAS had up to twice the total genetic gain of the corresponding NONMAS scheme. MAS was somewhat less effective when heritability increased from 0.06 to 0.12 or when the frequency of the positive allele was < 0.5. The relative efficiency of MAS was higher for schemes with more candidates, because of larger fullsib family sizes. MAS was also more efficient when male:female mating ratio changed from 1:1 to 1:5 or when the QTL explained more of the total genetic variation. Four instead of two markers linked to the QTL increased genetic gain somewhat. There was no significant difference in polygenic genetic gain between MAS and NONMAS for most schemes. The rates of inbreeding were lower for MAS than NON-MAS schemes, because fewer full-sibs were selected by MAS. PMID:17433243

  3. Development of a seaweed species-selection index for successful culture in a seaweed-based integrated aquaculture system

    NASA Astrophysics Data System (ADS)

    Kang, Yun Hee; Hwang, Jae Ran; Chung, Ik Kyo; Park, Sang Rul

    2013-03-01

    Integrated multi-trophic aquaculture (IMTA) has been proposed as a concept that combines the cultivation of fed aquaculture species ( e.g., finfish/shrimp) with extractive aquaculture species ( e.g., shellfish/seaweed). In seaweed-based integrated aquaculture, seaweeds have the capacity to reduce the environmental impact of nitrogen-rich effluents on coastal ecosystems. Thus, selection of optimal species for such aquaculture is of great importance. The present study aimed to develop a seaweed species-selection index for selecting suitable species in seaweed-based integrated aquaculture system. The index was synthesized using available literature-based information, reference data, and physiological seaweed experiments to identify and prioritize the desired species. Undaria pinnatifida, Porphyra yezoensis and Ulva compressa scored the highest according to a seaweed-based integrated aquaculture suitability index (SASI). Seaweed species with the highest scores were adjudged to fit the integrated aquaculture systems. Despite the application of this model limited by local aquaculture environment, it is considered to be a useful tool for selecting seaweed species in IMTA.

  4. Weather in Mountainous Terrain (Overcoming Scientific Barriers to Weather Support)

    DTIC Science & Technology

    2011-02-15

    Weather in Mountainous Terrain (Overcoming Scientific Barriers to Weather Support) Fiesta Resort & Conference Center Tempe, AZ February 1...Meteorology Overcoming Scientific Barriers to Weather Support Fiesta Resort & Conference Center Tempe, AZ February 1 & 2, 2010 Hosted by University

  5. Public Perceptions of Aquaculture: Evaluating Spatiotemporal Patterns of Sentiment around the World

    PubMed Central

    Froehlich, Halley E.; Gentry, Rebecca R.; Rust, Michael B.; Grimm, Dietmar; Halpern, Benjamin S.

    2017-01-01

    Aquaculture is developing rapidly at a global scale and sustainable practices are an essential part of meeting the protein requirements of the ballooning human population. Locating aquaculture offshore is one strategy that may help address some issues related to nearshore development. However, offshore production is nascent and distinctions between the types of aquatic farming may not be fully understood by the public–important for collaboration, research, and development. Here we evaluate and report, to our knowledge, the first multinational quantification of the relative sentiments and opinions of the public around distinct forms of aquaculture. Using thousands of newspaper headlines (Ntotal = 1,596) from developed (no. countries = 26) and developing (42) nations, ranging over periods of 1984 to 2015, we found an expanding positive trend of general ‘aquaculture’ coverage, while ‘marine’ and ‘offshore’ appeared more negative. Overall, developing regions published proportionally more positive than negative headlines than developed countries. As case studies, government collected public comments (Ntotal = 1,585) from the United States of America (USA) and New Zealand mirrored the media sentiments; offshore perception being particularly negative in the USA. We also found public sentiment may be influenced by local environmental disasters not directly related to aquaculture (e.g., oil spills). Both countries voiced concern over environmental impacts, but the concerns tended to be more generalized, rather than targeted issues. Two factors that could be inhibiting informed discussion and decisions about offshore aquaculture are lack of applicable knowledge and actual local development issues. Better communication and investigation of the real versus perceived impacts of aquaculture could aid in clarifying the debate about aquaculture, and help support future sustainable growth. PMID:28046057

  6. [Antibiotics and aquaculture in Chile: implications for human and animal health].

    PubMed

    Cabello, Felipe C

    2004-08-01

    Industrial antibiotic usage in agribusinesses and aquaculture is the force that drives the evolution of antibiotic resistant bacteria that produce human and animal disease in many countries. Several studies have demonstrated that most of the industrial use of antibiotics is unnecessary, and that modernization and hygienic changes can reduce this use of antibiotics without negative economic impact. In Chile, industrial aquaculture of salmon has expanded rapidly in the last 20 years becoming a major export business. The exponential growth of this industry has been accompanied by an unrestricted heavy usage of antibiotics in the aquatic environments of lakes, rivers and the ocean, and its impact is being felt in the emergence of antibiotic-resistant bacteria around aquaculture sites and a decrease in the plancktonic diversity in the same areas. The passage of antibiotic resistance genes from aquatic bacteria to human and animal pathogens has been demonstrated, indicating that industrial use of antibiotics in aquaculture affects negatively the antibiotic therapy of human and animal bacterial infections. The Chilean situation triggers important concerns because it includes the use of fluoroquinolones in aquaculture, that are not biodegradable and are able to remain in the environment for years as well as being still effective in treating human infections. The use of large volumes of a wide spectrum of antibiotics in an aquatic environment heavily contaminated with human and animal pathogens also amplifies the opportunities for gene transfer among bacteria, facilitating the emergence of antibiotic resistance and more pathogenic bacterial recombinants. The detection of residual antibiotics in salmons marketed for human consumption that can modify the normal flora of the population also suggests the need for controls on this antibiotic usage and on the presence of residual antibiotics in aquaculture food products. This important problem of public health demands an active

  7. [Diurnal variations of greenhouse gas fluxes at the water-air interface of aquaculture ponds in the Min River estuary].

    PubMed

    Yang, Ping; Tong, Chuan; He, Qing-Hua; Huang, Jia-Fang

    2012-12-01

    Wetland reclamation and aquaculture is one of the main disturbance types in coastal wetlands. Diurnal variations of CO2, CH4 and N2O fluxes at the water-air interface were determined using a floating chambers + gas chromatography method in a shrimp pond, and a mixed culture pond of fish and shrimp in October in the Shanyutan Wetland of the Min River estuary, southeast China. Meanwhile, the meteorological indicators in ground surface and physical, chemical and biological indicators of surface water were also measured. CO2, CH4 and N2O fluxes at the water-air interface all demonstrated distinct diurnal variations. Both shrimp pond and mixed culture pond of fish and shrimp functioned as a sink of CO2 [the diurnal averaged CO2 fluxes were -48.79 and -105.25 mg x (m2 x h)(-1), respectively], and a source of CH4 [the diurnal averaged CH4 fluxes were 1.00 and 5.74 mg x (m2 x h)(-1), respectively]; the diurnal averaged CO2 and CH4 fluxes at the water-air interface of the mixed culture of fish and shrimp pond were higher than that of the shrimp pond. Greenhouse gas fluxes at the water-air interface from the aquaculture ponds were influenced by many factors. Multiple stepwise regression analysis showed that the concentration of Chlorophyll was the major factor affecting the CO2 fluxes, and the concentrations of SO4(2-) and PO4(3-) were the major factors affecting the CH4 fluxes at the water-air interface of the shrimp pond; whereas water temperature and Chlorophyll were the major factors affecting the CO2 fluxes, and dissolved oxygen, PO4(3-) and pH were the major factors affecting the CH4 fluxes at the water-air interface of the mixed culture pond of fish and shrimp.

  8. Wastewater Utilization for Poly-β-Hydroxybutyrate Production by the Cyanobacterium Aulosira fertilissima in a Recirculatory Aquaculture System▿

    PubMed Central

    Samantaray, Shilalipi; Nayak, Jitendra Kumar; Mallick, Nirupama

    2011-01-01

    Intensive aquaculture releases large quantities of nutrients into aquatic bodies, which can lead to eutrophication. The objective of this study was the development of a biological recirculatory wastewater treatment system with a diazotrophic cyanobacterium, Aulosira fertilissima, and simultaneous production of valuable product in the form of poly-β-hydroxybutyrate (PHB). To investigate this possible synergy, batch scale tests were conducted under a recirculatory aquaculture system in fiber-reinforced plastic tanks enhanced by several manageable parameters (e.g., sedimentation, inoculum size, depth, turbulence, and light intensity), an adequate combination of which showed better productivity. The dissolved-oxygen level increased in the range of 3.2 to 6.9 mg liter−1 during the culture period. Nutrients such as ammonia, nitrite, and phosphate decreased to as low as zero within 15 days of incubation, indicating the system's bioremediation capability while yielding valuable cyanobacterial biomass for PHB production. Maximum PHB accumulation in A. fertilissima was found in sedimented fish pond discharge at 20-cm culture depth with stirring and an initial inoculum size of 80 mg dry cell weight (dcw) liter−1. Under optimized conditions, the PHB yield was boosted to 92, 89, and 80 g m−2, respectively for the summer, rainy, and winter seasons. Extrapolation of the result showed that a hectare of A. fertilissima cultivation in fish pond discharge would give an annual harvest of ∼17 tons dry biomass, consisting of 14 tons of PHB with material properties comparable to those of the bacterial polymer, with simultaneous treatment of 32,640 m3 water discharge. PMID:21984242

  9. Overcoming Multidrug Resistance in Cancer Stem Cells

    PubMed Central

    2015-01-01

    The principle mechanism of protection of stem cells is through the expression of ATP-binding cassette (ABC) transporters. These transporters serve as the guardians of the stem cell population in the body. Unfortunately these very same ABC efflux pumps afford protection to cancer stem cells in tumors, shielding them from the adverse effects of chemotherapy. A number of strategies to circumvent the function of these transporters in cancer stem cells are currently under investigation. These strategies include the development of competitive and allosteric modulators, nanoparticle mediated delivery of inhibitors, targeted transcriptional regulation of ABC transporters, miRNA mediated inhibition, and targeting of signaling pathways that modulate ABC transporters. The role of ABC transporters in cancer stem cells will be explored in this paper and strategies aimed at overcoming drug resistance caused by these particular transporters will also be discussed. PMID:26649310

  10. T7 replisome directly overcomes DNA damage

    NASA Astrophysics Data System (ADS)

    Sun, Bo; Pandey, Manjula; Inman, James T.; Yang, Yi; Kashlev, Mikhail; Patel, Smita S.; Wang, Michelle D.

