Science.gov

Sample records for aquaporin water channel

  1. Aquaporin-4 Water Channels in Enteric Neurons

    PubMed Central

    Thi, Mia M.; Spray, David C.; Hanani, Menachem

    2009-01-01

    Aquaporin-4 is a water channel predominantly found in astrocytes in the central nervous system and is believed to play a critical role in the formation and maintenance of the blood–brain barrier and in water secretion from the brain. As enteric glial cells were found to share several similarities with astrocytes, we hypothesized that enteric glia might also contain aquaporin-4. We used immunohistochemistry to identify aquaporin-4 in the myenteric and submucosal plexuses of the mouse and the rat colon. We found that sub-populations of neurons in both enteric plexuses were positively labeled for human aquaporin-4. Double staining of the enteric ganglia with antibodies to the neuronal marker neurofilament–heavy chain 100 and to aquaporin-4 showed that a minority of myenteric neurons were aquaporin-4 positive (about 12% in the mouse and 13% in the rat). In contrast, in the submucosal plexus significant numbers of neurons were positive for aquaporin-4 (about 79% in both the mouse and the rat). Double labeling for aquaporin-4 and for the glial marker glial fibrillary acidic protein verified that glial cells were not immunoreactive to aquaporin-4. We further confirmed our findings with additional aquaporin-4 antibodies and Western blot analysis. We found that, in addition to expressing aquaporin-4, the myenteric plexus and, to a greater extent, the submucosal plexus both expressed aquaporin-1. We conclude that neurons rather than glial cells contain aquaporin-4 in the colonic enteric plexuses. It is known that submucosal neurons control transport processes in the intestinal mucosa, and the high percentage of aquaporin-4-postive sub-mucosal neurons suggests that aquaporin-4 contributes to this function. PMID:17893913

  2. Dynamic regulation of aquaporin-4 water channels in neurological disorders

    PubMed Central

    Hsu, Ying; Tran, Minh; Linninger, Andreas A.

    2015-01-01

    Aquaporin-4 water channels play a central role in brain water regulation in neurological disorders. Aquaporin-4 is abundantly expressed at the astroglial endfeet facing the cerebral vasculature and the pial membrane, and both its expression level and subcellular localization significantly influence brain water transport. However, measurements of aquaporin-4 levels in animal models of brain injury often report opposite trends of change at the injury core and the penumbra. Furthermore, aquaporin-4 channels play a beneficial role in brain water clearance in vasogenic edema, but a detrimental role in cytotoxic edema and exacerbate cell swelling. In light of current evidence, we still do not have a complete understanding of the role of aquaporin-4 in brain water transport. In this review, we propose that the regulatory mechanisms of aquaporin-4 at the transcriptional, translational, and post-translational levels jointly regulate water permeability in the short and long time scale after injury. Furthermore, in order to understand why aquaporin-4 channels play opposing roles in cytotoxic and vasogenic edema, we discuss experimental evidence on the dynamically changing osmotic gradients between blood, extracellular space, and the cytosol during the formation of cytotoxic and vasogenic edema. We conclude with an emerging picture of the distinct osmotic environments in cytotoxic and vasogenic edema, and propose that the directions of aquaporin-4-mediated water clearance in these two types of edema are distinct. The difference in water clearance pathways may provide an explanation for the conflicting observations of the roles of aquaporin-4 in edema resolution. PMID:26526878

  3. The aquaporin family of water channel proteins in clinical medicine.

    PubMed

    Lee, M D; King, L S; Agre, P

    1997-05-01

    The aquaporins are a family of membrane channel proteins that serve as selective pores through which water crosses the plasma membranes of many human tissues and cell types. The sites where aquaporins are expressed implicate these proteins in renal water reabsorption, cerebrospinal fluid secretion and reabsorption, generation of pulmonary secretions, aqueous humor secretion and reabsorption, lacrimation, and multiple other physiologic processes. Determination of the aquaporin gene sequences and their chromosomal locations has provided insight into the structure and pathophysiologic roles of these proteins, and primary and secondary involvement of aquaporins is becoming apparent in diverse clinical disorders. Aquaporin-1 (AQP1) is expressed in multiple tissues including red blood cells, and the Colton blood group antigens represent a polymorphism on the AQP1 protein. AQP2 is restricted to renal collecting ducts and has been linked to congenital nephrogenic diabetes insipidus in humans and to lithium-induced nephrogenic diabetes insipidus and fluid retention from congestive heart failure in rat models. Congenital cataracts result from mutations in the mouse gene encoding the lens homolog Aqp0 (Mip). The present understanding of aquaporin physiology is still incomplete; identification of additional members of the aquaporin family will affect future studies of multiple disorders of water distribution throughout the body. In some tissues, the aquaporins may participate in the transepithelial movement of fluid without being rate limiting, so aquaporins may be involved in clinical disorders without being causative. As outlined in this review, our challenge is to identify disease states in which aquaporins are involved, to define the aquaporins' roles mechanistically, and to search for ways to exploit this information therapeutically.

  4. Regulation of the water channel aquaporin-2 by posttranslational modification.

    PubMed

    Moeller, Hanne B; Olesen, Emma T B; Fenton, Robert A

    2011-05-01

    The cellular functions of many eukaryotic membrane proteins, including the vasopressin-regulated water channel aquaporin-2 (AQP2), are regulated by posttranslational modifications. In this article, we discuss the experimental discoveries that have advanced our understanding of how posttranslational modifications affect AQP2 function, especially as they relate to the role of AQP2 in the kidney. We review the most recent data demonstrating that glycosylation and, in particular, phosphorylation and ubiquitination are mechanisms that regulate AQP2 activity, subcellular sorting and distribution, degradation, and protein interactions. From a clinical perspective, posttranslational modification resulting in protein misrouting or degradation may explain certain forms of nephrogenic diabetes insipidus. In addition to providing major insight into the function and dynamics of renal AQP2 regulation, the analysis of AQP2 posttranslational modification may provide general clues as to the role of posttranslational modification for regulation of other membrane proteins.

  5. Involvement of aquaporin channels in water extrusion from biosilica during maturation of sponge siliceous spicules.

    PubMed

    Wang, Xiaohong; Müller, Werner E G

    2015-08-01

    Aquaporins are a family of small, pore-forming, integral cell membrane proteins. This ancient protein family functions as water channels and is found in all kingdoms (including archaea, eubacteria, fungi, plants, and animals). We discovered that in sponges aquaporin plays a novel role during the maturation of spicules, their skeletal elements. Spicules are synthesized enzymatically via silicatein following a polycondensation reaction. During this process, a 1:1 stoichiometric release of water per one Si-O-Si bond formed is produced. The product of silicatein, biosilica, is a fluffy, soft material that must be hardened in order to function as a solid rod. Using the model of the demosponge species Suberites domuncula Olivi, 1792, which expresses aquaporin, cDNA was cloned and the protein was heterologously expressed. The sponge aquaporin is grouped with the type 8 aquaporins. The function of the sponge aquaporin can be blocked by Mn-sulfate (MnSO4) and mercury chloride (HgCl2). Microscopic and functional studies suggest that aquaporin is involved in removal of the reaction water at the site where siliceous spicules are formed. Another molecule that is likely to be involved in biosilica maturation is the mucin/nidogen-like polypeptide. cDNA has also been cloned from S. domuncula. Experimental studies suggest that water extrusion/suctioning from biosilica after enzymatic synthesis during spicule formation involves both aquaporin-mediated water channeling and "polymerization-induced phase separation" facilitated by the mucin/nidogen-like polypeptide.

  6. Aquaporin water channels in the mammary gland: from physiology to pathophysiology and neoplasia.

    PubMed

    Mobasheri, Ali; Barrett-Jolley, Richard

    2014-03-01

    Aquaporins are membrane proteins that play fundamental roles in water and small solute transport across epithelial and endothelial barriers. Recent studies suggest that several aquaporin proteins are present in the mammary gland. Immunohistochemical techniques have confirmed the presence of aquaporin 1 (AQP1) and AQP3 water channels in rat, mouse, bovine and human mammary glands. Studies suggest that in addition to AQP1 and AQP3 AQP4, AQP5 and AQP7 proteins are expressed in different locations in the mammary gland. Aquaporins play key roles in tumor biology and are involved in cell growth, migration and formation of ascites via increased water permeability of micro-vessels. Emerging evidence suggests that expression of these proteins is altered in mammary tumors and in breast cancer cell lines although it is not yet clear whether this is a cause or a consequence of neoplastic development. This review analyzes the expression and potential functional roles of aquaporin water channels in the mammary gland. The physiological mechanisms involved in the transport of water and small solutes across mammary endothelial and epithelial barriers are discussed in the context of milk production and lactation. This paper also reviews papers from the recent cancer literature that implicate aquaporins in mammary neoplasia.

  7. Aquaporin-4 water channels and synaptic plasticity in the hippocampus.

    PubMed

    Scharfman, Helen E; Binder, Devin K

    2013-12-01

    Aquaporin-4 (AQP4) is the major water channel expressed in the central nervous system (CNS) and is primarily expressed in glial cells. Many studies have shown that AQP4 regulates the response of the CNS to insults or injury, but far less is known about the potential for AQP4 to influence synaptic plasticity or behavior. Recent studies have examined long-term potentiation (LTP), long-term depression (LTD), and behavior in AQP4 knockout (KO) and wild-type mice to gain more insight into its potential role. The results showed a selective effect of AQP4 deletion on LTP of the Schaffer collateral pathway in hippocampus using an LTP induction protocol that simulates pyramidal cell firing during theta oscillations (theta-burst stimulation; TBS). However, LTP produced by a different induction protocol was unaffected. There was also a defect in LTD after low frequency stimulation (LFS) in AQP4 KO mice. Interestingly, some slices from AQP4 KO mice exhibited LTD after TBS instead of LTP, or LTP following LFS instead of LTD. These data suggest that AQP4 and astrocytes influence the polarity of long-term synaptic plasticity (potentiation or depression). These potentially powerful roles expand the influence of AQP4 and astrocytes beyond the original suggestions related to regulation of extracellular potassium and water balance. Remarkably, AQP4 KO mice did not show deficits in basal transmission, suggesting specificity for long-term synaptic plasticity. The mechanism appears to be related to neurotrophins and specifically brain-derived neurotrophic factor (BDNF) because pharmacological blockade of neurotrophin trk receptors or scavenging ligands such as BDNF restored plasticity. The in vitro studies predicted effects in vivo of AQP4 deletion because AQP4 KO mice performed worse using a task that requires memory for the location of objects (object placement). However, performance on other hippocampal-dependent tasks was spared. The results suggest an unanticipated and selective

  8. Aquaporin water channels in the canine gubernaculum testis.

    PubMed

    Arrighi, Silvana; Aralla, Marina; Fracassetti, Paola; Mobasheri, Ali; Cremonesi, Fausto

    2013-07-01

    The jelly-like gubernaculum testis (GT) is a hydrated structure consisting of a concentric sheath of dense connective tissue around a loose mesenchymal core, with two cords of skeletal muscle cells asymmetrically placed alongside. Expansion of the GT occurs during the transabdominal phase of testicular descent, linked to cell proliferation together with modifications of the hydric content of the organ. The aim of this study was to detect immunohistochemically the presence of aquaporins (AQPs), integral membrane proteins permitting passive transcellular water movement, in the canine GTs. Samples (n=15) were obtained from pregnancies of 9 medium sized bitches and dissected from healthy fetuses. Five fetuses were aged 35-45 days of gestation, 10 fetuses from 46 days of gestation to delivery, thus offering us the opportunity to study the progressive maturation of the gubernacula. The presence of AQP3, 4, 7, 8 and -9 was assessed in the muscular components of the GT, some of them (AQP3, AQP4, AQP7) with increasing intensity through the second half of pregnancy up to term. AQP1 was localized in the capillary and venous endothelia in the younger fetuses, also in the artery adventitia and in the nerve perineurium in progressively older fetuses. These data demonstrate the potential importance and contribution of AQP-mediated water flux in hydration and volume modification of the growing GT in a canine model.

  9. Molecular and functional characterization of multiple aquaporin water channel proteins from the western tarnished plant bug, Lygus hesperus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aquaporins (AQPs) are integral membrane channel proteins that facilitate the bidirectional transfer of water or other small solutes across biological membranes involved in numerous essential physiological processes. In arthropods, AQPs belong to several subfamilies, which contribute to osmoregulatio...

  10. Cholangiocytes express the aquaporin CHIP and transport water via a channel-mediated mechanism.

    PubMed Central

    Roberts, S K; Yano, M; Ueno, Y; Pham, L; Alpini, G; Agre, P; LaRusso, N F

    1994-01-01

    Cholangiocytes line the intrahepatic bile ducts and regulate salt and water secretion during bile formation, but the mechanism(s) regulating ductal water movement remains obscure. A water-selective channel, the aquaporin CHIP, was recently described in several epithelia, so we tested the hypothesis that osmotic water movement by cholangiocytes is mediated by CHIP. Isolated rodent cholangiocytes showed a rapid increase in volume in the presence of hypotonic extracellular buffers; the ratio of osmotic to diffusional permeability coefficients was > 10. The osmotically induced increase in cholangiocyte volume was inversely proportional to buffer osmolality, independent of temperature, and reversibly blocked by HgCl2. Also, the luminal area of isolated, enclosed bile duct units increased after exposure to hypotonic buffer and was reversibly inhibited by HgCl2. RNase protection assays, anti-CHIP immunoblots, and immunocytochemistry confirmed that CHIP transcript and protein were present in isolated cholangiocytes but not in hepatocytes. These results demonstrate that (i) isolated cholangiocytes and intact, polarized bile duct units manifest rapid, mercury-sensitive increases in cell size and luminal area, respectively, in response to osmotic gradients and (ii) isolated cholangiocytes express aquaporin CHIP at both the mRNA and the protein level. The data implicate aquaporin water channels in the transcellular movement of water across cholangiocytes lining intrahepatic bile ducts and provide a plausible molecular explanation for ductal water secretion. Images Fig. 1 Fig. 4 Fig. 5 PMID:7528928

  11. AqF026 Is a Pharmacologic Agonist of the Water Channel Aquaporin-1

    PubMed Central

    Morelle, Johann; Cnops, Yvette; Verbavatz, Jean-Marc; Campbell, Ewan M.; Beckett, Elizabeth A.H.; Booker, Grant W.; Flynn, Gary

    2013-01-01

    Aquaporin-1 (AQP1) facilitates the osmotic transport of water across the capillary endothelium, among other cell types, and thereby has a substantial role in ultrafiltration during peritoneal dialysis. At present, pharmacologic agents that enhance AQP1-mediated water transport, which would be expected to increase the efficiency of peritoneal dialysis, are not available. Here, we describe AqF026, an aquaporin agonist that is a chemical derivative of the arylsulfonamide compound furosemide. In the Xenopus laevis oocyte system, extracellular AqF026 potentiated the channel activity of human AQP1 by >20% but had no effect on channel activity of AQP4. We found that the intracellular binding site for AQP1 involves loop D, a region associated with channel gating. In a mouse model of peritoneal dialysis, AqF026 enhanced the osmotic transport of water across the peritoneal membrane but did not affect the osmotic gradient, the transport of small solutes, or the localization and expression of AQP1 on the plasma membrane. Furthermore, AqF026 did not potentiate water transport in Aqp1-null mice, suggesting that indirect mechanisms involving other channels or transporters were unlikely. Last, in a mouse gastric antrum preparation, AqF026 did not affect the Na-K-Cl cotransporter NKCC1. In summary, AqF026 directly and specifically potentiates AQP1-mediated water transport, suggesting that it deserves additional investigation for applications such as peritoneal dialysis or clinical situations associated with defective water handling. PMID:23744886

  12. Colon water transport in transgenic mice lacking aquaporin-4 water channels

    PubMed Central

    WANG, KASPER S.; MA, TONGHUI; FILIZ, FERDA; VERKMAN, A. S.; BASTIDAS, J. AUGUSTO

    2012-01-01

    Transgenic null mice were used to test the hypothesis that water channel aquaporin-4 (AQP4) is involved in colon water transport and fecal dehydration. AQP4 was immunolocalized to the basolateral membrane of colonic surface epithelium of wild-type (+/+) mice and was absent in AQP4 null (−/−) mice. The transepithelial osmotic water permeability coefficient (Pf) of in vivo perfused colon of +/+ mice, measured using the volume marker 14C-labeled polyethylene glycol, was 0.016 ± 0.002 cm/s. Pf of proximal colon was greater than that of distal colon (0.020 ± 0.004 vs. 0.009 ± 0.003 cm/s, P < 0.01). Pf was significantly lower in −/− mice when measured in full-length colon (0.009 ± 0.002 cm/s, P < 0.05) and proximal colon (0.013 ± 0.002 cm/s, P < 0.05) but not in distal colon. There was no difference in water content of cecal stool from +/+ vs. −/− mice (0.80 ± 0.01 vs. 0.81 ± 0.01), but there was a slightly higher water content in defecated stool from +/+ mice (0.68 ± 0.01 vs. 0.65 ± 0.01, P < 0.05). Despite the differences in water permeability with AQP4 deletion, theophylline-induced secretion was not impaired (50 ± 9 vs. 51 ± 8 μl · min−1 · g−1). These results provide evidence that transcellular water transport through AQP4 water channels in colonic epithelium facilitates transepithelial osmotic water permeability but has little or no effect on colonic fluid secretion or fecal dehydration. PMID:10915657

  13. Expression and functional characterization of four aquaporin water channels from the European eel (Anguilla anguilla).

    PubMed

    MacIver, Bryce; Cutler, Christopher P; Yin, Jia; Hill, Myles G; Zeidel, Mark L; Hill, Warren G

    2009-09-01

    The European eel is a euryhaline teleost which has been shown to differentially up- and downregulate aquaporin (AQP) water channels in response to changes in environmental salinity. We have characterized the transport properties of four aquaporins localized to osmoregulatory organs - gill, esophagus, intestine and kidney. By sequence comparison these four AQP orthologs resemble human AQP1 (eel AQP1), AQP3 (eel AQP3) and AQP10 (AQPe). The fourth member is a duplicate form of AQP1 (AQP1dup) thought to arise from a duplication of the teleost genome. Using heterologous expression in Xenopus oocytes we demonstrate that all four eel orthologs transport water and are mercury inhibitable. Eel AQP3 and AQPe also transport urea and glycerol, making them aquaglyceroporins. Eel AQP3 is dramatically inhibited by extracellular acidity (91% and 69% inhibition of water and glycerol transport respectively at pH 6.5) consistent with channel gating by protons. Maximal water flux of eel AQP3 occurred around pH 8.2 - close to the physiological pH of plasma in the eel. Exposure of AQP-expressing oocytes to heavy metals revealed that eel AQP3 is highly sensitive to extracellular nickel and zinc (88.3% and 86.3% inhibition, respectively) but less sensitive to copper (56.4% inhibition). Surprisingly, copper had a stimulatory effect on eel AQP1 (153.7% activity of control). Copper, nickel and zinc did not affect AQP1dup or AQPe. We establish that all four eel AQP orthologs have similar transport profiles to their human counterparts, with eel AQP3 exhibiting some differences in its sensitivity to metals. This is the first investigation of the transport properties and inhibitor sensitivity of salinity-regulated aquaporins from a euryhaline species. Our results indicate a need to further investigate the deleterious effects of metal pollutants on AQP-containing epithelial cells of the gill and gastrointestinal tract at environmentally appropriate concentrations.

  14. Heterologous expression of tulip petal plasma membrane aquaporins in Pichia pastoris for water channel analysis.

    PubMed

    Azad, Abul Kalam; Sawa, Yoshihiro; Ishikawa, Takahiro; Shibata, Hitoshi

    2009-05-01

    Water channels formed by aquaporins (AQPs) play an important role in the control of water homeostasis in individual cells and in multicellular organisms. Plasma membrane intrinsic proteins (PIPs) constitute a subclass of plant AQPs. TgPIP2;1 and TgPIP2;2 from tulip petals are members of the PIP family. In this study, we overexpressed TgPIP2;1 and TgPIP2;2 in Pichia pastoris and monitored their water channel activity (WCA) either by an in vivo spheroplast-bursting assay performed after hypo-osmotic shock or by growth assay. Osmolarity, pH, and inhibitors of AQPs, protein kinases (PKs), and protein phosphatases (PPs) affect the WCA of heterologous AQPs in this expression system. The WCA of TgPIP2;2-expressing spheroplasts was affected by inhibitors of PKs and PPs, which indicates that the water channel of this homologue is regulated by phosphorylation in P. pastoris. From the results reported herein, we suggest that P. pastoris can be employed as a heterologous expression system to assay the WCA of PIPs and to monitor the AQP-mediated channel gating mechanism, and it can be developed to screen inhibitors/effectors of PIPs.

  15. Aquaporins

    PubMed Central

    2012-01-01

    While it is well known that a balanced level of hydration is fundamental for healthy skin, the physiological mechanisms underlying the control of hydration, particularly in the epidermis, are yet to be fully elucidated. Over the past 10 years, much research has been carried out to understand the nature and regulation of the water gradient that exists across the layers of the epidermis. Of central importance is the role played by membrane-bound pores called aquaporins, which facilitate the passage of water and, in some cases, small molecules such as glycerol. This paper provides an overview of the principal aquaporin present in the epidermis, aquaporin 3, and how the level of hydration of the epidermis is correlated to endogenous levels of glycerol and to the distribution of aquaporin 3 channels. The role of aquaporin 3 in skin diseases is considered along with possible clinical implications of aquaporin 3 modulation. PMID:22798977

  16. Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z

    PubMed Central

    Kumar, Manish; Grzelakowski, Mariusz; Zilles, Julie; Clark, Mark; Meier, Wolfgang

    2007-01-01

    The permeability and solute transport characteristics of amphiphilic triblock-polymer vesicles containing the bacterial water-channel protein Aquaporin Z (AqpZ) were investigated. The vesicles were made of a block copolymer with symmetric poly-(2-methyloxazoline)-poly-(dimethylsiloxane)-poly-(2-methyloxazoline) (PMOXA15-PDMS110-PMOXA15) repeat units. Light-scattering measurements on pure polymer vesicles subject to an outwardly directed salt gradient in a stopped-flow apparatus indicated that the polymer vesicles were highly impermeable. However, a large enhancement in water productivity (permeability per unit driving force) of up to ≈800 times that of pure polymer was observed when AqpZ was incorporated. The activation energy (Ea) of water transport for the protein-polymer vesicles (3.4 kcal/mol) corresponded to that reported for water-channel-mediated water transport in lipid membranes. The solute reflection coefficients of glucose, glycerol, salt, and urea were also calculated, and indicated that these solutes are completely rejected. The productivity of AqpZ-incorporated polymer membranes was at least an order of magnitude larger than values for existing salt-rejecting polymeric membranes. The approach followed here may lead to more productive and sustainable water treatment membranes, whereas the variable levels of permeability obtained with different concentrations of AqpZ may provide a key property for drug delivery applications. PMID:18077364

  17. Identification and characterisation of a functional aquaporin water channel (Anomala cuprea DRIP) in a coleopteran insect.

    PubMed

    Nagae, Tomone; Miyake, Seiji; Kosaki, Shiho; Azuma, Masaaki

    2013-07-15

    Water transport across the plasma membrane depends on the presence of the water channel aquaporin (AQP), which mediates the bulk movement of water through osmotic and pressure gradients. In terrestrial insects, which are solid and/or plant feeders, the entrance and exit of water is primarily executed along the alimentary tract, where the hindgut, particularly the rectum, is the major site of water conservation. A cDNA encoding the homologue of the water-specific Drosophila AQP [Drosophila integral protein (DRIP)] was identified through the RT-PCR of RNA isolated from the rectum of the cupreous chafer larvae, Anomala cuprea, a humus and plant root feeder. This gene (Anocu AQP1) has a predicted molecular mass of 26.471 kDa, similar to the DRIP clade of insect AQPs characterised from caterpillars, flies and several liquid-feeding insects. When expressed in Xenopus laevis oocytes, Anocu AQP1 showed the hallmarks of aquaporin-mediated water transport but no glycerol or urea permeability, and the reversible inhibition of elevated water transport through 1 mmol l(-1) HgCl2. This is the first experimental demonstration of the presence of a water-specific AQP, namely DRIP, in the Coleoptera. The genome of the model beetle Tribolium castaneum contains six putative AQP sequences, one of which (Trica-1a, XP_972862) showed the highest similarity to Anocu AQP1 (~60% amino acid identity). Anocu AQP1 is predominantly expressed in the rectum. Using a specific antibody raised against DRIP in the silkworm Bombyx mori (AQP-Bom1), Anocu AQP1 was localised to the apical plasma membrane of rectal epithelial cells, and lacking in the midgut and gastric caecal epithelia. Based on the BeetleBase prediction, there are three putative AQPs (Trica-3a, 3b, 3c: XP_970728, 970912, 970791) that are homologous to B. mori aquaglyceroporin [AQP-Bom2 (GLP)]. The immunocytochemical studies using the specific anti-peptide antibody against AQP-Bom2 revealed the presence of the GLP homologue at the apical

  18. Water Permeability of Aquaporin-4 Channel Depends on Bilayer Composition, Thickness, and Elasticity

    PubMed Central

    Tong, Jihong; Briggs, Margaret M.; McIntosh, Thomas J.

    2012-01-01

    Aquaporin-4 (AQP4) is the primary water channel in the mammalian brain, particularly abundant in astrocytes, whose plasma membranes normally contain high concentrations of cholesterol. Here we test the hypothesis that the water permeabilities of two naturally occurring isoforms (AQP4-M1 and AQP4-M23) depend on bilayer mechanical/structural properties modulated by cholesterol and phospholipid composition. Osmotic stress measurements were performed with proteoliposomes containing AQP4 and three different lipid mixtures: 1), phosphatidylcholine (PC) and phosphatidylglycerol (PG); 2), PC, PG, with 40 mol % cholesterol; and 3), sphingomyelin (SM), PG, with 40 mol % cholesterol. The unit permeabilities of AQP4-M1 were 3.3 ± 0.4 × 10−13 cm3/s (mean ± SE), 1.2 ± 0.1 × 10−13 cm3/s, and 0.4 ± 0.1 × 10−13 cm3/s in PC:PG, PC:PG:cholesterol, and SM:PG:cholesterol, respectively. The unit permeabilities of AQP4-M23 were 2.1 ± 0.2 × 10−13 cm3/s, 0.8 ± 0.1 × 10−13 cm3/s, and 0.3 ± 0.1 × 10−13 cm3/s in PC:PG, PC:PG:cholesterol, and SM:PG:cholesterol, respectively. Thus, for each isoform the unit permeabilities strongly depended on bilayer composition and systematically decreased with increasing bilayer compressibility modulus and bilayer thickness. These observations suggest that altering lipid environment provides a means of regulating water channel permeability. Such permeability changes could have physiological consequences, because AQP4 water permeability would be reduced by its sequestration into SM:cholesterol-enriched raft microdomains. Conversely, under ischemic conditions astrocyte membrane cholesterol content decreases, which could increase AQP4 permeability. PMID:23199918

  19. Water permeability of aquaporin-4 channel depends on bilayer composition, thickness, and elasticity.

    PubMed

    Tong, Jihong; Briggs, Margaret M; McIntosh, Thomas J

    2012-11-07

    Aquaporin-4 (AQP4) is the primary water channel in the mammalian brain, particularly abundant in astrocytes, whose plasma membranes normally contain high concentrations of cholesterol. Here we test the hypothesis that the water permeabilities of two naturally occurring isoforms (AQP4-M1 and AQP4-M23) depend on bilayer mechanical/structural properties modulated by cholesterol and phospholipid composition. Osmotic stress measurements were performed with proteoliposomes containing AQP4 and three different lipid mixtures: 1), phosphatidylcholine (PC) and phosphatidylglycerol (PG); 2), PC, PG, with 40 mol % cholesterol; and 3), sphingomyelin (SM), PG, with 40 mol % cholesterol. The unit permeabilities of AQP4-M1 were 3.3 ± 0.4 × 10(-13) cm(3)/s (mean ± SE), 1.2 ± 0.1 × 10(-13) cm(3)/s, and 0.4 ± 0.1 × 10(-13) cm(3)/s in PC:PG, PC:PG:cholesterol, and SM:PG:cholesterol, respectively. The unit permeabilities of AQP4-M23 were 2.1 ± 0.2 × 10(-13) cm(3)/s, 0.8 ± 0.1 × 10(-13) cm(3)/s, and 0.3 ± 0.1 × 10(-13) cm(3)/s in PC:PG, PC:PG:cholesterol, and SM:PG:cholesterol, respectively. Thus, for each isoform the unit permeabilities strongly depended on bilayer composition and systematically decreased with increasing bilayer compressibility modulus and bilayer thickness. These observations suggest that altering lipid environment provides a means of regulating water channel permeability. Such permeability changes could have physiological consequences, because AQP4 water permeability would be reduced by its sequestration into SM:cholesterol-enriched raft microdomains. Conversely, under ischemic conditions astrocyte membrane cholesterol content decreases, which could increase AQP4 permeability.

  20. Expression, Distribution and Role of Aquaporin Water Channels in Human and Animal Stomach and Intestines.

    PubMed

    Zhu, Cui; Chen, Zhuang; Jiang, Zongyong

    2016-08-29

    Stomach and intestines are involved in the secretion of gastrointestinal fluids and the absorption of nutrients and fluids, which ensure normal gut functions. Aquaporin water channels (AQPs) represent a major transcellular route for water transport in the gastrointestinal tract. Until now, at least 11 AQPs (AQP1-11) have been found to be present in the stomach, small and large intestines. These AQPs are distributed in different cell types in the stomach and intestines, including gastric epithelial cells, gastric glands cells, absorptive epithelial cells (enterocytes), goblet cells and Paneth cells. AQP1 is abundantly distributed in the endothelial cells of the gastrointestinal tract. AQP3 and AQP4 are mainly distributed in the basolateral membrane of epithelial cells in the stomach and intestines. AQP7, AQP8, AQP10 and AQP11 are distributed in the apical of enterocytes in the small and large intestines. Although AQP-null mice displayed almost no phenotypes in gastrointestinal tracts, the alterations of the expression and localization of these AQPs have been shown to be associated with the pathology of gastrointestinal disorders, which suggests that AQPs play important roles serving as potential therapeutic targets. Therefore, this review provides an overview of the expression, localization and distribution of AQPs in the stomach, small and large intestine of human and animals. Furthermore, this review emphasizes the potential roles of AQPs in the physiology and pathophysiology of stomach and intestines.

  1. Expression, Distribution and Role of Aquaporin Water Channels in Human and Animal Stomach and Intestines

    PubMed Central

    Zhu, Cui; Chen, Zhuang; Jiang, Zongyong

    2016-01-01

    Stomach and intestines are involved in the secretion of gastrointestinal fluids and the absorption of nutrients and fluids, which ensure normal gut functions. Aquaporin water channels (AQPs) represent a major transcellular route for water transport in the gastrointestinal tract. Until now, at least 11 AQPs (AQP1–11) have been found to be present in the stomach, small and large intestines. These AQPs are distributed in different cell types in the stomach and intestines, including gastric epithelial cells, gastric glands cells, absorptive epithelial cells (enterocytes), goblet cells and Paneth cells. AQP1 is abundantly distributed in the endothelial cells of the gastrointestinal tract. AQP3 and AQP4 are mainly distributed in the basolateral membrane of epithelial cells in the stomach and intestines. AQP7, AQP8, AQP10 and AQP11 are distributed in the apical of enterocytes in the small and large intestines. Although AQP-null mice displayed almost no phenotypes in gastrointestinal tracts, the alterations of the expression and localization of these AQPs have been shown to be associated with the pathology of gastrointestinal disorders, which suggests that AQPs play important roles serving as potential therapeutic targets. Therefore, this review provides an overview of the expression, localization and distribution of AQPs in the stomach, small and large intestine of human and animals. Furthermore, this review emphasizes the potential roles of AQPs in the physiology and pathophysiology of stomach and intestines. PMID:27589719

  2. Involvement of water channel Aquaporin 5 in H2S-induced pulmonary edema.

    PubMed

    Xu, Chunyang; Jiang, Lei; Zou, Yuxia; Xing, Jingjing; Sun, Hao; Zhu, Baoli; Zhang, Hengdong; Wang, Jun; Zhang, Jinsong

    2017-01-01

    Acute exposure to hydrogen sulfide (H2S) poses a significant threat to life, and the lung is one of the primary target organs of H2S. However, the mechanisms involved in H2S-induced acute pulmonary edema are poorly understood. This study aims to investigate the effects of H2S on the expression of water channel aquaporin 5 (AQP5) and to elucidate the signaling pathways involved in AQP5 regulation. In an in vivo study, C57BL6 mice were exposed to sub-lethal concentrations of inhaled H2S, and histological injury of the lungs and ultrastructure injury of the epithelial cells were evaluated. With real-time PCR and western blot assays, we found that H2S exposure contributed to a significant decrease in AQP5 expression both in murine lung tissue and the A549 cell line, and the ERK1/2 and p38 MAPK signaling pathways were demonstrated to be implicated in AQP5 regulation. Therefore, adjusting AQP5 protein levels could be considered a therapeutic strategy for the treatment of APE induced by H2S and other hazardous gases.

  3. Expression of the Astrocyte Water Channel Aquaporin-4 in the Mouse Brain.

    PubMed

    Hubbard, Jacqueline A; Hsu, Mike S; Seldin, Marcus M; Binder, Devin K

    2015-01-01

    Aquaporin-4 (AQP4) is a bidirectional water channel that is found on astrocytes throughout the central nervous system. Expression is particularly high around areas in contact with cerebrospinal fluid, suggesting that AQP4 plays a role in fluid exchange between the cerebrospinal fluid compartments and the brain. Despite its significant role in the brain, the overall spatial and region-specific distribution of AQP4 has yet to be fully characterized. In this study, we used Western blotting and immunohistochemical techniques to characterize AQP4 expression and localization throughout the mouse brain. We observed AQP4 expression throughout the forebrain, subcortical areas, and brainstem. AQP4 protein levels were highest in the cerebellum with lower expression in the cortex and hippocampus. We found that AQP4 immunoreactivity was profuse on glial cells bordering ventricles, blood vessels, and subarachnoid space. Throughout the brain, AQP4 was expressed on astrocytic end-feet surrounding blood vessels but was also heterogeneously expressed in brain tissue parenchyma and neuropil, often with striking laminar specificity. In the cerebellum, we showed that AQP4 colocalized with the proteoglycan brevican, which is synthesized by and expressed on cerebellar astrocytes. Despite the high abundance of AQP4 in the cerebellum, its functional significance has yet to be investigated. Given the known role of AQP4 in synaptic plasticity in the hippocampus, the widespread and region-specific expression pattern of AQP4 suggests involvement not only in fluid balance and ion homeostasis but also local synaptic plasticity and function in distinct brain circuits.

  4. The water channel aquaporin-1 contributes to renin cell recruitment during chronic stimulation of renin production.

    PubMed

    Tinning, Anne R; Jensen, Boye L; Schweda, Frank; Machura, Katharina; Hansen, Pernille B L; Stubbe, Jane; Gramsbergen, Jan Bert; Madsen, Kirsten

    2014-12-01

    Both the processing and release of secretory granules involve water movement across granule membranes. It was hypothesized that the water channel aquaporin (AQP)1 directly contributes to the recruitment of renin-positive cells in the afferent arteriole. AQP1(-/-) and AQP1(+/+) mice were fed a low-salt (LS) diet [0.004% (wt/wt) NaCl] for 7 days and given enalapril [angiotensin-converting enzyme inhibitor (ACEI), 0.1 mg/ml] in drinking water for 3 days. There were no differences in plasma renin concentration at baseline. After LS-ACEI, plasma renin concentrations increased markedly in both genotypes but was significantly lower in AQP1(-/-) mice compared with AQP1(+/+) mice. Tissue renin concentrations were higher in AQP1(-/-) mice, and renin mRNA levels were not different between genotypes. Mean arterial blood pressure was not different at baseline and during LS diet but decreased significantly in both genotypes after the addition of ACEI; the response was faster in AQP1(-/-) mice but then stabilized at a similar level. Renin release after 200 μl blood withdrawal was not different. Isoprenaline-stimulated renin release from isolated perfused kidneys did not differ between genotypes. Cortical tissue norepinephrine concentrations were lower after LS-ACEI compared with baseline with no difference between genotypes. Plasma nitrite/nitrate concentrations were unaffected by genotype and LS-ACEI. In AQP1(-/-) mice, the number of afferent arterioles with recruitment was significantly lower compared with AQP1(+/+) mice after LS-ACEI. We conclude that AQP1 is not necessary for acutely stimulated renin secretion in vivo and from isolated perfused kidneys, whereas recruitment of renin-positive cells in response to chronic stimulation is attenuated or delayed in AQP1(-/-) mice.

  5. The grapevine tonoplast aquaporin TIP2;1 is a pressure gated water channel.

    PubMed

    Leitão, Luís; Prista, Catarina; Loureiro-Dias, Maria C; Moura, Teresa F; Soveral, Graça

    2014-07-18

    In plants, the vacuole is a multifunctional organelle with an important role in the maintenance of the intracellular space. Tonoplast membranes are highly permeable to water due to their content in aquaporins TIPs (Tonoplast Intrinsic Proteins) that allow the rapid water influx creating an internal turgor pressure responsible for cell expansion, elongation and shape. The aim of the present study was to evaluate if the grapevine Vitis vinifera TIP2;1 would operate as a possible volume regulator gated by membrane surface tension. For that, the wild type VvTIP2;1 and a non-functional mutated form were heterologous expressed in yeast. Using an experimental strategy in which cells are incubated in external media that induce an increase in internal hydrostatic pressure and consequently membrane surface tension, we were able to compare the osmotic permeability (Pf) and the activation energy for water transport (Ea) of yeast strains expressing the functional and a non-functional TIP2;1. We found Pf and Ea dependence on internal turgor pressure only for the strain harboring the functional aquaporin indicating that TIP2;1 activity is regulated by membrane tension changing from an open to a closed state in an internal pressure dependent manner. This turgor dependent gating of TIP2;1 might be a mechanism to regulate vacuolar size and shape in plants withstanding hostile drought conditions such as grapevine.

  6. Organ-Specific Splice Variants of Aquaporin Water Channel AgAQP1 in the Malaria Vector Anopheles gambiae

    PubMed Central

    Tsujimoto, Hitoshi; Liu, Kun; Linser, Paul J.; Agre, Peter; Rasgon, Jason L.

    2013-01-01

    Background Aquaporin (AQP) water channels are important for water homeostasis in all organisms. Malaria transmission is dependent on Anopheles mosquitoes. Water balance is a major factor influencing mosquito survival, which may indirectly affect pathogen transmission. Methodology/Principal Findings We obtained full-length mRNA sequences for Anopheles gambiae aquaporin 1 (AgAQP1) and identified two splice variants for the gene. In vitro expression analysis showed that both variants transported water and were inhibited by Hg2+. One splice variant (AgAQP1A) was exclusively expressed in adult female ovaries indicating a function in mosquito reproduction. The other splice variant (AgAQP1B) was expressed in the midgut, malpighian tubules and the head in adult mosquitoes. Immunolabeling showed that in malpighian tubules, AgAQP1 is expressed in principal cells in the proximal portion and in stellate cells in the distal portion. Moreover, AgAQP1 is expressed in Johnston’s organ (the “ear”), which is important for courtship behavior. Conclusions And Significance These results suggest that AgAQP1 may play roles associated with mating (courtship) and reproduction in addition to water homeostasis in this important African malaria vector. PMID:24066188

  7. Cell biological aspects of the vasopressin type-2 receptor and aquaporin 2 water channel in nephrogenic diabetes insipidus.

    PubMed

    Robben, Joris H; Knoers, Nine V A M; Deen, Peter M T

    2006-08-01

    In the renal collecting duct, water reabsorption is regulated by the antidiuretic hormone vasopressin (AVP). Binding of this hormone to the vasopressin V2 receptor (V2R) leads to insertion of aquaporin-2 (AQP2) water channels in the apical membrane, thereby allowing water reabsorption from the pro-urine to the interstitium. The disorder nephrogenic diabetes insipidus (NDI) is characterized by the kidney's inability to concentrate pro-urine in response to AVP, which is mostly acquired due to electrolyte disturbances or lithium therapy. Alternatively, NDI is inherited in an X-linked or autosomal fashion due to mutations in the genes encoding V2R or AQP2, respectively. This review describes the current knowledge of the cell biological causes of NDI and how these defects may explain the patients' phenotypes. Also, the increased understanding of these cellular defects in NDI has opened exciting initiatives in the development of novel therapies for NDI, which are extensively discussed in this review.

  8. Water Channels Aquaporin 4 and -1 Expression in Subependymoma Depends on the Localization of the Tumors

    PubMed Central

    Mack, Andreas F.; Hoffmeister, Maike; Beschorner, Rudi; Ritz, Rainer

    2015-01-01

    Background We analyzed aquaporin 4 and -1 expression in subependymomas, benign and slow growing brain tumors WHO grade I. Ten subependymoma cases were investigated, five of the fossa inferior and five of the fossa superior. Methods and Results Using immunohistochemistry, we observed different aquaporin expression patterns depending on localization: aquaporin 4 and -1 were detected in infratentorial subependymomas in the entire tumor tissue. In contrast, supratentorial subependymomas revealed aquaporin 4 and -1 expression only in border areas of the tumor. PCR analyses however showed no difference in aquaporin 4 expression between all subependymomas independent of localization but at higher levels than in normal brain. In contrast, aquaporin 1 RNA levels were found to be higher only in infratentorial samples compared to supratentorial and normal brain samples. The reason for the different distribution pattern of aquaporin 4 in subependymomas still remains unclear. On the cellular level, aquaporin 4 was redistributed on the surface of the tumor cells, and in freeze fracture replicas no orthogonal arrays of particles were found. This was similar to our previous findings in malignant glioblastomas. From these studies, we know that extracellular matrix molecules within the tumor like agrin and its receptor alpha-dystroglycan are involved in forming orthogonal arrays of particles. In subependymomas neither agrin nor alpha-dystroglycan were detected around blood vessels. Conclusions Taken together, we show in this study that in the benign subependymomas aquaporins 1 and 4 are dramatically redistributed and upregulated. We speculate that extracellular environments of infra- and supratentorial subependymomas are different and lead to different distribution patterns of aquaporin 4 and -1. PMID:26115524

  9. Glutathionylation of the aquaporin-2 water channel: a novel post-translational modification modulated by the oxidative stress.

    PubMed

    Tamma, Grazia; Ranieri, Marianna; Di Mise, Annarita; Centrone, Mariangela; Svelto, Maria; Valenti, Giovanna

    2014-10-03

    Aquaporin-2 (AQP2) is the vasopressin-regulated water channel that controls renal water reabsorption and urine concentration. AQP2 undergoes different regulated post-translational modifications, including phosphorylation and ubiquitylation, which are fundamental for controlling AQP2 cellular localization, stability, and function. The relationship between AQP2 and S-glutathionylation is of potential interest because reactive oxygen species (ROS), produced under renal failure or nephrotoxic drugs, may influence renal function as well as the expression and the activity of different transporters and channels, including aquaporins. Here, we show for the first time that AQP2 is subjected to S-glutathionylation in kidney and in HEK-293 cells stably expressing AQP2. S-Glutathionylation is a redox-dependent post-translational modification controlling several signal transduction pathways and displaying an acute effect on free cytosolic calcium concentration. Interestingly, we found that in fresh kidney slices, the increased AQP2 S-glutathionylation correlated with tert-butyl hydroperoxide-induced ROS generation. Moreover, we also found that cells expressing wild-type human calcium-sensing receptor (hCaSR-wt) and its gain of function (hCaSR-R990G; hCaSR-N124K) had a significant decrease in AQP2 S-glutathionylation secondary to reduced ROS levels and reduced basal intracellular calcium concentration compared with mock cells. Together, these new findings provide fundamental insight into cell biological aspects of AQP2 function and may be relevant to better understand and explain pathological states characterized by an oxidative stress and AQP2-dependent water reabsorption disturbs.

  10. Aquaporin water channel AgAQP1 in the malaria vector mosquito Anopheles gambiae during blood feeding and humidity adaptation

    PubMed Central

    Liu, Kun; Tsujimoto, Hitoshi; Cha, Sung-Jae; Agre, Peter; Rasgon, Jason L.

    2011-01-01

    Altered patterns of malaria endemicity reflect, in part, changes in feeding behavior and climate adaptation of mosquito vectors. Aquaporin (AQP) water channels are found throughout nature and confer high-capacity water flow through cell membranes. The genome of the major malaria vector mosquito Anopheles gambiae contains at least seven putative AQP sequences. Anticipating that transmembrane water movements are important during the life cycle of A. gambiae, we identified and characterized the A. gambiae aquaporin 1 (AgAQP1) protein that is homologous to AQPs known in humans, Drosophila, and sap-sucking insects. When expressed in Xenopus laevis oocytes, AgAQP1 transports water but not glycerol. Similar to mammalian AQPs, water permeation of AgAQP1 is inhibited by HgCl2 and tetraethylammonium, with Tyr185 conferring tetraethylammonium sensitivity. AgAQP1 is more highly expressed in adult female A. gambiae mosquitoes than in males. Expression is high in gut, ovaries, and Malpighian tubules where immunofluorescence microscopy reveals that AgAQP1 resides in stellate cells but not principal cells. AgAQP1 expression is up-regulated in fat body and ovary by blood feeding but not by sugar feeding, and it is reduced by exposure to a dehydrating environment (42% relative humidity). RNA interference reduces AgAQP1 mRNA and protein levels. In a desiccating environment (<20% relative humidity), mosquitoes with reduced AgAQP1 protein survive significantly longer than controls. These studies support a role for AgAQP1 in water homeostasis during blood feeding and humidity adaptation of A. gambiae, a major mosquito vector of human malaria in sub-Saharan Africa. PMID:21444767

  11. Aquaporin water channel AgAQP1 in the malaria vector mosquito Anopheles gambiae during blood feeding and humidity adaptation.

    PubMed

    Liu, Kun; Tsujimoto, Hitoshi; Cha, Sung-Jae; Agre, Peter; Rasgon, Jason L

    2011-04-12

    Altered patterns of malaria endemicity reflect, in part, changes in feeding behavior and climate adaptation of mosquito vectors. Aquaporin (AQP) water channels are found throughout nature and confer high-capacity water flow through cell membranes. The genome of the major malaria vector mosquito Anopheles gambiae contains at least seven putative AQP sequences. Anticipating that transmembrane water movements are important during the life cycle of A. gambiae, we identified and characterized the A. gambiae aquaporin 1 (AgAQP1) protein that is homologous to AQPs known in humans, Drosophila, and sap-sucking insects. When expressed in Xenopus laevis oocytes, AgAQP1 transports water but not glycerol. Similar to mammalian AQPs, water permeation of AgAQP1 is inhibited by HgCl(2) and tetraethylammonium, with Tyr185 conferring tetraethylammonium sensitivity. AgAQP1 is more highly expressed in adult female A. gambiae mosquitoes than in males. Expression is high in gut, ovaries, and Malpighian tubules where immunofluorescence microscopy reveals that AgAQP1 resides in stellate cells but not principal cells. AgAQP1 expression is up-regulated in fat body and ovary by blood feeding but not by sugar feeding, and it is reduced by exposure to a dehydrating environment (42% relative humidity). RNA interference reduces AgAQP1 mRNA and protein levels. In a desiccating environment (<20% relative humidity), mosquitoes with reduced AgAQP1 protein survive significantly longer than controls. These studies support a role for AgAQP1 in water homeostasis during blood feeding and humidity adaptation of A. gambiae, a major mosquito vector of human malaria in sub-Saharan Africa.

  12. Enhanced water and cryoprotectant permeability of porcine oocytes after artificial expression of human and zebrafish aquaporin-3 channels.

    PubMed

    Morató, Roser; Chauvigné, François; Novo, Sergi; Bonet, Sergi; Cerdà, Joan

    2014-05-01

    One of the major obstacles for the vitrification of mature porcine oocytes with ethylene glycol is their low permeability to this cryoprotectant, which results in osmotic stress-induced cell damage and low survival. Pig blastocysts, on the other hand, show enhanced water and cryoprotectant permeability, which has been related to the transcriptional activation of aquaporin-3 (AQP3) channels at this stage of development. In this study, we asked if expression of cRNAs encoding two aquaglyceroporins, human AQP3 (hAQP3) or the zebrafish Aqp3b-T85A mutant, in porcine oocytes can increase their permeability. Microinjection of germinal-vesicle-stage oocytes with enhanced green fluorescent protein (EGFP) or AQP3 cRNAs resulted in the expression of the corresponding proteins in ∼26% of the metaphase-II stage oocytes at 40-44 hr of in vitro culture; co-injection of EGFP cRNA appeared to be a suitable marker for oocyte selection since all EGFP-positive oocytes also expressed the corresponding aquaporin. Using this method, we found that mature oocytes co-expressing EGFP and hAQP3 or EGFP and Aqp3b-T85A showed approximately a twofold increase of the hydraulic conductivity (Lp ) with respect non-injected or EGFP alone-injected oocytes in a 0.43 M sucrose or 1.3 M ethylene glycol solution, whereas the ethylene glycol permeability (PEG ) of EGFP + hAQP3 and EGFP + Aqp3b-T85A oocytes was 6.7- and 12-fold higher, respectively, than control oocytes. These data demonstrate that the artificial expression of aquaglyceroporins in porcine metaphase-II oocytes improves their permeability, and that the zebrafish Aqp3b-T85A mutant is more efficient than the human channel at increasing the oocyte permeability to ethylene glycol.

  13. Novel mutations in aquaporin-2 gene in female siblings with nephrogenic diabetes insipidus: evidence of disrupted water channel function.

    PubMed

    Goji, K; Kuwahara, M; Gu, Y; Matsuo, M; Marumo, F; Sasaki, S

    1998-09-01

    Novel mutations of the aquaporin-2 (AQP2) gene have been detected in Japanese female siblings with autosomal-recessive nephrogenic diabetes insipidus. The patients were compound heterozygote for point mutations at nucleotide position 374 (C374T) and at position 523 (G523A) in exon 2 of the AQP2 gene, resulting in substitution of methionine for threonine at codon 125 (T125M) and arginine for glycine at codon 175 (G175R). The water permeability (Pf) of oocytes injected with wild-type complementary RNA increased 9.0-fold compared with the Pf of water-injected oocytes, whereas the increases in the Pf of oocytes injected with T125M and G175R complementary RNA were only 1.7-fold and 1.5-fold, respectively. Immunoblot and immunocytochemistry indicated that the plasma membrane expressions of T125M and G175R AQP2 proteins were comparable to that of the wild-type, suggesting that although neither the T125M nor G175R mutation had a significant effect on plasma membrane expression, they both distorted the structure and function of the aqueous pore of AQP2. These results provide evidence that the nephrogenic diabetes insipidus in patients with T125M and G175R mutations is attributable not to the misrouting of AQP2, but to the disrupted water channel function.

  14. The water channel aquaporin-1a1 facilitates movement of CO₂ and ammonia in zebrafish (Danio rerio) larvae.

    PubMed

    Talbot, Krystle; Kwong, Raymond W M; Gilmour, Kathleen M; Perry, Steve F

    2015-12-01

    The present study tested the hypothesis that zebrafish (Danio rerio) aquaporin-1a1 (AQP1a1) serves as a multi-functional channel for the transfer of the small gaseous molecules, CO2 and ammonia, as well as water, across biological membranes. Zebrafish embryos were microinjected with a translation-blocking morpholino oligonucleotide targeted to AQP1a1. Knockdown of AQP1a1 significantly reduced rates of CO2 and ammonia excretion, as well as water fluxes, in larvae at 4 days post fertilization (dpf). Because AQP1a1 is expressed both in ionocytes present on the body surface and in red blood cells, the haemolytic agent phenylhydrazine was used to distinguish between the contributions of AQP1a1 to gas transfer in these two locations. Phenylhydrazine treatment had no effect on AQP1a1-linked excretion of CO2 or ammonia, providing evidence that AQP1a1 localized to the yolk sac epithelium, rather than red blood cell AQP1a1, is the major site of CO2 and ammonia movements. The possibility that AQP1a1 and the rhesus glycoprotein Rhcg1, which also serves as a dual CO2 and ammonia channel, act in concert to facilitate CO2 and ammonia excretion was explored. Although knockdown of each protein did not affect the abundance of mRNA and protein of the other protein under control conditions, impairment of ammonia excretion by chronic exposure to high external ammonia triggered a significant increase in the abundance of AQP1a1 mRNA and protein in 4 dpf larvae experiencing Rhcg1 knockdown. Collectively, these results suggest that AQP1a1 in zebrafish larvae facilitates the movement of CO2 and ammonia, as well as water, in a physiologically relevant fashion.

  15. The water channel protein aquaporin 1 regulates cellular metabolism and competitive fitness in a global fungal pathogen Cryptococcus neoformans.

    PubMed

    Meyers, Gena Lee; Jung, Kwang-Woo; Bang, Soohyun; Kim, Jungyeon; Kim, Sooah; Hong, Joohyeon; Cheong, Eunji; Kim, Kyoung Heon; Bahn, Yong-Sun

    2017-03-02

    In this study, an aquaporin protein, Aqp1, in Cryptococcus neoformans, which can lead either saprobic or parasitic lifestyles and causes life-threatening fungal meningitis was identified and characterized. AQP1 expression was rapidly induced (via the HOG pathway) by osmotic or oxidative stress. In spite of such transcriptional regulation, Aqp1 was found to be largely unnecessary for adaptation to diverse environmental stressors, regardless of the presence of the polysaccharide capsule. The latter is shown here to be a key environmental-stress protectant for C. neoformans. Furthermore, Aqp1 was not required for the development and virulence of C. neoformans. Deletion of AQP1 increased hydrophobicity of the cell surface. The comparative metabolic profiling analysis of the aqp1Δ mutant and AQP1-overexpressing strains revealed that deletion of AQP1 significantly increased cellular accumulation of primary and secondary metabolites, whereas overexpression of AQP1 depleted such metabolites, suggesting that this water channel protein performs a critical function in metabolic homeostasis. In line with this result, it was found that the aqp1Δ mutant (which is enriched with diverse metabolites) survived better than the wild type and a complemented strain, indicating that Aqp1 is likely to be involved in competitive fitness of this fungal pathogen.

  16. Regulation of Macrophage Motility by the Water Channel Aquaporin-1: Crucial Role of M0/M2 Phenotype Switch

    PubMed Central

    Tyteca, Donatienne; Nishino, Tomoya; Debaix, Huguette; Van Der Smissen, Patrick; N'Kuli, Francisca; Hoffmann, Delia; Cnops, Yvette; Rabolli, Virginie; van Loo, Geert; Beyaert, Rudi; Huaux, François; Devuyst, Olivier; Courtoy, Pierre J.

    2015-01-01

    The water channel aquaporin-1 (AQP1) promotes migration of many cell types. Although AQP1 is expressed in macrophages, its potential role in macrophage motility, particularly in relation with phenotype polarization, remains unknown. We here addressed these issues in peritoneal macrophages isolated from AQP1-deficient mice, either undifferentiated (M0) or stimulated with LPS to orientate towards pro-inflammatory phenotype (classical macrophage activation; M1). In non-stimulated macrophages, ablation of AQP1 (like inhibition by HgCl2) increased by 2–3 fold spontaneous migration in a Src/PI3K/Rac-dependent manner. This correlated with cell elongation and formation of lamellipodia/ruffles, resulting in membrane lipid and F4/80 recruitment to the leading edge. This indicated that AQP1 normally suppresses migration of resting macrophages, as opposed to other cell types. Resting Aqp1-/- macrophages exhibited CD206 redistribution into ruffles and increased arginase activity like IL4/IL13 (alternative macrophage activation; M2), indicating a M0-M2 shift. In contrast, upon M1 orientation by LPS in vitro or peritoneal inflammation in vivo, migration of Aqp1-/- macrophages was reduced. Taken together, these data indicate that AQP1 oppositely regulates macrophage migration, depending on stimulation or not by LPS, and that macrophage phenotypic and migratory changes may be regulated independently of external cues. PMID:25719758

  17. Involvement of MAPK ERK activation in upregulation of water channel protein aquaporin 1 in a mouse model of Bell's palsy.

    PubMed

    Fang, Fan; Liu, Cai-Yue; Zhang, Jie; Zhu, Lie; Qian, Yu-Xin; Yi, Jing; Xiang, Zheng-Hua; Wang, Hui; Jiang, Hua

    2015-05-01

    The aim of this study is to immunolocalize the aquaporin 1 water channel protein (AQP1) in Schwann cells of idiopathic facial nerve and explore its possible role during the development of facial palsy induced by herpes simplex virus type 1 (HSV-1). HSV-1 was inoculated into the surface of posterior auricle of mouse to establish a paralyzed animal model. In HSV-1-induced facial palsy mice, protein levels of AQP1 significantly increased on the 9th to 16th day after inoculation of HSV-1. The upregulation of AQP1 was closely related to the intratemporal facial nerve edema in facial nerve canal, which was also consistent with the symptom of facial palsy in mice. In a hypoxia model of Schwann cells in vitro, we found that U0126, an ERK antagonist, inhibited not only morphological changes of cultures Schwann cells but also upregulation of both AQP1 and phosphorylated ERK. Combined with increased phosphorylated ERK in HSV-1-induced facial palsy mice, we inferred that ERK MAPK pathway might also be involved in increased AQP1 in mouse model of Bell's palsy. Although the precise mechanism needs to be further explored, our findings suggest that AQP1 in Schwann cells of intratemporal facial nerve is involved in the evolution of facial palsy induced by HSV-1 and may play an important role in the pathogenesis of this disease. AQP1 might be a potential target, and the ERK antagonist U0126 could be a new drug for the treatment of HSV-1-induced Bell's palsy in an early stage.

  18. Identification and characterization of functional aquaporin water channel protein from alimentary tract of whitefly, Bemisia tabaci

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some hemipteran xylem and phloem feeding insects have evolved specialized alimentary structures or filter chambers that rapidly transport water for excretion or osmoregulation. In the whitefly, Bemisia tabaci, mass movement of water through opposing alimentary tract tissues within the filter chamber...

  19. Sialadenosis of the major salivary glands in a patient with central diabetes insipidus--implications of aquaporin water channels in the pathomechanism of sialadenosis.

    PubMed

    Mandic, R; Teymoortash, A; Kann, P H; Werner, J A

    2005-04-01

    Sialadenosis, also referred to as sialosis, is a disease of unknown aetiology. It regularly manifests itself as a massive swelling in both parotid regions involving the major salivary glands, preferably the parotid glands and is characterized by lack of any detectable, underlying pathologies. In this case report we describe a 24-year-old white female patient with diabetes insipidus who developed sialadenosis of the major salivary glands during a period of enhanced water requirement, which the patient tried to compensate for by more frequent nasal ADH application. Since ADH acts on aquaporins (AQPs) in the kidney, we were interested if AQP expression in the patients salivary glands was affected. Surprisingly, compared to normal control tissues we observed an extensively high signal for AQP5, which is the dominant AQP found in salivary acinar cells. Interestingly, previous studies on AQP5 knock out mice found AQP5 to be required for cell volume regulation. We therefore suggest that aquaporin water channels and antidiuretic hormone together with a disturbance in the body's water household are potential key-factors in the pathophysiological events leading to the development of the disease entity called sialadenosis.

  20. The Aquaporin Channel Repertoire of the Tardigrade Milnesium tardigradum.

    PubMed

    Grohme, Markus A; Mali, Brahim; Wełnicz, Weronika; Michel, Stephanie; Schill, Ralph O; Frohme, Marcus

    2013-01-01

    Limno-terrestrial tardigrades are small invertebrates that are subjected to periodic drought of their micro-environment. They have evolved to cope with these unfavorable conditions by anhydrobiosis, an ametabolic state of low cellular water. During drying and rehydration, tardigrades go through drastic changes in cellular water content. By our transcriptome sequencing effort of the limno-terrestrial tardigrade Milnesium tardigradum and by a combination of cloning and targeted sequence assembly, we identified transcripts encoding eleven putative aquaporins. Analysis of these sequences proposed 2 classical aquaporins, 8 aquaglyceroporins and a single potentially intracellular unorthodox aquaporin. Using quantitative real-time PCR we analyzed aquaporin transcript expression in the anhydrobiotic context. We have identified additional unorthodox aquaporins in various insect genomes and have identified a novel common conserved structural feature in these proteins. Analysis of the genomic organization of insect aquaporin genes revealed several conserved gene clusters.

  1. Structural Determinants of Oligomerization of the Aquaporin-4 Channel.

    PubMed

    Kitchen, Philip; Conner, Matthew T; Bill, Roslyn M; Conner, Alex C

    2016-03-25

    The aquaporin (AQP) family of integral membrane protein channels mediate cellular water and solute flow. Although qualitative and quantitative differences in channel permeability, selectivity, subcellular localization, and trafficking responses have been observed for different members of the AQP family, the signature homotetrameric quaternary structure is conserved. Using a variety of biophysical techniques, we show that mutations to an intracellular loop (loop D) of human AQP4 reduce oligomerization. Non-tetrameric AQP4 mutants are unable to relocalize to the plasma membrane in response to changes in extracellular tonicity, despite equivalent constitutive surface expression levels and water permeability to wild-type AQP4. A network of AQP4 loop D hydrogen bonding interactions, identified using molecular dynamics simulations and based on a comparative mutagenic analysis of AQPs 1, 3, and 4, suggest that loop D interactions may provide a general structural framework for tetrameric assembly within the AQP family.

  2. The Trafficking of the Water Channel Aquaporin-2 in Renal Principal Cells—a Potential Target for Pharmacological Intervention in Cardiovascular Diseases

    PubMed Central

    Vukićević, Tanja; Schulz, Maike; Faust, Dörte; Klussmann, Enno

    2016-01-01

    Arginine-vasopressin (AVP) stimulates the redistribution of water channels, aquaporin-2 (AQP2) from intracellular vesicles into the plasma membrane of renal collecting duct principal cells. By this AVP directs 10% of the water reabsorption from the 170 L of primary urine that the human kidneys produce each day. This review discusses molecular mechanisms underlying the AVP-induced redistribution of AQP2; in particular, it provides an overview over the proteins participating in the control of its localization. Defects preventing the insertion of AQP2 into the plasma membrane cause diabetes insipidus. The disease can be acquired or inherited, and is characterized by polyuria and polydipsia. Vice versa, up-regulation of the system causing a predominant localization of AQP2 in the plasma membrane leads to excessive water retention and hyponatremia as in the syndrome of inappropriate antidiuretic hormone secretion (SIADH), late stage heart failure or liver cirrhosis. This article briefly summarizes the currently available pharmacotherapies for the treatment of such water balance disorders, and discusses the value of newly identified mechanisms controlling AQP2 for developing novel pharmacological strategies. Innovative concepts for the therapy of water balance disorders are required as there is a medical need due to the lack of causal treatments. PMID:26903868

  3. Optimizing water permeability through the hourglass shape of aquaporins

    PubMed Central

    Gravelle, Simon; Joly, Laurent; Detcheverry, François; Ybert, Christophe; Cottin-Bizonne, Cécile; Bocquet, Lydéric

    2013-01-01

    The ubiquitous aquaporin channels are able to conduct water across cell membranes, combining the seemingly antagonist functions of a very high selectivity with a remarkable permeability. Whereas molecular details are obvious keys to perform these tasks, the overall efficiency of transport in such nanopores is also strongly limited by viscous dissipation arising at the connection between the nanoconstriction and the nearby bulk reservoirs. In this contribution, we focus on these so-called entrance effects and specifically examine whether the characteristic hourglass shape of aquaporins may arise from a geometrical optimum for such hydrodynamic dissipation. Using a combination of finite-element calculations and analytical modeling, we show that conical entrances with suitable opening angle can indeed provide a large increase of the overall channel permeability. Moreover, the optimal opening angles that maximize the permeability are found to compare well with the angles measured in a large variety of aquaporins. This suggests that the hourglass shape of aquaporins could be the result of a natural selection process toward optimal hydrodynamic transport. Finally, in a biomimetic perspective, these results provide guidelines to design artificial nanopores with optimal performances. PMID:24067650

  4. Aquaporins and root water relations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water is one of the most critical resources limiting plant growth and crop productivity, and root water uptake is an important aspect of plant physiology governing plant water use and stress tolerance. Pathways of root water uptake are complex and are affected by root structure and physiological res...

  5. Aquaporin-1 facilitates pressure-driven water flow across the aortic endothelium

    PubMed Central

    Nguyen, Tieuvi; Toussaint, Jimmy; Xue, Yan; Raval, Chirag; Cancel, Limary; Russell, Stewart; Shou, Yixin; Sedes, Omer; Sun, Yu; Yakobov, Roman; Tarbell, John M.; Jan, Kung-ming

    2015-01-01

    Aquaporin-1, a ubiquitous water channel membrane protein, is a major contributor to cell membrane osmotic water permeability. Arteries are the physiological system where hydrostatic dominates osmotic pressure differences. In the present study, we show that the walls of large conduit arteries constitute the first example where hydrostatic pressure drives aquaporin-1-mediated transcellular/transendothelial flow. We studied cultured aortic endothelial cell monolayers and excised whole aortas of male Sprague-Dawley rats with intact and inhibited aquaporin-1 activity and with normal and knocked down aquaporin-1 expression. We subjected these systems to transmural hydrostatic pressure differences at zero osmotic pressure differences. Impaired aquaporin-1 endothelia consistently showed reduced engineering flow metrics (transendothelial water flux and hydraulic conductivity). In vitro experiments with tracers that only cross the endothelium paracellularly showed that changes in junctional transport cannot explain these reductions. Percent reductions in whole aortic wall hydraulic conductivity with either chemical blocking or knockdown of aquaporin-1 differed at low and high transmural pressures. This observation highlights how aquaporin-1 expression likely directly influences aortic wall mechanics by changing the critical transmural pressure at which its sparse subendothelial intima compresses. Such compression increases transwall flow resistance. Our endothelial and historic erythrocyte membrane aquaporin density estimates were consistent. In conclusion, aquaporin-1 significantly contributes to hydrostatic pressure-driven water transport across aortic endothelial monolayers, both in culture and in whole rat aortas. This transport, and parallel junctional flow, can dilute solutes that entered the wall paracellularly or through endothelial monolayer disruptions. Lower atherogenic precursor solute concentrations may slow their intimal entrainment kinetics. PMID:25659484

  6. Hydrocephalus: the role of cerebral aquaporin-4 channels and computational modeling considerations of cerebrospinal fluid.

    PubMed

    Desai, Bhargav; Hsu, Ying; Schneller, Benjamin; Hobbs, Jonathan G; Mehta, Ankit I; Linninger, Andreas

    2016-09-01

    Aquaporin-4 (AQP4) channels play an important role in brain water homeostasis. Water transport across plasma membranes has a critical role in brain water exchange of the normal and the diseased brain. AQP4 channels are implicated in the pathophysiology of hydrocephalus, a disease of water imbalance that leads to CSF accumulation in the ventricular system. Many molecular aspects of fluid exchange during hydrocephalus have yet to be firmly elucidated, but review of the literature suggests that modulation of AQP4 channel activity is a potentially attractive future pharmaceutical therapy. Drug therapy targeting AQP channels may enable control over water exchange to remove excess CSF through a molecular intervention instead of by mechanical shunting. This article is a review of a vast body of literature on the current understanding of AQP4 channels in relation to hydrocephalus, details regarding molecular aspects of AQP4 channels, possible drug development strategies, and limitations. Advances in medical imaging and computational modeling of CSF dynamics in the setting of hydrocephalus are summarized. Algorithmic developments in computational modeling continue to deepen the understanding of the hydrocephalus disease process and display promising potential benefit as a tool for physicians to evaluate patients with hydrocephalus.

  7. Water Transport in Aquaporins: Osmotic Permeability Matrix Analysis of Molecular Dynamics Simulations

    PubMed Central

    Hashido, Masanori; Kidera, Akinori; Ikeguchi, Mitsunori

    2007-01-01

    Single-channel osmotic water permeability (pf) is a key quantity for investigating the transport capability of the water channel protein, aquaporin. However, the direct connection between the single scalar quantity pf and the channel structure remains unclear. In this study, based on molecular dynamics simulations, we propose a pf-matrix method, in which pf is decomposed into contributions from each local region of the channel. Diagonal elements of the pf matrix are equivalent to the local permeability at each region of the channel, and off-diagonal elements represent correlated motions of water molecules in different regions. Averaging both diagonal and off-diagonal elements of the pf matrix recovers pf for the entire channel; this implies that correlated motions between distantly-separated water molecules, as well as adjacent water molecules, influence the osmotic permeability. The pf matrices from molecular dynamics simulations of five aquaporins (AQP0, AQP1, AQP4, AqpZ, and GlpF) indicated that the reduction in the water correlation across the Asn-Pro-Ala region, and the small local permeability around the ar/R region, characterize the transport efficiency of water. These structural determinants in water permeation were confirmed in molecular dynamics simulations of three mutants of AqpZ, which mimic AQP1. PMID:17449664

  8. Water adaptation strategy in anuran amphibians: molecular diversity of aquaporin.

    PubMed

    Ogushi, Yuji; Akabane, Gen; Hasegawa, Takahiro; Mochida, Hiroshi; Matsuda, Manabu; Suzuki, Masakazu; Tanaka, Shigeyasu

    2010-01-01

    Most adult anuran amphibians except for the aquatic species absorb water across the ventral pelvic skin and reabsorb it from urine in the urinary bladder. Many terrestrial and arboreal species use a region in the posterior or pelvic region of the ventral skin that is specialized for rapid rehydration from shallow water sources or moist substrates. Periods of terrestrial activity can be prolonged by reabsorption of dilute urine from the urinary bladder. Aquaporin (AQP), a water channel protein, plays a fundamental role in these water absorption/reabsorption processes, which are regulated by antidiuretic hormone. Characterization of AQPs from various anurans revealed that the unique water homeostasis is basically mediated by two types of anuran-specific AQPs, i.e. ventral pelvic skin and urinary bladder type, respectively. The bladder-type AQP is further expressed in the pelvic skin of terrestrial and arboreal species, together with the pelvic skin-type AQP. In contrast, the pelvic skin-type AQP (AQP-x3) of the aquatic Xenopus has lost the ability of efficient protein production. The extra C-terminal tail in AQP-x3 consisting of 33 nucleotides within the coding region appears to participate in the posttranscriptional regulation of AQP-x3 gene expression by attenuating protein expression. The positive transcriptional regulation of bladder-type AQP in the pelvic skin and negative posttranscriptional regulation of pelvic skin-type AQP provide flexibility in the water regulation mechanisms, which might have contributed to the evolutionary adaptation of anurans to a wide variety of water environments.

  9. [Lithium and its relation with the epithelial sodium channel and aquaporin-2].

    PubMed

    Galizia, Luciano; Marino, Gabriela I; Kotsias, Basilio A

    2012-01-01

    For more than 40 years lithium has been used to treat bipolar disorder and recent trials suggest a potential efficacy also in the treatment of the amnestic mild cognitive impairment. Lithium is filtered by the glomerulus and 65% - 75% of the filtered amount is reabsorbed along the proximal tubule and in the thick ascending limb of Henle's loop by the Na+, K+, 2Cl- transporter and via paracellular. A small fraction of lithium is reabsorbed in the collecting duct's principal cells through the epithelial Na channel (ENaC) located on the apical side of the cells. Polyuria, renal tubular acidosis and chronic renal failure are the most frequent adverse effects of lithium after 10-20 years of treatment and these alterations can reach to a vasopressin nonresponding form of diabetes insipidus entity called nephrogenic diabetes insipidus. It is believed that the molecular mechanisms of these renal changes are related to a reduction in the number of aquaporin-2 inserted in the apical membrane of the cells. The causes of this are complex. Lithium is a powerful inhibitor of the enzyme glycogen synthase kinase 3β and this is associated with a lower activity of adenylate cyclase with a reduction in the cAMP levels inside of the cells. The latter may interfere with the synthesis of aquaporin-2 and also with the traffic of these molecules from the subapical site to membrane promoting the impairment of water reabsorption in the distal part of the kidney.

  10. Dysregulation of renal aquaporins and epithelial sodium channel in lithium-induced nephrogenic diabetes insipidus.

    PubMed

    Nielsen, Jakob; Kwon, Tae-Hwan; Christensen, Birgitte Mønster; Frøkiaer, Jørgen; Nielsen, Søren

    2008-05-01

    Lithium is used commonly to treat bipolar mood disorders. In addition to its primary therapeutic effects in the central nervous system lithium has a number of side effects in the kidney. The side effects include nephrogenic diabetes insipidus with polyuria, mild sodium wasting, and changes in acid/base balance. These functional changes are associated with marked structural changes in collecting duct cell composition and morphology, likely contributing to the functional changes. Over the past few years, investigations of lithium-induced renal changes have provided novel insight into the molecular mechanisms that are responsible for the disturbances in water, sodium, and acid/base metabolism. This includes dysregulation of renal aquaporins, epithelial sodium channel, and acid/base transporters. This review focuses on these issues with the aim to present this in context with clinically relevant features.

  11. Routes of Epithelial Water Flow: Aquaporins versus Cotransporters

    PubMed Central

    Mollajew, Rustam; Zocher, Florian; Horner, Andreas; Wiesner, Burkhard; Klussmann, Enno; Pohl, Peter

    2010-01-01

    The routes water takes through membrane barriers is still a matter of debate. Although aquaporins only allow transmembrane water movement along an osmotic gradient, cotransporters are believed to be capable of water transport against the osmotic gradient. Here we show that the renal potassium-chloride-cotransporter (KCC1) does not pump a fixed amount of water molecules per movement of one K+ and one Cl−, as was reported for the analogous transporter in the choroid plexus. We monitored water and potassium fluxes through monolayers of primary cultured renal epithelial cells by detecting tiny solute concentration changes in the immediate vicinity of the monolayer. KCC1 extruded K+ ions in the presence of a transepithelial K+ gradient, but did not transport water. KCC1 inhibition reduced epithelial osmotic water permeability Pf by roughly one-third, i.e., the effect of inhibitors was small in resting cells and substantial in hormonal stimulated cells that contained high concentrations of aquaporin-2 in their apical membranes. The furosemide or DIOA (dihydroindenyl-oxy-alkanoic acid)-sensitive water flux was much larger than expected when water passively followed the KCC1-mediated ion flow. The inhibitory effect of these drugs on water flux was reversed by the K+–H+ exchanger nigericin, indicating that KCC1 affects water transport solely by K+ extrusion. Intracellular K+ retention conceivably leads to cell swelling, followed by an increased rate of endocytic AQP2 retrieval from the apical membrane. PMID:21112289

  12. Root aquaporins contribute to whole plant water fluxes under drought stress in rice (Oryza sativa L.).

    PubMed

    Grondin, Alexandre; Mauleon, Ramil; Vadez, Vincent; Henry, Amelia

    2016-02-01

    Aquaporin activity and root anatomy may affect root hydraulic properties under drought stress. To better understand the function of aquaporins in rice root water fluxes under drought, we studied the root hydraulic conductivity (Lpr) and root sap exudation rate (Sr) in the presence or absence of an aquaporin inhibitor (azide) under well-watered conditions and following drought stress in six diverse rice varieties. Varieties varied in Lpr and Sr under both conditions. The contribution of aquaporins to Lpr was generally high (up to 79% under well-watered conditions and 85% under drought stress) and differentially regulated under drought. Aquaporin contribution to Sr increased in most varieties after drought, suggesting a crucial role for aquaporins in osmotic water fluxes during drought and recovery. Furthermore, root plasma membrane aquaporin (PIP) expression and root anatomical properties were correlated with hydraulic traits. Three chromosome regions highly correlated with hydraulic traits of the OryzaSNP panel were identified, but did not co-locate with known aquaporins. These results therefore highlight the importance of aquaporins in the rice root radial water pathway, but emphasize the complex range of additional mechanisms related to root water fluxes and drought response.

  13. TRANSLUCENT GREEN, an ERF family transcription factor, controls water balance in Arabidopsis by activating the expression of aquaporin genes.

    PubMed

    Zhu, Danling; Wu, Zhe; Cao, Guangyu; Li, Jigang; Wei, Jia; Tsuge, Tomohiko; Gu, Hongya; Aoyama, Takashi; Qu, Li-Jia

    2014-04-01

    Water is the most abundant molecule in almost all living organisms. Aquaporins are channel proteins that play critical roles in controlling the water content of cells. Here, we report the identification of an AP2/EREBP family transcription factor in Arabidopsis thaliana, TRANSLUCENT GREEN (TG), whose overexpression in transgenic plants gave enhanced drought tolerance and vitrified leaves. TG protein is localized in the nucleus, binds DRE and GCC elements in vitro, and acts as a transcriptional activator in yeast cells. Microarray analysis revealed a total of 330 genes regulated by TG, among which five genes encode aquaporins. A transient expression assay showed that TG directly binds to the promoters of three aquaporin genes, such as AtTIP1;1, AtTIP2;3, and AtPIP2;2, indicating that TG directly regulates the expression of these genes. Moreover, overexpression of AtTIP1;1 resulted in vitrified phenotypes in transgenic Arabidopsis plants, similar to those observed in TG overexpression lines. Water injection into wild-type leaves recapitulated the vitrified leaf phenotypes, which was reversed by cutting off the water supply from vascular bundles. Taken together, our data support that TG controls water balance in Arabidopsis through directly activating the expression of aquaporin genes.