    2015-12-01

    Cells and viruses possess several known `restart' pathways to overcome lesions during DNA replication. However, these `bypass' pathways leave a gap in replicated DNA or require recruitment of accessory proteins, resulting in significant delays to fork movement or even cell division arrest. Using single-molecule and ensemble methods, we demonstrate that the bacteriophage T7 replisome is able to directly replicate through a leading-strand cyclobutane pyrimidine dimer (CPD) lesion. We show that when a replisome encounters the lesion, a substantial fraction of DNA polymerase (DNAP) and helicase stay together at the lesion, the replisome does not dissociate and the helicase does not move forward on its own. The DNAP is able to directly replicate through the lesion by working in conjunction with helicase through specific helicase-DNAP interactions. These observations suggest that the T7 replisome is fundamentally permissive of DNA lesions via pathways that do not require fork adjustment or replisome reassembly.

  11. Innovative Strategies to Overcome Biofilm Resistance

    PubMed Central

    Taraszkiewicz, Aleksandra; Fila, Grzegorz; Grinholc, Mariusz; Nakonieczna, Joanna

    2013-01-01

    We review the recent literature concerning the efficiency of antimicrobial photodynamic inactivation toward various microbial species in planktonic and biofilm cultures. The review is mainly focused on biofilm-growing microrganisms because this form of growth poses a threat to chronically infected or immunocompromised patients and is difficult to eradicate from medical devices. We discuss the biofilm formation process and mechanisms of its increased resistance to various antimicrobials. We present, based on data in the literature, strategies for overcoming the problem of biofilm resistance. Factors that have potential for use in increasing the efficiency of the killing of biofilm-forming bacteria include plant extracts, enzymes that disturb the biofilm structure, and other nonenzymatic molecules. We propose combining antimicrobial photodynamic therapy with various antimicrobial and antibiofilm approaches to obtain a synergistic effect to permit efficient microbial growth control at low photosensitizer doses. PMID:23509680

  12. Library outreach: overcoming health literacy challenges*

    PubMed Central

    Parker, Ruth; Kreps, Gary L.

    2005-01-01

    Objective: This paper examines the powerful influences of consumer health literacy on access to and use of relevant health information. Method: The paper describes how widespread problems with health literacy significantly limit effective dissemination of relevant health information in society, especially to many vulnerable populations where health literacy challenges are especially pervasive. Results: The paper examines strengths and weaknesses of different programs for addressing health literacy problems, including educational programs, message design programs, and strategic communication training and intervention programs. Implications: The paper evaluates strategies that can be implemented throughout the modern health care system to address problems of health literacy by improving health information access, processing, and understanding. It concludes by examining several strategies that libraries can adopt to overcome many health literacy challenges. PMID:16239962

  13. Overcoming the effects of intentional forgetting.

    PubMed

    Lehman, Melissa; Malmberg, Kenneth J

    2011-02-01

    The long-term effects of the compartmentalization of task-irrelevant memories were investigated using a directed forgetting procedure. Many models tacitly assume the persistence of the costs and benefits of directed forgetting or otherwise fail to predict what factors might reduce or eliminate them. In contrast, a retrieving effectively from memory model (REM; Lehman & Malmberg, 2009) predicts that intentional forgetting should only be observed for free recall when temporal context is used to probe memory. By manipulating whether study lists were constructed from category exemplars or from a random set of words, and by either providing temporal or category cues at test, we tested the prediction. The effects of directed forgetting were eliminated when categorized lists were studied and category cues were provided. When categorized lists were used but category cues were not provided, the usual costs and benefits of directed forgetting were observed. These results specify the conditions under which the consequences of intentional forgetting can be overcome.

  14. Overcoming catastrophic forgetting in neural networks

    PubMed Central

    Kirkpatrick, James; Pascanu, Razvan; Rabinowitz, Neil; Veness, Joel; Desjardins, Guillaume; Rusu, Andrei A.; Milan, Kieran; Quan, John; Ramalho, Tiago; Grabska-Barwinska, Agnieszka; Hassabis, Demis; Clopath, Claudia; Kumaran, Dharshan; Hadsell, Raia

    2017-01-01

    The ability to learn tasks in a sequential fashion is crucial to the development of artificial intelligence. Until now neural networks have not been capable of this and it has been widely thought that catastrophic forgetting is an inevitable feature of connectionist models. We show that it is possible to overcome this limitation and train networks that can maintain expertise on tasks that they have not experienced for a long time. Our approach remembers old tasks by selectively slowing down learning on the weights important for those tasks. We demonstrate our approach is scalable and effective by solving a set of classification tasks based on a hand-written digit dataset and by learning several Atari 2600 games sequentially. PMID:28292907

  15. Use of corn distiller's solubles from an ethanol plant for aquaculture

    SciTech Connect

    Kohler, C.C.

    1984-06-01

    Wet stillage can economically be separated into two fractions: distiller's grain and distiller's solubles. Wet corn distiller's grain has shown potential as a feed supplement for ruminants, swine, and poultry. However, the soluble fraction (with suspended particles) is of little food value to terrestrial animals because of its high water content; it is not generally economically feasible to concentrate it further. The purpose of this project is to determine if the soluble by-product could potentially be used as a food source in an aquatic environment where its high water content would not necessarily pose an impediment. Studies have shown that corn distiller's solubles are not highly toxic to aquatic organisms at concentrations ranging up to 10,000 ppM. However, the high biological oxygen demand of the material requires that it be administered to ponds at rates less than 2000 ppM on a daily basis. Golden shiners were observed to actively consume the particulates of the corn distiller's solubles. Direct consumption of the particulates by fish makes the use of corn distiller's solubles in aquaculture much more attractive than if the by-product only serves to increase pond fertility. Despite the minimum amount of food material added to the ponds, production of shrimp and fish was favorable over the 4 month growing periods. Golden shiners reared in the same ponds as shrimp had production rates equivalent to 130 kg ha/sup -1/. Monoculture of shrimp at higher densities (3000 to 5000 shrimp stocked per pond versus 2000 in 1982) resulted in an average production equivalent to approximately 228 kg ha/sup -1/, with individual shrimp averaging 10.5 g. Based on estimated wholesale prices of $10.00 and $7.75 per kilogram for frozen shrimp and live fish, respectively, the gross profit margin would have exceeded $2000 ha/sup -1/ both years. 25 references, 13 figures, 13 tables.

  16. An integrated closed system for fish-plankton aquaculture in Amazonian fresh water.

    PubMed

    Gilles, S; Ismiño, R; Sánchez, H; David, F; Núñez, J; Dugué, R; Darias, M J; Römer, U

    2014-08-01

    A prototype of an integrated closed system for fish-plankton aquaculture was developed in Iquitos (Peruvian Amazonia) in order to cultivate the Tiger Catfish, Pseudoplatystoma punctifer (Castelnau, 1855). This freshwater recirculating system consisted of two linked sewage tanks with an intensive rearing unit (a cage) for P. punctifer placed in the first, and with a fish-plankton trophic chain replacing the filters commonly used in clear water closed systems. Detritivorous and zooplanktivorous fishes (Loricariidae and Cichlidae), maintained without external feeding in the sewage volume, mineralized organic matter and permitted the stabilization of the phytoplankton biomass. Water exchange and organic waste discharge were not necessary. In this paper we describe the processes undertaken to equilibrate this ecosystem: first the elimination of an un-adapted spiny alga, Golenkinia sp., whose proliferation was favored by the presence of a small rotifer, Trichocerca sp., and second the control of this rotifer proliferation via the introduction of two cichlid species, Acaronia nassa Heckel, 1840 and Satanoperca jurupari Heckel, 1840, in the sewage part. This favored some development of the green algae Nannochloris sp. and Chlorella sp. At that time we took the opportunity to begin a 3-month rearing test of P. punctifer. The mean specific growth rate and feed conversion ratio (FCR) of P. punctifer were 1.43 and 1.27, respectively, and the global FCR, including fish in the sewage part, was 1.08. This system has proven to be suitable for growing P. punctifer juveniles out to adult, and provides several practical advantages compared with traditional recirculating clear water systems, which use a combination of mechanical and biological filters and require periodic waste removal, leading to water and organic matter losses.

  17. Management of marine cage aquaculture. Environmental carrying capacity method based on dry feed conversion rate.

    PubMed

    Cai, Huiwen; Sun, Yinglan

    2007-11-01

    Marine cage aquaculture produces a large amount of waste that is released directly into the environment. To effectively manage the mariculture environment, it is important to determine the carrying capacity of an aquaculture area. In many Asian countries trash fish is dominantly used in marine cage aquaculture, which contains more water than pellet feed. The traditional nutrient loading analysis is for pellet feed not for trash fish feed. So, a more critical analysis is necessary in trash fish feed culturing areas. Corresponding to FCR (feed conversion rate), dry feed conversion rate (DFCR) was used to analyze the nutrient loadings from marine cage aquaculture where trash fish is used. Based on the hydrodynamic model and the mass transport model in Xiangshan Harbor, the relationship between the water quality and the waste discharged from cage aquaculture has been determined. The environmental carrying capacity of the aquaculture sea area was calculated by applying the models noted above. Nitrogen and phosphorus are the water quality parameters considered in this study. The simulated results show that the maximum nitrogen and phosphorus concentrations were 0.216 mg/L and 0.039 mg/L, respectively. In most of the sea area, the nutrient concentrations were higher than the water quality standard. The calculated environmental carrying capacity of nitrogen and phosphorus in Xiangshan Harbor were 1,107.37 t/yr and 134.35 t/yr, respectively. The waste generated from cage culturing in 2000 has already exceeded the environmental carrying capacity. Unconsumed feed has been identified as the most important origin of all pollutants in cage culturing systems. It suggests the importance of increasing the feed utilization and improving the feed composition on the basis of nutrient requirement. For the sustainable development of the aquaculture industry, it is an effective management measure to keep the stocking density and pollution loadings below the environmental carrying

  18. The choice of disease control strategies to secure international market access for aquaculture products.

    PubMed

    Chinabut, S; Puttinaowarat, S

    2005-01-01

    Since production from capture fisheries cannot meet the demands of exports, aquaculture has subsequently played a major role in securing the raw materials for the world's food industries. Aquaculture has rapidly developed from extensive systems to semi-intensive, intensive and super-intensive systems. This has introduced the use of chemicals and drugs into the systems, which cause residual problems in the products. In the developed world, food safety has become a major issue of concern. The world market now demands healthy aquaculture products from farm to table. To achieve these requirements and to keep their markets, countries involved in aquaculture have implemented control measures such as farm licensing, code of conduct for sustainable aquaculture, hazard analysis and critical control point (HACCP) and good aquaculture practice. However, infectious diseases in aquaculture are of major concern to the industry and are typically controlled by eradication of the pathogen, treatment with antibiotic or chemotherapeutics, and/or by preventative measures such as the use of probiotics or vaccines. To limit the use of chemicals and antibiotics, good farm management is highly recommended. In terms of treatment, chemicals and antibiotics should be evaluated to establish recommended doses and withdrawal periods, otherwise alternative treatments should be developed. Environmentally-friendly probiotics have been introduced to aquaculture practice in the last decade to replace pathogenic bacteria with beneficial bacteria transient in the gut. Micro-organisms have also been prepared for the purpose of biocontrol and bioremediation. The application of probiotic, biocontrol and bioremediation seem promising; however considerable efforts of further research in terms of food and environmental safety are needed. Vaccination has proved highly effective in controlling diseases in the salmon industry mainly in Europe, America and Japan. In other Asian countries, this practice seem to

  19. Applicability of photodynamic antimicrobial chemotherapy as an alternative to inactivate fish pathogenic bacteria in aquaculture systems.

    PubMed

    Arrojado, Cátia; Pereira, Carla; Tomé, João P C; Faustino, Maria A F; Neves, Maria G P M S; Tomé, Augusto C; Cavaleiro, José A S; Cunha, Angela; Calado, Ricardo; Gomes, Newton C M; Almeida, Adelaide

    2011-10-01

    Aquaculture activities are increasing worldwide, stimulated by the progressive reduction of natural fish stocks in the oceans. However, these activities also suffer heavy production and financial losses resulting from fish infections caused by microbial pathogens, including multidrug resistant bacteria. Therefore, strategies to control fish infections are urgently needed, in order to make aquaculture industry more sustainable. Antimicrobial photodynamic therapy (aPDT) has emerged as an alternative to treat diseases and prevent the development of antibiotic resistance by pathogenic bacteria. The aim of this work was to evaluate the applicability of aPDT to inactivate pathogenic fish bacteria. To reach this objective a cationic porphyrin Tri-Py(+)-Me-PF was tested against nine pathogenic bacteria isolated from a semi-intensive aquaculture system and against the cultivable bacteria of the aquaculture system. The ecological impact of aPDT in the aquatic environment was also tested on the natural bacterial community, using the overall bacterial community structure and the cultivable bacteria as indicators. Photodynamic inactivation of bacterial isolates and of cultivable bacteria was assessed counting the number of colonies. The impact of aPDT in the overall bacterial community structure of the aquaculture water was evaluated by denaturing gel gradient electrophoresis (DGGE). The results showed that, in the presence of Tri-Py(+)-Me-PF, the growth of bacterial isolates was inhibited, resulting in a decrease of ≈7-8 log after 60-270 min of irradiation. Cultivable bacteria were also considerably affected, showing decreases up to the detection limit (≈2 log decrease on cell survival), but the inactivation rate varied significantly with the sampling period. The DGGE fingerprint analyses revealed changes in the bacterial community structure caused by the combination of aPDT and light. The results indicate that aPDT can be regarded as a new approach to control fish

  20. Methodological approach for the collection and simultaneous estimation of greenhouse gases emission from aquaculture ponds.

    PubMed

    Vasanth, Muthuraman; Muralidhar, Moturi; Saraswathy, Ramamoorthy; Nagavel, Arunachalam; Dayal, Jagabattula Syama; Jayanthi, Marappan; Lalitha, Natarajan; Kumararaja, Periyamuthu; Vijayan, Koyadan Kizhakkedath

    2016-12-01

    Global warming/climate change is the greatest environmental threat of our time. Rapidly developing aquaculture sector is an anthropogenic activity, the contribution of which to global warming is little understood, and estimation of greenhouse gases (GHGs) emission from the aquaculture ponds is a key practice in predicting the impact of aquaculture on global warming. A comprehensive methodology was developed for sampling and simultaneous analysis of GHGs, carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) from the aquaculture ponds. The GHG fluxes were collected using cylindrical acrylic chamber, air pump, and tedlar bags. A cylindrical acrylic floating chamber was fabricated to collect the GHGs emanating from the surface of aquaculture ponds. The sampling methodology was standardized and in-house method validation was established by achieving linearity, accuracy, precision, and specificity. GHGs flux was found to be stable at 10 ± 2 °C of storage for 3 days. The developed methodology was used to quantify GHGs in the Pacific white shrimp Penaeus vannamei and black tiger shrimp Penaeus monodon culture ponds for a period of 4 months. The rate of emission of carbon dioxide was found to be much greater when compared to other two GHGs. Average GHGs emission in gha(-1) day(-1) during the culture was comparatively high in P.vannamei culture ponds.

  1. Sewage reuse for aquaculture after treatment in oxidation and duckweed pond.

    PubMed

    Ghangrekar, M M; Kishor, N; Mitra, A

    2007-01-01

    The benefits of treating sewage by pond systems offer, through a simple and low-cost technology, social and commercial benefits, from the waste raw materials. The objective of this work was to demonstrate an effective treatment of the sewage by using natural treatment systems, and use of treated wastewater for aquaculture. The study was conducted for the sewage generated from the IIT Kharagpur campus. After characterization of the sewage, laboratory scale experiments were conducted for treatment using oxidation pond and duckweed pond. Survival and growth of fishes were observed in the experimental ponds using treated sewage. Based on the experimental results, full-scale treatment plant was designed to meet the aquaculture water quality. From the economics of the proposed full-scale plant, and utilization of the treated sewage for aquaculture, it is estimated that, the amount of Rs. 20,0000 can be generated every year. This amount recovered from the aquaculture will be more than the operating cost of the treatment plant, hence, making the operation of sewage treatment plant self sufficient. Use of a UASB reactor as the first stage treatment before sewage passes to the oxidation pond, can be a more attractive alternative because of less land requirement as compared to the oxidation pond alone, and additional land can be made available for aquaculture to increase revenue.