  14. Ion channels or aquaporins as novel molecular targets in gastric cancer.

    PubMed

    Xia, Jianling; Wang, Hongqiang; Li, Shi; Wu, Qinghui; Sun, Li; Huang, Hongxiang; Zeng, Ming

    2017-03-06

    Gastric cancer (GC) is a common disease with few effective treatment choices and poor prognosis, and has the second-highest mortality rates among all cancers worldwide. Dysregulation and/or malfunction of ion channels or aquaporins (AQPs) are common in various human cancers. Furthermore, ion channels are involved in numerous important aspects of the tumor aggressive phonotype, such as proliferation, cell cycle, apoptosis, motility, migration, and invasion. Indeed, by localizing in the plasma membrane, ion channels or AQPs can sense and respond to extracellular environment changes; thus, they play a crucial role in cell signaling and cancer progression. These findings have expanded a new area of pharmaceutical exploration for various types of cancer, including GC. The involvement of multiple ion channels, such as voltage-gated potassium and sodium channels, intracellular chloride channels, 'transient receptor potential' channels, and AQPs, which have been shown to facilitate the pathogenesis of other tumors, also plays a role in GC. In this review, an overview of ion channel and aquaporin expression and function in carcinogenesis of GC is presented. Studies of ion channels or AQPs will advance our understanding of the molecular genesis of GC and may identify novel and effective targets for the clinical application of GC.

  15. D184E mutation in aquaporin-4 gene impairs water permeability and links to deafness.

    PubMed

    Nicchia, G P; Ficarella, R; Rossi, A; Giangreco, I; Nicolotti, O; Carotti, A; Pisani, F; Estivill, X; Gasparini, P; Svelto, M; Frigeri, A

    2011-12-01

    Aquaporins (AQPs) play a physiological role in several organs and tissues, and their alteration is associated with disorders of water regulation. The identification of molecular interactions, which are crucial in determining the rate of water flux through the channel, is of pivotal role for the discovery of molecules able to target those interactions and therefore to be used for pathologies ascribable to an altered AQP-dependent water balance. In the present study, a mutational screening of human aquaporin-4 (AQP4) gene was performed on subjects with variable degrees of hearing loss. One heterozygous missense mutation was identified in a Spanish sporadic case, leading to an Asp/Glu amino acid substitution at position 184 (D184E). A BLAST analysis revealed that the amino acid D184 is conserved across species, consistently with a crucial role in the structure/function of AQP4 water channels. The mutation induces a significant reduction in water permeability as measured by the Xenopus laevis oocytes swelling assay and by the use of mammalian cells by total internal reflection microscopy. By Western blot, immunofluorescence and 2D Blue Native/SDS-PAGE we show that the reduction in water permeability is not ascribable to a reduced expression of AQP4 mutant protein or to its incorrect plasma membrane targeting and aggregation into orthogonal arrays of particles. Molecular dynamics simulation provided a molecular explanation of the mechanism whereby the mutation induces a loss of function of the channel. Substituting glutamate for aspartate affects the mobility of the D loop, which acquires a higher propensity to equilibrate in a "closed conformation", thus affecting the rate of water flux. We speculate that this mutation, combined with other genetic defects or concurrently with certain environmental stimuli, could confer a higher susceptibility to deafness.

  16. Detecting aquaporin function and regulation

    NASA Astrophysics Data System (ADS)

    Madeira, Ana; Moura, Teresa; Soveral, Graça

    2016-02-01

    Water is the major component of cells and tissues throughout all forms of life. Fluxes of water and solutes through cell membranes and epithelia are essential for osmoregulation and energy homeostasis. Aquaporins are membrane channels expressed in almost every organism and involved in the bidirectional transfer of water and small solutes across cell membranes. Aquaporins have important biological roles and have been implicated in several pathophysiological conditions suggesting a great translational potential in aquaporin-based diagnostic and therapeutics. Detecting aquaporin function is critical for assessing regulation and screening for new activity modulators that can prompt the development of efficient medicines. Appropriate methods for functional analysis comprising suitable cell models and techniques to accurately evaluate water and solute membrane permeability are essential to validate aquaporin function and assess short-term regulation. The present review describes established assays commonly used to assess aquaporin function in cells and tissues, as well as the experimental biophysical strategies required to reveal functional regulation and identify modulators, the first step for aquaporin drug discovery.

  17. Differential expression of inwardly rectifying K+ channels and aquaporins 4 and 5 in autoimmune uveitis indicates misbalance in Müller glial cell-dependent ion and water homeostasis.

    PubMed

    Eberhardt, Christina; Amann, Barbara; Feuchtinger, Annette; Hauck, Stefanie M; Deeg, Cornelia A

    2011-05-01

    Reactive gliosis is a well-established response to virtually every retinal disease. Autoimmune uveitis, a sight threatening disease, is characterized by recurrent relapses through autoaggressive T-cells. The purpose of this study was to assess retinal Müller glial cell function in equine recurrent uveitis (ERU), a spontaneous disease model resembling the human disease, by investigating membrane proteins implicated in ion and water homeostasis. We found that Kir2.1 was highly expressed in diseased retinas, whereas Kir4.1 was downregulated in comparison to controls. Distribution of Kir2.1 appeared Müller cell associated in controls, whereas staining of cell somata in the inner nuclear layer was observed in uveitis. In contrast to other subunits, Kir4.1 was evenly expressed along equine Müller cells, whereas in ERU, Kir4.1 almost disappeared from Müller cells. Hence, we suggest a different mechanism for potassium buffering in the avascular equine retina and, moreover, an impairment in uveitis. Uveitic retinas showed significantly increased expression of AQP4 as well as a displaced expression from Müller cells in healthy specimens to an intense circular expression pattern in the outer nuclear layer in ERU cases. Most interestingly, we detected the aquaporin family member protein AQP5 to be expressed in Müller cells with strong enrichments in Müller cell secondary processes. This finding indicates that fluid regulation within the equine retina may be achieved by an additional aquaporin. Furthermore, AQP5 was significantly decreased in uveitis. We conclude that the Müller cell response in autoimmune uveitis implies considerable changes in its potassium and water physiology.

  18. Foliar trichome- and aquaporin-aided water uptake in a drought-resistant epiphyte Tillandsia ionantha Planchon.

    PubMed

    Ohrui, T; Nobira, H; Sakata, Y; Taji, T; Yamamoto, C; Nishida, K; Yamakawa, T; Sasuga, Y; Yaguchi, Y; Takenaga, H; Tanaka, Shigeo

    2007-12-01

    The atmospheric epiphyte Tillandsia ionantha is capable of surviving drought stress for 6 months or more without any exogenous water supply via an as of yet to be determined mechanism. When plants were soaked in water for 3 h, leaves absorbed a remarkably large amount of water (30-40% on the basis of fresh weight), exhibiting a bimodal absorption pattern. Radiolabeled water was taken up by the leaves by capillary action of the epidermal trichomes within 1 min (phase 1) and then transported intracellularly to leaf tissues over 3 h (phase 2). The removal of epidermal trichome wings from leaves as well as rinsing leaves with water significantly lowered the extracellular accumulation of water on leaf surfaces. The intracellular transport of water was inhibited by mercuric chloride, implicating the involvement of a water channel aquaporin in second-phase water absorption. Four cDNA clones (TiPIP1a, TiPIP1b, TiPIP1c, and TiPIP2a) homologous to PIP family aquaporins were isolated from the leaves, and RT-PCR showed that soaking plants in water stimulated the expression of TiPIP2a mRNA, suggesting the reinforcement in ability to rapidly absorb a large amount of water. The expression of TiPIP2a complementary RNA in Xenopus oocytes enhanced permeability, and treatment with inhibitors suggested that the water channel activity of TiPIP2a protein was regulated by phosphorylation. Thus, the high water uptake capability of T. ionantha leaves surviving drought is attributable to a bimodal trichome- and aquaporin-aided water uptake system based on rapid physical collection of water and subsequent, sustained chemical absorption.

  19. Molecular dynamics study of the archaeal aquaporin AqpM

    PubMed Central

    2011-01-01

    Background Aquaporins are a large family of transmembrane channel proteins that are present throughout all domains of life and are implicated in human disorders. These channels, allow the passive but selective movement of water and other small neutral solutes across cell membranes. Aquaporins have been classified into two sub-families: i) strict aquaporins that only allow the passage of water and ii) the less selective aquaglyceroporins that transport water and other neutral solutes, such as glycerol, CO2 or urea. Recently, the identification and characterization of a number of archaeal and bacterial aquaporins suggested the existence of a third sub-family; one that is neither a strict aquaporin nor an aquaglyceroporin. The function and phylogeny of this third family is still a matter of debate. Results Twenty nanosecond molecular dynamics (MD) simulation of a fully hydrated tetramer of AqpM embedded in a lipid bilayer permitted predictions to be made of key biophysical parameters including: single channel osmotic permeability constant (pf), single channel diffusive permeability constant (pd), channel radius, potential water occupancy of the channel and water orientation inside the pore. These properties were compared with those of well characterized representatives of the two main aquaporin sub-families. Results show that changes in the amino acid composition of the aromatic/arginine region affect the size and polarity of the selectivity filter (SF) and could help explain the difference in water permeability between aquaporins. In addition, MD simulation results suggest that AqpM combines characteristics of strict aquaporins, such as the narrow SF and channel radius, with those of aquaglyceroporins, such as a more hydrophobic and less polar SF. Conclusions MD simulations of AqpM extend previous evidence that this archaeal aquaporin exhibits hybrid features intermediate between the two known aquaporin sub-families, supporting the idea that it may constitute a

  20. Thermodynamic insight into spontaneous hydration and rapid water permeation in aquaporins

    SciTech Connect

    Barati Farimani, A.; Aluru, N. R.; Tajkhorshid, Emad

    2014-08-25

    We report here a detailed thermodynamic description of water molecules inside a biological water channel. Taking advantage of high-resolution molecular dynamics trajectories calculated for an aquaporin (AQP) channel, we compute the spatial translational and rotational components of water diffusion and entropy in AQP. Our results reveal that the spontaneous filling and entry of water into the pore in AQPs are driven by an entropic gain. Specifically, water molecules exhibit an elevated degree of rotational motion inside the pore, while their translational motion is slow compared with bulk. The partial charges of the lining asparagine residues at the conserved signature Asn-Pro-Ala motifs play a key role in enhancing rotational diffusion and facilitating dipole flipping of water inside the pore. The frequencies of the translational and rotational motions in the power spectra overlap indicating a strong coupling of these motions in AQPs. A shooting mechanism with diffusive behavior is observed in the extracellular region which might be a key factor in the fast conduction of water in AQPs.

  1. Role of Pore-Lining Residues in Defining the Rate of Water Conduction by Aquaporin-0.

    PubMed

    Saboe, Patrick O; Rapisarda, Chiara; Kaptan, Shreyas; Hsiao, Yu-Shan; Summers, Samantha R; De Zorzi, Rita; Dukovski, Danijela; Yu, Jiaheng; de Groot, Bert L; Kumar, Manish; Walz, Thomas

    2017-03-14

    Compared to other aquaporins (AQPs), lens-specific AQP0 is a poor water channel, and its permeability was reported to be pH-dependent. To date, most water conduction studies on AQP0 were performed on protein expressed in Xenopus oocytes, and the results may therefore also reflect effects introduced by the oocytes themselves. Experiments with purified AQP0 reconstituted into liposomes are challenging because the water permeability of AQP0 is only slightly higher than that of pure lipid bilayers. By reconstituting high amounts of AQP0 and using high concentrations of cholesterol to reduce the permeability of the lipid bilayer, we improved the signal-to-noise ratio of water permeability measurements on AQP0 proteoliposomes. Our measurements show that mutation of two pore-lining tyrosine residues, Tyr-23 and Tyr-149 in sheep AQP0, to the corresponding residues in the high-permeability water channel AQP1 have additive effects and together increase the water permeability of AQP0 40-fold to a level comparable to that of AQP1. Molecular dynamics simulations qualitatively support these experimental findings and suggest that mutation of Tyr-23 changes the pore profile at the gate formed by residue Arg-187.

  2. Contribution of aquaporins to cellular water transport observed by a microfluidic cell volume sensor.

    PubMed

    Heo, Jinseok; Meng, Fanjie; Hua, Susan Z

    2008-09-15

    Here we demonstrate that an impedance-based microfluidic cell volume sensor can be used to study the roles of aquaporin (AQP) in cellular water permeability and screen AQP-specific drugs. Human embryonic kidney (HEK-293) cells were transiently transfected with AQP3- or AQP4-encoding genes to express AQPs in plasma membranes. The swelling of cells in response to hypotonic stimulation was traced in real time using the sensor. Two time constants were obtained by fitting the swelling curves with a two-exponential function, a fast time constant associated with osmotic water permeability of AQP-expressing cells and a slow phase time constant associated mainly with water diffusion through lipid bilayers in the nontransfected cells. The AQP-expressing cells showed at least 10x faster osmotic water transport than control cells. Using the volume sensor, we examined the effects of Hg (2+) and Ni (2+) on the water transport via AQPs. Hg (2+) inhibited the water flux in AQP3-expressing cells irreversibly, while Ni (2+) blocked the AQP3 channels reversibly. Neither of the two ions blocked the AQP4 channels. The microfluidic volume sensor can sense changes in cell volume in real time, which enables perfusion of various reagents sequentially. It provides a convenient tool for studying the effect of reagents on the function and regulation mechanism of AQPs.

  3. 1/f fluctuations of amino acids regulate water transportation in aquaporin 1

    NASA Astrophysics Data System (ADS)

    Yamamoto, Eiji; Akimoto, Takuma; Hirano, Yoshinori; Yasui, Masato; Yasuoka, Kenji

    2014-02-01

    Aquaporins (AQPs), which transport water molecules across cell membranes, are involved in many physiological processes. Recently, it is reported that the water-water interactions within the channel are broken at the aromatic/arginine selectivity filter (ar/R region), which prevents proton transportation [U. K. Eriksson et al., Science 340, 1346 (2013), 10.1126/science.1234306]. However, the effects of the conformational fluctuations of amino acids on water transportation remain unclear. Using all-atom molecular dynamics simulations, we analyze water transportation and fluctuations of amino acids within AQP1. The amino acids exhibit 1/f fluctuations, indicating possession of long-term memory. Moreover, we find that water molecules crossing the ar/R region obey a non-Poisson process. To investigate the effect of 1/f fluctuations on water transportation, we perform restrained molecular dynamics simulations of AQP1 and simple Langevin stochastic simulations. As a result, we confirm that 1/f fluctuations of amino acids contribute to water transportation in AQP1. These findings appreciably enhance our understanding of AQPs and suggest possibilities for developing biomimetic nanopores.

  4. Use of Aquaporins to Achieve Needed Water Purity On ISS for the EMU Space Suit System

    NASA Technical Reports Server (NTRS)

    Hill, Terry; Taylor ,Brandon W.

    2012-01-01

    Use of Aquaporins to Achieve Needed Water Purity On ISS for the EMU Space Suit System. With the U.S. Space Shuttle fleet retired, the supply of extremely high-quality water "super-Q" - required for the EMU Space suit cooling on this ISS - will become a significant operational hardware challenge in the very near future. A proposed potential solution is the use of a filtration system consisting of a semi-permeable membrane embedded with aquaporin proteins. Aquaporins are a special class of trans-membrane proteins that facilitate passive transport of water and other substances across a membrane. The specificity of these proteins is such that only water is allowed through the protein structure, and this novel property invites their adaptation for use in water filtration systems, specifically usage on the ISS for the EMU space suit system. These proteins are found in many living systems and have been developed for commercial use today.

  5. Aquaporin-4 expression contributes to decreases in brain water content during mouse postnatal development.

    PubMed

    Li, Xiumiao; Gao, Junying; Ding, Jiong; Hu, Gang; Xiao, Ming

    2013-05-01

    The water channel protein aquaporin-4 (AQP4) is implicated to facilitate water efflux from the brain parenchyma into the blood and CSF, playing a critical role in maintaining brain water homeostasis. Nevertheless, its contribution to decreases in brain water content during postnatal development remains unknown. A quantitative Western blot analysis was performed to investigate developmental expression of AQP4 in the whole mouse brain and showed that AQP4 expression level in 1 week-old brain was only 21.3% of that in the adult brain, but significantly increased to 67.4% of the adult level by 2 weeks after birth. Statistical analysis demonstrated that increased AQP4 expression partially relates to decreased brain water content in postnatal mice (r(2)=0.92 and P=0.002). Moreover, AQP4 null mice had greater brain water content than littermate controls from 2 weeks up to adult age. Consistently, mature pattern of AQP4 localization at the brain-blood and brain-CSF interfaces were completed at approximately at 2 weeks after birth. In addition, AQP4 expression in the brain stem and hypothalamus was earlier than that in the cerebral cortex and cerebellum, suggesting a brain regional variation in developmental expression of AQP4. These results characterize the developmental feature of AQP4 expression in the postnatal brain and provide direct evidence for a role of AQP4 in postnatal brain water uptake.

  6. Insights into structural mechanisms of gating induced regulation of aquaporins.

    PubMed

    Sachdeva, Ruchi; Singh, Balvinder

    2014-04-01

    Aquaporin family comprises of transmembrane channels that are specialized in conducting water and certain small, uncharged molecules across cell membranes. Essential roles of aquaporins in various physiological and pathophysiological conditions have attracted great scientific interest. Pioneering structural studies on aquaporins have almost solved the basic question of mechanism of selective water transport through these channels. Another important structural aspect of aquaporins which seeks attention is that how the flow of water through the channel is regulated by the mechanism of gating. Aquaporins are also regulated at the protein level, i.e. by trafficking which includes changes in their expression levels in the membrane. Availability of high resolution structures along with numerous molecular dynamics simulation studies have helped to gain an understanding of the structural mechanisms by which water flux through aquaporins is controlled. This review will summarize the highlights regarding structural features of aquaporins, mechanisms governing water permeation, proton exclusion and substrate specificity, and describe the structural insights into the mechanisms of aquaporin gating whereby water conduction is regulated by post translational modifications, such as phosphorylation.

  7. Discovery of the aquaporins and development of the field.

    PubMed

    Carbrey, Jennifer M; Agre, Peter

    2009-01-01

    The study of water transport began long before the molecular identification of water channels with studies of water-permeable tissues. The discovery of the first aquaporin, AQP1, occurred during experiments focused on the identity of the Rh blood group antigens. Since then the field has expanded dramatically to study aquaporins in all types of organisms. In mammals, some of the aquaporins transport only water. However, there are some family members that collectively transport a diverse set of solutes. The aquaporins can be regulated by factors that affect channel permeability or subcellular localization. An extensive set of studies examines the physiological role of many of the mammalian aquaporins. However, much is still to be discovered about the physiological role of this membrane protein family.

  8. Water transport and functional dynamics of aquaporins in osmoregulatory organs of fishes.

    PubMed

    Madsen, Steffen S; Engelund, Morten B; Cutler, Christopher P

    2015-08-01

    Aquaporins play distinct roles for water transport in fishes as they do in mammals-both at the cellular, organ, and organismal levels. However, with over 32,000 known species of fishes inhabiting almost every aquatic environment, from tidal pools, small mountain streams, to the oceans and extreme salty desert lakes, the challenge to obtain consensus as well as specific knowledge about aquaporin physiology in these vertebrate clades is overwhelming. Because the integumental surfaces of these animals are in intimate contact with the surrounding milieu, passive water loss and uptake represent two of the major osmoregulatory challenges that need compensation. However, neither obligatory nor regulatory water transport nor their mechanisms have been elucidated to the same degree as, for example, ion transport in fishes. Currently fewer than 60 papers address fish aquaporins. Most of these papers identify "what is present" and describe tissue expression patterns in various teleosts. The agnathans, chondrichthyans, and functionality of fish aquaporins generally have received little attention. This review emphasizes the functional physiology of aquaporins in fishes, focusing on transepithelial water transport in osmoregulatory organs in euryhaline species - primarily teleosts, but covering other taxonomic groups as well. Most current knowledge comes from teleosts, and there is a strong need for related information on older fish clades. Our survey aims to stimulate new, original research in this area and to bring together new collaborations across disciplines.

  9. Piscine aquaporins: an overview of recent advances.

    PubMed

    Cerdà, Joan; Finn, Roderick Nigel

    2010-12-01

    Aquaporins are a superfamily of integral membrane proteins that facilitate the rapid and yet highly selective flux of water and other small solutes across biological membranes. Since their discovery, they have been documented throughout the living biota, with the majority of research focusing on mammals and plants. Here, we review available data for piscine aquaporins, including Agnatha (jawless fish), Chondrichthyes (chimaeras, sharks, and rays), Dipnoi (lungfishes), and Teleostei (ray-finned bony fishes). Recent evidence suggests that the aquaporin superfamily has specifically expanded in the chordate lineage consequent to serial rounds of whole genome duplication, with teleost genomes harboring the largest number of paralogs. The selective retention and dichotomous clustering of most duplicated paralogs in Teleostei, with differential tissue expression profiles, implies that novel or specialized physiological functions may have evolved in this clade. The recently proposed new nomenclature of the piscine aquaporin superfamily is discussed in relation to the phylogenetic signal and genomic synteny, with the teleost aquaporin-8 paralogs used as a case study to illustrate disparities between the underlying codons, molecular phylogeny, and physical locus. Structural data indicate that piscine aquaporins display similar channel restriction residues found in the tetrapod counterparts, and hence their functional properties seem to be conserved. However, emerging evidence suggests that regulation of aquaporin function in teleosts may have diverged in some cases. Cell localization and experimental studies imply that the physiological roles of piscine aquaporins extend at least to osmoregulation, reproduction, and early development, although in most cases their specific functions remain to be elucidated.

  10. Aquaporin-1 Expression and Conventional Aqueous Outflow in Human Eyes

    PubMed Central

    Stamer, W. Daniel; Chan, Darren W.H.; Conley, Shannon M.; Coons, Serena; Ethier, C. Ross

    2008-01-01

    Aquaporin channels facilitate the enhanced permeability of secretory and absorptive tissues to water. In the conventional drainage tract, aquaporin-1 is expressed but its contribution to outflow facility is unknown. The purpose of the present study was to determine the effect of elevated aquaporin-1 expression by cells of the human conventional drainage pathway on outflow facility. Using thirteen pairs of human anterior segments in organ culture, we modified aquaporin-1 protein expression in outflow cells using adenovirus encoding human aquaporin-1. Contralateral anterior segments served as controls and were transduced with adenovirus encoding beta galactosidase. By confocal immunofluorescence microscopy, we observed that inner trabecular meshwork cells from anterior segments exposed to adenovirus (via injection into the inlet tubing during perfusion) had increased aquaporin-1 protein expression compared to endogenous levels. In contrast, elevation of aquaporin-1 protein in outer meshwork cells (juxtacanalicular region) and Schlemm’s canal required transduction of adenovirus into anterior segments using retroperfusion via episcleral veins. Regardless of exposure route, outflow facility of experimental segments was not different than control. Specifically, overexpression of aquaporin-1 in the inner meshwork resulted in an average facility change of −2.0 ± 9.2 %, while overexpression of aquaporin-1 in the resistance-generating region changed outflow facility by −3.2 ± 11.2 %. Taken together, these results indicate that a transcellular pathway, mediated by aquaporin-1, does not contribute significantly to bulk outflow through the conventional aqueous outflow tract of human eyes. PMID:18657536

  11. Aquaporin-4-dependent K(+) and water transport modeled in brain extracellular space following neuroexcitation.

    PubMed

    Jin, Byung-Ju; Zhang, Hua; Binder, Devin K; Verkman, A S

    2013-01-01

    Potassium (K(+)) ions released into brain extracellular space (ECS) during neuroexcitation are efficiently taken up by astrocytes. Deletion of astrocyte water channel aquaporin-4 (AQP4) in mice alters neuroexcitation by reducing ECS [K(+)] accumulation and slowing K(+) reuptake. These effects could involve AQP4-dependent: (a) K(+) permeability, (b) resting ECS volume, (c) ECS contraction during K(+) reuptake, and (d) diffusion-limited water/K(+) transport coupling. To investigate the role of these mechanisms, we compared experimental data to predictions of a model of K(+) and water uptake into astrocytes after neuronal release of K(+) into the ECS. The model computed the kinetics of ECS [K(+)] and volume, with input parameters including initial ECS volume, astrocyte K(+) conductance and water permeability, and diffusion in astrocyte cytoplasm. Numerical methods were developed to compute transport and diffusion for a nonstationary astrocyte-ECS interface. The modeling showed that mechanisms b-d, together, can predict experimentally observed impairment in K(+) reuptake from the ECS in AQP4 deficiency, as well as altered K(+) accumulation in the ECS after neuroexcitation, provided that astrocyte water permeability is sufficiently reduced in AQP4 deficiency and that solute diffusion in astrocyte cytoplasm is sufficiently low. The modeling thus provides a potential explanation for AQP4-dependent K(+)/water coupling in the ECS without requiring AQP4-dependent astrocyte K(+) permeability. Our model links the physical and ion/water transport properties of brain cells with the dynamics of neuroexcitation, and supports the conclusion that reduced AQP4-dependent water transport is responsible for defective neuroexcitation in AQP4 deficiency.

  12. The aquaporin TcAQP1 of the desert truffle Terfezia claveryi is a membrane pore for water and CO(2) transport.

    PubMed

    Navarro-Ródenas, Alfonso; Ruíz-Lozano, Juan Manuel; Kaldenhoff, Ralf; Morte, Asunción

    2012-02-01

    Terfezia claveryi is a hypogeous mycorrhizal fungus belonging to the so-called "desert truffles," with a good record as an edible fungus and of considerable economic importance. T. claveryi improves the tolerance to water stress of the host plant Helianthemum almeriense, for which, in field conditions, symbiosis with T. claveryi is valuable for its survival. We have characterized cDNAs from T. claveryi and identified a sequence related to the aquaporin gene family. The full-length sequence was obtained by rapid amplification of cDNA ends and was named TcAQP1. This aquaporin gene encoded a functional water-channel protein, as demonstrated by heterologous expression assays in Saccharomyces cerevisiae. The mycorrhizal fungal aquaporin increased both water and CO(2) conductivity in the heterologous expression system. The expression patterns of the TcAQP1 gene in mycelium, under different water potentials, and in mycorrhizal plants are discussed. The high levels of water conductivity of TcAQP1 could be related to the adaptation of this mycorrhizal fungus to semiarid areas. The CO(2) permeability of TcAQP1 could be involved in the regulation of T. claveryi growth during presymbiotic phases, making it a good candidate to be considered a novel molecular signaling channel in mycorrhizal fungi.

  13. Molecular machinery for vasotocin-dependent transepithelial water movement in amphibians: aquaporins and evolution.

    PubMed

    Suzuki, Masakazu; Shibata, Yuki; Ogushi, Yuji; Okada, Reiko

    2015-08-01

    Amphibians represent the first vertebrates to adapt to terrestrial environments, and are successfully distributed around the world. The ventral skin, kidney, and urinary bladder are important osmoregulatory organs for adult anuran amphibians. Water channel proteins, called aquaporins (AQPs), play key roles in transepithelial water absorption/reabsorption in these organs. At least 43 types of AQPs were identified in anurans; a recent phylogenetic analysis categorized anuran AQPs among 16 classes (AQP0-14, 16). Anuran-specific AQPa2 was assigned to AQP6, then was further subdivided into the ventral skin-type (AQP6vs; AQPa2S), whose expression is confined to the ventral skin, and the urinary bladder-type (AQP6ub; AQPa2U), which is basically expressed in the urinary bladder. For the osmoregulatory organs, AQP3 is constitutively located in the basolateral plasma membrane of tight-junctioned epithelial cells. AQP6vs, AQP2 and/or AQP6ub are also expressed in these epithelial cells and are translocated to the apical membrane in response to arginine vasotocin, thereby regulating water absorption/reabsorption. It was suggested recently that two subtypes of AQP6vs contribute to cutaneous water absorption in Ranid species. In addition, AQP5 (AQP5a) and AQP5L (AQP5b) were identified from Xenopus tropicalis Gray, 1864, and AQP5 was localized to the apical membrane of luminal epithelial cells of the urinary bladder in dehydrated Xenopus. This finding suggested that AQP5 may be involved in water reabsorption from this organ under dehydration. Based on the hitherto reported information, we propose models for the evolution of water-absorbing/reabsorbing mechanisms in anuran osmoregulatory organs in association with AQPs.

  14. Aquaporin-1 in the peritoneal membrane: Implications for water transport across capillaries and peritoneal dialysis.

    PubMed

    Devuyst, Olivier; Ni, Jie

    2006-08-01

    Peritoneal dialysis (PD) is an established mode of renal replacement therapy, based on the exchange of fluid and solutes between blood in peritoneal capillaries and a dialysate that has been introduced in the peritoneal cavity. The dialysis involves diffusive and convective transports and osmosis through the highly vascularized peritoneal membrane. Computer simulations predicted that the membrane contains ultrasmall pores (radius < 3 A) responsible for the transport of solute-free water across the capillary endothelium during crystalloid osmosis. The distribution of the water channel aquaporin-1 (AQP1), as well as its molecular structure ensuring an exquisite selectivity for water perfectly fit with the characteristics of the ultrasmall pore. Treatment with corticosteroids induces the expression of AQP1 in peritoneal capillaries and increases water permeability and ultrafiltration in rats, without affecting the osmotic gradient and the permeability for small solutes. Studies in knockout mice provided further evidence that osmotically-driven water transport across the peritoneal membrane is mediated by AQP1. AQP1 and endothelial NO synthase (eNOS) show a distinct regulation within the endothelium lining peritoneal capillaries. In acute peritonitis, the upregulation of eNOS and increased release of NO dissipate the osmotic gradient and result in ultrafiltration failure, despite the unchanged expression of AQP1. These data illustrate the potential of the peritoneal membrane to investigate the role and regulation of AQP1 in the endothelium. They also emphasize the critical role of AQP1 during peritoneal dialysis and suggest that manipulating AQP1 expression may be used to increase water permeability across the peritoneal membrane.

  15. Use of Aquaporins to Achieve Needed Water Purity On ISS for the EMU Space Suit System

    NASA Technical Reports Server (NTRS)

    Hill, Terry R.; Taylor, Brandon W.

    2011-01-01

    With the U.S. Space Shuttle fleet retired, the supply of extremely high-quality water 'super-Q' - required for the EMU Space suit cooling on this ISS - will become a significant operational hardware challenge in the very near future. A proposed potential solution is the use of a filtration system consisting of a semi-permeable membrane embedded with aquaporin proteins. Aquaporins are a special class of trans-membrane proteins that facilitate passive transport of water and other substances across a membrane. The specificity of these proteins is such that only water is allowed through the protein structure, and this novel property invites their adaptation for use in water filtration systems, specifically usage on the ISS for the EMU space suit system. These proteins are found in many living systems and have been developed for commercial use today.

  16. Plant aquaporins: new perspectives on water and nutrient uptake in saline environment.

    PubMed

    del Martínez-Ballesta, M C; Silva, C; López-Berenguer, C; Cabañero, F J; Carvajal, M

    2006-09-01

    The mechanisms of salt stress and tolerance have been targets for genetic engineering, focusing on ion transport and compartmentation, synthesis of compatible solutes (osmolytes and osmoprotectants) and oxidative protection. In this review, we consider the integrated response to salinity with respect to water uptake, involving aquaporin functionality. Therefore, we have concentrated on how salinity can be alleviated, in part, if a perfect knowledge of water uptake and transport for each particular crop and set of conditions is available.

  17. Aquaporins in desert rodent physiology.

    PubMed

    Pannabecker, Thomas L

    2015-08-01

    Desert rodents face a sizeable challenge in maintaining salt and water homeostasis due to their life in an arid environment. A number of their organ systems exhibit functional characteristics that limit water loss above that which occurs in non-desert species under similar conditions. These systems include renal, pulmonary, gastrointestinal, nasal, and skin epithelia. The desert rodent kidney preserves body water by producing a highly concentrated urine that reaches a maximum osmolality nearly three times that of the common laboratory rat. The precise mechanism by which urine is concentrated in any mammal is unknown. Insights into the process may be more apparent in species that produce highly concentrated urine. Aquaporin water channels play a fundamental role in water transport in several desert rodent organ systems. The role of aquaporins in facilitating highly effective water preservation in desert rodents is only beginning to be explored. The organ systems of desert rodents and their associated AQPs are described.

  18. Combined effect of boron and salinity on water transport: The role of aquaporins.

    PubMed

    Del Carmen Martínez-Ballesta, Maria; Bastías, Elizabeth; Carvajal, Micaela

    2008-10-01

    Boron toxicity is an important disorder that can limit plant growth on soils of arid and semi arid environments throughout the world. Although there are several reports about the combined effect of salinity and boron toxicity on plant growth and yield, there is no consensus about the experimental results. A general antagonistic relationship between boron excess and salinity has been observed, however the mechanisms for this interaction is not clear and several options can be discussed. In addition, there is no information, concerning the interaction between boron toxicity and salinity with respect to water transport and aquaporins function in the plants. We recently documented in the highly boron- and salt-tolerant the ecotype of Zea mays L. amylacea from Lluta valley in Northern Chile that under salt stress, the activity of specific membrane components can be influenced directly by boron, regulating the water uptake and water transport through the functions of certain aquaporin isoforms.

  19. Structural basis of water-specific transport through the AQP1 water channel

    NASA Astrophysics Data System (ADS)

    Sui, Haixin; Han, Bong-Gyoon; Lee, John K.; Walian, Peter; Jap, Bing K.

    2001-12-01

    Water channels facilitate the rapid transport of water across cell membranes in response to osmotic gradients. These channels are believed to be involved in many physiological processes that include renal water conservation, neuro-homeostasis, digestion, regulation of body temperature and reproduction. Members of the water channel superfamily have been found in a range of cell types from bacteria to human. In mammals, there are currently 10 families of water channels, referred to as aquaporins (AQP): AQP0-AQP9. Here we report the structure of the aquaporin 1 (AQP1) water channel to 2.2Å resolution. The channel consists of three topological elements, an extracellular and a cytoplasmic vestibule connected by an extended narrow pore or selectivity filter. Within the selectivity filter, four bound waters are localized along three hydrophilic nodes, which punctuate an otherwise extremely hydrophobic pore segment. This unusual combination of a long hydrophobic pore and a minimal number of solute binding sites facilitates rapid water transport. Residues of the constriction region, in particular histidine 182, which is conserved among all known water-specific channels, are critical in establishing water specificity. Our analysis of the AQP1 pore also indicates that the transport of protons through this channel is highly energetically unfavourable.

  20. A Simple Water Channel

    ERIC Educational Resources Information Center

    White, A. S.

    1976-01-01

    Describes a simple water channel, for use with an overhead projector. It is run from a water tap and may be used for flow visualization experiments, including the effect of streamlining and elementary building aerodynamics. (MLH)

  1. Molecular and cellular regulation of water homeostasis in anuran amphibians by aquaporins.

    PubMed

    Suzuki, Masakazu; Tanaka, Shigeyasu

    2009-07-01

    Aquaporins (AQPs) are water channel proteins important for transcellular water transport. Anuran AQP family consists of at least AQP0-AQP5, AQP7-AQP10, and two anuran-specific types, designated as AQPa1 and AQPa2. In Hyla japonica, AQP2 (AQP-h2K) and two forms of AQPa2 (AQP-h2 and AQP-h3) reside in the tight-junctioned epithelial cells of three major osmoregulatory organs, i.e. AQP-h2K in the kidney, AQP-h2 in the urinary bladder, and both AQP-h2 and AQP-h3 in the ventral pelvic skin. They show translocation from the cytoplasmic pool to the apical plasma membrane in response to arginine vasotocin (AVT), thereby regulating water transport across the apical membrane. Tissue distribution of AQPa2 in five anuran species, from aquatic to arboreal habitats, suggests that AQP-h2 is a urinary bladder-type AQP, while AQP-h3 is a ventral pelvic skin-type AQP. Further, AQP-h2K seems to be specific to the kidney. On the other hand, Hyla AQP3 (AQPh3BL)is located in the basolateral plasma membrane of the tight epithelial cells, irrespective of AVT stimulation. These findings suggest that anuran AVT-dependent osmoregulatory organs utilize AQP3 at the exit site of the transepithelial water transport, whereas at the entry site they basically adopt different AQPs as translocatable water channels: h2-like AQPa2 in the urinary bladder, h3-like AQPa2 in the pelvic skin, andAQP2 in the kidney. Anuran AQP3 also shows an extensive distribution over the integument, and is located along the basolateral plasma membrane of principal cells of the epidermis. It is possible that anuran AQP3might protect the epidermis against cutaneous water loss by supplying water and glycerol. In addition,immunohistochemical studies suggest that anuran AQP3 and AQP5 might be involved in the isoosmotic fluid secretion from the mucous glands and Xenopus small granular glands, possibly aiding maintenance of the moist skin, cutaneous gas exchange, and thermoregulation. Intriguingly, genomic and molecular

  2. Plasma Membrane Aquaporins Play a Significant Role during Recovery from Water Deficit1

    PubMed Central

    Martre, Pierre; Morillon, Raphaël; Barrieu, François; North, Gretchen B.; Nobel, Park S.; Chrispeels, Maarten J.

    2002-01-01

    The role of plasma membrane aquaporins (PIPs) in water relations of Arabidopsis was studied by examining plants with reduced expression of PIP1 and PIP2 aquaporins, produced by crossing two different antisense lines. Compared with controls, the double antisense (dAS) plants had reduced amounts of PIP1 and PIP2 aquaporins, and the osmotic hydraulic conductivity of isolated root and leaf protoplasts was reduced 5- to 30-fold. The dAS plants had a 3-fold decrease in the root hydraulic conductivity expressed on a root dry mass basis, but a compensating 2.5-fold increase in the root to leaf dry mass ratio. The leaf hydraulic conductance expressed on a leaf area basis was similar for the dAS compared with the control plants. As a result, the hydraulic conductance of the whole plant was unchanged. Under sufficient and under water-deficient conditions, stomatal conductance, transpiration rate, plant hydraulic conductance, leaf water potential, osmotic pressure, and turgor pressure were similar for the dAS compared with the control plants. However, after 4 d of rewatering following 8 d of drying, the control plants recovered their hydraulic conductance and their transpiration rates faster than the dAS plants. Moreover, after rewatering, the leaf water potential was significantly higher for the control than for the dAS plants. From these results, we conclude that the PIPs play an important role in the recovery of Arabidopsis from the water-deficient condition. PMID:12481094

  3. Significance of oxygen transport through aquaporins

    PubMed Central

    Zwiazek, Janusz J.; Xu, Hao; Tan, Xiangfeng; Navarro-Ródenas, Alfonso; Morte, Asunción

    2017-01-01

    Aquaporins are membrane integral proteins responsible for the transmembrane transport of water and other small neutral molecules. Despite their well-acknowledged importance in water transport, their significance in gas transport processes remains unclear. Growing evidence points to the involvement of plant aquaporins in CO2 delivery for photosynthesis. The role of these channel proteins in the transport of O2 and other gases may also be more important than previously envisioned. In this study, we examined O2 permeability of various human, plant, and fungal aquaporins by co-expressing heterologous aquaporin and myoglobin in yeast. Two of the most promising O2-transporters (Homo sapiens AQP1 and Nicotiana tabacum PIP1;3) were confirmed to facilitate O2 transport in the spectrophotometric assay using yeast protoplasts. The over-expression of NtPIP1;3 in yeasts significantly increased their O2 uptake rates in suspension culture. In N. tabacum roots subjected to hypoxic hydroponic conditions, the transcript levels of the O2-transporting aquaporin NtPIP1;3 significantly increased after the seven-day hypoxia treatment, which was accompanied by the increase of ATP levels in the apical root segments. Our results suggest that the functional significance of aquaporin-mediated O2 transport and the possibility of controlling the rate of transmembrane O2 transport should be further explored. PMID:28079178

  4. Significance of oxygen transport through aquaporins.

    PubMed

    Zwiazek, Janusz J; Xu, Hao; Tan, Xiangfeng; Navarro-Ródenas, Alfonso; Morte, Asunción

    2017-01-12

    Aquaporins are membrane integral proteins responsible for the transmembrane transport of water and other small neutral molecules. Despite their well-acknowledged importance in water transport, their significance in gas transport processes remains unclear. Growing evidence points to the involvement of plant aquaporins in CO2 delivery for photosynthesis. The role of these channel proteins in the transport of O2 and other gases may also be more important than previously envisioned. In this study, we examined O2 permeability of various human, plant, and fungal aquaporins by co-expressing heterologous aquaporin and myoglobin in yeast. Two of the most promising O2-transporters (Homo sapiens AQP1 and Nicotiana tabacum PIP1;3) were confirmed to facilitate O2 transport in the spectrophotometric assay using yeast protoplasts. The over-expression of NtPIP1;3 in yeasts significantly increased their O2 uptake rates in suspension culture. In N. tabacum roots subjected to hypoxic hydroponic conditions, the transcript levels of the O2-transporting aquaporin NtPIP1;3 significantly increased after the seven-day hypoxia treatment, which was accompanied by the increase of ATP levels in the apical root segments. Our results suggest that the functional significance of aquaporin-mediated O2 transport and the possibility of controlling the rate of transmembrane O2 transport should be further explored.

  5. Molecular diversity of vasotocin-dependent aquaporins closely associated with water adaptation strategy in anuran amphibians.

    PubMed

    Suzuki, M; Tanaka, S

    2010-05-01

    Anuran amphibians represent the first vertebrates that adapted to terrestrial environments, and are successfully distributed around the world, even to forests and arid deserts. Many adult anurans have specialised osmoregulatory organs, in addition to the kidney (i.e. the ventral pelvic skin to absorb water from the external environments and a urinary bladder that stores water and reabsorbs it in times of need). Aquaporin (AQP), a water channel protein, plays a fundamental role in these water absorption/reabsorption processes. The anuran AQP family consists of at least AQP0-AQP5, AQP7-AQP10 and two anuran-specific types, designated as AQPa1 and AQPa2. For the three osmoregulatory organs, AQP3 is constitutively located in the basolateral membrane of the tight-junctioned epithelial cells, allowing water transport between the cytoplasm of these cells and the neighbouring tissue fluid at all times. On the other hand, AQPs at the apical side of the tight epithelial cells are different among these organs, and are named kidney-type AQP2, ventral pelvic skin-type AQPa2 and urinary bladder-type AQPa2. All of them show translocation from the cytoplasmic pool to the apical plasma membrane in response to arginine vasotocin, thereby regulating water transport independently in each osmoregulatory organ. It was further revealed that, in terrestrial and arboreal anurans, the bladder-type AQPa2 is expressed in the pelvic skin, together with the pelvic skin-type AQPa2, potentially facilitating water absorption from the pelvic skin. By contrast, Xenopus has lost the ability to efficiently produce pelvic skin-type AQPa2 (AQP-x3) because Cys-273 of AQP-x3 and/or Cys-273-coding region of AQPx3 mRNA attenuate gene expression at a post-transcriptional step, presumably leading to the prevention of excessive water influx in this aquatic species. Collectively, the acquisition of two forms of AQPa2 and the diversified regulation of their gene expression appears to provide the necessary

  6. The water permeability of lens aquaporin-0 depends on its lipid bilayer environment.

    PubMed

    Tong, Jihong; Canty, John T; Briggs, Margaret M; McIntosh, Thomas J

    2013-08-01

    Aquaporin-0 (AQP0), the primary water channel in lens fiber cells, is critical to lens development, organization, and function. In the avascular lens there is thought to be an internal microcirculation associated with fluid movement. Although AQP0 is known to be important in fluid fluxes across membranes, the water permeability of this channel has only been measured in Xenopus oocytes and in outer lens cortical membranes, but not in inner nuclear membranes, which have an increased cholesterol/phospholipid ratio. Here we measure the unit water permeability of AQP0 in different proteoliposomes with cholesterol/phospholipid ratios and external pHs similar to those found in the cortex and nucleus of the lens. Osmotic stress measurements were performed with proteoliposomes containing AQP0 and three different lipids mixtures: (1) phosphatidylcholine (PC) and phosphatidylglycerol (PG), (2) PC, PG, with 40 mol% cholesterol, and (3) sphingomyelin (SM), PG, with 40 mol% cholesterol. At pH 7.5 the unit permeabilities of AQP0 were 3.5 ± 0.5 × 10(-14) cm(3)/s (mean ± SEM), 1.1 ± 0.1 × 10(-14) cm(3)/s, and 0.50 ± 0.04 × 10(-14) cm(3)/s in PC:PG, PC:PG:cholesterol, and SM:PG:cholesterol, respectively. For lipid mixtures at pH 6.5, corresponding to conditions found in the lens nucleus, the AQP0 permeabilities were 1.5 ± 0.4 × 10(-14) cm(3)/s and 0.76 ± 0.03 × 10(-14) cm(3)/s in PC:PG:cholesterol and SM:PG:cholesterol, respectively. Thus, although AQP0 unit permeability can be modified by changes in pH, it is also sensitive to changes in bilayer lipid composition, and decreases with increasing cholesterol and SM content. These data imply that AQP0 water permeability is regulated by bilayer lipid composition, so that AQP0 permeability would be significantly less in the lens nucleus than in the lens cortex.

  7. Erythritol predicted to inhibit permeation of water and solutes through the conducting pore of P. falciparum aquaporin

    PubMed Central

    Chen, Liao Y.

    2015-01-01

    Plasmodium falciparum aquaporin (PfAQP) is a multifunctional channel protein in the plasma membrane of the malarial parasite that causes the most severe form of malaria infecting more than a million people a year. This channel protein facilitates transport of water and several solutes across the cell membrane. In order to better elucidate the fundamental interactions between PfAQP and its permeants and among the permeants, I conducted over three microseconds in silico experiments of atomistic models of the PfAQP-membrane system to obtain the free-energy profiles of five permeants (erythritol, water, glycerol, urea, and ammonia) throughout the amphipathic conducting pore of PfAQP. The profiles are analyzed in light of and shown to be consistent with the existent in vitro data. The binding affinities are computed using the free-energy profiles and the permeant fluctuations inside the channel. On this basis, it is predicted that erythritol, a permeant of PfAQP itself having a deep ditch in its permeation passageway, inhibits PfAQP’s functions of transporting water and other solutes with an IC50 in the range of high nanomolars. This leads to the possibility that erythritol, a sweetener generally considered safe, may inhibit or kill the malarial parasite in vivo without causing undesired side effects. Experimental studies are hereby called for to directly test this theoretical prediction of erythritol strongly inhibiting PfAQP in vitro and possibly inhibiting P. falciparum in vivo. PMID:25637890

  8. Angiotensin III as well as angiotensin II regulates water flow through aquaporins in a clam worm.

    PubMed

    Satou, Ryousuke; Nakagawa, Tsutomu; Ido, Hiroki; Tomomatsu, Masayuki; Suzuki, Fumiaki; Nakamura, Yukio

    2005-07-01

    Angiotensin III has been reported to exist in various animals and tissues. The physiological role, however, is still unclear except that brain angiotensin III is a central regulator of vasopressin release. In this study, angiotensin III as well as angiotensin II enhanced an increase in body weight of clam worms of Perinereis sp. under a hypo-osmotic condition and suppressed a decrease in body weight under a hyper-osmotic condition. When clam worms were treated with tetrachloroaurate (III) after angiotensin-treatment, these enhancing and suppressive effects of the angiotensins under hypo- and hyper-osmotic conditions were inhibited. In contrast, when clam worms were pretreated with tetrachloroaurate (III) before angiotensin-treatment, these effects of angiotensins were not inhibited. Since tetrachloroaurate (III) is a representative blocker of aquaporins, these results indicate that angiotensin III as well as angiotensin II regulates water flow through aquaporins in clam worms.

  9. Aquaporins and plant transpiration.

    PubMed

    Maurel, Christophe; Verdoucq, Lionel; Rodrigues, Olivier

    2016-11-01

    Although transpiration and aquaporins have long been identified as two key components influencing plant water status, it is only recently that their relations have been investigated in detail. The present review first examines the various facets of aquaporin function in stomatal guard cells and shows that it involves transport of water but also of other molecules such as carbon dioxide and hydrogen peroxide. At the whole plant level, changes in tissue hydraulics mediated by root and shoot aquaporins can indirectly impact plant transpiration. Recent studies also point to a feedback effect of transpiration on aquaporin function. These mechanisms may contribute to the difference between isohydric and anisohydric stomatal regulation of leaf water status. The contribution of aquaporins to transpiration control goes far beyond the issue of water transport during stomatal movements and involves emerging cellular and long-distance signalling mechanisms which ultimately act on plant growth.

  10. Drought stress alters water relations and expression of PIP-type aquaporin genes in Nicotiana tabacum plants.

    PubMed

    Mahdieh, Majid; Mostajeran, Akbar; Horie, Tomoaki; Katsuhara, Maki

    2008-05-01

    Plasma membrane intrinsic proteins (PIPs), a type of aquaporins, mediate water transport in many plant species. In this study, we investigated the relationship between the functions of PIP-type water channels and water relations of tobacco plants (Nicotiana tabacum cv. Samsun) under drought stress. Drought stress treatments have led to reductions in the stomatal conductance, transpiration, water potential and turgor pressure in leaves, and also the sap flow rate and osmotic hydraulic conductance in roots. In contrast, leaf osmotic pressure was increased in response to drought stress. Interestingly, the accumulation of NtPIP1;1 and NtPIP2;1 transcripts was significantly decreased, but only that of the NtAQP1 transcript was increased under drought stress. Functional analysis using Xenopus laevis oocytes revealed that NtPIP2;1 shows marked water transport activity, but the activities of NtAQP1 and NtPIP1;1 are weak or almost negligible, respectively, when expressed alone. However, co-expression of NtPIP1;1 with NtPIP2;1 significantly enhanced water transport activity compared with that of NtPIP1;1- or NtPIP2;1-expressing oocytes, suggesting that these two aquaporins may function as a water channel, forming a heterotetramer. Heteromerization of NtPIP1;1 and NtPIP2;1 was also suggested by co-expression analyses of NtPIP1;1-GFP (green fluorescent protein) and NtPIP2;1 in Xenopus oocytes. Re-watering treatments recovered water relation parameters and the accumulation of the three NtPIP transcripts to levels similar to control conditions. These results suggest that NtPIP1;1 and NtPIP2;1 play an important role in water transport in roots, and that expression of NtPIP1;1 and NtPIP2;1 is down-regulated in order to reduce osmotic hydraulic conductance in the roots of tobacco plants under drought stress.

  11. Aquaporins in the eye: Expression, function, and roles in ocular disease☆

    PubMed Central

    Schey, Kevin L.; Wang, Zhen; Wenke, Jamie L.; Qi, Ying

    2015-01-01

    Background All thirteen known mammalian aquaporins have been detected in the eye. Moreover, aquaporins have been identified as playing essential roles in ocular functions ranging from maintenance of lens and corneal transparency to production of aqueous humor to maintenance of cellular homeostasis and regulation of signal transduction in the retina. Scope of review This review summarizes the expression and known functions of ocular aquaporins and discusses their known and potential roles in ocular diseases. Major conclusions Aquaporins play essential roles in all ocular tissues. Remarkably, not all aquaporin function as a water permeable channel and the functions of many aquaporins in ocular tissues remain unknown. Given their vital roles in maintaining ocular function and their roles in disease, aquaporins represent potential targets for future therapeutic development. General significance Since aquaporins play key roles in ocular physiology, an understanding of these functions is important to improving ocular health and treating diseases of the eye. It is likely that future therapies for ocular diseases will rely on modulation of aquaporin expression and/or function. This article is part of a Special Issue entitled Aquaporins. PMID:24184915

  12. Small-Molecule Screening Identifies Modulators of Aquaporin-2 Trafficking

    PubMed Central

    Bogum, Jana; Faust, Dörte; Zühlke, Kerstin; Eichhorst, Jenny; Moutty, Marie C.; Furkert, Jens; Eldahshan, Adeeb; Neuenschwander, Martin; von Kries, Jens Peter; Wiesner, Burkhard; Trimpert, Christiane; Deen, Peter M.T.; Valenti, Giovanna; Rosenthal, Walter

    2013-01-01

    In the principal cells of the renal collecting duct, arginine vasopressin (AVP) stimulates the synthesis of cAMP, leading to signaling events that culminate in the phosphorylation of aquaporin-2 water channels and their redistribution from intracellular domains to the plasma membrane via vesicular trafficking. The molecular mechanisms that control aquaporin-2 trafficking and the consequent water reabsorption, however, are not completely understood. Here, we used a cell-based assay and automated immunofluorescence microscopy to screen 17,700 small molecules for inhibitors of the cAMP-dependent redistribution of aquaporin-2. This approach identified 17 inhibitors, including 4-acetyldiphyllin, a selective blocker of vacuolar H+-ATPase that increases the pH of intracellular vesicles and causes accumulation of aquaporin-2 in the Golgi compartment. Although 4-acetyldiphyllin did not inhibit forskolin-induced increases in cAMP formation and downstream activation of protein kinase A (PKA), it did prevent cAMP/PKA-dependent phosphorylation at serine 256 of aquaporin-2, which triggers the redistribution to the plasma membrane. It did not, however, prevent cAMP-induced changes to the phosphorylation status at serines 261 or 269. Last, we identified the fungicide fluconazole as an inhibitor of cAMP-mediated redistribution of aquaporin-2, but its target in this pathway remains unknown. In conclusion, our screening approach provides a method to begin dissecting molecular mechanisms underlying AVP-mediated water reabsorption, evidenced by our identification of 4-acetyldiphyllin as a modulator of aquaporin-2 trafficking. PMID:23559583

  13. Molecular Basis of pH and Ca2+ Regulation of Aquaporin Water Permeability

    PubMed Central

    Németh-Cahalan, Karin L.; Kalman, Katalin; Hall, James E.

    2004-01-01

    Aquaporins facilitate the diffusion of water across cell membranes. We previously showed that acid pH or low Ca2+ increase the water permeability of bovine AQP0 expressed in Xenopus oocytes. We now show that external histidines in loops A and C mediate the pH dependence. Furthermore, the position of histidines in different members of the aquaporin family can “tune” the pH sensitivity toward alkaline or acid pH ranges. In bovine AQP0, replacement of His40 in loop A by Cys, while keeping His122 in loop C, shifted the pH sensitivity from acid to alkaline. In the killifish AQP0 homologue, MIPfun, with His at position 39 in loop A, alkaline rather than acid pH increased water permeability. Moving His39 to His40 in MIPfun, to mimic bovine AQP0 loop A, shifted the pH sensitivity back to the acid range. pH regulation was also found in two other members of the aquaporin family. Alkaline pH increased the water permeability of AQP4 that contains His at position 129 in loop C. Acid and alkaline pH sensitivity was induced in AQP1 by adding histidines 48 (in loop A) and 130 (in loop C). We conclude that external histidines in loops A and C that span the outer vestibule contribute to pH sensitivity. In addition, we show that when AQP0 (bovine or killifish) and a crippled calmodulin mutant were coexpressed, Ca2+ sensitivity was lost but pH sensitivity was maintained. These results demonstrate that Ca2+ and pH modulation are separable and arise from processes on opposite sides of the membrane. PMID:15078916

  14. Aquaporin, forward osmosis and biomimetic membranes.

    PubMed

    Kocherginsky, Nikolai

    2013-12-01

    Aquaporin attracted attention not only of physiologists and biophysicists, but also of chemical engineers. Here we critically analyze a paper describing aquaporin-based artificial membranes, suggested for forward osmosis-based water purification (Wang et al. 2012, Small 8, pp. 1185-1190). Related papers published later by the same group are also discussed. We indicate recently developed general approach to describe membrane transport, membrane permeability and selectivity, which is applicable for forward osmosis. In addition, we also mention our papers describing simple nitrocellulose-based membranes, which have selective aqueous channels without proteins, but successfully imitate many properties of biomembranes.

  15. Genome-wide identification and expression analysis of aquaporins in tomato.

    PubMed

    Reuscher, Stefan; Akiyama, Masahito; Mori, Chiharu; Aoki, Koh; Shibata, Daisuke; Shiratake, Katsuhiro

    2013-01-01

    The family of aquaporins, also called water channels or major intrinsic proteins, is characterized by six transmembrane domains that together facilitate the transport of water and a variety of low molecular weight solutes. They are found in all domains of life, but show their highest diversity in plants. Numerous studies identified aquaporins as important targets for improving plant performance under drought stress. The phylogeny of aquaporins is well established based on model species like Arabidopsis thaliana, which can be used as a template to investigate aquaporins in other species. In this study we comprehensively identified aquaporin encoding genes in tomato (Solanum lycopersicum), which is an important vegetable crop and also serves as a model for fleshy fruit development. We found 47 aquaporin genes in the tomato genome and analyzed their structural features. Based on a phylogenetic analysis of the deduced amino acid sequences the aquaporin genes were assigned to five subfamilies (PIPs, TIPs, NIPs, SIPs and XIPs) and their substrate specificity was assessed on the basis of key amino acid residues. As ESTs were available for 32 genes, expression of these genes was analyzed in 13 different tissues and developmental stages of tomato. We detected tissue-specific and development-specific expression of tomato aquaporin genes, which is a first step towards revealing the contribution of aquaporins to water and solute transport in leaves and during fruit development.

  16. Water deprivation up-regulates urine osmolality and renal aquaporin 2 in Mongolian gerbils (Meriones unguiculatus).

    PubMed

    Xu, Meng-Meng; Wang, De-Hua

    2016-04-01

    To better understand how desert rodents adapt to water scarcity, we examined urine osmolality, renal distribution and expression of aquaporins (AQPs) in Mongolian gerbils (Meriones unguiculatus) during 7 days of water deprivation (WD). Urine osmolality of the gerbils during WD averaged 7503 mOsm kg(-1). Renal distributions of AQP1, AQP2, and AQP3 were similar to that described in other rodents. After the 7 day WD, renal AQP2 was up-regulated, while resting metabolic rate and total evaporative water loss decreased by 43% and 36%, respectively. Our data demonstrated that Mongolian gerbils showed high urine concentration, renal AQPs expression and body water conservation to cope with limited water availability, which may be critical for their survival during dry seasons in cold deserts.

  17. Rat renal arcade segment expresses vasopressin-regulated water channel and vasopressin V2 receptor.

    PubMed Central

    Kishore, B K; Mandon, B; Oza, N B; DiGiovanni, S R; Coleman, R A; Ostrowski, N L; Wade, J B; Knepper, M A

    1996-01-01

    The arcades are long, branched renal tubules which connect deep and mid-cortical nephrons to cortical collecting ducts in the renal cortex. Because they are inaccessible by standard physiological techniques, their functions are poorly understood. In this paper, we demonstrate that the arcades are a site of expression of two proteins, aquaporin-2 (the vasopressin-regulated water channel) and the V2 vasopressin receptor, that are important to regulated water transport in the kidney. Using a peptide-derived polyclonal antibody to aquaporin-2, quantitative ELISA in microdissected segments showed that aquaporin-2 is highly expressed in arcades and that the expression is increased in response to restriction of fluid intake. Immunocytochemistry revealed abundant aquaporin-2 labeling of structures in the cortical labyrinth in a pattern similar to that of the Na(+)-Ca2+ exchanger and kallikrein, marker proteins expressed in arcades but not in cortical collecting ducts. RT-PCR experiments demonstrated substantial aquaporin-2 and V2 receptor mRNA in microdissected arcades. In situ hybridization, using 35S-labeled antisense cRNA probes for the V2 receptor demonstrated strong labeling of both arcades and cortical collecting ducts. Thus, these results indicate that the arcades contain the specific proteins associated with vasopressin-regulated water transport, and may be a heretofore unrecognized site of free water absorption. PMID:8675687

  18. Overexpression of Laccaria bicolor aquaporin JQ585595 alters root water transport properties in ectomycorrhizal white spruce (Picea glauca) seedlings.

    PubMed

    Xu, Hao; Kemppainen, Minna; El Kayal, Walid; Lee, Seong Hee; Pardo, Alejandro G; Cooke, Janice E K; Zwiazek, Janusz J

    2015-01-01

    The contribution of hyphae to water transport in ectomycorrhizal (ECM) white spruce (Picea glauca) seedlings was examined by altering expression of a major water-transporting aquaporin in Laccaria bicolor. Picea glauca was inoculated with wild-type (WT), mock transgenic or L. bicolor aquaporin JQ585595-overexpressing (OE) strains and exposed to root temperatures ranging from 5 to 20°C to examine the root water transport properties, physiological responses and plasma membrane intrinsic protein (PIP) expression in colonized plants. Mycorrhization increased shoot water potential, transpiration, net photosynthetic rates, root hydraulic conductivity and root cortical cell hydraulic conductivity in seedlings. At 20°C, OE plants had higher root hydraulic conductivity compared with WT plants and the increases were accompanied by higher expression of P. glauca PIP GQ03401_M18.1 in roots. In contrast to WT L. bicolor, the effects of OE fungi on root and root cortical cell hydraulic conductivities were abolished at 10 and 5°C in the absence of major changes in the examined transcript levels of P. glauca root PIPs. The results provide evidence for the importance of fungal aquaporins in root water transport of mycorrhizal plants. They also demonstrate links between hyphal water transport, root aquaporin expression and root water transport in ECM plants.

  19. The functional role of xylem parenchyma cells and aquaporins during recovery from severe water stress.

    PubMed

    Secchi, Francesca; Pagliarani, Chiara; Zwieniecki, Maciej A

    2016-09-15

    Xylem parenchyma cells [vessel associated cells (VACs)] constitute a significant fraction of the xylem in woody plants. These cells are often closely connected with xylem vessels or tracheids via simple pores (remnants of plasmodesmata fields). The close contact and biological activity of VACs during times of severe water stress and recovery from stress suggest that they are involved in the maintenance of xylem transport capacity and responsible for the restoration of vessel/tracheid functionality following embolism events. As recovery from embolism requires the transport of water across xylem parenchyma cell membranes, an understanding of stem-specific aquaporin expression patterns, localization and activity is a crucial part of any biological model dealing with embolism recovery processes in woody plants. In this review, we provide a short overview of xylem parenchyma cell biology with a special focus on aquaporins. In particular we address their distributions and activity during the development of drought stress, during the formation of embolism and the subsequent recovery from stress that may result in refilling. Complemented by the current biological model of parenchyma cell function during recovery from stress, this overview highlights recent breakthroughs on the unique ability of long-lived perennial plants to undergo cycles of embolism-recovery related to drought/rewetting or freeze/thaw events.

  20. Role of Aquaporins during Teleost Gametogenesis and Early Embryogenesis

    PubMed Central

    Chauvigné, François; Zapater, Cinta; Cerdà, Joan

    2011-01-01

    Aquaporins are believed to be involved in homeosmotic mechanisms of marine teleosts. Increasing data suggest that these molecular water channels play critical roles associated with the adaptation of gametes and early embryos to the external spawning environment. In this mini-review, we discuss recent studies suggesting the function of aquaporin-mediated fluid homeostasis during spermatozoa activation and egg formation in teleosts. In addition, we address the potential role of water channels in osmosensing and cell migration during early embryonic development. PMID:21994496

  1. A novel human aquaporin-4 splice variant exhibits a dominant-negative activity: a new mechanism to regulate water permeability.

    PubMed

    De Bellis, Manuela; Pisani, Francesco; Mola, Maria Grazia; Basco, Davide; Catalano, Francesco; Nicchia, Grazia Paola; Svelto, Maria; Frigeri, Antonio

    2014-02-01

    Two major isoforms of aquaporin-4 (AQP4) have been described in human tissue. Here we report the identification and functional analysis of an alternatively spliced transcript of human AQP4, AQP4-Δ4, that lacks exon 4. In transfected cells AQP4-Δ4 is mainly retained in the endoplasmic reticulum and shows no water transport properties. When AQP4-Δ4 is transfected into cells stably expressing functional AQP4, the surface expression of the full-length protein is reduced. Furthermore, the water transport activity of the cotransfectants is diminished in comparison to transfectants expressing only AQP4. The observed down-regulation of both the expression and water channel activity of AQP4 is likely to originate from a dominant-negative effect caused by heterodimerization between AQP4 and AQP4-Δ4, which was detected in coimmunoprecipitation studies. In skeletal muscles, AQP4-Δ4 mRNA expression inversely correlates with the level of AQP4 protein and is physiologically associated with different types of skeletal muscles. The expression of AQP4-Δ4 may represent a new regulatory mechanism through which the cell-surface expression and therefore the activity of AQP4 can be physiologically modulated.

  2. A novel human aquaporin-4 splice variant exhibits a dominant-negative activity: a new mechanism to regulate water permeability

    PubMed Central

    De Bellis, Manuela; Pisani, Francesco; Mola, Maria Grazia; Basco, Davide; Catalano, Francesco; Nicchia, Grazia Paola; Svelto, Maria; Frigeri, Antonio

    2014-01-01

    Two major isoforms of aquaporin-4 (AQP4) have been described in human tissue. Here we report the identification and functional analysis of an alternatively spliced transcript of human AQP4, AQP4-Δ4, that lacks exon 4. In transfected cells AQP4-Δ4 is mainly retained in the endoplasmic reticulum and shows no water transport properties. When AQP4-Δ4 is transfected into cells stably expressing functional AQP4, the surface expression of the full-length protein is reduced. Furthermore, the water transport activity of the cotransfectants is diminished in comparison to transfectants expressing only AQP4. The observed down-regulation of both the expression and water channel activity of AQP4 is likely to originate from a dominant-negative effect caused by heterodimerization between AQP4 and AQP4-Δ4, which was detected in coimmunoprecipitation studies. In skeletal muscles, AQP4-Δ4 mRNA expression inversely correlates with the level of AQP4 protein and is physiologically associated with different types of skeletal muscles. The expression of AQP4-Δ4 may represent a new regulatory mechanism through which the cell-surface expression and therefore the activity of AQP4 can be physiologically modulated. PMID:24356448

  3. Fragment Screening of Human Aquaporin 1

    PubMed Central

    To, Janet; Torres, Jaume

    2016-01-01

    Aquaporins (AQPs) are membrane proteins that enable water transport across cellular plasma membranes in response to osmotic gradients. Phenotypic analyses have revealed important physiological roles for AQPs, and the potential for AQP water channel modulators in various disease states has been proposed. For example, AQP1 is overexpressed in tumor microvessels, and this correlates with higher metastatic potential and aggressiveness of the malignancy. Chemical modulators would help in identifying the precise contribution of water channel activity in these disease states. These inhibitors would also be important therapeutically, e.g., in anti-cancer treatment. This perceived importance contrasts with the lack of success of high-throughput screens (HTS) to identify effective and specific inhibitors of aquaporins. In this paper, we have screened a library of 1500 “fragments”, i.e., smaller than molecules used in HTS, against human aquaporin (hAQP1) using a thermal shift assay and surface plasmon resonance. Although these fragments may not inhibit their protein target, they bound to and stabilized hAQP1 (sub mM binding affinities (KD), with an temperature of aggregation shift ΔTagg of +4 to +50 °C) in a concentration-dependent fashion. Chemically expanded versions of these fragments should follow the determination of their binding site on the aquaporin surface. PMID:27023529

  4. The Key Role of Aquaporin 3 and Aquaporin 10 in the Pathogenesis of Pompholyx

    PubMed Central

    Soler, D.C.; Bai, X.; Ortega, L.; Pethukova, T.; Nedorost, S.T.; Popkin, D.L.; Cooper, K. D.; McCormick, T.S.

    2015-01-01

    Pompholyx remains a chronic skin affliction without a compelling pathophysiological explanation. The disease is characterized by the sudden onset of vesicles exclusively in the palms and soles which generally resolves. However, the disease may progress and the vesicles may expand and fuse; with chronicity there is deep fissuring. Multiple therapeutic approaches are available, but the disease is often resistant to conventional treatments. Currently, oral alitretinoin is used for patients with resistant chronic disease; however, this therapy is only approved for use in the UK, Europe and Canada. In this paper we wish to put forward a hypothesis: exposure to water and the subsequent steep osmotic gradient imbalance are key factors driving skin dehydration seen in pompholyx patients once the disease becomes chronic. The mechanistic explanation for the epidermal fissuring might lie in the over-expression across the mid and upper epidermis, including the stratum corneum, of two water/glycerol channel proteins aquaporin 3 and aquaporin 10, expressed in the keratinocytes of afflicted pompholyx patients. The over-expression of these two aquaporins may bridge the abundantly hydrated dermis and basal epidermis to the outer environment allowing cutaneous water and glycerol to flow outward. The beneficial effects reported in alitretinoin-treated patients with chronic hand eczemas may be due potential regulation of aquaporin 3 and aquaporin 10 by alitretinoin. PMID:25725905

  5. Influence of low air humidity and low root temperature on water uptake, growth and aquaporin expression in rice plants.

    PubMed

    Kuwagata, Tsuneo; Ishikawa-Sakurai, Junko; Hayashi, Hidehiro; Nagasuga, Kiyoshi; Fukushi, Keiko; Ahamed, Arifa; Takasugi, Katsuko; Katsuhara, Maki; Murai-Hatano, Mari

    2012-08-01

    The effects of low air humidity and low root temperature (LRT) on water uptake, growth and aquaporin gene expression were investigated in rice plants. The daily transpiration of the plants grown at low humidity was 1.5- to 2-fold higher than that at high humidity. LRT at 13°C reduced transpiration, and the extent was larger at lower humidity. LRT also reduced total dry matter production and leaf area expansion, and the extent was again larger at lower humidity. These observations suggest that the suppression of plant growth by LRT is associated with water stress due to decreased water uptake ability of the root. On the other hand, the net assimilation rate was not affected by low humidity and LRT, and water use efficiency was larger for LRT. We found that low humidity induced coordinated up-regulation of many PIP and TIP aquaporin genes in both the leaves and the roots. Expression levels of two root-specific aquaporin genes, OsPIP2;4 and OsPIP2;5, were increased significantly after 6 and 13 d of LRT exposure. Taken together, we discuss the possibility that aquaporins are part of an integrated response of this crop to low air humidity and LRT.

  6. A collaboration of aquaporins handles water transport in relation to the estrous cycle in the bitch uterus.

    PubMed

    Aralla, M; Borromeo, V; Groppetti, D; Secchi, C; Cremonesi, F; Arrighi, S

    2009-08-01

    Fluid movement through uterine cell membranes is crucial, as it can modulate the tissue imbibition pattern in the different phases of the estrous cycle. To gain insight into the mechanisms underlying steroid-controlled water handling, the presence and distribution of aquaporins (AQPs), integral membrane channel proteins permitting rapid passive water movement, was explored in bitch uterine tissues. Immunohistochemistry and Western immunoblot analysis were used to study the presence of AQP1, AQP2, and AQP5 in the layers of the bitch uterine wall during the different estrous phases. Presence of endothelial nitric oxide-generating enzyme NO synthase (NOS3) was also investigated, as it is known that the vasodilator NOS3 might be involved in the development of uterine edema. The results demonstrated the following: (1) AQP1, AQP2, and AQP5 were present in the uterus of cycling bitches. (2) AQP1 was localized within uterine mesometrial, myometrial, and endometrial blood vessels and in the circular and longitudinal layers of myometrium. AQP1 localization and expression were unaffected by the estrous cycle. (3) The estrogenic milieu was probably at the basis of AQP2 expression in the glandular and luminal epithelium of the endometrium. (4) AQP5 water channels were present in the apical plasma membrane of uterine epithelial cells in coincidence with plasma progesterone increase. (5) NOS3 was localized in the myometrial and epithelial tissues as well as in blood vessels indicating a contribution of this vasoactive peptide to the uterine imbibition processes. Thus, we can hypothesize that a functional and distinctive collaboration exists among diverse AQPs in water handling during the different functional uterine phases.

  7. Membrane-associated aquaporin-1 facilitates osmotically driven water flux across the basolateral membrane of the thick ascending limb

    PubMed Central

    Cabral, Pablo D.

    2012-01-01

    The thick ascending limb of the loop of Henle (TAL) reabsorbs ∼30% of filtered NaCl but is impermeable to water. The observation that little water traverses the TAL indicates an absence of water channels at the apical membrane. Yet TAL cells swell when peritubular osmolality decreases indicating that water channels must be present in the basolateral side. Consequently, we hypothesized that the water channel aquaporin-1 (AQP1) facilitates water flux across the basolateral membrane of TALs. Western blotting revealed AQP1 expression in microdissected rat and mouse TALs. Double immunofluorescence showed that 95 ± 2% of tubules positive for the TAL-specific marker Tamm-Horsfall protein were also positive for AQP1 (n = 6). RT-PCR was used to demonstrate presence of AQP1 mRNA and the TAL-specific marker NKCC2 in microdissected TALs. Cell surface biotinylation assays showed that 23 ± 3% of the total pool of AQP1 was present at the TAL basolateral membrane (n = 7). To assess the functional importance of AQP1 in the basolateral membrane, we measured the rate of cell swelling initiated by decreasing peritubular osmolality as an indicator of water flux in microdissected TALs. Water flux was decreased by ∼50% in Aqp1 knockout mice compared with wild-types (4.0 ± 0.8 vs. 8.9 ± 1.7 fluorescent U/s, P < 0.02; n = 7). Furthermore, arginine vasopressin increased TAL AQP1 expression by 135 ± 17% (glycosylated) and 41 ± 11% (nonglycosylated; P < 0.01; n =5). We conclude that 1) the TAL expresses AQP1, 2) ∼23% of the total pool of AQP1 is localized to the basolateral membrane, 3) AQP1 mediates a significant portion of basolateral water flux, and 4) AQP1 is upregulated in TALs of rats infused with dDAVP. AQP1 could play an important role in regulation of TAL cell volume during changes in interstitial osmolality, such as during a high-salt diet or water deprivation. PMID:22674028

  8. Advances in functional regulation mechanisms of plant aquaporins: their diversity, gene expression, localization, structure and roles in plant soil-water relations (Review).

    PubMed

    Shao, Hong-Bo; Chu, Li-Ye; Shao, Ming-An; Zhao, Chang-Xing

    2008-04-01

    Aquaporins are important molecules that control the moisture level of cells and water flow in plants. Plant aquaporins are present in various tissues, and play roles in water transport, cell differentiation and cell enlargement involved in plant growth and water relations. The insights into aquaporins' diversity, structure, expression, post-translational modification, permeability properties, subcellular location, etc., from considerable studies, can lead to an understanding of basic features of the water transport mechanism and increased illumination into plant water relations. Recent important advances in determining the structure and activity of different aquaporins give further details on the mechanism of functional regulation. Therefore, the current paper mainly focuses on aquaporin structure-function relationships, in order to understand the function and regulation of aquaporins at the cellular level and in the whole plant subjected to various environmental conditions. As a result, the straightforward view is that most aquaporins in plants are to regulate water flow mainly at cellular scale, which is the most widespread general interpretation of the physiological and functional assays in plants.

  9. Role of Aquaporins in a Composite Model of Water Transport in the Leaf

    PubMed Central

    Yaaran, Adi; Moshelion, Menachem

    2016-01-01

    Water-transport pathways through the leaf are complex and include several checkpoints. Some of these checkpoints exhibit dynamic behavior that may be regulated by aquaporins (AQPs). To date, neither the relative weight of the different water pathways nor their molecular mechanisms are well understood. Here, we have collected evidence to support a putative composite model of water pathways in the leaf and the distribution of water across those pathways. We describe how water moves along a single transcellular path through the parenchyma and continues toward the mesophyll and stomata along transcellular, symplastic and apoplastic paths. We present evidence that points to a role for AQPs in regulating the relative weight of each path in the overall leaf water-transport system and the movement of water between these paths as a result of the integration of multiple signals, including transpiration demand, water potential and turgor. We also present a new theory, the hydraulic fuse theory, to explain effects of the leaf turgor-loss-point on water paths alternation and the subsequent reduction in leaf hydraulic conductivity. An improved understating of leaf water-balance management may lead to the development of crops that use water more efficiently, and responds better to environmental changes. PMID:27376277

  10. Prediction of functional residues in water channels and related proteins.

    PubMed Central

    Froger, A.; Tallur, B.; Thomas, D.; Delamarche, C.

    1998-01-01

    In this paper, we present an updated classification of the ubiquitous MIP (Major Intrinsic Protein) family proteins, including 153 fully or partially sequenced members available in public databases. Presently, about 30 of these proteins have been functionally characterized, exhibiting essentially two distinct types of channel properties: (1) specific water transport by the aquaporins, and (2) small neutral solutes transport, such as glycerol by the glycerol facilitators. Sequence alignments were used to predict amino acids and motifs discriminant in channel specificity. The protein sequences were also analyzed using statistical tools (comparisons of means and correspondence analysis). Five key positions were clearly identified where the residues are specific for each functional subgroup and exhibit high dissimilar physico-chemical properties. Moreover, we have found that the putative channels for small neutral solutes clearly differ from the aquaporins by the amino acid content and the length of predicted loop regions, suggesting a substrate filter function for these loops. From these results, we propose a signature pattern for water transport. PMID:9655351

  11. Reconstitution of CO2 Regulation of SLAC1 Anion Channel and Function of CO2-Permeable PIP2;1 Aquaporin as CARBONIC ANHYDRASE4 Interactor

    PubMed Central

    Zeise, Brian; Xu, Danyun; Rappel, Wouter-Jan; Boron, Walter F.; Schroeder, Julian I.