  2. The influence of finfish aquaculture on benthic fish and crustacean assemblages in Fitzgerald Bay, South Australia

    PubMed Central

    Williams, Kane

    2015-01-01

    The influence of sea-cage aquaculture on wildfish assemblages has received little attention outside of Europe. Sea-cage aquaculture of finfish is a major focus in South Australia, and while the main species farmed is southern bluefin tuna (Thunnus maccoyii), there is also an important yellowtail kingfish (Seriola lalandi) industry. Yellowtail kingfish aquaculture did not appear to have any local or regional effects on demersal assemblages (primarily fish, but also some crustaceans) surveyed by baited remote underwater video (BRUV) in Fitzgerald Bay. We did, however, detect small scale spatial variations in assemblages within the bay. The type of bait used strongly influenced the assemblage recorded, with significantly greater numbers of fish attracted to deployments where sardines were used as the bait to compared to those with no bait. The pelleted feed used by the aquaculture industry was just as attractive as sardines at one site, and intermediate between sardines and no bait at the other. There was significant temporal variability in assemblages at both farm sites and one control site, while the second control site was temporally stable (over the 9 weeks of the study). Overall, the results suggested that aquaculture was having little if any impact on the abundance and assemblage structure of the demersal macrofauna in Fitzgerald Bay. PMID:26401452

  3. Nitrogen transformations in intensive aquaculture system and its implication to climate change through nitrous oxide emission.

    PubMed

    Hu, Zhen; Lee, Jae Woo; Chandran, Kartik; Kim, Sungpyo; Sharma, Keshab; Brotto, Ariane Coelho; Khanal, Samir Kumar

    2013-02-01

    The rapid development of aquaculture could result in significant environmental concerns such as eutrophication and climate change. However, to date, very few studies have been conducted to investigate nitrogen transformations in aquaculture systems; and specifically the emission of nitrous oxide (N(2)O), which is an important greenhouse gas and ozone-depleting substance. In this study, nitrogen transformations in intensive laboratory-scale Chinese catfish (Clarias fuscus) aquaculture systems were investigated by identifying and quantifying N(2)O emissions. Results indicated that about 1.3% of the nitrogen input was emitted as N(2)O gas. Dissolved oxygen (DO) concentrations and feeding rates had significant effects on N(2)O emissions. Higher N(2)O emissions were obtained in aquaculture systems with lower DO concentrations and higher feeding rates. Both nitrification and denitrification appeared to be responsible for the emissions of N(2)O. Key factors which correlated with the N(2)O emission rate in aquaculture systems were NO(2)(-), DO and total ammonia nitrogen concentrations.

  4. 'Halophyte filters': the potential of constructed wetlands for application in saline aquaculture.

    PubMed

    De Lange, H J; Paulissen, M P C P; Slim, P A

    2013-01-01

    World consumption of seafood continues to rise, but the seas and oceans are already over-exploited. Land-based (saline) aquaculture may offer a sustainable way to meet the growing demand for fish and shellfish. A major problem of aquaculture is nutrient waste, as most of the nutrients added through feed are released into the environment in dissolved form. Wetlands are nature's water purifiers. Constructed wetlands are commonly used to treat contaminated freshwater effluent. Experience with saline systems is more limited. This paper explores the potential of constructed saline wetlands for treating the nutrient-rich discharge from land-based saline aquaculture systems. The primary function of constructed wetlands is water purification, but other ancillary benefits can also be incorporated into treatment wetland designs. Marsh vegetation enhances landscape beauty and plant diversity, and wetlands may offer habitat for fauna and recreational areas. Various approaches can be taken in utilizing plants (halophytes, macro-algae, micro-algae) in the treatment of saline aquaculture effluent. Their strengths and weaknesses are reviewed here, and a conceptual framework is presented that takes into account economic and ecological benefits as well as spatial constraints. Use of the framework is demonstrated for assessing various saline aquaculture systems in the southwestern delta region of the Netherlands.

  5. The influence of finfish aquaculture on benthic fish and crustacean assemblages in Fitzgerald Bay, South Australia.

    PubMed

    Tanner, Jason E; Williams, Kane

    2015-01-01

    The influence of sea-cage aquaculture on wildfish assemblages has received little attention outside of Europe. Sea-cage aquaculture of finfish is a major focus in South Australia, and while the main species farmed is southern bluefin tuna (Thunnus maccoyii), there is also an important yellowtail kingfish (Seriola lalandi) industry. Yellowtail kingfish aquaculture did not appear to have any local or regional effects on demersal assemblages (primarily fish, but also some crustaceans) surveyed by baited remote underwater video (BRUV) in Fitzgerald Bay. We did, however, detect small scale spatial variations in assemblages within the bay. The type of bait used strongly influenced the assemblage recorded, with significantly greater numbers of fish attracted to deployments where sardines were used as the bait to compared to those with no bait. The pelleted feed used by the aquaculture industry was just as attractive as sardines at one site, and intermediate between sardines and no bait at the other. There was significant temporal variability in assemblages at both farm sites and one control site, while the second control site was temporally stable (over the 9 weeks of the study). Overall, the results suggested that aquaculture was having little if any impact on the abundance and assemblage structure of the demersal macrofauna in Fitzgerald Bay.

  6. Remote Sensing Approach for Documenting the Conversion of Mangroves to Aquaculture

    NASA Astrophysics Data System (ADS)

    Peneva, E.

    2007-12-01

    The loss of mangrove forests to aquaculture, particularly shrimp farming, in coastal Thailand presents serious environmental and societal problems. Shrimp farming is one of the fastest growing aquaculture sectors in many parts of the world, as well as one of the most controversial. In spite of considerable work put into understanding the impacts of shrimp aquaculture, few studies provide detailed assessment of the issue through time. This research compares three change detection techniques (Object-based; Change Vector Analysis (CVA); and Integrated GIS and Remote Sensing) in order to assess the mangrove conversion caused by aquaculture development in Krabi Province, Thailand between 1989, 2001 and 2007 using Landsat TM data. All three methods provide valuable information though each has its own merits. Preliminary results show 40% loss of mangroves between 1989 and 2007, 25% of which is to aquaculture development, 10% to urban, and 5% to agricultural land. This study will help establish a methodology that will aid coastal communities in Southeast Asia in determining sustainable land use management approaches.

  7. Phylogeny of the Viral Hemorrhagic Septicemia Virus in European Aquaculture

    PubMed Central

    Cieslak, Michael; Mikkelsen, Susie S.; Skall, Helle F.; Baud, Marine; Diserens, Nicolas; Engelsma, Marc Y.; Haenen, Olga L. M.; Mousakhani, Shirin; Panzarin, Valentina; Wahli, Thomas; Olesen, Niels J.; Schütze, Heike

    2016-01-01

    One of the most valuable aquaculture fish in Europe is the rainbow trout, Oncorhynchus mykiss, but the profitability of trout production is threatened by a highly lethal infectious disease, viral hemorrhagic septicemia (VHS), caused by the VHS virus (VHSV). For the past few decades, the subgenogroup Ia of VHSV has been the main cause of VHS outbreaks in European freshwater-farmed rainbow trout. Little is currently known, however, about the phylogenetic radiation of this Ia lineage into subordinate Ia clades and their subsequent geographical spread routes. We investigated this topic using the largest Ia-isolate dataset ever compiled, comprising 651 complete G gene sequences: 209 GenBank Ia isolates and 442 Ia isolates from this study. The sequences come from 11 European countries and cover the period 1971–2015. Based on this dataset, we documented the extensive spread of the Ia population and the strong mixing of Ia isolates, assumed to be the result of the Europe-wide trout trade. For example, the Ia lineage underwent a radiation into nine Ia clades, most of which are difficult to allocate to a specific geographic distribution. Furthermore, we found indications for two rapid, large-scale population growth events, and identified three polytomies among the Ia clades, both of which possibly indicate a rapid radiation. However, only about 4% of Ia haplotypes (out of 398) occur in more than one European country. This apparently conflicting finding regarding the Europe-wide spread and mixing of Ia isolates can be explained by the high mutation rate of VHSV. Accordingly, the mean period of occurrence of a single Ia haplotype was less than a full year, and we found a substitution rate of up to 7.813 × 10−4 nucleotides per site per year. Finally, we documented significant differences between Germany and Denmark regarding their VHS epidemiology, apparently due to those countries’ individual handling of VHS. PMID:27760205

  8. Vaccination strategies to prevent emerging diseases for Spanish aquaculture.

    PubMed

    Romalde, J L; Ravelo, C; López-Romalde, S; Avendaño-Herrera, R; Magariños, B; Toranzo, A E

    2005-01-01

    In recent years, three serious diseases have emerged in Spanish aquaculture. These are lactococcosis caused by Lactococcus garvieae, which is of economical importance in rainbow trout (Oncorhynchus mykiss); pseudomonadiasis caused by Pseudomonas anguilliseptica which affects gilthead seabream (Sparus aurata) and turbot (Scophthalmus maximus); and flexibacteriosis caused by Tenacibaculum maritimum which became a devastating problem in the emerging culture of sole (Solea spp). To obtain useful information for the design and development of new vaccines, antigenic characterisation of representative strains was performed. In this work we present the strategies adopted for the vaccine formulation (strains included, use of adjuvants) and administration (route, necessity of booster, etc.). The results from laboratory and/or field vaccination trials performed showed that for lactococcosis, protection lasting for five months was obtained with an oil-adjuvanted bacterin formulation. Unadjuvanted bacterin gave only a short duration of protection, which could, however, be prolonged by an antigen boost administered via the feed. A bacterin against Pseudomonas anguilliseptica gave protection for 12 weeks when tested in an experimental challenge trial in turbot. Besides the flexibacteriosis vaccine developed by our group for turbot, and due to the antigenic host-associated variability within T. maritimum, a new bacterin was developed against this bacterium to be used specifically in sole. This new bacterin, administered to sole by intraperitoneal injection, yielded RPS values of 94 % six weeks after immunization. In conclusion, these results suggest that vaccination constitutes a cost-effective method of controlling diseases that have emerged in the most important fish species being cultured in Spain.

  9. Development of Antimicrobial Peptide Prediction Tool for Aquaculture Industries.

    PubMed

    Gautam, Aditi; Sharma, Asuda; Jaiswal, Sarika; Fatma, Samar; Arora, Vasu; Iquebal, M A; Nandi, S; Sundaray, J K; Jayasankar, P; Rai, Anil; Kumar, Dinesh

    2016-09-01

    Microbial diseases in fish, plant, animal and human are rising constantly; thus, discovery of their antidote is imperative. The use of antibiotic in aquaculture further compounds the problem by development of resistance and consequent consumer health risk by bio-magnification. Antimicrobial peptides (AMPs) have been highly promising as natural alternative to chemical antibiotics. Though AMPs are molecules of innate immune defense of all advance eukaryotic organisms, fish being heavily dependent on their innate immune defense has been a good source of AMPs with much wider applicability. Machine learning-based prediction method using wet laboratory-validated fish AMP can accelerate the AMP discovery using available fish genomic and proteomic data. Earlier AMP prediction servers are based on multi-phyla/species data, and we report here the world's first AMP prediction server in fishes. It is freely accessible at http://webapp.cabgrid.res.in/fishamp/ . A total of 151 AMPs related to fish collected from various databases and published literature were taken for this study. For model development and prediction, N-terminus residues, C-terminus residues and full sequences were considered. Best models were with kernels polynomial-2, linear and radial basis function with accuracy of 97, 99 and 97 %, respectively. We found that performance of support vector machine-based models is superior to artificial neural network. This in silico approach can drastically reduce the time and cost of AMP discovery. This accelerated discovery of lead AMP molecules having potential wider applications in diverse area like fish and human health as substitute of antibiotics, immunomodulator, antitumor, vaccine adjuvant and inactivator, and also for packaged food can be of much importance for industries.

  10. An integrated fish-plankton aquaculture system in brackish water.

    PubMed

    Gilles, S; Fargier, L; Lazzaro, X; Baras, E; De Wilde, N; Drakidès, C; Amiel, C; Rispal, B; Blancheton, J-P

    2013-02-01

    Integrated Multi-Trophic Aquaculture takes advantage of the mutualism between some detritivorous fish and phytoplankton. The fish recycle nutrients by consuming live (and dead) algae and provide the inorganic carbon to fuel the growth of live algae. In the meanwhile, algae purify the water and generate the oxygen required by fishes. Such mechanism stabilizes the functioning of an artificially recycling ecosystem, as exemplified by combining the euryhaline tilapia Sarotherodon melanotheron heudelotii and the unicellular alga Chlorella sp. Feed addition in this ecosystem results in faster fish growth but also in an increase in phytoplankton biomass, which must be limited. In the prototype described here, the algal population control is exerted by herbivorous zooplankton growing in a separate pond connected in parallel to the fish-algae ecosystem. The zooplankton production is then consumed by tilapia, particularly by the fry and juveniles, when water is returned to the main circuit. Chlorella sp. and Brachionus plicatilis are two planktonic species that have spontaneously colonized the brackish water of the prototype, which was set-up in Senegal along the Atlantic Ocean shoreline. In our system, water was entirely recycled and only evaporation was compensated (1.5% volume/day). Sediment, which accumulated in the zooplankton pond, was the only trophic cul-de-sac. The system was temporarily destabilized following an accidental rotifer invasion in the main circuit. This caused Chlorella disappearance and replacement by opportunist algae, not consumed by Brachionus. Following the entire consumption of the Brachionus population by tilapias, Chlorella predominated again. Our artificial ecosystem combining S. m. heudelotii, Chlorella and B. plicatilis thus appeared to be resilient. This farming system was operated over one year with a fish productivity of 1.85 kg/m2 per year during the cold season (January to April).

  11. The use of immunostimulants in fish larval aquaculture.

    PubMed

    Bricknell, Ian; Dalmo, Roy A

    2005-11-01

    The production of fish larvae is often hampered by high mortality rates, and it is believed that most of this economic loss due to infectious diseases is ca. 10% in Western European aquaculture sector. The development of strategies to control the pathogen load and immuno-prophylactic measures must be addressed further to realise the economic "potential" production of marine fish larvae and thus improve the overall production of adult fish. The innate defence includes both humoral and cellular defence mechanisms such as the complement system and the processes played by granulocytes and macrophages. A set of different substances such as beta-glucans, bacterial products, and plant constituents may directly initiate activation of the innate defence mechanisms acting on receptors and triggering intracellular gene activation that may result in production of anti-microbial molecules. These immunostimulants are often obtained from bacterial sources, brown or red algae and terrestrial fungi are also exploited as source of novel potentiating substances. The use of immunostimulants, as dietary supplements, can improve the innate defence of animals providing resistance to pathogens during periods of high stress, such as grading, reproduction, sea transfer and vaccination. The immunomodulation of larval fish has been proposed as a potential method for improving larval survival by increasing the innate responses of the developing animals until its adaptive immune response is sufficiently developed to mount an effective response to the pathogen. To this end it has been proposed that the delivery of immunostimulants as a dietary supplement to larval fish could be of considerable benefit in boosting the animals innate defences with little detriment to the developing animal. Conversely, there is a school of thought that raises the concern of immunomodulating a neotanous animal before its immune system is fully formed as this may adversely affect the development of a normal immune

  12. LCA and emergy accounting of aquaculture systems: towards ecological intensification.

    PubMed

    Wilfart, Aurélie; Prudhomme, Jehane; Blancheton, Jean-Paul; Aubin, Joël

    2013-05-30

    An integrated approach is required to optimise fish farming systems by maximising output while minimising their negative environmental impacts. We developed a holistic approach to assess the environmental performances by combining two methods based on energetic and physical flow analysis. Life Cycle Assessment (LCA) is a normalised method that estimates resource use and potential impacts throughout a product's life cycle. Emergy Accounting (EA) refers the amount of energy directly or indirectly required by a product or a service. The combination of these two methods was used to evaluate the environmental impacts of three contrasting fish-farming systems: a farm producing salmon in a recirculating system (RSF), a semi-extensive polyculture pond (PF1) and an extensive polyculture pond (PF2). The RSF system, with a low feed-conversion ratio (FCR = 0.95), had lower environmental impacts per tonne of live fish produced than did the two pond farms, when the effects on climate change, acidification, total cumulative energy demand, land competition and water dependence were considered. However, RSF was clearly disconnected from the surrounding environment and depended highly on external resources (e.g. nutrients, energy). Ponds adequately incorporated renewable natural resources but had higher environmental impacts due to incomplete use of external inputs. This study highlighted key factors necessary for the successful ecological intensification of fish farming, i.e., minimise external inputs, lower the FCR, and increase the use of renewable resources from the surrounding environment. The combination of LCA and EA seems to be a practical approach to address the complexity of optimising biophysical efficiency in aquaculture systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Nutrient fate in aquacultural systems for waste treatment

    SciTech Connect

    Dontje, J.H.; Clanton, C.J.

    1999-08-01

    Twelve small, recirculating aquacultural systems were operated for livestock waste treatment to determine nutrient fate. Each system consisted of a 730-L fish tank coupled in a recirculating loop with three sand beds (serving as biofilters) in parallel. Fish (Tilapia species) were grown in the tanks while cattails, reed canary grass, and tomatoes were grown in separate sand beds. Swine waste was added to the fish tanks every other day at average rates of 50, 72, 95, and 118 kg-COD/ha/day of fish tank surface (three replications of each loading rate). Water from the fish tanks was filtered through the sand beds three times per day with 20% of the tank volume passing through the sand each day. The systems were operated in a greenhouse for eight months (21 July to 8 March). Aboveground plant matter was harvested at eight-week intervals. The fish were removed after four months and the tanks were restocked with fingerlings. Initial and final nitrogen (N), phosphorus (P), and potassium (K) contents of the system components, as well as that of the harvested plants and fish, were determined. Nutrient balance calculations revealed that 30 to 68% of added N was lost from the systems, probably via denitrification. Nutrient removal by plants was 6 to 18% for N, 8 to 21% for P, and 25 to 71% for K, with tomatoes (foliage and fruit) accounting for the majority of the removal. Plant growth was limited by growing conditions (particularly day length), not be nutrient availability. Fish growth was limited by temperature; thus nutrient extraction by the fish was minimal. Under the conditions of this experiment, the system required supplemental aeration.