    2016-01-01

    Dark respiration causes an increase in leaf CO2 concentration (Ci), and the continuing increases in atmospheric [CO2] further increases Ci. Elevated leaf CO2 concentration causes stomatal pores to close. Here, we demonstrate that high intracellular CO2/HCO3− enhances currents mediated by the Arabidopsis thaliana guard cell S-type anion channel SLAC1 upon coexpression of any one of the Arabidopsis protein kinases OST1, CPK6, or CPK23 in Xenopus laevis oocytes. Split-ubiquitin screening identified the PIP2;1 aquaporin as an interactor of the βCA4 carbonic anhydrase, which was confirmed in split luciferase, bimolecular fluorescence complementation, and coimmunoprecipitation experiments. PIP2;1 exhibited CO2 permeability. Mutation of PIP2;1 in planta alone was insufficient to impair CO2- and abscisic acid-induced stomatal closing, likely due to redundancy. Interestingly, coexpression of βCA4 and PIP2;1 with OST1-SLAC1 or CPK6/23-SLAC1 in oocytes enabled extracellular CO2 enhancement of SLAC1 anion channel activity. An inactive PIP2;1 point mutation was identified that abrogated water and CO2 permeability and extracellular CO2 regulation of SLAC1 activity. These findings identify the CO2-permeable PIP2;1 as key interactor of βCA4 and demonstrate functional reconstitution of extracellular CO2 signaling to ion channel regulation upon coexpression of PIP2;1, βCA4, SLAC1, and protein kinases. These data further implicate SLAC1 as a bicarbonate-responsive protein contributing to CO2 regulation of S-type anion channels. PMID:26764375

  12. Aquaporins in Brain Edema and Neuropathological Conditions

    PubMed Central

    Filippidis, Aristotelis S.; Carozza, Richard B.; Rekate, Harold L.

    2016-01-01

    The aquaporin (AQP) family of water channels are a group of small, membrane-spanning proteins that are vital for the rapid transport of water across the plasma membrane. These proteins are widely expressed, from tissues such as the renal epithelium and erythrocytes to the various cells of the central nervous system. This review will elucidate the basic structure and distribution of aquaporins and discuss the role of aquaporins in various neuropathologies. AQP1 and AQP4, the two primary aquaporin molecules of the central nervous system, regulate brain water and CSF movement and contribute to cytotoxic and vasogenic edema, where they control the size of the intracellular and extracellular fluid volumes, respectively. AQP4 expression is vital to the cellular migration and angiogenesis at the heart of tumor growth; AQP4 is central to dysfunctions in glutamate metabolism, synaptogenesis, and memory consolidation; and AQP1 and AQP4 adaptations have been seen in obstructive and non-obstructive hydrocephalus and may be therapeutic targets. PMID:28036023

  13. Water homeostasis in the fish oocyte: new insights into the role and molecular regulation of a teleost-specific aquaporin.

    PubMed

    Cerdà, J; Zapater, C; Chauvigné, F; Finn, R N

    2013-02-01

    The discovery of the role of a teleost-specific aquaporin (Aqp1ab) during the process of oocyte hydration in marine fish producing pelagic (floating) eggs, recently confirmed by molecular approaches, has revealed that this mechanism is more sophisticated than initially thought. Recent phylogenetic and genomic studies suggest that Aqp1ab likely evolved by tandem duplication from a common ancestor and further neofunctionalized in oocytes for water transport. Investigations into the regulation of Aqp1ab during oogenesis indicate that the mRNA and protein product are highly accumulated during early oocyte growth, possibly through the transcriptional activation of the aqp1ab promoter by the classical nuclear progesterone receptor and perhaps by Sry-related high mobility group [HMG]-box (Sox) transcription factors. During oocyte growth and maturation, Aqp1ab intracellular trafficking may be regulated by phosphorylation and/or dephosphorylation of specific C-terminal residues in Aqp1ab, as well as by signal-mediated sorting processes. These mechanisms possibly regulate the temporal insertion of Aqp1ab into the oocyte plasma membrane during oocyte hydration, although the intracellular signaling pathways involved are yet unknown. Interestingly, in some freshwater species that spawn partially hydrated eggs, high accumulation of transcripts encoding functional Aqp1ab channels have also been found in the ovary. These findings suggest that the Aqp1ab-mediated mechanism for oocyte hydration is likely conserved in teleosts. The tight regulation of Aqp1ab during oogenesis, at both the transcriptional and posttranslational levels, highlights the essential physiological role of this water channel and opens new research avenues for understanding the molecular basis of egg formation in fish.

  14. Increased water flux induced by an aquaporin-1/carbonic anhydrase II interaction

    PubMed Central

    Vilas, Gonzalo; Krishnan, Devishree; Loganathan, Sampath Kumar; Malhotra, Darpan; Liu, Lei; Beggs, Megan Rachele; Gena, Patrizia; Calamita, Giuseppe; Jung, Martin; Zimmermann, Richard; Tamma, Grazia; Casey, Joseph Roman; Alexander, Robert Todd

    2015-01-01

    Aquaporin-1 (AQP1) enables greatly enhanced water flux across plasma membranes. The cytosolic carboxy terminus of AQP1 has two acidic motifs homologous to known carbonic anhydrase II (CAII) binding sequences. CAII colocalizes with AQP1 in the renal proximal tubule. Expression of AQP1 with CAII in Xenopus oocytes or mammalian cells increased water flux relative to AQP1 expression alone. This required the amino-terminal sequence of CAII, a region that binds other transport proteins. Expression of catalytically inactive CAII failed to increase water flux through AQP1. Proximity ligation assays revealed close association of CAII and AQP1, an effect requiring the second acidic cluster of AQP1. This motif was also necessary for CAII to increase AQP1-mediated water flux. Red blood cell ghosts resealed with CAII demonstrated increased osmotic water permeability compared with ghosts resealed with albumin. Water flux across renal cortical membrane vesicles, measured by stopped-flow light scattering, was reduced in CAII-deficient mice compared with wild-type mice. These data are consistent with CAII increasing water conductance through AQP1 by a physical interaction between the two proteins. PMID:25609088

  15. Aquaporin-4 gene silencing protects injured neurons after early cerebral infarction

    PubMed Central

    He, Zhan-ping; Lu, Hong

    2015-01-01

    Aquaporin-4 regulates water molecule channels and is important in tissue regulation and water transportation in the brain. Upregulation of aquaporin-4 expression is closely related to cellular edema after early cerebral infarction. Cellular edema and aquaporin-4 expression can be determined by measuring cerebral infarct area and apparent diffusion coefficient using diffusion-weighted imaging (DWI). We examined the effects of silencing aquaporin-4 on cerebral infarction. Rat models of cerebral infarction were established by occlusion of the right middle cerebral artery and siRNA-aquaporin-4 was immediately injected via the right basal ganglia. In control animals, the area of high signal intensity and relative apparent diffusion coefficient value on T2-weighted imaging (T2WI) and DWI gradually increased within 0.5–6 hours after cerebral infarction. After aquaporin-4 gene silencing, the area of high signal intensity on T2WI and DWI reduced, relative apparent diffusion coefficient value was increased, and cellular edema was obviously alleviated. At 6 hours after cerebral infarction, the apparent diffusion coefficient value was similar between treatment and model groups, but angioedema was still obvious in the treatment group. These results indicate that aquaporin-4 gene silencing can effectively relieve cellular edema after early cerebral infarction; and when conducted accurately and on time, the diffusion coefficient value and the area of high signal intensity on T2WI and DWI can reflect therapeutic effects of aquaporin-4 gene silencing on cellular edema. PMID:26330830

  16. Vasopressin and the Regulation of Aquaporin-2

    PubMed Central

    Wilson, Justin L.L.; Miranda, Carlos A.; Knepper, Mark A.

    2013-01-01

    Water excretion is regulated in large part through the regulation of the osmotic water permeability of the renal collecting duct epithelium. The water permeability is controlled by vasopressin through regulation of the water channel, aquaporin-2 (AQP2). Two processes contribute: 1) regulation of AQP2 trafficking to the apical plasma membrane; and 2) regulation of the total amount of the AQP2 protein in the cells. Regulation of AQP2 abundance is defective in several water balance disorders including many polyuric disorders and the syndrome of inappropriate antidiuresis (SIADH). Here we review vasopressin signaling in the renal collecting duct that is relevant to the two modes of water permeability regulation. PMID:23584881

  17. Short-term control of maize cell and root water permeability through plasma membrane aquaporin isoforms.

    PubMed

    Hachez, Charles; Veselov, Dmitry; Ye, Qing; Reinhardt, Hagen; Knipfer, Thorsten; Fricke, Wieland; Chaumont, François

    2012-01-01

    Although it is widely accepted that aquaporins are involved in the regulation of root water uptake, the role of specific isoforms in this process is poorly understood. The mRNA expression and protein level of specific plasma membrane intrinsic proteins (PIPs) were analysed in Zea mays in relation to cell and root hydraulic conductivity. Plants were analysed during the day/night period, under different growth conditions (aeroponics/hydroponics) and in response to short-term osmotic stress applied through polyethylene glycol (PEG). Higher protein levels of ZmPIP1;2, ZmPIP2;1/2;2, ZmPIP2;5 and ZmPIP2;6 during the day coincided with a higher water permeability of root cortex cells during the day compared with night period. Similarly, plants which were grown under aeroponic conditions and which developed a hypodermis ('exodermis') with Casparian bands, effectively forcing more water along a membranous uptake path across roots, showed increased levels of ZmPIP2;5 and ZmPIP1;2 in the rhizodermis and exodermis. When PEG was added to the root medium (2-8 h), expression of PIPs and cell water permeability in roots increased. These data support a role of specific PIP isoforms, in particular ZmPIP1;2 and ZmPIP2;5, in regulating root water uptake and cortex cell hydraulic conductivity in maize.

  18. Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes.

    PubMed

    Bienert, Gerd P; Møller, Anders L B; Kristiansen, Kim A; Schulz, Alexander; Møller, Ian M; Schjoerring, Jan K; Jahn, Thomas P

    2007-01-12

    The metabolism of aerobic organisms continuously produces reactive oxygen species. Although potentially toxic, these compounds also function in signaling. One important feature of signaling compounds is their ability to move between different compartments, e.g. to cross membranes. Here we present evidence that aquaporins can channel hydrogen peroxide (H2O2). Twenty-four aquaporins from plants and mammals were screened in five yeast strains differing in sensitivity toward oxidative stress. Expression of human AQP8 and plant Arabidopsis TIP1;1 and TIP1;2 in yeast decreased growth and survival in the presence of H2O2. Further evidence for aquaporin-mediated H2O2 diffusion was obtained by a fluorescence assay with intact yeast cells using an intracellular reactive oxygen species-sensitive fluorescent dye. Application of silver ions (Ag+), which block aquaporin-mediated water diffusion in a fast kinetics swelling assay, also reversed both the aquaporin-dependent growth repression and the H2O2-induced fluorescence. Our results present the first molecular genetic evidence for the diffusion of H2O2 through specific members of the aquaporin family.

  19. AKAP220 manages apical actin networks that coordinate aquaporin-2 location and renal water reabsorption

    PubMed Central

    Whiting, Jennifer L.; Ogier, Leah; Forbush, Katherine A.; Bucko, Paula; Gopalan, Janani; Seternes, Ole-Morten; Langeberg, Lorene K.; Scott, John D.

    2016-01-01

    Filtration through the kidney eliminates toxins, manages electrolyte balance, and controls water homeostasis. Reabsorption of water from the luminal fluid of the nephron occurs through aquaporin-2 (AQP2) water pores in principal cells that line the kidney-collecting duct. This vital process is impeded by formation of an “actin barrier” that obstructs the passive transit of AQP2 to the plasma membrane. Bidirectional control of AQP2 trafficking is managed by hormones and signaling enzymes. We have discovered that vasopressin-independent facets of this homeostatic mechanism are under the control of A-Kinase Anchoring Protein 220 (AKAP220; product of the Akap11 gene). CRISPR/Cas9 gene editing and imaging approaches show that loss of AKAP220 disrupts apical actin networks in organoid cultures. Similar defects are evident in tissue sections from AKAP220-KO mice. Biochemical analysis of AKAP220-null kidney extracts detected reduced levels of active RhoA GTPase, a well-known modulator of the actin cytoskeleton. Fluorescent imaging of kidney sections from these genetically modified mice revealed that RhoA and AQP2 accumulate at the apical surface of the collecting duct. Consequently, these animals are unable to appropriately dilute urine in response to overhydration. We propose that membrane-proximal signaling complexes constrained by AKAP220 impact the actin barrier dynamics and AQP2 trafficking to ensure water homeostasis. PMID:27402760

  20. Bi-functionality of Opisthorchis viverrini aquaporins.

    PubMed

    Geadkaew, Amornrat; von Bülow, Julia; Beitz, Eric; Tesana, Smarn; Vichasri Grams, Suksiri; Grams, Rudi

    2015-01-01

    Aquaporins (AQP) are essential mediators of water regulation in all living organisms and members of the major intrinsic protein (MIP) superfamily of integral membrane proteins. They are potential vehicles or targets for chemotherapy, e.g. in Trypanosoma brucei melarsoprol and pentamidine uptake is facilitated by TbAQP-2. Transcriptome data suggests that there are at least three active aquaporins in the human liver fluke, Opisthorchis viverrini, OvAQP-1, 2 and 3, and crude RNA silencing of OvAQP-1 and 2 has recently been shown to affect parasite swelling in destilled water. In the present work we demonstrate that OvAQP-3 is a major water-conducting channel of the parasite, that it can be detected from the newly excysted juvenile to the adult stage and that it is present in major tissues of the parasite. Furthermore, a comparative functional characterization of the three parasite AQPs was performed by using Xenopus oocyte swelling and yeast phenotypic assays. OvAQP-1, OvAQP-2, and OvAQP-3 were found to conduct water and glycerol while only the latter two were also able to conduct urea. In addition, all OvAQPs were found to transport ammonia and methylamine. Our findings demonstrate that the sequence-based classification into orthodox aquaporins and glycerol-conducting aquaglyceroporins is not functionally conserved in the parasite and implicate a broder range of functions for these channels.

  1. Can Stabilization and Inhibition of Aquaporins Contribute to Future Development of Biomimetic Membranes?

    PubMed Central

    To, Janet; Torres, Jaume

    2015-01-01

    In recent years, the use of biomimetic membranes that incorporate membrane proteins, i.e., biomimetic-hybrid membranes, has increased almost exponentially. Key membrane proteins in these systems have been aquaporins, which selectively permeabilize cellular membranes to water. Aquaporins may be incorporated into synthetic lipid bilayers or to more stable structures made of block copolymers or solid-state nanopores. However, translocation of aquaporins to these alien environments has adverse consequences in terms of performance and stability. Aquaporins incorporated in biomimetic membranes for use in water purification and desalination should also withstand the harsh environment that may prevail in these conditions, such as high pressure, and presence of salt or other chemicals. In this respect, modified aquaporins that can be adapted to these new environments should be developed. Another challenge is that biomimetic membranes that incorporate high densities of aquaporin should be defect-free, and this can only be efficiently ascertained with the availability of completely inactive mutants that behave otherwise like the wild type aquaporin, or with effective non-toxic water channel inhibitors that are so far inexistent. In this review, we describe approaches that can potentially be used to overcome these challenges. PMID:26266425

  2. Tolvaptan regulates aquaporin-2 and fecal water in cirrhotic rats with ascites

    PubMed Central

    Chen, Chao; Chen, Ren-Pin; Lin, Hai-Hua; Zhang, Wen-You; Huang, Xie-Lin; Huang, Zhi-Ming

    2016-01-01

    AIM: To investigate the role of tolvaptan in regulating aquaporin (AQP)-2 expression and fecal water content in cirrhotic rats with ascites. METHODS: Cirrhosis with ascites was induced in rats by repetitive dorsal injection of CCl4 for 14 wk. In total, 84 cirrhotic rats with ascites divided into three groups (vehicle, 3 mg/kg and 5 mg/kg tolvaptan), and then further divided into five subgroups (days 1, 2, 3, 4, and 5). Blood samples were obtained to measure vasopressin and sodium concentrations. Rats were killed and colonic mucosa was scraped for analysis of protein expression and AQP-2 transcriptional level. The whole layer was fixed for hematoxylin&eosin (HE) staining and feces were collected for determination of fecal water content. CONCLUSION: Compared with vehicle, vasopressin decreased significantly in the tolvaptan groups from day 2 to a similar level in each treatment group. AQP-2 showed significant upregulation in cirrhotic rats with ascites compared with an untreated control group (100% ± 22.9% vs 22.2% ± 10.23%, P < 0.01). After administration of tolvaptan, AQP-2 expression began to decrease significantly from day 2 in each treatment group, but no significant difference was finally found between the treatment groups. Fecal water content in the distal colon was increased by 5 mg/kg tolvaptan on day 1 (66.8% ± 9.3% vs 41.4% ± 6.3%, in the vehicle group, P < 0.05). Fecal water content returned to baseline at day 4 at the latest in both treatment groups, and did not correspond to the change in AQP-2 expression. HE staining of the colonic mucosa showed no mucosal damage related to tolvaptan. CONCLUSION: Upregulation of AQP-2 in the distal colon is found in cirrhotic rats with ascites. Tolvaptan inhibits its expression and may decrease water reabsorption and induce diarrhea. PMID:27022218

  3. Desformylgramicidin: a model channel with an extremely high water permeability.

    PubMed Central

    Saparov, S M; Antonenko, Y N; Koeppe, R E; Pohl, P

    2000-01-01

    The water conductivity of desformylgramicidin exceeds the permeability of gramicidin A by two orders of magnitude. With respect to its single channel hydraulic permeability coefficient of 1.1.10(-12) cm(3) s(-1), desformylgramicidin may serve as a model for extremely permeable aquaporin water channel proteins (AQP4 and AQPZ). This osmotic permeability exceeds the conductivity that is predicted by the theory of single-file transport. It was derived from the concentration distributions of both pore-impermeable and -permeable cations that were simultaneously measured by double barreled microelectrodes in the immediate vicinity of a planar bilayer. From solvent drag experiments, approximately five water molecules were found to be transported by a single-file process along with one ion through the channel. The single channel proton, potassium, and sodium conductivities were determined to be equal to 17 pS (pH 2.5), 7 and 3 pS, respectively. Under any conditions, the desformyl-channel remains at least 10 times longer in its open state than gramicidin A. PMID:11053127

  4. The Interactions of Aquaporins and Mineral Nutrients in Higher Plants.

    PubMed

    Wang, Min; Ding, Lei; Gao, Limin; Li, Yingrui; Shen, Qirong; Guo, Shiwei

    2016-07-29

    Aquaporins, major intrinsic proteins (MIPs) present in the plasma and intracellular membranes, facilitate the transport of small neutral molecules across cell membranes in higher plants. Recently, progress has been made in understanding the mechanisms of aquaporin subcellular localization, transport selectivity, and gating properties. Although the role of aquaporins in maintaining the plant water status has been addressed, the interactions between plant aquaporins and mineral nutrients remain largely unknown. This review highlights the roles of various aquaporin orthologues in mineral nutrient uptake and transport, as well as the regulatory effects of mineral nutrients on aquaporin expression and activity, and an integrated link between aquaporins and mineral nutrient metabolism was identified.

  5. The Interactions of Aquaporins and Mineral Nutrients in Higher Plants

    PubMed Central

    Wang, Min; Ding, Lei; Gao, Limin; Li, Yingrui; Shen, Qirong; Guo, Shiwei

    2016-01-01

    Aquaporins, major intrinsic proteins (MIPs) present in the plasma and intracellular membranes, facilitate the transport of small neutral molecules across cell membranes in higher plants. Recently, progress has been made in understanding the mechanisms of aquaporin subcellular localization, transport selectivity, and gating properties. Although the role of aquaporins in maintaining the plant water status has been addressed, the interactions between plant aquaporins and mineral nutrients remain largely unknown. This review highlights the roles of various aquaporin orthologues in mineral nutrient uptake and transport, as well as the regulatory effects of mineral nutrients on aquaporin expression and activity, and an integrated link between aquaporins and mineral nutrient metabolism was identified. PMID:27483251

  6. New evidence about the relationship between water channel activity and calcium in salinity-stressed pepper plants.

    PubMed

    Cabañero, Francisco J; Martínez-Ballesta, M Carmen; Teruel, José A; Carvajal, Micaela

    2006-02-01

    This study, of how Ca2+ availability (intracellular, extracellular or linked to the membrane) influences the functionality of aquaporins of pepper (Capsicum annuum L.) plants grown under salinity stress, was carried out in plants treated with NaCl (50 mM), CaCl2 (10 mM), and CaCl2 (10 mM) + NaCl (50 mM). For this, water transport through the plasma membrane of isolated protoplasts, and the involvement of aquaporins and calcium (extracellular, intracellular and linked to the membrane) has been determined. After these treatments, it could be seen that the calcium concentration was reduced in the apoplast, in the cells and on the plasma membrane of roots of pepper plants grown under saline conditions; these concentrations were increased or restored when extra calcium was added to the nutrient solution. Protoplasts extracted from plants grown under Ca2+ starvation showed no aquaporin functionality. However, for the protoplasts to which calcium was added, an increase of aquaporin functionality of the plasma membrane was observed [osmotic water permeability (Pf) inhibition after Hg addition]. Interestingly, when verapamil (a Ca2+ channel blocker) was added, no functionality was observed, even when Ca2+ was added with verapamil. Therefore, calcium seems to be involved in plasma membrane aquaporin regulation via a chain of processes within the cell but not by alteration of the stability of the plasma membrane.

  7. L-Type Calcium Channels Play a Critical Role in Maintaining Lens Transparency by Regulating Phosphorylation of Aquaporin-0 and Myosin Light Chain and Expression of Connexins

    PubMed Central

    Maddala, Rupalatha; Nagendran, Tharkika; de Ridder, Gustaaf G.; Schey, Kevin L.; Rao, Ponugoti Vasantha

    2013-01-01

    Homeostasis of intracellular calcium is crucial for lens cytoarchitecture and transparency, however, the identity of specific channel proteins regulating calcium influx within the lens is not completely understood. Here we examined the expression and distribution profiles of L-type calcium channels (LTCCs) and explored their role in morphological integrity and transparency of the mouse lens, using cDNA microarray, RT-PCR, immunoblot, pharmacological inhibitors and immunofluorescence analyses. The results revealed that Ca (V) 1.2 and 1.3 channels are expressed and distributed in both the epithelium and cortical fiber cells in mouse lens. Inhibition of LTCCs with felodipine or nifedipine induces progressive cortical cataract formation with time, in association with decreased lens weight in ex-vivo mouse lenses. Histological analyses of felodipine treated lenses revealed extensive disorganization and swelling of cortical fiber cells resembling the phenotype reported for altered aquaporin-0 activity without detectable cytotoxic effects. Analysis of both soluble and membrane rich fractions from felodipine treated lenses by SDS-PAGE in conjunction with mass spectrometry and immunoblot analyses revealed decreases in β-B1-crystallin, Hsp-90, spectrin and filensin. Significantly, loss of transparency in the felodipine treated lenses was preceded by an increase in aquaporin-0 serine-235 phosphorylation and levels of connexin-50, together with decreases in myosin light chain phosphorylation and the levels of 14-3-3ε, a phosphoprotein-binding regulatory protein. Felodipine treatment led to a significant increase in gene expression of connexin-50 and 46 in the mouse lens. Additionally, felodipine inhibition of LTCCs in primary cultures of mouse lens epithelial cells resulted in decreased intracellular calcium, and decreased actin stress fibers and myosin light chain phosphorylation, without detectable cytotoxic response. Taken together, these observations reveal a crucial

  8. L-type calcium channels play a critical role in maintaining lens transparency by regulating phosphorylation of aquaporin-0 and myosin light chain and expression of connexins.

    PubMed

    Maddala, Rupalatha; Nagendran, Tharkika; de Ridder, Gustaaf G; Schey, Kevin L; Rao, Ponugoti Vasantha

    2013-01-01

    Homeostasis of intracellular calcium is crucial for lens cytoarchitecture and transparency, however, the identity of specific channel proteins regulating calcium influx within the lens is not completely understood. Here we examined the expression and distribution profiles of L-type calcium channels (LTCCs) and explored their role in morphological integrity and transparency of the mouse lens, using cDNA microarray, RT-PCR, immunoblot, pharmacological inhibitors and immunofluorescence analyses. The results revealed that Ca (V) 1.2 and 1.3 channels are expressed and distributed in both the epithelium and cortical fiber cells in mouse lens. Inhibition of LTCCs with felodipine or nifedipine induces progressive cortical cataract formation with time, in association with decreased lens weight in ex-vivo mouse lenses. Histological analyses of felodipine treated lenses revealed extensive disorganization and swelling of cortical fiber cells resembling the phenotype reported for altered aquaporin-0 activity without detectable cytotoxic effects. Analysis of both soluble and membrane rich fractions from felodipine treated lenses by SDS-PAGE in conjunction with mass spectrometry and immunoblot analyses revealed decreases in β-B1-crystallin, Hsp-90, spectrin and filensin. Significantly, loss of transparency in the felodipine treated lenses was preceded by an increase in aquaporin-0 serine-235 phosphorylation and levels of connexin-50, together with decreases in myosin light chain phosphorylation and the levels of 14-3-3ε, a phosphoprotein-binding regulatory protein. Felodipine treatment led to a significant increase in gene expression of connexin-50 and 46 in the mouse lens. Additionally, felodipine inhibition of LTCCs in primary cultures of mouse lens epithelial cells resulted in decreased intracellular calcium, and decreased actin stress fibers and myosin light chain phosphorylation, without detectable cytotoxic response. Taken together, these observations reveal a crucial

  9. FAITH Water Channel Flow Visualization

    NASA Video Gallery

    Water channel flow visualization experiments are performed on a three dimensional model of a small hill. This experiment was part of a series of measurements of the complex fluid flow around the hi...

  10. Aquaporins Are Critical for Provision of Water during Lactation and Intrauterine Progeny Hydration to Maintain Tsetse Fly Reproductive Success

    PubMed Central

    Benoit, Joshua B.; Hansen, Immo A.; Attardo, Geoffrey M.; Michalková, Veronika; Mireji, Paul O.; Bargul, Joel L.; Drake, Lisa L.; Masiga, Daniel K.; Aksoy, Serap

    2014-01-01

    Tsetse flies undergo drastic fluctuations in their water content throughout their adult life history due to events such as blood feeding, dehydration and lactation, an essential feature of the viviparous reproductive biology of tsetse. Aquaporins (AQPs) are transmembrane proteins that allow water and other solutes to permeate through cellular membranes. Here we identify tsetse aquaporin (AQP) genes, examine their expression patterns under different physiological conditions (blood feeding, lactation and stress response) and perform functional analysis of three specific genes utilizing RNA interference (RNAi) gene silencing. Ten putative aquaporins were identified in the Glossina morsitans morsitans (Gmm) genome, two more than has been previously documented in any other insect. All organs, tissues, and body parts examined had distinct AQP expression patterns. Two AQP genes, gmmdripa and gmmdripb ( = gmmaqp1a and gmmaqp1b) are highly expressed in the milk gland/fat body tissues. The whole-body transcript levels of these two genes vary over the course of pregnancy. A set of three AQPs (gmmaqp5, gmmaqp2a, and gmmaqp4b) are expressed highly in the Malpighian tubules. Knockdown of gmmdripa and gmmdripb reduced the efficiency of water loss following a blood meal, increased dehydration tolerance and reduced heat tolerance of adult females. Knockdown of gmmdripa extended pregnancy length, and gmmdripb knockdown resulted in extended pregnancy duration and reduced progeny production. We found that knockdown of AQPs increased tsetse milk osmolality and reduced the water content in developing larva. Combined knockdown of gmmdripa, gmmdripb and gmmaqp5 extended pregnancy by 4–6 d, reduced pupal production by nearly 50%, increased milk osmolality by 20–25% and led to dehydration of feeding larvae. Based on these results, we conclude that gmmDripA and gmmDripB are critical for diuresis, stress tolerance and intrauterine lactation through the regulation of water and/or other

  11. Aquaporin-Mediated Water and Hydrogen Peroxide Transport Is Involved in Normal Human Spermatozoa Functioning

    PubMed Central

    Laforenza, Umberto; Pellavio, Giorgia; Marchetti, Anna Lisa; Omes, Claudia; Todaro, Federica; Gastaldi, Giulia

    2016-01-01

    Different aquaporins (AQPs) are expressed in human sperm cells and with a different localization. Their function has been related to cell volume control in response to the osmotic changes encountered passing from the epididymal fluid to the cervical mucus or involved in the end stage of cytoplasm removal during sperm maturation. Recently, AQPs have also shown hydrogen peroxide (H2O2) permeability properties. Here, we investigate the expression, localization and functioning of AQPs in human sperm cells with particular attention to their role as peroxiporins in reactive oxygen species (ROS) scavenging in both normospermic and sub-fertile human subjects. Western blotting and immunocytochemistry were used to confirm and clarify the AQPs expression and localization. Water and H2O2 permeability was tested by stopped flow light scattering method and by the CM-H2DCFDA (5-(and-6)-chloromethyl-2′,7′-dichlorodihydro-fluorescein diacetate, acetyl ester) H2O2 fluorescence probe, respectively. AQP3, -7, -8, and -11 proteins were found in human sperm cells and localized in the head (AQP7), in the middle piece (AQP8) and in the tail (AQP3 and -11) in both the plasma membrane and in intracellular structures. Sperm cells showed water and H2O2 permeability which was reversibly inhibited by H2O2, heat stress and the AQP inhibitor HgCl2. Reduced functionality was observed in patients with compromised basal semen parameters. Present findings suggest that AQPs are involved in both volume regulation and ROS elimination. The relationship between sperm number and motility and AQP functioning was also demonstrated. PMID:28042826

  12. MzPIP2;1: An Aquaporin Involved in Radial Water Movement in Both Water Uptake and Transportation, Altered the Drought and Salt Tolerance of Transgenic Arabidopsis

    PubMed Central

    Lei, Qiong; Feng, Chao; Gao, Yinan; Zheng, Xiaodong; Zhao, Yu; Wang, Zhi; Kong, Jin

    2015-01-01

    Background Plants are unavoidably subjected to various abiotic stressors, including high salinity, drought and low temperature, which results in water deficit and even death. Water uptake and transportation play a critical role in response to these stresses. Many aquaporin proteins, localized at different tissues, function in various transmembrane water movements. We targeted at the key aquaporin in charge of both water uptake in roots and radial water transportation from vascular tissues through the whole plant. Results The MzPIP2;1 gene encoding a plasma membrane intrinsic protein was cloned from salt-tolerant apple rootstock Malus zumi Mats. The GUS gene was driven by MzPIP2;1 promoter in transgenic Arabidopsis. It indicated that MzPIP2;1 might function in the epidermal and vascular cells of roots, parenchyma cells around vessels through the stems and vascular tissues of leaves. The ectopically expressed MzPIP2;1 conferred the transgenic Arabidopsis plants enhanced tolerance to slight salt and drought stresses, but sensitive to moderate salt stress, which was indicated by root length, lateral root number, fresh weight and K+/Na+ ratio. In addition, the possible key cis-elements in response to salt, drought and cold stresses were isolated by the promoter deletion experiment. Conclusion The MzPIP2;1 protein, as a PIP2 aquaporins subgroup member, involved in radial water movement, controls water absorption and usage efficiency and alters transgenic plants drought and salt tolerance. PMID:26562158

  13. Aquaporins in development -- a review.

    PubMed

    Liu, Huishu; Wintour, E Marelyn

    2005-05-11

    Water homeostasis during fetal development is of crucial physiologic importance. It depends upon maternal fetal fluid exchange at the placenta and fetal membranes, and some exchange between fetus and amniotic fluid can occur across the skin before full keratinization. Lungs only grow and develop normally with fluid secretion, and there is evidence that cerebral spinal fluid formation is important in normal brain development. The aquaporins are a growing family of molecular water channels, the ontogeny of which is starting to be explored. One question that is of particular importance is how well does the rodent (mouse, rat) fetus serve as a model for long-gestation mammals such as sheep and human? This is particularly important for organs such as the lung and the kidney, whose development before birth is very much less in rodents than in the long-gestation species.

  14. A molecular modeling approach defines a new group of Nodulin 26-like aquaporins in plants

    SciTech Connect

    Rouge, Pierre Barre, Annick

    2008-02-29

    The three-dimensional models built for the Nod26-like aquaporins all exhibit the typical {alpha}-helical fold of other aquaporins containing the two ar/R and NPA constriction filters along the central water channel. Besides these structural homologies, they readily differ with respect to the amino acid residues forming the ar/R selective filter. According to these discrepancies in both the hydrophilicity and pore size of the ar/R filter, Nod26-like aquaporins can be distributed in three subgroups corresponding to NIP-1, NIP-II and a third subgroup of Nod26-like aquaporins exhibiting a highly hydrophilic and widely open filter. However, all Nod26-like aquaporins display a bipartite distribution of electrostatic charges along the water channel with an electropositive extracellular vestibular portion followed by an electronegative cytosolic vestibular portion. The specific transport of water, non-ionic solutes (glycerol, urea, ammoniac), ions (NH{sub 4}{sup +}) and gas (NH{sub 3}) across the Nod26-like obviously depends on the electrostatic and conformational properties of their central water channel.

  15. Aquaporins and Brain Tumors

    PubMed Central

    Maugeri, Rosario; Schiera, Gabriella; Di Liegro, Carlo Maria; Fricano, Anna; Iacopino, Domenico Gerardo; Di Liegro, Italia

    2016-01-01

    Brain primary tumors are among the most diverse and complex human cancers, and they are normally classified on the basis of the cell-type and/or the grade of malignancy (the most malignant being glioblastoma multiforme (GBM), grade IV). Glioma cells are able to migrate throughout the brain and to stimulate angiogenesis, by inducing brain capillary endothelial cell proliferation. This in turn causes loss of tight junctions and fragility of the blood–brain barrier, which becomes leaky. As a consequence, the most serious clinical complication of glioblastoma is the vasogenic brain edema. Both glioma cell migration and edema have been correlated with modification of the expression/localization of different isoforms of aquaporins (AQPs), a family of water channels, some of which are also involved in the transport of other small molecules, such as glycerol and urea. In this review, we discuss relationships among expression/localization of AQPs and brain tumors/edema, also focusing on the possible role of these molecules as both diagnostic biomarkers of cancer progression, and therapeutic targets. Finally, we will discuss the possibility that AQPs, together with other cancer promoting factors, can be exchanged among brain cells via extracellular vesicles (EVs). PMID:27367682

  16. Crystal Structure of an Ammonia-Permeable Aquaporin

    PubMed Central

    Kirscht, Andreas; Kaptan, Shreyas S.; Bienert, Gerd Patrick; Chaumont, François; Nissen, Poul; de Groot, Bert L.; Kjellbom, Per; Gourdon, Pontus; Johanson, Urban

    2016-01-01

    Aquaporins of the TIP subfamily (Tonoplast Intrinsic Proteins) have been suggested to facilitate permeation of water and ammonia across the vacuolar membrane of plants, allowing the vacuole to efficiently sequester ammonium ions and counteract cytosolic fluctuations of ammonia. Here, we report the structure determined at 1.18 Å resolution from twinned crystals of Arabidopsis thaliana aquaporin AtTIP2;1 and confirm water and ammonia permeability of the purified protein reconstituted in proteoliposomes as further substantiated by molecular dynamics simulations. The structure of AtTIP2;1 reveals an extended selectivity filter with the conserved arginine of the filter adopting a unique unpredicted position. The relatively wide pore and the polar nature of the selectivity filter clarify the ammonia permeability. By mutational studies, we show that the identified determinants in the extended selectivity filter region are sufficient to convert a strictly water-specific human aquaporin into an AtTIP2;1-like ammonia channel. A flexible histidine and a novel water-filled side pore are speculated to deprotonate ammonium ions, thereby possibly increasing permeation of ammonia. The molecular understanding of how aquaporins facilitate ammonia flux across membranes could potentially be used to modulate ammonia losses over the plasma membrane to the atmosphere, e.g., during photorespiration, and thereby to modify the nitrogen use efficiency of plants. PMID:27028365

  17. Crystal Structure of an Ammonia-Permeable Aquaporin.

    PubMed

    Kirscht, Andreas; Kaptan, Shreyas S; Bienert, Gerd Patrick; Chaumont, François; Nissen, Poul; de Groot, Bert L; Kjellbom, Per; Gourdon, Pontus; Johanson, Urban

    2016-03-01

    Aquaporins of the TIP subfamily (Tonoplast Intrinsic Proteins) have been suggested to facilitate permeation of water and ammonia across the vacuolar membrane of plants, allowing the vacuole to efficiently sequester ammonium ions and counteract cytosolic fluctuations of ammonia. Here, we report the structure determined at 1.18 Å resolution from twinned crystals of Arabidopsis thaliana aquaporin AtTIP2;1 and confirm water and ammonia permeability of the purified protein reconstituted in proteoliposomes as further substantiated by molecular dynamics simulations. The structure of AtTIP2;1 reveals an extended selectivity filter with the conserved arginine of the filter adopting a unique unpredicted position. The relatively wide pore and the polar nature of the selectivity filter clarify the ammonia permeability. By mutational studies, we show that the identified determinants in the extended selectivity filter region are sufficient to convert a strictly water-specific human aquaporin into an AtTIP2;1-like ammonia channel. A flexible histidine and a novel water-filled side pore are speculated to deprotonate ammonium ions, thereby possibly increasing permeation of ammonia. The molecular understanding of how aquaporins facilitate ammonia flux across membranes could potentially be used to modulate ammonia losses over the plasma membrane to the atmosphere, e.g., during photorespiration, and thereby to modify the nitrogen use efficiency of plants.

  18. A novel aquaporin 3 in killifish (Fundulus heteroclitus) is not an arsenic channel.

    PubMed

    Jung, Dawoon; MacIver, Bryce; Jackson, Brian P; Barnaby, Roxanna; Sato, J Denry; Zeidel, Mark L; Shaw, Joseph R; Stanton, Bruce A

    2012-05-01

    The Atlantic killifish (Fundulus heteroclitus) is a model environmental organism that has an extremely low assimilation rate of environmental arsenic. As a first step in elucidating the mechanism behind this phenomenon, we used quantitative real-time PCR to identify aquaglyceroporins (AQPs), which are arsenite transporters, in the killifish gill. A novel homolog killifish AQP3 (kfAQP3a) was cloned from the killifish gill, and a second homolog was identified as the consensus from a transcriptome database (kfAQP3b). The two were 99% homologous to each other, 98% homologous to a previously identified killifish AQP3 from embryos (kfAQP3ts), and 78% homologous to hAQP3. Expression of kfAQP3a in Xenopus oocytes significantly enhanced water, glycerol, and urea transport. However, kfAQP3a expressed in HEK293T cells did not transport significant amounts of arsenic. All sequence motifs thought to confer the ability of AQP3 to transport solutes were conserved in kfAQP3a, kfAQP3b, and kfAQP3ts; however, the C-terminal amino acids were different in kfAQP3a versus the other two homologs. Replacement of the three C-terminal amino acids of kfAQP3 (GKS) with the three C-terminal amino acids of kfAQP3b and kfAQP3ts (ANC) was sufficient to enable kfAQP3a to robustly transport arsenic. Thus, the C-terminus of kfAQP3b and kfAQP3ts confers arsenic selectivity in kfAQP3. Moreover, kfAQP3a, the only AQP expressed in killifish gill, is the first aquaglyceroporin identified that does not transport arsenic, which may explain, in part, why killifish poorly assimilate arsenic and are highly tolerant to environmental arsenic.

  19. Aquaporins in the Spinal Cord

    PubMed Central

    Oklinski, Michal K.; Skowronski, Mariusz T.; Skowronska, Agnieszka; Rützler, Michael; Nørgaard, Kirsten; Nieland, John D.; Kwon, Tae-Hwan; Nielsen, Søren

    2016-01-01

    Aquaporins (AQPs) are water channel proteins robustly expressed in the central nervous system (CNS). A number of previous studies described the cellular expression sites and investigated their major roles and function in the brain and spinal cord. Among thirteen different mammalian AQPs, AQP1 and AQP4 have been mainly studied in the CNS and evidence has been presented that they play important roles in the pathogenesis of CNS injury, edema and multiple diseases such as multiple sclerosis, neuromyelitis optica spectrum disorders, amyotrophic lateral sclerosis, glioblastoma multiforme, Alzheimer’s disease and Parkinson’s disease. The objective of this review is to highlight the current knowledge about AQPs in the spinal cord and their proposed roles in pathophysiology and pathogenesis related to spinal cord lesions and injury. PMID:27941618

  20. Aquaporins in Fetal Development.

    PubMed

    Martínez, Nora; Damiano, Alicia E

    2017-01-01

    Water homeostasis during fetal development is of crucial physiologic importance. The successful formation and development of the placenta is critical to maintain normal fetal growth and homeostasis. The expression of several aquaporins (AQPs ) was found from blastocyst stages to term placenta and fetal membranes. Therefore, AQPs are proposed to play important roles in normal pregnancy, fetal growth, and homeostasis of amniotic fluid volume, and water handling in other organs. However, the functional importance of AQPs in fetal development remains to be elucidated.

  1. Two-dimensional crystal structure of aquaporin-4 bound to the inhibitor acetazolamide

    PubMed Central

    Kamegawa, Akiko; Hiroaki, Yoko; Tani, Kazutoshi; Fujiyoshi, Yoshinori

    2016-01-01

    Acetazolamide (AZA) reduces the water permeability of aquaporin-4, the predominant water channel in the brain. We determined the structure of aquaporin-4 in the presence of AZA using electron crystallography. Most of the features of the 5-Å density map were consistent with those of the previously determined atomic model. The map showed a protruding density from near the extracellular pore entrance, which most likely represents the bound AZA. Molecular docking simulations supported the location of the protrusion as the likely AZA-binding site. These findings suggest that AZA reduces water conduction by obstructing the pathway at the extracellular entrance without inducing a large conformational change in the protein. PMID:26908838

  2. Transcript profiling of aquaporins during basidiocarp development in Laccaria bicolor ectomycorrhizal with Picea glauca.

    PubMed

    Xu, Hao; Navarro-Ródenas, Alfonso; Cooke, Janice E K; Zwiazek, Janusz J

    2016-01-01

    Sporocarp formation is part of the reproductive stage in the life cycle of many mycorrhizal macrofungi. Sporocarp formation is accompanied by a transcriptomic switch and profound changes in regulation of the gene families that play crucial roles in the sporocarp initiation and maturation. Since sporocarp growth requires efficient water delivery, in the present study, we investigated changes in transcript abundance of six fungal aquaporin genes that could be cloned from the ectomycorrhizal fungus Laccaria bicolor strain UAMH8232, during the initiation and development of its basidiocarp. Aquaporins are intrinsic membrane proteins facilitating the transmembrane transport of water and other small neutral molecules. In controlled-environment experiments, we induced basidiocarp formation in L. bicolor, which formed ectomycorrhizal associations with white spruce (Picea glauca) seedlings. We profiled transcript abundance corresponding to six fungal aquaporin genes at six different developmental stages of basidiocarp growth and development. We also compared physiological parameters of non-inoculated to mycorrhizal seedlings with and without the presence of basidiocarps. Two L. bicolor aquaporins--JQ585592, a functional channel for CO2, NO and H2O2, and JQ585595, a functional water channel--showed the greatest degree of upregulation during development of the basidiocarp. Our findings point to the importance of aquaporin-mediated transmembrane water and CO2 transport during distinct stages of basidiocarp development.

  3. Genome-wide identification and characterization of aquaporin gene family in common bean (Phaseolus vulgaris L.).

    PubMed

    Ariani, Andrea; Gepts, Paul

    2015-10-01

    Plant aquaporins are a large and diverse family of water channel proteins that are essential for several physiological processes in living organisms. Numerous studies have linked plant aquaporins with a plethora of processes, such as nutrient acquisition, CO2 transport, plant growth and development, and response to abiotic stresses. However, little is known about this protein family in common bean. Here, we present a genome-wide identification of the aquaporin gene family in common bean (Phaseolus vulgaris L.), a legume crop essential for human nutrition. We identified 41 full-length coding aquaporin sequences in the common bean genome, divided by phylogenetic analysis into five sub-families (PIPs, TIPs, NIPs, SIPs and XIPs). Residues determining substrate specificity of aquaporins (i.e., NPA motifs and ar/R selectivity filter) seem conserved between common bean and other plant species, allowing inference of substrate specificity for these proteins. Thanks to the availability of RNA-sequencing datasets, expression levels in different organs and in leaves of wild and domesticated bean accessions were evaluated. Three aquaporins (PvTIP1;1, PvPIP2;4 and PvPIP1;2) have the overall highest mean expressions, with PvTIP1;1 having the highest expression among all aquaporins. We performed an EST database mining to identify drought-responsive aquaporins in common bean. This analysis showed a significant increase in expression for PvTIP1;1 in drought stress conditions compared to well-watered environments. The pivotal role suggested for PvTIP1;1 in regulating water homeostasis and drought stress response in the common bean should be verified by further field experimentation under drought stress.

  4. Aquaporin Biology and Nervous System

    PubMed Central

    Barbara, Buffoli

    2010-01-01

    Our understanding of the movement of water through cell membranes has been greatly advanced by the discovery of a family of water-specific, membrane-channel proteins: the Aquaporins (AQPs). These proteins are present in organisms at all levels of life, and their unique permeability characteristics and distribution in numerous tissues indicate diverse roles in the regulation of water homeostasis. Phenotype analysis of AQP knock-out mice has confirmed the predicted role of AQPs in osmotically driven transepithelial fluid transport, as occurs in the urinary concentrating mechanism and glandular fluid secretion. Regarding their expression in nervous system, there are evidences suggesting that AQPs are differentially expressed in the peripheral versus central nervous system and that channel-mediated water transport mechanisms may be involved in cerebrospinal fluid formation, neuronal signal transduction and information processing. Moreover, a number of recent studies have revealed the importance of mammalian AQPs in both physiological and pathophysiological mechanisms and have suggested that pharmacological modulation of AQP expression and activity may provide new tools for the treatment of variety of human disorders in which water and small solute transport may be involved. For all the AQPs, new contributions to physiological functions are likely to be discovered with ongoing work in this rapidly expanding field of research. PMID:21119880

  5. Channel incision and water quality

    NASA Astrophysics Data System (ADS)

    Shields, F. D.

    2009-12-01

    Watershed development often triggers channel incision that leads to radical changes in channel morphology. Although morphologic evolution due to channel incision has been documented and modeled by others, ecological effects, particularly water quality effects, are less well understood. Furthermore, environmental regulatory frameworks for streams frequently focus on stream water quality and underemphasize hydrologic and geomorphic issues. Discharge, basic physical parameters, solids, nutrients (nitrogen and phosphorus), chlorophyll and bacteria were monitored for five years at two sites along a stream in a mixed cover watershed characterized by rapid incision of the entire channel network. Concurrent data were collected from two sites on a nearby stream draining a watershed of similar size and cultivation intensity, but without widespread incision. Data sets describing physical aquatic habitat and fish fauna of each stream were available from other studies. The second stream was impacted by watershed urbanization, but was not incised, so normal channel-floodplain interaction maintained a buffer zone of floodplain wetlands between the study reach and the urban development upstream. The incised stream had mean channel depth and width that were 1.8 and 3.5 times as large as for the nonincised stream, and was characterized by flashier hydrology. The median rise rate for the incised stream was 6.4 times as great as for the nonincised stream. Correlation analyses showed that hydrologic perturbations were associated with water quality degradation, and the incised stream had levels of turbidity and solids that were two to three times higher than the nonincised, urbanizing stream. Total phosphorus, total Kjeldahl N, and chlorophyll a concentrations were significantly higher in the incised stream, while nitrate was significantly greater in the nonincised, urbanizing stream (p < 0.02). Physical aquatic habitat and fish populations in the nonincised urbanizing stream were

  6. Aquaporins as targets for drug discovery.

    PubMed

    Frigeri, Antonio; Nicchia, Grazia Paola; Svelto, Maria

    2007-01-01

    The intracellular hydric balance is an essential process of mammalian cells. The water movement across cell membranes is driven by osmotic and hydrostatic forces and the speed of this process is dependent on the presence of specific aquaporin water channels. Since the molecular identification of the first water channel, AQP1, by Peter Agre's group, 13 homologous members have been found in mammals with varying degree of homology. The fundamental importance of these proteins in all living cells is suggested by their genetic conservation in eukaryotic organisms through plants to mammals. A number of recent studies have revealed the importance of mammalian AQPs in both physiology and pathophysiology and have suggested that pharmacological modulation of aquaporins expression and activity may provide new tools for the treatment of variety of human disorders, such as brain edema, glaucoma, tumour growth, congestive heart failure and obesity in which water and small solute transport may be involved. This review will highlight the physiological role and the pathological involvement of AQPs in mammals and the potential use of some recent therapeutic approaches, such as RNAi and immunotherapy, for AQP-related diseases. Furthermore, strategies that can be developed for the discovery of selective AQP-drugs will be introduced and discussed.

  7. The aquaporin gene family of the ectomycorrhizal fungus Laccaria bicolor: lessons for symbiotic functions.

    PubMed

    Dietz, Sandra; von Bülow, Julia; Beitz, Eric; Nehls, Uwe

    2011-06-01

    Soil humidity and bulk water transport are essential for nutrient mobilization. Ectomycorrhizal fungi, bridging soil and fine roots of woody plants, are capable of modulating both by being integrated into water movement driven by plant transpiration and the nocturnal hydraulic lift. Aquaporins are integral membrane proteins that function as gradient-driven water and/or solute channels. Seven aquaporins were identified in the genome of the ectomycorrhizal basidiomycete Laccaria bicolor and their role in fungal transfer processes was analyzed. Heterologous expression in Xenopus laevis oocytes revealed relevant water permeabilities for three aquaporins. In fungal mycelia, expression of the corresponding genes was high compared with other members of the gene family, indicating the significance of the respective proteins for plasma membrane water permeability. As growth temperature and ectomycorrhiza formation modified gene expression profiles of these water-conducting aquaporins, specific roles in those aspects of fungal physiology are suggested. Two aquaporins, which were highly expressed in ectomycorrhizas, conferred plasma membrane ammonia permeability in yeast. This indicates that these proteins are an integral part of ectomycorrhizal fungus-based plant nitrogen nutrition in symbiosis.

  8. Response of three broccoli cultivars to salt stress, in relation to water status and expression of two leaf aquaporins.

    PubMed

    Muries, Beatriz; Carvajal, Micaela; Martínez-Ballesta, María Del Carmen

    2013-05-01

    The aim of this study was to compare differences in water relations in the leaves of three broccoli cultivars and differential induction of the expression of PIP2 aquaporin isoforms under salt stress. Although broccoli is known to be moderately tolerant to salinity, scarce information exists about the involvement of leaf aquaporins in its adaptation to salinity. Thus, leaf water relations, leaf cell hydraulic conductivity (Lpc), gas exchange parameters and the PIP2 expression pattern were determined for short- (15 h) and long- (15 days) term NaCl treatments. In the long term, the lower half-time of water exchange in the cells of cv. Naxos, compared with Parthenon and Chronos, and its increased PIP2 abundance may have contributed to its Lpc maintenance. This unmodified Lpc in cv. Naxos under prolonged salinity may have diluted NaCl in the leaves, as suggested by lower Na(+) concentrations in the leaf sap. By contrast, the increase in the half-time of water exchange and the lower PIP2 abundance in cvs. Chronos and Parthenon would have contributed to the reduced Lpc values. In cv. Parthenon, there were no differences between the ε values of control and salt-stressed plants; in consequence, cell turgor was enhanced. Also, the increases in BoPIP2;2 and BoPIP2;3 expression in cv. Chronos for the short-term NaCl treatment suggest that these isoforms are involved in osmotic regulation as downstream factors in this cultivar, in fact, in the short-term, Chronos had a significantly reduced osmotic potential and higher PIP2 isoforms expression.

  9. New challenges in plant aquaporin biotechnology.

    PubMed

    Martinez-Ballesta, Maria del Carmen; Carvajal, Micaela

    2014-03-01

    Recent advances concerning genetic manipulation provide new perspectives regarding the improvement of the physiological responses in herbaceous and woody plants to abiotic stresses. The beneficial or negative effects of these manipulations on plant physiology are discussed, underlining the role of aquaporin isoforms as representative markers of water uptake and whole plant water status. Increasing water use efficiency and the promotion of plant water retention seem to be critical goals in the improvement of plant tolerance to abiotic stress. However, newly uncovered mechanisms, such as aquaporin functions and regulation, may be essential for the beneficial effects seen in plants overexpressing aquaporin genes. Under distinct stress conditions, differences in the phenotype of transgenic plants where aquaporins were manipulated need to be analyzed. In the development of nano-technologies for agricultural practices, multiple-walled carbon nanotubes promoted plant germination and cell growth. Their effects on aquaporins need further investigation.

  10. Progress on the application of aquaporins in Chinese medicine.

    PubMed

    Liang, Xing; Mao, Wei; Liu, Xu-Sheng

    2013-07-01

    Aquaporins are a group of membrane proteins, which are known as the passages of water molecules transforming through the biological membrane lipid bilayer and distributing in almost all of the organs and tissues of living creatures. Aquaporins play important roles in maintaining water balance and internal environment stability. As a new entry point, aquaporins are involved in the researches on water metabolism, physiological regulation and pathological essence in viscera-state more and more widely in recent years. The literature on traditional Chinese medical studies, which related to aquaporins and were published in the last decade, was reviewed and the progress on application of aquaporin in Chinese medicine was summarized in this paper.

  11. Aquaporin expression in the Japanese medaka (Oryzias latipes) in freshwater and seawater: challenging the paradigm of intestinal water transport?

    PubMed

    Madsen, Steffen S; Bujak, Joanna; Tipsmark, Christian K

    2014-09-01

    We investigated the salinity-dependent expression dynamics of seven aquaporin paralogs (aqp1a, aqp3a, aqp7, aqp8ab, aqp10a, aqp10b and aqp11a) in several tissues of euryhaline Japanese medaka (Oryzias latipes). All paralogs except aqp7 and aqp10a had a broad tissue distribution, and several were affected by salinity in both osmoregulatory and non-osmoregulatory tissues. In the intestine, aqp1a, aqp7, aqp8ab and aqp10a decreased upon seawater (SW) acclimation in both long-term acclimated fish and during 1-3 days of the transition period. In the gill, aqp3a was lower and aqp10a higher in SW than in freshwater (FW). In the kidney no aqps were affected by salinity. In the skin, aqp1a and aqp3a were lower in SW than in FW. In the liver, aqp8ab and aqp10a were lower in SW than in FW. Furthermore, six Na(+),K(+)-ATPase α-subunit isoform transcripts were analysed in the intestine but none showed a consistent response to salinity, suggesting that water transport is not regulated at this level. In contrast, mRNA of the Na(+),K(+),2Cl(-)-cotransporter type-2 strongly increased in the intestine in SW compared with FW fish. Using custom-made antibodies, Aqp1a, Aqp8ab and Aqp10a were localized in the apical region of enterocytes of FW fish. Apical staining intensity strongly decreased, vanished or moved to subapical regions, when fish were acclimated to SW, supporting the lower mRNA expression in SW. Western blots confirmed the decrease in Aqp1a and Aqp10a in SW. The strong decrease in aquaporin expression in the intestine of SW fish is surprising, and challenges the paradigm for transepithelial intestinal water absorption in SW fishes.

  12. Use of Aquaporins to Achieve Needed Water Purity on the International Space Station for the Extravehicular Mobility Unit Space Suit System

    NASA Technical Reports Server (NTRS)

    Hill, Terry R.; Taylor, Brandon W.

    2012-01-01

    With the retirement of the U.S. Space Shuttle fleet, the supply of extremely high quality water required for the Extravehicular Mobility Unit (EMU) space suit cooling on the International Space Station (ISS) will become a significant operational hardware challenge in the very near future. One proposed solution is the use of a filtration system consisting of a semipermeable membrane embedded with aquaporin proteins, a special class of transmembrane proteins that facilitate passive, selective transport of water in vivo. The specificity of aquaporins is such that only water is allowed through the protein structure, and it is this novel property that invites their adaptation for use in water filtration systems, specifically those onboard the ISS for the EMU space suit system. These proteins are also currently being developed for use in terrestrial filtration systems.

  13. The AQP-3 water channel and the ClC-3 chloride channel coordinate the hypotonicity-induced swelling volume in nasopharyngeal carcinoma cells.

    PubMed

    Zhang, Haifeng; Li, Huarong; Liu, Enqi; Guang, Yutao; Yang, Lili; Mao, Jianwen; Zhu, Linyan; Chen, Lixin; Wang, Liwei

    2014-12-01

    Cell volume regulation is a fundamental activity to maintain cell survival, and aquaporins and chloride channels play important roles in this process. However, the interactions between these channels are far from clear. In this study, the interactions between AQP-3 and ClC-3 were investigated in CNE-1 and CNE-2Z nasopharyngeal carcinoma cells, which are well and poorly differentiated, respectively. The correlation coefficient of AQP-3 and ClC-3 protein phylogenetic trees was 0.319. In CNE-1 cells, there are overlapping distributions of AQP-3 and ClC-3, mainly in the plasma membrane. This was confirmed by the co-immunoprecipitation of AQP-3 and ClC-3, showing that they could be interlinked and form complexes. AQP-3 over-expression had no significant effects on swelling-induced Cl(-) currents (ICl,swell); however, ICl,swell could be inhibited by aquaporin blockers, anti-AQP-3 antibodies and AQP-3-siRNAs. In addition, the AQP-3 expression was decreased by down-regulation of ClC-3 expression, indicating that ClC-3 can modulate the expression of AQP-3 proteins. The effects of aquaporin blockers, anti-AQP-3 antibodies and AQP-3 over-expression on ICl,swell in CNE-2Z cells were consistent with those in CNE-1 cells. In conclusion, AQP-3 and ClC-3 are functionally-related integral membrane channel proteins, and their interactions are involved in cell volume regulation in CNE-1 and CNE-2Z cells. The opening of ClC-3 transports Cl(-) across the cell membrane and then drives the efflux of water through AQP-3 channels and ion channels; AQP-3 may interact with ClC-3 in order to regulate the effluxes of chloride and water.

  14. Molecular Characterization of LRB7 Gene and a Water Channel Protein TIP2 in Chorispora bungeana

    PubMed Central

    Liang, Zhaoxu; Di, Cuixia; Fang, Weikuan; Wu, Kaichao; Chen, Maoshan; He, Shanshan; Zeng, Yuan; Jing, Yan; Liang, Jun; Tan, Fang; Li, Song; Chen, Tuo; Liu, Guangxiu

    2016-01-01

    Background. Water channel proteins, also called aquaporins, are integral membrane proteins from major intrinsic protein (MIP) family and involved in several pathways including not only water transport but also cell signaling, reproduction, and photosynthesis. The full cDNA and protein sequences of aquaporin in Chorispora bungeana Fisch. & C.A. Mey (C. bungeana) are still unknown. Results. In this study, PCR and rapid amplification of cDNA ends approaches were used to clone the full cDNA of LRB7 (GenBank accession number: EU636988) of C. bungeana. Sequence analysis indicated that it was 1235 bp, which had two introns and encoded a protein of 250 amino acids. Structure analysis revealed that the protein had two conserved NPA motifs, one of which is MIP signature sequence (SGxHxNPAVT), six membrane helix regions, and additional membrane-embedded domains. Phylogenetic analysis suggested that the protein was from TIP2 subgroup. Surprisingly, semiquantitative RT-PCR experiment and western blot analysis showed that LRB7 and TIP2 were only detectable in roots, unlike Arabidopsis and Raphanus. Connecting with our previous studies, LRB7 was supported to associate with chilling-tolerance in C. bungeana. Conclusion. This is the first time to characterize the full sequences of LRB7 gene and water channel protein in C. bungeana. Our findings contribute to understanding the water transports in plants under low temperatures. PMID:27689074

  15. The Expression of Water and Ion Channels in Diffuse Alveolar Damage Is Not Dependent on DAD Etiology

    PubMed Central

    Del Carlo Bernardi, Fabiola; Alves de Araujo, Priscila; Mauad, Thais; Dolhnikoff, Marisa

    2016-01-01

    Introduction Aquaporins and ion channels are membrane proteins that facilitate the rapid movement of water and solutes across biological membranes. Experimental and in vitro studies reported that the function of these channels and pulmonary edema resolution are impaired in acute lung injury (ALI). Although current evidence indicates that alveolar fluid clearance is impaired in patients with ALI/diffuse alveolar damage (DAD), few human studies have addressed the alterations in pulmonary channels in this clinical condition. Additionally, it is not known whether the primary cause of DAD is a relevant variable for the channel dysfunction. Methods Autopsied lungs of 43 patients with acute respiratory failure (ARF) due to DAD of three different etiologies, non-pulmonary sepsis, H1N1 viral infection and leptospirosis, were compared to 18 normal lungs. We quantified the expression of aquaporin (AQP) 1, AQP3, AQP5, epithelial Na+ channel (ENaC) and sodium potassium ATPase (Na-K-ATPase) in the alveolar septum using immunohistochemistry and image analysis. Results The DAD group presented with increased expression of AQP3, AQP5 and Na-K-ATPase and decreased expression of ENaC compared to controls. However, there was no difference in protein expression within the DAD groups of different etiologies. Conclusion Water and ion channels are altered in patients with ARF due to DAD. The cause of DAD does not seem to influence the level of impairment of these channels. PMID:27835672

  16. Osmotic water permeability of rat intestinal brush border membrane vesicles: involvement of aquaporin-7 and aquaporin-8 and effect of metal ions.

    PubMed

    Tritto, Simona; Gastaldi, Giulia; Zelenin, Sergey; Grazioli, Monica; Orsenigo, Maria Novella; Ventura, Ulderico; Laforenza, Umberto; Zelenina, Marina

    2007-12-01

    Water channels AQP7 and AQP8 may be involved in transcellular water movement in the small intestine. We show that both AQP7 and AQP8 mRNA are expressed in rat small intestine. Immunoblot and immunohistochemistry experiments demonstrate that AQP7 and AQP8 proteins are present in the apical brush border membrane of intestinal epithelial cells. We investigated the effect of several metals and pH on the osmotic water permeability (Pf) of brush border membrane vesicles (BBMVs) and of AQP7 and AQP8 expressed in a cell line. Hg2+, Cu2+, and Zn2+ caused a significant decrease in the BBMV Pf, whereas Ni2+ and Li+ had no effect. AQP8-transfected cells showed a reduction in Pf in the presence of Hg2+ and Cu2+, whereas AQP7-transfected cells were insensitive to all tested metals. The Pf of both BBMVs and cells transfected with AQP7 and AQP8 was not affected by pH changes within the physiological range, and the Pf of BBMVs alone was not affected by phlorizin or amiloride. Our results indicate that AQP7 and AQP8 may play a role in water movement via the apical domain of small intestine epithelial cells. AQP8 may contribute to the water-imbalance-related clinical symptoms apparent after ingestion of high doses of Hg2+ and Cu2+.

  17. The Role of Aquaporin and Tight Junction Proteins in the Regulation of Water Movement in Larval Zebrafish (Danio rerio)

    PubMed Central

    Kwong, Raymond W. M.; Kumai, Yusuke; Perry, Steve F.

    2013-01-01

    Teleost fish living in freshwater are challenged by passive water influx; however the molecular mechanisms regulating water influx in fish are not well understood. The potential involvement of aquaporins (AQP) and epithelial tight junction proteins in the regulation of transcellular and paracellular water movement was investigated in larval zebrafish (Danio rerio). We observed that the half-time for saturation of water influx (Ku) was 4.3±0.9 min, and reached equilibrium at approximately 30 min. These findings suggest a high turnover rate of water between the fish and the environment. Water influx was reduced by the putative AQP inhibitor phloretin (100 or 500 μM). Immunohistochemistry and confocal microscopy revealed that AQP1a1 protein was expressed in cells on the yolk sac epithelium. A substantial number of these AQP1a1-positive cells were identified as ionocytes, either H+-ATPase-rich cells or Na+/K+-ATPase-rich cells. AQP1a1 appeared to be expressed predominantly on the basolateral membranes of ionocytes, suggesting its potential involvement in regulating ionocyte volume and/or water flux into the circulation. Additionally, translational gene knockdown of AQP1a1 protein reduced water influx by approximately 30%, further indicating a role for AQP1a1 in facilitating transcellular water uptake. On the other hand, incubation with the Ca2+-chelator EDTA or knockdown of the epithelial tight junction protein claudin-b significantly increased water influx. These findings indicate that the epithelial tight junctions normally act to restrict paracellular water influx. Together, the results of the present study provide direct in vivo evidence that water movement can occur through transcellular routes (via AQP); the paracellular routes may become significant when the paracellular permeability is increased. PMID:23967101

  18. The role of aquaporin and tight junction proteins in the regulation of water movement in larval zebrafish (Danio rerio).

    PubMed

    Kwong, Raymond W M; Kumai, Yusuke; Perry, Steve F

    2013-01-01

    Teleost fish living in freshwater are challenged by passive water influx; however the molecular mechanisms regulating water influx in fish are not well understood. The potential involvement of aquaporins (AQP) and epithelial tight junction proteins in the regulation of transcellular and paracellular water movement was investigated in larval zebrafish (Danio rerio). We observed that the half-time for saturation of water influx (K(u)) was 4.3±0.9 min, and reached equilibrium at approximately 30 min. These findings suggest a high turnover rate of water between the fish and the environment. Water influx was reduced by the putative AQP inhibitor phloretin (100 or 500 μM). Immunohistochemistry and confocal microscopy revealed that AQP1a1 protein was expressed in cells on the yolk sac epithelium. A substantial number of these AQP1a1-positive cells were identified as ionocytes, either H⁺-ATPase-rich cells or Na⁺/K⁺-ATPase-rich cells. AQP1a1 appeared to be expressed predominantly on the basolateral membranes of ionocytes, suggesting its potential involvement in regulating ionocyte volume and/or water flux into the circulation. Additionally, translational gene knockdown of AQP1a1 protein reduced water influx by approximately 30%, further indicating a role for AQP1a1 in facilitating transcellular water uptake. On the other hand, incubation with the Ca²⁺-chelator EDTA or knockdown of the epithelial tight junction protein claudin-b significantly increased water influx. These findings indicate that the epithelial tight junctions normally act to restrict paracellular water influx. Together, the results of the present study provide direct in vivo evidence that water movement can occur through transcellular routes (via AQP); the paracellular routes may become significant when the paracellular permeability is increased.

  19. Two different effects of calcium on aquaporins in salinity-stressed pepper plants.

    PubMed

    Martínez-Ballesta, M Carmen; Cabañero, Francisco; Olmos, Enrique; Periago, Paula María; Maurel, Christophe; Carvajal, Micaela

    2008-06-01

    Two different effects of calcium were studied, respectively, in plasma membrane vesicles and in protoplasts isolated from roots of control pepper plants (Capsicum annuum L cv. California) or of plants treated with 50 mM NaCl, 10 mM CaCl(2) or 10 mM CaCl(2) + 50 mM NaCl. Under saline conditions, osmotic water permeability (P ( f )) values decreased in protoplasts and plasma membrane vesicles, and the same reduction was observed in the PIP1 aquaporin abundance, indicating inhibitory effects of NaCl on aquaporin functionality and protein abundance. The cytosolic Ca(2+) concentration, [Ca(2+)](cyt), was reduced by salinity, as observed by confocal microscope analysis. Two different actions of Ca(2+) were observed. On the one hand, increase in free cytosolic calcium concentrations associated with stress perception may lead to aquaporin closure. On the other hand, when critical requirements of Ca(2+) were reduced (by salinity), and extra-calcium would lead to an upregulation of aquaporins, indicating that a positive role of calcium at whole plant level combined with an inhibitory mechanism at aquaporin level may work in the regulation of pepper root water transport under salt stress. However, a link between these observations and other cell signalling in relation to water channel gating remains to be established.

  20. Aquaporin-mediated increase in root hydraulic conductance is involved in silicon-induced improved root water uptake under osmotic stress in Sorghum bicolor L.

    PubMed

    Liu, Peng; Yin, Lina; Deng, Xiping; Wang, Shiwen; Tanaka, Kiyoshi; Zhang, Suiqi

    2014-09-01

    The fact that silicon application alleviates water deficit stress has been widely reported, but the underlying mechanism remains unclear. Here the effects of silicon on water uptake and transport of sorghum seedlings (Sorghum bicolor L.) growing under polyethylene glycol-simulated osmotic stress in hydroponic culture and water deficit stress in sand culture were investigated. Osmotic stress dramatically decreased dry weight, photosynthetic rate, transpiration rate, stomatal conductance, and leaf water content, but silicon application reduced these stress-induced decreases. Although silicon application had no effect on stem water transport capacity, whole-plant hydraulic conductance (Kplant) and root hydraulic conductance (Lp) were higher in silicon-treated seedlings than in those without silicon treatment under osmotic stress. Furthermore, the extent of changes in transpiration rate was similar to the changes in Kplant and Lp. The contribution of aquaporin to Lp was characterized using the aquaporin inhibitor mercury. Under osmotic stress, the exogenous application of HgCl2 decreased the transpiration rates of seedlings with and without silicon to the same level; after recovery induced by dithiothreitol (DTT), however, the transpiration rate was higher in silicon-treated seedlings than in untreated seedlings. In addition, transcription levels of several root aquaporin genes were increased by silicon application under osmotic stress. These results indicate that the silicon-induced up-regulation of aquaporin, which was thought to increase Lp, was involved in improving root water uptake under osmotic stress. This study also suggests that silicon plays a modulating role in improving plant resistance to osmotic stress in addition to its role as a mere physical barrier.

  1. Clopidogrel attenuates lithium-induced alterations in renal water and sodium channels/transporters in mice.

    PubMed

    Zhang, Yue; Peti-Peterdi, János; Heiney, Kristina M; Riquier-Brison, Anne; Carlson, Noel G; Müller, Christa E; Ecelbarger, Carolyn M; Kishore, Bellamkonda K

    2015-12-01

    Lithium (Li) administration causes deranged expression and function of renal aquaporins and sodium channels/transporters resulting in nephrogenic diabetes insipidus (NDI). Extracellular nucleotides (ATP/ADP/UTP), via P2 receptors, regulate these transport functions. We tested whether clopidogrel bisulfate (CLPD), an antagonist of ADP-activated P2Y(12) receptor, would affect Li-induced alterations in renal aquaporins and sodium channels/transporters. Adult mice were treated for 14 days with CLPD and/or Li and euthanized. Urine and kidneys were collected for analysis. When administered with Li, CLPD ameliorated polyuria, attenuated the rise in urine prostaglandin E2 (PGE2), and resulted in significantly higher urinary arginine vasopressin (AVP) and aldosterone levels as compared to Li treatment alone. However, urine sodium excretion remained elevated. Semi-quantitative immunoblotting revealed that CLPD alone increased renal aquaporin 2 (AQP2), Na-K-2Cl cotransporter (NKCC2), Na-Cl cotransporter (NCC), and the subunits of the epithelial Na channel (ENaC) in medulla by 25-130 %. When combined with Li, CLPD prevented downregulation of AQP2, Na-K-ATPase, and NKCC2 but was less effective against downregulation of cortical α- or γ-ENaC (70 kDa band). Thus, CLPD primarily attenuated Li-induced downregulation of proteins involved in water conservation (AVP-sensitive), with modest effects on aldosterone-sensitive proteins potentially explaining sustained natriuresis. Confocal immunofluorescence microscopy revealed strong labeling for P2Y(12)-R in proximal tubule brush border and blood vessels in the cortex and less intense labeling in medullary thick ascending limb and the collecting ducts. Therefore, there is the potential for CLPD to be directly acting at the tubule sites to mediate these effects. In conclusion, P2Y(12)-R may represent a novel therapeutic target for Li-induced NDI.

  2. Mammalian aquaporins: diverse physiological roles and potential clinical significance

    PubMed Central

    Verkman, A. S.

    2013-01-01

    Aquaporins have multiple distinct roles in mammalian physiology. Phenotype analysis of aquaporin-knockout mice has confirmed the predicted role of aquaporins in osmotically driven transepithelial fluid transport, as occurs in the urinary concentrating mechanism and glandular fluid secretion. Aquaporins also facilitate water movement into and out of the brain in various pathologies such as stroke, tumour, infection and hydrocephalus. A major, unexpected cellular role of aquaporins was revealed by analysis of knockout mice: aquaporins facilitate cell migration, as occurs in angiogenesis, tumour metastasis, wound healing, and glial scar formation. Another unexpected role of aquaporins is in neural function – in sensory signalling and seizure activity. The water-transporting function of aquaporins is likely responsible for these roles. A subset of aquaporins that transport both water and glycerol, the ‘aquaglyceroporins’, regulate glycerol content in epidermal, fat and other tissues. Mice lacking various aquaglyceroporins have several interesting phenotypes, including dry skin, resistance to skin carcinogenesis, impaired cell proliferation, and altered fat metabolism. The various roles of aquaporins might be exploited clinically by development of drugs to alter aquaporin expression or function, which could serve as diuretics, and in the treatment of brain swelling, glaucoma, epilepsy, obesity and cancer. PMID:18482462

  3. Aquaporin biology of spermatogenesis and sperm physiology in mammals and teleosts.

    PubMed

    Boj, Mónica; Chauvigné, François; Cerdà, Joan

    2015-08-01

    Fluid homeostasis is recognized as a critical factor during the development, maturation, and function of vertebrate male germ cells. These processes have been associated with the presence of multiple members of the aquaporin superfamily of water and solute channels in different cell types along the reproductive tract as well as in spermatozoa. We present a comparative analysis of the existing knowledge of aquaporin biology in the male reproductive tissues of mammals and teleosts. Current data suggest that in both vertebrate groups, aquaporins may have similar functions during differentiation of spermatozoa in the germinal epithelium, in the concentration and maturation of sperm in the testicular ducts, and in the regulation of osmotically induced volume changes in ejaculated spermatozoa. Recent studies have also provided insight into the possible function of aquaporins beyond water transport, such as in signaling pathways during spermatogenesis or the sensing of cell swelling and mitochondrial peroxide transport in activated sperm. However, an understanding of the specific physiological functions of the various aquaporins during germ cell development and sperm motility, as well as the molecular mechanisms involved, remains elusive. Novel experimental approaches need to be developed to elucidate these processes and to dissect the regulatory intracellular pathways implicated, which will greatly help to uncover the molecular basis of sperm physiology and male fertility in vertebrates.

  4. Knock-Out Models Reveal New Aquaporin Functions

    PubMed Central

    Verkman, Alan S.

    2013-01-01

    Knockout mice have been informative in the discovery of unexpected biological functions of aquaporins. Knockout mice have confirmed the predicted roles of aquaporins in transepithelial fluid transport, as in the urinary concentrating mechanism and glandular fluid secretion. A less obvious, though predictable role of aquaporins is in tissue swelling under stress, as in the brain in stroke, tumor and infection. Phenotype analysis of aquaporin knockout mice has revealed several unexpected cellular roles of aquaporins whose mechanisms are being elucidated. Aquaporins facilitate cell migration, as seen in aquaporin-dependent tumor angiogenesis and tumor metastasis, by a mechanism that may involve facilitated water transport in lamellipodia of migrating cells. The ‘aquaglyceroporins’, aquaporins that transport both glycerol and water, regulate glycerol content in epidermis, fat and other tissues, and lead to a multiplicity of interesting consequences of gene disruption including dry skin, resistance to skin carcinogenesis, impaired cell proliferation and altered fat metabolism. An even more surprising role of a mammalian aquaporin is in neural signal transduction in the central nervous system. The many roles of aquaporins might be exploited for clinical benefit by modulation of aquaporin expression/function – as diuretics, and in the treatment of brain swelling, glaucoma, epilepsy, obesity and cancer. PMID:19096787

  5. Aquaporin 2 of Rhipicephalus (Boophilus) microplus as a potential target to control ticks and tick-borne parasites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In a collaboration with Washington State University and ARS-Pullman, WA researchers, we identified and sequenced a 1,059 base pair Rhipicephalus microplus transcript that contained the coding region for a water channel protein, Aquaporin 2 (RmAQP2). The clone sequencing resulted in the production of...

  6. The water-absorption region of ventral skin of several semiterrestrial and aquatic anuran amphibians identified by aquaporins.

    PubMed

    Ogushi, Yuji; Tsuzuki, Azumi; Sato, Megumi; Mochida, Hiroshi; Okada, Reiko; Suzuki, Masakazu; Hillyard, Stanley D; Tanaka, Shigeyasu

    2010-11-01

    Regions of specialization for water absorption across the skin of Bufonid and Ranid anurans were identified by immunohistochemistry and Western blot analysis, using antibodies raised against arginine vasotocin (AVT)-stimulated aquaporins (AQPs) that are specific to absorbing regions of Hyla japonica. In Bufo marinus, labeling for Hyla urinary bladder-type AQP (AQP-h2), which is also localized in the urinary bladder, occurred in the ventral surface of the hindlimb, pelvic, and pectoral regions. AQP-h2 was not detected in any skin regions of Rana catesbeiana, Rana japonica, or Rana nigromaculata. Hyla ventral skin-type AQP (AQP-h3), which is found in the ventral skin but not the bladder of H. japonica, was localized in the hindlimb, pelvic, and pectoral skins of Bufo marinus, in addition to AQP-h2. AQP-h3 was also localized in ventral skin of the hindlimb of all three Rana species and also in the pelvic region of R. catesbiana. Messenger RNA for AQP-x3, a homolog of AQP-h3, could be identified by RT-PCR from the hindlimb, pectoral, and pelvic regions of the ventral skin of Xenopus laevis, although AVT had no effect on water permeability. In contrast, 10(-8) M AVT-stimulated water permeability and translocation of AQP-h2 and AQP-h3 into the apical membrane of epithelial cells in regions of the skin of species where they had been localized by immunohistochemistry and Western blot analysis. Finally, water permeability of the hindlimb skin of B. marinus and all the Rana species was stimulated by hydrins 1 and 2 to a similar level as seen for AVT. The present data demonstrate species differences in the occurrence, distribution, and regulation of AQPs in regions of skin specialized for rapid water absorption that can be associated with habitat and also phylogeny.

  7. Astroglial redistribution of aquaporin 4 during spongy degeneration in a Canavan disease mouse model.

    PubMed

    Clarner, Tim; Wieczorek, Nicola; Krauspe, Barbara; Jansen, Katharina; Beyer, Cordian; Kipp, Markus

    2014-05-01

    Canavan disease is a spongiform leukodystrophy caused by an autosomal recessive mutation in the aspartoacylase gene. Deficiency of oligodendroglial aspartoacylase activity and a subsequent increase of its substrate N-acetylaspartate are the etiologic factors for the disease. N-acetylaspartate acts as a molecular water pump. Therefore, an osmotic-hydrostatic mechanism is thought to be involved in the development of the Canavan disease phenotype. Astrocytes express water transporters and are critically involved in regulating and maintaining water homeostasis in the brain. We used the ASPA(Nur7/Nur7) mouse model of Canavan disease to investigate whether a disturbance of water homeostasis might be involved in the disease's progression. Animals showed an age-dependent impairment of motor performance and spongy degeneration in various brain regions, among the basal ganglia, brain stem, and cerebellar white matter. Astrocyte activation was prominent in regions which displayed less tissue damage, such as the corpus callosum, cortex, mesencephalon, and stratum Purkinje of cerebellar lobe IV. Immunohistochemistry revealed alterations in the cellular distribution of the water channel aquaporin 4 in astrocytes of ASPA(Nur7/Nur7) mice. In control animals, aquaporin 4 was located exclusively in the astrocytic end feet. In contrast, in ASPA(Nur7/Nur7) mice, aquaporin 4 was located throughout the cytoplasm. These results indicate that astroglial regulation of water homeostasis might be involved in the partial prevention of spongy degeneration. These observations highlight aquaporin 4 as a potential therapeutic target for Canavan disease.

  8. Aquaporins in development – a review

    PubMed Central

    Liu, Huishu; Wintour, E Marelyn

    2005-01-01

    Water homeostasis during fetal development is of crucial physiologic importance. It depends upon maternal fetal fluid exchange at the placenta and fetal membranes, and some exchange between fetus and amniotic fluid can occur across the skin before full keratinization. Lungs only grow and develop normally with fluid secretion, and there is evidence that cerebral spinal fluid formation is important in normal brain development. The aquaporins are a growing family of molecular water channels, the ontogeny of which is starting to be explored. One question that is of particular importance is how well does the rodent (mouse, rat) fetus serve as a model for long-gestation mammals such as sheep and human? This is particularly important for organs such as the lung and the kidney, whose development before birth is very much less in rodents than in the long-gestation species. PMID:15888206

  9. Plasma membrane of Beta vulgaris storage root shows high water channel activity regulated by cytoplasmic pH and a dual range of calcium concentrations.

    PubMed

    Alleva, Karina; Niemietz, Christa M; Sutka, Moira; Maurel, Christophe; Parisi, Mario; Tyerman, Stephen D; Amodeo, Gabriela

    2006-01-01

    Plasma membrane vesicles isolated by two-phase partitioning from the storage root of Beta vulgaris show atypically high water permeability that is equivalent only to those reported for active aquaporins in tonoplast or animal red cells (Pf=542 microm s(-1)). The values were determined from the shrinking kinetics measured by stopped-flow light scattering. This high Pf was only partially inhibited by mercury (HgCl2) but showed low activation energy (Ea) consistent with water permeation through water channels. To study short-term regulation of water transport that could be the result of channel gating, the effects of pH, divalent cations, and protection against dephosphorylation were tested. The high Pf observed at pH 8.3 was dramatically reduced by medium acidification. Moreover, intra-vesicular acidification (corresponding to the cytoplasmic face of the membrane) shut down the aquaporins. De-phosphorylation was discounted as a regulatory mechanism in this preparation. On the other hand, among divalent cations, only calcium showed a clear effect on aquaporin activity, with two distinct ranges of sensitivity to free Ca2+ concentration (pCa 8 and pCa 4). Since the normal cytoplasmic free Ca2+ sits between these ranges it allows for the possibility of changes in Ca2+ to finely up- or down-regulate water channel activity. The calcium effect is predominantly on the cytoplasmic face, and inhibition corresponds to an increase in the activation energy for water transport. In conclusion, these findings establish both cytoplasmic pH and Ca2+ as important regulatory factors involved in aquaporin gating.

  10. Mutations in AQP5, encoding a water-channel protein, cause autosomal-dominant diffuse nonepidermolytic palmoplantar keratoderma.

    PubMed

    Blaydon, Diana C; Lind, Lisbet K; Plagnol, Vincent; Linton, Kenneth J; Smith, Francis J D; Wilson, Neil J; McLean, W H Irwin; Munro, Colin S; South, Andrew P; Leigh, Irene M; O'Toole, Edel A; Lundström, Anita; Kelsell, David P

    2013-08-08

    Autosomal-dominant diffuse nonepidermolytic palmoplantar keratoderma is characterized by the adoption of a white, spongy appearance of affected areas upon exposure to water. After exome sequencing, missense mutations were identified in AQP5, encoding water-channel protein aquaporin-5 (AQP5). Protein-structure analysis indicates that these AQP5 variants have the potential to elicit an effect on normal channel regulation. Immunofluorescence data reveal the presence of AQP5 at the plasma membrane in the stratum granulosum of both normal and affected palmar epidermis, indicating that the altered AQP5 proteins are trafficked in the normal manner. We demonstrate here a role for AQP5 in the palmoplantar epidermis and propose that the altered AQP5 proteins retain the ability to form open channels in the cell membrane and conduct water.

  11. Aquaporin-4 and Cerebrovascular Diseases

    PubMed Central

    Chu, Heling; Huang, Chuyi; Ding, Hongyan; Dong, Jing; Gao, Zidan; Yang, Xiaobo; Tang, Yuping; Dong, Qiang

    2016-01-01

    Cerebrovascular diseases are conditions caused by problems with brain vasculature, which have a high morbidity and mortality. Aquaporin-4 (AQP4) is the most abundant water channel in the brain and crucial for the formation and resolution of brain edema. Considering brain edema is an important pathophysiological change after stoke, AQP4 is destined to have close relation with cerebrovascular diseases. However, this relation is not limited to brain edema due to other biological effects elicited by AQP4. Till now, multiple studies have investigated roles of AQP4 in cerebrovascular diseases. This review focuses on expression of AQP4 and the effects of AQP4 on brain edema and neural cells injuries in cerebrovascular diseases including cerebral ischemia, intracerebral hemorrhage and subarachnoid hemorrhage. In the current review, we pay more attention to the studies of recent years directly from cerebrovascular diseases animal models or patients, especially those using AQP4 gene knockout mice. This review also elucidates the potential of AQP4as an excellent therapeutic target. PMID:27529222

  12. Role of aquaporins in determining transpiration and photosynthesis in water-stressed plants: crop water-use efficiency, growth and yield.

    PubMed

    Moshelion, Menachem; Halperin, Ofer; Wallach, Rony; Oren, Ram; Way, Danielle A

    2015-09-01

    The global shortage of fresh water is one of our most severe agricultural problems, leading to dry and saline lands that reduce plant growth and crop yield. Here we review recent work highlighting the molecular mechanisms allowing some plant species and genotypes to maintain productivity under water stress conditions, and suggest molecular modifications to equip plants for greater production in water-limited environments. Aquaporins (AQPs) are thought to be the main transporters of water, small and uncharged solutes, and CO2 through plant cell membranes, thus linking leaf CO2 uptake from the intercellular airspaces to the chloroplast with water loss pathways. AQPs appear to play a role in regulating dynamic changes of root, stem and leaf hydraulic conductivity, especially in response to environmental changes, opening the door to using AQP expression to regulate plant water-use efficiency. We highlight the role of vascular AQPs in regulating leaf hydraulic conductivity and raise questions regarding their role (as well as tonoplast AQPs) in determining the plant isohydric threshold, growth rate, fruit yield production and harvest index. The tissue- or cell-specific expression of AQPs is discussed as a tool to increase yield relative to control plants under both normal and water-stressed conditions.

  13. Regulation of photosynthesis and stomatal and mesophyll conductance under water stress and recovery in olive trees: correlation with gene expression of carbonic anhydrase and aquaporins.

    PubMed

    Perez-Martin, Alfonso; Michelazzo, Chiara; Torres-Ruiz, Jose M; Flexas, Jaume; Fernández, José E; Sebastiani, Luca; Diaz-Espejo, Antonio

    2014-07-01

    The hypothesis that aquaporins and carbonic anhydrase (CA) are involved in the regulation of stomatal (g s) and mesophyll (g m) conductance to CO2 was tested in a short-term water-stress and recovery experiment in 5-year-old olive plants (Olea europaea) growing outdoors. The evolution of leaf gas exchange, chlorophyll fluorescence, and plant water status, and a quantitative analysis of photosynthesis limitations, were followed during water stress and recovery. These variables were correlated with gene expression of the aquaporins OePIP1.1 and OePIP2.1, and stromal CA. At mild stress and at the beginning of the recovery period, stomatal limitations prevailed, while the decline in g m accounted for up to 60% of photosynthesis limitations under severe water stress. However, g m was restored to control values shortly after rewatering, facilitating the recovery of the photosynthetic rate. CA was downregulated during water stress and upregulated after recovery. The use of structural equation modelling allowed us to conclude that both OePIP1.1 and OePIP2.1 expression could explain most of the variations observed for g s and g m. CA expression also had a small but significant effect on g m in olive under water-stress conditions.

  14. The osmopressor response is linked to upregulation of aquaporin-1 tyrosine phosphorylation on red blood cell membranes.

    PubMed

    Chu, You Hsiang; Hsu, Yu-Juei; Lee, Herng Sheng; Ho, Shung-Tai; Tung, Che-Se; Tseng, Ching-Jiunn; Li, Min-Hui; Lin, Tso-Chou; Lu, Chih-Cherng

    2013-07-01

    Studies in patients with an impaired efferent baroreflex led us to discover that ingesting water induces a robust increase in blood pressure and vascular resistance. This response was also present in healthy subjects with intact baroreflexes, described as osmopressor response. This study was to discover the physiology of the osmopressor response by determining functional activation of the aquaporin-1 water channel receptor on red blood cell membranes in young healthy subjects. In a randomized, controlled, crossover fashion, 22 young healthy subjects (age, 19-27 years) ingested either 500 or 50 mL of water. Heart rate, blood pressure, cardiac index, and total peripheral vascular resistance were measured using a Finometer hemodynamic monitor. Blood sampling was performed at 5 minutes before and at 25 and 50 minutes after either the water ingestion or control session. Immunoblotting for aquaporin-1 tyrosine phosphorylation was performed before and after subjects ingested either 500 or 50 mL of water. At 25 minutes after the ingestion of 500 mL of water, total peripheral resistance increased significantly, and plasma osmolality decreased. Functional expression of aquaporin-1 tyrosine phosphorylation on red blood cell membranes increased significantly at 25 and 50 minutes after subjects ingested 500 mL of water compared with that before water ingestion. This study concludes that water ingestion produces upregulation of aquaporin-1 tyrosine phosphorylation on red blood cell, which presents as a novel biological marker that occurs simultaneously with the osmopressor response.

  15. Induced expression and functional effects of aquaporin-1 in human leukocytes in sepsis

    PubMed Central

    2013-01-01

    Introduction Gene expression profiling was performed via DNA microarrays in leukocytes from critically ill trauma patients nonseptic upon admission to the ICU, who subsequently developed either sepsis (n = 2) or severe sepsis and acute respiratory distress syndrome (n = 3). By comparing our results with published expression profiling studies in animal models of sepsis and lung injury, we found aquaporin-1 to be differentially expressed across all studies. Our aim was to determine how the water channel aquaporin-1 is involved in regulating the immune response in critically ill patients during infection acquired in the ICU. Methods Following the results of the initial genetic screening study, we prospectively followed aquaporin-1 leukocyte expression patterns in patients with ICU-acquired sepsis who subsequently developed septic shock (n = 16) versus critically ill patients who were discharged without developing sepsis (n = 13). We additionally determined aquaporin-1 expression upon lipopolysaccharide (LPS) exposure and explored functional effects of aquaporin-1 induction in polymorphonuclear granulocytes (PMNs). Results Leukocyte aquaporin-1 expression was induced at the onset of sepsis (median 1.71-fold increase; interquartile range: 0.99 to 2.42, P = 0.012 from baseline) and was further increased upon septic shock (median 3.00-fold increase; interquartile range: 1.20 to 5.40, P = 0.023 from sepsis, Wilcoxon signed-rank test); no difference was observed between baseline and discharge in patients who did not develop sepsis. Stimulation of PMNs by LPS led to increased expression of aquaporin-1 in vitro, which could be abrogated by the NF-κB inhibitor EF-24. PMN hypotonic challenge resulted in a transient increase of the relative cell volume, which returned to baseline after 600 seconds, while incubation in the presence of LPS resulted in persistently increased cell volume. The latter could be abolished by blocking aquaporin-1 with mercury and restored by incubation

  16. The physiological response of Populus tremula x alba leaves to the down-regulation of PIP1 aquaporin gene expression under no water stress

    PubMed Central

    Secchi, Francesca; Zwieniecki, Maciej A.

    2013-01-01

    In order to study the role of PIP1 aquaporins in leaf water and CO2 transport, several lines of PIP1-deficient transgenic Populus tremula x alba were generated using a reverse genetic approach. These transgenic lines displayed no visible developmental or morphological phenotypes when grown under conditions of no water stress. Major photosynthetic parameters were also not affected by PIP1 down regulation. However, low levels of PIP1 expression resulted in greater leaf hydraulic resistance (an increase of 27%), which effectively implicated PIP1 role in water transport. Additionally, the expression level of PIP1 genes in the various transgenic lines was correlated with reductions in mesophyll conductance to CO2 (gm), suggesting that in poplar, these aquaporins influenced membrane permeability to CO2. Overall, although analysis showed that PIP1 genes contributed to the mass transfer of water and CO2 in poplar leaves, their down-regulation did not dramatically impair the physiological needs of this fast growing tree when cultivated under conditions of no stress. PMID:24379822

  17. The Structure and Transport of Water and Hydrated Ions Within Hydrophobic, Nanoscale Channels

    SciTech Connect

    Holt, J K; Herberg, J L; Wu, Y; Schwegler, E; Mehta, A

    2009-06-15

    The purpose of this project includes an experimental and modeling investigation into water and hydrated ion structure and transport at nanomaterials interfaces. This is a topic relevant to understanding the function of many biological systems such as aquaporins that efficiently shuttle water and ion channels that permit selective transport of specific ions across cell membranes. Carbon nanotubes (CNT) are model nanoscale, hydrophobic channels that can be functionalized, making them artificial analogs for these biological channels. This project investigates the microscopic properties of water such as water density distributions and dynamics within CNTs using Nuclear Magnetic Resonance (NMR) and the structure of hydrated ions at CNT interfaces via X-ray Absorption Spectroscopy (XAS). Another component of this work is molecular simulation, which can predict experimental measurables such as the proton relaxation times, chemical shifts, and can compute the electronic structure of CNTs. Some of the fundamental questions this work is addressing are: (1) what is the length scale below which nanoscale effects such as molecular ordering become important, (2) is there a relationship between molecular ordering and transport?, and (3) how do ions interact with CNT interfaces? These are questions of interest to the scientific community, but they also impact the future generation of sensors, filters, and other devices that operate on the nanometer length scale. To enable some of the proposed applications of CNTs as ion filtration media and electrolytic supercapacitors, a detailed knowledge of water and ion structure at CNT interfaces is critical.

  18. Aquaporins in skeletal muscle: reassessment of the functional role of aquaporin-4.

    PubMed

    Frigeri, Antonio; Nicchia, Grazia Paola; Balena, Rosalba; Nico, Beatrice; Svelto, Maria

    2004-05-01

    Aquaporin-4 (AQP4) is the major water channel of the neuromuscular system, but its physiological function in both perivascular astrocytes and skeletal muscle sarcolemma is unclear. The purpose of this study was to assess the following in skeletal muscle: a) the expression of all cloned water cannels; b) the functional role of AQP4 using sarcolemma vesicles purified by means of several fractionation methods, and c) the functional effect of AQP4 reduction in mdx mice, the animal model of Duchenne muscular dystrophy (DMD). Immunofluorescence and immunoblot experiments performed with affinity purified antibodies revealed that only AQP1 and AQP4 are expressed in mouse skeletal muscle: AQP1 in endothelial cells of continuous capillaries and AQP4 on the plasma membrane of muscle fiber. Plasma membrane vesicle purification was performed with a procedure extensively used to purify and characterize dystrophin-associated proteins (DAPs) from rabbit skeletal muscle. Western blot analysis showed strong co-enrichment of the analyzed DAPs and AQP4, indicating that the membrane vesicle preparation was highly enriched in sarcolemma. Stopped-flow light-scattering measurements showed high osmotic water permeability of sarcolemma vesicles (approximately 150 microm/s) compatible with the AQP-mediated pathway for water movement. Sarcolemma vesicles prepared from mdx mice revealed, in parallel with AQP4 disappearance from the plasma membrane, a strong reduction in water permeability compared with wild-type mice. Altogether, these results demonstrate high AQP4-mediated water permeability of the skeletal muscle sarcolemma. Expression of sarcolemmal AQP4 together with that of vascular AQP1 may be responsible for the fast water transfer from the blood into the muscle during intense activity. These data imply an important role for aquaporins in skeletal muscle physiology as well as an involvement of AQP4 in the molecular alterations that occur in the muscle of DMD patients.

  19. Expression of Aquaporin 1 and Aquaporin 4 in the Temporal Neocortex of Patients with Parkinson's Disease.

    PubMed

    Hoshi, Akihiko; Tsunoda, Ayako; Tada, Mari; Nishizawa, Masatoyo; Ugawa, Yoshikazu; Kakita, Akiyoshi

    2017-03-01

    The astrocytic water channel proteins aquaporin 1 (AQP1) and aquaporin 4 (AQP4) are known to be altered in brains affected by several neurodegenerative disorders, including Alzheimer's disease. However, AQP expression in brains affected by Parkinson's disease (PD) has not been described in detail. Recently, it has been reported that α-synuclein (α-syn)-immunolabeled astrocytes show preferential distribution in several cerebral regions, including the neocortex, in patients with PD. Here, we investigated whether AQP expression is associated with α-syn deposition in the temporal neocortex of PD patients. In accordance with the consensus criteria for dementia with Lewy bodies, the patients were classified into neocortical (PDneo), limbic (PDlim), and brain stem (PDbs) groups. Expressions of α-syn, AQP1, and AQP4 in the temporal lobes of the individual PD patients were examined immunohistochemically. Immunohistochemical analysis demonstrated more numerous AQP4-positive and AQP1-positive astrocytes in the PDneo group than in the PDbs, PDlim, and control groups. However, in the PDneo cases, these astrocytes were not often observed in α-syn-rich areas, and semiquantitative analysis revealed that there was a significant negative correlation between the levels of AQP4 and α-syn in layers V-VI, and between those of AQP1 and α-syn in layers II-III. These findings suggest that a defined population of AQP4- and AQP1-expressing reactive astrocytes may modify α-syn deposition in the neocortex of patients with PD.

  20. Rhipicephalus (Boophilus) microplus aquaporin as an effective vaccine antigen to protect against cattle tick infestations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A cDNA encoding an aquaporin from the cattle tick, Rhipicephalus microplus, was isolated from transcriptomic studies. Bioinformatic analysis indicates this aquaporin, designated RmAQP1, shows greatest amino acid similarity to the human aquaporin 7 family. Members of this family of water-conducting c...

  1. The AQP-3 water channel is a pivotal modulator of glycerol-induced chloride channel activation in nasopharyngeal carcinoma cells.

    PubMed

    Zhang, Haifeng; Deng, Zhiqin; Yang, Lili; Luo, Hai; Liu, Shanwen; Li, Yuan; Wei, Yan; Peng, Shuang; Zhu, Linyan; Wang, Liwei; Chen, Lixin

    2016-03-01

    Aquaporin (AQP) and chloride channels are ubiquitous in virtually all living cells, playing pivotal roles in cell proliferation, migration and apoptosis. We previously reported that AQP-3 aquaglyceroporin and ClC-3 chloride channels could form complexes to regulate cell volume in nasopharyngeal carcinoma cells. In this study, the roles of AQP-3 in their hetero-complexes were further investigated. Glycerol entered the cells via AQP-3 and induced two different Cl(-) currents through cell swelling-dependent or -independent pathways. The swelling-dependent Cl(-) current was significantly inhibited by pretreatment with CuCl2 and AQP-3-siRNA. After siRNA-induced AQP-3 knock-down, the 140 mM glycerol isoosmotic solution swelled cells by 22% (45% in AQP-3-intact cells) and induced a smaller Cl(-) current; this current was smaller than that activated by 8% cell volume swelling, which induced by the 140 mM glycerol hyperosmotic solution in AQP-3-intact cells. This suggests that the interaction between AQP-3 and ClC-3 plays an important role in cell volume regulation and that AQP-3 may be a modulator that opens volume-regulated chloride channels. The swelling-independent Cl(-) current, which was activated by extracellular glycerol, was reduced by CuCl2 and AQP-3-siRNA pretreatment. Dialyzing glycerol into cells via the pipette directly induced the swelling-independent Cl(-) current; however this current was blocked by AQP-3 down-regulation, suggesting AQP-3 is essential for the opening of chloride channels. In conclusion, AQP-3 is the pathway for water, glycerol and other small solutes to enter cells, and it may be an essential modulator for the gating of chloride channels.

  2. Role of aquaporins in cell proliferation: What else beyond water permeability?

    PubMed

    Galán-Cobo, Ana; Ramírez-Lorca, Reposo; Echevarría, Miriam

    2016-01-01

    In addition to the extensive data demonstrating the importance of mammalian AQPs for the movement of water and some small solutes across the cell membrane, there is now a growing body of evidence indicating the involvement of these proteins in numerous cellular processes seemingly unrelated, at least some of them in a direct way, to their canonical function of water permeation. Here, we have presented a broad range of evidence demonstrating that these proteins have a role in cell proliferation by various different mechanisms, namely, by allowing fast cell volume regulation during cell division; by affecting progression of cell cycle and helping maintain the balance between proliferation and apoptosis, and by crosstalk with other cell membrane proteins or transcription factors that, in turn, modulate progression of the cell cycle or regulate biosynthesis pathways of cell structural components. In the end, however, after discussing all these data that strongly support a role for AQPs in the cell proliferation process, it remains impossible to conclude that all these other functions attributed to AQPs occur completely independently of their water permeability, and there is a need for new experiments designed specifically to address this interesting issue.

  3. Role of aquaporins in cell proliferation: What else beyond water permeability?

    PubMed Central

    Galán-Cobo, Ana; Ramírez-Lorca, Reposo; Echevarría, Miriam

    2016-01-01

    abstract In addition to the extensive data demonstrating the importance of mammalian AQPs for the movement of water and some small solutes across the cell membrane, there is now a growing body of evidence indicating the involvement of these proteins in numerous cellular processes seemingly unrelated, at least some of them in a direct way, to their canonical function of water permeation. Here, we have presented a broad range of evidence demonstrating that these proteins have a role in cell proliferation by various different mechanisms, namely, by allowing fast cell volume regulation during cell division; by affecting progression of cell cycle and helping maintain the balance between proliferation and apoptosis, and by crosstalk with other cell membrane proteins or transcription factors that, in turn, modulate progression of the cell cycle or regulate biosynthesis pathways of cell structural components. In the end, however, after discussing all these data that strongly support a role for AQPs in the cell proliferation process, it remains impossible to conclude that all these other functions attributed to AQPs occur completely independently of their water permeability, and there is a need for new experiments designed specifically to address this interesting issue. PMID:26752515

  4. 3D flexible water channel: stretchability of nanoscale water bridge

    NASA Astrophysics Data System (ADS)

    Chen, Jige; Wang, Chunlei; Wei, Ning; Wan, Rongzheng; Gao, Yi

    2016-03-01

    Artificial water channels can contribute to a better understanding of natural water channels and offer a highly selective, advanced conductance system. Most studies use nanotubes, however it is difficult to fabricate a flexible structure, and the nanosized diameter brings nanoconfinement effects, and nanotube toxicity arouses biosafety concerns. In this paper, we use an electric field to restrain the water molecules to form a nanoscale water bridge as an artificial water channel to connect a separated solid plate by molecular dynamics simulations. We observe strong 3D flexible stretchability in the water bridge, maintaining a variable length and an arbitrary angle for a considerably long time. The stretching of the water bridge enables it to be polarized at an arbitrary angle and the stretchability is linearly dependent upon the polarization strength. More interestingly, we show the possibility of establishing complex water networks, e.g., triangle, rectangle, hexagon, and tetrahedron-tetrahedron water networks. Our results may help realize structurally flexible and environmentally friendly water channels for lab-on-a-chip applications in nanofluidics.Artificial water channels can contribute to a better understanding of natural water channels and offer a highly selective, advanced conductance system. Most studies use nanotubes, however it is difficult to fabricate a flexible structure, and the nanosized diameter brings nanoconfinement effects, and nanotube toxicity arouses biosafety concerns. In this paper, we use an electric field to restrain the water molecules to form a nanoscale water bridge as an artificial water channel to connect a separated solid plate by molecular dynamics simulations. We observe strong 3D flexible stretchability in the water bridge, maintaining a variable length and an arbitrary angle for a considerably long time. The stretching of the water bridge enables it to be polarized at an arbitrary angle and the stretchability is linearly

  5. Molecular and functional characterization of Bemisia tabaci aquaporins reveals the water channel diversity of hemipteran insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Middle East-Asia Minor 1 (MEAM1) whitefly, Bemisia tabaci (Gennadius) is an economically important pest of food, fiber, and ornamental crops. This pest has evolved a number of adaptations to overcome physiological challenges, including 1) the ability to regulate osmotic stress between gut lumen ...

  6. Sucrose-induced Receptor Kinase SIRK1 Regulates a Plasma Membrane Aquaporin in Arabidopsis*

    PubMed Central

    Wu, Xu Na; Sanchez Rodriguez, Clara; Pertl-Obermeyer, Heidi; Obermeyer, Gerhard; Schulze, Waltraud X.

    2013-01-01

    The transmembrane receptor kinase family is the largest protein kinase family in Arabidopsis, and it contains the highest fraction of proteins with yet uncharacterized functions. Here, we present functions of SIRK1, a receptor kinase that was previously identified with rapid transient phosphorylation after sucrose resupply to sucrose-starved seedlings. SIRK1 was found to be an active kinase with increasing activity in the presence of an external sucrose supply. In sirk1 T-DNA insertional mutants, the sucrose-induced phosphorylation patterns of several membrane proteins were strongly reduced; in particular, pore-gating phosphorylation sites in aquaporins were affected. SIRK1-GFP fusions were found to directly interact with aquaporins in affinity pull-down experiments on microsomal membrane vesicles. Furthermore, protoplast swelling assays of sirk1 mutants and SIRK1-GFP expressing lines confirmed a direct functional interaction of receptor kinase SIRK1 and aquaporins as substrates for phosphorylation. A lack of SIRK1 expression resulted in the failure of mutant protoplasts to control water channel activity upon changes in external sucrose concentrations. We propose that SIRK1 is involved in the regulation of sucrose-specific osmotic responses through direct interaction with and activation of an aquaporin via phosphorylation and that the duration of this response is controlled by phosphorylation-dependent receptor internalization. PMID:23820729

  7. Aquaporin-4 orthogonal arrays of particles are the target for neuromyelitis optica autoantibodies.

    PubMed

    Nicchia, Grazia Paola; Mastrototaro, Mauro; Rossi, Andrea; Pisani, Francesco; Tortorella, Carla; Ruggieri, Maddalena; Lia, Anna; Trojano, Maria; Frigeri, Antonio; Svelto, Maria

    2009-10-01

    Neuromyelitis optica (NMO) is an inflammatory autoimmune demyelinating disease of the central nervous system (CNS) which in autoantibodies produced by patients with NMO (NMO-IgG) recognize a glial water channel protein, Aquaporin-4 (AQP4) expressed as two major isoforms, M1- and M23-AQP4, in which the plasma membrane form orthogonal arrays of particles (OAPs). AQP4-M23 is the OAP-forming isoform, whereas AQP4-M1 alone is unable to form OAPs. The function of AQP4 organization into OAPs in normal physiology is unknown; however, alteration in OAP assemblies is reported for several CNS pathological states. In this study, we demonstrate that in the CNS, NMO-IgG is able to pull down both M1- and M23-AQP4 but experiments performed using cells selectively transfected with M1- or M23-AQP4 and native tissues show NMO-IgG epitope to be intrinsic in AQP4 assemblies into OAPs. Other OAP-forming water-channel proteins, such as the lens Aquaporin-0 and the insect Aquaporin-cic, were not recognized by NMO-IgG, indicating an epitope characteristic of AQP4-OAPs. Finally, water transport measurements show that NMO-IgG treatment does not significantly affect AQP4 function. In conclusion, our results suggest for the first time that OAP assemblies are required for NMO-IgG to recognize AQP4.

  8. Water Channel Facility for Fluid Dynamics Experiments

    NASA Astrophysics Data System (ADS)

    Eslam-Panah, Azar; Sabatino, Daniel

    2016-11-01

    This study presents the design, assembly, and verification process of the circulating water channel constructed by undergraduate students at the Penn State University at Berks. This work was significantly inspired from the closed-loop free-surface water channel at Lafayette College (Sabatino and Maharjan, 2015) and employed for experiments in fluid dynamics. The channel has a 11 ft length, 2.5 ft width, and 2 ft height glass test section with a maximum velocity of 3.3 ft/s. First, the investigation justifies the needs of a water channel in an undergraduate institute and its potential applications in the whole field of engineering. Then, the design procedures applied to find the geometry and material of some elements of the channel, especially the contraction, the test section, the inlet and end tanks, and the pump system are described. The optimization of the contraction design, including the maintenance of uniform exit flow and avoidance of flow separation, is also included. Finally, the discussion concludes by identifying the problems with the undergraduate education through this capstone project and suggesting some new investigations to improve flow quality.

  9. One-step extraction of functional recombinant aquaporin Z from inclusion bodies with optimal detergent.

    PubMed

    Wang, Lili; Zhou, Hu; Li, Zhengjun; Lim, Teck Kwang; Lim, Xin Shan; Lin, Qingsong

    2015-11-01

    Aquaporins are integral membrane channel proteins found in all kingdoms of life. The Escherichia coli aquaporin Z (AqpZ) has been shown to solely conduct water at high permeability. Functional AqpZ is generally purified from the membrane fraction. However, the quantity of the purified protein is limited. In this study, a new method is developed to achieve high yield of bioactive AqpZ protein. A mild detergent n-dodecyl-β-D-maltopyranoside (DDM) was used to solubilize the over-expressed insoluble AqpZ from inclusion bodies without a refolding process. The recovered AqpZ protein showed high water permeability comparable with AqpZ obtained from the membrane fraction. In this way, the total yield of bioactive AqpZ has been increased greatly, which will facilitate the structural and functional characterization and future applications of AqpZ.

  10. Computational optimization of synthetic water channels.

    SciTech Connect

    Rogers, David Michael; Rempe, Susan L. B.

    2012-12-01

    Membranes for liquid and gas separations and ion transport are critical to water purification, osmotic energy generation, fuel cells, batteries, supercapacitors, and catalysis. Often these membranes lack pore uniformity and robustness under operating conditions, which can lead to a decrease in performance. The lack of uniformity means that many pores are non-functional. Traditional membranes overcome these limitations by using thick membrane materials that impede transport and selectivity, which results in decreased performance and increased operating costs. For example, limitations in membrane performance demand high applied pressures to deionize water using reverse osmosis. In contrast, cellular membranes combine high flux and selective transport using membrane-bound protein channels operating at small pressure differences. Pore size and chemistry in the cellular channels is defined uniformly and with sub-nanometer precision through protein folding. The thickness of these cellular membranes is limited to that of the cellular membrane bilayer, about 4 nm thick, which enhances transport. Pores in the cellular membranes are robust under operating conditions in the body. Recent efforts to mimic cellular water channels for efficient water deionization produced a significant advance in membrane function. The novel biomimetic design achieved a 10-fold increase in membrane permeability to water flow compared to commercial membranes and still maintained high salt rejection. Despite this success, there is a lack of understanding about why this membrane performs so well. To address this lack of knowledge, we used highperformance computing to interrogate the structural and chemical environments experienced by water and electrolytes in the newly created biomimetic membranes. We also compared the solvation environments between the biomimetic membrane and cellular water channels. These results will help inform future efforts to optimize and tune the performance of synthetic

  11. Dynamics and energetics of permeation through aquaporins. What do we learn from molecular dynamics simulations?

    PubMed

    Hub, Jochen S; Grubmüller, Helmut; de Groot, Bert L

    2009-01-01

    Aquaporins (AQPs) are a family of integral membrane proteins, which facilitate the rapid and yet highly selective flux of water and other small solutes across biological membranes. Molecular dynamics (MD) simulations contributed substantially to the understanding of the molecular mechanisms that underlie this remarkable efficiency and selectivity of aquaporin channels. This chapter reviews the current state of MD simulations of aquaporins and related aquaglyceroporins as well as the insights these simulations have provided. The mechanism of water permeation through AQPs and methods to determine channel permeabilities from simulations are described. Protons are strictly excluded from AQPs by a large electrostatic barrier and not by an interruption of the Grotthuss mechanism inside the pore. Both the protein's electric field and desolvation effects contribute to this barrier. Permeation of apolar gas molecules such as CO(2) through AQPs is accompanied by a large energetic barrier and thus can only be expected in membranes with a low intrinsic gas permeability. Additionally, the insights from simulations into the mechanism of glycerol permeation through the glycerol facilitator GlpF from E. coli are summarized. Finally, MD simulations are discussed that revealed that the aro-matic/arginine constriction region is generally the filter for uncharged solutes, and that AQP selectivity is controlled by a hydrophobic effect and steric restraints.

  12. The photosynthetic response of tobacco plants overexpressing ice plant aquaporin McMIPB to a soil water deficit and high vapor pressure deficit.

    PubMed

    Kawase, Miki; Hanba, Yuko T; Katsuhara, Maki

    2013-07-01

    We investigated the photosynthetic capacity and plant growth of tobacco plants overexpressing ice plant (Mesembryanthemum crystallinum L.) aquaporin McMIPB under (1) a well-watered growth condition, (2) a well-watered and temporal higher vapor pressure deficit (VPD) condition, and (3) a soil water deficit growth condition to investigate the effect of McMIPB on photosynthetic responses under moderate soil and atmospheric humidity and water deficit conditions. Transgenic plants showed a significantly higher photosynthesis rate (by 48 %), higher mesophyll conductance (by 52 %), and enhanced growth under the well-watered growth condition than those of control plants. Decreases in the photosynthesis rate and stomatal conductance from ambient to higher VPD were slightly higher in transgenic plants than those in control plants. When plants were grown under the soil water deficit condition, decreases in the photosynthesis rate and stomatal conductance were less significant in transgenic plants than those in control plants. McMIPB is likely to work as a CO2 transporter, as well as control the regulation of stomata to water deficits.

  13. Hypercalcemia induces targeted autophagic degradation of aquaporin-2 at the onset of nephrogenic diabetes insipidus.

    PubMed

    Khositseth, Sookkasem; Charngkaew, Komgrid; Boonkrai, Chatikorn; Somparn, Poorichaya; Uawithya, Panapat; Chomanee, Nusara; Payne, D Michael; Fenton, Robert A; Pisitkun, Trairak

    2017-01-27

    Hypercalcemia can cause renal dysfunction such as nephrogenic diabetes insipidus (NDI), but the mechanisms underlying hypercalcemia-induced NDI are not well understood. To elucidate the early molecular changes responsible for this disorder, we employed mass spectrometry-based proteomic analysis of inner medullary collecting ducts (IMCD) isolated from parathyroid hormone-treated rats at onset of hypercalcemia-induced NDI. Forty-one proteins, including the water channel aquaporin-2, exhibited significant changes in abundance, most of which were decreased. Bioinformatic analysis revealed that many of the downregulated proteins were associated with cytoskeletal protein binding, regulation of actin filament polymerization, and cell-cell junctions. Targeted LC-MS/MS and immunoblot studies confirmed the downregulation of 16 proteins identified in the initial proteomic analysis and in additional experiments using a vitamin D treatment model of hypercalcemia-induced NDI. Evaluation of transcript levels and estimated half-life of the downregulated proteins suggested enhanced protein degradation as the possible regulatory mechanism. Electron microscopy showed defective intercellular junctions and autophagy in the IMCD cells from both vitamin D- and parathyroid hormone-treated rats. A significant increase in the number of autophagosomes was confirmed by immunofluorescence labeling of LC3. Colocalization of LC3 and Lamp1 with aquaporin-2 and other downregulated proteins was found in both models. Immunogold electron microscopy revealed aquaporin-2 in autophagosomes in IMCD cells from both hypercalcemia models. Finally, parathyroid hormone withdrawal reversed the NDI phenotype, accompanied by termination of aquaporin-2 autophagic degradation and normalization of both nonphoshorylated and S256-phosphorylated aquaporin-2 levels. Thus, enhanced autophagic degradation of proteins plays an important role in the initial mechanism of hypercalcemic-induced NDI.

  14. Aquaporins-2 and -4 regulate glycogen metabolism and survival during hyposmotic-anoxic stress in Caenorhabditis elegans

    PubMed Central

    LaMacchia, John C.

    2015-01-01

    Periods of oxygen deprivation can lead to ion and water imbalances in affected tissues that manifest as swelling (edema). Although oxygen deprivation-induced edema is a major contributor to injury in clinical ischemic diseases such as heart attack and stroke, the pathophysiology of this process is incompletely understood. In the present study we investigate the impact of aquaporin-mediated water transport on survival in a Caenorhabditis elegans model of edema formation during complete oxygen deprivation (anoxia). We find that nematodes lacking aquaporin water channels in tissues that interface with the surrounding environment display decreased edema formation and improved survival rates in anoxia. We also find that these animals have significantly reduced demand for glycogen as an energetic substrate during anoxia. Together, our data suggest that reductions in membrane water permeability may be sufficient to induce a hypometabolic state during oxygen deprivation that reduces injury and extends survival limits. PMID:26017147

  15. Pollen aquaporins: What are they there for?

    PubMed

    Pérez Di Giorgio, Juliana Andrea; Barberini, María Laura; Amodeo, Gabriela; Muschietti, Jorge Prometeo

    2016-09-01

    In order to provide more insight into the function of aquaporins during pollination, we characterized NIP4;1 and NIP4;2, 2 pollen-specific aquaporins of Arabidopsis thaliana. NIP4;1 and NIP4;2 displayed high amino acid identity. RT-PCR and GUS promoter analysis showed that they have different expression patterns. NIP4;1 is expressed at low levels in mature pollen, while NIP4;2 is highly expressed only during pollen tube growth. Single T-DNA nip4;1 and nip4;2 mutants and double amiRNA nip4;1 nip4;2 knockdowns showed reduced male fertility due to deficient pollen germination and pollen tube length. Functional assays in oocytes showed that NIP4;1 and NIP4;2 transport water and nonionic solutes. Here, the participation of the different pollen aquaporins in pollen hydration and pollen tube growth is discussed.

  16. A putative role for TIP and PIP aquaporins in dynamics of leaf hydraulic and stomatal conductances in grapevine under water stress and re-watering.

    PubMed

    Pou, Alicia; Medrano, Hipolito; Flexas, Jaume; Tyerman, Stephen D

    2013-04-01

    We examined the role of aquaporins (AQPs) in regulating leaf hydraulic conductance (Kleaf ) in Vitis vinifera L. (cv Chardonnay) by studying effects of AQP inhibitors, and AQP gene expression during water stress (WS) and recovery (REC). Kleaf was measured after 3 h of petiole perfusion with different solutions and to introduce inhibitors. The addition of 0.1 mm HgCl2 to 15 mm KCl reduced Kleaf compared with perfusion in 15 mM KNO3 or KCl, and these solutions were used for leaves from control, WS and REC plants. Perfusion for 3 h did not significantly alter stomatal conductance (gs ) though expression of VvTIP1;1 was increased. WS decreased Kleaf by about 30% and was correlated with gs . The expression of VvTIP2;1 and VvPIP2;1 correlated with Kleaf , and VvTIP2;1 was highly correlated with gs . There was no association between the expression of particular AQPs during WS and REC and inhibition of Kleaf by HgCl2 ; however, HgCl2 treatment itself increased expression of VvPIP2;3 and decreased expression of VvPIP2;1. Inhibition by HgCl2 of Kleaf only at early stages of WS and then after REC suggested that apoplasmic pathways become more important during WS. This was confirmed using fluorescent dyes confined to apoplasm or preferentially accumulated in symplasm.

  17. Students' Conceptions of Water Transport

    ERIC Educational Resources Information Center

    Rundgren, Carl-Johan; Rundgren, Shu-Nu Chang; Schonborn, Konrad J.

    2010-01-01

    Understanding diffusion of water into and out of the cell through osmosis is fundamental to the learning and teaching of biology. Although this process is thought of as occurring directly across the lipid bilayer, the majority of water transport is actually mediated by specialised transmembrane water-channels called aquaporins. This study…

  18. 1. INTAKE CHANNEL LOOKING NORTHEAST; WATER FROM BEAVER BROOK ENTERS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. INTAKE CHANNEL LOOKING NORTHEAST; WATER FROM BEAVER BROOK ENTERS THE INTAKE CHANNEL HERE. - Hondius Water Line, 1.6 miles Northwest of Park headquarters building & 1 mile Northwest of Beaver Meadows entrance station, Estes Park, Larimer County, CO

  19. Aquaporin 5 Interacts with Fluoride and Possibly Protects against Caries

    PubMed Central

    Deeley, Kathleen; Poletta, Fernardo A.; Mereb, Juan C.; Leite, Aline L.; Barreta, Priscila A. T. M.; Silva, Thelma L.; Dizak, Piper; Ruff, Timothy; Patir, Asli; Koruyucu, Mine; Abbasoğlu, Zerrin; Casado, Priscila L.; Brown, Andrew; Zaky, Samer H.; Bayram, Merve; Küchler, Erika C.; Cooper, Margaret E.; Liu, Kai; Marazita, Mary L.; Tanboğa, İlknur; Granjeiro, José M.; Seymen, Figen; Castilla, Eduardo E.; Orioli, Iêda M.; Sfeir, Charles; Owyang, Hongjiao; Buzalaf, Marília A. R.; Vieira, Alexandre R.

    2015-01-01

    Aquaporins (AQP) are water channel proteins and the genes coding for AQP2, AQP5, and AQP6 are clustered in 12q13. Since AQP5 is expressed in serous acinar cells of salivary glands, we investigated its involvement in caries. DNA samples from 1,383 individuals from six groups were studied. Genotypes of eight single nucleotide polymorphisms covering the aquaporin locus were tested for association with caries experience. Interaction with genes involved in enamel formation was tested. The association between enamel microhardness at baseline, after creation of artificial caries lesion, and after exposure to fluoride and the genetic markers in AQP5 was tested. Finally, AQP5 expression in human whole saliva, after exposure to fluoride in a mammary gland cell line, which is known to express AQP5, and in Wistar rats was also verified. Nominal associations were found between caries experience and markers in the AQP5 locus. Since these associations suggested that AQP5 may be inhibited by levels of fluoride in the drinking water that cause fluorosis, we showed that fluoride levels above optimal levels change AQP5 expression in humans, cell lines, and rats. We have shown that AQP5 is involved in the pathogenesis of caries and likely interacts with fluoride. PMID:26630491

  20. Role of Aquaporin 0 in lens biomechanics.

    PubMed

    Sindhu Kumari, S; Gupta, Neha; Shiels, Alan; FitzGerald, Paul G; Menon, Anil G; Mathias, Richard T; Varadaraj, Kulandaiappan

    2015-07-10

    Maintenance of proper biomechanics of the eye lens is important for its structural integrity and for the process of accommodation to focus near and far objects. Several studies have shown that specialized cytoskeletal systems such as the beaded filament (BF) and spectrin-actin networks contribute to mammalian lens biomechanics; mutations or deletion in these proteins alters lens biomechanics. Aquaporin 0 (AQP0), which constitutes ∼45% of the total membrane proteins of lens fiber cells, has been shown to function as a water channel and a structural cell-to-cell adhesion (CTCA) protein. Our recent ex vivo study on AQP0 knockout (AQP0 KO) mouse lenses showed the CTCA function of AQP0 could be crucial for establishing the refractive index gradient. However, biomechanical studies on the role of AQP0 are lacking. The present investigation used wild type (WT), AQP5 KO (AQP5(-/-)), AQP0 KO (heterozygous KO: AQP0(+/-); homozygous KO: AQP0(-/-); all in C57BL/6J) and WT-FVB/N mouse lenses to learn more about the role of fiber cell AQPs in lens biomechanics. Electron microscopic images exhibited decreases in lens fiber cell compaction and increases in extracellular space due to deletion of even one allele of AQP0. Biomechanical assay revealed that loss of one or both alleles of AQP0 caused a significant reduction in the compressive load-bearing capacity of the lenses compared to WT lenses. Conversely, loss of AQP5 did not alter the lens load-bearing ability. Compressive load-bearing at the suture area of AQP0(+/-) lenses showed easy separation while WT lens suture remained intact. These data from KO mouse lenses in conjunction with previous studies on lens-specific BF proteins (CP49 and filensin) suggest that AQP0 and BF proteins could act co-operatively in establishing normal lens biomechanics. We hypothesize that AQP0, with its prolific expression at the fiber cell membrane, could provide anchorage for cytoskeletal structures like BFs and together they help to confer

  1. Protective role of brain water channel AQP4 in murine cerebral malaria

    PubMed Central

    Promeneur, Dominique; Lunde, Lisa Kristina; Amiry-Moghaddam, Mahmood; Agre, Peter

    2013-01-01

    Tragically common among children in sub-Saharan Africa, cerebral malaria is characterized by rapid progression to coma and death. In this study, we used a model of cerebral malaria appearing in C57BL/6 WT mice after infection with the rodent malaria parasite Plasmodium berghei ANKA. Expression and cellular localization of the brain water channel aquaporin-4 (AQP4) was investigated during the neurological syndrome. Semiquantitative real-time PCR comparing uninfected and infected mice showed a reduction of brain AQP4 transcript in cerebral malaria, and immunoblots revealed reduction of brain AQP4 protein. Reduction of brain AQP4 protein was confirmed in cerebral malaria by quantitative immunogold EM; however, polarized distribution of AQP4 at the perivascular and subpial astrocyte membranes was not altered. To further examine the role of AQP4 in cerebral malaria, WT mice and littermates genetically deficient in AQP4 were infected with P. berghei. Upon development of cerebral malaria, WT and AQP4-null mice exhibited similar increases in width of perivascular astroglial end-feet in brain. Nevertheless, the AQP4-null mice exhibited more severe signs of cerebral malaria with greater brain edema, although disruption of the blood–brain barrier was similar in both groups. In longitudinal studies, cerebral malaria appeared nearly 1 d earlier in the AQP4-null mice, and reduced survival was noted when chloroquine rescue was attempted. We conclude that the water channel AQP4 confers partial protection against cerebral malaria. PMID:23277579

  2. Protective role of brain water channel AQP4 in murine cerebral malaria.

    PubMed

    Promeneur, Dominique; Lunde, Lisa Kristina; Amiry-Moghaddam, Mahmood; Agre, Peter

    2013-01-15

    Tragically common among children in sub-Saharan Africa, cerebral malaria is characterized by rapid progression to coma and death. In this study, we used a model of cerebral malaria appearing in C57BL/6 WT mice after infection with the rodent malaria parasite Plasmodium berghei ANKA. Expression and cellular localization of the brain water channel aquaporin-4 (AQP4) was investigated during the neurological syndrome. Semiquantitative real-time PCR comparing uninfected and infected mice showed a reduction of brain AQP4 transcript in cerebral malaria, and immunoblots revealed reduction of brain AQP4 protein. Reduction of brain AQP4 protein was confirmed in cerebral malaria by quantitative immunogold EM; however, polarized distribution of AQP4 at the perivascular and subpial astrocyte membranes was not altered. To further examine the role of AQP4 in cerebral malaria, WT mice and littermates genetically deficient in AQP4 were infected with P. berghei. Upon development of cerebral malaria, WT and AQP4-null mice exhibited similar increases in width of perivascular astroglial end-feet in brain. Nevertheless, the AQP4-null mice exhibited more severe signs of cerebral malaria with greater brain edema, although disruption of the blood-brain barrier was similar in both groups. In longitudinal studies, cerebral malaria appeared nearly 1 d earlier in the AQP4-null mice, and reduced survival was noted when chloroquine rescue was attempted. We conclude that the water channel AQP4 confers partial protection against cerebral malaria.

  3. The role of water channel proteins in facilitating recovery of leaf hydraulic conductance from water stress in Populus trichocarpa.

    PubMed

    Laur, Joan; Hacke, Uwe G

    2014-01-01

    Gas exchange is constrained by the whole-plant hydraulic conductance (Kplant). Leaves account for an important fraction of Kplant and may therefore represent a major determinant of plant productivity. Leaf hydraulic conductance (Kleaf) decreases with increasing water stress, which is due to xylem embolism in leaf veins and/or the properties of the extra-xylary pathway. Water flow through living tissues is facilitated and regulated by water channel proteins called aquaporins (AQPs). Here we assessed changes in the hydraulic conductance of Populus trichocarpa leaves during a dehydration-rewatering episode. While leaves were highly sensitive to drought, Kleaf recovered only 2 hours after plants were rewatered. Recovery of Kleaf was absent when excised leaves were bench-dried and subsequently xylem-perfused with a solution containing AQP inhibitors. We examined the expression patterns of 12 highly expressed AQP genes during a dehydration-rehydration episode to identify isoforms that may be involved in leaf hydraulic adjustments. Among the AQPs tested, several genes encoding tonoplast intrinsic proteins (TIPs) showed large increases in expression in rehydrated leaves, suggesting that TIPs contribute to reversing drought-induced reductions in Kleaf. TIPs were localized in xylem parenchyma, consistent with a role in facilitating water exchange between xylem vessels and adjacent living cells. Dye uptake experiments suggested that reversible embolism formation in minor leaf veins contributed to the observed changes in Kleaf.

  4. The Role of Water Channel Proteins in Facilitating Recovery of Leaf Hydraulic Conductance from Water Stress in Populus trichocarpa

    PubMed Central

    Laur, Joan; Hacke, Uwe G.

    2014-01-01

    Gas exchange is constrained by the whole-plant hydraulic conductance (Kplant). Leaves account for an important fraction of Kplant and may therefore represent a major determinant of plant productivity. Leaf hydraulic conductance (Kleaf) decreases with increasing water stress, which is due to xylem embolism in leaf veins and/or the properties of the extra-xylary pathway. Water flow through living tissues is facilitated and regulated by water channel proteins called aquaporins (AQPs). Here we assessed changes in the hydraulic conductance of Populus trichocarpa leaves during a dehydration-rewatering episode. While leaves were highly sensitive to drought, Kleaf recovered only 2 hours after plants were rewatered. Recovery of Kleaf was absent when excised leaves were bench-dried and subsequently xylem-perfused with a solution containing AQP inhibitors. We examined the expression patterns of 12 highly expressed AQP genes during a dehydration-rehydration episode to identify isoforms that may be involved in leaf hydraulic adjustments. Among the AQPs tested, several genes encoding tonoplast intrinsic proteins (TIPs) showed large increases in expression in rehydrated leaves, suggesting that TIPs contribute to reversing drought-induced reductions in Kleaf. TIPs were localized in xylem parenchyma, consistent with a role in facilitating water exchange between xylem vessels and adjacent living cells. Dye uptake experiments suggested that reversible embolism formation in minor leaf veins contributed to the observed changes in Kleaf. PMID:25406088

  5. Water and Ion Channels: Crucial in the Initiation and Progression of Apoptosis in Central Nervous System?

    PubMed Central

    Jessica Chen, Minghui; Sepramaniam, Sugunavathi; Armugam, Arunmozhiarasi; Shyan Choy, Meng; Manikandan, Jayapal; Melendez, Alirio J; Jeyaseelan, Kandiah; Sang Cheung, Nam

    2008-01-01

    Programmed cell death (PCD), is a highly regulated and sophisticated cellular mechanism that commits cell to isolated death fate. PCD has been implicated in the pathogenesis of numerous neurodegenerative disorders. Countless molecular events underlie this phenomenon, with each playing a crucial role in death commitment. A precedent event, apoptotic volume decrease (AVD), is ubiquitously observed in various forms of PCD induced by different cellular insults. Under physiological conditions, cells when subjected to osmotic fluctuations will undergo regulatory volume increase/decrease (RVI/RVD) to achieve homeostatic balance with neurons in the brain being additionally protected by the blood-brain-barrier. However, during AVD following apoptotic trigger, cell undergoes anistonic shrinkage that involves the loss of water and ions, particularly monovalent ions e.g. K+, Na+ and Cl-. It is worthwhile to concentrate on the molecular implications underlying the loss of these cellular components which posed to be significant and crucial in the successful propagation of the apoptotic signals. Microarray and real-time PCR analyses demonstrated several ion and water channel genes are regulated upon the onset of lactacystin (a proteosomal inhibitor)-mediated apoptosis. A time course study revealed that gene expressions of water and ion channels are being modulated just prior to apoptosis, some of which are aquaporin 4 and 9, potassium channels and chloride channels. In this review, we shall looked into the molecular protein machineries involved in the execution of AVD in the central nervous system (CNS), and focus on the significance of movements of each cellular component in affecting PCD commitment, thus provide some pharmacological advantages in the global apoptotic cell death. PMID:19305791

  6. Expression analysis of aquaporins from desert truffle mycorrhizal symbiosis reveals a fine-tuned regulation under drought.

    PubMed

    Navarro-Ródenas, Alfonso; Bárzana, Gloria; Nicolás, Emilio; Carra, Andrea; Schubert, Andrea; Morte, Asunción

    2013-09-01

    We have performed the isolation, functional characterization, and expression analysis of aquaporins in roots and leaves of Helianthemum almeriense, in order to evaluate their roles in tolerance to water deficit. Five cDNAs, named HaPIP1;1, HaPIP1;2, HaPIP2;1, HaPIP2;2, and HaTIP1;1, were isolated from H. almeriense. A phylogenetic analysis of deduced proteins confirmed that they belong to the water channel proteins family. The HaPIP1;1, HaPIP2;1, and HaTIP1;1 genes encode functional water channel proteins, as indicated by expression assays in Saccharomyces cerevisiae, showing divergent roles in the transport of water, CO2, and NH3. The expression patterns of the genes isolated from H. almeriense and of a previously described gene from Terfezia claveryi (TcAQP1) were analyzed in mycorrhizal and nonmycorrhizal plants cultivated under well-watered or drought-stress conditions. Some of the studied aquaporins were subjected to fine-tuned expression only under drought-stress conditions. A beneficial effect on plant physiological parameters was observed in mycorrhizal plants with respect to nonmycorrhizal ones. Moreover, stress induced a change in the mycorrhizal type formed, which was more intracellular under drought stress. The combination of a high intracellular colonization, together with the fine-tuned expression of aquaporins could result in a morphophysiological adaptation of this symbiosis to drought conditions.

  7. Water Uptake along the Length of Grapevine Fine Roots: Developmental anatomy, tissue specific aquaporin expression, and pathways of water transport

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To better understand water uptake patterns in root systems of woody perennial crops, we detailed the developmental anatomy and hydraulic physiology along the length of grapevine fine roots- from the tip to secondary growth zones. Our characterization included localization of suberized structures an...

  8. Water transport in graphene nano-channels

    NASA Astrophysics Data System (ADS)

    Wagemann, Enrique; Oyarzua, Elton; Walther, J. H.; Zambrano, Harvey

    2015-11-01

    The transport of water in nanopores is of both fundamental and practical interest. Graphene Channels (GCs) are potential building blocks for nanofluidic devices due to their molecularly smooth walls and exceptional mechanical properties. Numerous studies have found a significant flow rate enhancement, defined as the ratio of the computed flow rate to that predicted from the classical Poiseuille model. Moreover, these studies point to the fact that the flow enhancement is a function of channel height and the fluid-wall physical-chemistry. In spite of the intensive research, an explicit relation between the chirality of the graphene walls and the slip length has not been established. In this study, we perform non-equilibrium molecular dynamics simulations of water flow in single- and multi-walled GCs. We examine the influence on the flow rates of dissipating the viscous heat produced by connecting the thermostat to the water molecules, the CNT wall atoms or both of them. From the atomic trajectories, we compute the fluid flow rates in GCs with zig-zag and armchair walls, heights from 1 to 4 nm and different number of graphene layers on the walls. A relation between the chirality, slip length, and flow enhancement is found. We aknowledge partial support from Fondecyt project 11130559 and Redoc udec.

  9. Number and regulation of protozoan aquaporins reflect environmental complexity.

    PubMed

    Von Bülow, Julia; Beitz, Eric

    2015-08-01

    Protozoa are a diverse group of unicellular eukaryotes. Evidence has accumulated that protozoan aquaporin water and solute channels (AQP) contribute to adaptation in changing environments. Intracellular protozoan parasites live a well-sheltered life. Plasmodium spp. express a single AQP, Toxoplasma gondii two, while Trypanosoma cruzi and Leishamnia spp. encode up to five AQPs. Their AQPs are thought to import metabolic precursors and simultaneously to dispose of waste and to help parasites survive osmotic stress during transmission to and from the insect vector or during kidney passages. Trypanosoma brucei is a protozoan parasite that swims freely in the human blood. Expression and intracellular localization of the three T. brucei AQPs depend on the stage of differentiation during the life cycle, suggesting distinct roles in energy generation, metabolism, and cell motility. Free-living amoebae are in direct contact with the environment, encountering severe and sudden changes in the availability of nutrition, and in the osmotic conditions due to rainfall or drought. Amoeba proteus expresses a single AQP that is present in the contractile vacuole complex required for osmoregulation, whereas Dictyostelium discoideum expresses four AQPs, of which two are present in the single-celled amoeboidal stage and two more in the later multicellular stages preceding spore formation. The number and regulation of protozoan aquaporins may reflect environmental complexity. We highlight the gated AqpB from D. discoideum as an example of how life in the wild is challenged by a complex AQP structure-function relationship.

  10. Ground Water / Surface Water Exchange: Streambed Versus a Channel Bar

    NASA Astrophysics Data System (ADS)

    Shope, C. L.; Constantz, J. E.; Cooper, C. A.; McKay, W. A.

    2007-12-01

    The streambed is important in controlling exchange of water, solutes, and heat between streams and ground water. Processes such as sedimentation, erosion, and fluctuations in diurnal temperatures can have significant effects on the streambed hydraulic conductivity, which in turn affects fluid velocities across the streambed. The objectives of this study are to quantify the difference in flux magnitude and direction within and around a channel bar. The focus of this presentation is to compare fluxes in channel bar sediments with fluxes in the streambed to determine the effect of the upper boundary conditions on sediment fluxes. A network of piezometers was installed on and around a channel bar located within the Truckee River, a dense 6th order river network, located primarily in northwest Nevada. Instruments used were temperature loggers, pressure transducers, and stage recorders. Several methods were simultaneously utilized to quantify water and heat fluxes and to interpret the hydrodynamic processes through the streambed sediments. Numerical simulations are being completed to quantify the spatial and temporal fluid flux and heat transport in relation to varied hydraulic parameters such as variable river stage, geometry, and hydraulic conductivity. In general, we have found that surface water exchange to the streambed occurs at the upstream portion of bed features and streambed discharge dominates at the downstream bed feature. This exchange is evidenced at the channel bar as well as localized riffles and point bars adjacent to the channel bar. We found that at least two separate hydraulic conditions are evident during our study. The range in water levels between the piezometers was altered from approximately 1.25 m to a minimum of 0.10 m and the mean potentiometric surface increased by 1 m. These variations are geomorphic responses due to a flood event, inundating the channel bar, and a channel restoration project both upstream and downstream of the study area

  11. The Role of Aquaporins in pH-Dependent Germination of Rhizopus delemar Spores.

    PubMed

    Turgeman, Tidhar; Shatil-Cohen, Arava; Moshelion, Menachem; Teper-Bamnolker, Paula; Skory, Christopher D; Lichter, Amnon; Eshel, Dani

    2016-01-01

    Rhizopus delemar and associated species attack a wide range of fruit and vegetables after harvest. Host nutrients and acidic pH are required for optimal germination of R. delemar, and we studied how this process is triggered. Glucose induced spore swelling in an acidic environment, expressed by an up to 3-fold increase in spore diameter, whereas spore diameter was smaller in a neutral environment. When suspended in an acidic environment, the spores started to float, indicating a change in their density. Treatment of the spores with HgCl2, an aquaporin blocker, prevented floating and inhibited spore swelling and germ-tube emergence, indicating the importance of water uptake at the early stages of germination. Two putative candidate aquaporin-encoding genes-RdAQP1 and RdAQP2-were identified in the R. delemar genome. Both presented the conserved NPA motif and six-transmembrane domain topology. Expressing RdAQP1 and RdAQP2 in Arabidopsis protoplasts increased the cells' osmotic water permeability coefficient (Pf) compared to controls, indicating their role as water channels. A decrease in R. delemar aquaporin activity with increasing external pH suggested pH regulation of these proteins. Substitution of two histidine (His) residues, positioned on two loops facing the outer side of the cell, with alanine eliminated the pH sensing resulting in similar Pf values under acidic and basic conditions. Since hydration is critical for spore switching from the resting to activate state, we suggest that pH regulation of the aquaporins can regulate the initial phase of R. delemar spore germination, followed by germ-tube elongation and host-tissue infection.

  12. High Expression of the Tonoplast Aquaporin ZmTIP1 in Epidermal and Conducting Tissues of Maize1

    PubMed Central

    Barrieu, François; Chaumont, François; Chrispeels, Maarten J.

    1998-01-01

    Aquaporins are integral membrane proteins of the tonoplast and the plasma membrane that facilitate the passage of water through these membranes. Because of their potentially important role in regulating water flow in plants, studies documenting aquaporin gene expression in specialized tissues involved in water and solute transport are important. We used in situ hybridization to examine the expression pattern of the tonoplast aquaporin ZmTIP1 in different organs of maize (Zea mays L.). This tonoplast water channel is highly expressed in the root epidermis, the root endodermis, the small parenchyma cells surrounding mature xylem vessels in the root and the stem, phloem companion cells and a ring of cells around the phloem strand in the stem and the leaf sheath, and the basal endosperm transfer cells in developing kernels. We postulate that the high level of expression of ZmTIP1 in these tissues facilitates rapid flow of water through the tonoplast to permit osmotic equilibration between the cytosol and the vacuolar content, and to permit rapid transcellular water flow through living cells when required. PMID:9701571

  13. Endothelin-1 overexpression leads to further water accumulation and brain edema after middle cerebral artery occlusion via aquaporin 4 expression in astrocytic end-feet.

    PubMed

    Lo, Amy C Y; Chen, Ann Y S; Hung, Victor K L; Yaw, Lai Ping; Fung, Maggie K L; Ho, Maggie C Y; Tsang, Margaret C S; Chung, Stephen S M; Chung, Sookja K

    2005-08-01

    Stroke patients have increased levels of endothelin-1 (ET-1), a strong vasoconstrictor, in their plasma or cerebrospinal fluid. Previously, we showed high level of ET-1 mRNA expression in astrocytes after hypoxia/ischemia. It is unclear whether the contribution of ET-1 induction in astrocytes is protective or destructive in cerebral ischemia. Here, we generated a transgenic mouse model that overexpress ET-1 in astrocytes (GET-1) using the glial fibrillary acidic protein promoter to examine the role of astrocytic ET-1 in ischemic stroke by challenging these mice with transient middle cerebral artery occlusion (MCAO). Under normal condition, GET-1 mice showed no abnormality in brain morphology, cerebrovasculature, absolute cerebral blood flow, blood-brain barrier (BBB) integrity, and mean arterial blood pressure. Yet, GET-1 mice subjected to transient MCAO showed more severe neurologic deficits and increased infarct, which were partially normalized by administration of ABT-627 (ET(A) antagonist) 5 mins after MCAO. In addition, GET-1 brains exhibited more Evans blue extravasation and showed decreased endothelial occludin expression after MCAO, correlating with higher brain water content and increased cerebral edema. Aquaporin 4 expression was also more pronounced in astrocytic end-feet on blood vessels in GET-1 ipsilateral brains. Our current data suggest that astrocytic ET-1 has deleterious effects on water homeostasis, cerebral edema and BBB integrity, which contribute to more severe ischemic brain injury.

  14. Determinants of Water Permeability through Nanoscopic Hydrophilic Channels

    PubMed Central

    Portella, Guillem; de Groot, Bert L.

    2009-01-01

    Naturally occurring pores show a variety of polarities and sizes that are presumably directly linked to their biological function. Many biological channels are selective toward permeants similar or smaller in size than water molecules, and therefore their pores operate in the regime of single-file water pores. Intrinsic factors affecting water permeability through such pores include the channel-membrane match, the structural stability of the channel, the channel geometry and channel-water affinity. We present an extensive molecular dynamics study on the role of the channel geometry and polarity on the water osmotic and diffusive permeability coefficients. We show that the polarity of the naturally occurring peptidic channels is close to optimal for water permeation, and that the water mobility for a wide range of channel polarities is essentially length independent. By systematically varying the geometry and polarity of model hydrophilic pores, based on the fold of gramicidin A, the water density, occupancy, and permeability are studied. Our focus is on the characterization of the transition between different permeation regimes in terms of the structure of water in the pores, the average pore occupancy and the dynamics of the permeating water molecules. We show that a general relationship between osmotic and diffusive water permeability coefficients in the single-file regime accounts for the time averaged pore occupancy, and that the dynamics of the permeating water molecules through narrow non single file channels effectively behaves like independent single-file columns. PMID:19186131

  15. Boric acid and salinity effects on maize roots. Response of aquaporins ZmPIP1 and ZmPIP2, and plasma membrane H+-ATPase, in relation to water and nutrient uptake.

    PubMed

    Martinez-Ballesta, Maria del Carmen; Bastías, Elizabeth; Zhu, Chuanfeng; Schäffner, Anton R; González-Moro, Begoña; González-Murua, Carmen; Carvajal, Micaela

    2008-04-01

    Under saline conditions, an optimal cell water balance, possibly mediated by aquaporins, is important to maintain the whole-plant water status. Furthermore, excessive accumulation of boric acid in the soil solution can be observed in saline soils. In this work, the interaction between salinity and excess boron with respect to the root hydraulic conductance (L(0)), abundance of aquaporins (ZmPIP1 and ZmPIP2), ATPase activity and root sap nutrient content, in the highly boron- and salt-tolerant Zea mays L. cv. amylacea, was evaluated. A downregulation of root ZmPIP1 and ZmPIP2 aquaporin contents were observed in NaCl-treated plants in agreement with the L(0) measurements. However, in the H3BO3-treated plants differences in the ZmPIP1 and ZmPIP2 abundance were observed. The ATPase activity was related directly to the amount of ATPase protein and Na+ concentration in the roots, for which an increase in NaCl- and H3BO3+ NaCl-treated plants was observed with respect to untreated and H3BO3-treated plants. Although nutrient imbalance may result from the effect of salinity or H3BO3 alone, an ameliorative effect was observed when both treatments were applied together. In conclusion, our results suggest that under salt stress, the activity of specific membrane components can be influenced directly by boric acid, regulating the functions of certain aquaporin isoforms and ATPase as possible components of the salinity tolerance mechanism.

  16. Automated cell-based assay for screening of aquaporin inhibitors.

    PubMed

    Mola, Maria Grazia; Nicchia, Grazia Paola; Svelto, Maria; Spray, David C; Frigeri, Antonio

    2009-10-01

    Aquaporins form water channels that play major roles in a variety of physiological processes so that altered expression or function may underlie pathological conditions. In order to identify compounds that modulate aquaporin function, we have implemented a functional assay based on rapid measurement of osmotically induced cell volume changes to screen several libraries of diverse drugs. The time course of fluorescence changes in calcein-loaded cells was analyzed during an osmotic challenge using a 96-multiwell fluorescence plate reader. This system was validated using astrocyte primary cultures and fibroblasts that strongly express endogenous AQP4 and AQP1 proteins, respectively, as well as AQP4-transfected cells. We screened 3575 compounds, including 418 FDA-approved and commercially available drugs, for their effect on AQP-mediated water transport. Primary screening yielded 10 compounds that affected water transport activity in both astrocytes and AQP4-transfected cells and 42 compounds that altered cell volume regulation in astrocytes. Selected drugs were then analyzed on AQP1-expressing erythrocytes and AQP4-expressing membrane vesicles by stopped-flow light scattering. Four molecules of the National Cancer Institute's chemical library (NSC164914, NSC670229, NSC168597, NSC301460) were identified that differentially affected both AQP4 and AQP1 mediated water transport, with EC50 values between 20 and 50 microM. This fluorescence microplate reader-based assay may, thus, provide a platform for high-throughput screening which, when coupled to a secondary evaluation to confirm target specificity, should allow discovery of AQP-specific compounds for novel therapeutic strategies in the treatment of water balance disorders.

  17. Automated Cell-Based Assay for Screening of Aquaporin Inhibitors

    PubMed Central

    Mola, Maria Grazia; Nicchia, Grazia Paola; Svelto, Maria; Spray, David C.; Frigeri, Antonio

    2010-01-01

    Aquaporins form water channels that play major roles in a variety of physiological processes so that altered expression or function may underlie pathological conditions. In order to identify compounds that modulate aquaporin function, we have implemented a functional assay based on rapid measurement of osmotically induced cell volume changes to screen several libraries of diverse drugs. The time course of fluorescence changes in calcein-loaded cells was analyzed during an osmotic challenge using a 96-multiwell fluorescence plate reader. This system was validated using astrocyte primary cultures and fibroblasts that strongly express endogenous AQP4 and AQP1 proteins, respectively, as well as AQP4-transfected cells. We screened 3575 compounds, including 418 FDA-approved and commercially available drugs, for their effect on AQP-mediated water transport. Primary screening yielded 10 compounds that affected water transport activity in both astrocytes and AQP4-transfected cells and 42 compounds that altered cell volume regulation in astrocytes. Selected drugs were then analyzed on AQP1-expressing erythrocytes and AQP4-expressing membrane vesicles by stopped-flow light scattering. Four molecules of the National Cancer Institute's chemical library (NSC164914, NSC670229, NSC168597, NSC301460) were identified that differentially affected both AQP4 and AQP1 mediated water transport, with EC50 values between 20 and 50 μM. This fluorescence microplate reader-based assay may, thus, provide a platform for high-throughput screening which, when coupled to a secondary evaluation to confirm target specificity, should allow discovery of AQP-specific compounds for novel therapeutic strategies in the treatment of water balance disorders. PMID:19705854

  18. Novel vasotocin-regulated aquaporins expressed in the ventral skin of semiaquatic anuran amphibians: evolution of cutaneous water-absorbing mechanisms.

    PubMed

    Saitoh, Yasunori; Ogushi, Yuji; Shibata, Yuki; Okada, Reiko; Tanaka, Shigeyasu; Suzuki, Masakazu

    2014-06-01

    Until now, it was believed that only one form of arginine vasotocin (AVT)-regulated aquaporin (AQP) existed to control water absorption from the ventral skin of semiaquatic anuran amphibians, eg, AQP-rj3(a) in Rana japonica. In the present study, we have identified a novel form of ventral skin-type AQP, AQP-rj3b, in R. japonica by cDNA cloning. The oocyte swelling assay confirmed that AQP-rj3b can facilitate water permeability. Both AQP-rj3a and AQP-rj3b were expressed abundantly in the ventral hindlimb skin and weakly in the ventral pelvic skin. For the hindlimb skin, water permeability was increased in response to AVT, although the hydroosmotic response was not statistically significant in the pelvic skin. Isoproterenol augmented water permeability of the hindlimb skin, and the response was inhibited by propranolol. These events were well correlated with the intracellular trafficking of the AQPs. Immunohistochemistry showed that both AQP-rj3 proteins were translocated from the cytoplasmic pool to the apical membrane of principal cells in the first-reacting cell layer of the hindlimb skin after stimulation with AVT and/or isoproterenol. The type-b AQP was also found in R. (Lithobates) catesbeiana and R. (Pelophylax) nigromaculata. Molecular phylogenetic analysis indicated that the type-a is closely related to ventral skin-type AQPs from aquatic Xenopus, whereas the type-b is closer to the AQPs from terrestrial Bufo and Hyla, suggesting that the AQPs from terrestrial species are not the orthologue of the AQPs from aquatic species. Based on these results, we propose a model for the evolution of cutaneous water-absorbing mechanisms in association with AQPs.

  19. Quantitative and Functional Phosphoproteomic Analysis Reveals that Ethylene Regulates Water Transport via the C-Terminal Phosphorylation of Aquaporin PIP2;1 in Arabidopsis.

    PubMed

    Qing, Dongjin; Yang, Zhu; Li, Mingzhe; Wong, Wai Shing; Guo, Guangyu; Liu, Shichang; Guo, Hongwei; Li, Ning

    2016-01-04

    Ethylene participates in the regulation of numerous cellular events and biological processes, including water loss, during leaf and flower petal wilting. The diverse ethylene responses may be regulated via dynamic interplays between protein phosphorylation/dephosphorylation and ubiquitin/26S proteasome-mediated protein degradation and protease cleavage. To address how ethylene alters protein phosphorylation through multi-furcated signaling pathways, we performed a (15)N stable isotope labelling-based, differential, and quantitative phosphoproteomics study on air- and ethylene-treated ethylene-insensitive Arabidopsis double loss-of-function mutant ein3-1/eil1-1. Among 535 non-redundant phosphopeptides identified, two and four phosphopeptides were up- and downregulated by ethylene, respectively. Ethylene-regulated phosphorylation of aquaporin PIP2;1 is positively correlated with the water flux rate and water loss in leaf. Genetic studies in combination with quantitative proteomics, immunoblot analysis, protoplast swelling/shrinking experiments, and leaf water loss assays on the transgenic plants expressing both the wild-type and S280A/S283A-mutated PIP2;1 in the both Col-0 and ein3eil1 genetic backgrounds suggest that ethylene increases water transport rate in Arabidopsis cells by enhancing S280/S283 phosphorylation at the C terminus of PIP2;1. Unknown kinase and/or phosphatase activities may participate in the initial up-regulation independent of the cellular functions of EIN3/EIL1. This finding contributes to our understanding of ethylene-regulated leaf wilting that is commonly observed during post-harvest storage of plant organs.

  20. Changing water affinity from hydrophobic to hydrophilic in hydrophobic channels.

    PubMed

    Ohba, Tomonori; Yamamoto, Shotaro; Kodaira, Tetsuya; Hata, Kenji

    2015-01-27

    The behavior of water at hydrophobic interfaces can play a significant role in determining chemical reaction outcomes and physical properties. Carbon nanotubes and aluminophosphate materials have one-dimensional hydrophobic channels, which are entirely surrounded by hydrophobic interfaces. Unique water behavior was observed in such hydrophobic channels. In this article, changes in the water affinity in one-dimensional hydrophobic channels were assessed using water vapor adsorption isotherms at 303 K and grand canonical Monte Carlo simulations. Hydrophobic behavior of water adsorbed in channels wider than 3 nm was observed for both adsorption and desorption processes, owing to the hydrophobic environment. However, water showed hydrophilic properties in both adsorption and desorption processes in channels narrower than 1 nm. In intermediate-sized channels, the hydrophobic properties of water during the adsorption process were seen to transition to hydrophilic behavior during the desorption process. Hydrophilic properties in the narrow channels for both adsorption and desorption processes are a result of the relatively strong water-channel interactions (10-15 kJ mol(-1)). In the 2-3 nm channels, the water-channel interaction energy of 4-5 kJ mol(-1) was comparable to the thermal translational energy. The cohesive water interaction was approximately 35 kJ mol(-1), which was larger than the others. Thus, the water affinity change in the 2-3 nm channels for the adsorption and desorption processes was attributed to weak water-channel interactions and strong cohesive interactions. These results are inherently important to control the properties of water in hydrophobic environments.