  14. Annually recurrent macroalgal blooms (Ulva prolifera) resulting in the world's largest green-tides caused by expansion of coastal aquaculture in the Yellow Sea off China

    NASA Astrophysics Data System (ADS)

    Keesing, John; Liu, Dongyan

    2013-04-01

    The largest macroalgal blooms ever recorded occurred in the Yellow Sea of China in 2008 and 2009 and resulted in extensive green tides along the Shandong Province coastline, including at Qingdao. At their peak these Ulva prolifera blooms covered more than 4,000 km2 and affected 40,000 km2. A smaller bloom was recorded in 2007, but not earlier. Since then massive blooms have occurred annually in summer from 2008 to 2012. Using remote sensing methods, we tracked the source of the 2008 and 2009 blooms to an area along the Jiangsu Province coastline near Yancheng, over 200 km south of Qingdao, where there had been rapid expansion of Porphyra aquaculture to as much as 13 km offshore, prior to the appearance of the first bloom in 2007. Porphyra is grown on rafts which can become heavily fouled with U. prolifera which is disposed of into the sea when the Porphyra is harvested. The timing of the blooms occurred post the April harvest period when daily tidal ranges in this region can be in excess of 7 m. This provides the mechanism for transportation of the floating algae offshore and into the warm nutrient rich waters of the Yellow Sea where it grows rapidly forming large patches. As the patches of algae grow and join, they gradually move north, as a result of wind driven surface currents that prevail in the Yellow Sea in summer, ultimately washing ashore on the Shandong Peninsula. We present a range of oceanographic, biological, ecological and genetic data to support the hypothesis that Porphyra aquaculture provides the source biomass for the Yellow Sea green-tides. Improved aquaculture waste disposal methods in the southern area of Jiangsu Province are likely to reduce or prevent the Yellow Sea green tides and present a feasible solution to a recurrent problem.

  15. Design, loading, and water quality in recirculating systems for low salinity finfish species at the USDA /ARS Sustainable Marine Aquaculture Systems facility (Fort Pierce, FL)

    USDA-ARS?s Scientific Manuscript database

    The USDA ARS Sustainable Marine Aquaculture System Facility was established by the USDA ARS in collaboration with Harbor Branch Oceanographic Institute / Florida Atlantic University to improve the efficiency and sustainability of inland warmwater marine fish culture in recirculating aquaculture syst...

  16. Overcoming spatial scales in geothermal modelling

    NASA Astrophysics Data System (ADS)

    Scheck-Wenderoth, Magdalena; Cacace, Mauro; Frick, Maximilian

    2017-04-01

    Understanding heat transport in the subsurface requires assessing the impact of different flow and heat transport processes. Of these, conductive heat transport may be influenced by advective and convective transients in the upper few km of the crust. A major problem in quantifying this influence using geothermal modelling is the lack of knowledge on the thermal and hydraulic conditions at the model boundaries. In addition the different transport mechanisms may affect the system to different degrees. Conductive heat transport is mainly controlled by the distribution of thermal properties (e.g. thermal conductivity, radiogenic heat production) and by variations of heat input from the crust and the mantle. In response to these variations, large temperature differences may be present at a certain constant depth level. Advective heat transport, is related to regional flow pattern in the porous geological units of the subsurface, the dynamics of which are controlled by the regional structural and hydrogeological setting. To assess the local dynamics of a geothermal reservoir it is therefore necessary to consider the different influencing factors accordingly in order to make predictions on reservoir performance in case of its utilization. We present a workflow to overcome this scale problem for 3D geothermal modelling and we illustrate how such a workflow can be successful by its application to a system of an intracontinental basin going from the lithosphere-scale to the scale of a geological reservoir.

  17. Overcoming Old in Age-Friendliness

    PubMed Central

    Lindenberg, J.; Westendorp, R.G.J.

    2015-01-01

    In this article, we explore views on an age-friendly space in the Netherlands by analysing the responses of older individuals (N = 54) in focus groups and by examining the perspectives around an age-friendly zone in the Netherlands, Parkstad Limburg. We found that a central issue in the wishes for living at a later age are adjustments to envisioned physical limitations that come with the ageing process; this includes adjustments to ensure safety, accessibility and mobility, in order to facilitate older individuals' efforts to stay engaged with the world around them. In their wishes, the older participants constructed ideal dwelling places that closely resembled a senior home, but at the same time they rejected wishing to live in a place that was identified as a senior home. We explain this paradox by the representation of such a space as being for old people, i.e. needy older individuals, which was not how the older participants wished to be identified. We conclude that the conception of age-friendly environments will have to face the difficult challenge of overcoming the association with old age, while simultaneously taking into account adjustments that signify and relate to the ageing process and that seem inescapably tied to oldness. PMID:26028795

  18. Understanding and overcoming metformin gastrointestinal intolerance.

    PubMed

    Bonnet, Fabrice; Scheen, André

    2017-04-01

    Metformin is the most widely prescribed drug for patients with type 2 diabetes mellitus and the first-line pharmacological option as supported by multiple international guidelines, yet a rather large proportion of patients cannot tolerate metformin in adequate amounts because of its associated gastrointestinal (GI) adverse events (AEs). GI AEs typically encountered with metformin therapy include diarrhoea, nausea, flatulence, indigestion, vomiting and abdominal discomfort, with diarrhoea and nausea being the most common. Although starting at a low dose and titrating slowly may help prevent some GI AEs associated with metformin, some patients are unable to tolerate metformin at all and it may also be difficult to convince patients to start metformin again after a bout of GI AEs. Despite this clinical importance, the underlying mechanisms of the GI intolerance associated with metformin are poorly known. In the present review, we discuss: the epidemiology of metformin-associated GI intolerance and its underlying mechanisms; genotype variability and associated factors affecting metformin GI intolerance, such as comorbidities, co-medications and bariatric surgery; clinical consequences and therapeutic strategies to overcome metformin GI intolerance. These strategies include appropriate titration of immediate-release metformin, use of extended-release metformin, the promise of delayed-release metformin and gut microbiome modulators, as well as alternative pharmacological therapies when metformin cannot be tolerated at all. Given the available data, all efforts should be made to maintain metformin before considering a shift to another drug therapy.

  19. Overcoming a nucleosomal barrier to replication

    PubMed Central

    Chang, Han-Wen; Pandey, Manjula; Kulaeva, Olga I.; Patel, Smita S.; Studitsky, Vasily M.

    2016-01-01

    Efficient overcoming and accurate maintenance of chromatin structure and associated histone marks during DNA replication are essential for normal functioning of the daughter cells. However, the molecular mechanisms of replication through chromatin are unknown. We have studied traversal of uniquely positioned mononucleosomes by T7 replisome in vitro. Nucleosomes present a strong, sequence-dependent barrier for replication, with particularly strong pausing of DNA polymerase at the +(31–40) and +(41–65) regions of the nucleosomal DNA. The exonuclease activity of T7 DNA polymerase increases the overall rate of progression of the replisome through a nucleosome, likely by resolving nonproductive complexes. The presence of nucleosome-free DNA upstream of the replication fork facilitates the progression of DNA polymerase through the nucleosome. After replication, at least 50% of the nucleosomes assume an alternative conformation, maintaining their original positions on the DNA. Our data suggest a previously unpublished mechanism for nucleosome maintenance during replication, likely involving transient formation of an intranucleosomal DNA loop. PMID:27847876

  20. Overcoming Drug Resistance in Pancreatic Cancer

    PubMed Central

    Long, Jiang; Zhang, Yuqing; Yu, Xianjun; Yang, Jingxuan; LeBrun, Drake; Chen, Changyi; Yao, Qizhi; Li, Min

    2011-01-01

    Introduction Pancreatic cancer has the worst survival rate of all cancers. The current standard care for metastatic pancreatic cancer is gemcitabine, however, the success of this treatment is poor and overall survival has not improved for decades. Drug resistance (both intrinsic and acquired) is thought to be a major reason for the limited benefit of most pancreatic cancer therapies. Areas covered Previous studies have indicated various mechanisms of drug resistance in pancreatic cancer, including changes in individual genes or signaling pathways, the influence of the tumor microenvironment, and the presence of highly resistant stem cells. This review summarizes recent advances in the mechanisms of drug resistance in pancreatic cancer, and potential strategies to overcome this. Expert Opinion Increasing drug delivery efficiency and decreasing drug resistance is the current aim in pancreatic cancer treatment, and will also benefit the treatment of other cancers. Understanding the molecular and cellular basis of drug resistance in pancreatic cancer will lead to the development of novel therapeutic strategies with the potential to sensitize pancreatic cancer to chemotherapy, and to increase the efficacy of current treatments in a wide variety of human cancers. PMID:21391891

  1. Long-term coexistence of non-indigenous species in aquaculture facilities.

    PubMed

    Rius, Marc; Heasman, Kevin G; McQuaid, Christopher D

    2011-11-01

    Non-indigenous species (NIS) are a growing problem globally and, in the sea, aquaculture activities are critical vectors for their introduction. Aquaculture introduces NIS, intentionally or unintentionally, and can provide substratum for the establishment of other NIS. Little is known about the co-occurrence of NIS over long periods and we document the coexistence over decades of a farmed NIS (a mussel) with an accidently introduced species (an ascidian). Both are widespread and cause serious fouling problems worldwide. We found partial habitat segregation across depth and the position of rafts within the studied farm, which suggests competitive exclusion of the mussel in dark, sheltered areas and physiological exclusion of the ascidian elsewhere. Both species exhibit massive self-recruitment, with negative effects on the industry, but critically the introduction of NIS through aquaculture facilities also has strong detrimental effects on the natural environment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. A history of fish vaccination: science-based disease prevention in aquaculture.