  1. The mobility of single-file water molecules is governed by the number of H-bonds they may form with channel-lining residues

    PubMed Central

    Horner, Andreas; Zocher, Florian; Preiner, Johannes; Ollinger, Nicole; Siligan, Christine; Akimov, Sergey A.; Pohl, Peter

    2015-01-01

    Channel geometry governs the unitary osmotic water channel permeability, pf, according to classical hydrodynamics. Yet, pf varies by several orders of magnitude for membrane channels with a constriction zone that is one water molecule in width and four to eight molecules in length. We show that both the pf of those channels and the diffusion coefficient of the single-file waters within them are determined by the number NH of residues in the channel wall that may form a hydrogen bond with the single-file waters. The logarithmic dependence of water diffusivity on NH is in line with the multiplicity of binding options at higher NH densities. We obtained high-precision pf values by (i) having measured the abundance of the reconstituted aquaporins in the vesicular membrane via fluorescence correlation spectroscopy and via high-speed atomic force microscopy, and (ii) having acquired the vesicular water efflux from scattered light intensities via our new adaptation of the Rayleigh-Gans-Debye equation. PMID:26167541

  2. Identification of the family of aquaporin genes and their expression in Upland cotton (Gossypium hirsutum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the primary factors affecting both the quantity and quality of cotton production is water. A major facilitator of water movement through cell membranes of cotton and other plants are the aquaporin proteins. Aquaporin proteins are present as diverse forms in plants, where they function as tran...

  3. From natural to bioassisted and biomimetic artificial water channel systems.

    PubMed

    Barboiu, Mihail; Gilles, Arnaud

    2013-12-17

    Within biological systems, natural channels and pores transport metabolites across the cell membranes. Researchers have explored artificial ion-channel architectures as potential mimics of natural ionic conduction. All these synthetic systems have produced an impressive collection of alternative artificial ion-channels. Amazingly, researchers have made far less progress in the area of synthetic water channels. The development of synthetic biomimetic water channels and pores could contribute to a better understanding of the natural function of protein channels and could offer new strategies to generate highly selective, advanced water purification systems. Despite the imaginative work by synthetic chemists to produce sophisticated architectures that confine water clusters, most synthetic water channels have used natural proteins channels as the selectivity components, embedded in the diverse arrays of bioassisted artificial systems. These systems combine natural proteins that present high water conductance states under natural conditions with artificial lipidic or polymeric matrixes. Experimental results have demonstrated that natural biomolecules can be used as bioassisted building blocks for the construction of highly selective water transport through artificial membranes. A next step to further the potential of these systems was the design and construction of simpler compounds that maintain the high conduction activity obtained with natural compounds leading to fully synthetic artificial biomimetic systems. Such studies aim to use constitutional selective artificial superstructures for water/proton transport to select functions similar to the natural structures. Moving to simpler water channel systems offers a chance to better understand mechanistic and structural behaviors and to uncover novel interactive water-channels that might parallel those in biomolecular systems. This Account discusses the incipient development of the first artificial water channels

  4. Water transport by the bacterial channel alpha-hemolysin

    NASA Technical Reports Server (NTRS)

    Paula, S.; Akeson, M.; Deamer, D.

    1999-01-01

    This study is an investigation of the ability of the bacterial channel alpha-hemolysin to facilitate water permeation across biological membranes. alpha-Hemolysin channels were incorporated into rabbit erythrocyte ghosts at varying concentrations, and water permeation was induced by mixing the ghosts with hypertonic sucrose solutions. The resulting volume decrease of the ghosts was followed by time-resolved optical absorption at pH 5, 6, and 7. The average single-channel permeability coefficient of alpha-hemolysin for water ranged between 1.3x10-12 cm/s and 1.5x10-12 cm/s, depending on pH. The slightly increased single-channel permeability coefficient at lower pH-values was attributed to an increase in the effective pore size. The activation energy of water transport through the channel was low (Ea=5.4 kcal/mol), suggesting that the properties of water inside the alpha-hemolysin channel resemble those of bulk water. This conclusion was supported by calculations based on macroscopic hydrodynamic laws of laminar water flow. Using the known three-dimensional structure of the channel, the calculations accurately predicted the rate of water flow through the channel. The latter finding also indicated that water permeation data can provide a good estimate of the pore size for large channels.

  5. Water hardness influences Flavobacterium columnare pathogenesis in channel catfish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies were conducted to determine aspects of water chemistry responsible for large differences in pathogenesis and mortality rates in challenges of channel catfish Ictalurus punctatus with Flavobacterium columnare; challenges were conducted in water supplying the Stuttgart National Aquaculture Res...

  6. Identification of resonance waves in open water channels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This article presents a procedure to determine the characteristics of open water channels required for controller and filter design, with special focus on the resonance waves. Also, a new simplified model structure for open water channels is proposed. The procedure applies System Identification tool...

  7. Localization and trafficking of aquaporin 2 in the kidney

    PubMed Central

    Matsuzaki, Toshiyuki; Tajika, Yuki; Ablimit, Abduxukur; Hasegawa, Takahiro

    2008-01-01

    Aquaporins (AQPs) are membrane proteins serving in the transfer of water and small solutes across cellular membranes. AQPs play a variety of roles in the body such as urine formation, prevention from dehydration in covering epithelia, water handling in the blood–brain barrier, secretion, conditioning of the sensory system, cell motility and metastasis, formation of cell junctions, and fat metabolism. The kidney plays a central role in water homeostasis in the body. At least seven isoforms, namely AQP1, AQP2, AQP3, AQP4, AQP6, AQP7, and AQP11, are expressed. Among them, AQP2, the anti-diuretic hormone (ADH)-regulated water channel, plays a critical role in water reabsorption. AQP2 is expressed in principal cells of connecting tubules and collecting ducts, where it is stored in Rab11-positive storage vesicles in the basal state. Upon ADH stimulation, AQP2 is translocated to the apical plasma membrane, where it serves in the influx of water. The translocation process is regulated through the phosphorylation of AQP2 by protein kinase A. As soon as the stimulation is terminated, AQP2 is retrieved to early endosomes, and then transferred back to the Rab 11-positive storage compartment. Some AQP2 is secreted via multivesicular bodies into the urine as exosomes. Actin plays an important role in the intracellular trafficking of AQP2. Recent findings have shed light on the molecular basis that controls the trafficking of AQP2. PMID:18566824

  8. Preparation of supported lipid membranes for aquaporin Z incorporation.

    PubMed

    Li, Xuesong; Wang, Rong; Tang, Chuyang; Vararattanavech, Ardcharaporn; Zhao, Yang; Torres, Jaume; Fane, Tony

    2012-06-01

    There has been a recent surge of interest to mimic the performance of natural cellular membranes by incorporating water channel proteins-aquaporins (AQPs) into various ultrathin films for water filtration applications. To make biomimetic membranes one of the most crucial steps is preparing a defect-free platform for AQPs incorporation on a suitable substrate. In this study two methods were used to prepare supported lipid membranes on NF membrane surfaces under a benign pH condition of 7.8. One method was direct vesicle fusion on a hydrophilic membrane NF-270; the other was vesicle fusion facilitated by hydraulic pressure on a modified hydrophilic NF-270 membrane whose surface has been spin-coated with positively charged lipids. Experiments revealed that the supported lipid membrane without AQPs prepared by the spin coating plus vesicle fusion had a much lower defect density than that prepared by vesicle fusion alone. It appears that the surface roughness and charge are the main factors determining the quality of the supported lipid membrane. Aquaporin Z (AqpZ) proteins were successfully incorporated into 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) liposomes and its permeability was measured by the stopped-flow experimental procedure. However, after the proteoliposomes have been fused onto the modified substrate, the AqpZ function in the resultant membrane was not observed and AFM images showed distinct aggregations of unfused proteoliposomes or AqpZ proteins on the substrate surface. It is speculated that the inhibition of AqpZ function may be caused by the low lipid mobility on the NF membrane surface. Further investigations to evaluate and optimize the structure-performance relationship are required.

  9. Bundle-sheath cell regulation of xylem-mesophyll water transport via aquaporins under drought stress: a target of xylem-borne ABA?

    PubMed

    Shatil-Cohen, Arava; Attia, Ziv; Moshelion, Menachem

    2011-07-01

    The hydraulic conductivity of the leaf vascular system (K(leaf) ) is dynamic and decreases rapidly under drought stress, possibly in response to the stress phytohormone ABA, which increases sharply in the xylem sap (ABA(xyl) ) during periods of drought. Vascular bundle-sheath cells (BSCs; a layer of parenchymatous cells tightly enwrapping the entire leaf vasculature) have been hypothesized to control K(leaf) via the specific activity of BSC aquaporins (AQPs). We examined this hypothesis and provide evidence for drought-induced ABA(xyl) diminishing BSC osmotic water permeability (P(f) ) via downregulated activity of their AQPs. ABA fed to the leaf via the xylem (petiole) both decreased K(leaf) and led to stomatal closure, replicating the effect of drought. In contrast, smearing ABA on the leaf blade, while also closing stomata, did not decrease K(leaf) within 2-3 h of application, demonstrating that K(leaf) does not depend entirely on stomatal closure. GFP-labeled BSCs showed decreased P(f) in response to 'drought' and ABA treatment, and a reversible decrease with HgCl(2) (an AQP blocker). These P(f) responses, absent in mesophyll cells, suggest stress-regulated AQP activity specific to BSCs, and imply a role for these cells in decreasing K(leaf) via a reduction in P(f) . Our results support the above hypothesis and highlight the BSCs as hitherto overlooked vasculature sensor compartments, extending throughout the leaf and functioning as 'stress-regulated valves' converting vasculature chemical signals (possibly ABA(xyl) ) into leaf hydraulic signals.

  10. Role of Aquaporin 0 in lens biomechanics

    SciTech Connect

    Sindhu Kumari, S.; Gupta, Neha; Shiels, Alan; FitzGerald, Paul G.; Menon, Anil G.; Mathias, Richard T.; Varadaraj, Kulandaiappan

    2015-07-10

    Maintenance of proper biomechanics of the eye lens is important for its structural integrity and for the process of accommodation to focus near and far objects. Several studies have shown that specialized cytoskeletal systems such as the beaded filament (BF) and spectrin-actin networks contribute to mammalian lens biomechanics; mutations or deletion in these proteins alters lens biomechanics. Aquaporin 0 (AQP0), which constitutes ∼45% of the total membrane proteins of lens fiber cells, has been shown to function as a water channel and a structural cell-to-cell adhesion (CTCA) protein. Our recent ex vivo study on AQP0 knockout (AQP0 KO) mouse lenses showed the CTCA function of AQP0 could be crucial for establishing the refractive index gradient. However, biomechanical studies on the role of AQP0 are lacking. The present investigation used wild type (WT), AQP5 KO (AQP5{sup −/−}), AQP0 KO (heterozygous KO: AQP0{sup +/−}; homozygous KO: AQP0{sup −/−}; all in C57BL/6J) and WT-FVB/N mouse lenses to learn more about the role of fiber cell AQPs in lens biomechanics. Electron microscopic images exhibited decreases in lens fiber cell compaction and increases in extracellular space due to deletion of even one allele of AQP0. Biomechanical assay revealed that loss of one or both alleles of AQP0 caused a significant reduction in the compressive load-bearing capacity of the lenses compared to WT lenses. Conversely, loss of AQP5 did not alter the lens load-bearing ability. Compressive load-bearing at the suture area of AQP0{sup +/−} lenses showed easy separation while WT lens suture remained intact. These data from KO mouse lenses in conjunction with previous studies on lens-specific BF proteins (CP49 and filensin) suggest that AQP0 and BF proteins could act co-operatively in establishing normal lens biomechanics. We hypothesize that AQP0, with its prolific expression at the fiber cell membrane, could provide anchorage for cytoskeletal structures like BFs and

  11. Subcellular localization of selectively permeable aquaporins in the male germ line of a marine teleost reveals spatial redistribution in activated spermatozoa.

    PubMed

    Chauvigné, François; Boj, Mónica; Vilella, Sebastiano; Finn, Roderick Nigel; Cerdà, Joan

    2013-08-01

    In oviparous vertebrates such as the marine teleost gilthead seabream, water and fluid homeostasis associated with testicular physiology and the external activation of spermatozoa is potentially mediated by multiple aquaporins. To test this hypothesis, we isolated five novel members of the aquaporin superfamily from gilthead seabream and developed paralog-specific antibodies to localize the cellular sites of protein expression in the male reproductive tract. Together with phylogenetic classification, functional characterization of four of the newly isolated paralogs, Aqp0a, -7, -8b, and -9b, demonstrated that they were water permeable, while Aqp8b was also permeable to urea, and Aqp7 and -9b were permeable to glycerol and urea. Immunolocalization experiments indicated that up to seven paralogous aquaporins are differentially expressed in the seabream testis: Aqp0a and -9b in Sertoli and Leydig cells, respectively; Aqp1ab, -7, and -10b from spermatogonia to spermatozoa; and Aqp1aa and -8b in spermatids and sperm. In the efferent duct, only Aqp10b was found in the luminal epithelium. Ejaculated spermatozoa showed a segregated spatial distribution of five aquaporins: Aqp1aa and -7 in the entire flagellum or the head, respectively, and Aqp1ab, -8b, and -10b both in the head and the anterior tail. The combination of immunofluorescence microscopy and biochemical fractionation of spermatozoa indicated that Aqp10b and phosphorylated Aqp1ab are rapidly translocated to the head plasma membrane upon activation, whereas Aqp8b accumulates in the mitochondrion of the spermatozoa. In contrast, Aqp1aa and -7 remained unchanged. These data reveal that aquaporin expression in the teleost testis shares conserved features of the mammalian system, and they suggest that the piscine channels may play different roles in water and solute transport during spermatogenesis, sperm maturation and nutrition, and the initiation and maintenance of sperm motility.

  12. Altered aquaporin expression in glaucoma eyes.

    PubMed

    Tran, Thuy Linh; Bek, Toke; la Cour, Morten; Nielsen, Søren; Prause, Jan Ulrik; Hamann, Steffen; Heegaard, Steffen

    2014-09-01

    Aquaporins (AQP) are channels in the cell membrane that mainly facilitate a passive transport of water. In the eye, AQPs are expressed in the ciliary body and retina and may contribute to the pathogenesis of glaucoma and optic neuropathy. We investigated the expression of AQP1, AQP3, AQP4, AQP5, AQP7 and AQP9 in human glaucoma eyes compared with normal eyes. Nine glaucoma eyes were examined. Of these, three eyes were diagnosed with primary open angle glaucoma; three eyes had neovascular glaucoma; and three eyes had chronic angle-closure glaucoma. Six eyes with normal intraocular pressure and without glaucoma were used as control. Immunohistochemistry was performed using antibodies against AQP1, AQP3, AQP4, AQP5, AQP7 and AQP9. For each specimen, optical densities of immunoprecipitates were measured using Photoshop and the staining intensities were calculated. Immunostaining showed labelling of AQP7 and AQP9 in the nonpigmented ciliary epithelium and the staining intensities were significantly decreased in glaucoma eyes (p = 0.003; p = 0.018). AQP7 expression in the Müller cell endfeet was increased (p = 0.046), and AQP9 labelling of the retinal ganglion cells (RGC) showed decreased intensity (p = 0.037). No difference in AQP1, AQP4 and AQP9 expression was found in the optic nerve fibres. This study is the first investigating AQPs in human glaucoma eyes. We found a reduced expression of AQP9 in the retinal ganglion cells of glaucoma eyes. Glaucoma also induced increased AQP7 expression in the Müller cell endfeet. In the ciliary body of glaucoma eyes, the expression of AQP7 and AQP9 was reduced. Therefore, the expression of AQPs seems to play a role in glaucoma.

  13. Pollen Aquaporins: The Solute Factor

    PubMed Central

    Pérez Di Giorgio, Juliana A.; Soto, Gabriela C.; Muschietti, Jorge P.; Amodeo, Gabriela

    2016-01-01

    In the recent years, the biophysical properties and presumed physiological role of aquaporins (AQPs) have been expanded to specialized cells where water and solute exchange are crucial traits. Complex but unique processes such as stomatal movement or pollen hydration and germination have been addressed not only by identifying the specific AQP involved but also by studying how these proteins integrate and coordinate cellular activities and functions. In this review, we referred specifically to pollen-specific AQPs and analyzed what has been assumed in terms of transport properties and what has been found in terms of their physiological role. Unlike that in many other cells, the AQP machinery in mature pollen lacks plasma membrane intrinsic proteins, which are extensively studied for their high water capacity exchange. Instead, a variety of TIPs and NIPs are expressed in pollen. These findings have altered the initial understanding of AQPs and water exchange to consider specific and diverse solutes that might be critical to sustaining pollen’s success. The spatial and temporal distribution of the pollen AQPs also reflects a regulatory mechanism that allowing a properly adjusting water and solute exchange. PMID:27881985

  14. Pollen Aquaporins: The Solute Factor.

    PubMed

    Pérez Di Giorgio, Juliana A; Soto, Gabriela C; Muschietti, Jorge P; Amodeo, Gabriela

    2016-01-01

    In the recent years, the biophysical properties and presumed physiological role of aquaporins (AQPs) have been expanded to specialized cells where water and solute exchange are crucial traits. Complex but unique processes such as stomatal movement or pollen hydration and germination have been addressed not only by identifying the specific AQP involved but also by studying how these proteins integrate and coordinate cellular activities and functions. In this review, we referred specifically to pollen-specific AQPs and analyzed what has been assumed in terms of transport properties and what has been found in terms of their physiological role. Unlike that in many other cells, the AQP machinery in mature pollen lacks plasma membrane intrinsic proteins, which are extensively studied for their high water capacity exchange. Instead, a variety of TIPs and NIPs are expressed in pollen. These findings have altered the initial understanding of AQPs and water exchange to consider specific and diverse solutes that might be critical to sustaining pollen's success. The spatial and temporal distribution of the pollen AQPs also reflects a regulatory mechanism that allowing a properly adjusting water and solute exchange.

  15. Spilanthol from Acmella Oleracea Lowers the Intracellular Levels of cAMP Impairing NKCC2 Phosphorylation and Water Channel AQP2 Membrane Expression in Mouse Kidney.

    PubMed

    Gerbino, Andrea; Schena, Giorgia; Milano, Serena; Milella, Luigi; Barbosa, Alan Franco; Armentano, Francesca; Procino, Giuseppe; Svelto, Maria; Carmosino, Monica

    2016-01-01

    Acmella oleracea is well recognized in Brazilian traditional medicine as diuretic, although few scientific data have been published to support this effect. Aim of this study was to determine the molecular effect of Acmella oleracea extract and its main alkylamide spilanthol on two major processes involved in the urine concentrating mechanism: Na-K-2Cl symporter (NKCC2) activity in the thick ascending limb and water channel aquaporin 2 accumulation at the apical plasma membrane of collecting duct cells. Phosphorylation of NKCC2 was evaluated as index of its activation by Western blotting. Rate of aquaporin 2 apical expression was analyzed by confocal laser microscopy. Spilanthol-induced intracellular signalling events were dissected by video-imaging experiments. Exposure to spilanthol reduced the basal phosphorylation level of NKCC2 both in freshly isolated mouse kidney slices and in NKCC2-expresing HEK293 cells. In addition, exposure to spilanthol strongly reduced both desmopressin and low Cl--dependent increase in NKCC2 phosphorylation in mouse kidney slices and NKCC2-expressing HEK293 cells, respectively. Similarly, spilanthol reduced both desmopressin- and forskolin-stimulated aquaporin 2 accumulation at the apical plasma membrane of collecting duct in mouse kidney slice and MCD4 cells, respectively. Of note, when orally administered, spilanthol induced a significant increase in both urine output and salt urinary excretion associated with a markedly reduced urine osmolality compared with control mice. Finally, at cellular level, spilanthol rapidly reduced or reversed basal and agonist-increased cAMP levels through a mechanism involving increases in intracellular [Ca2+]. In conclusion, spilanthol-induced inhibition of cAMP production negatively modulates urine-concentrating mechanisms thus holding great promise for its use as diuretic.

  16. Spilanthol from Acmella Oleracea Lowers the Intracellular Levels of cAMP Impairing NKCC2 Phosphorylation and Water Channel AQP2 Membrane Expression in Mouse Kidney

    PubMed Central

    Gerbino, Andrea; Schena, Giorgia; Milano, Serena; Milella, Luigi; Barbosa, Alan Franco; Armentano, Francesca; Procino, Giuseppe; Svelto, Maria; Carmosino, Monica

    2016-01-01

    Acmella oleracea is well recognized in Brazilian traditional medicine as diuretic, although few scientific data have been published to support this effect. Aim of this study was to determine the molecular effect of Acmella oleracea extract and its main alkylamide spilanthol on two major processes involved in the urine concentrating mechanism: Na-K-2Cl symporter (NKCC2) activity in the thick ascending limb and water channel aquaporin 2 accumulation at the apical plasma membrane of collecting duct cells. Phosphorylation of NKCC2 was evaluated as index of its activation by Western blotting. Rate of aquaporin 2 apical expression was analyzed by confocal laser microscopy. Spilanthol-induced intracellular signalling events were dissected by video-imaging experiments. Exposure to spilanthol reduced the basal phosphorylation level of NKCC2 both in freshly isolated mouse kidney slices and in NKCC2-expresing HEK293 cells. In addition, exposure to spilanthol strongly reduced both desmopressin and low Cl−-dependent increase in NKCC2 phosphorylation in mouse kidney slices and NKCC2-expressing HEK293 cells, respectively. Similarly, spilanthol reduced both desmopressin- and forskolin-stimulated aquaporin 2 accumulation at the apical plasma membrane of collecting duct in mouse kidney slice and MCD4 cells, respectively. Of note, when orally administered, spilanthol induced a significant increase in both urine output and salt urinary excretion associated with a markedly reduced urine osmolality compared with control mice. Finally, at cellular level, spilanthol rapidly reduced or reversed basal and agonist-increased cAMP levels through a mechanism involving increases in intracellular [Ca2+]. In conclusion, spilanthol-induced inhibition of cAMP production negatively modulates urine-concentrating mechanisms thus holding great promise for its use as diuretic. PMID:27213818

  17. Erosional processes in channelized water flows on Mars

    NASA Technical Reports Server (NTRS)

    Baker, V. R.

    1979-01-01

    A hypothesis is investigated according to which the Martian outflow channels were formed by high-velocity flows of water or dynamically similar liquid. It is suggested that the outflow channels are largely the result of several interacting erosional mechanisms, including fluvial processes involving ice covers, macroturbulence, streamlining, and cavitation.

  18. Deletion of glycerol channel aquaporin-9 (Aqp9) impairs long-term blood glucose control in C57BL/6 leptin receptor–deficient (db/db) obese mice

    PubMed Central

    Spegel, Peter; Chawade, Aakash; Nielsen, Søren; Kjellbom, Per; Rützler, Michael

    2015-01-01

    Deletion of the glycerol channel aquaporin-9 (Aqp9) reduces postprandial blood glucose levels in leptin receptor–deficient (db/db) obese mice on a C57BL/6 × C57BLKS mixed genetic background. Furthermore, shRNA-mediated reduction of Aqp9 expression reduces liver triacylglycerol (TAG) accumulation in a diet-induced rat model of obesity. The aim of this study was to investigate metabolic effects of Aqp9 deletion in coisogenic db/db mice of the C57BL/6 background. Aqp9wt db/db and Aqp9−/− db/db mice did not differ in body weight and liver TAG contents. On the C57BL/6 genetic background, we observed elevated plasma glucose in Aqp9−/− db/db mice (+1.1 mmol/L, life-time average), while plasma insulin concentration was reduced at the time of death. Glucose levels changed similarly in pentobarbital anesthetized, glucagon challenged Aqp9wt db/db and Aqp9−/− db/db mice. Liver transcriptional profiling did not detect differential gene expression between genotypes. Metabolite profiling revealed a sex independent increase in plasma glycerol (+55%) and glucose (+24%), and reduction in threonate (all at q < 0.1) in Aqp9−/− db/db mice compared to controls. Metabolite profiling thus confirms a role of AQP9 in glycerol metabolism of obese C57BL/6 db/db mice. In this animal model of obesity Aqp9 gene deletion elevates plasma glucose and does not alleviate hepatosteatosis. PMID:26416971

  19. PTHrP regulates water absorption and aquaporin expression in the intestine of the marine sea bream (Sparus aurata, L.).

    PubMed

    Carvalho, Edison S M; Gregório, Sílvia F; Canário, Adelino V M; Power, Deborah M; Fuentes, Juan

    2015-03-01

    Water ingestion by drinking is fundamental for ion homeostasis in marine fish. However, the fluid ingested requires processing to allow net water absorption in the intestine. The formation of luminal carbonate aggregates impacts on calcium homeostasis and requires epithelial HCO3(-) secretion to enable water absorption. In light of its endocrine importance in calcium handling and the indication of involvement in HCO3(-) secretion the present study was designed to expose the role of the parathyroid hormone-related protein (PTHrP) in HCO3(-) secretion, water absorption and the regulation of aqp1 gene expression in the anterior intestine of the sea bream. HCO3(-) secretion rapidly decreased when PTHrP(1-34) was added to anterior intestine of the sea bream mounted in Ussing chambers. The effect achieved a maximum inhibition of 60% of basal secretion rates, showing a threshold effective dose of 0.1 ng ml(-1) compatible with reported plasma values of PTHrP. When applied in combination with the adenylate cyclase inhibitor (SQ 22.536, 100 μmol l(-1)) or the phospholipase C inhibitor (U73122, 10 μmol l(-1)) the effect of PTHrP(1-34) on HCO3(-) secretion was reduced by about 50% in both cases. In parallel, bulk water absorption measured in intestinal sacs was sensitive to inhibition by PTHrP. The inhibitory action conforms to a typical dose-response curve in the range of 0.1-1000 ng ml(-1), achieves a maximal effect of 60-65% inhibition from basal rates and shows threshold significant effects at hormone levels of 0.1 ng ml(-1). The action of PTHrP in water absorption was completely abolished in the presence of the adenylate cyclase inhibitor (SQ 22.536, 100 μmol l(-1)) and was insensitive to the phospholipase C inhibitor (U73122, 10 μmol l(-1)). In vivo injections of PTHrP(1-34) or the PTH/PTHrP receptor antagonist PTHrP(7-34) evoked respectively, a significant decrease or increase of aqp1ab, but not aqp1a. Overall the present results suggest that PTHrP acts as a key

  20. Channel morphology effect on water transport through graphene bilayers

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Wu, Renbing; Law, Adrian Wing-Keung; Feng, Xi-Qiao; Bai, Lichun; Zhou, Kun

    2016-12-01

    The application of few-layered graphene-derived functional thin films for molecular filtration and separation has recently attracted intensive interests. In practice, the morphology of the nanochannel formed by the graphene (GE) layers is not ideally flat and can be affected by various factors. This work investigates the effect of channel morphology on the water transport behaviors through the GE bilayers via molecular dynamics simulations. The simulation results show that the water flow velocity and transport resistance highly depend on the curvature of the graphene layers, particularly when they are curved in non-synergic patterns. To understand the channel morphology effect, the distributions of water density, dipole moment orientation and hydrogen bonds inside the channel are investigated, and the potential energy surface with different distances to the basal GE layer is analyzed. It shows that the channel morphology significantly changes the distribution of the water molecules and their orientation and interaction inside the channel. The energy barrier for water molecules transport through the channel also significantly depends on the channel morphology.

  1. Channel morphology effect on water transport through graphene bilayers

    PubMed Central

    Liu, Bo; Wu, Renbing; Law, Adrian Wing-Keung; Feng, Xi-Qiao; Bai, Lichun; Zhou, Kun

    2016-01-01

    The application of few-layered graphene-derived functional thin films for molecular filtration and separation has recently attracted intensive interests. In practice, the morphology of the nanochannel formed by the graphene (GE) layers is not ideally flat and can be affected by various factors. This work investigates the effect of channel morphology on the water transport behaviors through the GE bilayers via molecular dynamics simulations. The simulation results show that the water flow velocity and transport resistance highly depend on the curvature of the graphene layers, particularly when they are curved in non-synergic patterns. To understand the channel morphology effect, the distributions of water density, dipole moment orientation and hydrogen bonds inside the channel are investigated, and the potential energy surface with different distances to the basal GE layer is analyzed. It shows that the channel morphology significantly changes the distribution of the water molecules and their orientation and interaction inside the channel. The energy barrier for water molecules transport through the channel also significantly depends on the channel morphology. PMID:27929106

  2. John Moulton Homestead, water channel with board cover for walkway ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    John Moulton Homestead, water channel with board cover for walkway to house, looking east - John Moulton Homestead, Northwest corner of Mormon Row Road and Antelope Flats Road, Kelly, Teton County, WY

  3. Non-invasive imaging using reporter genes altering cellular water permeability

    NASA Astrophysics Data System (ADS)

    Mukherjee, Arnab; Wu, Di; Davis, Hunter C.; Shapiro, Mikhail G.

    2016-12-01

    Non-invasive imaging of gene expression in live, optically opaque animals is important for multiple applications, including monitoring of genetic circuits and tracking of cell-based therapeutics. Magnetic resonance imaging (MRI) could enable such monitoring with high spatiotemporal resolution. However, existing MRI reporter genes based on metalloproteins or chemical exchange probes are limited by their reliance on metals or relatively low sensitivity. Here we introduce a new class of MRI reporters based on the human water channel aquaporin 1. We show that aquaporin overexpression produces contrast in diffusion-weighted MRI by increasing tissue water diffusivity without affecting viability. Low aquaporin levels or mixed populations comprising as few as 10% aquaporin-expressing cells are sufficient to produce MRI contrast. We characterize this new contrast mechanism through experiments and simulations, and demonstrate its utility in vivo by imaging gene expression in tumours. Our results establish an alternative class of sensitive, metal-free reporter genes for non-invasive imaging.

  4. Genome-wide expression analysis of rice aquaporin genes and development of a functional gene network mediated by aquaporin expression in roots.

    PubMed

    Nguyen, Minh Xuan; Moon, Sunok; Jung, Ki-Hong

    2013-10-01

    The world population continually faces challenges of water scarcity for agriculture. A common strategy called water-balance control has evolved to adapt plant growth to these challenges. Aquaporins are a family of integral membrane proteins that play a central role in water-balance control. In this study, we identified 34 members of the rice aquaporin gene family, adding a novel member to the previous list. A combination of phylogenetic tree and anatomical meta-expression profiling data consisting of 983 Affymetrix arrays and 209 Agilent 44 K arrays was used to identify tissue-preferred aquaporin genes and evaluate functional redundancy among aquaporin family members. Eight aquaporins showed root-preferred expression in the vegetative growth stage, while 4 showed leaf/shoot-preferred expression. Integrating stress-induced expression patterns into phylogenetic tree and semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) analyses revealed that 3 rice aquaporin genes were markedly downregulated and 4 were upregulated by water deficiency in the root, suggesting that these candidate genes are key regulators of water uptake from the soil. Finally, we constructed a functional network of genes mediated by water stress and refined the network by confirming the differential expression using RT-PCR and real-time PCR. Our data will be useful to elucidate the molecular mechanism of water-balance control in rice root.

  5. Aquaporins 7 and 11 in boar spermatozoa: detection, localisation and relationship with sperm quality.

    PubMed

    Prieto-Martínez, Noelia; Vilagran, Ingrid; Morató, Roser; Rodríguez-Gil, Joan E; Yeste, Marc; Bonet, Sergi

    2016-04-01

    Aquaporins (AQPs) are integral membrane water channels that allow transport of water and small solutes across cell membranes. Although water permeability is known to play a critical role in mammalian cells, including spermatozoa, little is known about their localisation in boar spermatozoa. Two aquaporins, AQP7 and AQP11, in boar spermatozoa were identified by western blotting and localised through immunocytochemistry analyses. Western blot results showed that boar spermatozoa expressed AQP7 (25kDa) and AQP11 (50kDa). Immunocytochemistry analyses demonstrated that AQP7 was localised in the connecting piece of boar spermatozoa, while AQP11 was found in the head and mid-piece and diffuse labelling was also seen along the tail. Despite differences in AQP7 and AQP11 content between boar ejaculates, these differences were not found to be correlated with sperm quality in the case of AQP7. Conversely, AQP11 content showed a significant correlation (P<0.05) with sperm membrane integrity and fluidity and sperm motility. In conclusion, boar spermatozoa express AQP7 and AQP11, and the amounts of AQP11 but not those of AQP7 are correlated with sperm motility and membrane integrity.

  6. Effect of Atractylodes macrocephala on Hypertonic Stress-Induced Water Channel Protein Expression in Renal Collecting Duct Cells

    PubMed Central

    Lee, Yong Pyo; Lee, Yun Jung; Lee, So Min; Yoon, Jung Joo; Kim, Hye Yoom; Kang, Dae Gill; Lee, Ho Sub

    2012-01-01

    Edema is a symptom that results from the abnormal accumulation of fluid in the body. The cause of edema is related to the level of aquaporin (AQP)2 protein expression, which regulates the reabsorption of water in the kidney. Edema is caused by overexpression of the AQP2 protein when the concentration of Na+ in the blood increases. The rhizome of Atractylodes macrocephala has been used in traditional oriental medicine as a diuretic drug; however, the mechanism responsible for the diuretic effect of the aqueous extract from A. macrocephala rhizomes (AAMs) has not yet been identified. We examined the effect of the AAM on the regulation of water channels in the mouse inner medullary collecting duct (mIMCD)-3 cells under hypertonic stress. Pretreatment of AAM attenuates a hypertonicity-induced increase in AQP2 expression as well as the trafficking of AQP2 to the apical plasma membrane. Tonicity-responsive enhancer binding protein (TonEBP) is a transcription factor known to play a central role in cellular homeostasis by regulating the expression of some proteins, including AQP2. Western immunoblot analysis demonstrated that the protein and mRNA expression levels of TonEBP also decrease after AAM treatment. These results suggest that the AAM has a diuretic effect by suppressing water reabsorption via the downregulation of the TonEBP-AQP2 signaling pathway. PMID:23258995

  7. Metal Ion Toxins and Brain Aquaporin-4 Expression: An Overview

    PubMed Central

    Ximenes-da-Silva, Adriana

    2016-01-01

    Metal ions such as iron, zinc, and manganese are essential to metabolic functions, protein synthesis, neurotransmission, and antioxidant neuroprotective mechanisms. Conversely, non-essential metals such as mercury and lead are sources of human intoxication due to occupational activities or environmental contamination. Essential or non-essential metal accumulation in the central nervous system (CNS) results in changes in blood-brain barrier (BBB) permeability, as well as triggering microglia activation and astrocyte reactivity and changing water transport through the cells, which could result in brain swelling. Aquaporin-4 is the main water channel in the CNS, is expressed in astrocyte foot processes in brain capillaries and along the circumventricular epithelium in the ventricles, and has important physiological functions in maintaining brain osmotic homeostasis and supporting brain excitability through regulation of the extracellular space. Some evidence has pointed to a role of AQP4 during metal intoxication in the brain, where it may act in a dual form as a neuroprotector or a mediator of the development of oxidative stress in neurons and astrocytes, resulting in brain swelling and neuronal damage. This mini-review presents the way some metal ions affect changes in AQP4 expression in the CNS and discuss the ways in which water transport in brain cells can be involved in brain damage. PMID:27313504

  8. Roles of Aquaporins in Setaria viridis Stem Development and Sugar Storage

    PubMed Central

    McGaughey, Samantha A.; Osborn, Hannah L.; Chen, Lily; Pegler, Joseph L.; Tyerman, Stephen D.; Furbank, Robert T.; Byrt, Caitlin S.; Grof, Christopher P. L.

    2016-01-01

    Setaria viridis is a C4 grass used as a model for bioenergy feedstocks. The elongating internodes in developing S. viridis stems grow from an intercalary meristem at the base, and progress acropetally toward fully expanded cells that store sugar. During stem development and maturation, water flow is a driver of cell expansion and sugar delivery. As aquaporin proteins are implicated in regulating water flow, we analyzed elongating and mature internode transcriptomes to identify putative aquaporin encoding genes that had particularly high transcript levels during the distinct stages of internode cell expansion and maturation. We observed that SvPIP2;1 was highly expressed in internode regions undergoing cell expansion, and SvNIP2;2 was highly expressed in mature sugar accumulating regions. Gene co-expression analysis revealed SvNIP2;2 expression was highly correlated with the expression of five putative sugar transporters expressed in the S. viridis internode. To explore the function of the proteins encoded by SvPIP2;1 and SvNIP2;2, we expressed them in Xenopus laevis oocytes and tested their permeability to water. SvPIP2;1 and SvNIP2;2 functioned as water channels in X. laevis oocytes and their permeability was gated by pH. Our results indicate that SvPIP2;1 may function as a water channel in developing stems undergoing cell expansion and SvNIP2;2 is a candidate for retrieving water and possibly a yet to be determined solute from mature internodes. Future research will investigate whether changing the function of these proteins influences stem growth and sugar yield in S. viridis. PMID:28018372

  9. Rain and channel flow supplements to subsurface water beneath hyper-arid ephemeral stream channels

    NASA Astrophysics Data System (ADS)

    Kampf, Stephanie K.; Faulconer, Joshua; Shaw, Jeremy R.; Sutfin, Nicholas A.; Cooper, David J.

    2016-05-01

    In hyper-arid regions, ephemeral stream channels are important sources of subsurface recharge and water supply for riparian vegetation, but few studies have documented the subsurface water content dynamics of these systems. This study examines ephemeral channels in the hyper-arid western Sonoran Desert, USA to determine how frequently water recharges the alluvial fill and identify variables that affect the depth and persistence of recharge. Precipitation, stream stage, and subsurface water content measurements were collected over a three-year study at six channels with varying contributing areas and thicknesses of alluvial fill. All channels contain coarse alluvium composed primarily of sands and gravels, and some locations also have localized layers of fine sediment at 2-3 m depth. Rain alone contributed 300-400 mm of water input to these channels over three years, but water content responses were only detected for 36% of the rain events at 10 cm depth, indicating that much of the rain water was either quickly evaporated or taken up by plants. Pulses of water from rain events were detected only in the top meter of alluvium. The sites each experienced ⩽5 brief flow events, which caused transient saturation that usually lasted only a few hours longer than flow. These events were the only apparent source of water to depths >1 m, and water from flow events quickly percolated past the deepest measurement depths (0.5-3 m). Sustained saturation in the shallow subsurface only developed where there was a near-surface layer of finer consolidated sediments that impeded deep percolation.

  10. AQP1 is not only a water channel

    PubMed Central

    2010-01-01

    AQPs are water channel proteins. In particular, AQP1 was demonstrated to be involved in cell migration. According to the model proposed by Verkman and collaborators, AQP drives water influx, facilitating lamellipodia extension and cell migration. Investigating the possible connection between AQP1 and cytoskeleton, our group showed that such a water channel through Lin7/β-catenin affects the organization of the cytoskeleton and proposed a model. All together, these data appear particularly intriguing since the use of AQP1 as target might be useful to modulate angiogenesis/vasculogenic mimicry. PMID:20168076

  11. Aquaporin expression in the cerebral cortex is increased at early stages of Alzheimer disease.

    PubMed

    Pérez, Esther; Barrachina, Marta; Rodríguez, Agustín; Torrejón-Escribano, Benjamín; Boada, Mercé; Hernández, Isabel; Sánchez, Marisa; Ferrer, Isidre

    2007-01-12

    Abnormalities in the cerebral microvasculature are common in Alzheimer disease (AD). Expression levels of the water channels aquaporin 1 and aquaporin 4 (AQP1, AQP4) were examined in AD cases by gel electrophoresis and Western blotting, and densitometric values normalized with beta-actin were compared with corresponding values in age-matched controls processed in parallel. In addition, samples of cases with Pick disease (PiD) were examined for comparative purposes. A significant increase in the expression levels of AQP1 was observed in AD stage II (following Braak and Braak classification). Individual variations were seen in advanced stages which resulted in non-significant differences between AD stages V-VI and age-matched controls. No differences in AQP1 levels were observed between familial AD cases (FAD, all of them at advanced stages) and corresponding age-matched controls. Immunohistochemistry showed increased AQP1 in astrocytes at early stages of AD. Double-labelling immunofluorescence and confocal microscopy disclosed AQP1 immunoreactivity at the cell surface of astrocytes which were recognized with anti-glial fibrillary acidic protein antibodies. No differences in the levels of AQP4 were observed in AD, FAD and PiD when compared with corresponding controls. These results indicate abnormal expression of AQP1 in astrocytes in AD, and they add support to the idea that abnormal regulation of mechanisms involved in the control of water fluxes occurs at early stages in AD.

  12. Effects of dexamethasone on aquaporin-4 expression in brain tissue of rat with bacterial meningitis

    PubMed Central

    Du, Kai-Xian; Dong, Yan; Zhang, Yan; Hou, Li-Wei; Fan, Dong-Xia; Luo, Yu; Zhang, Xiao-Li; Jia, Tian-Ming; Lou, Ji-Yu

    2015-01-01

    Aquaporin-4 (AQP4) is the most popular water channel protein expressed in brain tissue and plays a very important role in regulating the water balance in and outside of brain parenchyma. To investigate the expression of aquaporin-4 in the rat brain tissue after dexamethasone therapy of meningitis induced by Streptococcus pneumonia, total 40 of 3-week old Sprague-Dawley rats were divided into infection group (n=30) and normal control group (n=10). The meningitis groups were infected with 1×107 cfu/ml of Streptococcus pneumoniae and then randomized into no treatment (untreated group, n=10), treatment with ceftriaxone (CTRX group, n=10) and treatment with dexamethasone combined ceftriaxone (CTRX + DEXA group, n=10). The normal control group was established by using saline. The rats were euthanized when they reached terminal illness or five days after infection, followed by detection of AQP4 through using immunohistochemistry and Western blot methods. Data has showed that expression of AQP4 in model group remained higher than the control and treatment group (P<0.05). AQP4 expression in CTRX + DEXA group was lower than that in CTRX group (P<0.05). There was no statistical difference between CTRX + DEXA group and the control group (P>0.05). These data suggested that Dexamethasone could down-regulate the expression of AQP4 in the brain tissue of rats with meningitis and provides evidence for the mechanism of protective effect of Dexamethasone on central neurosystem. PMID:26045822

  13. Molecular dynamics simulations of water within models of ion channels.

    PubMed

    Breed, J; Sankararamakrishnan, R; Kerr, I D; Sansom, M S

    1996-04-01

    The transbilayer pores formed by ion channel proteins contain extended columns of water molecules. The dynamic properties of such waters have been suggested to differ from those of water in its bulk state. Molecular dynamics simulations of ion channel models solvated within and at the mouths of their pores are used to investigate the dynamics and structure of intra-pore water. Three classes of channel model are investigated: a) parallel bundles of hydrophobic (Ala20) alpha-helices; b) eight-stranded hydrophobic (Ala10) antiparallel beta-barrels; and c) parallel bundles of amphipathic alpha-helices (namely, delta-toxin, alamethicin, and nicotinic acetylcholine receptor M2 helix). The self-diffusion coefficients of water molecules within the pores are reduced significantly relative to bulk water in all of the models. Water rotational reorientation rates are also reduced within the pores, particularly in those pores formed by alpha-helix bundles. In the narrowest pore (that of the Ala20 pentameric helix bundle) self-diffusion coefficients and reorientation rates of intra-pore waters are reduced by approximately an order of magnitude relative to bulk solvent. In Ala20 helix bundles the water dipoles orient antiparallel to the helix dipoles. Such dipole/dipole interaction between water and pore may explain how water-filled ion channels may be formed by hydrophobic helices. In the bundles of amphipathic helices the orientation of water dipoles is modulated by the presence of charged side chains. No preferential orientation of water dipoles relative to the pore axis is observed in the hydrophobic beta-barrel models.

  14. Cloning and characterization of a zebrafish homologue of human AQP1: a bifunctional water and gas channel

    PubMed Central

    Chen, Li-Ming; Zhao, Jinhua; Musa-Aziz, Raif; Pelletier, Marc F.; Drummond, Iain A.

    2010-01-01

    The mammalian aquaporins AQP1, AQP4, and AQP5 have been shown to function not only as water channels but also as gas channels. Zebrafish have two genes encoding an AQP1 homologue, aqp1a and aqp1b. In the present study, we cloned the cDNA that encodes the zebrafish protein Aqp1a from the 72-h postfertilization (hpf) embryo of Danio rerio, as well as from the swim bladder of the adult. The deduced amino-acid sequence of aqp1a consists of 260 amino acids and is 59% identical to human AQP1. By analyzing the genomic DNA sequence, we identified four exons in the aqp1a gene. By in situ hybridization, aqp1a is expressed transiently in the developing vasculature and in erythrocytes from 16 to 48 h of development. Later, at 72 hpf, aqp1a is expressed in dermal ionocytes and in the swim bladder. Western blot analysis of adult tissues reveals that Aqp1a is most highly expressed in the eye and swim bladder. Xenopus oocytes expressing aqp1a have a channel-dependent (*) osmotic water permeability (Pf*) that is indistinguishable from that of human AQP1. On the basis of the magnitude of the transient change in surface pH (ΔpHS) that were recorded as the oocytes were exposed to either CO2 or NH3, we conclude that zebrafish Aqp1a is permeable to both CO2 and NH3. The ratio (ΔpHS*)CO2/Pf* is about half that of human AQP1, and the ratio (ΔpHS*)NH3/Pf* is about one-quarter that of human AQP1. Thus, compared with human AQP1, zebrafish Aqp1a has about twice the selectivity for CO2 over NH3. PMID:20739606

  15. Modulation of aquaporin 2 expression in the kidney of young goats by changes in nitrogen intake.

    PubMed

    Elfers, Kristin; Breves, Gerhard; Muscher-Banse, Alexandra S

    2014-10-01

    In ruminants, a decrease of dietary nitrogen (N) is an appropriate feeding concept to reduce environmental pollution and costs. In our previous study, when goats were kept on an N-reduced diet, a decrease of plasma urea concentration and an increase of renal urea transporters were demonstrated. Renal urea absorption plays a crucial role for renal water absorption and urine concentration. Renal collecting duct water absorption is mainly mediated by the water channel aquaporin 1 and 2 (AQP1 and AQP2). Therefore, the aim of the present study was to investigate the effects of a dietary N reduction on expression of renal AQP1 and AQP2 in young goats. Twenty male White Saanen goats, 3 months old, were divided equally into two feeding groups, receiving either a diet with an adequate or a reduced-N supply. Goats fed a reduced-N diet showed significantly higher amounts of AQP1 mRNA in cortical tissue, and the expression of AQP2 mRNA and protein were highly elevated in renal outer medulla. An increase of vasopressin concentrations in plasma were detected for the N-reduced fed goats. Therefore, a stimulation of renal water absorption can be assumed. This might be an advantage for ruminants in times of N reduction due to higher urea concentrations in the tubular fluid and which might result in higher absorption of urea by renal urea transporters. Therefore, interplay of aquaporin water channels and urea transporters in the kidney may occur to maintain urea metabolism in times of N scarcity in young goats.

  16. Involvement of HbPIP2;1 and HbTIP1;1 aquaporins in ethylene stimulation of latex yield through regulation of water exchanges between inner liber and latex cells in Hevea brasiliensis.

    PubMed

    Tungngoen, Kessarin; Kongsawadworakul, Panida; Viboonjun, Unchera; Katsuhara, Maki; Brunel, Nicole; Sakr, Soulaiman; Narangajavana, Jarunya; Chrestin, Hervé

    2009-10-01

    Natural rubber is synthesized in specialized articulated cells (laticifers) located in the inner liber of Hevea brasiliensis. Upon bark tapping, the laticifer cytoplasm (latex) is expelled due to liber tissue turgor pressure. In mature virgin (untapped) trees, short-term kinetic studies confirmed that ethylene, the rubber yield stimulant used worldwide, increased latex yield, with a concomitant decrease in latex total solid content, probably through water influx in the laticifers. As the mature laticifers are devoid of plasmodesmata, the rapid water exchanges with surrounding liber cells probably occur via the aquaporin pathway. Two full-length aquaporin cDNAs (HbPIP2;1 and HbTIP1;1, for plasma membrane intrinsic protein and tonoplast intrinsic protein, respectively) were cloned and characterized. The higher efficiency of HbPIP2;1 than HbTIP1;1 in increasing plasmalemma water conductance was verified in Xenopus laevis oocytes. HbPIP2;1 was insensitive to HgCl(2). In situ hybridization demonstrated that HbPIP2;1 was expressed in all liber tissues in the young stem, including the laticifers. HbPIP2;1 was up-regulated in both liber tissues and laticifers, whereas HbTIP1;1 was down-regulated in liber tissues but up-regulated in laticifers in response to bark Ethrel treatment. Ethylene-induced HbPIP2;1 up-regulation was confirmed by western-blot analysis. The promoter sequences of both genes were cloned and found to harbor, among many others, ethylene-responsive and other chemical-responsive (auxin, copper, and sulfur) elements known to increase latex yield. Increase in latex yield in response to ethylene was emphasized to be linked with water circulation between the laticifers and their surrounding tissues as well as with the probable maintenance of liber tissue turgor, which together favor prolongation of latex flow.

  17. Can Free Water Transport Be Used as a Clinical Parameter for Peritoneal Fibrosis in Long-Term PD Patients?

    PubMed

    Krediet, Raymond T; Lopes Barreto, Deirisa; Struijk, Dirk G

    2016-01-01

    Sodium sieving in peritoneal dialysis (PD) occurs in a situation with high osmotically-driven ultrafiltration rates. This dilutional phenomenon is caused by free water transport through the water channel aquaporin-1. It has recently been described that encapsulating peritoneal fibrosis is associated with impaired free water transport, despite normal expression of aquaporin-1. In this review, it will be argued that free water transport can be used for assessment of fibrotic peritoneal alterations, due to the water-binding capacity of collagen. Finally, the consequences for clinical practice will be discussed.

  18. Effects of water-channel attractions on single-file water permeation through nanochannels

    NASA Astrophysics Data System (ADS)

    Xu, Yousheng; Tian, Xingling; Lv, Mei; Deng, Maolin; He, Bing; Xiu, Peng; Tu, Yusong; Zheng, Youqu

    2016-07-01

    Single-file transportation of water across narrow nanochannels such as carbon nanotubes has attracted much attention in recent years. Such permeation can be greatly affected by the water-channel interactions; despite some progress, this issue has not been fully explored. Herein we use molecular dynamics simulations to investigate the effects of water-channel attractions on occupancy, translational (transportation) and orientational dynamics of water inside narrow single-walled carbon nanotubes (SWNTs). We use SWNTs as the model nanochannels and change the strength of water-nanotube attractions to mimic the changes in the hydrophobicity/polarity of the nanochannel. We investigate the dependence of water occupancy inside SWNTs on the water-channel attraction and identify the corresponding threshold values for drying states, wetting-drying transition states, and stably wetting states. As the strength of water-channel attractions increases, water flow increases rapidly first, and then decreases gradually; the maximal flow occurs in the case where the nanochannel is predominately filled with the 1D water wire but with a small fraction of ‘empty states’, indicating that appropriate empty-filling (drying-wetting) switching can promote water permeation. This maximal flow is unexpected, since in traditional view, the stable and tight hydrogen-bonding network of the water wire is the prerequisite for high permeability of water. The underlying mechanism is discussed from an energetic perspective. In addition, the effect of water-channel attractions on reorientational dynamics of the water wire is studied, and a negative correlation between the flipping frequency of water wire and the water-channel attraction is observed. The underlying mechanism is interpreted in term of the axial total dipole moment of inner water molecules. This work would help to better understand the effects of water-channel attractions on wetting properties of narrow nanochannels, and on single

  19. Polyphenols as Modulators of Aquaporin Family in Health and Disease.

    PubMed

    Fiorentini, Diana; Zambonin, Laura; Dalla Sega, Francesco Vieceli; Hrelia, Silvana

    2015-01-01

    Polyphenols are bioactive molecules widely distributed in fruits, vegetables, cereals, and beverages. Polyphenols in food sources are extensively studied for their role in the maintenance of human health and in the protection against development of chronic/degenerative diseases. Polyphenols act mainly as antioxidant molecules, protecting cell constituents against oxidative damage. The enormous number of polyphenolic compounds leads to huge different mechanisms of action not fully understood. Recently, some evidence is emerging about the role of polyphenols, such as curcumin, pinocembrin, resveratrol, and quercetin, in modulating the activity of some aquaporin (AQP) isoforms. AQPs are integral, small hydrophobic water channel proteins, extensively expressed in many organs and tissues, whose major function is to facilitate the transport of water or glycerol over cell plasma membranes. Here we summarize AQP physiological functions and report emerging evidence on the implication of these proteins in a number of pathophysiological processes. In particular, this review offers an overview about the role of AQPs in brain, eye, skin diseases, and metabolic syndrome, focusing on the ability of polyphenols to modulate AQP expression. This original analysis can contribute to elucidating some peculiar effects exerted by polyphenols and can lead to the development of an innovative potential preventive/therapeutic strategy.

  20. A preliminary study of aquaporin 1 immunolocalization in chronic subdural hematoma membranes.

    PubMed

    Basaldella, Luca; Perin, Alessandro; Orvieto, Enrico; Marton, Elisabetta; Itskevich, David; Dei Tos, Angelo Paolo; Longatti, Pierluigi

    2010-07-01

    Aquaporin 1 (AQP1) is a molecular water channel expressed in many anatomical locations, particularly in epithelial barriers specialized in water transport. The aim of this study was to investigate AQP1 expression in chronic subdural hematoma (CSDH) membranes. In this preliminary study, 11 patients with CSDH underwent burr hole craniectomy and drainage. Membrane specimens were stained with a monoclonal antibody targeting AQP1 for immunohistochemical analysis. The endothelial cells of the sinusoid capillaries of the outer membranes exhibited an elevated immunoreactivity to AQP1 antibody compared to the staining intensity of specimens from the inner membrane and normal dura. These findings suggest that the outer membrane might be the source of the increased fluid accumulation responsible for chronic hematoma enlargement.

  1. Genome-wide analysis and expression profiling of the Solanum tuberosum aquaporins.

    PubMed

    Venkatesh, Jelli; Yu, Jae-Woong; Park, Se Won

    2013-12-01

    Aquaporins belongs to the major intrinsic proteins involved in the transcellular membrane transport of water and other small solutes. A comprehensive genome-wide search for the homologues of Solanum tuberosum major intrinsic protein (MIP) revealed 41 full-length potato aquaporin genes. All potato aquaporins are grouped into five subfamilies; plasma membrane intrinsic proteins (PIPs), tonoplast intrinsic proteins (TIPs), NOD26-like intrinsic proteins (NIPs), small basic intrinsic proteins (SIPs) and x-intrinsic proteins (XIPs). Functional predictions based on the aromatic/arginine (ar/R) selectivity filters and Froger's positions showed a remarkable difference in substrate transport specificity among subfamilies. The expression pattern of potato aquaporins, examined by qPCR analysis, showed distinct expression profiles in various organs and tuber developmental stages. Furthermore, qPCR analysis of potato plantlets, subjected to various abiotic stresses revealed the marked effect of stresses on expression levels of aquaporins. Taken together, the expression profiles of aquaporins imply that aquaporins play important roles in plant growth and development, in addition to maintaining water homeostasis in response to environmental stresses.

  2. Ion/water channels for embryo implantation barrier.

    PubMed

    Liu, Xin-Mei; Zhang, Dan; Wang, Ting-Ting; Sheng, Jian-Zhong; Huang, He-Feng

    2014-05-01

    Successful implantation involves three distinct processes, namely the embryo apposition, attachment, and penetration through the luminal epithelium of the endometrium to establish a vascular link to the mother. After penetration, stromal cells underlying the epithelium differentiate and surround the embryo to form the embryo implantation barrier, which blocks the passage of harmful substances to the embryo. Many ion/water channel proteins were found to be involved in the process of embryo implantation. First, ion/water channel proteins play their classical role in establishing a resting membrane potential, shaping action potentials and other electrical signals by gating the flow of ions across the cell membrane. Second, most of ion/water channel proteins are regulated by steroid hormone (estrogen or progesterone), which may have important implications to the embryo implantation. Last but not least, these proteins do not limit themselves as pure channels but also function as an initiator of a series of consequences once activated by their ligand/stimulator. Herein, we discuss these new insights in recent years about the contribution of ion/water channels to the embryo implantation barrier construction during early pregnancy.

  3. Aquaporin 1 and aquaporin 4 overexpression in bovine spongiform encephalopathy in a transgenic murine model and in cattle field cases.

    PubMed

    Costa, Carme; Tortosa, Raül; Rodríguez, Agustín; Ferrer, Isidre; Torres, Juan Maria; Bassols, Anna; Pumarola, Martí

    2007-10-17

    Aquaporins (AQP) are a family of transmembrane proteins that act as water selective channels. AQP1 and AQP4 are widely expressed in the central nervous system where they play several roles. Overexpression of AQP has been reported in some human and animal transmissible spongiform encephalopathies, but information is scanty about their distribution in the central nervous system in bovine spongiform encephalopathy (BSE). Double immunohistochemistry for AQP1, AQP4 and GFAP was developed in a transgenic mouse line overexpressing the bovine cellular prion protein (BoTg110), intracerebrally infected with cattle BSE. Western blot for AQP1 and AQP4, and immunohistochemistry for both AQP and GFAP were carried out in cases of BSE-diagnosed cattle as part of surveillance plan in Catalonia (Spain). A marked increase in AQP1 and AQP4 was observed in mice at the terminal stage of the disease, when they had a wide range of clinical signs, whereas no increase could be observed in the early stage before the onset of the clinical signs. In cattle which did not show evidence of clinical signs, both AQP already showed a great increase. The AQP overexpression correlated with GFAP-immunoreactive astrocytes and PrPres deposition in both cases. The results of this study suggest that AQP overexpression in glial cells could lead to an imbalance in water and ion homeostasis which could contribute to triggering the typical histopathological changes of BSE.

  4. Expression and Localization of Aquaporin 4 and Aquaporin 5 along the Large Intestine of Colostrum-Suckling Buffalo Calves.

    PubMed

    Pelagalli, A; Squillacioti, C; De Luca, A; Pero, M E; Vassalotti, G; Lombardi, P; Avallone, L; Mirabella, N

    2016-12-01

    Aquaporins (AQPs) are membrane channel proteins that play a role in regulating water permeability in many tissues. To date, seven isoforms of AQPs have been reported in the gastrointestinal tract in different mammalian species. In contrast, both tissue distribution and expression of AQPs are unknown in the buffalo. The purpose of this study was to investigate the expression of both AQP4 and AQP5 mRNAs and their relative proteins in the large intestinal tracts of buffalo calves after colostrum suckling using reverse transcriptase polymerase chain reaction (RT-PCR), Western blotting and immunohistochemistry. Our results revealed a diversified tissue AQP4 and AQP5 immunolocalization accompanied by their highest expression in the tissues of colostrum-suckling buffalo calves confirmed by Western blotting. In particular, AQP4 was distributed along the endothelium and enterocytes while AQP5 in the endocrine cells. These findings provide direct evidence for AQP4 and AQP5 expression in the large intestine, suggesting that different AQPs collaborate functionally and distinctively in water handling during intestinal development, especially during the first period after delivery.

  5. Aquaporins of the PIP2 Class Are Required for Efficient Anther Dehiscence in Tobacco

    PubMed Central

    Bots, Marc; Vergeldt, Frank; Wolters-Arts, Mieke; Weterings, Koen; van As, Henk; Mariani, Celestina

    2005-01-01

    Several processes during sexual reproduction in higher plants involve the movement of water between cells or tissues. Before flower anthesis, anther and pollen dehydration takes place before the release of mature pollen at dehiscence. Aquaporins represent a class of proteins that mediates the movement of water over cellular membranes. Aquaporins of the plasmamembrane PIP2 family are expressed in tobacco (Nicotiana tabacum) anthers and may therefore be involved in the movement of water in this organ. To gain more insight into the role these proteins may play in this process, we have analyzed their localization using immunolocalizations and generated plants displaying RNA interference of PIP2 aquaporins. Our results indicate that PIP2 protein expression is modulated during anther development. Furthermore, in tobacco PIP2 RNA interference plants, anther dehydration was slower, and dehiscence occurred later when compared with control plants. Together, our results suggest that aquaporins of the PIP2 class are required for efficient anther dehydration prior to dehiscence. PMID:15734911

  6. Neuromyelitis optica and the evolving spectrum of autoimmune aquaporin-4 channelopathies: a decade later

    PubMed Central

    Pittock, Sean J.; Lucchinetti, Claudia F.

    2015-01-01

    The discovery of AQP4-IgG (a pathogenic antibody that targets the astrocytic water channel aquaporin-4) as the first sensitive and specific biomarker for any inflammatory central nervous system demyelinating disease, has shifted emphasis from the oligodendrocyte and myelin to the astrocyte as a central immunopathogenic player. Neuromyelitis optica (NMO) spectrum disorders (SD) represent an evolving spectrum of IDDs extending beyond the optic nerves and spinal cord to include the brain (especially in children) and, rarely, muscle. NMOSD typical brain lesions are located in areas that highly express the target antigen, AQP4, including the circumventricular organs (accounting for intractable nausea and vomiting) and the diencephalon (accounting for sleep disorders, endocrinopathies, and syndrome of inappropriate antidiuresis). Magnetic resonance imaging (MRI) brain abnormalities fulfill Barkoff criteria for multiple sclerosis in up to 10% of patients. As the spectrum broadens, the importance of highly specific assays that detect pathogenic AQP4-IgG targeting extracellular epitopes of AQP4 cannot be overemphasized. The rapid evolution of our understanding of the immunobiology of AQP4 autoimmunity necessitates continuing revision of NMOSD diagnostic criteria. Here, we describe scientific advances that have occurred since the discovery of NMO-IgG in 2004 and review novel targeted immunotherapies. We also suggest that NMOSDs should now be considered under the umbrella term autoimmune aquaporin-4 channelopathy. PMID:26096370

  7. Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling

    PubMed Central

    Miller, Evan W.; Dickinson, Bryan C.; Chang, Christopher J.

    2010-01-01

    Hydrogen peroxide (H2O2) produced by cell-surface NADPH Oxidase (Nox) enzymes is emerging as an important signaling molecule for growth, differentiation, and migration processes. However, how cells spatially regulate H2O2 to achieve physiological redox signaling over nonspecific oxidative stress pathways is insufficiently understood. Here we report that the water channel Aquaporin-3 (AQP3) can facilitate the uptake of H2O2 into mammalian cells and mediate downstream intracellular signaling. Molecular imaging with Peroxy Yellow 1 Methyl-Ester (PY1-ME), a new chemoselective fluorescent indicator for H2O2, directly demonstrates that aquaporin isoforms AQP3 and AQP8, but not AQP1, can promote uptake of H2O2 specifically through membranes in mammalian cells. Moreover, we show that intracellular H2O2 accumulation can be modulated up or down based on endogenous AQP3 expression, which in turn can influence downstream cell signaling cascades. Finally, we establish that AQP3 is required for Nox-derived H2O2 signaling upon growth factor stimulation. Taken together, our findings demonstrate that the downstream intracellular effects of H2O2 can be regulated across biological barriers, a discovery that has broad implications for the controlled use of this potentially toxic small molecule for beneficial physiological functions. PMID:20724658

  8. Novel regulation of aquaporins during osmotic stress.

    PubMed

    Vera-Estrella, Rosario; Barkla, Bronwyn J; Bohnert, Hans J; Pantoja, Omar

    2004-08-01

    Aquaporin protein regulation and redistribution in response to osmotic stress was investigated. Ice plant (Mesembryanthemum crystallinum) McTIP1;2 (McMIPF) mediated water flux when expressed in Xenopus leavis oocytes. Mannitol-induced water imbalance resulted in increased protein amounts in tonoplast fractions and a shift in protein distribution to other membrane fractions, suggesting aquaporin relocalization. Indirect immunofluorescence labeling also supports a change in membrane distribution for McTIP1;2 and the appearance of a unique compartment where McTIP1;2 is expressed. Mannitol-induced redistribution of McTIP1;2 was arrested by pretreatment with brefeldin A, wortmannin, and cytochalasin D, inhibitors of vesicle trafficking-related processes. Evidence suggests a role for glycosylation and involvement of a cAMP-dependent signaling pathway in McTIP1;2 redistribution. McTIP1;2 redistribution to endosomal compartments may be part of a homeostatic process to restore and maintain cellular osmolarity under osmotic-stress conditions.

  9. On shallow water rogue wave formation in strongly inhomogeneous channels

    NASA Astrophysics Data System (ADS)

    Didenkulova, Ira; Pelinovsky, Efim

    2016-05-01

    Rogue wave formation in shallow water is often governed by dispersive focusing and wave-bottom interaction. In this study we try to combine these mechanisms by considering dispersive nonreflecting wave propagation in shallow strongly inhomogeneous channels. Nonreflecting wave propagation provides extreme wave amplification and the transfer of wave energy over large distances, while dispersive effects allow formation of a short-lived wave of extreme height (rogue wave). We found several types of water channels, where this mechanism can be realized, including (i) channels with a monotonically decreasing cross-section (normal dispersion), (ii) an inland basin described by a half of elliptic paraboloid (abnormal dispersion) and (iii) an underwater hill described by a half of hyperbolic paraboloid (normal dispersion). Conditions for variations of local frequency in the wave train providing optimal focusing of the wave train are also found.

  10. Stability Analysis of a Uniformly Heated Channel with Supercritical Water

    SciTech Connect

    Ortega Gomez, T.; Class, A.; Schulenberg, T.; Lahey, R.T. Jr.

    2006-07-01

    The thermal-hydraulic stability of a uniformly heated channel at supercritical water pressure has been investigated to help understand the system instability phenomena which may occur in Supercritical Water Nuclear Reactors (SCWR). We have extended the modeling approach often used for Boiling Water Nuclear Reactor (BWR) stability analysis to supercritical pressure operation conditions. We have shown that Ledinegg excursive instabilities and pressure-drop oscillations (PDO) will not occur in supercritical water systems. The linear stability characteristics of a typical uniformly heated channel were computed by evaluating the eigenvalues of the model. An analysis of non-linear instability phenomena was also performed in the time domain and the dynamic bifurcations were evaluated. (authors)

  11. Hepatocyte and Sertoli Cell Aquaporins, Recent Advances and Research Trends

    PubMed Central

    Bernardino, Raquel L.; Marinelli, Raul A.; Maggio, Anna; Gena, Patrizia; Cataldo, Ilaria; Alves, Marco G.; Svelto, Maria; Oliveira, Pedro F.; Calamita, Giuseppe

    2016-01-01

    Aquaporins (AQPs) are proteinaceous channels widespread in nature where they allow facilitated permeation of water and uncharged through cellular membranes. AQPs play a number of important roles in both health and disease. This review focuses on the most recent advances and research trends regarding the expression and modulation, as well as physiological and pathophysiological functions of AQPs in hepatocytes and Sertoli cells (SCs). Besides their involvement in bile formation, hepatocyte AQPs are involved in maintaining energy balance acting in hepatic gluconeogenesis and lipid metabolism, and in critical processes such as ammonia detoxification and mitochondrial output of hydrogen peroxide. Roles are played in clinical disorders including fatty liver disease, diabetes, obesity, cholestasis, hepatic cirrhosis and hepatocarcinoma. In the seminiferous tubules, particularly in SCs, AQPs are also widely expressed and seem to be implicated in the various stages of spermatogenesis. Like in hepatocytes, AQPs may be involved in maintaining energy homeostasis in these cells and have a major role in the metabolic cooperation established in the testicular tissue. Altogether, this information represents the mainstay of current and future investigation in an expanding field. PMID:27409609

  12. Adaptive plasticity of killifish (Fundulus heteroclitus) embryos: dehydration-stimulated development and differential aquaporin-3 expression.

    PubMed

    Tingaud-Sequeira, Angèle; Zapater, Cinta; Chauvigné, François; Otero, David; Cerdà, Joan

    2009-04-01

    Embryos of the marine killifish Fundulus heteroclitus are adapted to survive aerially. However, it is unknown if they are able to control development under dehydration conditions. Here, we show that air-exposed blastula embryos under saturated relative humidity were able to stimulate development, and hence the time of hatching was advanced with respect to embryos continuously immersed in seawater. Embryos exposed to air at later developmental stages did not hatch until water was added, while development was not arrested. Air-exposed embryos avoided dehydration probably because of their thickened egg envelope, although it suffered significant evaporative water loss. The potential role of aquaporins as part of the embryo response to dehydration was investigated by cloning the aquaporin-0 (FhAqp0), -1a (FhAqp1a), and -3 (FhAqp3) cDNAs. Functional expression in Xenopus laevis oocytes showed that FhaAqp1a was a water-selective channel, whereas FhAqp3 was permeable to water, glycerol, and urea. Expression of fhaqp0 and fhaqp1a was prominent during organogenesis, and their mRNA levels were similar between water- and air-incubated embryos. However, fhaqp3 transcripts were highly and transiently accumulated during gastrulation, and the protein product was localized in the basolateral membrane of the enveloping epithelial cell layer and in the membrane of ingressing and migrating blastomers. Interestingly, both fhaqp3 transcripts and FhAqp3 polypeptides were downregulated in air-exposed embryos. These data demonstrate that killifish embryos respond adaptively to environmental desiccation by accelerating development and that embryos are able to transduce dehydration conditions into molecular responses. The reduced synthesis of FhAqp3 may be one of these mechanisms to regulate water and/or solute transport in the embryo.

  13. Surface water-groundwater connectivity in deltaic distributary channel networks

    NASA Astrophysics Data System (ADS)

    Sawyer, Audrey H.; Edmonds, Douglas A.; Knights, Deon

    2015-12-01

    Delta distributary channel networks increase river water contact with sediments and provide the final opportunity to process nutrients and other solutes before river water discharges to the ocean. In order to understand surface water-groundwater interactions at the scale of the distributary channel network, we created three numerical deltas that ranged in composition from silt to sand using Delft3D, a morphodynamic flow and sediment transport model. We then linked models of mean annual river discharge to steady groundwater flow in MODFLOW. Under mean annual discharge, exchange rates through the numerical deltas are enhanced relative to a single-threaded river. We calculate that exchange rates across a <10 km2 network are equivalent to exchange through ~10-100 km of single-threaded river channel. Exchange rates are greatest in the coarse-grained delta due to its permeability and morphology. Groundwater residence times range from hours to centuries and have fractal tails. Deltas are vanishing due to relative sea level rise. River diversion projects aimed at creating new deltaic land should also aim to restore surface water-groundwater connectivity, which is critical for biogeochemical processing in wetlands. We recommend designing diversions to capture more sand and thus maximize surface water-groundwater connectivity.

  14. Role of aquaporin 9 in cellular accumulation of arsenic and its cytotoxicity in primary mouse hepatocytes

    SciTech Connect

    Shinkai, Yasuhiro; Sumi, Daigo; Toyama, Takashi; Kaji, Toshiyuki; Kumagai, Yoshito

    2009-06-01

    Aquaporin (AQP) 9 is a member of the aquaglyceroporin subfamily of AQPs in the transfer of water and small solutes such as glycerol and arsenite. It is well recognized that arsenic toxicity is associated with intracellular accumulation of this metalloid. In the present study, we examined the contribution of AQP9 to the uptake of inorganic arsenite, thereby increasing arsenic-induced cytotoxicity in primary mouse hepatocytes. Pretreatment with sorbitol as a competitive inhibitor of AQP9 and siRNA-mediated knockdown of AQP9 resulted in a significant decrease of arsenite uptake in the cell and its cytotoxicity. Furthermore, overexpression of AQP9 in HEK293 cells led to the enhancement of intracellular arsenic concentration, resulting in enhanced cytotoxicity after arsenite exposure. These results suggest that AQP9 is a channel to define arsenite sensitivity in primary mouse hepatocytes.

  15. Aquaporin Expression in Normal and Pathological Skeletal Muscles: A Brief Review with Focus on AQP4

    PubMed Central

    Wakayama, Yoshihiro

    2010-01-01

    Freeze-fracture electron microscopy enabled us to observe the molecular architecture of the biological membranes. We were studying the myofiber plasma membranes of health and disease by using this technique and were interested in the special assembly called orthogonal arrays (OAs). OAs were present in normal myofiber plasma membranes and were especially numerous in fast twitch type 2 myofibers; while OAs were lost from sarcolemmal plasma membranes of severely affected muscles with dystrophinopathy and dysferlinopathy but not with caveolinopathy. In the mid nineties of the last century, the OAs turned out to be a water channel named aquaporin 4 (AQP4). Since this discovery, several groups of investigators have been studying AQP4 expression in diseased muscles. This review summarizes the papers which describe the expression of OAs, AQP4, and other AQPs at the sarcolemma of healthy and diseased muscle and discusses the possible role of AQPs, especially that of AQP4, in normal and pathological skeletal muscles. PMID:20339523

  16. Hyperglycemia Induces Cellular Hypoxia through Production of Mitochondrial ROS Followed by Suppression of Aquaporin-1.

    PubMed

    Sada, Kiminori; Nishikawa, Takeshi; Kukidome, Daisuke; Yoshinaga, Tomoaki; Kajihara, Nobuhiro; Sonoda, Kazuhiro; Senokuchi, Takafumi; Motoshima, Hiroyuki; Matsumura, Takeshi; Araki, Eiichi

    2016-01-01

    We previously proposed that hyperglycemia-induced mitochondrial reactive oxygen species (mtROS) generation is a key event in the development of diabetic complications. Interestingly, some common aspects exist between hyperglycemia and hypoxia-induced phenomena. Thus, hyperglycemia may induce cellular hypoxia, and this phenomenon may also be involved in the pathogenesis of diabetic complications. In endothelial cells (ECs), cellular hypoxia increased after incubation with high glucose (HG). A similar phenomenon was observed in glomeruli of diabetic mice. HG-induced cellular hypoxia was suppressed by mitochondria blockades or manganese superoxide dismutase (MnSOD) overexpression, which is a specific SOD for mtROS. Overexpression of MnSOD also increased the expression of aquaporin-1 (AQP1), a water and oxygen channel. AQP1 overexpression in ECs suppressed hyperglycemia-induced cellular hypoxia, endothelin-1 and fibronectin overproduction, and apoptosis. Therefore, hyperglycemia-induced cellular hypoxia and mtROS generation may promote hyperglycemic damage in a coordinated manner.

  17. Expression patterns of genes encoding plasma membrane aquaporins during fruit development in cucumber (Cucumis sativus L.).

    PubMed

    Shi, Jin; Wang, Jinfang; Li, Ren; Li, Dianbo; Xu, Fengfeng; Sun, Qianqian; Zhao, Bin; Mao, Ai-Jun; Guo, Yang-Dong

    2015-11-01

    Aquaporins are membrane channels precisely regulating water movement through cell membranes in most living organisms. Despite the advances in the physiology of fruit development, their participation during fruit development in cucumber still barely understood. In this paper, the expressions of 12 genes encoding plasma membrane intrinsic proteins (PIPs) were analyzed during cucumber fruit development in our work. Based on the homology search with known PIPs from rice, Arabidopsis and strawberry, 12 cucumber PIP genes subfamily members were identified. Cellular localization assays indicated that CsPIPs were localized in the plasma membrane. The qRT-PCR analysis of CsPIPs showed that 12 CsPIPs were differentially expressed during fruit development. These results suggest that 12 genes encoding plasma membrane intrinsic proteins (CsPIPs) play very important roles in cucumber life cycle and the data generated will be helpful in understanding their precise roles during fruit development in cucumber.

  18. Aquaporin-4 in Astroglial Cells in the CNS and Supporting Cells of Sensory Organs—A Comparative Perspective

    PubMed Central

    Gleiser, Corinna; Wagner, Andreas; Fallier-Becker, Petra; Wolburg, Hartwig; Hirt, Bernhard; Mack, Andreas F.