    PubMed

    Gudding, Roar; Van Muiswinkel, Willem B

    2013-12-01

    Disease prevention and control are crucial in order to maintain a sustainable aquaculture, both economically and environmentally. Prophylactic measures based on stimulation of the immune system of the fish have been an effective measure for achieving this goal. Immunoprophylaxis has become an important part in the successful development of the fish-farming industry. The first vaccine for aquaculture, a vaccine for prevention of yersiniosis in salmonid fish, was licensed in USA in 1976. Since then the use of vaccines has expanded to new countries and new species simultaneous with the growth of the aquaculture industry. This paper gives an overview of the achievements in fish vaccinology with particular emphasis on immunoprophylaxis as a practical tool for a successful development of bioproduction of aquatic animals.

  3. Selective breeding in fish and conservation of genetic resources for aquaculture.

    PubMed

    Lind, C E; Ponzoni, R W; Nguyen, N H; Khaw, H L

    2012-08-01

    To satisfy increasing demands for fish as food, progress must occur towards greater aquaculture productivity whilst retaining the wild and farmed genetic resources that underpin global fish production. We review the main selection methods that have been developed for genetic improvement in aquaculture, and discuss their virtues and shortcomings. Examples of the application of mass, cohort, within family, and combined between-family and within-family selection are given. In addition, we review the manner in which fish genetic resources can be lost at the intra-specific, species and ecosystem levels and discuss options to best prevent this. We illustrate that fundamental principles of genetic management are common in the implementation of both selective breeding and conservation programmes, and should be emphasized in capacity development efforts. We highlight the value of applied genetics approaches for increasing aquaculture productivity and the conservation of fish genetic resources.

  4. A framework for understanding the potential for emerging diseases in aquaculture.

    PubMed

    Murray, Alexander G; Peeler, Edmund J

    2005-02-01

    Numerous diseases have emerged as serious economic or ecological problems in aquaculture species. The combination of factors behind the emergence of each disease is unique, but various common factors are apparent. We combine risk-analysis methods and virulence theory with historical examples (mainly from salmonid production) to identify key disease-emergence risk factors. Diseases have emerged through pathogen exchange with wild populations, evolution from non-pathogenic micro-organisms and anthropogenic transfer of stocks. Aquacultural practices frequently result in high population densities and other stresses (such as intercurrent disease) which increase the risk of infection establishment and spread. As aquaculture expands and new species are farmed, diseases will continue to emerge and affect both wild and farmed fish adversely. The rate and extent of emergence can be reduced by the application of biosecurity programmes designed to mitigate the risk factors for disease emergence.

  5. Shrimp aquaculture development and the environment in the Gulf of California ecoregion.

    PubMed

    Páez-Osuna, F; Gracia, A; Flores-Verdugo, F; Lyle-Fritch, L P; Alonso-Rodríguez, R; Roque, A; Ruiz-Fernández, A C

    2003-07-01

    Beginning in the middle of the 1980s, the Gulf of California ecoregion experienced a boom in shrimp aquaculture and became the second largest producer in the western hemisphere. The moderated, but continual development of shrimp farming, in conjunction with municipal and agriculture effluents has been accompanied by concern about: (a) depletion of fishing stocks, (b) reduction of mangrove forest, (c) frequent harmful algal blooms in coastal waters and shrimp ponds, and (d) water quality deterioration. We demonstrate that environmental degradation resulted from a conjunction of factors including agriculture, untreated municipal effluents, shrimp aquaculture, increasing number of fishermen, and an absence of an effective regulatory program. We recommend the immediate implementation of an integrated coastal management program to protect the integrity of the coastal ecosystems and operate upon the principle of environmental sustainability for the different economic activities including shrimp aquaculture.

  6. Federal-state aquaculture drug registration partnership: A success story in the making

    USGS Publications Warehouse

    Schnick, R.A.; Gingerich, W.H.; Koltes, K.H.

    1996-01-01

    During the past 20 years, aquaculture has grown both as a vital tool for fisheries management and as a viable industry. But now a crisis has arisen from the Food and Drug Administration's (FDA) increased regulation of drug use in aquaculture in response to public concerns about human food safety, human health, and environmental effects. Lack of approved drugs and chemicals has dramatically reduced the effectiveness and increased the cost of fish production for natural resource management agencies. To make badly needed therapeutants available, the FDA is requiring an array of specialized laboratory research studies and clinical field trials. Pharmaceutical manufacturers are reluctant to undertake any major efforts to gain approval of aquaculture drugs because each (i.e., use on one species for one purpose) is estimated to cost a minimum of $3.5 million. Hence, the expenditure is not warranted by the apparent market potential. Only three therapeutants and one anesthetic are currently approved and available to hatchery managers.

  7. AQUA-USERS: AQUAculture USEr Driven Operational Remote Sensing Information Services

    NASA Astrophysics Data System (ADS)

    Laanen, Marnix; Poser, Kathrin; Peters, Steef; de Reus, Nils; Ghebrehiwot, Semhar; Eleveld, Marieke; Miller, Peter; Groom, Steve; Clements, Oliver; Kurekin, Andrey; Martinez Vicente, Victor; Brotas, Vanda; Sa, Carolina; Couto, Andre; Brito, Ana; Amorim, Ana; Dale, Trine; Sorensen, Kai; Boye Hansen, Lars; Huber, Silvia; Kaas, Hanne; Andersson, Henrik; Icely, John; Fragoso, Bruno

    2015-12-01

    The FP7 project AQUA-USERS provides the aquaculture industry with user-relevant and timely information based on the most up-to-date satellite data and innovative optical in-situ measurements. Its key purpose is to develop an application that brings together satellite information on water quality and temperature with in-situ observations as well as relevant weather prediction and met-ocean data. The application and its underlying database are linked to a decision support system that includes a set of (user-determined) management options. Specific focus is on the development of indicators for aquaculture management including indicators for harmful algae bloom (HAB) events. The methods and services developed within AQUA-USERS are tested by the members of the user board, who represent different geographic areas and aquaculture production systems.

  8. Aquaculture genomics, genetics and breeding in the United States: current status, challenges, and priorities for future research

    USDA-ARS?s Scientific Manuscript database

    The ultimate goals of aquaculture genomics, genetics and breeding research are to enhance aquaculture production efficiency, sustainability, product quality, and profitability in support of the commercial sector and for the benefit of consumers. In order to achieve these goals, it is important to un...

  9. Sustainability and local people's participation in coastal aquaculture: regional differences and historical experiences in Sri Lanka and the Philippines.

    PubMed

    Bergquist, Daniel A

    2007-11-01

    This article discusses environmental sustainability in aquaculture and its contribution to poverty alleviation, based on field studies in Sri Lanka and the Philippines. The aquaculture practices studied are the monoculture of the black tiger prawn (Penneaus monodon) and milkfish (Chanos chanos) and the polyculture of the two species together with the mud crab (Scylla serrata). Factors affecting economic viability, social equity and environmental impacts in aquaculture are discussed and used to illuminate local and regional differences between aquaculture in Sri Lanka and the Philippines. Findings indicate that the most significant difference is the level of participation by local people (i.e., people originating < or =10 km away from the farm location). In the Philippines, 84 % of the people involved in aquaculture are locals, whereas in Sri Lanka, 55% are outsiders. Whether differences between the two areas can be explained by analyzing regional conditions, which might have resulted in different aquaculture practices, is discussed. In Sri Lanka, semi-intensive shrimp monoculture is currently the most common practice, whereas in the Philippines, extensive shrimp/fish polyculture is more common. Previous studies, as well as fieldwork, indicate that extensive culture practices reduce environmental impacts and benefit local people more. Sustainability in aquaculture is, however, also dependent on the extent of mangrove conversion into ponds. As such, extensive and locally owned farms do not necessarily result in an all but sustainable situation. Keeping this in mind, it is discussed if extensive polyculture practices might result in a more sustainable aquaculture, both environmentally and socioeconomically.

  10. Use of vegetated drainage ditches and low-grade weirs for aquaculture effluent mitigation: II. Suspended sediment

    USDA-ARS?s Scientific Manuscript database

    Total suspended solids are a priority pollutant under the Clean Water Act and a point of concern for aquaculture facilities. The use of ubiquitous vegetated ditches on the aquaculture landscape may serve as an environmentally and economically sustainable practice for reducing suspended sediment cont...

  11. Sustainability and Local People's Participation in Coastal Aquaculture: Regional Differences and Historical Experiences in Sri Lanka and the Philippines

    NASA Astrophysics Data System (ADS)

    Bergquist, Daniel A.

    2007-11-01

    This article discusses environmental sustainability in aquaculture and its contribution to poverty alleviation, based on field studies in Sri Lanka and the Philippines. The aquaculture practices studied are the monoculture of the black tiger prawn ( Penneaus monodon) and milkfish ( Chanos chanos) and the polyculture of the two species together with the mud crab ( Scylla serrata). Factors affecting economic viability, social equity and environmental impacts in aquaculture are discussed and used to illuminate local and regional differences between aquaculture in Sri Lanka and the Philippines. Findings indicate that the most significant difference is the level of participation by local people (i.e., people originating ≤10 km away from the farm location). In the Philippines, 84 % of the people involved in aquaculture are locals, whereas in Sri Lanka, 55% are outsiders. Whether differences between the two areas can be explained by analyzing regional conditions, which might have resulted in different aquaculture practices, is discussed. In Sri Lanka, semi-intensive shrimp monoculture is currently the most common practice, whereas in the Philippines, extensive shrimp/fish polyculture is more common. Previous studies, as well as fieldwork, indicate that extensive culture practices reduce environmental impacts and benefit local people more. Sustainability in aquaculture is, however, also dependent on the extent of mangrove conversion into ponds. As such, extensive and locally owned farms do not necessarily result in an all but sustainable situation. Keeping this in mind, it is discussed if extensive polyculture practices might result in a more sustainable aquaculture, both environmentally and socioeconomically.