    2016-01-01

    The main water channel of the brain, aquaporin-4 (AQP4), is one of the classical water-specific aquaporins. It is expressed in many epithelial tissues in the basolateral membrane domain. It is present in the membranes of supporting cells in most sensory organs in a specifically adapted pattern: in the supporting cells of the olfactory mucosa, AQP4 occurs along the basolateral aspects, in mammalian retinal Müller cells it is highly polarized. In the cochlear epithelium of the inner ear, it is expressed basolaterally in some cells but strictly basally in others. Within the central nervous system, aquaporin-4 (AQP4) is expressed by cells of the astroglial family, more specifically, by astrocytes and ependymal cells. In the mammalian brain, AQP4 is located in high density in the membranes of astrocytic endfeet facing the pial surface and surrounding blood vessels. At these locations, AQP4 plays a role in the maintenance of ionic homeostasis and volume regulation. This highly polarized expression has not been observed in the brain of fish where astroglial cells have long processes and occur mostly as radial glial cells. In the brain of the zebrafish, AQP4 immunoreactivity is found along the radial extent of astroglial cells. This suggests that the polarized expression of AQP4 was not present at all stages of evolution. Thus, a polarized expression of AQP4 as part of a control mechanism for a stable ionic environment and water balanced occurred at several locations in supporting and glial cells during evolution. This initially basolateral membrane localization of AQP4 is shifted to highly polarized expression in astrocytic endfeet in the mammalian brain and serves as a part of the neurovascular unit to efficiently maintain homeostasis. PMID:27571065

  19. The role of aquaporin RWC3 in drought avoidance in rice.

    PubMed

    Lian, Hong-Li; Yu, Xin; Ye, Qin; Ding, Xiaodong; Kitagawa, Yoshichika; Kwak, Sang-Soo; Su, Wei-Ai; Tang, Zhang-Cheng; Ding, Xiao-Song

    2004-04-01

    Although the discovery of aquaporins in plants has resulted in a paradigm shift in the understanding of plant water relations, the relationship between aquaporins and drought resistance still remains elusive. From an agronomic viewpoint, upland rice is traditionally considered as showing drought avoidance. In the investigation of different morphological and physiological responses of upland rice (Oryza sativa L. spp indica cv. Zhonghan 3) and lowland rice (O. sativa L. spp japonica cv. Xiushui 63) to water deficit, we observed young leaf rolling and the remarkable decline of cumulative transpiration in the upland rice. The expression of water channel protein RWC3 mRNA was increased in upland rice at the early response (up to 4 h) to the 20% polyethylene glycol (PEG) 6000 treatment, whereas there was no significant expression changes in lowland rice. Protein levels were increased in upland rice and decreased in lowland rice at 10 h after the water deficit. The up-regulation of RWC3 in upland rice fits well with the knowledge that upland rice adopts the mechanism of drought avoidance. The physiological significance of this RWC3 up-regulation was then explored with the over-expression of RWC3 in transgenic lowland rice (O. sativa L. spp japonica cv. Zhonghua 11) controlled by a stress-inducible SWPA2 promoter. Compared to the wild-type plant, the transgenic lowland rice exhibited higher root osmotic hydraulic conductivity (Lp), leaf water potential and relative cumulative transpiration at the end of 10 h PEG treatment. These results indicated that RWC3 probably played a role in drought avoidance in rice.

  20. Tonoplast Aquaporins Facilitate Lateral Root Emergence1[OPEN

    PubMed Central

    Hachez, Charles; Bienert, Manuela Désirée; Beebo, Azeez; Swarup, Kamal

    2016-01-01

    Aquaporins (AQPs) are water channels allowing fast and passive diffusion of water across cell membranes. It was hypothesized that AQPs contribute to cell elongation processes by allowing water influx across the plasma membrane and the tonoplast to maintain adequate turgor pressure. Here, we report that, in Arabidopsis (Arabidopsis thaliana), the highly abundant tonoplast AQP isoforms AtTIP1;1, AtTIP1;2, and AtTIP2;1 facilitate the emergence of new lateral root primordia (LRPs). The number of lateral roots was strongly reduced in the triple tip mutant, whereas the single, double, and triple tip mutants showed no or minor reduction in growth of the main root. This phenotype was due to the retardation of LRP emergence. Live cell imaging revealed that tight spatiotemporal control of TIP abundance in the tonoplast of the different LRP cells is pivotal to mediating this developmental process. While lateral root emergence is correlated to a reduction of AtTIP1;1 and AtTIP1;2 protein levels in LRPs, expression of AtTIP2;1 is specifically needed in a restricted cell population at the base, then later at the flanks, of developing LRPs. Interestingly, the LRP emergence phenotype of the triple tip mutants could be fully rescued by expressing AtTIP2;1 under its native promoter. We conclude that TIP isoforms allow the spatial and temporal fine-tuning of cellular water transport, which is critically required during the highly regulated process of LRP morphogenesis and emergence. PMID:26802038

  1. Coordinated Post-translational Responses of Aquaporins to Abiotic and Nutritional Stimuli in Arabidopsis Roots*

    PubMed Central

    di Pietro, Magali; Vialaret, Jérôme; Li, Guo-Wei; Hem, Sonia; Prado, Karine; Rossignol, Michel; Maurel, Christophe; Santoni, Véronique

    2013-01-01

    In plants, aquaporins play a crucial role in regulating root water transport in response to environmental and physiological cues. Controls achieved at the post-translational level are thought to be of critical importance for regulating aquaporin function. To investigate the general molecular mechanisms involved, we performed, using the model species Arabidopsis, a comprehensive proteomic analysis of root aquaporins in a large set of physiological contexts. We identified nine physiological treatments that modulate root hydraulics in time frames of minutes (NO and H2O2 treatments), hours (mannitol and NaCl treatments, exposure to darkness and reversal with sucrose, phosphate supply to phosphate-starved roots), or days (phosphate or nitrogen starvation). All treatments induced inhibition of root water transport except for sucrose supply to dark-grown plants and phosphate resupply to phosphate-starved plants, which had opposing effects. Using a robust label-free quantitative proteomic methodology, we identified 12 of 13 plasma membrane intrinsic protein (PIP) aquaporin isoforms, 4 of the 10 tonoplast intrinsic protein isoforms, and a diversity of post-translational modifications including phosphorylation, methylation, deamidation, and acetylation. A total of 55 aquaporin peptides displayed significant changes after treatments and enabled the identification of specific and as yet unknown patterns of response to stimuli. The data show that the regulation of PIP and tonoplast intrinsic protein abundance was involved in response to a few treatments (i.e. NaCl, NO, and nitrate starvation), whereas changes in the phosphorylation status of PIP aquaporins were positively correlated to changes in root hydraulic conductivity in the whole set of treatments. The identification of in vivo deamidated forms of aquaporins and their stimulus-induced changes in abundance may reflect a new mechanism of aquaporin regulation. The overall work provides deep insights into the in vivo post

  2. Rapid water transportation through narrow one-dimensional channels by restricted hydrogen bonds.

    PubMed

    Ohba, Tomonori; Kaneko, Katsumi; Endo, Morinobu; Hata, Kenji; Kanoh, Hirofumi

    2013-01-29

    Water plays an important role in controlling chemical reactions and bioactivities. For example, water transportation through water channels in a biomembrane is a key factor in bioactivities. However, molecular-level mechanisms of water transportation are as yet unknown. Here, we investigate water transportation through narrow and wide one-dimensional (1D) channels on the basis of water-vapor adsorption rates and those determined by molecular dynamics simulations. We observed that water in narrow 1D channels was transported 3-5 times faster than that in wide 1D channels, although the narrow 1D channels provide fewer free nanospaces for water transportation. This rapid transportation is attributed to the formation of fewer hydrogen bonds between water molecules adsorbed in narrow 1D channels. The water-transportation mechanism provides the possibility of rapid communication through 1D channels and will be useful in controlling reactions and activities in water systems.

  3. The speed of swelling kinetics modulates cell volume regulation and calcium signaling in astrocytes: A different point of view on the role of aquaporins.

    PubMed

    Mola, Maria Grazia; Sparaneo, Angelo; Gargano, Concetta Domenica; Spray, David C; Svelto, Maria; Frigeri, Antonio; Scemes, Eliana; Nicchia, Grazia Paola

    2016-01-01

    Regulatory volume decrease (RVD) is a process by which cells restore their original volume in response to swelling. In this study, we have focused on the role played by two different Aquaporins (AQPs), Aquaporin-4 (AQP4), and Aquaporin-1 (AQP1), in triggering RVD and in mediating calcium signaling in astrocytes under hypotonic stimulus. Using biophysical techniques to measure water flux through the plasma membrane of wild-type (WT) and AQP4 knockout (KO) astrocytes and of an astrocyte cell line (DI TNC1) transfected with AQP4 or AQP1, we here show that AQP-mediated fast swelling kinetics play a key role in triggering and accelerating RVD. Using calcium imaging, we show that AQP-mediated fast swelling kinetics also significantly increases the amplitude of calcium transients inhibited by Gadolinium and Ruthenium Red, two inhibitors of the transient receptor potential vanilloid 4 (TRPV4) channels, and prevented by removing extracellular calcium. Finally, inhibition of TRPV4 or removal of extracellular calcium does not affect RVD. All together our study provides evidence that (1) AQP influenced swelling kinetics is the main trigger for RVD and in mediating calcium signaling after hypotonic stimulus together with TRPV4, and (2) calcium influx from the extracellular space and/or TRPV4 are not essential for RVD to occur in astrocytes.

  4. Human Aquaporin 4 Gating Dynamics under Perpendicularly-Oriented Electric-Field Impulses: A Molecular Dynamics Study

    PubMed Central

    Marracino, Paolo; Liberti, Micaela; Trapani, Erika; Burnham, Christian J.; Avena, Massimiliano; Garate, José-Antonio; Apollonio, Francesca; English, Niall J.

    2016-01-01

    Human aquaporin 4 has been studied using molecular dynamics (MD) simulations in the absence and presence of pulses of external static electric fields. The pulses were 10 ns in duration and 0.012–0.065 V/Å in intensity acting along both directions perpendicular to the pores. Water permeability and the dipolar response of all residues of interest (including the selectivity filter) within the pores have been studied. Results showed decreased levels of water osmotic permeability within aquaporin channels during orthogonally-oriented field impulses, although care must be taken with regard to statistical certainty. This can be explained observing enhanced “dipolar flipping” of certain key residues, especially serine 211, histidine 201, arginine 216, histidine 95 and cysteine 178. These residues are placed at the extracellular end of the pore (serine 211, histidine 201, and arginine 216) and at the cytoplasm end (histidine 95 and cysteine 178), with the key role in gating mechanism, hence influencing water permeability. PMID:27428954

  5. Maize black Mexican sweet suspension cultured cells are a convenient tool for studying aquaporin activity and regulation.

    PubMed

    Cavez, Damien; Hachez, Charles; Chaumont, François

    2009-09-01

    Aquaporins (AQPs) are channel proteins that facilitate and regulate the permeation of water across biological membranes. Black Mexican sweet suspension cultured cells are a convenient model for studying the regulation of maize AQP expression and activity. Among other advantages, a single cell system allows the contribution of plasma membrane AQPs (PIPs, plasma membrane intrinsic proteins) to the membrane water permeability coefficient (P(f)) to be determined using biophysical measurement methods, such as the cell pressure probe or protoplast swelling assay. We generated a transgenic cell culture line expressing a tagged version of ZmPIP2;6 and used this material to demonstrate that the ZmPIP2;6 and ZmPIP2;1 isoforms physically interact. This kind of interaction could be an additional mechanism for regulating membrane water permeability by acting on the activity and/or trafficking of PIP hetero-oligomers.

  6. Characterization of Leishmania donovani aquaporins shows presence of subcellular aquaporins similar to tonoplast intrinsic proteins of plants.

    PubMed

    Biyani, Neha; Mandal, Swati; Seth, Chandan; Saint, Malika; Natarajan, Krishnamurthy; Ghosh, Indira; Madhubala, Rentala

    2011-01-01

    Leishmania donovani, a protozoan parasite, resides in the macrophages of the mammalian host. The aquaporin family of proteins form important components of the parasite-host interface. The parasite-host interface could be a potential target for chemotherapy. Analysis of L. major and L. infantum genomes showed the presence of five aquaporins (AQPs) annotated as AQP9 (230aa), AQP putative (294aa), AQP-like protein (279aa), AQP1 (314aa) and AQP-like protein (596aa). We report here the structural modeling, localization and functional characterization of the AQPs from L. donovani. LdAQP1, LdAQP9, LdAQP2860 and LdAQP2870 have the canonical NPA-NPA motifs, whereas LdAQP putative has a non-canonical NPM-NPA motif. In the carboxyl terminal to the second NPA box of all AQPs except AQP1, a valine/alanine residue was found instead of the arginine. In that respect these four AQPs are similar to tonoplast intrinsic proteins in plants, which are localized to intracellular organelles. Confocal microscopy of L. donovani expressing GFP-tagged AQPs showed an intracellular localization of LdAQP9 and LdAQP2870. Real-time PCR assays showed expression of all aquaporins except LdAQP2860, whose level was undetectable. Three-dimensional homology modeling of the AQPs showed that LdAQP1 structure bears greater topological similarity to the aquaglyceroporin than to aquaporin of E. coli. The pore of LdAQP1 was very different from the rest in shape and size. The cavity of LdAQP2860 was highly irregular and undefined in geometry. For functional characterization, four AQP proteins were heterologously expressed in yeast. In the fps1Δ yeast cells, which lacked the key aquaglyceroporin, LdAQP1 alone displayed an osmosensitive phenotype indicating glycerol transport activity. However, expression of LdAQP1 and LdAQP putative in a yeast gpd1Δ strain, deleted for glycerol production, conferred osmosensitive phenotype indicating water transport activity or aquaporin function. Our analysis for the first

  7. Dexamethasone increases aquaporin-2 protein expression in ex vivo inner medullary collecting duct suspensions

    PubMed Central

    Chen, Minguang; Cai, Hui; Klein, Janet D.; Laur, Oskar; Chen, Guangping

    2015-01-01

    Aquaporin-2 (AQP2) is the vasopressin-regulated water channel that controls renal water reabsorption and plays an important role in the maintenance of body water homeostasis. Excessive glucocorticoid as often seen in Cushing's syndrome causes water retention. However, whether and how glucocorticoid regulates AQP2 remains unclear. In this study, we examined the direct effect of dexamethasone on AQP2 protein expression and activity. Dexamethasone increased AQP2 protein abundance in rat inner medullary collecting duct (IMCD) suspensions. This was confirmed in HEK293 cells transfected with AQP2 cDNA. Cell surface protein biotinylation showed an increase of dexamethasone-induced cell membrane AQP2 expression and this effect was blocked by glucocorticoid receptor antagonist RU486. Functionally, dexamethasone treatment of oocytes injected with an AQP2 cRNA increased water transport activity as judged by cell rupture time in a hypo-osmotic solution (66 ± 13 s in dexamethasone vs. 101 ± 11 s in control, n = 15). We further found that dexamethasone treatment reduced AQP2 protein degradation, which could result in an increase of AQP2 protein. Interestingly, dexamethasone promoted cell membrane AQP2 moving to less buoyant lipid raft submicrodomains. Taken together, our data demonstrate that dexamethasone promotes AQP2 protein expression and increases water permeability mainly via inhibition of AQP2 protein degradation. The increase in AQP2 activity promotes water reabsorption, which may contribute to glucocorticoid-induced water retention and hypertension. PMID:26578982

  8. Phosphorylation of plasma membrane aquaporin regulates temperature-dependent opening of tulip petals.

    PubMed

    Azad, Abul Kalam; Sawa, Yoshihiro; Ishikawa, Takahiro; Shibata, Hitoshi

    2004-05-01

    The opening and closing of tulip petals was reproduced in the dark by changing the temperature from 5 degrees C to 20 degrees C for opening and 20 degrees C to 5 degrees C for closing. The opening process was accompanied by (3)H(2)O transport through the stem from the incubation medium to the petals. A Ca(2+)-channel blocker and a Ca(2+)-chelator inhibited petal opening and (3)H(2)O transport. Several proteins in the isolated plasma membrane fraction were phosphorylated in the presence of 25 micro M Ca(2+) at 20 degrees C. The 31-kDa protein that was phosphorylated, was suggested immunologically as the putative plasma membrane aquaporin (PM-AQP). This phosphorylated PM-AQP clearly reacted with the anti-phospho-Ser. In-gel assay revealed the presence of a 45-kDa Ca(2+)-dependent protein kinase in the isolated plasma membrane. Phosphorylation of the putative PM-AQP was thought to activate the water channel composed of PM-AQP. Dephosphorylation of the phosphorylated PM-AQP was also observed during petal closing at 5 degrees C, suggesting the inactivation of the water channel.

  9. Red blood cell aquaporin-1 expression is decreased in hereditary spherocytosis.

    PubMed

    Crisp, Renée L; Maltaneri, Romina E; Vittori, Daniela C; Solari, Liliana; Gammella, Daniel; Schvartzman, Gabriel; García, Eliana; Rapetti, María C; Donato, Hugo; Nesse, Alcira

    2016-10-01

    Aquaporin-1 (AQP1) is the membrane water channel responsible for changes in erythrocyte volume in response to the tonicity of the medium. As the aberrant distribution of proteins in hereditary spherocytosis (HS) generates deficiencies of proteins other than those codified by the mutated gene, we postulated that AQP1 expression might be impaired in spherocytes. AQP1 expression was evaluated through flow cytometry in 5 normal controls, 1 autoimmune hemolytic anemia, 10 HS (2 mild, 3 moderate, 2 severe, and 3 splenectomized), and 3 silent carriers. The effect of AQP1 inhibitors was evaluated through water flow-based tests: osmotic fragility and hypertonic cryohemolysis. Serum osmolality was measured in 20 normal controls and 13 HS. The effect of erythropoietin (Epo) on AQP1 expression was determined in cultures of erythroleukemia UT-7 cells, dependent on Epo to survive. Independent of erythrocyte size, HS patients showed a lower content of AQP1 in erythrocyte membranes which correlated with the severity of the disease. Accordingly, red blood cells from HS subjects were less sensitive to cryohemolysis than normal erythrocytes after inhibition of the AQP1 water channel. A lower serum osmolality in HS with respect to normal controls suggests alterations during reticulocyte remodeling. The decreased AQP1 expression could contribute to explain variable degrees of anemia in hereditary spherocytosis. The finding of AQP1 expression induced by Epo in a model of erythroid cells may be interpreted as a mechanism to restore the balance of red cell water fluxes.

  10. Aquaporins: important but elusive drug targets

    PubMed Central

    Verkman, Alan S.; Anderson, Marc O.; Papadopoulos, Marios C.

    2014-01-01

    The aquaporins (AQPs) are a family of small, integral membrane proteins that facilitate water transport across the plasma membranes of cells in response to osmotic gradients. Data from knockout mice support the involvement of AQPs in epithelial fluid secretion, cell migration, brain oedema and adipocyte metabolism, which suggests that modulation of AQP function or expression could have therapeutic potential in oedema, cancer, obesity, brain injury, glaucoma and several other conditions. Moreover, loss-of-function mutations in human AQPs cause congenital cataracts (AQP0) and nephrogenic diabetes insipidus (AQP2), and autoantibodies against AQP4 cause the autoimmune demyelinating disease neuromyelitis optica. Although some potential AQP modulators have been identified, challenges associated with the development of better modulators include the druggability of the target and the suitability of the assay methods used to identify modulators. PMID:24625825

  11. The distribution and function of aquaporins in the kidney: resolved and unresolved questions.

    PubMed

    Matsuzaki, Toshiyuki; Yaguchi, Tomoyuki; Shimizu, Kinue; Kita, Aoi; Ishibashi, Kenichi; Takata, Kuniaki

    2017-03-01

    The membrane water channel aquaporin (AQP) family is composed of 13 isoforms in mammals, eight of which are reportedly expressed in the kidney: AQP1, 2, 3, 4, 6, 7, 8, and 11. These isoforms are differentially expressed along the renal tubules and collecting ducts. AQP1 and 7 are distributed in the proximal tubules, whereas AQP2, 3, and 4 occur in the collecting duct system. They play important roles in the reabsorption of water and some solutes across the plasma membrane. In contrast to other aquaporins found in the kidney, AQP6, 8, and 11 are localized to the cytoplasm rather than to the apical or basolateral membranes. It is therefore doubtful that these isoforms are directly involved in water or solute reabsorption. AQP6 is localized in acid-secreting type A intercalated cells of the collecting duct. AQP8 has been found in the proximal tubule but its cellular location has not yet been defined by immunohistochemistry. AQP11 seems to be localized in the endoplasmic reticulum (ER) of proximal tubule cells. Interestingly, polycystic kidneys develop in AQP11-null mice. Many vacuole-like structures are seen in proximal tubule cells in kidneys of newborn AQP11-null mice. Subsequently, cysts are generated, and most of the mice die within a month due to severe renal failure. Although ER stress and impairment of polycystin-1, the product of the gene mutated in autosomal-dominant polycystic kidney disease, are possible causes of cystogenesis in AQP11-null mice, the exact mechanism of pathogenesis and the physiological function of AQP11 are yet to be resolved.

  12. Drosophila hygrosensation requires the TRP channels water witch and nanchung.

    PubMed

    Liu, Lei; Li, Yuhong; Wang, Runping; Yin, Chong; Dong, Qian; Hing, Huey; Kim, Changsoo; Welsh, Michael J

    2007-11-08

    The ability to detect variations in humidity is critical for many animals. Birds, reptiles and insects all show preferences for specific humidities that influence their mating, reproduction and geographic distribution. Because of their large surface area to volume ratio, insects are particularly sensitive to humidity, and its detection can influence their survival. Two types of hygroreceptors exist in insects: one responds to an increase (moist receptor) and the other to a reduction (dry receptor) in humidity. Although previous data indicated that mechanosensation might contribute to hygrosensation, the cellular basis of hygrosensation and the genes involved in detecting humidity remain unknown. To understand better the molecular bases of humidity sensing, we investigated several genes encoding channels associated with mechanosensation, thermosensing or water transport. Here we identify two Drosophila melanogaster transient receptor potential channels needed for sensing humidity: CG31284, named by us water witch (wtrw), which is required to detect moist air, and nanchung (nan), which is involved in detecting dry air. Neurons associated with specialized sensory hairs in the third segment of the antenna express these channels, and neurons expressing wtrw and nan project to central nervous system regions associated with mechanosensation. Construction of the hygrosensing system with opposing receptors may allow an organism to very sensitively detect changes in environmental humidity.

  13. Transient natural convection of cold water in a vertical channel

    NASA Astrophysics Data System (ADS)

    Chiba, Ryoichi

    2016-05-01

    The two-dimensional differential transform method (DTM) is applied to analyse the transient natural convection of cold water in a vertical channel. The cold water gives rise to a density variation with temperature that may not be linearized. The vertical channel is composed of doubly infinite parallel plates, one of which has a constant prescribed temperature and the other of which is insulated. Considering the temperature-dependent viscosity and thermal conductivity of the water, approximate analytical (series) solutions for the temperature and flow velocity are derived. The transformed functions included in the solutions are obtained through a simple recursive procedure. Numerical computation is performed for the entire range of water temperature conditions around the temperature at the density extremum point, i.e. 4°C. Numerical results illustrate the effects of the temperature-dependent properties on the transient temperature and flow velocity profiles, volumetric flow rate, and skin friction. The DTM is a powerful tool for solving nonlinear transient problems as well as steady problems.

  14. Ion channels and transporters in metastasis.

    PubMed

    Stock, Christian; Schwab, Albrecht

    2015-10-01

    An elaborate interplay between ion channels and transporters, components of the cytoskeleton, adhesion molecules, and signaling cascades provides the basis for each major step of the metastatic cascade. Ion channels and transporters contribute to cell motility by letting through or transporting ions essential for local Ca2+, pH and--in cooperation with water permeable aquaporins--volume homeostasis. Moreover, in addition to the actual ion transport they, or their auxiliary subunits, can display non-conducting activities. They can exert kinase activity in order to phosphorylate cytoskeletal constituents or their associates. They can become part of signaling processes by permeating Ca2+, by generating local pH-nanodomains or by being final downstream effectors. A number of channels and transporters are found at focal adhesions, interacting directly or indirectly with proteins of the extracellular matrix, with integrins or with components of the cytoskeleton. We also include the role of aquaporins in cell motility. They drive the outgrowth of lamellipodia/invadopodia or control the number of β1 integrins in the plasma membrane. The multitude of interacting ion channels and transporters (called transportome) including the associated signaling events holds great potential as therapeutic target(s) for anticancer agents that are aimed at preventing metastasis. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.

  15. Kinetics of gravity-driven water channels under steady rainfall.

    PubMed

    Cejas, Cesare M; Wei, Yuli; Barrois, Remi; Frétigny, Christian; Durian, Douglas J; Dreyfus, Rémi

    2014-10-01

    We investigate the formation of fingered flow in dry granular media under simulated rainfall using a quasi-two-dimensional experimental setup composed of a random close packing of monodisperse glass beads. Using controlled experiments, we analyze the finger instabilities that develop from the wetting front as a function of fundamental granular (particle size) and fluid properties (rainfall, viscosity). These finger instabilities act as precursors for water channels, which serve as outlets for water drainage. We look into the characteristics of the homogeneous wetting front and channel size as well as estimate relevant time scales involved in the instability formation and the velocity of the channel fingertip. We compare our experimental results with that of the well-known prediction developed by Parlange and Hill [D. E. Hill and J. Y. Parlange, Soil Sci. Soc. Am. Proc. 36, 697 (1972)]. This model is based on linear stability analysis of the growth of perturbations arising at the interface between two immiscible fluids. Results show that, in terms of morphology, experiments agree with the proposed model. However, in terms of kinetics we nevertheless account for another term that describes the homogenization of the wetting front. This result shows that the manner we introduce the fluid to a porous medium can also influence the formation of finger instabilities. The results also help us to calculate the ideal flow rate needed for homogeneous distribution of water in the soil and minimization of runoff, given the grain size, fluid density, and fluid viscosity. This could have applications in optimizing use of irrigation water.

  16. Kinetics of gravity-driven water channels under steady rainfall

    NASA Astrophysics Data System (ADS)

    Cejas, Cesare M.; Wei, Yuli; Barrois, Remi; Frétigny, Christian; Durian, Douglas J.; Dreyfus, Rémi

    2014-10-01

    We investigate the formation of fingered flow in dry granular media under simulated rainfall using a quasi-two-dimensional experimental setup composed of a random close packing of monodisperse glass beads. Using controlled experiments, we analyze the finger instabilities that develop from the wetting front as a function of fundamental granular (particle size) and fluid properties (rainfall, viscosity). These finger instabilities act as precursors for water channels, which serve as outlets for water drainage. We look into the characteristics of the homogeneous wetting front and channel size as well as estimate relevant time scales involved in the instability formation and the velocity of the channel fingertip. We compare our experimental results with that of the well-known prediction developed by Parlange and Hill [D. E. Hill and J. Y. Parlange, Soil Sci. Soc. Am. Proc. 36, 697 (1972), 10.2136/sssaj1972.03615995003600050010x]. This model is based on linear stability analysis of the growth of perturbations arising at the interface between two immiscible fluids. Results show that, in terms of morphology, experiments agree with the proposed model. However, in terms of kinetics we nevertheless account for another term that describes the homogenization of the wetting front. This result shows that the manner we introduce the fluid to a porous medium can also influence the formation of finger instabilities. The results also help us to calculate the ideal flow rate needed for homogeneous distribution of water in the soil and minimization of runoff, given the grain size, fluid density, and fluid viscosity. This could have applications in optimizing use of irrigation water.

  17. The human CFTR protein expressed in CHO cells activates aquaporin-3 in a cAMP-dependent pathway: study by digital holographic microscopy.

    PubMed

    Jourdain, Pascal; Becq, Frédéric; Lengacher, Sylvain; Boinot, Clément; Magistretti, Pierre J; Marquet, Pierre

    2014-02-01

    The transmembrane water movements during cellular processes and their relationship to ionic channel activity remain largely unknown. As an example, in epithelial cells it was proposed that the movement of water could be directly linked to cystic fibrosis transmembrane conductance regulator (CFTR) protein activity through a cAMP-stimulated aqueous pore, or be dependent on aquaporin. Here, we used digital holographic microscopy (DHM) an interferometric technique to quantify in situ the transmembrane water fluxes during the activity of the epithelial chloride channel, CFTR, measured by patch-clamp and iodide efflux techniques. We showed that the water transport measured by DHM is fully inhibited by the selective CFTR blocker CFTRinh172 and is absent in cells lacking CFTR. Of note, in cells expressing the mutated version of CFTR (F508del-CFTR), which mimics the most common genetic alteration encountered in cystic fibrosis, we also show that the water movement is profoundly altered but restored by pharmacological manipulation of F508del-CFTR-defective trafficking. Importantly, whereas activation of this endogenous water channel required a cAMP-dependent stimulation of CFTR, activation of CFTR or F508del-CFTR by two cAMP-independent CFTR activators, genistein and MPB91, failed to trigger water movements. Finally, using a specific small-interfering RNA against the endogenous aquaporin AQP3, the water transport accompanying CFTR activity decreased. We conclude that water fluxes accompanying CFTR activity are linked to AQP3 but not to a cAMP-stimulated aqueous pore in the CFTR protein.

  18. Altered gravity downregulates aquaporin-1 protein expression in choroid plexus.

    PubMed

    Masseguin, C; Corcoran, M; Carcenac, C; Daunton, N G; Güell, A; Verkman, A S; Gabrion, J

    2000-03-01

    Aquaporin-1 (AQP1) is a water channel expressed abundantly at the apical pole of choroidal epithelial cells. The protein expression was quantified by immunocytochemistry and confocal microscopy in adult rats adapted to altered gravity. AQP1 expression was decreased by 64% at the apical pole of choroidal cells in rats dissected 5.5-8 h after a 14-day spaceflight. AQP1 was significantly overexpressed in rats readapted for 2 days to Earth's gravity after an 11-day flight (48% overshoot, when compared with the value measured in control rats). In a ground-based model that simulates some effects of weightlessness and alters choroidal structures and functions, apical AQP1 expression was reduced by 44% in choroid plexus from rats suspended head down for 14 days and by 69% in rats suspended for 28 days. Apical AQP1 was rapidly enhanced in choroid plexus of rats dissected 6 h after a 14-day suspension (57% overshoot, in comparison with control rats) and restored to the control level when rats were dissected 2 days after the end of a 14-day suspension. Decreases in the apical expression of choroidal AQP1 were also noted in rats adapted to hypergravity in the NASA 24-ft centrifuge: AQP1 expression was reduced by 47% and 85% in rats adapted for 14 days to 2 G and 3 G, respectively. AQP1 is downregulated in the apical membrane of choroidal cells in response to altered gravity and is rapidly restored after readaptation to normal gravity. This suggests that water transport, which is partly involved in the choroidal production of cerebrospinal fluid, might be decreased during spaceflight and after chronic hypergravity.

  19. Mutual Interactions between Aquaporins and Membrane Components

    PubMed Central

    Martínez-Ballesta, Maria del Carmen; Carvajal, Micaela

    2016-01-01

    In recent years, a number of studies have been focused on the structural evaluation of protein complexes in order to get mechanistic insights into how proteins communicate at the molecular level within the cell. Specific sites of protein-aquaporin interaction have been evaluated and new forms of regulation of aquaporins described, based on these associations. Heterotetramerizations of aquaporin isoforms are considered as novel regulatory mechanisms for plasma membrane (PIPs) and tonoplast (TIPs) proteins, influencing their intrinsic permeability and trafficking dynamics in the adaptive response to changing environmental conditions. However, protein–protein interaction is an extensive theme that is difficult to tackle and new methodologies are being used to study the physical interactions involved. Bimolecular fluorescence complementation and the identification of cross-linked peptides based on tandem mass spectra, that are complementary to other methodologies such as heterologous expression, co-precipitation assays or confocal fluorescence microscopy, are discussed in this review. The chemical composition and the physical characteristics of the lipid bilayer also influence many aspects of membrane aquaporins, including their functionality. The molecular driving forces stabilizing the positions of the lipids around aquaporins could define their activity, thereby altering the conformational properties. Therefore, an integrative approach to the relevance of the membrane-aquaporin interaction to different processes related to plant cell physiology is provided. Finally, it is described how the interactions between aquaporins and copolymer matrixes or biological compounds offer an opportunity for the functional incorporation of aquaporins into new biotechnological advances. PMID:27625676

  20. Mutual Interactions between Aquaporins and Membrane Components.

    PubMed

    Martínez-Ballesta, Maria Del Carmen; Carvajal, Micaela

    2016-01-01

    In recent years, a number of studies have been focused on the structural evaluation of protein complexes in order to get mechanistic insights into how proteins communicate at the molecular level within the cell. Specific sites of protein-aquaporin interaction have been evaluated and new forms of regulation of aquaporins described, based on these associations. Heterotetramerizations of aquaporin isoforms are considered as novel regulatory mechanisms for plasma membrane (PIPs) and tonoplast (TIPs) proteins, influencing their intrinsic permeability and trafficking dynamics in the adaptive response to changing environmental conditions. However, protein-protein interaction is an extensive theme that is difficult to tackle and new methodologies are being used to study the physical interactions involved. Bimolecular fluorescence complementation and the identification of cross-linked peptides based on tandem mass spectra, that are complementary to other methodologies such as heterologous expression, co-precipitation assays or confocal fluorescence microscopy, are discussed in this review. The chemical composition and the physical characteristics of the lipid bilayer also influence many aspects of membrane aquaporins, including their functionality. The molecular driving forces stabilizing the positions of the lipids around aquaporins could define their activity, thereby altering the conformational properties. Therefore, an integrative approach to the relevance of the membrane-aquaporin interaction to different processes related to plant cell physiology is provided. Finally, it is described how the interactions between aquaporins and copolymer matrixes or biological compounds offer an opportunity for the functional incorporation of aquaporins into new biotechnological advances.

  1. Aquaporin-Based Biomimetic Polymeric Membranes: Approaches and Challenges.

    PubMed

    Habel, Joachim; Hansen, Michael; Kynde, Søren; Larsen, Nanna; Midtgaard, Søren Roi; Jensen, Grethe Vestergaard; Bomholt, Julie; Ogbonna, Anayo; Almdal, Kristoffer; Schulz, Alexander; Hélix-Nielsen, Claus

    2015-07-31

    In recent years, aquaporin biomimetic membranes (ABMs) for water separation have gained considerable interest. Although the first ABMs are commercially available, there are still many challenges associated with further ABM development. Here, we discuss the interplay of the main components of ABMs: aquaporin proteins (AQPs), block copolymers for AQP reconstitution, and polymer-based supporting structures. First, we briefly cover challenges and review recent developments in understanding the interplay between AQP and block copolymers. Second, we review some experimental characterization methods for investigating AQP incorporation including freeze-fracture transmission electron microscopy, fluorescence correlation spectroscopy, stopped-flow light scattering, and small-angle X-ray scattering. Third, we focus on recent efforts in embedding reconstituted AQPs in membrane designs that are based on conventional thin film interfacial polymerization techniques. Finally, we describe some new developments in interfacial polymerization using polyhedral oligomeric silsesquioxane cages for increasing the physical and chemical durability of thin film composite membranes.

  2. Aquaporin-Based Biomimetic Polymeric Membranes: Approaches and Challenges

    PubMed Central

    Habel, Joachim; Hansen, Michael; Kynde, Søren; Larsen, Nanna; Midtgaard, Søren Roi; Jensen, Grethe Vestergaard; Bomholt, Julie; Ogbonna, Anayo; Almdal, Kristoffer; Schulz, Alexander; Hélix-Nielsen, Claus

    2015-01-01

    In recent years, aquaporin biomimetic membranes (ABMs) for water separation have gained considerable interest. Although the first ABMs are commercially available, there are still many challenges associated with further ABM development. Here, we discuss the interplay of the main components of ABMs: aquaporin proteins (AQPs), block copolymers for AQP reconstitution, and polymer-based supporting structures. First, we briefly cover challenges and review recent developments in understanding the interplay between AQP and block copolymers. Second, we review some experimental characterization methods for investigating AQP incorporation including freeze-fracture transmission electron microscopy, fluorescence correlation spectroscopy, stopped-flow light scattering, and small-angle X-ray scattering. Third, we focus on recent efforts in embedding reconstituted AQPs in membrane designs that are based on conventional thin film interfacial polymerization techniques. Finally, we describe some new developments in interfacial polymerization using polyhedral oligomeric silsesquioxane cages for increasing the physical and chemical durability of thin film composite membranes. PMID:26264033

  3. Aquaporins in avian kidneys: function and perspectives.

    PubMed

    Nishimura, Hiroko; Yang, Yimu

    2013-12-01

    For terrestrial vertebrates, water economy is a prerequisite for survival, and the kidney is their major osmoregulatory organ. Birds are the only vertebrates other than mammals that can concentrate urine in adaptation to terrestrial environments. Aquaporin (AQP) and glyceroporin (GLP) are phylogenetically old molecules and have been found in plants, microbial organisms, invertebrates, and vertebrates. Currently, 13 AQPs/aquaGLPs and isoforms are known to be present in mammals. AQPs 1, 2, 3, 4, 6, 7, 8, and 11 are expressed in the kidney; of these, AQPs 1, 2, 3, 4, and 7 are shown to be involved in fluid homeostasis. In avian kidneys, AQPs 1, 2, 3, and 4 have been identified and characterized. Also, gene and/or amino acid sequences of AQP5, AQP7, AQP8, AQP9, AQP11, and AQP12 have been reported in birds. AQPs 2 and 3 are expressed along cortical and medullary collecting ducts (CDs) and are responsible, respectively, for the water inflow and outflow of CD epithelial cells. While AQP4 plays an important role in water exit in the CD of mammalian kidneys, it is unlikely to participate in water outflow in avian CDs. This review summarizes current knowledge on structure and function of avian AQPs and compares them to those in mammalian and nonmammalian vertebrates. Also, we aim to provide input into, and perspectives on, the role of renal AQPs in body water homeostasis during ontogenic and phylogenetic advancement.

  4. O^- channels of Dissociative Electron Attachment to water and heavy water molecules

    NASA Astrophysics Data System (ADS)

    Adaniya, Hidehito; Rudek, Benedikt; Osipov, Timur; Lee, Sun; Weber, Thorsten; Hertlein, Marcus; Schoeffler, Markus; Prior, Mike; Belkacem, Ali

    2009-05-01

    A COLTRIM technique is modified to measure the kinetic energy and angular distribution of O^- ions arising from dissociative electron attachment to water and heavy water molecules. A low energy pulsed electron, an effusive water target, a pulsed extraction plate are used in combination with the COLTRIMS spectrometer. The spectrometer carries an electrostatic lens system to compensate the effusiveness of the target. This technique is applied to study the O^- channels in the three Feshbach resonances of water and heavy water anion. The measured kinetic energy release will give the energy partitioning among the fragments, and the means to identify the two-body and three-body breakup channels. The angular distribution of the O^- ions with respect to the electron beam is found to reflect well the breakup dynamics of the H2O^- at the dissociation. The experimental results are compared with the theoretical predictions.

  5. Enhanced expression levels of aquaporin-1 and aquaporin-4 in A549 cells exposed to silicon dioxide.

    PubMed

    Hao, Xiaohui; Wang, Hongli; Liu, Wei; Liu, Shupeng; Peng, Zihe; Sun, Yue; Zhao, Jinyuan; Jiang, Qiujie; Liu, Heliang

    2016-09-01

    Aquaporins (AQPs), water channel proteins in the cell membranes of mammals, have been reported to be important in maintaining the water balance of the respiratory system. However, little is known regarding the role of AQP in occupational pulmonary diseases such as silicosis. The present study investigated the expression of AQP1 and AQP4 in the human A549 alveolar epithelial cell line stimulated by silica (SiO2). A549 cells were cultured and divided into four groups: Control, SiO2‑stimulated, AQP1 inhibitor and AQP4 inhibitor. The cells of the SiO2‑stimulated group were stimulated with SiO2 dispersed suspension (50 mg/ml). The cells of the inhibitor group were pretreated with mercury (II) chloride (HgCl2; a specific channel inhibitor of AQP1) and 2‑(nicotinamide)‑1,3,4‑thiadiazole (TGN‑020; a specific channel inhibitor of AQP4) and stimulated with SiO2. The mRNA expression levels of AQP1 and AQP4 were detected by reverse transcription‑quantitative polymerase chain reaction, and the protein expression levels of AQP1 and AQP4 were detected by western blotting and immunocytochemistry. Compared with the control group, the expression levels of AQP1 and AQP4 mRNA and protein in SiO2‑stimulated groups increased and subsequently decreased (AQP1 peaked at 2 h and AQP4 at 1h; both P<0.001 compared with control group). In the inhibitor group, expression levels were increased compared with controls; however, they were significantly decreased compared with the SiO2‑stimulated group at 2 h (AQP1; P<0.001) and 1 h (AQP4; P<0.001). The expression of AQP1 and AQP4 increased when exposed to SiO2, and this was inhibited by HgCl2 and TGN‑020, suggesting that AQP1 and AQP4 may contribute to A549 cell damage induced by SiO2. AQP1 and AQP4 may thus be involved in the initiation and development of silicosis.

  6. Aquaporin-4 in brain and spinal cord oedema.

    PubMed

    Saadoun, S; Papadopoulos, M C

    2010-07-28

    Brain oedema is a major clinical problem produced by CNS diseases (e.g. stroke, brain tumour, brain abscess) and systemic diseases that secondarily affect the CNS (e.g. hyponatraemia, liver failure). The swollen brain is compressed against the surrounding dura and skull, which causes the intracranial pressure to rise, leading to brain ischaemia, herniation, and ultimately death. A water channel protein, aquaporin-4 (AQP4), is found in astrocyte foot processes (blood-brain border), the glia limitans (subarachnoid cerebrospinal fluid-brain border) and ependyma (ventricular cerebrospinal fluid-brain border). Experiments using mice lacking AQP4 or alpha syntrophin (which secondarily downregulate AQP4) showed that AQP4 facilitates oedema formation in diseases causing cytotoxic (cell swelling) oedema such as cerebral ischaemia, hyponatraemia and meningitis. In contrast, AQP4 facilitates oedema elimination in diseases causing vasogenic (vessel leak) oedema and therefore AQP4 deletion aggravates brain oedema produced by brain tumour and brain abscess. AQP4 is also important in spinal cord oedema. AQP4 deletion was associated with less cord oedema and improved outcome after compression spinal cord injury in mice. Here we consider the possible routes of oedema formation and elimination in the injured cord and speculate about the role of AQP4. Finally we discuss the role of AQP4 in neuromyelitis optica (NMO), an inflammatory demyelinating disease that produces oedema in the spinal cord and optic nerves. NMO patients have circulating AQP4 IgG autoantibody, which is now used for diagnosing NMO. We speculate how NMO-IgG might produce CNS inflammation, demyelination and oedema. Since AQP4 plays a key role in the pathogenesis of CNS oedema, we conclude that AQP4 inhibitors and activators may reduce CNS oedema in many diseases.

  7. Identification and functional characterization of an ovarian aquaporin from the cockroach Blattella germanica L. (Dictyoptera, Blattellidae).

    PubMed

    Herraiz, Alba; Chauvigné, François; Cerdà, Joan; Bellés, Xavier; Piulachs, Maria-Dolors

    2011-11-01

    Aquaporins (AQPs) are membrane proteins that form water channels, allowing rapid movement of water across cell membranes. AQPs have been reported in species of all life kingdoms and in almost all tissues, but little is known about them in insects. Our purpose was to explore the occurrence of AQPs in the ovary of the phylogenetically basal insect Blattella germanica (L.) and to study their possible role in fluid homeostasis during oogenesis. We isolated an ovarian AQP from B. germanica (BgAQP) that has a deduced amino acid sequence showing six potential transmembrane domains, two NPA motifs and an ar/R constriction region, which are typical features of the AQP family. Phylogenetic analyses indicated that BgAQP belongs to the PRIP group of insect AQPs, previously suggested to be water specific. However, ectopic expression of BgAQP in Xenopus laevis oocytes demonstrated that this AQP transports water and modest amounts of urea, but not glycerol, which suggests that the PRIP group of insect AQPs may have heterogeneous solute preferences. BgAQP was shown to be highly expressed in the ovary, followed by the fat body and muscle tissues, but water stress did not significantly modify the ovarian expression levels. RNA interference (RNAi) reduced BgAQP mRNA levels in the ovary but the oocytes developed normally. The absence of an apparent ovarian phenotype after BgAQP RNAi suggests that other functionally redundant AQPs that were not silenced in our experiments might exist in the ovary of B. germanica.

  8. Morphology of Rain Water Channeling in Systematically Varied Model Sandy Soils

    NASA Astrophysics Data System (ADS)

    Wei, Yuli; Cejas, Cesare M.; Barrois, Rémi; Dreyfus, Rémi; Durian, Douglas J.

    2014-10-01

    We visualize the formation of fingered flow in dry model sandy soils under different rain conditions using a quasi-2D experimental setup and systematically determine the impact of the soil grain diameter and surface wetting properties on the water channeling phenomenon. The model sandy soils we use are random closely packed glass beads with varied diameters and surface treatments. For hydrophilic sandy soils, our experiments show that rain water infiltrates a shallow top layer of soil and creates a horizontal water wetting front that grows downward homogeneously until instabilities occur to form fingered flows. For hydrophobic sandy soils, in contrast, we observe that rain water ponds on the top of the soil surface until the hydraulic pressure is strong enough to overcome the capillary repellency of soil and create narrow water channels that penetrate the soil packing. Varying the raindrop impinging speed has little influence on water channel formation. However, varying the rain rate causes significant changes in the water infiltration depth, water channel width, and water channel separation. At a fixed rain condition, we combine the effects of the grain diameter and surface hydrophobicity into a single parameter and determine its influence on the water infiltration depth, water channel width, and water channel separation. We also demonstrate the efficiency of several soil water improvement methods that relate to the rain water channeling phenomenon, including prewetting sandy soils at different levels before rainfall, modifying soil surface flatness, and applying superabsorbent hydrogel particles as soil modifiers.

  9. Verification and spatial localization of aquaporin-5 in the ocular lens.

    PubMed

    Grey, Angus C; Walker, Kerry L; Petrova, Rosica S; Han, Jun; Wilmarth, Phillip A; David, Larry L; Donaldson, Paul J; Schey, Kevin L

    2013-03-01

    Until recently, the lens was thought to express only two aquaporin (AQP) water channels, AQP1 and AQP0. In this study we confirm lenticular AQP5 protein expression by Western blotting and mass spectrometry in lenses from a variety of species. In addition, confocal microscopy was used to map cellular distributions of AQP5 in mouse, rat and human lenses. Tandem mass spectrometry of a human lens membrane preparation revealed extensive sequence coverage (56.2%) of AQP5. Western blotting performed on total fiber cell membranes from mouse, rat, bovine and human lenses confirmed AQP5 protein expression is conserved amongst species. Western blotting of dissected lens fractions suggests that AQP5 is processed in the lens core by C-terminal truncation. Immunohistochemistry showed that AQP5 signal was most abundant in the lens outer cortex and decreased in intensity in the lens core. Furthermore, AQP5 undergoes differentiation-dependent changes in subcellular location from an intracellular localization in differentiating fiber cells to the plasma membrane of mature fiber cells upon the loss of fiber cell nuclei. Our results show that AQP5 is a significant component of lens fiber cell membranes, representing the second most abundant water channel in these cells. Together, the changes to AQP5 distribution and structure are likely to modulate the functional role of AQP5 in different regions of the lens.

  10. Verification and Spatial Localization of Aquaporin-5 in the Ocular Lens

    PubMed Central

    Grey, Angus C.; Walker, Kerry L.; Petrova, Rosica S.; Han, Jun; Wilmarth, Phillip A.; David, Larry L.; Donaldson, Paul J.; Schey, Kevin L.

    2013-01-01

    Until recently, the lens was thought to express only two Aquaporin (AQP) water channels, AQP1 and AQP0. In this study we confirm lenticular AQP5 protein expression by Western blotting and mass spectrometry in lenses from a variety of species. In addition, confocal microscopy was used to map cellular distributions of AQP5 in mouse, rat and human lenses. Tandem mass spectrometry of a human lens membrane preparation revealed extensive sequence coverage (56.2%) of AQP5. Western blotting performed on total fiber cell membranes from mouse, rat, bovine and human lenses confirmed AQP5 protein expression is conserved amongst species. Western blotting of dissected lens fractions suggests that AQP5 is processed in the lens core by C-terminal truncation. Immunohistochemistry showed that AQP5 signal was most abundant in the lens outer cortex and decreased in intensity in the lens core. Furthermore, AQP5 undergoes differentiation-dependent changes in subcellular location from an intracellular localization in differentiating fiber cells to the plasma membrane of mature fiber cells upon the loss of fiber cell nuclei. Our results show that AQP5 is a significant component of lens fiber cell membranes, representing the second most abundant water channel in these cells. Together, the changes to AQP5 distribution and structure are likely to modulate the functional role of AQP5 in different regions of the lens. PMID:23313152

  11. Virchow-Robin space and aquaporin-4: new insights on an old friend

    PubMed Central

    Nakada, Tsutomu

    2014-01-01

    Recent studies have strongly indicated that the classic circulation model of cerebrospinal fluid (CSF) is no longer valid. The production of CSF is not only dependent on the choroid plexus but also on water flux in the peri-capillary (Virchow Robin) space. Historically, CSF flow through the Virchow Robin space is known as interstitial flow, the physiological significance of which is now fully understood. This article briefly reviews the modern concept of CSF physiology and the Virchow-Robin space, in particular its functionalities critical for central nervous system neural activities. Water influx into the Virchow Robin space and, hence, interstitial flow is regulated by aquaporin-4 (AQP-4) localized in the endfeet of astrocytes, connecting the intracellular cytosolic fluid space of astrocytes and the Virchow Robin space. Interstitial flow has a functionality equivalent to systemic lymphatics, on which clearance of β-amyloid is strongly dependent. Autoregulation of brain blood flow serves to maintain a constant inner capillary fluid pressure, allowing fluid pressure of the Virchow Robin space to regulate regional cerebral blood flow (rCBF) based on AQP-4 gating. Excess heat produced by neural activities is effectively removed from the area of activation by increased rCBF by closing AQP-4 channels. This neural flow coupling (NFC) is likely mediated by heat generated proton channels. PMID:25165047

  12. Incorporation of proteins into (Xenopus) oocytes by proteoliposome microinjection: functional characterization of a novel aquaporin.

    PubMed

    Le Cahérec, F; Bron, P; Verbavatz, J M; Garret, A; Morel, G; Cavalier, A; Bonnec, G; Thomas, D; Gouranton, J; Hubert, J F

    1996-06-01

    Xenopus laevis oocytes are widely used as an expression system for plasma membrane proteins, achieved by cytoplasmic microinjection of messenger RNA. In the present study, we propose an alternative system allowing functional insertion of exogenous proteins into the plasma membrane of Xenopus oocytes. We microinjected proteoliposome suspensions into the cytoplasm and then analyzed membrane protein function. The proteins used in this work were members of the MIP family: the human erythrocyte water channel aquaporin 1 (AQP1), the major intrinsic protein (MIP26) from bovine eye lens and a 25 kDa polypeptide (P25) from a water shunting complex found in the digestive tract of an homopteran sap-sucking insect (Cicadella viridis). Proteoliposomes containing either AQP1, MIP26, or P25 were injected into Xenopus oocytes. The subsequent insertion of these proteins into the plasma membrane of oocytes was demonstrated by immunocytochemistry. Oocytes microinjected with either AQP1 or P25-proteoliposomes exhibited significantly increased osmotic membrane water permeabilities (Pf = 3.16 +/- 026 and 4.03 +/- 0.26 x 10(-3) cm/second, respectively) compared to those measured for oocytes injected with liposomes alone or with MIP26-proteoliposomes (Pf = 1.39 +/- 0.07 and 1.44 +/- 0.10 x 10(-3) cm/second, respectively). These effects were inhibited by HgCl2 in a reversible manner. Arrhenius activation energies of water transfer were low when AQP1 or P25 were present in oocyte plasma membranes (Ea = 2.29 and 3.01 kcal/mol, respectively, versus Ea = 11.75 kcal/mol for liposome injected oocytes). The properties observed here for AQP1 are identical to those widely reported following AQP1 cRNA expression in oocytes. From the present study, we conclude that: (1) exogenous plasma membrane proteins incorporated into liposomes and microinjected into the cytoplasm of Xenopus oocytes are subsequently found in the plasma membrane of the oocytes in a functional state; and (2) in this system, the P25

  13. The central role of aquaporins in the pathophysiology of ischemic stroke

    PubMed Central

    Vella, Jasmine; Zammit, Christian; Di Giovanni, Giuseppe; Muscat, Richard; Valentino, Mario

    2015-01-01

    Stroke is a complex and devastating neurological condition with limited treatment options. Brain edema is a serious complication of stroke. Early edema formation can significantly contribute to infarct formation and thus represents a promising target. Aquaporin (AQP) water channels contribute to water homeostasis by regulating water transport and are implicated in several disease pathways. At least 7 AQP subtypes have been identified in the rodent brain and the use of transgenic mice has greatly aided our understanding of their functions. AQP4, the most abundant channel in the brain, is up-regulated around the peri-infarct border in transient cerebral ischemia and AQP4 knockout mice demonstrate significantly reduced cerebral edema and improved neurological outcome. In models of vasogenic edema, brain swelling is more pronounced in AQP4-null mice than wild-type providing strong evidence of the dual role of AQP4 in the formation and resolution of both vasogenic and cytotoxic edema. AQP4 is co-localized with inwardly rectifying K+-channels (Kir4.1) and glial K+ uptake is attenuated in AQP4 knockout mice compared to wild-type, indicating some form of functional interaction. AQP4-null mice also exhibit a reduction in calcium signaling, suggesting that this channel may also be involved in triggering pathological downstream signaling events. Associations with the gap junction protein Cx43 possibly recapitulate its role in edema dissipation within the astroglial syncytium. Other roles ascribed to AQP4 include facilitation of astrocyte migration, glial scar formation, modulation of inflammation and signaling functions. Treatment of ischemic cerebral edema is based on the various mechanisms in which fluid content in different brain compartments can be modified. The identification of modulators and inhibitors of AQP4 offer new therapeutic avenues in the hope of reducing the extent of morbidity and mortality in stroke. PMID:25904843

  14. Time-correlation analysis of simulated water motion in flexible and rigid gramicidin channels.

    PubMed Central

    Chiu, S W; Jakobsson, E; Subramaniam, S; McCammon, J A

    1991-01-01

    Molecular dynamics simulations have been done on a system consisting of the polypeptide membrane channel former gramicidin, plus water molecules in the channel and caps of waters at the two ends of the channel. In the absence of explicit simulation of the surrounding membrane, the helical form of the channel was maintained by artificial restraints on the peptide motion. The characteristic time constant of the artificial restraint was varied to assess the effect of the restraints on the channel structure and water motions. Time-correlation analysis was done on the motions of individual channel waters and on the motions of the center of mass of the channel waters. It is found that individual water molecules confined in the channel execute higher frequency motions than bulk water, for all degrees of channel peptide restraint. The center-of-mass motion of the chain of channel waters (which is the motion that is critical for transmembrane transport, due to the mandatory single filing of water in the channel) does not exhibit these higher frequency motions. The mobility of the water chain is dramatically reduced by holding the channel rigid. Thus permeation through the channel is not like flow through a rigid pipe; rather permeation is facilitated by peptide motion. For the looser restraints we used, the mobility of the water chain was not very much affected by the degree of restraint. Depending on which set of experiments is considered, the computed mobility of our water chain in the flexible channel is four to twenty times too high to account for the experimentally measured resistance of the gramicidin channel to water flow. From this result it appears likely that the peptide motions of an actual gramicidin channel embedded in a lipid membrane may be more restrained than in our flexible channel model, and that these restraints may be a significant modulator of channel permeability. For the completely rigid channel model the "trapping" of the water molecules in

  15. Plant Aquaporins: Genome-Wide Identification, Transcriptomics, Proteomics, and Advanced Analytical Tools

    PubMed Central

    Deshmukh, Rupesh K.; Sonah, Humira; Bélanger, Richard R.

    2016-01-01

    Aquaporins (AQPs) are channel-forming integral membrane proteins that facilitate the movement of water and many other small molecules. Compared to animals, plants contain a much higher number of AQPs in their genome. Homology-based identification of AQPs in sequenced species is feasible because of the high level of conservation of protein sequences across plant species. Genome-wide characterization of AQPs has highlighted several important aspects such as distribution, genetic organization, evolution and conserved features governing solute specificity. From a functional point of view, the understanding of AQP transport system has expanded rapidly with the help of transcriptomics and proteomics data. The efficient analysis of enormous amounts of data generated through omic scale studies has been facilitated through computational advancements. Prediction of protein tertiary structures, pore architecture, cavities, phosphorylation sites, heterodimerization, and co-expression networks has become more sophisticated and accurate with increasing computational tools and pipelines. However, the effectiveness of computational approaches is based on the understanding of physiological and biochemical properties, transport kinetics, solute specificity, molecular interactions, sequence variations, phylogeny and evolution of aquaporins. For this purpose, tools like Xenopus oocyte assays, yeast expression systems, artificial proteoliposomes, and lipid membranes have been efficiently exploited to study the many facets that influence solute transport by AQPs. In the present review, we discuss genome-wide identification of AQPs in plants in relation with recent advancements in analytical tools, and their availability and technological challenges as they apply to AQPs. An exhaustive review of omics resources available for AQP research is also provided in order to optimize their efficient utilization. Finally, a detailed catalog of computational tools and analytical pipelines is

  16. Identification of aquaporins in eggs and early embryogenesis of the sea urchin Paracentrotus lividus.

    PubMed

    Amaroli, Andrea; Ferrando, Sara; Gagliani, Maria Cristina; Gallus, Lorenzo; Masini, Maria Angela

    2013-04-01

    Sea urchins are echinoderms, marine invertebrates found at the base of the deutorostome lineage, which show separate sexes and are external spawners. In the sea urchin, efficient regulation of water homeostasis is essential for many biological processes such as cellular respiration, normal fertilization and correct embryo growth. In order to clarify some of these processes, the present study reports on the identification and function of aquaporin proteins in the sea urchin. Our results show, by immunoblot, immunoelectron microscopy and immunofluorescence analysis, the presence of aquaporin1- and aquaporin3-like proteins in virgin eggs and in early embryogenesis of Paracentrotus lividus and, by using known inhibitors of aquaporin functions, the functional and relevant role of aquaporin-3 in the fertilization process. AQP3 in particular seems to play a crucial role in high velocity water flux formations involved in the detachment of the vitelline layer during the slow block of polyspermy, while the presence of AQP1 and the increase of AQP3 in the first phase of the P. lividus developmental cycle, suggest their involvement in the appropriate homeostasis for embryo development.

  17. Insight into the mechanics of the selectivity filter of Escherichia coli aquaporin Z

    NASA Astrophysics Data System (ADS)

    Hu, Guodong; Chen, L. Y.

    2011-03-01

    Aquaporin Z (AQPZ) is a tetrameric protein that forms water channels in Escherichia coli's cell membrane. The histinine residue in the selectivity filter (SF) region plays an important role in the transport of water across the membrane. In this work, we perform equilibrium molecular dynamics (MD) simulation to illustrate influences of two different protonation states and the gate mechanics of the SF. We calculate the pore radii in the SF region versus the simulation time. We perform steered MD to compute the free energy profile, i.e., the potential of the mean force (PMF) a water molecule through the SF region. We calculate the binding energy of one water molecule with the SF region residues, using Gaussian. The hydrogen bonds formed between the side chains of Hsd 174 and side chains of Arg189 play important roles in the selectivity filter mechanics of AQPZ. The radii of the pores, hydrogen bond analysis, and free energies show that Hsd is favored than Hse. The authors acknowledge support from a NIH grant (Grant No. SC3 GM084834), the UTSA Computational Biology Initiative, and the Texas Advanced Computing Center.

  18. Immunodetection of aquaporin 5 in sheep salivary glands related to pasture vegetative cycle.

    PubMed

    Scocco, Paola; Aralla, Marina; Catorci, Andrea; Belardinelli, Carlo; Arrighi, Silvana

    2011-01-01

    Mammalian aquaporins (AQPs) are a family of at least 13 integral membrane proteins expressed in various epithelia, where they function as channels to permeate water and small solutes. AQP5 is widely expressed in the exocrine gland where it is likely involved in providing an appropriate amount of fluid to be secreted with granular contents. As regards AQP5 expression in the salivary glands, literature is lacking concerning domestic animal species. This study was chiefly aimed at immunohistochemically investigating the presence and localization of AQP5 in sheep mandibular and parotid glands. In addition, AQP5 immunoreactivity was comparatively evaluated in animals fed with forage containing different amounts of water related to the pasture vegetative cycle, in order to shed light on the possible response of the gland to environmental modifications. Moderate AQP5-immunoreactivity was shown at the level of the lateral surface of mandibular serous demilune cells, not affected by the pasture vegetative cycle or water content. On the contrary, the parotid gland arcinar cells showed AQP5-immunoreactivity at the level of apical and lateral plasma membrane, which was slight to very strong, according to the pasture vegetative development and interannual climatic variations. AQP5 expression is likely due to its involvement in providing appropriate saliva fluidity. Indeed, the lowest AQP5 immunoreactivity was noticed when food water content increased.

  19. Two TIP-like genes encoding aquaporins are expressed in sunflower guard cells.

    PubMed

    Sarda, X; Tousch, D; Ferrare, K; Legrand, E; Dupuis, J M; Casse-Delbart, F; Lamaze, T

    1997-11-01

    SunTIP7 and SunTIP20 are closely related sunflower cDNAs showing a deduced amino acid sequence homologous to proteins of the tonoplast intrinsic protein (TIP) family. Their expression in Xenopus oocytes caused a marked increase in osmotic water permeability (demonstrating that they are water channels) which was sensitive to mercury. In leaves, in situ hybridization revealed that both SunTIP7 and SunTIP20 mRNA accumulated in the guard cells. The possible involvement of SunTIPs in stomatal movement was examined by comparing the time course of transcript accumulation and leaf conductance during the daily cycle and following a water limitation. SunTIP7 mRNA fluctuations fitted changes occurring in leaf conductance. The transcript levels were markedly and systematically increased during stomatal closure. It is suggested that aquaporin SunTIP7 facilitates water exit associated with a decrease in guard cell volume. In the same conditions, the transcript level of SunTIP20 remained constant indicating that SunTIP genes are differentially regulated within the same cell.

  20. Aquaporin-4 Deficient Mice have Increased Extracellular Space Without Tortuosity Change

    PubMed Central

    Yao, Xiaoming; Hrabětová, Sabina; Nicholson, Charles; Manley, Geoffrey T.

    2008-01-01

    Aquaporin-4 (AQP4) is the major water channel expressed at fluid-tissue barriers throughout the brain and plays a crucial role in cerebral water balance. To assess whether these channels influence brain extracellular space (ECS) under resting physiological conditions, we used the established real-time iontophoresis method with tetramethylammonium (TMA+) to measure three diffusion parameters: ECS volume fraction (α), tortuosity (λ), and TMA+ loss (k’). In vivo measurements were performed in the somatosensory cortex of AQP4 deficient (AQP4-/-) mice and wild-type controls with matched age. Mice lacking AQP4 showed a 28% increase in α (0.23 ± 0.007 vs. 0.18 ± 0.003) with no differences in λ (1.62 ± 0.04 vs. 1.61 ± 0.02) and k’ (0.0045 ± 0.0001 1/sec vs. 0.0031 ± 0.0009 1/sec). Additional recordings in brain slices showed similarly elevated α in AQP4-/- mice, and no differences in λ and k’ between the two genotypes. This is the first direct comparison of ECS properties in adult mice lacking AQP4 water channels with wild-type animals and demonstrates a significant enlargement of the volume fraction but no difference in hindrance to TMA+ diffusion, expressed as tortuosity. These findings provide direct evidence for involvement of AQP4 in modulation of the ECS volume fraction and provide a basis for future modeling of water and ion transport in the central nervous system. PMID:18495879

  1. Expression and localization of aquaporin-1 on the apical membrane of enterocytes in the small intestine of bottlenose dolphins.

    PubMed

    Suzuki, Miwa

    2010-02-01

    The small and large intestines are primary sites for water intake in mammals. To reveal how water is absorbed in the intestines of cetaceans, histological and molecular-biological studies were performed on the small intestine of the bottlenose dolphin, Tursiops truncatus. In histological studies using fresh specimens, obvious villi and deep crypts of Lieberkühn, lined by abundant enterocytes with microvilli and goblet cells, were observed in the mucosa. Expressions and immunolocalizations of aquaporin-1 (AQP1), a member of the water-selective channel termed AQP, were also investigated in the intestine. By reverse transcriptional polymerase chain reaction and rapid amplification of cDNA ends using RNA extracted from the dolphins' small intestines, the full length of mRNA for AQP1 was sequenced. The deductive amino acid sequence for an open reading frame showed high homologies with other mammals' AQP1, and water permeability of the protein was certified by cRNA injection to Xenopus oocytes. Immunohistochemistry showed AQP1 distribution on the apical membrane of the enterocytes, especially in the crypts. These data suggest that AQP1 is a channel protein responsible for water absorption in the small intestine of dolphins.

  2. Concentrating Toxoplasma gondii and Cyclospora cayetanensis from Surface Water and Drinking Water by Continuous Separation Channel Centrifugation

    EPA Science Inventory

    Aims: To evaluate the effectiveness of continuous separation channel centrifugation for concentrating Toxoplasma gondii and Cyclospora cayetanensis from drinking water and environmental waters. Methods and Results: Ready-to-seed vials with known quantities of Toxoplasma gondii a...

  3. Identification and Expression Analysis of Aquaporins in the Potato Psyllid, Bactericera cockerelli

    PubMed Central

    Ibanez, Freddy; Hancock, Joseph; Tamborindeguy, Cecilia

    2014-01-01

    Aquaporin (AQPs) proteins transport water and uncharged low molecular-weight solutes across biological membranes. Six to 8 AQP genes have been identified in many insect species, but presently only three aquaporins have been characterized in phloem feeding insects. The objective of this study was to identify candidate AQPs in the potato psyllid, Bactericera cockerelli. Herein, we identified four candidate aquaporin cDNAs in B. cockerelli transcriptome. Phylogenetic analysis showed that candidate BcAQP2-like had high similarity to PRIP aquaporins; while candidates BcAQP4-like, BcAQP5-like and BcAQP9-like clustered within clade B. In particular, candidates BcAQP4-like and BcAQP5-like clustered with functionally validated insect aquaglyceroporin proteins. Expression analyses using RT-qPCR showed that all candidates were expressed in all life stages and tissues. Candidates BcAQP4-like and BcAQP5-like were highly expressed in bacteriocytes, while BcAQP9-like appeared to be expressed at high levels in whole body but not in the assayed tissues. This study is the first global attempt to identify putative aquaporins in a phloem feeding insect. PMID:25354208

  4. Seasonal and Ageing-Depending Changes of Aquaporins 1 and 9 Expression in the Genital Tract of Buffalo Bulls (Bubalus bubalis).

    PubMed

    Arrighi, S; Bosi, G; Accogli, G; Desantis, S

    2016-08-01

    The presence of Aquaporins 1 (AQP1) and 9 (AQP9), integral membrane water channels that facilitate rapid passive movement of water and solutes, was immunohistochemically detected in the excurrent ducts collected from sexually mature buffalo bulls of proven fertility during the mating (late autumn-winter) and non-mating (late spring to the beginning of autumn) seasons. Furthermore, the research was performed also on the epididymal cauda of a senile buffalo bull with inactive testis. Aquaporins 1 and 9 were immunolocalized at distinct levels. In the efferent ducts, AQP1 immunoreactivity was strongly evidenced at the apical surface of the non-ciliated cells and weakly along the basal membrane of the epithelial cells. The latter reactivity disappeared during the non-mating season. No AQP1 immunoreactivity was detected in the epithelium of epididymis and vas deferens, whereas AQP1 was expressed in the smooth muscle layer of the vas deferens. Aquaporin 1 was present in the blood vessels and in small nerve bundles all along the genital tract. The supranuclear zone of the epididymal principal cells was AQP9 immunoreactive, limited to the corpus and cauda regions, and vas deferens. The samples collected in the two reproductive seasons showed a weaker AQP9 immunoreactivity during the non-mating season. A typical AQP9 immunoreactivity was noticed in the old buffalo examined. The tested AQP molecules showed a different expression pattern in comparison with laboratory mammals, primates, equine, dog and cat. In addition, seasonal differences were noticed which are possibly useful in regard to the comprehension of the morphophysiology of reproduction in the bubaline species, which are still a matter of debate.

  5. Loop B serine of a plasma membrane aquaporin type PIP2 but not PIP1 plays a key role in pH sensing.

    PubMed

    Yaneff, Agustín; Sigaut, Lorena; Gómez, Natalia; Aliaga Fandiño, Cecilia; Alleva, Karina; Pietrasanta, Lía Isabel; Amodeo, Gabriela

    2016-11-01

    In the plant kingdom, the plasma membrane intrinsic aquaporins (PIPs) constitute a highly conserved group of water channels with the capacity of rapidly adjusting the water permeability (Pf) of a cell by a gating response. Most evidence regarding this mechanism was obtained by different biophysical approaches including the crystallization of a Spinaca olaracea PIP2 aquaporin (SoPIP2;1) in an open and close conformation. A close state seems to prevail under certain stimuli such as cytosolic pH decrease, intracellular Ca(2+) concentration increase and dephosphorylation of specific serines. In this work we decided to address whether the state of phosphorylation of a loop B serine - highly conserved in all PIPs - combined with cytosolic acidification can jointly affect the gating response. To achieve this goal we generated loop B serine mutants of two PIP types of Fragaria×ananassa (FaPIP2;1S121A and FaPIP1;1S131A) in order to simulate a dephosphorylated state and characterize their behavior in terms of Pf and pH sensitivities. The response was tested for different co-expressions of PIPs (homo and heterotetramers combining wild-type and mutant PIPs) in Xenopus oocytes. Our results show that loop B serine phosphorylation status affects pH gating of FaPIP2;1 but not of FaPIP1;1 by changing its sensitivity to more alkaline pHs. Therefore, we propose that a counterpoint of different regulatory mechanisms - heterotetramerization, serine phosphorylation status and pH sensitivity - affect aquaporin gating thus ruling the Pf of a membrane that expresses PIPs when fast responses are mandatory.

  6. Substitution of a single amino acid residue in the aromatic/arginine selectivity filter alters the transport profiles of tonoplast aquaporin homologs.

    PubMed

    Azad, Abul Kalam; Yoshikawa, Naoki; Ishikawa, Takahiro; Sawa, Yoshihiro; Shibata, Hitoshi

    2012-01-01

    Aquaporins are integral membrane proteins that facilitate the transport of water and some small solutes across cellular membranes. X-ray crystallography of aquaporins indicates that four amino acids constitute an aromatic/arginine (ar/R) pore constriction known as the selectivity filter. On the basis of these four amino acids, tonoplast aquaporins called tonoplast intrinsic proteins (TIPs) are divided into three groups in Arabidopsis. Herein, we describe the characterization of two group I TIP1s (TgTIP1;1 and TgTIP1;2) from tulip (Tulipa gesneriana). TgTIP1;1 and TgTIP1;2 have a novel isoleucine in loop E (LE2 position) of the ar/R filter; the residue at LE2 is a valine in all group I TIPs from model plants. The homologs showed mercury-sensitive water channel activity in a fast kinetics swelling assay upon heterologous expression in Pichia pastoris. Heterologous expression of both homologs promoted the growth of P. pastoris on ammonium or urea as sole sources of nitrogen and decreased growth and survival in the presence of H(2)O(2). TgTIP1;1- and TgTIP1;2-mediated H(2)O(2) conductance was demonstrated further by a fluorescence assay. Substitutions in the ar/R selectivity filter of TgTIP1;1 showed that mutants that mimicked the ar/R constriction of group I TIPs could conduct the same substrates that were transported by wild-type TgTIP1;1. In contrast, mutants that mimicked group II TIPs showed no evidence of urea or H(2)O(2) conductance. These results suggest that the amino acid residue at LE2 position is critical for the transport selectivity of the TIP homologs and group I TIPs might have a broader spectrum of substrate selectivity than group II TIPs.

  7. Potassium deficiency affects water status and photosynthetic rate of the vegetative sink in green house tomato prior to its effects on source activity.

    PubMed

    Kanai, Synsuke; Moghaieb, Reda E; El-Shemy, Hany A; Panigrahi, R; Mohapatra, Pravat K; Ito, J; Nguyen, Nguyen T; Saneoka, Hirofumi; Fujita, Kounosuke

    2011-02-01

    The potassium requirement of green house tomatoes is very high for vegetative growth and fruit production. Potassium deficiency in plants takes long time for expression of visible symptoms. The objective of this study is to detect the deficiency early during the vegetative growth and define the roles of aquaporin and K-channel transporters in the process of regulation of water status and source-sink relationship. The tomato plants were grown hydroponically inside green house of Hiroshima University, Japan and subjected to different levels of K in the rooting medium. Potassium deficiency stress decreased photosynthesis, expansion and transport of ¹⁴C assimilates of the source leaf, but the effects became evident only after diameter expansion of the growing stem (sink) was down-regulated. The depression of stem diameter expansion is assumed to be associated with the suppression of water supply more than photosynthate supply to the organ. The stem diameter expansion is parameterized by root water uptake and leaf transpiration rates. The application of aquaporin inhibitor (AgNO₃) decreased leaf water potential, stem expansion and root hydraulic conductance within minutes of application. Similar results were obtained for application of the K-channel inhibitors. These observations suggested a close relationship between stem diameter expansion and activities of aquaporins and K-channel transporters in roots. The deficiency of potassium might have reduced aquaporin activity, consequently suppressing root hydraulic conductance and water supply to the growing stem for diameter expansion and leaf for transpiration. We conclude that close coupling between aquaporins and K-channel transporters in water uptake of roots is responsible for regulation of stem diameter dynamics of green house tomato plants.

  8. Aquaporin-2 trafficking is regulated by PDZ-domain containing protein SPA-1.

    PubMed

    Noda, Yumi; Horikawa, Saburo; Furukawa, Tetsushi; Hirai, Keiji; Katayama, Yoshifumi; Asai, Tomoki; Kuwahara, Michio; Katagiri, Koko; Kinashi, Tatsuo; Hattori, Masakazu; Minato, Nagahiro; Sasaki, Sei

    2004-06-18

    Targeted positioning of water channel aquaporin-2 (AQP2) strictly regulates body water homeostasis. Trafficking of AQP2 to the apical membrane is critical to the reabsorption of water in renal collecting ducts. Controlled apical positioning of AQP2 suggests the existence of proteins that interact with AQP2. A biochemical search for AQP2-interacting proteins led to the identification of PDZ-domain containing protein, signal-induced proliferation-associated gene-1 (SPA-1) which is a GTPase-activating protein (GAP) for Rap1. The distribution of SPA-1 coincided with that of AQP2 in renal collecting ducts. The site of colocalization was concomitantly relocated by hydration status. AQP2 trafficking to the apical membrane was inhibited by the SPA-1 mutant lacking Rap1GAP activity and by the constitutively active mutant of Rap1. AQP2 trafficking was impaired in SPA-1-deficient mice. Our results show that SPA-1 directly binds to AQP2 and regulates at least in part AQP2 trafficking.

  9. Human aquaporin 4 gating dynamics in dc and ac electric fields: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Garate, J.-A.; English, Niall J.; MacElroy, J. M. D.

    2011-02-01

    Water self-diffusion within human aquaporin 4 has been studied using molecular dynamics (MD) simulations in the absence and presence of external ac and dc electric fields. The computed diffusive (pd) and osmotic (pf) permeabilities under zero-field conditions are (0.718 ± 0.24) × 10-14 cm3 s-1 and (2.94 ± 0.47) × 10-14 cm3 s-1, respectively; our pf agrees with the experimental value of (1.50 ± 0.6) × 10-14 cm3 s-1. A gating mechanism has been proposed in which side-chain dynamics of residue H201, located in the selectivity filter, play an essential role. In addition, for nonequilibrium MD in external fields, it was found that water dipole orientation within the constriction region of the channel is affected by electric fields (e-fields) and that this governs the permeability. It was also found that the rate of side-chain flipping motion of residue H201 is increased in the presence of e-fields, which influences water conductivity further.

  10. Hypotonicity-Induced Renin Exocytosis from Juxtaglomerular Cells Requires Aquaporin-1 and Cyclooxygenase-2

    PubMed Central

    Madsen, Kirsten; Svenningsen, Per; Hansen, Pernille B.L.; Gulaveerasingam, Ambika; Jørgensen, Finn; Aalkjær, Christian; Skøtt, Ole; Jensen, Boye L.

    2009-01-01

    The mechanism by which extracellular hypotonicity stimulates release of renin from juxtaglomerular (JG) cells is unknown. We hypothesized that osmotically induced renin release depends on water movement through aquaporin-1 (AQP1) water channels and subsequent prostanoid formation. We recorded membrane capacitance (Cm) by whole-cell patch clamp in single JG cells as an index of exocytosis. Hypotonicity increased Cm significantly and enhanced outward current. Indomethacin, PLA2 inhibition, and an antagonist of prostaglandin transport impaired the Cm and current responses to hypotonicity. Hypotonicity also increased exocytosis as determined by a decrease in single JG cell quinacrine fluorescence in an indomethacin-sensitive manner. In single JG cells from COX-2−/ − and AQP1−/ − mice, hypotonicity increased neither Cm nor outward current, but 0.1-μM PGE2 increased both in these cells. A reduction in osmolality enhanced cAMP accumulation in JG cells but not in renin-producing As4.1 cells; only the former had detectable AQP1 expression. Inhibition of protein kinase A blocked the hypotonicity-induced Cm and current response in JG cells. Taken together, our results show that a 5 to 7% decrease in extracellular tonicity leads to AQP1-mediated water influx in JG cells, PLA2/COX-2-mediated prostaglandin-dependent formation of cAMP, and activation of PKA, which promotes exocytosis of renin. PMID:19628672

  11. New insights into the regulation of aquaporins by the arbuscular mycorrhizal symbiosis in maize plants under drought stress and possible implications for plant performance.

    PubMed

    Bárzana, Gloria; Aroca, Ricardo; Bienert, Gerd Patrick; Chaumont, François; Ruiz-Lozano, Juan Manuel

    2014-04-01

    The relationship between modulation by arbuscular mycorrhizae (AM) of aquaporin expression in the host plant and changes in root hydraulic conductance, plant water status, and performance under stressful conditions is not well known. This investigation aimed to elucidate how the AM symbiosis modulates the expression of the whole set of aquaporin genes in maize plants under different growing and drought stress conditions, as well as to characterize some of these aquaporins in order to shed further light on the molecules that may be involved in the mycorrhizal responses to drought. The AM symbiosis regulated a wide number of aquaporins in the host plant, comprising members of the different aquaporin subfamilies. The regulation of these genes depends on the watering conditions and the severity of the drought stress imposed. Some of these aquaporins can transport water and also other molecules which are of physiological importance for plant performance. AM plants grew and developed better than non-AM plants under the different conditions assayed. Thus, for the first time, this study relates the well-known better performance of AM plants under drought stress to not only the water movement in their tissues but also the mobilization of N compounds, glycerol, signaling molecules, or metalloids with a role in abiotic stress tolerance. Future studies should elucidate the specific function of each aquaporin isoform regulated by the AM symbiosis in order to shed further light on how the symbiosis alters the plant fitness under stressful conditions.

  12. Distribution of the AQP4 water channel in normal human tissues: protein and tissue microarrays reveal expression in several new anatomical locations, including the prostate gland and seminal vesicles.

    PubMed

    Mobasheri, Ali; Marples, David; Young, Iain S; Floyd, Rachel V; Moskaluk, Christopher A; Frigeri, Antonio

    2007-01-01

    Aquaporins facilitate osmotically driven water movement across cell membranes. Aquaporin 4 (AQP4) is a major water channel in the central nervous system where it participates in cerebral water balance. AQP4 is also present in basolateral membranes of lower respiratory tract airway and renal collecting duct epithelial cells, gastric parietal cells and skeletal muscle cells. However, the distribution of AQP4 in many other tissues is still unknown. The aim of this study was to determine the expression and relative abundance of AQP4 in human Tissue MicroArrays (TMAs) and human protein microarrays by immunohistochemistry and chemiluminescence. In the central nervous system AQP4 was abundantly expressed in the cerebral cortex, cerebellar cortex (purkinje/granular layer), ependymal cell layer, hippocampus and spinal cord. Lower levels were detected in choroid plexus, white matter and meninges. In the musculoskeletal system AQP4 was highly expressed in the sarcolemma of skeletal muscle from the chest and neck. In the male genital system AQP4 was moderately expressed in seminiferous tubules, seminal vesicles, prostate and epidiymis. In the respiratory system AQP4 was moderately expressed in lung and bronchus. AQP expression was abundant in the kidney. In the gastrointestinal system AQP4 was moderately present in basolateral membranes of parietal cells at the base of gastric glands. AQP4 was also detected in salivary glands, adrenals, anterior pituitary, prostate and seminal vesicles. Human protein microarrays verified the TMA data. Our findings suggest that AQP4 is expressed more widely than previously thought in human organs and may be involved in prostatic and seminal fluid formation.

  13. Human aquaporin 4 gating dynamics under and after nanosecond-scale static and alternating electric-field impulses: a molecular dynamics study of field effects and relaxation.

    PubMed

    Reale, Riccardo; English, Niall J; Garate, José-Antonio; Marracino, Paolo; Liberti, Micaela; Apollonio, Francesca

    2013-11-28

    Water self-diffusion and the dipolar response of the selectivity filter within human aquaporin 4 have been studied using molecular dynamics (MD) simulations in the absence and presence of pulses of external static and alternating electric fields. The pulses were approximately 50 and 100 ns in duration and 0.0065 V/Å in (r.m.s.) intensity and were either static or else 2.45 or 100 GHz in frequency and applied both along and perpendicular to the channels. In addition, the relaxation of the aquaporin, water self-diffusion and gating dynamics following cessation of the impulses was studied. In previous work it was determined that switches in the dihedral angle of the selectivity filter led to boosting of water permeation events within the channels, in the presence of identical external static and alternating electric fields, although applied continuously. Here the application of field impulses (and subsequently, upon removal) has shown that it is the dipolar orientation of the histidine-201 residue in the selectivity filter which governs the dihedral angle, and hence influences water self-diffusion; this constitutes an appropriate order parameter. The dipolar response of this residue to the applied field leads to the adoption of four distinct states, which we modelled as time-homogeneous Markov jump processes, and may be distinguished in the potential of mean force (PMF) as a function of the dipolar orientation of histidine-201. The observations of enhanced "dipolar flipping" of H201 serve to explain increased levels of water self-diffusion within aquaporin channels during, and immediately following, field impulses, although the level of statistical certainty here is lower. Given the appreciable size of the energy barriers evident in PMFs computed directly from deterministic MD (whether in the absence or presence of external fields), metadynamics calculations were undertaken to explore the free-energy landscape of histidine-201 orientation with greater accuracy and

  14. Outflow Channels Influencing Martian Climate: Global Circulation Model Simulations with Emplaced Water

    NASA Astrophysics Data System (ADS)

    Santiago, D. L.; Colaprete, A.; Haberle, R. M.; Sloan, L. C.; Asphaug, E.

    2005-03-01

    We are using the NASA Ames Mars General Circulation Model to examine the climatic consequences of the sudden burst of water from outflow channels on Mars, represented here by incrementally emplacing water on the surface.

  15. Characterization of a Maize Tonoplast Aquaporin Expressed in Zones of Cell Division and Elongation1

    PubMed Central

    Chaumont, François; Barrieu, François; Herman, Eliot M.; Chrispeels, Maarten J.

    1998-01-01

    We studied aquaporins in maize (Zea mays), an important crop in which numerous studies on plant water relations have been carried out. A maize cDNA, ZmTIP1, was isolated by reverse transcription-coupled PCR using conserved motifs from plant aquaporins. The derived amino acid sequence of ZmTIP1 shows 76% sequence identity with the tonoplast aquaporin γ-TIP (tonoplast intrinsic protein) from Arabidopsis. Expression of ZmTIP1 in Xenopus laevis oocytes showed that it increased the osmotic water permeability of oocytes 5-fold; this water transport was inhibited by mercuric chloride. A cross-reacting antiserum made against bean α-TIP was used for immunocytochemical localization of ZmTIP1. These results indicate that this and/or other aquaporins is abundantly present in the small vacuoles of meristematic cells. Northern analysis demonstrated that ZmTIP1 is expressed in all plant organs. In situ hybridization showed a high ZmTIP1 expression in meristems and zones of cell enlargement: tips of primary and lateral roots, leaf primordia, and male and female inflorescence meristems. The high ZmTIP1 expression in meristems and expanding cells suggests that ZmTIP1 is needed (a) for vacuole biogenesis and (b) to support the rapid influx of water into vacuoles during cell expansion. PMID:9701570

  16. Diffusion, molecular separation, and drug delivery from lipid mesophases with tunable water channels.

    PubMed

    Negrini, Renata; Mezzenga, Raffaele

    2012-11-27

    Lyotropic liquid crystals characterized by a bicontinuous cubic phase (BCP) have a structure characterized by interpenetrated water channels following triply periodic minimal surfaces, which can be stable in excess water conditions and thus suitable in a multitude of applications. The control of the water channels size in these systems has a direct impact on their use for drug delivery, crystallization, and membrane separation processes. In this work we carry out systematic diffusion studies to show how the control on the water channel dimensions directly correlates with the release and separation performance of bicontinuous cubic phases. Specifically, we tune the water channels diameter of the monolinolein/water system by adding different amounts of sucrose stearate, which, having hydration-enhancing properties, can shift the boundaries of the phase diagram. We then design a model bicontinuous cubic phase lipidic membrane of the Im3m space group, having a sugar ester to monolinolein ratio of 20%, and we follow the diffusion within its water channels, by using molecules that differ systematically in size and molecular conformation, and we demonstrate, for each class of molecules, a diffusion-enhanced process upon increase of the water channel diameter. Finally, we also show the ability of the bicontinuous cubic phase to efficiently and selectively separate nanoparticles of a target size, by choosing an amount of sucrose stearate for which the water channel diameter and the nanoparticle dimensions match, demonstrating the possible use of these systems as filtering membranes of tunable molecular cutoff.

  17. Cellular and subcellular immunolocalization of vasopressin-regulated water channel in rat kidney.

    PubMed Central

    Nielsen, S; DiGiovanni, S R; Christensen, E I; Knepper, M A; Harris, H W

    1993-01-01

    Vasopressin (antidiuretic hormone) regulates body water balance by controlling water permeability of the renal collecting ducts. The control mechanisms may involve alterations in the number or unit conductance of water channels in the apical plasma membrane of collecting-duct cells. How this occurs is unknown, but indirect evidence exists for the "shuttle" hypothesis, which states that vasopressin causes exocytic insertion of water channel-laden vesicles from the apical cytosol. To test key aspects of the shuttle hypothesis, we have prepared polyclonal antisera against the recently cloned collecting-duct water channel protein and used the antisera in immunolocalization studies (light and electron microscopic levels) in thin and ultrathin cryosections from rat kidney. Labeling was seen exclusively in collecting-duct principal cells and inner medullary collecting-duct cells. Apical membrane labeling was intense. There was heavy labeling of abundant small subapical vesicles and of membrane structures within multivesicular bodies. In addition, labeling of basolateral plasma membranes in inner medullary collecting ducts was present. Depriving rats of water for 24 or 48 hr markedly increased collecting-duct water-channel protein expression determined by immunoblotting and immunolabeling. These results are compatible with at least two complementary modes of water-channel regulation in collecting-duct cells: (i) control of channel distribution between the apical membrane and a reservoir in subapical vesicles (shuttle hypothesis) and (ii) regulation of the absolute level of expression of water-channel protein. Images Fig. 1 Fig. 2 Fig. 3 PMID:8265605

  18. Vegetation and Channel Morphology Responses to Ordinary High Water Discharge Events in Arid West Stream Channels

    DTIC Science & Technology

    2009-05-01

    from aggrading main channel Single-thread channels with adjacent floodplains – Meandering that develops to minimize amount of change at...widening with bank destabilization – Aggradation due to decrease in capacity to transport sediment ERDC/CRREL TR-09-5 6 3 Methods In an

  19. Effects of proteoliposome composition and draw solution types on separation performance of aquaporin-based proteoliposomes: implications for seawater desalination using aquaporin-based biomimetic membranes.

    PubMed

    Zhao, Yang; Vararattanavech, Ardcharaporn; Li, Xuesong; Hélixnielsen, Claus; Vissing, Thomas; Torres, Jaume; Wang, Rong; Fane, Anthony G; Tang, Chuyang Y

    2013-02-05

    Aquaporins are a large family of water transport proteins in cell membranes. Their high water permeability and solute rejection make them potential building blocks for high-performance biomimetic membranes for desalination. In the current study, proteoliposomes were prepared using AquaporinZ from Escherichia coli cells, and their separation properties were characterized by stopped-flow measurements. The current study systematically investigated the effect of proteoliposome composition (lipid type, protein-to-lipid ratio (PLR), and the addition of cholesterol) on water permeability and NaCl retention. Among the various lipids investigated, 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)-based proteoliposomes were found to have excellent osmotic water permeability and NaCl reflection coefficient values. Increasing the PLR of DOPC proteoliposomes up to 1:200 increased their osmotic water permeability. However, further increase in the PLR reduced the osmotic water permeability probably due to the occurrence of defects in the proteoliposomes, whereas the addition of cholesterol improved their osmotic water permeation likely due to defects sealing. The current study also investigated the effect of major dissolved ions in seawater (e.g., Mg(2+) and SO(4)(2-)) on the stability of proteoliposomes, and design criteria for aquaporin-based biomimetic membranes are proposed in the context of desalination.

  20. Different pattern of aquaporin-4 expression in extensor digitorum longus and soleus during early development.

    PubMed

    Nicchia, Grazia P; Mola, Maria G; Pisoni, Michela; Frigeri, Antonio; Svelto, Maria

    2007-05-01

    Aquaporin-4 (AQP4) is the neuromuscular water channel expressed at the sarcolemma of mammalian fast-twitch fibers that mediates a high water transport rate, which is important during muscle activity. Clinical interest in the neuromuscular expression of AQP4 has increased as it is associated with the protein complex formed by dystrophin, the product of the gene affected in Duchenne muscular dystrophy. The expression of AQP4 during development has not been characterized. In this study, we analyzed the expression of AQP4 in extensor digitorum longus (EDL) and soleus, a fast- and slow-twitch muscle, respectively, during the first weeks after birth. The results show that AQP4 expression in both types of skeletal muscle occurs postnatally. The time course of expression of AQP4 in the two types of muscles was also different. Whereas the expression of AQP4 protein levels in the EDL showed a progressive increase during the first month after birth, reaching levels found in adults by day 24, the levels of the protein in the soleus showed a transient peak between day 12 and day 24 and declined thereafter, an effect that may be related to the transient high number of fast motor units innervating the soleus muscle during this time. The results suggest that AQP4 expression in skeletal muscle is under neuronal influence and contribute to the understanding of the molecular events of fiber differentiation during development.

  1. Aquaporin gene therapy corrects Sjögren's syndrome phenotype in mice.

    PubMed

    Lai, Zhennan; Yin, Hongen; Cabrera-Pérez, Javier; Guimaro, Maria C; Afione, Sandra; Michael, Drew G; Glenton, Patricia; Patel, Ankur; Swaim, William D; Zheng, Changyu; Nguyen, Cuong Q; Nyberg, Fred; Chiorini, John A

    2016-05-17

    Primary Sjögren's syndrome (pSS) is a chronic autoimmune disease that is estimated to affect 35 million people worldwide. Currently, no effective treatments exist for Sjögren's syndrome, and there is a limited understanding of the physiological mechanisms associated with xerostomia and hyposalivation. The present work revealed that aquaporin 5 expression, a water channel critical for salivary gland fluid secretion, is regulated by bone morphogenetic protein 6. Increased expression of this cytokine is strongly associated with the most common symptom of primary Sjögren's syndrome, the loss of salivary gland function. This finding led us to develop a therapy in the treatment of Sjögren's syndrome by increasing the water permeability of the gland to restore saliva flow. Our study demonstrates that the targeted increase of gland permeability not only resulted in the restoration of secretory gland function but also resolved the hallmark salivary gland inflammation and systemic inflammation associated with disease. Secretory function also increased in the lacrimal gland, suggesting this local therapy could treat the systemic symptoms associated with primary Sjögren's syndrome.

  2. Relationship between hexokinase and the aquaporin PIP1 in the regulation of photosynthesis and plant growth.

    PubMed

    Kelly, Gilor; Sade, Nir; Attia, Ziv; Secchi, Francesca; Zwieniecki, Maciej; Holbrook, N Michele; Levi, Asher; Alchanatis, Victor; Moshelion, Menachem; Granot, David

    2014-01-01

    Increased expression of the aquaporin NtAQP1, which is known to function as a plasmalemma channel for CO₂ and water, increases the rate of both photosynthesis and transpiration. In contrast, increased expression of Arabidopsis hexokinase1 (AtHXK1), a dual-function enzyme that mediates sugar sensing, decreases the expression of photosynthetic genes and the rate of transpiration and inhibits growth. Here, we show that AtHXK1 also decreases root and stem hydraulic conductivity and leaf mesophyll CO₂ conductance (g(m)). Due to their opposite effects on plant development and physiology, we examined the relationship between NtAQP1 and AtHXK1 at the whole-plant level using transgenic tomato plants expressing both genes simultaneously. NtAQP1 significantly improved growth and increased the transpiration rates of AtHXK1-expressing plants. Reciprocal grafting experiments indicated that this complementation occurs when both genes are expressed simultaneously in the shoot. Yet, NtAQP1 had only a marginal effect on the hydraulic conductivity of the double-transgenic plants, suggesting that the complementary effect of NtAQP1 is unrelated to shoot water transport. Rather, NtAQP1 significantly increased leaf mesophyll CO₂ conductance and enhanced the rate of photosynthesis, suggesting that NtAQP1 facilitated the growth of the double-transgenic plants by enhancing mesophyll conductance of CO₂.

  3. Aquaporin gene therapy corrects Sjögren’s syndrome phenotype in mice

    PubMed Central

    Lai, Zhennan; Yin, Hongen; Cabrera-Pérez, Javier; Guimaro, Maria C.; Afione, Sandra; Michael, Drew G.; Glenton, Patricia; Patel, Ankur; Swaim, William D.; Zheng, Changyu; Nguyen, Cuong Q.; Nyberg, Fred; Chiorini, John A.

    2016-01-01

    Primary Sjögren’s syndrome (pSS) is a chronic autoimmune disease that is estimated to affect 35 million people worldwide. Currently, no effective treatments exist for Sjögren’s syndrome, and there is a limited understanding of the physiological mechanisms associated with xerostomia and hyposalivation. The present work revealed that aquaporin 5 expression, a water channel critical for salivary gland fluid secretion, is regulated by bone morphogenetic protein 6. Increased expression of this cytokine is strongly associated with the most common symptom of primary Sjögren’s syndrome, the loss of salivary gland function. This finding led us to develop a therapy in the treatment of Sjögren’s syndrome by increasing the water permeability of the gland to restore saliva flow. Our study demonstrates that the targeted increase of gland permeability not only resulted in the restoration of secretory gland function but also resolved the hallmark salivary gland inflammation and systemic inflammation associated with disease. Secretory function also increased in the lacrimal gland, suggesting this local therapy could treat the systemic symptoms associated with primary Sjögren’s syndrome. PMID:27140635

  4. Distribution of aquaporin 4 on sarcolemma of fast-twitch skeletal myofibres.

    PubMed

    Kaakinen, Mika; Salmela, Paula; Zelenin, Sergey; Metsikkö, Kalervo

    2007-09-01

    The aquaporin 4 (AQP4) water channel is present on the sarcolemma of fast-twitch-type skeletal myofibres. We have examined the distribution of AQP4 in relation to sarcolemmal domain structure and found that AQP4 protein is not evenly distributed on the sarcolemma. Immunofluorescence staining of isolated single myofibres indicated a punctate staining pattern overlapping with the dystrophin glycoprotein complex, but with the transverse tubule openings being left clear. Myotendinous and neuromuscular junctions also lacked AQP4, despite their high content of the dystrophin glycoprotein complex. The destruction of caveoli with methyl-beta-cyclodextrin did not change the distribution of AQP4 at the sarcolemma. Moreover, AQP4 did not float with the caveolar marker caveolin-3 in sucrose gradients after Triton X-100 extraction at 4 degrees C. These data indicated that AQP4 was not associated with caveoli. Surprisingly, m. flexor digitorum brevis fibres, although of the fast-twitch type, often lacked AQP4. Furthermore, those fibres harbouring AQP4 at the sarcolemma showed a regionalized distribution, suggesting that large areas were devoid of the protein. Blockage of the synthesized proteins in the endoplasmic reticulum with brefeldin A showed that, in spite of its regionalized sarcolemmal distribution, AQP4 was synthesized along the entire length of the fibres. These results suggest functional differences in the water permeability of the sarcolemma not only between the fast-twitch muscles, but also within single muscle fibres.

  5. The Speed of Swelling Kinetics Modulates Cell Volume Regulation and Calcium Signaling in Astrocytes: A Different Point of View on the Role of Aquaporins

    PubMed Central

    Mola, Maria Grazia; Sparaneo, Angelo; Gargano, Concetta Domenica; Spray, David C.; Svelto, Maria; Frigeri, Antonio; Scemes, Eliana; Nicchia, Grazia Paola

    2016-01-01

    Regulatory volume decrease (RVD) is a process by which cells restore their original volume in response to swelling. In this study, we have focused on the role played by two different Aquaporins (AQPs), Aquaporin-4 (AQP4), and Aquaporin-1 (AQP1), in triggering RVD and in mediating calcium signaling in astrocytes under hypotonic stimulus. Using biophysical techniques to measure water flux through the plasma membrane of wild-type (WT) and AQP4 knockout (KO) astrocytes and of an astrocyte cell line (DI TNC1) transfected with AQP4 or AQP1, we here show that AQP-mediated fast swelling kinetics play a key role in triggering and accelerating RVD. Using calcium imaging, we show that AQP-mediated fast swelling kinetics also significantly increases the amplitude of calcium transients inhibited by Gadolinium and Ruthenium Red, two inhibitors of the transient receptor potential vanilloid 4 (TRPV4) channels, and prevented by removing extracellular calcium. Finally, inhibition of TRPV4 or removal of extracellular calcium does not affect RVD. All together our study provides evidence that (1) AQP influenced swelling kinetics is the main trigger for RVD and in mediating calcium signaling after hypotonic stimulus together with TRPV4, and (2) calcium influx from the extracellular space and/or TRPV4 are not essential for RVD to occur in astrocytes. Main Points: (1) The speed of swelling kinetics is the main trigger for Regulatory Volume Decrease (RVD) and for calcium response in astrocytes; (2) Calcium influx from the extracellular space and TRPV4 are not essential for RVD. PMID:26413835

  6. Investigation of water droplet dynamics in PEM fuel cell gas channels

    NASA Astrophysics Data System (ADS)

    Gopalan, Preethi

    Water management in Proton Exchange Membrane Fuel Cell (PEMFC) has remained one of the most important issues that need to be addressed before its commercialization in automotive applications. Accumulation of water on the gas diffusion layer (GDL) surface in a PEMFC introduces a barrier for transport of reactant gases through the GDL to the catalyst layer. Despite the fact that the channel geometry is one of the key design parameters of a fluidic system, very limited research is available to study the effect of microchannel geometry on the two-phase flow structure. In this study, the droplet-wall dynamics and two-phase pressure drop across the water droplet present in a typical PEMFC channel, were examined in auto-competitive gas channel designs (0.4 x 0.7 mm channel cross section). The liquid water flow pattern inside the gas channel was analyzed for different air velocities. Experimental data was analyzed using the Concus-Finn condition to determine the wettability characteristics in the corner region. It was confirmed that the channel angle along with the air velocity and the channel material influences the water distribution and holdup within the channel. Dynamic contact angle emerged as an important parameter in controlling the droplet-wall interaction. Experiments were also performed to understand how the inlet location of the liquid droplet on the GDL surface affects the droplet dynamic behavior in the system. It was found that droplets emerging near the channel wall or under the land lead to corner filling of the channel. Improvements in the channel design has been proposed based on the artificial channel roughness created to act as capillary grooves to transport the liquid water away from the land area. For droplets emerging near the center of the channel, beside the filling and no-filling behavior reported in the literature, a new droplet jumping behavior was observed. As droplets grew and touched the sidewalls, they jumped off to the sidewall leaving the

  7. Intestinal fluid absorption in anadromous salmonids: importance of tight junctions and aquaporins

    PubMed Central

    Sundell, Kristina S.; Sundh, Henrik

    2012-01-01

    The anadromous salmonid life cycle includes both fresh water (FW) and seawater (SW) stages. The parr-smolt transformation (smoltification) pre-adapt the fish to SW while still in FW. The osmoregulatory organs change their mode of action from a role of preventing water inflow in FW, to absorb ions to replace water lost by osmosis in SW. During smoltification, the drinking rate increases, in the intestine the ion and fluid transport increases and is further elevated after SW entry. In SW, the intestine absorbs ions to create an inwardly directed water flow which is accomplished by increased Na+, K+-ATPase (NKA) activity in the basolateral membrane, driving ion absorption via ion channels and/or co-transporters. This review will aim at discussing the expression patterns of the ion transporting proteins involved in intestinal fluid absorption in the FW stage, during smoltification and after SW entry. Of equal importance for intestinal fluid absorption as the active absorption of ions is the permeability of the epithelium to ions and water. During the smoltification the increase in NKA activity and water uptake in SW is accompanied by decreased paracellular permeability suggesting a redirection of the fluid movement from a paracellular route in FW, to a transcellular route in SW. Increased transcellular fluid absorption could be achieved by incorporation of aquaporins (AQPs) into the enterocyte membranes and/or by a change in fatty acid profile of the enterocyte lipid bilayer. An increased incorporation of unsaturated fatty acids into the membrane phospholipids will increase water permeability by enhancing the fluidity of the membrane. A second aim of the present review is therefore to discuss the presence and regulation of expression of AQPs in the enterocyte membrane as well as to discuss the profile of fatty acids present in the membrane phospholipids during different stages of the salmonid lifecycle. PMID:23060812

  8. Aquaporin-mediated improvement of freeze tolerance of Saccharomyces cerevisiae is restricted to rapid freezing conditions.

    PubMed

    Tanghe, An; Van Dijck, Patrick; Colavizza, Didier; Thevelein, Johan M

    2004-06-01

    Previous observations that aquaporin overexpression increases the freeze tolerance of baker's yeast (Saccharomyces cerevisiae) without negatively affecting the growth or fermentation characteristics held promise for the development of commercial baker's yeast strains used in frozen dough applications. In this study we found that overexpression of the aquaporin-encoding genes AQY1-1 and AQY2-1 improves the freeze tolerance of industrial strain AT25, but only in small doughs under laboratory conditions and not in large doughs under industrial conditions. We found that the difference in the freezing rate is apparently responsible for the difference in the results. We tested six different cooling rates and found that at high cooling rates aquaporin overexpression significantly improved the survival of yeast cells, while at low cooling rates there was no significant effect. Differences in the cultivation conditions and in the thawing rate did not influence the freeze tolerance under the conditions tested. Survival after freezing is determined mainly by two factors, cellular dehydration and intracellular ice crystal formation, which depend in an inverse manner on the cooling velocity. In accordance with this so-called two-factor hypothesis of freezing injury, we suggest that water permeability is limiting, and therefore that aquaporin function is advantageous, only under rapid freezing conditions. If this hypothesis is correct, then aquaporin overexpression is not expected to affect the leavening capacity of yeast cells in large, industrial frozen doughs, which do not freeze rapidly. Our results imply that aquaporin-overexpressing strains have less potential for use in frozen doughs than originally thought.

  9. Aquaporin-4 regulates extracellular space volume dynamics during high-frequency synaptic stimulation: a gene deletion study in mouse hippocampus.

    PubMed

    Haj-Yasein, Nadia Nabil; Jensen, Vidar; Østby, Ivar; Omholt, Stig W; Voipio, Juha; Kaila, Kai; Ottersen, Ole P; Hvalby, Øivind; Nagelhus, Erlend A

    2012-05-01

    Little is known about the physiological roles of aquaporin-4 (AQP4) in the central nervous system. AQP4 water channels are concentrated in endfeet membranes of astrocytes but also localize to the fine astrocytic processes that abut central synapses. Based on its pattern of expression, we predicted that AQP4 could be involved in controlling water fluxes and changes in extracellular space (ECS) volume that are associated with activation of excitatory pathways. Here, we show that deletion of Aqp4 accentuated the shrinkage of the ECS that occurred in the mouse hippocampal CA1 region during activation of Schaffer collateral/commissural fibers. This effect was found in the stratum radiatum (where perisynaptic astrocytic processes abound) but not in the pyramidal cell layer (where astrocytic processes constitute but a minor volume fraction). For both genotypes the ECS shrinkage was most pronounced in the pyramidal cell layer. Our data attribute a physiological role to AQP4 and indicate that this water channel regulates extracellular volume dynamics in the mammalian brain.

  10. Characterization of four plasma membrane aquaporins in tulip petals: a putative homolog is regulated by phosphorylation.

    PubMed

    Azad, Abul Kalam; Katsuhara, Maki; Sawa, Yoshihiro; Ishikawa, Takahiro; Shibata, Hitoshi

    2008-08-01

    We suggested previously that temperature-dependent tulip (Tulipa gesneriana) petal movement that is concomitant with water transport is regulated by reversible phosphorylation of an unidentified plasma membrane intrinsic protein (PIP). In this study, four full-length cDNAs of PIPs from tulip petals were identified and cloned. Two PIPs, namely TgPIP1;1 and TgPIP1;2, are members of the PIP1 subfamily, and the remaining two PIPs, namely TgPIP2;1 and TgPIP2;2, belong to the PIP2 subfamily of aquaporins and were named according to the nomenclature of PIP genes in plants. Of these four homologs, only TgPIP2;2 displayed significant water channel activity in the heterologous expression assay using Xenopus laevis oocytes. The water channel activity of this functional isoform was abolished by mercury and was affected by inhibitors of protein kinase and protein phosphatase. Using a site-directed mutagenesis approach to substitute several serine residues with alanine, and assessing water channel activity using the methylotrophic yeast Pichia pastoris expression assay, we showed that Ser35, Ser116 and Ser274 are the putative phosphorylation sites of TgPIP2;2. Real-time reverse transcription-PCR analysis revealed that the transcript levels of TgPIP1;1 and TgPIP1;2 in tulip petals, stems, leaves, bulbs and roots are very low when compared with those of TgPIP2;1 and TgPIP2;2. The transcript level of TgPIP2;1 is negligible in roots, and TgPIP2;2 is ubiquitously expressed in all organs with significant transcript levels. From the data reported herein, we suggest that TgPIP2;2 might be modulated by phosphorylation and dephosphorylation for regulating water channel activity, and may play a role in transcellular water transport in all tulip organs.

  11. Hyperosmolality-mediated peritoneal microvascular vasodilation is linked to aquaporin function.

    PubMed

    Zakaria, El Rasheid; Althani, Asma; Fawzi, Ashraf A; Fituri, Omar M

    2014-01-01

    Glucose-based peritoneal dialysis (PD) solutions dilate the parietal and visceral peritoneal microvasculature by endothelium-dependent mechanisms that primarily involve hyperosmolality. This PD-mediated dilation occurs by active intracellular glucose uptake and adenosine Al receptor activation, and by hyperosmolality-stimulated glibenclamide-sensitive potassium channels. Both pathways invoke NO as a second messenger for vasodilation. We hypothesized that during crystalloid-induced osmosis, the osmotic water flux through the transendothelial water-exclusive aquaporin 1 (AQP1) channels is the primary mechanism whereby the endothelium is being stimulated to instigate hyperosmolality-driven vasodilation. Four microvascular levels (diameters in the range 6 - 100 microm) were visualized by intravital videomicroscopy of the terminal ileum in anesthetized rats. Microvascular diameters and flow were measured after topical exposure to a 5% hypertonic mannitol or 2.5% glucose-based PD solution, at baseline and after brief tissue pre-treatment (with 0.1% glutaraldehyde for 10 seconds) or after combined tissue pre-treatment and pharmacologic blockade of AQP1 with HgCl2 (100 micromol/L). Vascular endothelial integrity was verified by the response to acetylcholine (10(-4) mol/L) and sodium nitroprusside (10(-4) mol/L). The hyperosmolar solutions both caused rapid and sustained vasodilation at all microvascular levels, which was not altered by tissue pre-treatment. Inhibition of AQP1 completely abolished the mannitol-induced vasodilation and markedly attenuated the PD fluid-mediated vasodilation. Neither glutaraldehyde pre-treatment nor HgCl2 affected tissue integrity or endothelial cell function. We conclude that the peritoneal microvascular vasodilation caused by hyperosmolar PD fluid is instigated by the osmotic water flux through AQP1. Clinical PD solutions have components other than hyperosmolality that can induce endothelium-dependent peritoneal microvascular vasodilation

  12. Aquaporin-1 Facilitates Angiogenic Invasion in the Pathologic Neovasculature that Accompanies Cirrhosis

    PubMed Central

    Huebert, Robert C.; Vasdev, Meher M.; Shergill, Uday; Das, Amitava; Huang, Bing Q.; Charlton MR, Michael R.; LaRusso, Nicholas F.; Shah, Vijay H.

    2010-01-01

    Increasing evidence suggests that hepatic fibrosis and pathologic angiogenesis are inter-dependent processes that occur in parallel. Endothelial cell invasion is requisite for angiogenesis and thus studies of the mechanisms governing liver endothelial cell (LEC) invasion during cirrhosis are of great importance. Emerging research implicates amoeboid-type motility and membrane blebbing as features that may facilitate invasion through matrix-rich microenvironments. Aquaporins (AQPs) are integral membrane water channels, recognized for their importance in epithelial secretion and absorption. However, recent studies also suggest links between water transport and cell motility / invasion. Therefore, the purpose of this study was to test the hypothesis that AQP-1 is involved in amoeboid motility and angiogenic invasion during cirrhosis. AQP-1 expression and localization was examined in normal and cirrhotic liver tissues derived from human and mouse. AQP-1 levels were modulated in LEC using retroviral overexpression or siRNA knockdown and functional effects on invasion, membrane blebbing dynamics, and osmotic water permeability were assayed. Results demonstrate that AQP-1 is up-regulated in the small, angiogenic, neo-vasculature within the fibrotic septa of cirrhotic liver. AQP-1 overexpression promotes FGF-induced dynamic membrane blebbing in LEC which is sufficient to augment invasion through extracellular matrix. Additionally, AQP-1 localizes to plasma membrane blebs where it increases osmotic water permeability and locally facilitates the rapid, trans-membrane flux of water. CONCLUSION AQP-1 enhances osmotic water permeability and FGF-induced dynamic membrane blebbing in LEC and thereby drives invasion and pathologic angiogenesis during cirrhosis PMID:20578142

  13. The Lineage-Specific Evolution of Aquaporin Gene Clusters Facilitated Tetrapod Terrestrial Adaptation

    PubMed Central

    Finn, Roderick Nigel; Chauvigné, François; Hlidberg, Jón Baldur; Cutler, Christopher P.; Cerdà, Joan

    2014-01-01

    A major physiological barrier for aquatic organisms adapting to terrestrial life is dessication in the aerial environment. This barrier was nevertheless overcome by the Devonian ancestors of extant Tetrapoda, but the origin of specific molecular mechanisms that solved this water problem remains largely unknown. Here we show that an ancient aquaporin gene cluster evolved specifically in the sarcopterygian lineage, and subsequently diverged into paralogous forms of AQP2, -5, or -6 to mediate water conservation in extant Tetrapoda. To determine the origin of these apomorphic genomic traits, we combined aquaporin sequencing from jawless and jawed vertebrates with broad taxon assembly of >2,000 transcripts amongst 131 deuterostome genomes and developed a model based upon Bayesian inference that traces their convergent roots to stem subfamilies in basal Metazoa and Prokaryota. This approach uncovered an unexpected diversity of aquaporins in every lineage investigated, and revealed that the vertebrate superfamily consists of 17 classes of aquaporins (Aqp0 - Aqp16). The oldest orthologs associated with water conservation in modern Tetrapoda are traced to a cluster of three aqp2-like genes in Actinistia that likely arose >500 Ma through duplication of an aqp0-like gene present in a jawless ancestor. In sea lamprey, we show that aqp0 first arose in a protocluster comprised of a novel aqp14 paralog and a fused aqp01 gene. To corroborate these findings, we conducted phylogenetic analyses of five syntenic nuclear receptor subfamilies, which, together with observations of extensive genome rearrangements, support the coincident loss of ancestral aqp2-like orthologs in Actinopterygii. We thus conclude that the divergence of sarcopterygian-specific aquaporin gene clusters was permissive for the evolution of water conservation mechanisms that facilitated tetrapod terrestrial adaptation. PMID:25426855

  14. A fruit-specific plasma membrane aquaporin subtype PIP1;1 is regulated during strawberry (Fragaria x ananassa) fruit ripening.

    PubMed

    Mut, Paula; Bustamante, Claudia; Martínez, Gustavo; Alleva, Karina; Sutka, Moira; Civello, Marcos; Amodeo, Gabriela

    2008-04-01

    Despite the advances in the physiology of fruit ripening, the role and contribution of water pathways are still barely considered. Our aim was therefore to characterize aquaporins, proteins that render the molecular basis for putative regulatory mechanisms in water transport. We focused our work on strawberry (Fragaria xananassa) fruit, a non-climacteric fruit of special interest because of its forced brief commercial shelf life. A full-length cDNA was isolated with high homology with plasma membrane (PM) intrinsic proteins (named FaPIP1;1), showing a profile with high expression in fruit, less in ovaries and no detection at all in other parts. Its cellular localization was confirmed at the PM. As reported in other plasma membrane intrinsic proteins subtype 1 (PIP1s), when expressing the protein in Xenopus leavis oocytes, FaPIP1;1 shows low water permeability values that only increased when it is coexpressed with a plasma membrane intrinsic protein subtype 2. Northern blotting using total RNA shows that its expression increases during fruit ripening. Moreover, functional characterization of isolated PM vesicles from red stage fruit unequivocally demonstrates the presence of active water channels, i.e. high water permeability values and a low Arrhenius activation energy, both evidences of water transport mediated by proteins. Interestingly, as many ripening-related strawberry genes, the expression pattern of FaPIP1;1 was also repressed by the presence of auxins. We therefore report a fruit specific PIP1 aquaporin with an accumulation pattern tightly associated to auxins and to the ripening process that might be responsible for increasing water permeability at the level of the PM in ripe fruit.

  15. Neuroinflammatory pathways in binge alcohol-induced neuronal degeneration: oxidative stress cascade involving aquaporin, brain edema, and phospholipase A2 activation.

    PubMed

    Collins, Michael A; Neafsey, Edward J

    2012-01-01

    Chronic binge alcohol exposure in adult rat models causes neuronal degeneration in the cortex and hippocampus that is not reduced by excitotoxic receptor antagonists, but is prevented by antioxidants. Neuroinflammatory (glial-neuronal) signaling pathways are believed to underlie the oxidative stress and brain damage. Based on our experimental results as well as increased knowledge about the pro-neuroinflammatory potential of glial water channels, we propose that induction of aquaporin-4 can be a critical initiating factor in alcohol's neurotoxic effects, through the instigation of cellular edema-based neuroinflammatory cascades involving increased phospholipase A2 activities, polyunsaturated fatty acid release/membrane depletion, decreased prosurvival signaling, and oxidative stress. A testable scheme for this pathway is presented that incorporates recent findings in the alcohol-brain literature indicating a role for neuroimmune activation (upregulation of NF-kappaB, proinflammatory cytokines, and toll-like receptors). We present the argument that such neuroimmune activation could be associated with or even dependent on increased aquaporin-4 and glial swelling as well.

  16. Aquaporin-11 (AQP11) Expression in the Mouse Brain

    PubMed Central

    Koike, Shin; Tanaka, Yasuko; Matsuzaki, Toshiyuki; Morishita, Yoshiyuki; Ishibashi, Kenichi

    2016-01-01

    Aquaporin-11 (AQP11) is an intracellular aquaporin expressed in various tissues, including brain tissues in mammals. While AQP11-deficient mice have developed fatal polycystic kidneys at one month old, the role of AQP11 in the brain was not well appreciated. In this study, we examined the AQP11 expression in the mouse brain and the brain phenotype of AQP11-deficient mice. AQP11 messenger ribonucleic acid (mRNA) and protein were expressed in the brain, but much less than in the thymus and kidney. Immunostaining showed that AQP11 was localized at the epithelium of the choroid plexus and at the endothelium of the brain capillary, suggesting that AQP11 may be involved in water transport at the choroid plexus and blood-brain barrier (BBB) in the brain. The expression of AQP4, another brain AQP expressed at the BBB, was decreased by half in AQP11-deficient mice, thereby suggesting the presence of the interaction between AQP11 and AQP4. The brain of AQP11-deficient mice, however, did not show any morphological abnormalities and the function of the BBB was intact. Our findings provide a novel insight into a water transport mechanism mediated by AQPs in the brain, which may lead to a new therapy for brain edema. PMID:27258268

  17. Hydrogen peroxide treatments for channel catfish eggs infected with water molds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungi, or water molds Saprolegnia spp., on channel catfish Ictalurus punctatus eggs can lower fry production. This requires the producer to spawn more catfish or face fingerling shortages. Few treatments have been tested against channel catfish eggs infested with an identified fungus. Hydrogen pe...

  18. Evidence of Positive Selection of Aquaporins Genes from Pontoporia blainvillei during the Evolutionary Process of Cetaceans

    PubMed Central

    São Pedro, Simone Lima; Alves, João Marcelo Pereira; Barreto, André Silva; Lima, André Oliveira de Souza

    2015-01-01

    Background Marine mammals are well adapted to their hyperosmotic environment. Several morphological and physiological adaptations for water conservation and salt excretion are known to be present in cetaceans, being responsible for regulating salt balance. However, most previous studies have focused on the unique renal physiology of marine mammals, but the molecular bases of these mechanisms remain poorly explored. Many genes have been identified to be involved in osmotic regulation, including the aquaporins. Considering that aquaporin genes were potentially subject to strong selective pressure, the aim of this study was to analyze the molecular evolution of seven aquaporin genes (AQP1, AQP2, AQP3, AQP4, AQP6, AQP7, and AQP9) comparing the lineages of cetaceans and terrestrial mammals. Results Our results demonstrated strong positive selection in cetacean-specific lineages acting only in the gene for AQP2 (amino acids 23, 83, 107,179, 180, 181, 182), whereas no selection was observed in terrestrial mammalian lineages. We also analyzed the changes in the 3D structure of the aquaporin 2 protein. Signs of strong positive selection in AQP2 sites 179, 180, 181, and 182 were unexpectedly identified only in the baiji lineage, which was the only river dolphin examined in this study. Positive selection in aquaporins AQP1 (45), AQP4 (74), AQP7 (342, 343, 356) was detected in cetaceans and artiodactyls, suggesting that these events are not related to maintaining water and electrolyte homeostasis in seawater. Conclusions Our results suggest that the AQP2 gene might reflect different selective pressures in maintaining water balance in cetaceans, contributing to the passage from the terrestrial environment to the aquatic. Further studies are necessary, especially those including other freshwater dolphins, who exhibit osmoregulatory mechanisms different from those of marine cetaceans for the same essential task of maintaining serum electrolyte balance. PMID:26226365

  19. Structure and functions of aquaporin-4-based orthogonal arrays of particles.

    PubMed

    Wolburg, Hartwig; Wolburg-Buchholz, Karen; Fallier-Becker, Petra; Noell, Susan; Mack, Andreas F

    2011-01-01

    Orthogonal arrays or assemblies of intramembranous particles (OAPs) are structures in the membrane of diverse cells which were initially discovered by means of the freeze-fracturing technique. This technique, developed in the 1960s, was important for the acceptance of the fluid mosaic model of the biological membrane. OAPs were first described in liver cells, and then in parietal cells of the stomach, and most importantly, in the astrocytes of the brain. Since the discovery of the structure of OAPs and the identification of OAPs as the morphological equivalent of the water channel protein aquaporin-4 (AQP4) in the 1990s, a plethora of morphological work on OAPs in different cells was published. Now, we feel a need to balance new and old data on OAPs and AQP4 to elucidate the interrelationship of both structures and molecules. In this review, the identity of OAPs as AQP4-based structures in a diversity of cells will be described. At the same time, arguments are offered that under pathological or experimental circumstances, AQP4 can also be expressed in a non-OAP form. Thus, we attempt to project classical work on OAPs onto the molecular biology of AQP4. In particular, astrocytes and glioma cells will play the major part in this review, not only due to our own work but also due to the fact that most studies on structure and function of AQP4 were done in the nervous system.

  20. Urinary Excretion of Kidney Aquaporins as Possible Diagnostic Biomarker of Diabetic Nephropathy

    PubMed Central

    Rossi, Luigi; Nicoletti, Maria Celeste; Mastrofrancesco, Lisa; Di Franco, Antonella; Indrio, Francesca; Lella, Rossella; Laviola, Luigi; Giorgino, Francesco; Svelto, Maria; Gesualdo, Loreto

    2017-01-01

    Diabetic nephropathy (DN) is a microangiopathic complication of diabetes mellitus (DM) affecting one-third of diabetic patients. The large variability in the clinical presentation of renal involvement in patients with DM makes kidney biopsy a prerequisite for a correct diagnosis. However, renal biopsy is an invasive procedure associated with risk of major complications. Numerous studies aimed to identify a noninvasive biomarker of DN but, so far, none of these is considered to be sufficiently specific and sensitive. Water channel aquaporins (AQPs), expressed at the plasma membrane of epithelial tubular cells, are often dysregulated during DN. In this work, we analyzed the urine excretion of AQP5 and AQP2 (uAQP5 and uAQP2), via exosomes, in 35 diabetic patients: 12 normoalbuminuric with normal renal function (DM), 11 with proteinuric nondiabetic nephropathy (NDN), and 12 with histological diagnosis and classification of DN. ELISA and WB analysis independently showed that uAQP5 was significantly increased in DN patients. Interestingly, linear regression analysis showed a positive correlation between uAQP5 and the histological class of DN. The same analysis, focusing on uAQP2, showed comparable results. Taken together, these data suggest a possible use of AQP5 and AQP2 as novel noninvasive biomarkers to help in classifying the clinical stage of DN. PMID:28246612

  1. Forensic application of intrarenal aquaporin-2 expression for differential diagnosis between freshwater and saltwater drowning.

    PubMed

    An, Jun-Ling; Ishida, Yuko; Kimura, Akihiko; Kondo, Toshikazu

    2010-03-01

    Aquaporins (AQPs) are a family of homologous water channel proteins. In this study, the expressions of AQP1, 2, and 4 were immunohistochemically examined in kidney samples to evaluate their forensic applicability to differentiate between freshwater drowning (FWD) and saltwater drowning (SWD). Kidney samples were obtained from 51 drowning cases (23 FWD and 28 SWD) and 19 non-drowning cases. AQP1 was expressed in the proximal tubules and glomeruli, and AQP4 was localized in the collecting ducts. However, there were no significant differences in AQP1 and AQP4 expressions among FWD, SWD, and control groups. Immunohistochemically, AQP2 was predominantly expressed in the apical plasma membrane of the collecting duct principal cells in all kidney samples of FWD and SWD. Morphometrically, AQP2 expression at the apical plasma membrane of collecting ducts was significantly enhanced in SWD group, compared with FWD and control groups. On the other hand, AQP-2 expression was significantly lower in FWD group than in control group. Moreover, in drowning cases, there was no correlation between post-submersion intervals and AQP expression. From a forensic aspect, immunohistochemical detection of AQP2 in the kidney can be considered a valuable marker to differentiate between FWD and SWD.

  2. Anti-aquaporin-4 antibodies in Devic’s neuromyelitis optica: therapeutic implications

    PubMed Central

    Marignier, Romain; Giraudon, Pascale; Vukusic, Sandra; Confavreux, Christian; Honnorat, Jérôme

    2010-01-01

    Devic’s neuromyelitis optica (DNMO) is a demyelinating and inflammatory disease of the central nervous system (CNS) essentially restricted to the spinal cord and the optic nerves. It is a rare disorder with a prevalence estimated at less than 1/100,000 in Western countries. Since the first description by Eugène Devic in 1894, the relationship between DNMO and multiple sclerosis (MS) has been controversial. Recent clinical, epidemiological, pathological and immunological data demonstrate that MS and DNMO are distinct entities. This distinction between DNMO and MS is crucial, as prognosis and treatment are indeed different. DNMO is now considered to be an autoimmune, antibody-mediated disease especially since the identification of a specific serum autoantibody, named NMO-IgG and directed against the main water channel of the CNS, aquaporin-4 (AQP4). The assessment of AQP4 antibodies (Abs) has initially been proposed to differentiate DNMO and MS. It has also enlarged the clinical spectrum of DNMO and proved to be helpful in predicting relapses and conversion to DNMO after a first episode of longitudinally extensive transverse myelitis or isolated optic neuritis. Lastly, the discovery of the pathogenic role of AQP4 Abs in DNMO leads to a better understanding of detailed DNMO immunopathology and the elaboration of relevant novel treatment strategies specific to DNMO. In this review, we summarize the present and future therapeutic implications generated by the discovery of the various pathogenic mechanisms of AQP4 Abs in DNMO pathophysiology. PMID:21179621

  3. Hyperglycemia Induces Cellular Hypoxia through Production of Mitochondrial ROS Followed by Suppression of Aquaporin-1

    PubMed Central

    Sada, Kiminori; Nishikawa, Takeshi; Kukidome, Daisuke; Yoshinaga, Tomoaki; Kajihara, Nobuhiro; Sonoda, Kazuhiro; Senokuchi, Takafumi; Motoshima, Hiroyuki; Matsumura, Takeshi; Araki, Eiichi

    2016-01-01

    We previously proposed that hyperglycemia-induced mitochondrial reactive oxygen species (mtROS) generation is a key event in the development of diabetic complications. Interestingly, some common aspects exist between hyperglycemia and hypoxia-induced phenomena. Thus, hyperglycemia may induce cellular hypoxia, and this phenomenon may also be involved in the pathogenesis of diabetic complications. In endothelial cells (ECs), cellular hypoxia increased after incubation with high glucose (HG). A similar phenomenon was observed in glomeruli of diabetic mice. HG-induced cellular hypoxia was suppressed by mitochondria blockades or manganese superoxide dismutase (MnSOD) overexpression, which is a specific SOD for mtROS. Overexpression of MnSOD also increased the expression of aquaporin-1 (AQP1), a water and oxygen channel. AQP1 overexpression in ECs suppressed hyperglycemia-induced cellular hypoxia, endothelin-1 and fibronectin overproduction, and apoptosis. Therefore, hyperglycemia-induced cellular hypoxia and mtROS generation may promote hyperglycemic damage in a coordinated manner. PMID:27383386

  4. Aquaporin-3 potentiates allergic airway inflammation in ovalbumin-induced murine asthma.

    PubMed

    Ikezoe, Kohei; Oga, Toru; Honda, Tetsuya; Hara-Chikuma, Mariko; Ma, Xiaojun; Tsuruyama, Tatsuaki; Uno, Kazuko; Fuchikami, Jun-Ichi; Tanizawa, Kiminobu; Handa, Tomohiro; Taguchi, Yoshio; Verkman, Alan S; Narumiya, Shuh; Mishima, Michiaki; Chin, Kazuo

    2016-05-11

    Oxidative stress plays a pivotal role in the pathogenesis of asthma. Aquaporin-3 (AQP3) is a small transmembrane water/glycerol channel that may facilitate the membrane uptake of hydrogen peroxide (H2O2). Here we report that AQP3 potentiates ovalbumin (OVA)-induced murine asthma by mediating both chemokine production from alveolar macrophages and T cell trafficking. AQP3 deficient (AQP3(-/-)) mice exhibited significantly reduced airway inflammation compared to wild-type mice. Adoptive transfer experiments showed reduced airway eosinophilic inflammation in mice receiving OVA-sensitized splenocytes from AQP3(-/-) mice compared with wild-type mice after OVA challenge, consistently with fewer CD4(+) T cells from AQP3(-/-) mice migrating to the lung than from wild-type mice. Additionally, in vivo and vitro experiments indicated that AQP3 induced the production of some chemokines such as CCL24 and CCL22 through regulating the amount of cellular H2O2 in M2 polarized alveolar macrophages. These results imply a critical role of AQP3 in asthma, and AQP3 may be a novel therapeutic target.

  5. Deletion of aquaporin-4 increases extracellular K(+) concentration during synaptic stimulation in mouse hippocampus.

    PubMed

    Haj-Yasein, Nadia Nabil; Bugge, Cecilie Elisabeth; Jensen, Vidar; Østby, Ivar; Ottersen, Ole Petter; Hvalby, Øivind; Nagelhus, Erlend Arnulf

    2015-07-01

    The coupling between the water channel aquaporin-4 (AQP4) and K(+) transport has attracted much interest. In this study, we assessed the effect of Aqp4 deletion on activity-induced [K(+)]o changes in acute slices from hippocampus and corpus callosum of adult mice. We show that Aqp4 deletion has a layer-specific effect on [K(+)]o that precisely mirrors the known effect on extracellular volume dynamics. In CA1, the peak [K(+)]o in stratum radiatum during 20 Hz stimulation of Schaffer collateral/commissural fibers was significantly higher in Aqp4 (-/-) mice than in wild types, whereas no differences were observed throughout the [K(+)]o recovery phase. In stratum pyramidale and corpus callosum, neither peak [K(+)]o nor post-stimulus [K(+)]o recovery was affected by Aqp4 deletion. Our data suggest that AQP4 modulates [K(+)]o during synaptic stimulation through its effect on extracellular space volume.

  6. Unexpected complexity of the Aquaporin gene family in the moss Physcomitrella patens

    PubMed Central

    Danielson, Jonas ÅH; Johanson, Urban

    2008-01-01

    Background Aquaporins, also called major intrinsic proteins (MIPs), constitute an ancient superfamily of channel proteins that facilitate the transport of water and small solutes across cell membranes. MIPs are found in almost all living organisms and are particularly abundant in plants where they form a divergent group of proteins able to transport a wide selection of substrates. Results Analyses of the whole genome of Physcomitrella patens resulted in the identification of 23 MIPs, belonging to seven different subfamilies, of which only five have been previously described. Of the newly discovered subfamilies one was only identified in P. patens (Hybrid Intrinsic Protein, HIP) whereas the other was found to be present in a wide variety of dicotyledonous plants and forms a major previously unrecognized MIP subfamily (X Intrinsic Proteins, XIPs). Surprisingly also some specific groups within subfamilies present in Arabidopsis thaliana and Zea mays could be identified in P. patens. Conclusion Our results suggest an early diversification of MIPs resulting in a large number of subfamilies already in primitive terrestrial plants. During the evolution of higher plants some of these subfamilies were subsequently lost while the remaining subfamilies expanded and in some cases diversified, resulting in the formation of more specialized groups within these subfamilies. PMID:18430224

  7. Aquaporin-3 potentiates allergic airway inflammation in ovalbumin-induced murine asthma

    PubMed Central

    Ikezoe, Kohei; Oga, Toru; Honda, Tetsuya; Hara-Chikuma, Mariko; Ma, Xiaojun; Tsuruyama, Tatsuaki; Uno, Kazuko; Fuchikami, Jun-ichi; Tanizawa, Kiminobu; Handa, Tomohiro; Taguchi, Yoshio; Verkman, Alan S.; Narumiya, Shuh; Mishima, Michiaki; Chin, Kazuo

    2016-01-01

    Oxidative stress plays a pivotal role in the pathogenesis of asthma. Aquaporin-3 (AQP3) is a small transmembrane water/glycerol channel that may facilitate the membrane uptake of hydrogen peroxide (H2O2). Here we report that AQP3 potentiates ovalbumin (OVA)-induced murine asthma by mediating both chemokine production from alveolar macrophages and T cell trafficking. AQP3 deficient (AQP3−/−) mice exhibited significantly reduced airway inflammation compared to wild-type mice. Adoptive transfer experiments showed reduced airway eosinophilic inflammation in mice receiving OVA-sensitized splenocytes from AQP3−/− mice compared with wild-type mice after OVA challenge, consistently with fewer CD4+ T cells from AQP3−/− mice migrating to the lung than from wild-type mice. Additionally, in vivo and vitro experiments indicated that AQP3 induced the production of some chemokines such as CCL24 and CCL22 through regulating the amount of cellular H2O2 in M2 polarized alveolar macrophages. These results imply a critical role of AQP3 in asthma, and AQP3 may be a novel therapeutic target. PMID:27165276

  8. Reduced brain edema and infarct volume in aquaporin-4 deficient mice after transient focal cerebral ischemia.

    PubMed

    Yao, Xiaoming; Derugin, Nikita; Manley, Geoffrey T; Verkman, A S

    2015-01-01

    Aquaporin-4 (AQP4) is a water channel expressed in astrocyte end-feet lining the blood-brain barrier. AQP4 deletion in mice is associated with improved outcomes in global cerebral ischemia produced by transient carotid artery occlusion, and focal cerebral ischemia produced by permanent middle cerebral artery occlusion (MCAO). Here, we investigated the consequences of 1-h transient MCAO produced by intraluminal suture blockade followed by 23 h of reperfusion. In nine AQP4(+/+) and nine AQP4(-/-) mice, infarct volume was significantly reduced by an average of 39 ± 4% at 24h in AQP4(-/-) mice, cerebral hemispheric edema was reduced by 23 ± 3%, and Evans Blue extravasation was reduced by 31 ± 2% (mean ± SEM). Diffusion-weighted magnetic resonance imaging showed greatest reduction in apparent diffusion coefficient around the occlusion site after reperfusion, with remarkably lesser reduction in AQP4(-/-) mice. The reduced infarct volume in AQP4(-/-) mice following transient MCAO supports the potential utility of therapeutic AQP4 inhibition in stroke.

  9. Laboratory Studies of Steep and Breaking Deep Water Waves in a Convergent Channel

    DTIC Science & Technology

    2015-05-28

    TASK NO RR023- 11 TITLE (Include Security Classification) Laboratory Studies of Steep and Breaking Deep Water Waves in a Convergent Channel...These include the relative motion between the water and, say, a ship in the seaway or a cylindrical obstacle in a wavefield; wind blowing over the water ...in deep water . The present experiments were conducted to study the evolution of steep and breaking deep water waves. The waves were made to steepen

  10. A new gating site in human aquaporin-4: Insights from molecular dynamics simulations.

    PubMed

    Alberga, Domenico; Nicolotti, Orazio; Lattanzi, Gianluca; Nicchia, Grazia Paola; Frigeri, Antonio; Pisani, Francesco; Benfenati, Valentina; Mangiatordi, Giuseppe Felice

    2014-12-01

    Aquaporin-4 (AQP4) is the predominant water channel in different organs and tissues. An alteration of its physiological functioning is responsible for several disorders of water regulation and, thus, is considered an attractive target with a promising therapeutic and diagnostic potential. Molecular dynamics (MD) simulations performed on the AQP4 tetramer embedded in a bilayer of lipid molecules allowed us to analyze the role of spontaneous fluctuations occurring inside the pore. Following the approach by Hashido et al. [Hashido M, Kidera A, Ikeguchi M (2007) Biophys J 93: 373-385], our analysis on 200ns trajectory discloses three domains inside the pore as key elements for water permeation. Herein, we describe the gating mechanism associated with the well-known selectivity filter on the extracellular side of the pore and the crucial regulation ensured by the NPA motifs (asparagine, proline, alanine). Notably, on the cytoplasmic side, we find a putative gate formed by two residues, namely, a cysteine belonging to the loop D (C178) and a histidine from loop B (H95). We observed that the spontaneous reorientation of the imidazole ring of H95 acts as a molecular switch enabling H-bond interaction with C178. The occurrence of such local interaction seems to be responsible for the narrowing of the pore and thus of a remarkable decrease in water flux rate. Our results are in agreement with recent experimental observations and may represent a promising starting point to pave the way for the discovery of chemical modulators of AQP4 water permeability.

  11. Acute and Chronic Changes in Aquaporin 4 Expression After Spinal Cord Injury

    PubMed Central

    Nesic, Olivera; Lee, Julieann; Ye, Zaiming; Unabia, Geda C.; Rafati, Danny; Hulsebosch, Claire E.; Perez-Polo, J. Regino

    2007-01-01

    The effect of spinal cord injury (SCI) on the expression levels and distribution of water channel aquaporin 4 (AQP4) has not been studied. We have found AQP4 in gray and white matter astrocytes in both uninjured and injured rat spinal cords. AQP4 was detected in astrocytic processes that were tightly surrounding neurons and blood vessels, but more robustly in glia limitans externa and interna, which were forming an interface between spinal cord parenchyma and cerebrospinal fluid (CSF). Such spatial distribution of AQP4 suggests a critical role that astrocytes expressing AQP4 play in the transport of water from blood/CSF to spinal cord parenchyma and vice versa. SCI induced biphasic changes in astrocytic AQP4 levels, including its early down-regulation and subsequent persistent up-regulation. However, changes in AQP4 expression did not correlate well with the onset and magnitude of astrocytic activation, when measured as changes in GFAP expression levels. It appears that reactive astrocytes began expressing increased levels of AQP4 after migrating to the wound area (thoracic region) two weeks after SCI, and AQP4 remained significantly elevated for months after SCI. We also showed that increased levels of AQP4 spread away from the lesion site to cervical and lumbar segments, but only in chronically injured spinal cords. Although overall AQP4 expression levels increased in chronically-injured spinal cords, AQP4 immunolabeling in astrocytic processes forming glia limitans externa was decreased, which may indicate impaired water transport through glia limitans externa. Finally, we also showed that SCI-induced changes in AQP4 protein levels correlate, both temporally and spatially, with persistent increases in water content in acutely and chronically injured spinal cords. Although correlative, this finding suggests a possible link between AQP4 and impaired water transport/edema/syringomyelia in contused spinal cords. PMID:17074445

  12. cAMP regulated membrane diffusion of a green fluorescent protein-aquaporin 2 chimera.

    PubMed Central

    Umenishi, F; Verbavatz, J M; Verkman, A S

    2000-01-01

    To study the membrane mobility of aquaporin water channels, clones of stably transfected LLC-PK1 cells were isolated with plasma membrane expression of GFP-AQP1 and GFP-AQP2, in which the green fluorescent protein (GFP) was fused upstream and in-frame to each aquaporin (AQP). The GFP fusion did not affect AQP tetrameric association or water transport function. GFP-AQP lateral mobility was measured by irreversibly bleaching a spot (diameter 0.8 microm) on the membrane with an Argon laser beam (488 nm) and following the fluorescence recovery into the bleached area resulting from GFP translational diffusion. In cells expressing GFP-AQP1, fluorescence recovered to >96% of its initial level with t(1/2) of 38 +/- 2 s (23 degrees C) and 21 +/- 1 s (37 degrees C), giving diffusion coefficients (D) of 5.3 and 9.3 x 10(-11) cm(2)/s. GFP-AQP1 diffusion was abolished by paraformaldehyde fixation, slowed >50-fold by the cholesterol-binding agent filipin, but not affected by cAMP agonists. In cells expressing GFP-AQP2, fluorescence recovered to >98% with D of 5.7 and 9.0 x 10(-11) cm(2)/s at 23 degrees C and 37 degrees C. In contrast to results for GFP-AQP1, the cAMP agonist forskolin slowed GFP-AQP2 mobility by up to tenfold. The cAMP slowing was blocked by actin filament disruption with cytochalasin D, by K(+)-depletion in combination with hypotonic shock, and by mutation of the protein kinase A phosphorylation consensus site (S256A) at the AQP2 C-terminus. These results indicate unregulated diffusion of AQP1 in membranes, but regulated AQP2 diffusion that was dependent on phosphorylation at serine 256, and an intact actin cytoskeleton and clathrin coated pit. The cAMP-induced immobilization of phosphorylated AQP2 provides evidence for AQP2-protein interactions that may be important for retention of AQP2 in specialized membrane domains for efficient membrane recycling. PMID:10653816

  13. Aquaporin-4 expression is severely reduced in human sarcoglycanopathies and dysferlinopathies.

    PubMed

    Assereto, Stefania; Mastrototaro, Mauro; Stringara, Silvia; Gazzerro, Elisabetta; Broda, Paolo; Nicchia, Grazia Paola; Svelto, Maria; Bruno, Claudio; Nigro, Vincenzo; Lisanti, M P; Frigeri, Antonio; Minetti, Carlo

    2008-07-15

    Aquaporin-4 (AQP4) is the major water channel expressed in fast-twitch skeletal muscle fibers. AQP4 is reduced in Duchenne and Becker Muscular Dystrophies, but not in caveolinopathies, thus suggesting an interaction with dystrophin or with members of the dystrophin-glycoprotein complex (DGC) rather than a nonspecific effect due to muscle membrane damage. To establish the role of sarcoglycans in AQP4 decrease occurring in muscular dystrophy, AQP4 expression was analyzed in muscle biopsies from patients affected by Limb Girdle Muscular Dystrophies (LGMDs) 2C-F genetically confirmed. In all the LGMD 2C-F (2alpha-, 1beta-, 2gamma-, 1delta-deficiency), AQP4 was severely decreased. This effect was associated to a marked reduction in alpha1-syntrophin levels. In control muscle AQP4 did not show a direct interaction with any of the four sarcoglycans but, it co-immunoprecipitated with alpha1-syntrophin, indicating that this modular protein may link AQP4 levels with the DGC complex. To determine whether AQP4 expression could be affected in other LGMDs due to the defect of a membrane protein not associated to the dystrophin complex, we examined AQP4 expression in 6 patients affected by dysferlin deficiency genetically confirmed. All the patients displayed a reduction of the water channel, and AQP4 expression appeared to correlate with the severity of the muscle histopathological lesions. However, differently from what observed in the sarcoglycans, alpha1-syntrophin expression was normal or just slightly reduced. These results seem to indicate an additional mechanism of regulation of AQP4 levels in muscle cells. In accordance with a specific effect of membrane muscle disorders, AQP4 protein levels were not changed in 3 mitochondrial and 3 metabolic myopathies. In conclusion, AQP4 expression and membrane localization are markedly reduced in LGMD 2B-2F. The role of AQP4 in the degenerative mechanism occurring in these diseases will be the object of our future research.

  14. Absence of aquaporin-4 in skeletal muscle alters proteins involved in bioenergetic pathways and calcium handling.

    PubMed

    Basco, Davide; Nicchia, Grazia Paola; D'Alessandro, Angelo; Zolla, Lello; Svelto, Maria; Frigeri, Antonio

    2011-04-28

    Aquaporin-4 (AQP4) is a water channel expressed at the sarcolemma of fast-twitch skeletal muscle fibers, whose expression is altered in several forms of muscular dystrophies. However, little is known concerning the physiological role of AQP4 in skeletal muscle and its functional and structural interaction with skeletal muscle proteome. Using AQP4-null mice, we analyzed the effect of the absence of AQP4 on the morphology and protein composition of sarcolemma as well as on the whole skeletal muscle proteome. Immunofluorescence analysis showed that the absence of AQP4 did not perturb the expression and cellular localization of the dystrophin-glycoprotein complex proteins, aside from those belonging to the extracellular matrix, and no alteration was found in sarcolemma integrity by dye extravasation assay. With the use of a 2DE-approach (BN/SDS-PAGE), protein maps revealed that in quadriceps, out of 300 Coomassie-blue detected and matched spots, 19 proteins exhibited changed expression in AQP4(-/-) compared to WT mice. In particular, comparison of the protein profiles revealed 12 up- and 7 down-regulated protein spots in AQP4-/- muscle. Protein identification by MS revealed that the perturbed expression pattern belongs to proteins involved in energy metabolism (i.e. GAPDH, creatine kinase), as well as in Ca(2+) handling (i.e. parvalbumin, SERCA1). Western blot analysis, performed on some significantly changed proteins, validated the 2D results. Together these findings suggest AQP4 as a novel determinant in the regulation of skeletal muscle metabolism and better define the role of this water channel in skeletal muscle physiology.

  15. Absence of Aquaporin-4 in Skeletal Muscle Alters Proteins Involved in Bioenergetic Pathways and Calcium Handling

    PubMed Central

    Basco, Davide; Nicchia, Grazia Paola; D'Alessandro, Angelo; Zolla, Lello; Svelto, Maria; Frigeri, Antonio

    2011-01-01

    Aquaporin-4 (AQP4) is a water channel expressed at the sarcolemma of fast-twitch skeletal muscle fibers, whose expression is altered in several forms of muscular dystrophies. However, little is known concerning the physiological role of AQP4 in skeletal muscle and its functional and structural interaction with skeletal muscle proteome. Using AQP4-null mice, we analyzed the effect of the absence of AQP4 on the morphology and protein composition of sarcolemma as well as on the whole skeletal muscle proteome. Immunofluorescence analysis showed that the absence of AQP4 did not perturb the expression and cellular localization of the dystrophin-glycoprotein complex proteins, aside from those belonging to the extracellular matrix, and no alteration was found in sarcolemma integrity by dye extravasation assay. With the use of a 2DE-approach (BN/SDS-PAGE), protein maps revealed that in quadriceps, out of 300 Coomassie-blue detected and matched spots, 19 proteins exhibited changed expression in AQP4−/− compared to WT mice. In particular, comparison of the protein profiles revealed 12 up- and 7 down-regulated protein spots in AQP4−/− muscle. Protein identification by MS revealed that the perturbed expression pattern belongs to proteins involved in energy metabolism (i.e. GAPDH, creatine kinase), as well as in Ca2+ handling (i.e. parvalbumin, SERCA1). Western blot analysis, performed on some significantly changed proteins, validated the 2D results. Together these findings suggest AQP4 as a novel determinant in the regulation of skeletal muscle metabolism and better define the role of this water channel in skeletal muscle physiology. PMID:21552523

  16. Pregnancy-induced up-regulation of aquaporin-4 protein in brain and its role in eclampsia.

    PubMed

    Quick, Allison M; Cipolla, Marilyn J

    2005-02-01

    Neurologic complications of eclampsia are thought to be similar to hypertensive encephalopathy in which an acute, excessive elevation in blood pressure causes blood-brain barrier (BBB) disruption and edema formation. Because women who develop eclampsia are in general normotensive and asymptomatic prior to pregnancy, we hypothesized that pregnancy alone predisposes the brain to edema formation by up-regulation of aquaporin 4 (AQP4), a water channel in the brain that has been shown to positively correlate with edema formation. To test this hypothesis, we compared localization (immunohistochemistry), mRNA (RT-PCR), and protein levels (Western analysis) of AQP4 in brains from Sprague Dawley rats that were nonpregnant (NP, proestrous), mid-pregnant (MP, days 9-10), late-pregnant (LP, days 19-20), and postpartum (PP, days 3-4). AQP4 mRNA was detected in the brains of all the animals and was localized primarily around the brain parenchymal blood vessels, strongly implicating its role in BBB function. Western analysis revealed that the major AQP4 band at approximately 32 kDa was significantly elevated in MP, LP, and PP animals compared with NP by 9-, 22-, and 17-fold, respectively. These results suggest that pregnancy and the postpartum state up-regulate AQP4 protein located around the intraparenchymal blood vessels, a consequence that could promote edema formation when blood pressure is acutely and excessively elevated, as during eclampsia.-Quick, A. M., Cipolla, M. J. Pregnancy-induced up-regulation of aquaporin-4 protein in brain and its role in eclampsia.

  17. Decadal variability in the composition of Faroe Shetland Channel bottom water

    NASA Astrophysics Data System (ADS)

    Turrell, William R.; Slesser, George; Adams, Richard D.; Payne, Rodney; Gillibrand, Philip A.

    1999-01-01

    Two standard sections across the deep water channel separating the Faroese Plateau from the Scottish continental shelf have been surveyed regularly since the start of the 20th century. There have been significant changes in the characteristics of surface, intermediate and deep water masses during this period. At intermediate depths, the presence of Norwegian Sea Arctic Intermediate Water (NSAIW) was evident as a salinity minimum during the first decade of the century. During the decades 1960-1980 this salinity minimum disappeared, and only four water types were identified in the Channel. Since 1980 the salinity of the intermediate water has again decreased, due to changes in the atmospheric forcing over the Nordic Seas, and it is again evident on a θS curve as a distinct minimum. The salinity of the bottom water in the Channel has also decreased (0.01/decade) linearly since the mid-1970s, although at a slower rate than the intermediate water (0.02/decade). The decline in salinity of the bottom water cannot be accounted for by changes in the salinity of upper Norwegian Sea Deep Water (NSDW), which Faroe Shetland Channel Bottom Water (FSCBW) has traditionally been assumed to be composed of. There is evidence that the upper level of NSDW has become deeper outside the Channel owing to a reduced supply from the Greenland Sea. This has resulted in a change in the composition of FSCBW, from being approximately 60% NSDW during the period 1970-1985 to 40% NSDW since 1990. Thus, the thermohaline circulation of the Nordic Seas has lost its deep water connection. The associated freshening of FSCBW has propagated out through the Channel into the North Atlantic and has resulted in a reduction of the salinity (0.02/decade) and transport (1-7%/decade) of Iceland Scotland Overflow Water (ISOW) into the North Atlantic.

  18. Immunogenic potential of the recombinant Rhipicephalus microplus aquaporin protein against the tick Rhipicephalus sanguineus Latreille, 1806 in domestic dogs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aquaporins regulate water transport through the highly hydrophobic lipid bilayer of cell membranes. As ticks ingest large volumes of host blood in relation to their size, they are required to concentrate blood components and have efficient water transport mechanisms. This study aimed to evaluate the...

  19. Improved Correction Method for Water-Refracted Terrestrial Laser Scanning Data Acquired in the Mountain Channel

    NASA Astrophysics Data System (ADS)

    Miura, N.; Asano, Y.; Moribe, Y.

    2016-06-01

    Detailed information of underwater topography is required for better understanding and prediction of water and sediment transport in a mountain channel. Recent research showed promising utility of green-wavelength Terrestrial Laser Scanning (TLS) for measuring submerged stream-bed structure in fluvial environment. However, difficulty in acquiring reliable underwater data has been remained in the part of mountain channel where water surface has some gradient. Since horizontal water surface was a major premise for the existing water refraction correction method, significant error was resulted in such area. Therefore, this paper presents a modified method to correct water-refracted TLS data acquired over mountain channel with complex water-surface slope. Applicability of the modified method was validated using the field data and compared with the existing correction method and non-corrected data. The results showed that the modified method has much smaller error with RMSE value of 3 mm than the existing method (RMSE = 10 mm) and non-corrected data (RMSE = 23 mm). Presented method successfully corrected water-refracted TLS data acquired over sloped channel. This would enable us to quantitatively measure whole units of complex mountain channels, and help us to understand water dynamics better in the area.

  20. Aquaporins and leaf hydraulics: poplar sheds new light.

    PubMed

    Lopez, David; Venisse, Jean-Stéphane; Fumanal, Boris; Chaumont, François; Guillot, Esther; Daniels, Mark J; Cochard, Hervé; Julien, Jean-Louis; Gousset-Dupont, Aurélie

    2013-12-01

    To help understand leaf hydraulic conductance (Kleaf) modulation under high irradiance, well-watered poplars (Populus trichocarpa Torr. & Gray ex Hook and Populus nigra L.) were studied diurnally at molecular and ecophysiological scales. Transcriptional and translational modulations of plasma membrane intrinsic protein (PIP) aquaporins were evaluated in leaf samples during diurnal time courses. Among the 15 poplar PIP genes, a subset of two PIP1s and seven PIP2s are precociously induced within the first hour of the photoperiod concomitantly with a Kleaf increase. Since expression patterns were cyclic and reproducible over several days, we hypothesized that endogenous signals could be involved in PIP transcriptional regulation. To address this question, plants were submitted to forced darkness during their subjective photoperiod and compared with their control counterparts, which showed that some PIP1s and PIP2s have circadian regulation while others did not. Promoter analysis revealed that a large number of hormone, light, stress response and circadian elements are present. Finally, involvement of aquaporins is supported by the reduction of Kleaf by HgCl2 treatment.

  1. Putative Role of Aquaporins in Variable Hydraulic Conductance of Leaves in Response to Light1

    PubMed Central

    Cochard, Hervé; Venisse, Jean-Stéphane; Barigah, Têtè Sévérien; Brunel, Nicole; Herbette, Stéphane; Guilliot, Agnès; Tyree, Melvin T.; Sakr, Soulaiman

    2007-01-01

    Molecular and physiological studies in walnut (Juglans regia) are combined to establish the putative role of leaf plasma membrane aquaporins in the response of leaf hydraulic conductance (Kleaf) to irradiance. The effects of light and temperature on Kleaf are described. Under dark conditions, Kleaf was low, but increased by 400% upon exposure to light. In contrast to dark conditions, Kleaf values of light-exposed leaves responded to temperature and 0.1 mm cycloheximide treatments. Furthermore, Kleaf was not related to stomatal aperture. Data of real-time reverse transcription-polymerase chain reaction showed that Kleaf dynamics were tightly correlated with the transcript abundance of two walnut aquaporins (JrPIP2,1 and JrPIP2,2). Low Kleaf in the dark was associated with down-regulation, whereas high Kleaf in the light was associated with up-regulation of JrPIP2. Light responses of Kleaf and aquaporin transcripts were reversible and inhibited by cycloheximide, indicating the importance of de novo protein biosynthesis in this process. Our results indicate that walnut leaves can rapidly change their hydraulic conductance and suggest that these changes can be explained by regulation of plasma membrane aquaporins. Model simulation suggests that variable leaf hydraulic conductance in walnut might enhance leaf gas exchanges while buffering leaf water status in response to ambient light fluctuations. PMID:17114274

  2. The Role of Channel Bar Influences on Groundwater / Surface Water Interactions

    NASA Astrophysics Data System (ADS)

    Shope, C. L.; Constantz, J. E.; Cooper, C. A.; McKay, W. A.

    2010-12-01

    Channel bars are dominant in-stream geomorphic island features present in a large range of river classes throughout the world, particularly in the arid western United States. A quantitative understanding of groundwater and surface water exchange through channel bar features is necessary to understand near-stream hyporheic flow patterns. The Truckee River in northwestern Nevada was used as a research site to quantitatively examine the influence of channel bars on near-stream water fluxes using heat as a tracer. This study provided the near-stream hydraulic physical framework for current and future research on nutrient cycling and biogeochemical impacts of near-stream exchange and can be used for assessing critical water quality impacts. Field activities included the installation and development of monitoring wells and piezometers, instrumentation of the piezometers with pressure transducers and temperature thermistors, and slug tests to estimate hydraulic conductivity. The potentiometric surface throughout the study site was monitored over time and the temperature thermistors were used to estimate transport using heat as a tracer. Horizontal and vertical Darcian water fluxes were estimated from field observations. To increase confidence in the hydraulic conductivity values for water flux estimates, heat-based numerical simulations were completed. Three-dimensional models of the channel bar study area were constructed and hydraulic conductivity was inversely estimated by minimizing the difference between observed and simulated head and temperature measurements. Numerical simulations indicated that lateral water fluxes between the channel bar and the stream were an order of magnitude greater than between the adjacent streambank and the stream. The fluxes at the downstream end of the channel bar were an order of magnitude greater than upstream fluxes. Net groundwater and surface water fluxes at the channel bar and stream interface were at least 2 times greater than

  3. Overexpression of a Panax ginseng tonoplast aquaporin alters salt tolerance, drought tolerance and cold acclimation ability in transgenic Arabidopsis plants.