  12. Mass transfer coefficients for carbon dioxide and oxygen for a polygeyser biofilter using airlift in an aquaculture reuse system

    USDA-ARS?s Scientific Manuscript database

    Aquaculture is a rapidly growing industry, accounting for over one-third of all direct fisheries consumption. In recirculating aquaculture systems the primary technology being used is energy intensive because water must be moved continuously through the culture and treatment units to remove wastes ...

  13. A Project Approach to Teaching Aquaculture and Entrepreneurial Skills in the Cage Culture of Salmonids Program at the Marine Institute.

    ERIC Educational Resources Information Center

    Churchill, Edgar; Smith, Boyd

    Between September and December 1986, the Marine Institute in Newfoundland, Canada, used a "projects approach" to train aquaculture workers for 10 new salmon farms to be opened in spring 1987 by a producers' cooperative. The projects approach combined instruction in the aquaculture skills needed to operate a salmon farm and the entrepreneurial…

  14. A Project Approach to Teaching Aquaculture and Entrepreneurial Skills in the Cage Culture of Salmonids Program at the Marine Institute.

    ERIC Educational Resources Information Center

    Churchill, Edgar; Smith, Boyd

    Between September and December 1986, the Marine Institute in Newfoundland, Canada, used a "projects approach" to train aquaculture workers for 10 new salmon farms to be opened in spring 1987 by a producers' cooperative. The projects approach combined instruction in the aquaculture skills needed to operate a salmon farm and the entrepreneurial…

  15. Use of a micro programmable logic controller for oxygen monitoring and control in multiple tanks of a recirculating aquaculture system

    USDA-ARS?s Scientific Manuscript database

    In intensive recirculating aquaculture systems the use of supplemental oxygen, specifically pure liquid oxygen, increases the mass of fish that can be supported and eliminates oxygen as a major limiting factor to a system’s carrying capacity. The use of pure oxygen in a recirculating aquaculture sys...

  16. An evaluation of a micro programmable logic controller for oxygen monitoring and control in tanks of a recirculating aquaculture system

    USDA-ARS?s Scientific Manuscript database

    Control of dissolved gases, especially oxygen is an essential component of recirculating aquaculture systems. The use of pure oxygen in a recirculating aquaculture system creates supersaturated concentrations of dissolved oxygen and can reduce fish production costs by supporting greater fish and fee...

  17. Usage, residue, and human health risk of antibiotics in Chinese aquaculture: A review.

    PubMed

    Liu, Xiao; Steele, Joshua Caleb; Meng, Xiang-Zhou

    2017-04-01

    Aquaculture is a booming industry in the world and China is the largest producer and exporter of aquatic products. To prevent and treat diseases occurred in aquaculture, antibiotics are widely applied. However, the information of antibiotics used in Chinese aquaculture is still limited. Based on peer-reviewed papers, documents, reports, and even farmer surveys, this review summarized antibiotics used in Chinese aquaculture. In 2014, more than 47.4 million tonnes of farmed aquatic products were produced in mainland China. The outputs in the east and south parts of China can reach as much as 600 times higher than those in the northwest areas, which is clearly separated by the "Hu Line" - a line that marks a striking difference in the distribution of population. A total of 20 antibiotics belonging to eight categories have been reported for use, mainly via oral administration. However, only 13 antibiotics have been authorized for application in Chinese aquaculture and 12 antibiotics used are not authorized. Totally, 234 cases on antibiotic residues in Chinese aquatic products were recorded, including 24 fish species, eight crustacean species, and four mollusk species. Thirty-two antibiotics have been detected in aquatic products; quinolones and sulfonamides were the dominated residual chemicals. For specific compound, ciprofloxacin, norfloxacin, and sulfisoxazole have the highest concentrations. Except for a few cases, all residual concentrations were lower than the maximum residue limits. Through the consumption of aquatic products tainted by antibiotics, humans may acquire adverse drug reactions or antibiotic-resistant bacteria. However, the risk of antimicrobial resistance in human body, when exposed to antibiotics at sub-inhibitory concentrations, has not been exhaustively considered in the risk assessment. In addition, a national comprehensive investigation on the amount of antibiotics used in Chinese aquaculture is still needed in future studies. Copyright

  18. Assessing the Prospects for Employment in an Expansion of US Aquaculture

    NASA Astrophysics Data System (ADS)

    Ngo, N.

    2006-12-01

    The United States imports 60 percent of its seafood, leading to a 7 billion seafood trade deficit. To mitigate this deficit, the National Oceanographic and Atmospheric Administration (NOAA), a branch of the U.S. Department of Commerce, has promoted the expansion of U.S. production of seafood by aquaculture. NOAA projects that the future expansion of a U.S. aquaculture industry could produce as much as 5 billion in annual sales. NOAA claims that one of the benefits of this expansion would be an increase in employment from 180,000 to 600,000 persons (100,000 indirect jobs and 500,000 direct jobs). Sources of these estimates and the assumptions upon which they are based are unclear, however. The Marine Aquaculture Task Force (MATF), an independent scientific panel, has been skeptical of NOAA's employment estimates, claiming that its sources of information are weak and based upon dubious assumptions. If NOAA has exaggerated its employment projections, then the benefits from an expansion of U.S. aquaculture production would not be as large as projected. y study examined published estimates of labor productivity from the domestic and foreign aquaculture of a variety of species, and I projected the potential increase in employment associated with a 5 billion aquaculture industry, as proposed by NOAA. Results showed that employment estimates will range from only 40,000 to 128,000 direct jobs by 2025 as a consequence of the proposed expansion. Consequently, NOAA may have overestimated its employment projections-?possibly by as much as 170 percent, implying that NOAA's employment estimate requires further research or adjustment.

  19. Environmental Viral Metagenomics Analyses in Aquaculture: Applications in Epidemiology and Disease Control.

    PubMed

    Munang'andu, Hetron M

    2016-01-01

    Studies on the epidemiology of viral diseases in aquaculture have for a long time depended on isolation of viruses from infected aquatic organisms. The role of aquatic environments in the epidemiology of viral diseases in aquaculture has not been extensively expounded mainly because of the lack of appropriate tools for environmental studies on aquatic viruses. However, the upcoming of metagenomics analyses opens great avenues in which environmental samples can be used to study the epidemiology of viral diseases outside their host species. Hence, in this review I have shown that epidemiological factors that influence the composition of viruses in different aquatic environments include ecological factors, anthropogenic activities and stocking densities of cultured organisms based on environmental metagenomics studies carried out this far. Ballast water transportation and global trade of aquatic organisms are the most common virus dispersal process identified this far. In terms of disease control for outdoor aquaculture systems, baseline data on viruses found in different environments intended for aquaculture use can be obtained to enable the design of effective disease control strategies. And as such, high-risk areas having a high specter of pathogenic viruses can be identified as an early warning system. As for the control of viral diseases for indoor recirculation aquaculture systems (RAS), the most effective disinfection methods able to eliminate pathogenic viruses from water used in RAS can be identified. Overall, the synopsis I have put forth in this review shows that environmental samples can be used to study the epidemiology of viral diseases in aquaculture using viral metagenomics analysis as an overture for the design of rational disease control strategies.

  20. Perception of Alabama Science and Career Technology Teachers Concerning Teaching the Alabama Aquaculture Course of Study

    NASA Astrophysics Data System (ADS)

    Cline, David John

    The purpose of this study was to improve teachers' ability to effectively use aquaculture as a tool to teach math and science. The study population included Alabama science and career tech teachers that were certified to teach the Alabama aquaculture course of study. The teachers were electronically surveyed regarding their perceptions of the importance of the aquascience elective and aquaculture science course content standards, their knowledge of those topics and how they perceived the quality of available teaching materials. While all of the content standards were rated above average in importance, aquaculture career awareness and safety concerns were rated the highest by teachers. Teachers were most knowledgeable about career opportunities, categorization of aquaculture species, and the adaptations of aquatic organisms. The average materials ratings were below average for all content standards. The highest rated materials were for career opportunities, categorization of species and safety topics. Using Borich's (1980) model of mean weighted discrepancy scores, the control of diseases and pests in the aquatic environment and concepts associated with health management of aquacrops were identified as top priorities for in-service teacher training. Aquaculture industry infrastructure and the effects of the fishing industry were also identified as priority training topics. Teachers were self-divided into 3 categories those that taught science (SCI), career tech (CTE) and those that taught both (BOTH). They were further divided by their level of experience. A multivariate analysis of variance (MANOVA) revealed a significant effect between teacher types but there was no significant interaction effect between (a) teacher type and experience level or (b) the two levels of experience. A follow-up analysis of variance (ANOVA) indicated that the science teachers thought significantly less of the available materials than either the CTE or BOTH groups.