    PubMed

    Peng, Yanhui; Lin, Wuling; Cai, Weiming; Arora, Rajeev

    2007-08-01

    Water movement across cellular membranes is regulated largely by a family of water channel proteins called aquaporins (AQPs). Since several abiotic stresses such as, drought, salinity and freezing, manifest themselves via altering water status of plant cells and are linked by the fact that they all result in cellular dehydration, we overexpressed an AQP (tonoplast intrinsic protein) from Panax ginseng, PgTIP1, in transgenic Arabidopsis thaliana plants to test its role in plant's response to drought, salinity and cold acclimation (induced freezing tolerance). Under favorable conditions, PgTIP1 overexpression significantly increased plant growth as determined by the biomass production, and leaf and root morphology. PgTIP1 overexpression had beneficial effect on salt-stress tolerance as indicated by superior growth status and seed germination of transgenic plants under salt stress; shoots of salt-stressed transgenic plants also accumulated greater amounts of Na(+) compared to wild-type plants. Whereas PgTIP1 overexpression diminished the water-deficit tolerance of plants grown in shallow (10 cm deep) pots, the transgenic plants were significantly more tolerant to water stress when grown in 45 cm deep pots. The rationale for this contrasting response, apparently, comes from the differences in the root morphology and leaf water channel activity (speed of dehydration/rehydration) between the transgenic and wild-type plants. Plants overexpressed with PgTIP1 exhibited lower (relative to wild-type control) cold acclimation ability; however, this response was independent of cold-regulated gene expression. Our results demonstrate a significant function of PgTIP1 in growth and development of plant cells, and suggest that the water movement across tonoplast (via AQP) represents a rate-limiting factor for plant vigor under favorable growth conditions and also significantly affect responses of plant to drought, salt and cold stresses.

  4. Dependences of water permeation through cyclic octa-peptide nanotubes on channel length and membrane thickness.

    PubMed

    Liu, Jian; Fan, Jianfen; Cen, Min; Song, Xuezeng; Liu, Dongyan; Zhou, Weiqun; Liu, Zhao; Yan, Jianfeng

    2012-08-27

    Effects of the channel length and membrane thickness on the water permeation through the transmembrane cyclic octa-peptide nanotubes (octa-PNTs) have been studied by molecular dynamics (MD) simulations. The water osmotic permeability (p(f)) through the PNTs of k × (WL)(4)/POPE (1-palmitoyl-2-oleoyl-glycerophosphoethanolamine; k = 6, 7, 8, 9, and 10) was found to decay with the channel length (L) along the axis (~L(-2.0)). Energetic analysis showed that a series of water binding sites exist in these transmembrane PNTs, with the barriers of ~3k(B)T, which elucidates the tendency of p(f) well. Water diffusion permeability (p(d)) exhibits a relationship of ~L(-1.8), which results from the novel 1-2-1-2 structure of water chain in such confined nanolumens. In the range of simulation accuracy, the ratio (p(f)/p(d)) of the water osmotic and diffusion permeability is approximately a constant. MD simulations of water permeation through the transmembrane PNTs of 8 × (WL)(4)/octane with the different octane membrane thickness revealed that the water osmotic and diffusion permeability (p(f) and p(d)) are both independent of the octane membrane thickness, confirmed by the weak and nearly same interactions between the channel water and octane membranes with the different thickness. The results may be helpful for revealing the permeation mechanisms of biological water channels and designing artificial nanochannels.

  5. Water Homeostasis: Evolutionary Medicine

    PubMed Central

    Zeidel, Mark L.

    2012-01-01

    As a major component of homeostasis, all organisms regulate the water composition of various compartments. Through the selective use of barrier membranes and surface glycoproteins, as well as aquaporin water channels, organisms ranging from Archaebacteria to humans can vary water permeabilities across their cell membranes by 4 to 5 orders of magnitude. In barrier epithelia the outer, or exofacial, leaflet acts as the main resistor to water flow; this leaflet restricts water flow by minimizing the surface area of lipid molecules which is not covered by phosphate headgroups and by packing hydrocarbon chains at maximal density. Cells may enhance the barrier by expressing glycoproteins that augment the “thickness” of unstirred layers at their surfaces, reducing osmotic gradients at the lipid bilayer surface. Aquaporins markedly and highly selectively accelerate water flux and are “switched on” either by deployment into membranes or gating. This review summarizes these mechanisms in many species, and indicates potential roles for manipulating water permeabilities in treating disease. PMID:23303973

  6. The Role of Astrocytic Aquaporin-4 in Synaptic Plasticity and Learning and Memory

    PubMed Central

    Szu, Jenny I.; Binder, Devin K.

    2016-01-01

    Aquaporin-4 (AQP4) is the predominant water channel expressed by astrocytes in the central nervous system (CNS). AQP4 is widely expressed throughout the brain, especially at the blood-brain barrier where AQP4 is highly polarized to astrocytic foot processes in contact with blood vessels. The bidirectional water transport function of AQP4 suggests its role in cerebral water balance in the CNS. The regulation of AQP4 has been extensively investigated in various neuropathological conditions such as cerebral edema, epilepsy, and ischemia, however, the functional role of AQP4 in synaptic plasticity, learning, and memory is only beginning to be elucidated. In this review, we explore the current literature on AQP4 and its influence on long term potentiation (LTP) and long term depression (LTD) in the hippocampus as well as the potential relationship between AQP4 and in learning and memory. We begin by discussing recent in vitro and in vivo studies using AQP4-null and wild-type mice, in particular, the impairment of LTP and LTD observed in the hippocampus. Early evidence using AQP4-null mice have suggested that impaired LTP and LTD is brain-derived neurotrophic factor dependent. Others have indicated a possible link between defective LTP and the downregulation of glutamate transporter-1 which is rescued by chronic treatment of β-lactam antibiotic ceftriaxone. Furthermore, behavioral studies may shed some light into the functional role of AQP4 in learning and memory. AQP4-null mice performances utilizing Morris water maze, object placement tests, and contextual fear conditioning proposed a specific role of AQP4 in memory consolidation. All together, these studies highlight the potential influence AQP4 may have on long term synaptic plasticity and memory. PMID:26941623

  7. Nephrogenic diabetes insipidus in mice caused by deleting COOH-terminal tail of aquaporin-2.

    PubMed

    Shi, Peijun P; Cao, Xiao R; Qu, Jing; Volk, Ken A; Kirby, Patricia; Williamson, Roger A; Stokes, John B; Yang, Baoli

    2007-05-01

    In mammals, the hormonal regulation of water homeostasis is mediated by the aquaporin-2 water channel (Aqp2) of the collecting duct (CD). Vasopressin induces redistribution of Aqp2 from intracellular vesicles to the apical membrane of CD principal cells, accompanied by increased water permeability. Mutations of AQP2 gene in humans cause both recessive and dominant nephrogenic diabetes insipidus (NDI), a disease in which the kidney is unable to concentrate urine in response to vasopressin. In this study, we generated a line of mice with the distal COOH-terminal tail of the Aqp2 deleted (Aqp2(Delta230)), including the protein kinase A phosphorylation site (S256), but still retaining the putative apical localization signal (221-229) at the COOH-terminal. Mice heterozygous for the truncation appear normal. Homozygotes are viable to adulthood, with reduced urine concentrating capacity, increased urine output, decreased urine osmolality, and increased daily water consumption. Desmopressin increased urine osmolality in wild-type mice but had no effect on Aqp2(Delta230/Delta230) mice. Kidneys from affected mice showed CD and pelvis dilatation and papillary atrophy. By immunohistochemical and immunoblot analyses using antibody against the NH(2)-terminal region of the protein Aqp2(Delta230/Delta230) mice had a markedly reduced protein abundance. Expression of the truncated protein in MDCK cells was consistent with a small amount of functional expression but no stimulation. Thus we have generated a mouse model of NDI that may be useful in studying the physiology and potential therapy of this disease.

  8. Differential expression of aquaporin 5 and aquaporin 3 in squamous cell carcinoma and adenoid cystic carcinoma.

    PubMed

    Ishimoto, Shunsuke; Wada, Koichiro; Usami, Yu; Tanaka, Noriaki; Aikawa, Tomonao; Okura, Masaya; Nakajima, Atsushi; Kogo, Mikihiko; Kamisaki, Yoshinori

    2012-07-01

    Aquaporins (AQPs) are a membrane protein family involved in the selective transport of water across cell membranes. Recent studies have reported the expression of AQP5 in several tumor types such as gastric, pulmonary, ovarian, pancreatic and colorectal cancer. We have previously reported the expression on tumor cells and the important role of AQP3 on cell growth in tongue cancer. However, little is known about the expression and precise role of AQP5 on squamous cell carcinoma (SCC) of the tongue. We investigated the expression of AQP5 and AQP3 in human oral SCC and adenoid cystic carcinoma (ACC). Overexpression of both AQP5 and AQP3 were immunohistochemically observed on tumor cells in SCC, whereas ACC cells were faintly stained with those antibodies against AQPs. Treatment with pan-AQP inhibitor or specific AQP5-siRNA showed inhibition of cell growth in SCC cell lines via the inhibition of integrins and the mitogen-activated protein kinase pathway. AQPs play important roles in cell growth in SCC rather than ACC.

  9. Characterization of Aquaporin 4 Protein Expression and Localization in Tissues of the Dogfish (Squalus acanthias).

    PubMed

    Cutler, Christopher P; Harmon, Sheena; Walsh, Jonathon; Burch, Kia

    2012-01-01

    The role of aquaporin water channels such as aquaporin 4 (Aqp4) in elasmobranchs such as the dogfish Squalus acanthias is completely unknown. This investigation set out to determine the expression and cellular and sub-cellular localization of Aqp4 protein in dogfish tissues. Two polyclonal antibodies were generated (AQP4/1 and AQP4/2) and these showed somewhat different characteristics in Western blotting and immunohistochemistry. Western blots using the AQP4/1 antibody showed two bands (35.5 and 49.5 kDa) in most tissues in a similar fashion to mammals. Liver had an additional band of 57 kDa and rectal gland two further faint bands of 37.5 and 38.5 kDa. However, unlike in mammals, Aqp4 protein was ubiquitously expressed in all tissues including gill and liver. The AQP4/2 antibody appeared much less specific in Western blots. Both antibodies were used in immunohistochemistry and showed similar cellular localizations, although the AQP4/2 antibody had a more restricted sub-cellular distribution compared to AQP4/1 and therefore appeared to be more specific for Aqp4. In kidney a sub-set of tubules were stained which may represent intermediate tubule segments (In-III-In-VI). AQP4/1 and AQP4/2 antibodies localized to the same tubules segments in serial sections although the intensity and sub-cellular distribution were different. AQP4/2 showed a basal or basolateral membrane distribution whereas AQP4/1 was often distributed throughout the whole cell including the nuclear region. In rectal gland and cardiac stomach Aqp4 was localized to secretory tubules but again AQP/1 and AQP/2 exhibited different sub-cellular distributions. In gill, both antibodies stained large cells in the primary filament and secondary lamellae. Again AQP4/1 antibody stained most or all the cell including the nucleus, whereas AQP4/2 had a plasma membrane or plasma membrane and cytoplasmic distribution. Two types of large mitochondrial rich transport cells are known to exist in elasmobranchs

  10. Research on measurement-device-independent quantum key distribution based on an air-water channel

    NASA Astrophysics Data System (ADS)

    Zhou, Yuan-yuan; Zhou, Xue-jun; Xu, Hua-bin; Cheng, Kang

    2016-11-01

    A measurement-device-independent quantum key distribution (MDI-QKD) method with an air-water channel is researched. In this method, the underwater vehicle and satellite are the legitimate parties, and the third party is at the airwater interface in order to simplify the unilateral quantum channel to water or air. Considering the condition that both unilateral transmission distance and transmission loss coefficient are unequal, a perfect model of the asymmetric channel is built. The influence of asymmetric channel on system loss tolerance and secure transmission distance is analyzed. The simulation results show that with the increase of the channel's asymmetric degree, the system loss tolerance will descend, one transmission distance will be reduced while the other will be increased. When the asymmetric coefficient of channel is between 0.068 and 0.171, MDI-QKD can satisfy the demand of QKD with an air-water channel, namely the underwater transmission distance and atmospheric transmission distance are not less than 60 m and 12 km, respectively.

  11. Detection of regolith buried water stream channels on Mars with the help of synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Rzhiga, O. N.

    The major problem of Mars research is search of water on its surface Biological life is connected to water In this connection the intense interest represents detection of water stream channels which in the past flew on Mars In these areas the petrified rests of the former life on Mars may be found out Now these channels may be under regolith layer However radio waves penetrating ability allows seeing these channels under a regolith The radio wave falls on a regolith surface under some angle The part of the falling wave power is reflected by regolith Other part of it refracts under a regolith surface and reaches bottom of a channel Here there is reflection because of a difference in refraction index of regolith and bedrock of a channel bottom The part of reflected power gets back to the spacecraft Passage through regolith is accompanied by electric losses In result we receive the image of a channel which contrast depends on regolith depth difference in refraction index of regolith and bedrock of a channel bottom as well as wavelength In this work in some assumptions concerning regolith and bedrock electric properties the model of the channel image is received The optimum wavelength for detection of the water stream channels now buried by regolith is determined The analysis of the reflected signal level dependence from an angle under which SAR onboard aerial is directed to a planet surface is carried out It is shown that power of the SAR transmitter and the size of the onboard aerial will be moderate if radar survey to carry out

  12. Laboratory Modeling of Self-Formed Leveed Channels From Sediment-Laden Flows Entering Still Water

    NASA Astrophysics Data System (ADS)

    Rowland, J. C.; Dietrich, W. E.

    2004-12-01

    Self-formed leveed channels constructed by deposition of suspended sediment from sediment-laden flows entering still water are common features in nature. Such channels drive delta progradation, develop at tidal inlets and occur where mainstem river flows empty into oxbows and blocked valley lakes. Presently there is no theory for the formation of such channels. This lack of theory is partly due to a lack of field or laboratory studies that provide insight about the mechanism controlling these self-formed, propagating channels. The creation of such features in the laboratory, have proved illusive to date. Our ongoing experiments aimed at modeling the formation of floodplain tie channels provide insight into the necessary conditions for levee formation and channel growth. Under conditions of steady water discharge, constant sediment feed rate, unimodal sediment distribution and invariant basin stage we are able to create subaqueous lateral bars (submerged levees) along the margins of a sediment laden jet. Our results highlight the sensitivity of channel formation to issues of scaling and experimental design. In the laboratory, levee formation has only been possible with the use of plastic particles (specific gravity ~1.5); complete bed alluviation and dune formation results from the use of particles with specific gravities of ~ 2.65 across a range grain diameters and shapes. We hypothesize this effect is related to high entrainment thresholds relative to suspension thresholds of small (< 100 mm) natural particles under conditions of reduced turbulence in laboratory scaled flows. Additionally, both the width to depth ratio and the form of the outlet channel introducing the sediment laden flow into the experimental basin exert a strong control on sedimentation pattern and levee growth. Continuing experiments are focused on generating emergent channel levees and a basin ward propagation of the channel by adjusting the form of the feed channel, varying basin stage, and

  13. In Situ Fluorescence Measurement of Tear Film [Na+], [K+], [Cl−], and pH in Mice Shows Marked Hypertonicity in Aquaporin-5 Deficiency

    PubMed Central

    Ruiz-Ederra, Javier; Levin, Marc H.; Verkman, A. S.

    2009-01-01

    Purpose Tear film composition depends on water and ion transport across ocular surface epithelia and on fluid secretion by lacrimal glands. The purpose of this study was to establish in situ fluorescence methods to measure tear film ionic concentrations and pH in mice and to determine whether tear film composition is sensitive to deficiency of the major ocular surface aquaporin water channels. Methods Tear film ionic concentrations and pH were measured in anesthetized mice by ratio imaging fluorescence microscopy after topical application of ion/pH-sensing, dual-wavelength fluorescent indicators. [Na+], [K+], and [Cl−] were measured with membrane-impermeant indicators developed by our laboratory, and pH was measured with bis(carboxyethyl)-carboxyfluorescein fluorescence-conjugated dextran. Measurements were performed on wild-type mice and on knockout mice lacking aquaporins AQP1, AQP3, and AQP5. Results In wild-type mice, tear film [Na+] was 139 ± 8 mM, [K+] was 48 ± 1 mM, [Cl−] was 127 ± 4 mM, and pH was 7.59 ± 0.2 (SE; n = 5–8). pH did not differ significantly in the AQP knockout mice. [Na+] was increased by approximately twofold in AQP5 null mice (230 ± 20 mM) and was greatly reduced after exposure of the ocular surface to a humidified atmosphere. [K+] was mildly reduced in AQP1 null mice. Conclusions These results establish an in situ optical methodology to measure tear film [Na+], [K+], [Cl−], and pH in living mice, without the need for fluid sampling. Tear film hypertonicity in AQP5 deficiency is likely caused by reduced transcorneal water secretion in response to evaporative water loss. PMID:19136711

  14. The threshold of vapor channel formation in water induced by pulsed CO2 laser

    NASA Astrophysics Data System (ADS)

    Guo, Wenqing; Zhang, Xianzeng; Zhan, Zhenlin; Xie, Shusen

    2012-12-01

    Water plays an important role in laser ablation. There are two main interpretations of laser-water interaction: hydrokinetic effect and vapor phenomenon. The two explanations are reasonable in some way, but they can't explain the mechanism of laser-water interaction completely. In this study, the dynamic process of vapor channel formation induced by pulsed CO2 laser in static water layer was monitored by high-speed camera. The wavelength of pulsed CO2 laser is 10.64 um, and pulse repetition rate is 60 Hz. The laser power ranged from 1 to 7 W with a step of 0.5 W. The frame rate of high-speed camera used in the experiment was 80025 fps. Based on high-speed camera pictures, the dynamic process of vapor channel formation was examined, and the threshold of vapor channel formation, pulsation period, the volume, the maximum depth and corresponding width of vapor channel were determined. The results showed that the threshold of vapor channel formation was about 2.5 W. Moreover, pulsation period, the maximum depth and corresponding width of vapor channel increased with the increasing of the laser power.

  15. Specific aquaporins facilitate Nox-produced hydrogen peroxide transport through plasma membrane in leukaemia cells.

    PubMed

    Vieceli Dalla Sega, Francesco; Zambonin, Laura; Fiorentini, Diana; Rizzo, Benedetta; Caliceti, Cristiana; Landi, Laura; Hrelia, Silvana; Prata, Cecilia

    2014-04-01

    In the last decade, the generation and the role of reactive oxygen species (ROS), particularly hydrogen peroxide, in cell signalling transduction pathways have been intensively studied, and it is now clear that an increase of ROS level affects cellular growth and proliferation pathways related to cancer development. Hydrogen peroxide (H2O2) has been long thought to permeate biological membranes by simple diffusion since recent evidence challenged this notion disclosing the role of aquaporin water channels (AQP) in mediating H2O2 transport across plasma membranes. We previously demonstrated that NAD(P)H oxidase (Nox)-generated ROS sustain glucose uptake and cellular proliferation in leukaemia cells. The aim of this study was to assess whether specific AQP isoforms can channel Nox-produced H2O2 across the plasma membrane of leukaemia cells affecting downstream pathways linked to cell proliferation. In this work, we demonstrate that AQP inhibition caused a decrease in intracellular ROS accumulation in leukaemia cells both when H2O2 was produced by Nox enzymes and when it was exogenously added. Furthermore, AQP8 overexpression or silencing resulted to modulate VEGF capacity of triggering an H2O2 intracellular level increase or decrease, respectively. Finally, we report that AQP8 is capable of increasing H2O2-induced phosphorylation of both PI3K and p38 MAPK and that AQP8 expression affected positively cell proliferation. Taken together, the results here reported indicate that AQP8 is able to modulate H2O2 transport through the plasma membrane affecting redox signalling linked to leukaemia cell proliferation.

  16. Remote Sensing of Water Vapor and Thin Cirrus Clouds using MODIS Near-IR Channels

    NASA Technical Reports Server (NTRS)

    Gao, Bo-Cai; Kaufman, Yoram J.

    2001-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS), a major facility instrument on board the Terra Spacecraft, was successfully launched into space in December of 1999. MODIS has several near-IR channels within and around the 0.94 micrometer water vapor bands for remote sensing of integrated atmospheric water vapor over land and above clouds. MODIS also has a special near-IR channel centered at 1.375-micron with a width of 30 nm for remote sensing of cirrus clouds. In this paper, we describe briefly the physical principles on remote sensing of water vapor and cirrus clouds using these channels. We also present sample water vapor images and cirrus cloud images obtained from MODIS data.

  17. The diapause program impacts renal excretion and molecular expression of aquaporins in the northern house mosquito, Culex pipiens.

    PubMed

    Yang, Liu; Denlinger, David L; Piermarini, Peter M

    2016-12-27

    Adult females of the mosquito Culex pipiens entering diapause increase sugar water ingestion and reduce evaporative water loss, but how these attributes of the diapause program impact activity of the renal excretory system remains unknown. Here we compared the renal excretory capacity of diapausing and non-diapausing females, as well as the molecular expression of aquaporin (AQP) genes that encode channels involved in transporting water and/or small metabolites. Baseline urine excretion rates in diapausing mosquitoes were higher than in those of their non-diapausing counterparts, possibly a consequence of the intense sugar feeding associated with diapause. But, diapausing mosquitoes exhibited a much lower capacity for diuresis than non-diapausing mosquitoes. The suppressed diuretic capacity likely reflects reduced investment in the energetically-expensive post-prandial diuresis, an event not observed in diapausing mosquitoes. The mRNA expression levels of two genes encoding AQPs, Eglp1 and Aqp12L, in diapausing mosquitoes were down-regulated (on day 14) and up-regulated (on both days 3 and 14), respectively, in whole body samples. These changes were not evident in the excretory system (i.e., Malpighian tubules and hindgut), which showed no differential expression of AQPs as a function of diapause. Several AQP mRNAs were, however, differentially expressed in the midgut, ovaries, and abdominal body wall of diapausing mosquitoes, suggesting that AQPs in these tissues may be playing important non-excretory roles that are unique to diapause physiology.

  18. Unique and analogous functions of aquaporin O for fiber cell architecture and ocular lens transparency

    SciTech Connect

    Kumari, S.S.; Eswaramoorthy, S.; Mathias, R. T.; Varadaraj, K.

    2011-09-01

    Aquaporin (AQP) 1 and AQP0 water channels are expressed in lens epithelial and fiber cells, respectively, facilitating fluid circulation for nourishing the avascular lens to maintain transparency. Even though AQP0 water permeability is 40-fold less than AQP1, AQP0 is selectively expressed in the fibers. Delimited AQP0 fiber expression is attributed to a unique structural role as an adhesion protein. To validate this notion, we determined if wild type (WT) lens ultrastructure and fibercell adhesion are different in AQP0{sup -/-}, and TgAQP1{sup +/+}/AQP0{sup -/-} mice that transgenically express AQP1 (TgAQP1) in fibercells without AQP0 (AQP0{sup -/-}). In WT, lenses were transparent with 'Y' sutures. Fibers contained opposite end curvature, lateral interdigitations, hexagonal shape, and were arranged as concentric growth shells. AQP0{sup -/-}lenses were cataractous, lacked 'Y' sutures, ordered packing and well-defined lateral interdigitations. TgAQP1{sup +/+}/AQP0{sup -/-} lenses showed improvement in transparency and lateral interdigitations in the outer cortex while inner cortex and nuclear fibers were severely disintegrated. Transmission electron micrographs exhibited tightly packed fibercells in WT whereas AQP0{sup -/-} and TgAQP1{sup +/+}/AQP0{sup -/-}lenses had wide extracellular spaces. Fibers were easily separable by teasing in AQP0{sup -/-} and TgAQP1{sup +/+}/AQP0{sup -/-}lenses compared to WT. Our data suggest that the increased water permeability through AQP1 does not compensate for loss of AQP0 expression in TgAQP1{sup +/+}/AQP0{sup -/-} mice. Fibercell AQP0 expression is required to maintain their organization, which is a requisite for lenstransparency. AQP0 appears necessary for cell-to-cell adhesion and thereby to minimize light scattering since in the AQP0{sup -/-} and TgAQP1{sup +/+}/AQP0{sup -/-} lenses, fiber cell disorganization was evident.

  19. Aquaporins in Salivary Glands: From Basic Research to Clinical Applications

    PubMed Central

    Delporte, Christine; Bryla, Angélic; Perret, Jason

    2016-01-01

    Salivary glands are involved in saliva secretion that ensures proper oral health. Aquaporins are expressed in salivary glands and play a major role in saliva secretion. This review will provide an overview of the salivary gland morphology and physiology of saliva secretion, and focus on the expression, subcellular localization and role of aquaporins under physiological and pathophysiological conditions, as well as clinical applications involving aquaporins. This review is highlighting expression and localization of aquaporins in human, rat and mouse, the most studied species and is pointing out possible difference between major salivary glands, i.e., parotid, submandibular and sublingual glands. PMID:26828482

  20. Non-invasive imaging using reporter genes altering cellular water permeability

    PubMed Central

    Mukherjee, Arnab; Wu, Di; Davis, Hunter C.; Shapiro, Mikhail G.

    2016-01-01

    Non-invasive imaging of gene expression in live, optically opaque animals is important for multiple applications, including monitoring of genetic circuits and tracking of cell-based therapeutics. Magnetic resonance imaging (MRI) could enable such monitoring with high spatiotemporal resolution. However, existing MRI reporter genes based on metalloproteins or chemical exchange probes are limited by their reliance on metals or relatively low sensitivity. Here we introduce a new class of MRI reporters based on the human water channel aquaporin 1. We show that aquaporin overexpression produces contrast in diffusion-weighted MRI by increasing tissue water diffusivity without affecting viability. Low aquaporin levels or mixed populations comprising as few as 10% aquaporin-expressing cells are sufficient to produce MRI contrast. We characterize this new contrast mechanism through experiments and simulations, and demonstrate its utility in vivo by imaging gene expression in tumours. Our results establish an alternative class of sensitive, metal-free reporter genes for non-invasive imaging. PMID:28008959

  1. Preparation of semi-solid aluminum alloy slurry poured through a water-cooled serpentine channel

    NASA Astrophysics Data System (ADS)

    Chen, Zheng-Zhou; Mao, Wei-Min; Wu, Zong-Chuang

    2012-01-01

    A water-cooled serpentine channel pouring process was invented to produce semi-solid A356 aluminum alloy slurry for rheocasting, and the effects of pouring temperature and circulating cooling water flux on the microstructure of the slurry were investigated. The results show that at the pouring temperature of 640-680°C and the circulating cooling water flux of 0.9 m3/h, the semi-solid A356 aluminum alloy slurry with spherical primary α(Al) grains can be obtained, whose shape factors are between 0.78 and 0.86 and the grain diameter can reach 48-68 μm. When the pouring temperatures are at 660-680°C, only a very thin solidified shell remains inside the serpentine channel and can be removed easily. When the serpentine channel is cooled with circulating water, the microstructure of the semi-solid slurry can be improved, and the serpentine channel is quickly cooled to room temperature after the completion of one pouring. In terms of the productivity of the special equipment, the water-cooled serpentine channel is economical and efficient.

  2. Impacts of warm water on Antarctic ice shelf stability through basal channel formation

    NASA Astrophysics Data System (ADS)

    Alley, Karen E.; Scambos, Ted A.; Siegfried, Matthew R.; Fricker, Helen Amanda

    2016-04-01

    Antarctica's ice shelves provide resistance to the flow of grounded ice towards the ocean. If this resistance is decreased as a result of ice shelf thinning or disintegration, acceleration of grounded ice can occur, increasing rates of sea-level rise. Loss of ice shelf mass is accelerating, especially in West Antarctica, where warm seawater is reaching ocean cavities beneath ice shelves. Here we use satellite imagery, airborne ice-penetrating radar and satellite laser altimetry spanning the period from 2002 to 2014 to map extensive basal channels in the ice shelves surrounding Antarctica. The highest density of basal channels is found in West Antarctic ice shelves. Within the channels, warm water flows northwards, eroding the ice shelf base and driving channel evolution on annual to decadal timescales. Our observations show that basal channels are associated with the development of new zones of crevassing, suggesting that these channels may cause ice fracture. We conclude that basal channels can form and grow quickly as a result of warm ocean water intrusion, and that they can structurally weaken ice shelves, potentially leading to rapid ice shelf loss in some areas.

  3. Hungry water: Effects of dams and gravel mining on river channels

    SciTech Connect

    Kondolf, G.M.

    1997-07-01

    Rivers transport sediment from eroding uplands to depositional areas near sea level. If the continuity of sediment transport is interrupted by dams or removal of sediment from the channel by gravel mining, the flow may become sediment-starved (hungry water) and prone to erode the channel bed and banks, producing channel incision (downcutting), coarsening of bed material, and loss of spawning gravels for salmon and trout (as smaller gravels are transported without replacement from upstream), Gravel is artificially added to the River Rhine to prevent further incision and to many other rivers in attempts to restore spawning habitat. It is possible to pass incoming sediment through some small reservoirs, thereby maintaining the continuity of sediment transport through the system. Damming and mining have reduced sediment delivery from rivers to many coastal areas, leading to accelerated beach erosion. Sand and gravel are mined for construction aggregate from river channel and floodplains. In-channel mining commonly causes incision, which may propagate up- and downstream of the mine, undermining bridges, inducing channel instability, and lowering alluvial water tables. Floodplain gravel pits have the potential to become wildlife habitat upon reclamation, but may be captured by the active channel and thereby become instream pits. Management of sand and gravel in rivers must be done on a regional basis, restoring the continuity of sediment transport where possible and encouraging alternatives to river-derived aggregate sources. 80 refs., 17 figs.

  4. PROFILE: Hungry Water: Effects of Dams and Gravel Mining on River Channels

    PubMed

    Kondolf

    1997-07-01

    / Rivers transport sediment from eroding uplands to depositional areas near sea level. If the continuity of sediment transport is interrupted by dams or removal of sediment from the channel by gravel mining, the flow may become sediment-starved (hungry water) and prone to erode the channel bed and banks, producing channel incision (downcutting), coarsening of bed material, and loss of spawning gravels for salmon and trout (as smaller gravels are transported without replacement from upstream). Gravel is artificially added to the River Rhine to prevent further incision and to many other rivers in attempts to restore spawning habitat. It is possible to pass incoming sediment through some small reservoirs, thereby maintaining the continuity of sediment transport through the system. Damming and mining have reduced sediment delivery from rivers to many coastal areas, leading to accelerated beach erosion. Sand and gravel are mined for construction aggregate from river channel and floodplains. In-channel mining commonly causes incision, which may propagate up- and downstream of the mine, undermining bridges, inducing channel instability, and lowering alluvial water tables. Floodplain gravel pits have the potential to become wildlife habitat upon reclamation, but may be captured by the active channel and thereby become instream pits. Management of sand and gravel in rivers must be done on a regional basis, restoring the continuity of sediment transport where possible and encouraging alternatives to river-derived aggregate sources.KEY WORDS: Dams; Aquatic habitat; Sediment transport; Erosion; Sedimentation; Gravel mining

  5. Phase distribution of nitrogen-water two-phase flow in parallel micro channels

    NASA Astrophysics Data System (ADS)

    Zhou, Mi; Wang, Shuangfeng; Zhou, You

    2016-08-01

    The present work experimentally investigated the phase splitting characteristics of gas-liquid two-phase flow passing through a horizontal-oriented micro-channel device with three parallel micro-channels. The hydraulic diameters of the header and the branch channels were 0.6 and 0.4 mm, respectively. Five different liquids, including de-ionized water and sodium dodecyl sulfate (SDS) solution with different concentration were employed. Different from water, the surface tension of SDS solution applied in this work decreased with the increment of mass concentration. Through series of visual experiments, it was found that the added SDS surfactant could obviously facilitate the two-phase flow through the parallel micro channels while SDS solution with low concentration would lead to an inevitable blockage of partial outlet branches. Experimental results revealed that the two phase distribution characteristics depended highly on the inlet flow patterns and the outlet branch numbers. To be specific, at the inlet of slug flow, a large amount of gas preferred flowing into the middle branch channel while the first branch was filled with liquid. However, when the inlet flow pattern was shifted to annular flow, all of the gas passed through the second and the last branches, with a little proportion of liquid flowing into the first channel. By comparison with the experimental results obtained from a microchannel device with five parallel micro-T channels, uneven distribution of the two phase can be markedly noticed in our present work.

  6. Cross-immunoreactivity between bacterial aquaporin-Z and human aquaporin-4: potential relevance to neuromyelitis optica.

    PubMed

    Ren, Zhihua; Wang, Yan; Duan, Tao; Patel, Jilpa; Liggett, Thomas; Loda, Eileah; Brahma, Sarang; Goswami, Rajendra; Grouse, Carrie; Byrne, Richard; Stefoski, Dusan; Javed, Adil; Miller, Stephen D; Balabanov, Roumen

    2012-11-01

    Neuromyelitis optica (NMO) is a chronic inflammatory disease of the CNS that is mediated, in part, by a self-reactive Ab against the astrocyte aquaporin-4 protein. In the current study, we examined the possibility and the biological significance of cross-immunoreactivity between bacterial aquaporin-Z and human aquaporin-4 proteins. Sequence-alignment analysis of these proteins revealed several regions of significant structural homology. Some of the homologous regions were also found to overlap with important immune and disease-relevant epitopes. Cross-immunoreactivity between aquaporin-Z and aquaporin-4 was investigated and ascertained in multiple immune-based assays using sera from patients with neuromyelitis optica, immune mouse serum, and Abs raised against aquaporin-Z. The biological significance of this phenomenon was established in series of experiments demonstrating that induction of an immune response against aquaporin-Z or its homologous regions can also trigger an autoimmune reaction against aquaporin-4 and inflammation of the CNS. Our study indicates that the autoimmune response against aquaporin-4 in neuromyelitis optica may be triggered by infection-induced cross-immunoreactivity and presents a new perspective on the pathogenesis of this disease.

  7. Role of Aquaporin 1 Signalling in Cancer Development and Progression

    PubMed Central

    Tomita, Yoko; Dorward, Hilary; Yool, Andrea J.; Smith, Eric; Townsend, Amanda R.; Price, Timothy J.; Hardingham, Jennifer E.

    2017-01-01

    Cancer is a major health burden worldwide. Despite the advances in our understanding of its pathogenesis and continued improvement in cancer management and outcomes, there remains a strong clinical demand for more accurate and reliable biomarkers of metastatic progression and novel therapeutic targets to abrogate angiogenesis and tumour progression. Aquaporin 1 (AQP1) is a small hydrophobic integral transmembrane protein with a predominant role in trans-cellular water transport. Recently, over-expression of AQP1 has been associated with many types of cancer as a distinctive clinical prognostic factor. This has prompted researchers to evaluate the link between AQP1 and cancer biological functions. Available literature implicates the role of AQP1 in tumour cell migration, invasion and angiogenesis. This article reviews the current understanding of AQP1-facilitated tumour development and progression with a focus on regulatory mechanisms and downstream signalling pathways. PMID:28146084

  8. Pollen-Specific Aquaporins NIP4;1 and NIP4;2 Are Required for Pollen Development and Pollination in Arabidopsis thaliana.

    PubMed

    Di Giorgio, Juliana Andrea Pérez; Bienert, Gerd Patrick; Ayub, Nicolás Daniel; Yaneff, Agustín; Barberini, María Laura; Mecchia, Martín Alejandro; Amodeo, Gabriela; Soto, Gabriela Cynthia; Muschietti, Jorge Prometeo

    2016-05-01

    In flowers with dry stigmas, pollen development, pollination, and pollen tube growth require spatial and temporal regulation of water and nutrient transport. To better understand the molecular mechanisms involved in reproductive processes, we characterized NIP4;1 and NIP4;2, two pollen-specific aquaporins of Arabidopsis thaliana. NIP4;1 and NIP4;2 are paralogs found exclusively in the angiosperm lineage. Although they have 84% amino acid identity, they displayed different expression patterns. NIP4;1 has low expression levels in mature pollen, while NIP4;2 expression peaks during pollen tube growth. Additionally, NIP4;1pro:GUS flowers showed GUS activity in mature pollen and pollen tubes, whereas NIP4;2pro:GUS flowers only in pollen tubes. Single T-DNA mutants and double artificial microRNA knockdowns had fewer seeds per silique and reduced pollen germination and pollen tube length. Transport assays in oocytes showed NIP4;1 and NIP4;2 function as water and nonionic channels. We also found that NIP4;1 and NIP4;2 C termini are phosphorylated by a pollen-specific CPK that modifies their water permeability. Survival assays in yeast indicated that NIP4;1 also transports ammonia, urea, boric acid, and H2O2 Thus, we propose that aquaporins NIP4;1 and NIP4;2 are exclusive components of the reproductive apparatus of angiosperms with partially redundant roles in pollen development and pollination.

  9. Differential expression and seasonal variation on aquaporins 1 and 9 in the male genital system of big fruit-eating bat Artibeus lituratus.

    PubMed

    Oliveira, Regiana L; Campolina-Silva, Gabriel H; Nogueira, José C; Mahecha, Germán A B; Oliveira, Cleida A

    2013-06-01

    Efferent ductules and epididymis are involved in water and solute transport, which is indispensable for storage and maintenance of the sperm viability. The reabsorption process involves proteins such as aquaporins (AQP), which has been described in the male genital system of limited species, including primate, rodents, cats and dogs. To contribute with information about AQPs in the male system, here we investigated the distribution of AQP1 and AQP9 in the tropical bat Artibeus lituratus, along the annual reproductive cycle. A. lituratus is a seasonal breeder with natural variation in components of the androgen and estrogen responsive system, thus being a good model for exploring the AQPs modulation. AQP1 was found restricted to differentiating spermatids, efferent ductules epithelium and venular endothelia along the male tract. AQP9 was detected throughout the epididymis being more abundant in the cauda and ductus deferens, but was not found in testis, rete testis and efferent ductules. Contrasting with AQP1 which appear to be constitutively expressed, there was seasonal variation in AQP9 expression, which was reduced in regressed epididymis. The AQP9 does not appear to be modulated by estradiol or androgens, but possibly by other factor related to luminal sperm. The establishment of specific function for aquaporins in the male tract remains undetermined; however, the cellular distribution presently found are compatible with the main function of AQP1, as a selective water channel, and AQP9, which is a conduct for water and a plethora of neutral solutes present in the epididymis milieu such as glycerol and urea.

  10. Root ABA Accumulation Enhances Rice Seedling Drought Tolerance under Ammonium Supply: Interaction with Aquaporins

    PubMed Central

    Ding, Lei; Li, Yingrui; Wang, Ying; Gao, Limin; Wang, Min; Chaumont, François; Shen, Qirong; Guo, Shiwei

    2016-01-01

    In previous studies, we demonstrated that ammonium nutrition enhances the drought tolerance of rice seedlings compared to nitrate nutrition and contributes to a higher root water uptake ability. It remains unclear why rice seedlings maintain a higher water uptake ability when supplied with ammonium under drought stress. Here, we focused on the effects of nitrogen form and drought stress on root abscisic acid (ABA) concentration and aquaporin expression using hydroponics experiments and stimulating drought stress with 10% PEG6000. Drought stress decreased the leaf photosynthetic rate and stomatal conductivity and increased the leaf temperature of plants supplied with either ammonium or nitrate, but especially under nitrate supply. After 4 h of PEG treatment, the root protoplast water permeability and the expression of root PIP and TIP genes decreased in plants supplied with ammonium or nitrate. After 24 h of PEG treatment, the root hydraulic conductivity, the protoplast water permeability, and the expression of some aquaporin genes increased in plants supplied with ammonium compared to those under non-PEG treatment. Root ABA accumulation was induced by 24 h of PEG treatment, especially in plants supplied with ammonium. The addition of exogenous ABA decreased the expression of PIP and TIP genes under non-PEG treatment but increased the expression of some of them under PEG treatment. We concluded that drought stress induced a down-regulation of aquaporin expression, which appeared earlier than did root ABA accumulation. With continued drought stress, aquaporin expression and activity increased due to root ABA accumulation in plants supplied with ammonium. PMID:27559341

  11. Light-mediated K(leaf) induction and contribution of both the PIP1s and PIP2s aquaporins in five tree species: walnut (Juglans regia) case study.

    PubMed

    Baaziz, Khaoula Ben; Lopez, David; Rabot, Amelie; Combes, Didier; Gousset, Aurelie; Bouzid, Sadok; Cochard, Herve; Sakr, Soulaiman; Venisse, Jean-Stephane

    2012-04-01

    Understanding the response of leaf hydraulic conductance (K(leaf)) to light is a challenge in elucidating plant-water relationships. Recent data have shown that the effect of light on K(leaf) is not systematically related to aquaporin regulation, leading to conflicting conclusions. Here we investigated the relationship between light, K(leaf), and aquaporin transcript levels in five tree species (Juglans regia L., Fagus sylvatica L., Quercus robur L., Salix alba L. and Populus tremula L.) grown in the same environmental conditions, but differing in their K(leaf) responses to light. Moreover, the K(leaf) was measured by two independent methods (high-pressure flow metre (HPFM) and evaporative flux method (EFM)) in the most (J. regia) and least (S. alba) responsive species and the transcript levels of aquaporins were analyzed in perfused and unperfused leaves. Here, we found that the light-induced K(leaf) value was closely related to stronger expression of both the PIP1 and PIP2 aquaporin genes in walnut (J. regia), but to stimulation of PIP1 aquaporins alone in F. sylvatica and Q. robur. In walnut, all newly identified aquaporins were found to be upregulated in the light and downregulated in the dark, further supporting the relationship between the light-mediated induction of K(leaf) and aquaporin expression in walnut. We also demonstrated that the K(leaf) response to light was quality-dependent, K(leaf) being 60% lower in the absence of blue light. This decrease in K(leaf) was correlated with strong downregulation of three PIP2 aquaporins and of all the PIP1 aquaporins tested. These data support a relationship between light-mediated K(leaf) regulation and the abundance of aquaporin transcripts in the walnut tree.

  12. H^- and D^- channels of Dissociative Electron Attachment to water molecules

    NASA Astrophysics Data System (ADS)

    Adaniya, Hidehito; Rudek, Benedikt; Osipov, Timur; Lee, Sun; Weber, Thorsten; Hertlein, Marcus; Schoeffler, Markus; Prior, Mike; Belkacem, Ali

    2009-05-01

    A COLTRIM technique is modified to measure the kinetic energy and angular distribution of H^- and D^- ions arising from dissociative electron attachment to water and heavy water molecules. A low energy pulsed electron, an effusive water target, a pulsed extraction plate are used in combination with the COLTRIMS spectrometer. The spectrometer carries an electrostatic lens system to compensate the effusiveness of the target. This technique is applied to study the H^- and D^- channels in the three Feshbach resonances of water and heavy water anion. The measured kinetic energy release will give the energy partitioning among the fragments, and the means to identify the two-body and three-body breakup channels. The angular distribution of the H^-(D^-) ions with respect to the electron beam is found to reflect well the breakup dynamics of the H2O^- at the dissociation. The experimental results are compared with the theoretical predictions.

  13. FREEZE-FRACTURE AND IMMUNOGOLD ANALYSIS OF AQUAPORIN-4 (AQP4) SQUARE ARRAYS, WITH MODELS OF AQP4 LATTICE ASSEMBLY

    PubMed Central

    RASH, J. E.; DAVIDSON, K. G. V.; YASUMURA, T.; FURMAN, C. S.

    2007-01-01

    Each day, approximately 0.5–0.9 l of water diffuses through (primarily) aquaporin-1 (AQP1) channels in the human choroid plexus, into the cerebrospinal fluid of the brain ventricles and spinal cord central canal, through the ependymal cell lining, and into the parenchyma of the CNS. Additional water is also derived from metabolism of glucose within the CNS parenchyma. To maintain osmotic homeostasis, an equivalent amount of water exits the CNS parenchyma by diffusion into interstitial capillaries and into the subarachnoid space that surrounds the brain and spinal cord. Most of that efflux is through AQP4 water channels concentrated in astrocyte endfeet that surround capillaries and form the glia limitans. This report extends the ultrastructural and immunocytochemical characterizations of the crystalline aggregates of intramembrane proteins that comprise the AQP4 “square arrays” of astrocyte and ependymocyte plasma membranes. We elaborate on recent demonstrations in Chinese hamster ovary cells of the effects on AQP4 array assembly resulting from separate vs. combined expression of M1 and M23 AQP4, which are two alternatively spliced variants of the AQP4 gene. Using improved shadowing methods, we demonstrate sub-molecular cross-bridges that link the constituent intramembrane particles (IMPs) into regular square lattices of AQP4 arrays. We show that the AQP4 core particle is 4.5 nm in diameter, which appears to be too small to accommodate four monomeric proteins in a tetrameric IMP. Several structural models are considered that incorporate freeze-fracture data for submolecular “cross-bridges” linking IMPs into the classical square lattices that characterize, in particular, naturally occurring AQP4. PMID:15561408

  14. Aquaporin in different moult stages of a freshwater decapod crustacean: expression and participation in muscle hydration control.

    PubMed

    Foguesatto, Kamila; Boyle, Robert T; Rovani, Monique T; Freire, Carolina A; Souza, Marta M

    2017-03-09

    Crustaceans, during their moult cycle, at the stages of both pre-moult and post-moult, need water uptake. This movement of water creates a challenge for the regulation of cell volume. The cells of freshwater decapods require a high regulatory capacity to deal with hyposmotic stresses, given the need to face dilution of the haemolymph during their moult cycles. This study investigated the variation in the expression of water channels (aquaporins) along the moult cycle of a freshwater palaemonid shrimp, focusing on their role in cell volume regulation. Moults in Palaemonetes argentinus have been investigated along three stages of its moult cycle: intermoult, late pre-moult and recent post-moult. For the evaluation of tissue volume regulation, the weight of isolatedmuscle, subjected to isosmotic and hyposmotic salines, was followed for 60min. The expression of AQP during the different moult stages was evaluated by immunocytochemistry. Muscle from the three moult stages in isosmotic conditions showed the same pattern of tissue volume regulation. When muscle from animals in pre-moult and intermoult were submitted to hyposmotic stress they swell, followed by volume regulation, while in post-moult the regulation is compromised. The difference in volume regulatory control between pre-moult and post-moult may be related to a possible regulation of water channels, as AQP expression was equal at these stages. This study presents novel findings for crustaceans in general, in the demonstration that AQP expression changes during the moult cycle of a decapod crustacean, together with the regulation of cell volume with the participation of AQPs.

  15. Reciprocal Regulation of Aquaporin-2 Abundance and Degradation by Protein Kinase A and p38-MAP Kinase

    PubMed Central

    Nedvetsky, Pavel I.; Tabor, Vedrana; Tamma, Grazia; Beulshausen, Sven; Skroblin, Philipp; Kirschner, Aline; Mutig, Kerim; Boltzen, Mareike; Petrucci, Oscar; Vossenkämper, Anna; Wiesner, Burkhard; Bachmann, Sebastian; Rosenthal, Walter

    2010-01-01

    Arginine-vasopressin (AVP) modulates the water channel aquaporin-2 (AQP2) in the renal collecting duct to maintain homeostasis of body water. AVP binds to vasopressin V2 receptors (V2R), increasing cAMP, which promotes the redistribution of AQP2 from intracellular vesicles into the plasma membrane. cAMP also increases AQP2 transcription, but whether altered degradation also modulates AQP2 protein levels is not well understood. Here, elevation of cAMP increased AQP2 protein levels within 30 minutes in primary inner medullary collecting duct (IMCD) cells, in human embryonic kidney (HEK) 293 cells ectopically expressing AQP2, and in mouse kidneys. Accelerated transcription or translation did not explain this increase in AQP2 abundance. In IMCD cells, cAMP inhibited p38-mitogen-activated protein kinase (p38-MAPK) via activation of protein kinase A (PKA). Inhibition of p38-MAPK associated with decreased phosphorylation (serine 261) and polyubiquitination of AQP2, preventing proteasomal degradation. Our results demonstrate that AVP enhances AQP2 protein abundance by altering its proteasomal degradation through a PKA- and p38-MAPK–dependent pathway. PMID:20724536

  16. X-ray structure of human aquaporin 2 and its implications for nephrogenic diabetes insipidus and trafficking

    PubMed Central

    Frick, Anna; Eriksson, Urszula Kosinska; de Mattia, Fabrizio; Öberg, Fredrik; Hedfalk, Kristina; Neutze, Richard; de Grip, Willem J.; Deen, Peter M. T.; Törnroth-Horsefield, Susanna

    2014-01-01

    Human aquaporin 2 (AQP2) is a water channel found in the kidney collecting duct, where it plays a key role in concentrating urine. Water reabsorption is regulated by AQP2 trafficking between intracellular storage vesicles and the apical membrane. This process is tightly controlled by the pituitary hormone arginine vasopressin and defective trafficking results in nephrogenic diabetes insipidus (NDI). Here we present the X-ray structure of human AQP2 at 2.75 Å resolution. The C terminus of AQP2 displays multiple conformations with the C-terminal α-helix of one protomer interacting with the cytoplasmic surface of a symmetry-related AQP2 molecule, suggesting potential protein–protein interactions involved in cellular sorting of AQP2. Two Cd2+-ion binding sites are observed within the AQP2 tetramer, inducing a rearrangement of loop D, which facilitates this interaction. The locations of several NDI-causing mutations can be observed in the AQP2 structure, primarily situated within transmembrane domains and the majority of which cause misfolding and ER retention. These observations provide a framework for understanding why mutations in AQP2 cause NDI as well as structural insights into AQP2 interactions that may govern its trafficking. PMID:24733887

  17. In vivo silencing of aquaporin-1 by RNA interference inhibits angiogenesis in the chick embryo chorioallantoic membrane assay.

    PubMed

    Camerino, G M; Nicchia, G P; Dinardo, M M; Ribatti, D; Svelto, M; Frigeri, A

    2006-10-30

    Aquaporin-1 (AQP1) is a water channel protein mainly expressed in endothelial and epithelial cells of many tissues, including the vasculature where it serves to increase cell membrane water permeability. Previous studies in active multiple myeloma patients and in AQP1 KO mice indicated an involvement of AQP1 in physiological and tumor angiogenesis. To understand the physiological role of AQP1 in angiogenesis, we used a 21-nucleotide small interfering RNA duplexes (siRNA) to knockdown AQP1 in the chick embryo chorioallantoic membrane (CAM), a commonly used in vivo assay to study both angiogenic and angiostatic molecules. Chicken AQP1 sequence was identified and utilized to synthesize a siRNA directed to the AQP1 sequence. We then tested the efficiency of the siRNA in vitro, using an AQP1 transfected cell line. The level of AQP1 protein reduction obtained using siRNA was 98 % and 92 % after 1 and 2 day transfection respectively. RNA interference experiments were then performed in vivo by using the CAM assay. Results showed that after 4 days of treatment, AQP1 siRNA was able to strongly inhibit angiogenesis. This is the first study showing the in vivo use of RNA interference technique in the CAM assay. Our results strongly support the hypothesis that AQP1 could have a key role in physiological and pathological angiogenesis.

  18. Short-term functional adaptation of aquaporin-1 surface expression in the proximal tubule, a component of glomerulotubular balance.

    PubMed

    Pohl, Marcus; Shan, Qixian; Petsch, Thomas; Styp-Rekowska, Beata; Matthey, Patricia; Bleich, Markus; Bachmann, Sebastian; Theilig, Franziska

    2015-06-01

    Transepithelial water flow across the renal proximal tubule is mediated predominantly by aquaporin-1 (AQP1). Along this nephron segment, luminal delivery and transepithelial reabsorption are directly coupled, a phenomenon called glomerulotubular balance. We hypothesized that the surface expression of AQP1 is regulated by fluid shear stress, contributing to this effect. Consistent with this finding, we found that the abundance of AQP1 in brush border apical and basolateral membranes was augmented >2-fold by increasing luminal perfusion rates in isolated, microperfused proximal tubules for 15 minutes. Mouse kidneys with diminished endocytosis caused by a conditional deletion of megalin or the chloride channel ClC-5 had constitutively enhanced AQP1 abundance in the proximal tubule brush border membrane. In AQP1-transfected, cultured proximal tubule cells, fluid shear stress or the addition of cyclic nucleotides enhanced AQP1 surface expression and concomitantly diminished its ubiquitination. These effects were also associated with an elevated osmotic water permeability. In sum, we have shown that luminal surface expression of AQP1 in the proximal tubule brush border membrane is regulated in response to flow. Cellular trafficking, endocytosis, an intact endosomal compartment, and controlled protein stability are the likely prerequisites for AQP1 activation by enhanced tubular fluid shear stress, serving to maintain glomerulotubular balance.

  19. A Trial to Cryopreserve Immature Medaka (Oryzias latipes) Oocytes after Enhancing Their Permeability by Exogenous Expression of Aquaporin 3

    PubMed Central

    VALDEZ JR, Delgado M.; TSUCHIYA, Ryoma; SEKI, Shinsuke; SAIDA, Naoya; NIIMI, Saori; KOSHIMOTO, Chihiro; MATSUKAWA, Kazutsugu; KASAI, Magosaburo; EDASHIGE, Keisuke

    2013-01-01

    Abstract Fish oocytes have not been cryopreserved successfully, probably because it is difficult to prevent intracellular ice from forming. Previously, we have shown in medaka that immature oocytes are more suitable for cryopreservation than mature oocytes or embryos, in terms of permeability. We have also shown in immature medaka oocytes that the exogenous expression of aquaporin 3 (AQP3), a water/cryoprotectant channel, promotes the movement of water and cryoprotectants through the plasma membrane. In the present study, we attempted to cryopreserve immature medaka oocytes expressing AQP3. We first examined effects of hypertonic stress and the chemical toxicity of cryoprotectants on the survival of the AQP3-expressing oocytes. Exposure to hypertonic solutions containing sucrose decreased the survival of oocytes, but the expression of AQP3 did not affect sensitivity to hypertonic stress. Also, AQP3 expression did not markedly increase sensitivity to the toxicity of cryoprotectants. Of the four cryoprotectants tested, propylene glycol was the least toxic. Using a propylene glycol-based solution, therefore, we tried to cryopreserve immature oocytes by vitrification. During cooling with liquid nitrogen, all intact oocytes became opaque, but many AQP3-expressing oocytes remained transparent. This indicates that the expression of AQP3 is effective in preventing intracellular ice from forming during cooling. During warming, however, all the AQP3-expressing oocytes became opaque, indicating that intracellular ice formed. Therefore, the dehydration and permeation by propylene glycol were still insufficient. Further studies are necessary to realize the cryopreservation of fish oocytes. PMID:23337101

  20. Vasopressin-independent targeting of aquaporin-2 by selective E-prostanoid receptor agonists alleviates nephrogenic diabetes insipidus.

    PubMed

    Olesen, Emma T B; Rützler, Michael R; Moeller, Hanne B; Praetorius, Helle A; Fenton, Robert A

    2011-08-02

    In the kidney, the actions of vasopressin on its type-2 receptor (V2R) induce increased water reabsorption alongside polyphosphorylation and membrane targeting of the water channel aquaporin-2 (AQP2). Loss-of-function mutations in the V2R cause X-linked nephrogenic diabetes insipidus. Treatment of this condition would require bypassing the V2R to increase AQP2 membrane targeting, but currently no specific pharmacological therapy is available. The present study examined specific E-prostanoid receptors for this purpose. In vitro, prostaglandin E2 (PGE2) and selective agonists for the E-prostanoid receptors EP2 (butaprost) or EP4 (CAY10580) all increased trafficking and ser-264 phosphorylation of AQP2 in Madin-Darby canine kidney cells. Only PGE2 and butaprost increased cAMP and ser-269 phosphorylation of AQP2. Ex vivo, PGE2, butaprost, or CAY10580 increased AQP2 phosphorylation in isolated cortical tubules, whereas PGE2 and butaprost selectively increased AQP2 membrane accumulation in kidney slices. In vivo, a V2R antagonist caused a severe urinary concentrating defect in rats, which was greatly alleviated by treatment with butaprost. In conclusion, EP2 and EP4 agonists increase AQP2 phosphorylation and trafficking, likely through different signaling pathways. Furthermore, EP2 selective agonists can partially compensate for a nonfunctional V2R, providing a rationale for new treatment strategies for hereditary nephrogenic diabetes insipidus.

  1. X-ray structure of human aquaporin 2 and its implications for nephrogenic diabetes insipidus and trafficking.

    PubMed

    Frick, Anna; Eriksson, Urszula Kosinska; de Mattia, Fabrizio; Oberg, Fredrik; Hedfalk, Kristina; Neutze, Richard; de Grip, Willem J; Deen, Peter M T; Törnroth-Horsefield, Susanna

    2014-04-29

    Human aquaporin 2 (AQP2) is a water channel found in the kidney collecting duct, where it plays a key role in concentrating urine. Water reabsorption is regulated by AQP2 trafficking between intracellular storage vesicles and the apical membrane. This process is tightly controlled by the pituitary hormone arginine vasopressin and defective trafficking results in nephrogenic diabetes insipidus (NDI). Here we present the X-ray structure of human AQP2 at 2.75 Å resolution. The C terminus of AQP2 displays multiple conformations with the C-terminal α-helix of one protomer interacting with the cytoplasmic surface of a symmetry-related AQP2 molecule, suggesting potential protein-protein interactions involved in cellular sorting of AQP2. Two Cd(2+)-ion binding sites are observed within the AQP2 tetramer, inducing a rearrangement of loop D, which facilitates this interaction. The locations of several NDI-causing mutations can be observed in the AQP2 structure, primarily situated within transmembrane domains and the majority of which cause misfolding and ER retention. These observations provide a framework for understanding why mutations in AQP2 cause NDI as well as structural insights into AQP2 interactions that may govern its trafficking.

  2. 2D IR spectroscopy reveals the role of water in the binding of channel-blocking drugs to the influenza M2 channel

    NASA Astrophysics Data System (ADS)

    Ghosh, Ayanjeet; Wang, Jun; Moroz, Yurii S.; Korendovych, Ivan V.; Zanni, Martin; DeGrado, William F.; Gai, Feng; Hochstrasser, Robin M.

    2014-06-01

    Water is an integral part of the homotetrameric M2 proton channel of the influenza A virus, which not only assists proton conduction but could also play an important role in stabilizing channel-blocking drugs. Herein, we employ two dimensional infrared (2D IR) spectroscopy and site-specific IR probes, i.e., the amide I bands arising from isotopically labeled Ala30 and Gly34 residues, to probe how binding of either rimantadine or 7,7-spiran amine affects the water dynamics inside the M2 channel. Our results show, at neutral pH where the channel is non-conducting, that drug binding leads to a significant increase in the mobility of the channel water. A similar trend is also observed at pH 5.0 although the difference becomes smaller. Taken together, these results indicate that the channel water facilitates drug binding by increasing its entropy. Furthermore, the 2D IR spectral signatures obtained for both probes under different conditions collectively support a binding mechanism whereby amantadine-like drugs dock in the channel with their ammonium moiety pointing toward the histidine residues and interacting with a nearby water cluster, as predicted by molecular dynamics simulations. We believe these findings have important implications for designing new anti-influenza drugs.

  3. 2D IR spectroscopy reveals the role of water in the binding of channel-blocking drugs to the influenza M2 channel

    SciTech Connect

    Ghosh, Ayanjeet E-mail: gai@sas.upenn.edu; Gai, Feng E-mail: gai@sas.upenn.edu; Hochstrasser, Robin M.; Wang, Jun; DeGrado, William F.; Moroz, Yurii S.; Korendovych, Ivan V.; Zanni, Martin

    2014-06-21

    Water is an integral part of the homotetrameric M2 proton channel of the influenza A virus, which not only assists proton conduction but could also play an important role in stabilizing channel-blocking drugs. Herein, we employ two dimensional infrared (2D IR) spectroscopy and site-specific IR probes, i.e., the amide I bands arising from isotopically labeled Ala30 and Gly34 residues, to probe how binding of either rimantadine or 7,7-spiran amine affects the water dynamics inside the M2 channel. Our results show, at neutral pH where the channel is non-conducting, that drug binding leads to a significant increase in the mobility of the channel water. A similar trend is also observed at pH 5.0 although the difference becomes smaller. Taken together, these results indicate that the channel water facilitates drug binding by increasing its entropy. Furthermore, the 2D IR spectral signatures obtained for both probes under different conditions collectively support a binding mechanism whereby amantadine-like drugs dock in the channel with their ammonium moiety pointing toward the histidine residues and interacting with a nearby water cluster, as predicted by molecular dynamics simulations. We believe these findings have important implications for designing new anti-influenza drugs.

  4. Retrieval of Water Channels by Endocytosis in Renal Epithelia.

    DTIC Science & Technology

    1998-07-01

    side into the systemic circulation, and at times of thirst this is enhanced by antidiuretic hormone (ADH). The process of transcellular enhanced water...Physiol. 243:C200-C204. Harris, H.W., Wade, J.B. and Handler, J.S. 1986. Fluorescent markers to study membrane retrieval in antidiuretic hormone ...treated toad urinary bladder. Am. J. Physiol. 251 (Cell Physiol. 20):C274- C284. Hays, R.M., Franki, N., Simon, H. and Gao, Y. 1994. Antidiuretic hormone

  5. Open-channel, water-in-oil emulsification in paper-based microfluidic devices.

    PubMed

    Li, C; Boban, M; Tuteja, A

    2017-04-11

    Open-channel microfluidic devices have shown great potential in achieving a high degree of fluid control, at relatively low-cost, while enabling the opportunity for rapid fabrication. However, thus far, work in open channel microfluidics has largely focused on controlling the flow of water or other aqueous solutions. In this work we present new open channel microfluidic devices based on surfaces with patterned wettabilty that are capable of controlling the flow of virtually all high and low surface tension liquids. The fabricated open channel devices are capable of constraining a variety of low surface tension oils at high enough flow rates to enable, for the first time, water-in-oil microfluidic emulsification in an open channel device. By changing the flow rates for both the aqueous (dispersed) and organic (continuous) phases, we show that it is possible to vary the size of the emulsified droplets produced in the open channel device. Finally, we utilized the fabricated devices to synthesize relatively monodisperse, hydrogel microparticles that could incorporate a drug molecule. We also investigated the drug release characteristics of the fabricated particles.

  6. 4D photogrammetric technique to study free surface water in open channels

    NASA Astrophysics Data System (ADS)

    Aubé, Damien; Berkaoui, Amine; Vinatier, Fabrice; Bailly, Jean-Stéphane; Belaud, Gilles

    2015-04-01

    Characteristics of three-dimensional surface water are considered as the most valuable information to understand hydrodynamic phenomena in open channel flow. An accurate and coherent description of the free water surface morphology improves the accuracy of hydraulic models which study river processes. However, amongst existing techniques to measure three-dimensional surface, stereo-photogrammetry is clearly the most effective technique to obtain an instantaneous and high accurate 3D free water surface and it's suitable to both flume and field condition. Our study aims at developing this technique in two controlled channels, one in interior with glass borders (length: 6 m, width: 0.3 m and depth: 0.5 m) and one outside with cement borders (length: 13 m, width: 0.7 m and depth: 0.4 m). A system consisting in three NIKON-D3200 cameras, mounted to an adjustable tripod head, which is fixed to an inverted aluminium T-bar with the center camera higher than the two side cameras. Each camera is fitted with a 28 mm lens and cameras are synchronized using a Phottix(R) system. The system was mounted at a downstream position from the channel with an oblique configuration. A series of pictures taken at a 3 s interval during the water weight bearing were reported and analyzed using the Photoscan Pro(R) software for image matching. Validation procedure of the technique was realized using an orthophotography of the lateral border of the interior channel to delimit the line of water surface, and using a video capture of a slide fixed inside the outside channel. A high resolution and dynamic elevation map of the surface water was constructed. Our study give encouraging results, with a good capture of water surface morphology and a limited occlusion issues. The confrontation of the results with the validation dataset highlight limitations that need to be discussed with the audience.

  7. Reciprocity in the developmental regulation of aquaporins 1, 3 and 5 during pregnancy and lactation in the rat.

    PubMed

    Nazemi, Sasan; Rahbek, Mette; Parhamifar, Ladan; Moghimi, Seyed Moein; Babamoradi, Hamid; Mehrdana, Foojan; Klærke, Dan Arne; Knight, Christopher H

    2014-01-01

    Milk secretion involves significant flux of water, driven largely by synthesis of lactose within the Golgi apparatus. It has not been determined whether this flux is simply a passive consequence of the osmotic potential between cytosol and Golgi, or whether it involves regulated flow. Aquaporins (AQPs) are membrane water channels that regulate water flux. AQP1, AQP3 and AQP5 have previously been detected in mammary tissue, but evidence of developmental regulation (altered expression according to the developmental and physiological state of the mammary gland) is lacking and their cellular/subcellular location is not well understood. In this paper we present evidence of developmental regulation of all three of these AQPs. Further, there was evidence of reciprocity since expression of the rather abundant AQP3 and less abundant AQP1 increased significantly from pregnancy into lactation, whereas expression of the least abundant AQP5 decreased. It would be tempting to suggest that AQP3 and AQP1 are involved in the secretion of water into milk. Paradoxically, however, it was AQP5 that demonstrated most evidence of expression located at the apical (secretory) membrane. The possibility is discussed that AQP5 is synthesized during pregnancy as a stable protein that functions to regulate water secretion during lactation. AQP3 was identified primarily at the basal and lateral membranes of the secretory cells, suggesting a possible involvement in regulated uptake of water and glycerol. AQP1 was identified primarily at the capillary and secretory cell cytoplasmic level and may again be more concerned with uptake and hence milk synthesis, rather than secretion. The fact that expression was developmentally regulated supports, but does not prove, a regulatory involvement of AQPs in water flux through the milk secretory cell.

  8. Hypoxia and Hypoxia Mimetics Decrease Aquaporin 5 (AQP5) Expression through Both Hypoxia Inducible Factor-1α and Proteasome-Mediated Pathways

    PubMed Central

    Kawedia, Jitesh D.; Yang, Fan; Sartor, Maureen A.; Gozal, David; Czyzyk-Krzeska, Maria; Menon, Anil G.

    2013-01-01

    The alveolar epithelium plays a central role in gas exchange and fluid transport, and is therefore critical for normal lung function. Since the bulk of water flux across this epithelium depends on the membrane water channel Aquaporin 5 (AQP5), we asked whether hypoxia had any effect on AQP5 expression. We show that hypoxia causes a significant (70%) decrease in AQP5 expression in the lungs of mice exposed to hypoxia. Hypoxia and the hypoxia mimetic, cobalt, also caused similar decreases in AQP5 mRNA and protein expression in the mouse lung epithelial cell line MLE-12. The action of hypoxia and cobalt on AQP5 transcription was demonstrated by directly quantifying heternonuclear RNA by real-time PCR. Dominant negative mutants of Hypoxia Inducible Factor (HIF-1α) and HIF-1α siRNA blocked the action of cobalt, showing that HIF-1α is a key component in this mechanism. The proteasome inhibitors, lactacystin or proteasome inhibitor-III completely abolished the effect of hypoxia and cobalt both at the protein and mRNA level indicating that the proteasome pathway is probably involved not only for the stability of HIF-1α protein, but for the stability of unidentified transcription factors that regulate AQP5 transcription. These studies reveal a potentially important physiological mechanism linking hypoxic stress and membrane water channels. PMID:23469202

  9. Slip effects on mixed convective peristaltic transport of copper-water nanofluid in an inclined channel.

    PubMed

    Abbasi, Fahad Munir; Hayat, Tasawar; Ahmad, Bashir; Chen, Guo-Qian

    2014-01-01

    Peristaltic transport of copper-water nanofluid in an inclined channel is reported in the presence of mixed convection. Both velocity and thermal slip conditions are considered. Mathematical modelling has been carried out using the long wavelength and low Reynolds number approximations. Resulting coupled system of equations is solved numerically. Quantities of interest are analyzed through graphs. Numerical values of heat transfer rate at the wall for different parameters are obtained and examined. Results showed that addition of copper nanoparticles reduces the pressure gradient, axial velocity at the center of channel, trapping and temperature. Velocity slip parameter has a decreasing effect on the velocity near the center of channel. Temperature of nanofluid increases with increase in the Grashoff number and channel inclination angle. It is further concluded that the heat transfer rate at the wall increases considerably in the presence of copper nanoparticles.

  10. Slip Effects on Mixed Convective Peristaltic Transport of Copper-Water Nanofluid in an Inclined Channel

    PubMed Central

    Abbasi, Fahad Munir; Hayat, Tasawar; Ahmad, Bashir; Chen, Guo-Qian

    2014-01-01

    Peristaltic transport of copper-water nanofluid in an inclined channel is reported in the presence of mixed convection. Both velocity and thermal slip conditions are considered. Mathematical modelling has been carried out using the long wavelength and low Reynolds number approximations. Resulting coupled system of equations is solved numerically. Quantities of interest are analyzed through graphs. Numerical values of heat transfer rate at the wall for different parameters are obtained and examined. Results showed that addition of copper nanoparticles reduces the pressure gradient, axial velocity at the center of channel, trapping and temperature. Velocity slip parameter has a decreasing effect on the velocity near the center of channel. Temperature of nanofluid increases with increase in the Grashoff number and channel inclination angle. It is further concluded that the heat transfer rate at the wall increases considerably in the presence of copper nanoparticles. PMID:25170908

  11. An investigation of channel flow with a smooth air-water interface

    NASA Astrophysics Data System (ADS)

    Madad, Reza; Elsnab, John; Chin, Cheng; Klewicki, Joseph; Marusic, Ivan

    2015-06-01

    Experiments and numerical simulation are used to investigate fully developed laminar and turbulent channel flow with an air-water interface as the lower boundary condition. Laser Doppler velocimetry measurements of streamwise and wall-normal velocity components are made over a range of Reynolds number based upon channel height and bulk velocity from 1100 to 4300, which encompasses the laminar, transitional and low Reynolds numbers turbulent regimes. The results show that the airflow statistics near the stationary wall are not significantly altered by the air-water moving interface and reflect those found in channel flows. The mean statistics on the water interface side largely exhibit results similar to simulated Poiseuille-Couette flow (PCF) with a solid moving wall. For second-order statistics, however, the simulation and experimental results show some discrepancies near the moving water surface, suggesting that a full two-phase simulation is required. A momentum and energy transport tubes analysis is investigated for laminar and turbulent PCFs. This analysis builds upon the classical notion of a streamtube and indicates that part of the energy from the pressure gradient is transported towards the stationary wall and is dissipated as heat inside the energy tubes, while the remainder is transmitted to the moving wall. For the experiments, the airflow energy is transmitted towards the water to overcome the drag force and drive the water forward; therefore, the amount of energy transferred to the water is higher than the energy transferred to a solid moving wall.

  12. Kinetic Limited Water Evaporation in Hydrophilic Nanofluidic Channels

    NASA Astrophysics Data System (ADS)

    Li, Yinxiao; Alibakhshi, Mohammad Amin; Xie, Quan; Duan, Chuanhua

    2015-11-01

    Capillary evaporation is one of the most efficient approaches for heat and mass transfer, but the interfacial resistance in capillary evaporation governed by the kinetic theory has remained poorly understood. Here we report experimental studies of the kinetic-limited water capillary evaporation in 2-D hydrophilic nanochannels. A novel hybrid nanochannel design is employed to guarantee sufficient water supply to the liquid/vapor evaporation interface and to enable precise evaporation rate measurements. We study the effects of confinement (16 ~ 105nm), temperature (20 ~ 40 °C), and relative humidity (0% ~ 60%) on the evaporation rate and the evaporation coefficient. A maximum evaporation flux of 21287 micron/s is obtained in 16-nm nanochannels at 40°C and RH =0%, which corresponds to a heat flux of 4804 W/cm°. The evaporation coefficient is found to be independent on geometrical confinement, but shows a clear dependence on temperature, decreasing from 0.55 at 20°C to 0.5 at 40 °C. These findings have implications for understanding heat and mass transport in nanofluidic devices and porous media, and shed light on further development of evaporation-based technologies for thermal management, membrane purification and lab-on-a-chip devices. The work is supported by the American Chemical Society Petroleum Research Fund (ACS PRF # 54118-DNI7) and the Faculty Startup Fund (Boston University, USA).

  13. Expression of Fragaria vesca PIP Aquaporins in Response to Drought Stress: PIP Down-Regulation Correlates with the Decline in Substrate Moisture Content

    PubMed Central

    Šurbanovski, Nada; Sargent, Daniel J.; Else, Mark A.; Simpson, David W.; Zhang, Hanma; Grant, Olga M.

    2013-01-01

    PIP aquaporin responses to drought stress can vary considerably depending on the isoform, tissue, species or level of stress; however, a general down-regulation of these genes is thought to help reduce water loss and prevent backflow of water to the drying soil. It has been suggested therefore, that it may be necessary for the plant to limit aquaporin production during drought stress, but it is unknown whether aquaporin down-regulation is gradual or triggered by a particular intensity of the stress. In this study, ten Fragaria PIP genes were identified from the woodland strawberry (Fragaria vesca L.) genome sequence and characterised at the sequence level. The water relations of F. vesca were investigated and the effect of different intensities of drought stress on the expression of four PIP genes, as well as how drought stress influences their diurnal transcription was determined. PIP down-regulation in the root corresponded to the level of drought stress. Moreover, transcript abundance of two genes highly expressed in the root (FvPIP1;1 and FvPIP2;1) was strongly correlated to the decline in substrate moisture content. The amplitude of diurnal aquaporin expression in the leaves was down-regulated by drought without altering the pattern, but showing an intensity-dependent effect. The results show that transcription of PIP aquaporins can be fine-tuned with the environment in response to declining water availability. PMID:24086403

  14. Expression of Fragaria vesca PIP aquaporins in response to drought stress: PIP down-regulation correlates with the decline in substrate moisture content.

    PubMed

    Šurbanovski, Nada; Sargent, Daniel J; Else, Mark A; Simpson, David W; Zhang, Hanma; Grant, Olga M

    2013-01-01

    PIP aquaporin responses to drought stress can vary considerably depending on the isoform, tissue, species or level of stress; however, a general down-regulation of these genes is thought to help reduce water loss and prevent backflow of water to the drying soil. It has been suggested therefore, that it may be necessary for the plant to limit aquaporin production during drought stress, but it is unknown whether aquaporin down-regulation is gradual or triggered by a particular intensity of the stress. In this study, ten Fragaria PIP genes were identified from the woodland strawberry (Fragaria vesca L.) genome sequence and characterised at the sequence level. The water relations of F. vesca were investigated and the effect of different intensities of drought stress on the expression of four PIP genes, as well as how drought stress influences their diurnal transcription was determined. PIP down-regulation in the root corresponded to the level of drought stress. Moreover, transcript abundance of two genes highly expressed in the root (FvPIP1;1 and FvPIP2;1) was strongly correlated to the decline in substrate moisture content. The amplitude of diurnal aquaporin expression in the leaves was down-regulated by drought without altering the pattern, but showing an intensity-dependent effect. The results show that transcription of PIP aquaporins can be fine-tuned with the environment in response to declining water availability.

  15. Interfacial wave behavior in oil-water channel flows: Prospects for a general understanding

    SciTech Connect

    McCready, M.J.; Uphold, D.D.; Gifford, K.A.

    1997-12-31

    Oil-water pressure driven channel flow is examined as a model for general two-layer flows where interfacial disturbances are important. The goal is to develop sufficient understanding of this system so that the utility and limitations of linear and nonlinear theories can be known a priori. Experiments show that sometimes linear stability is useful at predicting the steady or dominant evolving waves. However in other situations there is no agreement between the linearly fastest growing wave and the spectral peak. An interesting preliminary result is that the bifurcation to interfacial waves is supercritical for all conditions that were studied for an oil-water channel flow, gas-liquid channel flow and two-liquid Couette flow. However, three different mechanisms are dominant for each of these three situations.

  16. Voltage Gated Ion Channel Function: Gating, Conduction, and the Role of Water and Protons

    PubMed Central

    Kariev, Alisher M.; Green, Michael E.

    2012-01-01

    by the water present within the channel. Our own quantum calculations as well as numerous experiments of others are interpreted in terms of this hypothesis. It is also shown that the evidence that supports the motion of the sensor as the gating current can also be consistent with the hypothesis we present. PMID:22408417

  17. On the similarity in shape between debris-flow channels and high-gradient flood channels: Initial insight from continuum models for granular and water flow

    NASA Astrophysics Data System (ADS)

    Kean, J. W.; McCoy, S. W.; Tucker, G. E.

    2011-12-01

    The cro